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Abstract
We introduce quaternary modified four μ-circulant codes as a modification of four circulant
codes. We give basic properties of quaternary modified four μ-circulant Hermitian self-dual
codes. We also construct quaternary modified four μ-circulant Hermitian self-dual codes
having large minimum weights. Two quaternary Hermitian self-dual [56, 28, 16] codes are
constructed for the first time. These codes improve the previously known lower bound on
the largest minimum weight among all quaternary (linear) [56, 28] codes. In addition, these
codes imply the existence of a quantum [[56, 0, 16]] code.

Keywords Self-dual code · Quaternary code · Hermitian self-dual code

Mathematics Subject Classification 94B05

1 Introduction

Self-dual codes are one of the most interesting classes of (linear) codes. This interest is
justified by many combinatorial objects and algebraic objects related to self-dual codes (see
e.g., [6], [20] and [26]).

Let Fq2 denote the finite field of order q2, where q is a prime or a prime power. A code
C over Fq2 of length n is said to be Hermitian self-dual if C = C⊥H , where the Hermitian
dual code C⊥H of C is defined as C⊥H = {x ∈ F

n
q2

| 〈x, y〉H = 0 for all y ∈ C} under
the Hermitian inner product 〈x, y〉H . By the Gleason–Pierce theorem, there are nontrivial
divisible Hermitian self-dual codes over Fq2 for q = 2 only. This is one of the reasons why
much work has been done concerning Hermitian self-dual codes over F4 (see e.g., [1, 4, 5,
9–11, 16–19, 21–25] and [27]). In this paper, we study Hermitian self-dual codes over F4.

It is a fundamental and challenging problem in self-dual codes to classify self-dual codes
and determine the largest minimum weight among all self-dual codes for a fixed length. A
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code over F4 is called quaternary. All quaternary Hermitian self-dual codes were classified in
[5], [16], [17] and [25] for lengths n ≤ 20. Also, the largest minimumweight d(n) among all
Hermitian self-dual codes is determined for lengths n ≤ 30 (see [9, Table 5] for the current
information on d(n)).

For small fields F, many four circulant (negacirculant) self-dual codes over F having
large minimum weights are known (see e.g., [7], [13], [14], [15] and the references given
therein). In this paper, by modifying four circulant self-dual codes, we give a method for
constructing quaternary Hermitian self-dual codes based on μ-circulant matrices, which are
called modified four μ-circulant codes. Some basic properties of modified four μ-circulant
quaternary Hermitian self-dual codes are given. We also give numerical results of quaternary
modified fourμ-circulant Hermitian self-dual codes together with an application to quantum
codes.

This paper is organized as follows. In Sect. 2, we give some definitions, notations and basic
results used in this paper. In Sect. 3, we define quaternary modified four μ-circulant codes
as a certain modification of four circulant codes. We also give basic properties of quaternary
modified four μ-circulant Hermitian self-dual codes. In particular, we give a condition for
quaternarymodified fourμ-circulant codes to beHermitian self-dual. In addition, we observe
equivalences of quaternarymodified fourμ-circulantHermitian self-dual codes. In Sect. 4,we
present numerical results of quaternary modified four μ-circulant Hermitian self-dual codes.
By computer search based on basic properties presented in Sect. 3, we give a classification of
quaternary modified four μ-circulant Hermitian self-dual codes having the currently known
largest minimumweights for lengths 24, 28, 32 and 36 (Proposition 7). For larger lengths, we
also construct quaternary modified four μ-circulant Hermitian self-dual codes having large
minimum weights. We emphasize that quaternary Hermitian self-dual [56, 28, 16] codes
are constructed for the first time (Proposition 10). These codes C56,1 and C56,ω improve the
previously known lower bounds on the largest minimumweight among all quaternary (linear)
[56, 28] codes (Corollary 11). In Sect. 5, we give an application ofC56,1 andC56,ω to quantum
codes. More precisely, C56,1 and C56,ω imply the existence of a quantum [[56, 0, 16]] code.

2 Preliminaries

In this section, we give some definitions, notations and basic results used in this paper.

2.1 Quaternary codes

We denote the finite field of order 4 by F4 = {0, 1, ω, ω}, where ω = ω2 = ω + 1. A
quaternary linear [n, k] code C is a k-dimensional vector subspace of Fn

4. All codes in this
paper are quaternary and linear unless otherwise noted, so we omit linear and we often omit
quaternary. The parameter n is called the length of C . A generator matrix of C is a k × n
matrix such that the rows of the matrix generateC . Theweight wt(x) of a vector x ∈ F

n
4 is the

number of non-zero components of x . The weight enumerator of C is given by
∑

c∈C ywt(c).
A vector of C is called a codeword of C . The minimum non-zero weight of all codewords
in C is called the minimum weight of C . A quaternary [n, k, d] code is a quaternary [n, k]
code with minimum weight d .
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2.2 Quaternary Hermitian self-dual codes

The Hermitian dual code C⊥H of a quaternary code C of length n is defined as

C⊥H = {x ∈ F
n
4 | 〈x, y〉H = 0 for all y ∈ C},

under the following Hermitian inner product

〈x, y〉H =
n∑

i=1

xi y
2
i

for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ F
n
4. A quaternary code C is said to be

Hermitian self-dual if C = C⊥H . All codewords of a quaternary Hermitian self-dual code
have even weights [25, Theorem 1].

All matrices in this paper are matrices over F4, so we write simply matrices. Throughout
this paper, let In denote the identity matrix of order n, and let AT denote the transpose of
a matrix A. Moreover, let A denote the matrix (a2i j ) for a matrix A = (ai j ). The following
lemma is a criterion for Hermitian self-duality.

Lemma 1 [25, Theorems 1 and 4] Let C be a quaternary [2n, n] code with generator matrix
(
In M

)
. If MM

T = In, then C is Hermitian self-dual.

It was shown in [25] that the minimum weight d of a quaternary Hermitian self-dual code
of length n is bounded by:

d ≤ 2
⌊n

6

⌋
+ 2. (1)

A quaternary Hermitian self-dual code of length n and minimumweight 2�n/6�+2 is called
extremal.

Two quaternary Hermitian self-dual codes C and C ′ are equivalent if there is a monomial
matrix P over F4 with C ′ = C · P , where C · P = {x P | x ∈ C} (see [25]). Throughout
this paper, two equivalent quaternary Hermitian self-dual codes C and C ′ are denoted by
C ∼= C ′. All quaternary Hermitian self-dual codes were classified in [5], [16], [17] and [25]
for lengths up to 20. All extremal quaternary Hermitian self-dual codes of length 22 were
also classified in [17].

3 Definition and basic properties of modified four �-circulant codes

In this section, we define quaternary modified four μ-circulant codes and we give their basic
properties.

An n × n matrix of the following form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r0 r1 r2 · · · rn−2 rn−1

μrn−1 r0 r1 · · · rn−3 rn−2

μrn−2 μrn−1 r0 · · · rn−4 rn−3
...

...
...

...
...

...
...

...
...

...

μr1 μr2 μr3 · · · μrn−1 r0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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is called μ-circulant, where μ ∈ {1, ω, ω}. In particular, if μ = 1, then this is well-known
as a circulant matrix. It is trivial that a μ-circulant matrix with first row (r0, r1, . . . , rn−1) is
written as

∑n−1
i=0 ri En(μ)i , where

En(μ) =

⎛

⎜
⎜
⎜
⎝

0
... In−1

0
μ 0 · · · 0

⎞

⎟
⎟
⎟
⎠

.

Lemma 2 Suppose that μ ∈ {1, ω, ω}.
(i) If A and B are n × n μ-circulant matrices, then AB = BA.

(ii) If A is an n × n μ-circulant matrix with first row (r0, r1, . . . , rn−1), then A
T
is a μ-

circulant matrix with first row (r20 , (μrn−1)
2, . . . , (μr1)2).

Proof The assertion (i) follows from the fact that a μ-circulant matrix with first row
(r0, r1, . . . , rn−1) is written as

∑n−1
i=0 ri En(μ)i . The assertion (ii) follows from the fact that

A
T
is written as r20 In + ∑n−1

i=1 (μrn−i )
2En(μ)i . ��

Bymodifying four circulant self-dual codes (see e.g., [15] for the definition), we introduce
the following method for constructing quaternary Hermitian self-dual codes. Suppose that
μ ∈ {1, ω, ω}. Let A and B be n × n μ-circulant matrices. We say that a quaternary [4n, 2n]
code with generator matrix of the following form

(

I2n
A B

B
T

A
T

)

(2)

is modified four μ-circulant. A modified four 1-circulant code is also called modified four
circulant. We denote the code with generator matrix (2) by Cμ(A, B).

Remark 3 As a different modification of four circulant codes, codes with generator matrices
of the following form

(

I2n
ATC J B
BTC J A

)

are given in [27], where A, B and C are circulant matrices and J is the exchange matrix.

Now we give some basic properties of modified four μ-circulant Hermitian self-dual
codes. Although the following lemmas are somewhat trivial, we give proofs for the sake of
completeness.

Lemma 4 Suppose that μ ∈ {1, ω, ω}. A quaternary modified four μ-circulant code

Cμ(A, B) is Hermitian self-dual if AA
T + BB

T = In.

Proof By Lemma 2 (i), AB + BA = On , where On denotes the n × n zero matrix. By

Lemma 2 (ii), A
T
and B

T
are μ-circulant. Again by Lemma 2 (i), A

T
B
T = B

T
A
T
and

AA
T = A

T
A. Thus, we have

A
T
B
T + B

T
A
T = On and A

T
A + B

T
B = In .
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Let M(A, B) denote the 2n × 2n matrix

(
A B

B
T

A
T

)

. Then we have

M(A, B)M(A, B)
T =

(
AA

T + BB
T

AB + BA

A
T
B
T + B

T
A
T

A
T
A + B

T
B

)

= I2n .

The result follows from Lemma 1. ��
Lemma 5 Suppose that Cμ(A, B) is a quaternary modified four μ-circulant Hermitian self-
dual code, where μ ∈ {1, ω, ω}. Then the following statements hold.

(i) Cμ(A, B) ∼= Cμ(ωA, ωB) ∼= Cμ(ωA, ωB).
(ii) Cμ(A, B) ∼= Cμ(B, A).

(iii) Cμ(A, B) ∼= Cμ(A
T
, B

T
).

(iv) Cμ(A, B) ∼= Cμ(A, B
T
).

Proof The assertions (i), (ii) and (iii) are trivial. The Hermitian dual code Cμ(A, B)⊥H of
Cμ(A, B) has the following generator matrix

(
A
T
B

B
T

A
I2n

)

.

Since Cμ(A, B) = Cμ(A, B)⊥H , the above matrix is also a generator matrix of Cμ(A, B).

It follows from (iii) that Cμ(A, B) ∼= Cμ(A, B
T
). ��

Lemma 6 Let C be a quaternary modified four μ-circulant Hermitian self-dual code, where
μ ∈ {1, ω, ω}. Then there is a quaternary modified four μ-circulant Hermitian self-dual
code Cμ(A, B) such that C ∼= Cμ(A, B) and the first nonzero coordinate of the first row of
A is 1.

Proof Suppose that C = Cμ(A′, B ′) and the first nonzero coordinate of the first row of A′ is
ω (resp. ω). Then Cμ(ωA′, ωB ′) (resp. Cμ(ωA′, ωB ′)) is a modified four μ-circulant code
such that nonzero coordinate of the first row of ωA′ (resp. ωA′) is 1. By Lemma 5 (i), we
have that C ∼= Cμ(ωA′, ωB ′) (resp. C ∼= Cμ(ωA′, ωB ′)). The result follows. ��

The above lemma substantially reduces the number of codes which need be checked when
a classification of modified four μ-circulant Hermitian self-dual codes is completed and the
largest minimum weight among all modified four μ-circulant Hermitian self-dual codes is
determined in the next section.

4 Numerical results of modified four �-circulant Hermitian self-dual
codes

In this section, we present numerical results of quaternary modified four μ-circulant
Hermitian self-dual codes. We emphasize that Hermitian self-dual [56, 28, 16] codes are
constructed. These codes are the first examples of not only Hermitian self-dual [56, 28, 16]
codes but also (linear) [56, 28, 16] codes. All computer calculations in this section were done
using programs in Magma [2] unless otherwise specified.
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Table 1 Values dK (n)

n 24 28, 32 36, 40, 44 48, 52, 56 60, 64 68, 72, 76 80

dK (n) 8 10 12 14 16 18 20

4.1 Classification of modified four�-circulant Hermitian self-dual codes

As described in Sect. 2, all quaternary Hermitian self-dual codes of lengths up to 20 were
classified in [5], [16], [17] and [25]. From now on, we consider Hermitian self-dual codes
for only lengths n ≥ 24.

Let d(n) denote the largest minimum weight among all Hermitian self-dual codes of
length n. Let dK (n) denote the largest minimum weight among previously known Hermitian
self-dual codes of length n. For n ∈ {24, 28, . . . , 80}, the values dK (n) are listed in Table 1,
noting that d(24) = 8 and d(28) = 10 (see [9, Table 5]).

Here we give a classification of modified four μ-circulant Hermitian self-dual codes hav-
ingminimumweight dK (n) for length n ∈ {24, 28, 32, 36}.We describe how to complete our
classification briefly. Our exhaustive computer search based on Lemmas 4 and 6 found all dis-
tinct generator matrices (2) of modified fourμ-circulant Hermitian self-dual [n, n/2, dK (n)]
codes Cμ(A, B), which must be checked further for equivalences. To test equivalence of
two modified four μ-circulant Hermitian self-dual [n, n/2, dK (n)] codes, we used Magma
function IsIsomorphic. Moreover, in the process of finding these codes, we verified that
there is no modified four μ-circulant Hermitian self-dual code of length n and minimum
weight d > dK (n) for lengths n = 32 and 36. Then we have the following proposition.

Proposition 7 (i) Up to equivalence, there are 7 quaternary modified four circulant Hermi-
tian self-dual [24, 12, 8] codes. Up to equivalence, there are 9 quaternary modified four
μ-circulant Hermitian self-dual [24, 12, 8] codes for μ ∈ {ω,ω}.

(ii) Up to equivalence, there are 3 quaternary modified four μ-circulant extremal Hermitian
self-dual [28, 14, 10] codes for μ ∈ {1, ω, ω}.

(iii) Up to equivalence, there are 59 quaternarymodified fourμ-circulant Hermitian self-dual
[32, 16, 10] codes for μ ∈ {1, ω, ω}. If d ≥ 12, then there is no quaternary modified
four μ-circulant Hermitian self-dual [32, 16, d] code for μ ∈ {1, ω, ω}.

(iv) Up to equivalence, there is a unique quaternary modified four μ-circulant Hermitian
self-dual [36, 18, 12] code for μ ∈ {1, ω, ω}. If d ≥ 14, then there is no quaternary
modified four μ-circulant Hermitian self-dual [36, 18, d] code for μ ∈ {1, ω, ω}.

For n ∈ {24, 28, 32, 36}, by Cn,μ,i (i ∈ {1, 2, . . . , Nμ(n)}), we denote the modified four
μ-circulant Hermitian self-dual [n, n/2, dK (n)] codes described in the above proposition,
where

N1(24) = 7, Nμ(24) = 9 (μ ∈ {ω,ω}), Nμ(28) = 3 (μ ∈ {1, ω, ω}),
Nμ(32) = 59 (μ ∈ {1, ω, ω}), Nμ(36) = 1 (μ ∈ {1, ω, ω}).

For these codes Cn,μ,i = Cμ(A, B) (μ = 1, ω, ω), the first rows rA (resp. rB ) of A (resp.
B) are listed in Tables 2, 3, 4, 9, 10 and 11.
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Table 2 Modified four
μ-circulant Hermitian self-dual
[24, 12, 8] codes

Code rA rB A8

C24,1,1 (1, 0, 1, 0, 1, 1) (ω, ω, ω, 1, 0, 1) 513

C24,1,2 (1, ω, 1, 1, ω, 1) (ω, 1, ω, 1, 0, 1) 594

C24,1,3 (1, ω, ω, 0, ω, 1) (ω, 0, 0, ω, 0, 0) 594

C24,1,4 (0, 1, 1, 0, ω, ω) (ω, ω, ω, 1, 0, 1) 837

C24,1,5 (0, 1, 1, 0, ω, ω) (1, 1, 1, 0, 0, 0) 837

C24,1,6 (1, 1, 1, 0, ω, ω) (1, ω, 1, 1, 0, 0) 837

C24,1,7 (1, ω, ω, ω, 1, ω) (ω, ω, ω, 0, 0, 0) 837

C24,ω,1 (1, ω, ω, 1, ω, ω) (ω, 0, 0, ω, 1, 0) 513

C24,ω,2 (1, 1, 1, ω, ω, 0) (ω, 0, 1, ω, ω, 0) 513

C24,ω,3 (1, ω, ω, 1, ω, 0) (ω, 0, ω, ω, 1, 0) 513

C24,ω,4 (1, ω, ω, 1, ω, 0) (0, 0, 0, ω, 1, 0) 513

C24,ω,5 (1, 1, 1, ω, 0, ω) (1, ω, ω, 1, ω, ω) 513

C24,ω,6 (1, ω, ω, 1, 1, ω) (ω, ω, ω, ω, 1, 0) 513

C24,ω,7 (1, ω, ω, 1, ω, 1) (0, 0, ω, ω, 1, 0) 513

C24,ω,8 (0, 1, 1, ω, ω, ω) (ω, 0, 1, ω, ω, 0) 513

C24,ω,9 (0, 1, ω, ω, 0, 0) (1, ω, 0, 1, ω, 0) 513

C24,ω,1 (0, 0, 1, 1, 0, ω) (ω, ω, 1, ω, ω, ω) 513

C24,ω,2 (1, 0, ω, ω, ω, 1) (0, ω, 0, ω, ω, 1) 513

C24,ω,3 (1, 0, ω, ω, 1, 0) (0, ω, 1, ω, ω, 1) 513

C24,ω,4 (0, 0, 1, 1, 0, 0) (ω, ω, ω, 0, ω, ω) 513

C24,ω,5 (0, 0, 1, 1, 0, 0) (ω, 0, 1, ω, ω, ω) 513

C24,ω,6 (0, 0, 1, 1, 1, 1) (ω, 0, ω, 1, ω, ω) 513

C24,ω,7 (0, 0, 1, 1, ω, 0) (ω, ω, ω, ω, ω, ω) 513

C24,ω,8 (0, 0, 1, 1, 1, 0) (ω, ω, ω, 1, ω, ω) 513

C24,ω,9 (0, 0, 1, 1, 1, 0) (0, ω, 1, 0, ω, ω) 513

Remark 8 By Magma function IsIsomorphic, we have the following

C24,ω,i ∼= C24,ω,i (i ∈ {1, 2, . . . , 9}),
C28,1,i ∼= C28,ω,i ∼= C28,ω,i (i ∈ {1, 2, 3}),
C32,1,i ∼= C32,ω,i ∼= C32,ω,i (i ∈ {1, 2, . . . , 59}),
C36,ω,1 ∼= C36,ω,1,

and there is no other pair of equivalent codes among the codes described in Proposition 7.

For n = 24, 32 and 36, the possible weight enumerators of quaternary Hermitian self-
dual [n, n/2, dK (n)] codes can be written using AdK (n) (see [1] and [22, Sect. III]). Note that
the possible weight enumerator of an extremal Hermitian self-dual code of a fixed length is
uniquely determined. For the above codes Cn,μ,i (n = 24, 32 and 36), the numbers AdK (n)

of codewords of minimum weight dK (n) are also listed in Tables 2, 4, 9, 10 and 11. This was
calculated by the Magma function NumberOfWords.
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Table 3 Modified four
μ-circulant Hermitian self-dual
[28, 14, 10] codes

Code rA rB

C28,1,1 (0, 1, ω, 0, 1, 0, ω) (ω, ω, ω, ω, 0, 0, ω)

C28,1,2 (1, ω, 1, 0, ω, 0, 0) (ω, ω, 1, ω, ω, 1, 1)

C28,1,3 (0, 1, ω, 0, ω, 0, 0) (ω, 1, ω, 1, 1, 0, ω)

C28,ω,1 (1, ω, ω, 0, ω, 0, 1) (ω, 0, 0, ω, ω, 0, ω)

C28,ω,2 (1, ω, ω, 0, ω, 0, 0) (1, ω, ω, ω, ω, 1, ω)

C28,ω,3 (0, 1, ω, 0, ω, 0, 0) (ω, ω, 0, ω, 1, 1, ω)

C28,ω,1 (1, 0, ω, ω, ω, 0, 1) (ω, 0, 0, 0, 1, 1, ω)

C28,ω,2 (1, ω, 1, ω, 1, 1, ω) (ω, 0, ω, 0, 0, ω, 1)

C28,ω,3 (1, ω, ω, ω, ω, 0, 1) (0, ω, ω, 0, 0, 0, ω)

Table 4 Modified four μ-circulant Hermitian self-dual [36, 18, 12] codes
Code rA rB A12

C36,1,1 (1, 1, 1, 1, 1, 1, ω, ω, ω) (1, 1, 0, 0, 1, 0, 1, 0, 0) 20844

C36,ω,1 (1, ω, 1, 1, 1, 1, ω, 1, 1) (1, ω, ω, ω, 0, ω, 1, 0, 0) 19548

C36,ω,1 (1, ω, 1, 1, 1, 1, ω, 1, 1) (1, ω, ω, ω, 0, ω, 1, 0, 0) 19548

4.2 Largest minimumweights of modified four�-circulant Hermitian self-dual
codes

We give some observations on the largest minimum weight d(n) among all Hermitian self-
dual codes of length n and the largest minimum weight dμ(n) (μ = 1, ω, ω) among all
modified four μ-circulant Hermitian self-dual codes of length n. For lengths n = 40 and 44,
by a method similar to the above, our exhaustive computer search based on Lemmas 4 and 6
verified that there is no modified four μ-circulant Hermitian self-dual [n, n/2, d] code with
d > dK (n) for μ ∈ {1, ω, ω} (see Table 1 for the minimum weights dK (n)). In addition,
we found a modified four μ-circulant Hermitian self-dual [n, n/2, dK (n)] code Cn,μ for
μ ∈ {1, ω, ω}. This implies the following proposition.

Proposition 9 For μ ∈ {1, ω, ω}, dμ(40) = 10 and dμ(44) = 12.

For the above codes C40,μ = Cμ(A, B) and C44,μ = Cμ(A, B), the first rows rA (resp.
rB ) of A (resp. B) are listed in Table 5. The numbers AdK (n) of codewords of minimum
weight dK (n) are also listed in the table. This was calculated by the Magma function
NumberOfWords. The numbers show that these codes are inequivalent.

For lengths 48, 52, . . . , 76 and 80, by a non-exhaustive search based on Lemmas 4 and 6,
we continued finding modified four μ-circulant Hermitian self-dual codes having large min-
imum weights. Then we found a modified four μ-circulant Hermitian self-dual code Cn,μ of
length n and minimum weight d for

(n, μ, d) =(52, 1, 14), (52, ω, 14), (52, ω, 14), (56, 1, 16), (56, ω, 16), (56, ω, 14),

(60, 1, 16), (60, ω, 16), (60, ω, 16), (64, 1, 16), (64, ω, 16), (64, ω, 16),

(68, 1, 18), (68, ω, 18), (68, ω, 18), (72, 1, 18), (72, ω, 18), (72, ω, 18),

(76, 1, 18), (76, ω, 18), (76, ω, 18), (80, 1, 20), (80, ω, 20), (80, ω, 20).
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Table 5 Modified four μ-circulant Hermitian self-dual codes C40,μ and C44,μ

Code rA rB AdK (n)

C40,1 (1, 0, 0, 1, ω, 1, 0, 0, 1, 0) (ω, ω, 1, 1, ω, ω, 0, ω, ω, 0) 5220

C40,ω (1, ω, ω, 1, 1, 1, ω, ω, ω, ω) (ω, 1, 0, ω, ω, ω, ω, ω, 0, 0) 5130

C40,ω (1, ω, ω, ω, ω, ω, ω, ω, 0, ω) (1, ω, 0, 1, ω, 0, ω, 0, ω, 0) 5040

C44,1 (1, ω, ω, 0, 0, ω, 0, ω, ω, 1, ω) (ω, ω, ω, ω, ω, ω, 0, ω, 0, 0, 0) 1188

C44,ω (1, 0, 0, ω, ω, 1, ω, 0, ω, 1, 0) (ω, 0, ω, 0, ω, 0, 0, ω, 1, ω, 0) 1551

C44,ω (1, 0, ω, 0, 1, 1, 1, ω, 0, ω, ω) (ω, 1, ω, ω, 0, ω, ω, ω, ω, ω, 0) 1749

Table 6 Largest minimum
weights d1(n), dω(n) and dω(n)

n d1(n) dω(n) dω(n) n d1(n) dω(n) dω(n)

24 8 8 8 56 16–20 16–20 14–20

28 10 10 10 60 16–22 16–22 16–22

32 10 10 10 64 16–22 16–22 16–22

36 12 12 12 68 18–24 18–24 18–24

40 12 12 12 72 18–26 18–26 18–26

44 12 12 12 76 18–26 18–26 18–26

48 14–18 14–18 14–18 80 20–28 20–28 20–28

52 14–18 14–18 14–18

For the above codes Cn,μ = Cμ(A, B), the first rows rA (resp. rB ) of A (resp. B) are listed
in Table 12. We have the following proposition.

Proposition 10 There are quaternary Hermitian self-dual [56, 28, 16] codes.

We emphasize that C56,1 and C56,ω are the first examples of not only Hermitian self-dual
[56, 28, 16] codes but also (linear) [56, 28, 16] codes [8]. We give the weight enumerators
of these codes in the next subsection.

In Table 6, we summarize the current information on d1(n), dω(n) and dω(n). The upper
bounds on d1(n), dω(n) and dω(n) follow from (1). The lower bounds on d1(n), dω(n) and
dω(n) follow from Table 12.

4.3 C56,1 and C56,!

It is amain problem in coding theory to determine the largestminimumweightdq (n, k) among
all [n, k] codes over a finite field of order q for a given (q, n, k). The current information on
d4(n, k) can be found in [8]. For example, itwas previously known that 15 ≤ d4(56, 28) ≤ 21.
As a consequence of Proposition 10, we have the following corollary.

Corollary 11 16 ≤ d4(56, 28) ≤ 21.

Now we determine the weight enumerators of C56,1 and C56,ω. It is well known that the
possible weight enumerators of quaternary Hermitian self-dual codes can be determined by
the Gleason type theorem [24, p. 804] (see also [25, Theorem 13]). The weight enumerator

123



2936 M. Harada

Table 7 Possible weight
enumerator W56,16

i Ai

0 1

16 α

18 β

20 113963850 − 78α − 15β

22 1616214600 + 520α + 99β

24 35022262275 − 1495α − 357β

26 467452738368 + 1344α + 612β

28 4854958425240 + 5560α + 612β

30 37999586848608 − 28576α − 7140β

32 223928221341825 + 79170α + 23868β

34 991894905892800 − 170560α − 51714β

36 3272633909885340 + 309452α + 82654β

38 7961209635178800 − 471120α − 102102β

40 14053893738878070 + 586586α + 99450β

42 17629097730552000 − 584000α − 76908β

44 15262097167863000 + 457080α + 47124β

46 8759255147042400 − 276640α − 22644β

48 3144896807802750 + 126685α + 8364β

50 646962821144640 − 42432α − 2295β

52 65864956983210 + 9810α + 441β

54 2485731965640 − 1400α − 53β

56 14512944519 + 93α + 3β

W of a quaternary Hermitian self-dual code of length n is written as:

W =
� n
6 �∑

j=0

a j (1 + 3y2)
n
2 −3 j (y2(1 − y2)2) j , (3)

using some integers a j . The possibleweight enumeratorW56,16 = ∑56
i=0 Ai yi of a quaternary

Hermitian self-dual [56, 28, 16] code is determined by (3), where Ai are listed in Table 7
together with α = A16 and β = A18. Only this calculation was done byMathematica [28].
By the Magma function NumberOfWords, we calculated that

(A16, A18) =(48825, 2275560) and (47544, 2282700),

forC56,1 andC56,ω, respectively. This determines the weight enumerators ofC56,1 andC56,ω.

4.4 Largest minimumweights d(n)

In Table 8, we summarize the current information on the largest minimum weights d(n) for
n ∈ {24, 28, . . . , 80}. The upper bounds on d(n) follow from (1). The references about the
lower bounds on d(n) are also listed in the table.

In [9, Table 5], the largest minimum weights d(n) were considered for n ≤ 80. Here we
investigate the largest minimum weights d(n) for n ∈ {84, 88, 92, 96, 100}. A Hermitian
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Table 8 Largest minimum weights d(n)

n d(n) References n d(n) References

24 8 (see [4, p. 140]) 64 16–22 [9, Table 5]

28 10 (see [18, Theorem 9]) 68 18–24 [9, Table 5]

32 10–12 [10, Table I] 72 18–26 [9, Table 5]

36 12–14 [10, Table I] 76 18–26 [9, Table 5]

40 12–14 [10, Table I] 80 20–28 [9, Table 5]

44 12–16 [9, Table 5] 84 20–30 C84,ω in Table 12

48 14–18 [9, Table 5] 88 20–30 C88,ω in Table 12

52 14–18 [9, Table 5] 92 22–32 G92 (see [8])

56 16–20 C56,1,C56,ω in Table 12 96 22–34 C96,ω in Table 12

60 16–22 [9, Table 5] 100 22–34 G100 (see [8])

self-dual code of length n and minimum weight 22 is given in [8] for n = 92 and 100. We
denote the two codes by G92 and G100, respectively. As information, we briefly give the
construction of G92 and G100. Let G91,1 and G91,2 denote the cyclic codes of length 91 with
generator polynomials g1 and g2, respectively, where

g1 =x46 + ωx44 + x43 + ωx42 + ωx41 + ωx40 + ωx39 + ωx38 + x37 + x35

+ x34 + ωx33 + x31 + ωx30 + ωx28 + x27 + x26 + ωx25 + ωx24 + x21

+ x20 + x19 + x18 + ωx16 + ωx15 + ωx14 + ωx13 + ωx12 + ωx10

+ ωx8 + ωx7 + x6 + ωx5 + x4 + ωx3 + ωx2 + x + 1,

g2 =x45 + x44 + ωx43 + ωx42 + x41 + ωx40 + ωx38 + x37 + x34 + ωx32

+ ωx31 + ωx30 + x29 + x28 + ωx27 + ωx26 + ωx25 + ωx23 + ωx22

+ ωx21 + ωx20 + ωx19 + ωx18 + ωx17 + ωx16 + x15 + ωx14

+ ωx12 + ωx9 + ωx8 + ωx6 + ωx5 + x3 + ωx2 + 1.

The code G92 is constructed from G91,1, G91,2 and the [1, 1] code by Construction X. The
code G100 is equivalent to the double circulant code with generator matrix

(
I50 R

)
, where

R is the circulant matrix with the first row

(ω, ω, 1, ω, ω, 1, 1, ω, ω, 0, 1, 0, ω, 1, ω, ω, ω, 1, ω, ω, 0, 1, ω, ω, 0,

ω, 0, 0, 1, 1, ω, ω, ω, 1, ω, ω, 1, 1, 1, 1, ω, 1, ω, 1, ω, ω, ω, 0, ω, 1).

For (n, d) = (84, 20), (88, 20) and (96, 22), by a non-exhaustive search based on Lemmas 4
and 6, we found a modified four ω-circulant Hermitian self-dual code Cn,ω = Cω(A, B) of
length n and minimum weight d . For the above codes, the first rows rA (resp. rB) of A (resp.
B) are listed in Table 12. In Table 6, we give lower and upper bounds on the largest minimum
weights d(n) for n ∈ {84, 88, 92, 96, 100}. The upper bounds on d(n) follow from (1). The
references about the lower bounds on d(n) are also listed in the table. For

(n, d) = (56, 16), (84, 20), (88, 20) and (92, 22),

a Hermitian self-dual code of length n and minimum weight d is constructed for the first
time. In Table 8, the minimum weights of these codes are given in bold.
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5 Application to quantum codes

In this section, we consider an application of the quaternary Hermitian self-dual [56, 28, 16]
codes C56,1 and C56,ω found in the previous section to quantum codes.

A quaternary additive (n, 2k) code C is an additive subgroup of Fn
4 with |C| = 2k . The

dual code C∗ of a quaternary additive (n, 2k) code C is defined as

C∗ = {x ∈ F
n
4 | x ∗ y = 0 for all y ∈ C},

under the following trace inner product

x ∗ y =
n∑

i=1

(xi y
2
i + x2i yi )

for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ F
n
4. A quaternary additive code C is called

self-orthogonal and self-dual if C ⊂ C∗ and C = C∗, respectively. Note that a quaternary
Hermitian self-dual [n, n/2, d] code is a quaternary additive self-dual (n, 2n) code with
minimum weight d (see e.g., [12]).

A useful method for constructing quantum codes from quaternary additive self-orthogonal
codes was given by Calderbank, Rains, Shor and Sloane [3] (see [3] for undefined terms
concerning quantum codes). A quaternary additive self-orthogonal (n, 2n−k) code C such
that there is no vector of weight less than d in C∗ \ C, gives a quantum [[n, k, d]] code,
where k �= 0. A quaternary additive self-dual (n, 2n) code with minimum weight d gives
a quantum [[n, 0, d]] code. Let dmax(n, k) denote the largest minimum weight d among
quantum [[n, k, d]] codes. Similar to the classical coding theory, it is a fundamental problem
to determine dmax(n, k). A table on dmax(n, k) is given in [3, Table III] for n ≤ 30. An
extended table is obtained electronically from [8]. For example, it was previously known that
15 ≤ dmax(56, 0) ≤ 20 [8].

In Sect. 4, quaternary Hermitian self-dual [56, 28, 16] codes C56,1 and C56,ω were con-
structed for the first time. By the above method, a quantum [[56, 0, 16]] code is obtained.
Hence, we have the following proposition.

Proposition 12 (i) There is a quantum [[56, 0, 16]] code.
(ii) 16 ≤ dmax(56, 0) ≤ 20.
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