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Abstract

We introduce quaternary modified four p-circulant codes as a modification of four circulant
codes. We give basic properties of quaternary modified four p-circulant Hermitian self-dual
codes. We also construct quaternary modified four p-circulant Hermitian self-dual codes
having large minimum weights. Two quaternary Hermitian self-dual [56, 28, 16] codes are
constructed for the first time. These codes improve the previously known lower bound on
the largest minimum weight among all quaternary (linear) [56, 28] codes. In addition, these
codes imply the existence of a quantum [[56, 0, 16]] code.

Keywords Self-dual code - Quaternary code - Hermitian self-dual code

Mathematics Subject Classification 94B05

1 Introduction

Self-dual codes are one of the most interesting classes of (linear) codes. This interest is
justified by many combinatorial objects and algebraic objects related to self-dual codes (see
e.g., [6], [20] and [26]).

Let F,2> denote the finite field of order g2, where ¢ is a prime or a prime power. A code
C over qu of length n is said to be Hermitian self-dual if C = C LH where the Hermitian
dual code C1# of C is defined as C+# = {x € FZZ | (x,y)g = Oforall y € C} under
the Hermitian inner product (x, y)y. By the Gleason—Pierce theorem, there are nontrivial
divisible Hermitian self-dual codes over IF2 for ¢ = 2 only. This is one of the reasons why
much work has been done concerning Hermitian self-dual codes over F4 (see e.g., [1, 4,5,
9-11, 16-19, 21-25] and [27]). In this paper, we study Hermitian self-dual codes over Fy.

It is a fundamental and challenging problem in self-dual codes to classify self-dual codes
and determine the largest minimum weight among all self-dual codes for a fixed length. A
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code over F4 is called quaternary. All quaternary Hermitian self-dual codes were classified in
[51, [16], [17] and [25] for lengths n < 20. Also, the largest minimum weight d(n) among all
Hermitian self-dual codes is determined for lengths n < 30 (see [9, Table 5] for the current
information on d(n)).

For small fields F, many four circulant (negacirculant) self-dual codes over ' having
large minimum weights are known (see e.g., [7], [13], [14], [15] and the references given
therein). In this paper, by modifying four circulant self-dual codes, we give a method for
constructing quaternary Hermitian self-dual codes based on p-circulant matrices, which are
called modified four p-circulant codes. Some basic properties of modified four p-circulant
quaternary Hermitian self-dual codes are given. We also give numerical results of quaternary
modified four p-circulant Hermitian self-dual codes together with an application to quantum
codes.

This paper is organized as follows. In Sect. 2, we give some definitions, notations and basic
results used in this paper. In Sect. 3, we define quaternary modified four p-circulant codes
as a certain modification of four circulant codes. We also give basic properties of quaternary
modified four p-circulant Hermitian self-dual codes. In particular, we give a condition for
quaternary modified four pu-circulant codes to be Hermitian self-dual. In addition, we observe
equivalences of quaternary modified four p-circulant Hermitian self-dual codes. In Sect. 4, we
present numerical results of quaternary modified four p-circulant Hermitian self-dual codes.
By computer search based on basic properties presented in Sect. 3, we give a classification of
quaternary modified four p-circulant Hermitian self-dual codes having the currently known
largest minimum weights for lengths 24, 28, 32 and 36 (Proposition 7). For larger lengths, we
also construct quaternary modified four p-circulant Hermitian self-dual codes having large
minimum weights. We emphasize that quaternary Hermitian self-dual [56, 28, 16] codes
are constructed for the first time (Proposition 10). These codes Csg 1 and Csg 4, improve the
previously known lower bounds on the largest minimum weight among all quaternary (linear)
[56, 28] codes (Corollary 11). In Sect. 5, we give an application of Cse | and Csg , to quantum
codes. More precisely, Csg 1 and Csg 4, imply the existence of a quantum [[56, 0, 16]] code.

2 Preliminaries

In this section, we give some definitions, notations and basic results used in this paper.

2.1 Quaternary codes

We denote the finite field of order 4 by F4 = {0, 1, w, ®}, where ® = o =w+1. A
quaternary linear [n, k] code C is a k-dimensional vector subspace of ;. All codes in this
paper are quaternary and linear unless otherwise noted, so we omit linear and we often omit
quaternary. The parameter n is called the length of C. A generator matrix of C isak x n
matrix such that the rows of the matrix generate C. The weight wt(x) of a vector x € I is the
number of non-zero components of x. The weight enumerator of C is givenby > ..~ YW,
A vector of C is called a codeword of C. The minimum non-zero weight of all codewords
in C is called the minimum weight of C. A quaternary [n, k, d] code is a quaternary [n, k]
code with minimum weight d.
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2.2 Quaternary Hermitian self-dual codes

The Hermitian dual code C+H of a quaternary code C of length n is defined as
CM = {x e} | (x,y)y =Oforall y € C},

under the following Hermitian inner product
n
(X, ) m =Y xiy}
i=1

forx = (x1,x2,..., %),y = (1, ¥2,.-.,yn) € F}. A quaternary code C is said to be
Hermitian self-dual it C = C1#. All codewords of a quaternary Hermitian self-dual code
have even weights [25, Theorem 1].

All matrices in this paper are matrices over F4, so we write simply matrices. Throughout
this paper, let I, denote the identity matrix of order n, and let AT denote the transpose of
a matrix A. Moreover, let A denote the matrix (aizj) for a matrix A = (a;;). The following
lemma is a criterion for Hermitian self-duality.

Lemma 1 [25, Theorems 1 and 4] Let C be a quaternary [2n, n] code with generator matrix
(In M). [fMMT = I, then C is Hermitian self-dual.

It was shown in [25] that the minimum weight d of a quaternary Hermitian self-dual code
of length n is bounded by:

d§2L%J+2. )

A quaternary Hermitian self-dual code of length » and minimum weight 2|n /6] 42 is called
extremal.

Two quaternary Hermitian self-dual codes C and C’ are equivalent if there is a monomial
matrix P over Fq with C’ = C - P, where C - P = {xP | x € C} (see [25]). Throughout
this paper, two equivalent quaternary Hermitian self-dual codes C and C’ are denoted by
C = (C'. All quaternary Hermitian self-dual codes were classified in [5], [16], [17] and [25]
for lengths up to 20. All extremal quaternary Hermitian self-dual codes of length 22 were
also classified in [17].

3 Definition and basic properties of modified four p-circulant codes

In this section, we define quaternary modified four p-circulant codes and we give their basic
properties.
An n x n matrix of the following form

ro ri ra -+ rp-2 In—1
MFrpn—1 10 rn -+ I'n-3 rn-2

MFrp—2 UIp—1 T -+ Th—4 Th-3

12281 nr2  Ar3 --c Arp—1 1o
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is called pu-circulant, where u € {1, w, w}. In particular, if u = 1, then this is well-known
as a circulant matrix. It is trivial that a -circulant matrix with first row (ro, r1, ..., r,—1) 1S
written as Z;l:_()l r; E,(n)t, where

AMES IR
w0 - 0
Lemma 2 Suppose that u € {1, o, o}.

(1) If A and B are n x n pu-circulant matrices, then AB = BA.

(i) If A is an n x n p-circulant matrix with first row (ro,r1,...,rn—1), then A" is a -
circulant matrix with first row (ré, (ura—D?, ..., (ur)?).

Proof The assertion (i) follows from the fact that a pu-circulant matrix with first row
(ro,r1, ..., rp—1) is written as Z;:ol ri E, (i)". The assertion (ii) follows from the fact that

—T. . _ .
A" is written as r3 I, + Z;’:f (urn—i)?En ()" O

By modifying four circulant self-dual codes (see e.g., [15] for the definition), we introduce
the following method for constructing quaternary Hermitian self-dual codes. Suppose that
n € {l, w,®}. Let A and B be n x n p-circulant matrices. We say that a quaternary [4n, 2n]
code with generator matrix of the following form

P A B )
2w g T
is modified four p-circulant. A modified four 1-circulant code is also called modified four
circulant. We denote the code with generator matrix (2) by C, (A, B).

Remark 3 As a different modification of four circulant codes, codes with generator matrices
of the following form
/ ATCJ B
M BTCJ A

are given in [27], where A, B and C are circulant matrices and J is the exchange matrix.

Now we give some basic properties of modified four p-circulant Hermitian self-dual
codes. Although the following lemmas are somewhat trivial, we give proofs for the sake of
completeness.

Lemma4 Suppose that © € {l,w,w}. A quaternary modified four p-circulant code
C,.(A, B) is Hermitian self-dual ifAZT + BET = 1I,.

Proof By Lemma 2 (i), AB + BA = O, where O, denotes the n x n zero matrix. By
Lemma 2 (ii), ZT and ET are pu-circulant. Again by Lemma 2 (i), KTET = ETKT and
AXT = ZTA. Thus, we have

A B +B A" =0,andA" A+B B=1,.
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A B
Let M (A, B) denote the 2n x 2n matrix (BT ZT ) Then we have

AA" + BB' AB+BA ;
T _ = Ip,.
A'B +B A" A A+B'B "

M(A, BYM(A, B) = (TT

The result follows from Lemma 1. O

Lemma5 Suppose that C, (A, B) is a quaternary modified four pi-circulant Hermitian self-
dual code, where € {1, w, ®}. Then the following statements hold.

(i) Cu(A, B) = Cu(wA, wB) = C (@A, @B).
(i) Cu(A, B) = Cu(B, A).

(iii) Cu(A, B)=C,(A . B").

(iv) Cu(A, B)=CL (A, B").

Proof The assertions (i), (ii) and (iii) are trivial. The Hermitian dual code C,, (A, B)1H of
C,.(A, B) has the following generator matrix

a' B
o)

Since Cy, (A, B) = C,(A, B)1#  the above matrix is also a generator matrix of Cy, (A, B).
It follows from (iii) that C,,(A, B) = C, (A, B ). o

Lemma 6 Let C be a quaternary modified four p-circulant Hermitian self-dual code, where
n € {1, w,w}. Then there is a quaternary modified four p-circulant Hermitian self-dual
code Cy (A, B) such that C = C,, (A, B) and the first nonzero coordinate of the first row of
Ais 1.

Proof Suppose that C = C,,(A’, B’) and the first nonzero coordinate of the first row of A’ is
o (resp. w). Then C(wA’, @B’) (resp. C,,(wA’, wB’)) is a modified four u-circulant code
such that nonzero coordinate of the first row of @A’ (resp. wA’) is 1. By Lemma 5 (i), we
have that C = C,(@A’, @B’) (tesp. C = C,(wA’, wB’)). The result follows. O

The above lemma substantially reduces the number of codes which need be checked when
a classification of modified four p-circulant Hermitian self-dual codes is completed and the
largest minimum weight among all modified four u-circulant Hermitian self-dual codes is
determined in the next section.

4 Numerical results of modified four L-circulant Hermitian self-dual
codes

In this section, we present numerical results of quaternary modified four p-circulant
Hermitian self-dual codes. We emphasize that Hermitian self-dual [56, 28, 16] codes are
constructed. These codes are the first examples of not only Hermitian self-dual [56, 28, 16]
codes but also (linear) [56, 28, 16] codes. All computer calculations in this section were done
using programs in MAGMA [2] unless otherwise specified.
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Table 1 Values dX (n)

n 24 28,32 36, 40, 44 48,52, 56 60, 64 68,72,76 80

AN 8 10 12 14 16 18 20

4.1 Classification of modified four Li-circulant Hermitian self-dual codes

As described in Sect. 2, all quaternary Hermitian self-dual codes of lengths up to 20 were
classified in [5], [16], [17] and [25]. From now on, we consider Hermitian self-dual codes
for only lengths n > 24.

Let d(n) denote the largest minimum weight among all Hermitian self-dual codes of
length 1. Let dX (n) denote the largest minimum weight among previously known Hermitian
self-dual codes of length n. For n € {24, 28, ..., 80}, the values dX (n) are listed in Table 1,
noting that d(24) = 8 and d(28) = 10 (see [9, Table 5]).

Here we give a classification of modified four p-circulant Hermitian self-dual codes hav-
ing minimum weight dX (n) for lengthn € {24, 28, 32, 36}. We describe how to complete our
classification briefly. Our exhaustive computer search based on Lemmas 4 and 6 found all dis-
tinct generator matrices (2) of modified four p-circulant Hermitian self-dual [n, n/2, d K ()]
codes Cy (A, B), which must be checked further for equivalences. To test equivalence of
two modified four j-circulant Hermitian self-dual [n, n/2, dX (n)] codes, we used MAGMA
function IsIsomorphic. Moreover, in the process of finding these codes, we verified that
there is no modified four p-circulant Hermitian self-dual code of length n and minimum
weight d > d* (n) for lengths n = 32 and 36. Then we have the following proposition.

Proposition 7 (i) Up to equivalence, there are 7 quaternary modified four circulant Hermi-
tian self-dual [24, 12, 8] codes. Up to equivalence, there are 9 quaternary modified four
u-circulant Hermitian self-dual [24, 12, 8] codes for n € {w, o}.

(i1) Up to equivalence, there are 3 quaternary modified four p-circulant extremal Hermitian
self-dual [28, 14, 10] codes for n € {1, w, ®}.

(iii) Up to equivalence, there are 59 quaternary modified four p-circulant Hermitian self-dual
[32, 16, 10] codes for u € {1, w, w}. If d > 12, then there is no quaternary modified
four p-circulant Hermitian self-dual [32, 16, d] code for n € {1, o, o}.

@iv) Up to equivalence, there is a unique quaternary modified four p-circulant Hermitian
self-dual [36, 18, 12] code for u € {1, w,w}. If d > 14, then there is no quaternary
modified four p-circulant Hermitian self-dual [36, 18, d] code for u € {1, w, ®}.

Forn € {24, 28,32,36},by C,, i (i €{1,2,..., N,(n)}), we denote the modified four

p~circulant Hermitian self-dual [n, n/2, d K(n)] codes described in the above proposition,
where

Ni(24) =7,N,(24) =9 (n € {w, ®}), N, (28) =3 (u € {1, o, @}),
N,(32) =59 (n € {1, w, @}), N,(36) =1 (u e {l, w, @}).

For these codes Cy ,; = Cu(A, B) (u = 1, w, ®), the first rows r4 (resp. rp) of A (resp.
B) are listed in Tables 2, 3, 4,9, 10 and 11.
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Li::fcila?/[mogeﬁrﬁié?;rself—dual Code i 'B As
(24,12, 8] codes Caa 11 (1,0,1,0,1,1) (0.8, 0,1,0,1) 513
Co4.1,2 (l,w,1,1,w, 1) (w,1,w,1,0,1) 594
Co413 (l,o,,0,w,1) (0,0,0, w,0,0) 594
Co4.1,4 0,1,1,0, v, ®) (w,w,w,1,0,1) 837
Co15 0,1,1,0, v, ) (1,1,1,0,0,0) 837
C4.1,6 (1,1,1,0, w, ®) (l,w,1,1,0,0) 837
Co4.1,7 (1,0, 0,0, 1,w) (v, 0, 0,0,0,0) 837
Cot.0.1 (1, @@, 1, o) @.,0,0,@,1,0) 513
Cot.02 (11,1, ,@,0) @,0,1,®,w,0) 513
Co4.03 1,2, 1,3,0) (0,0, @, @,1,0) 513
Co4.00.4 (l,w,w, 1, w,0) (0,0,0,w,1,0) 513
Co0.5 (1,1,1, , 0, ®) (l,w,w, 1, w, ®) 513
Co4.0,6 1, @, 1,1, o) (0,0, @, 0, 1,0) 513
Co4,00,7 (l,v,0,1,w,1) 0,0,w,w,1,0) 513
Co,0,8 O, 1,1, w, v, w) (0,0, 1,0, w,0) 513
C24.00.9 0,1, w,@,0,0) (1,,0,1,@,0) 513
Cou1 (0,0,1,1,0, w) @, @,1,, D, 0) 513
Coa 5,2 (1,0, w, o, w, 1) 0,w,0,w,w,1) 513
Co 5,3 (1,0, w, o, 1, 0) 0,0, 1,w,w,1) 513
Coa5.4 0,0,1,1,0,0) (0, w,w,0,w,w) 513
Coa 5 0,0,1,1,0,0) (0,0, 1, 0, w, ) 513
C.3.6 0,0,1,1,1, 1) (@,0,w, 1, ®, w) 513
Couw1 0,0,1,1,®,0) (0,0, 0,0, 0, ) 513
Couw.8 0,0,1,1,1,0) (0, w, 0, 1,0, w) 513
C24.5,9 0,0,1,1,1,0) 0,w, 1,0, 0, w) 513

Remark 8 By MAGMA function IsIsomorphic, we have the following

~

Cow,i = Cou i (ief1,2,...,9),
C8.1,i = Co8,0,i = Cogm,i (i €{1,2,3}),
C3.1,i = Cxnw,i =Cng,; (€{1,2,...,59}),
C36,0,1 = C36,3,1,

and there is no other pair of equivalent codes among the codes described in Proposition 7.

For n = 24, 32 and 36, the possible weight enumerators of quaternary Hermitian self-
dual [n,n/2, dX (n)] codes can be written using A gk (see [1] and [22, Sect. III]). Note that
the possible weight enumerator of an extremal Hermitian self-dual code of a fixed length is
uniquely determined. For the above codes Cp ;i (n = 24, 32 and 36), the numbers A jx ()
of codewords of minimum weight d K (n) are also listed in Tables 2, 4, 9, 10 and 11. This was
calculated by the MAGMA function NumberOfWords.
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Table 3 Modified four

Cod
j~circulant Hermitian self-dual ode

rA

B

[28, 14, 10] codes Cas,1,1

C28.1,2
€213
C28.0.1
C28.w,2
C28.0.3
C28.w,1
C8.m,2
C8.5.3

0,1,®,0,1,0,w)
(1,w,1,0,»,0,0)
0,1,w,0,w,0,0)
(1,0, 0,0,w,0,1)
(1, w,0,0,w,0,0)
0,1,w,0,»,0,0)
(1,0,w,w,®,0,1)
1w, 1,o,1,1,w)

(1,0, 0,0,0,0,1)

(v, v, 0, w,0,0,w)
(v, 0,1, 0,w,1,1)
(w,1,0,1,1,0, w)
(0,0,0, 0, 0,0, w)
1,0, 0,0,0,1,w)
(0,w,0,w,1, 1, w)
(0,0,0,0,1,1,w)

(0,0,,0,0,w, 1)
0,0, 0,0,0,0,»)

Table 4 Modified four p-circulant Hermitian self-dual [36, 18, 12] codes

Code rA B Aqp

C36,1,1 (LLLLLL o o o) (1,1,0,0,1,0,1,0,0) 20844
C36,0.1 1w, 1,1,1,1,0,1,1) (l,0,9,®,0,,1,0,0) 19548
C36,3,1 Lo, 1,1,1,1,0,1,1) (l,o,0,,0,w0,1,0,0) 19548

4.2 Largest minimum weights of modified four Li-circulant Hermitian self-dual
codes

We give some observations on the largest minimum weight d(n) among all Hermitian self-
dual codes of length n and the largest minimum weight d,(n) (v = 1, w, w) among all
modified four p-circulant Hermitian self-dual codes of length . For lengths n = 40 and 44,
by a method similar to the above, our exhaustive computer search based on Lemmas 4 and 6
verified that there is no modified four p-circulant Hermitian self-dual [n, n/2, d] code with
d > d¥(n) for i € {1, w, @} (see Table 1 for the minimum weights dX (n)). In addition,
we found a modified four p-circulant Hermitian self-dual [n, n/2, d¥X (n)] code Cp,y for
n € {1, w, w}. This implies the following proposition.

Proposition 9 For u € {1, w, @}, d,,(40) = 10 and d,, (44) = 12.
For the above codes C49,;, = Cy (A, B) and C44,,, = C, (A, B), the first rows r4 (resp.

rg) of A (resp. B) are listed in Table 5. The numbers Ak ,, of codewords of minimum
weight d K (n) are also listed in the table. This was calculated by the MAGMA function
NumberOfWords. The numbers show that these codes are inequivalent.

For lengths 48, 52, ..., 76 and 80, by a non-exhaustive search based on Lemmas 4 and 6,
we continued finding modified four p-circulant Hermitian self-dual codes having large min-
imum weights. Then we found a modified four p-circulant Hermitian self-dual code C, ;, of
length n and minimum weight d for

(n, n,d) =(52, 1, 14), (52, w, 14), (52, w, 14), (56, 1, 16), (56, w, 16), (56, w, 14),
(60, 1, 16), (60, w, 16), (60, w, 16), (64, 1, 16), (64, w, 16), (64, w, 16),
(68, 1, 18), (68, w, 18), (68, w, 18), (72, 1, 18), (72, w, 18), (72, w, 18),
(76, 1, 18), (76, w, 18), (76, w, 18), (80, 1, 20), (80, w, 20), (80, w, 20).
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Table 5 Modified four u-circulant Hermitian self-dual codes C4,,, and Cyq
Code rA rp AdK(n)
C40,1 (1,0,0,1,@,1,0,0, 1,0) (w,w,1,1,0,,0, 0, w,0) 5220
C40,00 l,w,o,1,1, 1,0, 0,0, w) (0,1,0, 0,0, 0, w,w,0,0) 5130
Ca0,m (l,w,w,w,0,o,w,n,0,w) (l,w,0,1,®,0,w,0,w,0) 5040
Ca4,1 (l,w,,0,0,w,0,0,w, 1, w) (0, w,0,w,w,o,0,w,0,0,0) 1188
Ca4,00 (1,0,0,0,w, 1, »,0,w, 1,0) (0,0,,0,w,0,0,w, 1, w,0) 1551
Ca4.% (1,0,0,0,1, 1,1, 0,0, ®, ) (w,1,0,0,0,0, 0, v, o, o,0) 1749
e ) A do()  dz)  n o di) do(n)  dg(n)
24 8 8 8 56 1620 1620  14-20
28 10 10 10 60 16-22 1622 16-22
32 10 10 10 64 16-22 1622 1622
36 12 12 12 68  18-24 1824 18-24
40 12 12 12 72 18-26  18-26  18-26
44 12 12 12 76 18-26 18-26 18-26
48 14-18 14-18 14-18 80 20-28 20-28 20-28
52 14-18 14-18 14-18

For the above codes C,, ;, = C (A, B), the first rows r4 (resp. rg) of A (resp. B) are listed
in Table 12. We have the following proposition.

Proposition 10 There are quaternary Hermitian self-dual [56, 28, 16] codes.

We emphasize that Cse 1 and Csg q, are the first examples of not only Hermitian self-dual
[56, 28, 16] codes but also (linear) [56, 28, 16] codes [8]. We give the weight enumerators
of these codes in the next subsection.

In Table 6, we summarize the current information on d; (n), d,,(n) and d(n). The upper
bounds on d;(n), d, (n) and dgz(n) follow from (1). The lower bounds on d;(n), d,(n) and
dz(n) follow from Table 12.

4.3 C55,1 and Css’@

Itis amain problemin coding theory to determine the largest minimum weightd,, (n, k) among
all [n, k] codes over a finite field of order ¢ for a given (g, n, k). The current information on
ds(n, k) canbe found in [8]. For example, it was previously known that 15 < d4(56, 28) < 21.
As a consequence of Proposition 10, we have the following corollary.

Corollary 11 16 < d4(56,28) < 21.
Now we determine the weight enumerators of Csg 1 and Csg (. It is well known that the

possible weight enumerators of quaternary Hermitian self-dual codes can be determined by
the Gleason type theorem [24, p. 804] (see also [25, Theorem 13]). The weight enumerator
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Table 7 Possible weight

enumerator Ws¢ 16 ! Ai
0 1
16 o
18 B
20 113963850 — 78x — 158
22 1616214600 + 520a + 998
24 35022262275 — 1495« — 357p
26 467452738368 + 1344 + 6128
28 4854958425240 + 5560« + 6128
30 37999586848608 — 28576 — 71408
32 223928221341825 + 79170c + 238688
34 991894905892800 — 170560« — 517148
36 3272633909885340 + 309452 + 826548
38 7961209635178800 — 471120« — 1021028
40 14053893738878070 4 586586cr 4+ 994508
42 17629097730552000 — 584000cc — 76908
44 15262097167863000 + 457080c + 47124
46 8759255147042400 — 276640 — 226448
48 3144896807802750 + 126685c + 83648
50 646962821144640 — 424320 — 22958
52 65864956983210 + 9810a +- 4418
54 2485731965640 — 1400 — 538
56 14512944519 4+ 93« + 38

W of a quaternary Hermitian self-dual code of length n is written as:
12
W= a;(1+3y)17(y*(1 =y, 3)
j=0

using some integers a ;. The possible weight enumerator Ws¢ 16 = Zisio A;y' of aquaternary
Hermitian self-dual [56, 28, 16] code is determined by (3), where A; are listed in Table 7
together witha = A1 and B = Ajg. Only this calculation was done by MATHEMATICA [28].
By the MAGMA function NumberOfWords, we calculated that

(A6, A1g) =(48825,2275560) and (47544, 2282700),

for Cse,1 and Csg 4, respectively. This determines the weight enumerators of Csg 1 and Csg .

4.4 Largest minimum weights d(n)

In Table 8, we summarize the current information on the largest minimum weights d(n) for
n € {24,28, ..., 80}. The upper bounds on d(n) follow from (1). The references about the
lower bounds on d(n) are also listed in the table.

In [9, Table 5], the largest minimum weights d(n) were considered for n < 80. Here we
investigate the largest minimum weights d(n) for n € {84, 88,92, 96, 100}. A Hermitian

@ Springer



A method for constructing quaternary Hermitian self-dual codes 2937

Table 8 Largest minimum weights d(n)

n d(n) References n d(n) References

24 8 (see [4, p. 140]) 64 16-22 [9, Table 5]

28 10 (see [18, Theorem 9]) 68 18-24 [9, Table 5]

32 10-12 [10, Table I] 72 18-26 [9, Table 5]

36 12-14 [10, Table I] 76 18-26 [9, Table 5]

40 12-14 [10, Table I] 80 20-28 [9, Table 5]

44 12-16 [9, Table 5] 84 20-30 Cgy4,, in Table 12
48 14-18 [9, Table 5] 88 20-30 Cgg,¢» in Table 12
52 14-18 [9, Table 5] 92 22-32 Gop (see [8])

56 16-20 Cs6.1, Cs6,¢ in Table 12 96 22-34 Cog, in Table 12
60 16-22 [9, Table 5] 100 22-34 G100 (see [8])

self-dual code of length n and minimum weight 22 is given in [8] for n = 92 and 100. We
denote the two codes by Ggo and Gqo, respectively. As information, we briefly give the
construction of Ggp and Go0. Let Gop,1 and Gop 2 denote the cyclic codes of length 91 with
generator polynomials g and ga, respectively, where

g1 :x46 +wx44 +x43 +5x42 —I—Ex“ +a)x40 +ax39 +wx38 +x37 +x35
3 + oxB £ 3 Foxr® +oxB 4+ 12 4+ x20 4 ox® o 4 1
+ 020 4 x4 B L x 1 pox S o 4 ox " Fox!? + ox!0
toxd o+t txttoxd o x4+ 1,
2 =% 4% L TP £ ox®? £ £ ox® £ o8 £ 3T 4 M ox?
+a)x31 +6x30 —l—ng +x28 +wx27 +5x26 +wx25 +wx23 +wx22
+ o2 + 320 4 ox'? +ox'® + ox!7 + ox!0 + x5 4 @x?
+ox? +aox’ +ox® + ox® + ox’ + 13 +ox? + 1.
The code Go; is constructed from Goj,1, Gop 2 and the [1, 1] code by Construction X. The
code Gqp is equivalent to the double circulant code with generator matrix (150 R ), where
R is the circulant matrix with the first row
(w,0,1,0,w,1,1,0,,0,1,0,0, |,0, 0,0, 1,0, 0,0, 1,o, o,0,
w,

0,0,0,1,l,w,0,0,1,0,0,1,1,1, 1, l,o,1l,w,w,w,0,w,1).

For (n, d) = (84, 20), (88, 20) and (96, 22), by anon-exhaustive search based on Lemmas 4
and 6, we found a modified four w-circulant Hermitian self-dual code C,, ,, = C, (A, B) of
length n and minimum weight d. For the above codes, the first rows r4 (resp. rp) of A (resp.
B) are listed in Table 12. In Table 6, we give lower and upper bounds on the largest minimum
weights d(n) for n € {84, 88, 92, 96, 100}. The upper bounds on d(n) follow from (1). The
references about the lower bounds on d(n) are also listed in the table. For

(n,d) = (56, 16), (84, 20), (88, 20) and (92, 22),

a Hermitian self-dual code of length n and minimum weight d is constructed for the first
time. In Table 8, the minimum weights of these codes are given in bold.
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5 Application to quantum codes

In this section, we consider an application of the quaternary Hermitian self-dual [56, 28, 16]
codes Cse 1 and Cs¢ (, found in the previous section to quantum codes.

A quaternary additive (n,2%) code C is an additive subgroup of F i with |C| = 2% The
dual code C* of a quaternary additive (1, 2¥) code C is defined as

C*={xeF|xxy=0forally €},

under the following trace inner product

n

Xxy = Z(xiyiz +X,2yi)
i=1

forx = (x1,x2,..., %),y = (J1, ¥2, - - -, yu) € Fj. A quaternary additive code C is called
self-orthogonal and self-dual if C C C* and C = C*, respectively. Note that a quaternary
Hermitian self-dual [n, n/2, d] code is a quaternary additive self-dual (n, 2") code with
minimum weight d (see e.g., [12]).

A useful method for constructing quantum codes from quaternary additive self-orthogonal
codes was given by Calderbank, Rains, Shor and Sloane [3] (see [3] for undefined terms
concerning quantum codes). A quaternary additive self-orthogonal (n, 2"~%) code C such
that there is no vector of weight less than d in C* \ C, gives a quantum [[n, k, d]] code,
where k # 0. A quaternary additive self-dual (n, 2") code with minimum weight d gives
a quantum [[n, 0, d]] code. Let dmax(n, k) denote the largest minimum weight d among
quantum [[7, k, d]] codes. Similar to the classical coding theory, it is a fundamental problem
to determine dmax (72, k). A table on dmax (1, k) is given in [3, Table III] for n < 30. An
extended table is obtained electronically from [8]. For example, it was previously known that
15 < dmax (56, 0) < 20 [8].

In Sect. 4, quaternary Hermitian self-dual [56, 28, 16] codes Cs6,1 and Csg 4, Were con-
structed for the first time. By the above method, a quantum [[56, 0, 16]] code is obtained.
Hence, we have the following proposition.

Proposition 12 (i) There is a quantum [[56, 0, 16]] code.
(ii) 16 < dpax (56, 0) < 20.
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