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Abstract

Topological quantum computation is a promising scheme leading towards fault-tolerant

quantum computation. This can be achieved by harnessing systems in topological phases of

matter and, specifically, the non-Abelian anyons’ exotic exchange (braiding) statistics. By

doing so, quantum information gets encoded and processed in a robust way against small

local perturbations. This is guaranteed by the existence of an energy gap and the topology

depended nature of the “braiding” gates. However, to this day, experimental observation of

non-Abelian anyons remains elusive and a major bottleneck. The most prominent candidate

for realizing Ising (non-Abelian) anyons is the fractional quantum Hall effect at ν = 5
2
.

A wavefunction to describe this state, exhibiting Ising statistics, was proposed by Moore

and Read via the Ising Minimal Model M(4, 3) = SU(2)⊗2
1 /SU(2)2. In this thesis, we

build a “family” of such wavefunctions based on the coset SU(2)⊗k1 /SU(2)k CFT. Unlike,

Minimal Models with k > 2, this gives gapped wavefunctions with generalized quasi-hole

or quasi-particle statistics. Specifically, for k = 3, we obtain the Fibonacci braid group,

which, together with the k ≥ 5 theories, offer universal fault-tolerant quantum computation.

We find the four and six-anyon wavefunctions and their braiding matrices and discuss the

generalization to an arbitrary number of anyons. The coset wavefunction construction

offers new directions for experimental observation of non-Abelian anyons in fractional

quantum Hall effect and fast-rotating cold atoms. An alternative approach in searching

for non-Abelian anyons is by working with lattice models and quantum error correcting

codes (e.g., toric code, honeycomb model). Recently, experimental evidence for realizing

Abelian anyons with Z2 topological order was discovered by employing Rydberg atoms in
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a Ruby lattice. However, Abelian braiding statistics cannot lead to non-trivial quantum

computation schemes. Here, we provide numerical results that support the emergence of

non-Abelian statistics in these systems by adding mixed-boundary punctures and ancillary

qubits. Specifically, we realize the Ising braiding and fusion matrices which can be used to

construct several quantum gates, such as the Hadamard, Pauli, and CNOT gates.
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Chapter 1

Introduction

1.1 Quantum Computation

According to Moore’s Law, the number of transistors in electronic chips doubles every two

years, enhancing the performance of our computers by a factor of two in the same time period

[1]. This empirical law has held true ever since its observation in the mid-1960s. Nonetheless,

it is widely accepted within the scientific community that it will eventually cease to be valid.

Eventually, the size of these chips, which are the basic hardware components of a computer,

will be so small that quantum mechanical effects might no longer be negligible [2]. This

motivates the idea of utilizing quantum effects in order to build a more powerful type of

computer, a quantum computer.

The benefits of quantum computers for addressing non-trivial research problems,

particularly in the field of quantum many-body physics, rapidly became evident. Feynman

[3] was the first to suggest that quantum computers could simulate quantum systems

exponentially faster compared to classical computers. However, the advantages of quantum

computers are not limited to the physics community. By harnessing the principles of

quantum superposition and entanglement, scientists were able to present theoretical quantum

advantages in numerous scientific fields using certain quantum algorithms. More specifically,

Deutsch [4] demonstrated the power of quantum parallelism, Shor [5] achieved an exponential
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speedup for factoring large numbers into prime factors, and Grover [6] a quadratic speedup for

searching unstructured databases. In recent years, significant progress has been accomplished

in a variety of fields, such as cryptography [7] and the drug development industry [8].

In a quantum computer, the basic unit of information is referred to as a qubit (quantum

bit). Compared to a classical bit, which can be either in the state “0” or “1”, a qubit may

be in any superposition

|ψ⟩ = a |0⟩+ b |1⟩ (1.1)

where a and b are complex numbers satisfying the normalization condition |a|2+|b|2 = 1. The

process of quantum computation requires a quantum state initialization, scalability, long-

decoherence times (compared to the gate operation time), a universal set of quantum gates,

and a quantum measurement device. The requirements for the physical implementation

of a quantum computer were first introduced by DiVincenzo [9]. In quantum computers,

quantum information gets processed by applying quantum gates to the qubits. To obey the

rules of quantum mechanics, these quantum gates have to be unitary operators. To perform

any arbitrary computation, a universal set of quantum gates is necessary. A conventional

choice of quantum gates consists of the Hadamard, CNOT, S-phase, and T-phase gates.

More details about the matrix representation of these quantum gates and the fundamentals

of quantum computation are discussed in Appendix A.

Following the requirements highlighted in Ref. [9], numerous approaches for the

physical realization of quantum computers have been proposed. Within the field of

quantum information and computation, no consensus has been reached on a preferred qubit

construction. Generally, any two-level quantum system can be considered a qubit. As a

result, the implementation of quantum gates depends on the particular architecture of each

quantum computer [10]. Some of the most promising technologies for realizing qubits include

superconducting circuits, trapped ions, neutral atoms, and topological qubits.

Despite the plethora of different architectures, developing an ideal quantum computer

has proven to be a rather challenging task. An ideal quantum computer has to be scalable

to a sufficiently large number of qubits and fault-tolerant. Alas, our quantum computers are
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not perfectly isolated; interactions with the environment during a quantum computation can

corrupt the information, thereby leading to errors. In general, errors can be distinguished

into random or systematic. The first is caused by the interaction of the quantum computer

with the environment, which results in quantum decoherence. The latter is due to the

imperfect fidelity of quantum gates. While such errors can also occur in classical computers,

modern classical devices are typically fault-tolerant due to the application of classical error-

correcting techniques [11]. Classically in order to protect a message, you have to clone

it, then measure all the copies and use the majority rule to track and correct the error.

Clearly, quantum mechanics forbids us from correcting errors in the same way as in classical

computers. Quantum mechanics doesn’t allow cloning [12], and on top of that, measuring

would destroy the quantum information (coined by the term collapse of the wavefunction)

[13]. Nevertheless, Shor [14] developed the first quantum error correcting code, which

protects us against a bit flip or a phase flip, or both.

Today’s quantum computers, often called Noisy Intermediate Scale Quantum (NISQ)

devices [15], are not yet fault-tolerant. To achieve fault tolerance, the error associated with

each quantum gate has to be below a certain threshold [16]. Furthermore, implementing

quantum error-correcting codes significantly increase the size of quantum algorithms and

the number of required qubits. For example, Shor’s code requires 8 ancilla qubits to protect

a single qubit from error. A promising alternative, known by the name Topological Quantum

Computation (TQC), was first proposed by Kitaev [17, 18] and further studied in [19, 20,

21, 22]. Quantum information is encoded and processed by employing quasi-particles with

anyonic quantum statistics. This approach offers fault tolerance, as the quantum hardware

is resistant to local perturbations by design. A more comprehensive review on the topic can

be found in [23, 24].

1.2 Topological Quantum Computation

Anyons, which are the fundamental building blocks of TQC, are exotic particles that exist

in two spatial dimensions. We can distinguish them into two different types: Abelian and
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non-Abelian anyons. Abelian anyons are associated with the one-dimensional representation

of the braid group and were first studied in Ref. [25]. They acquire a global phase when

two identical particles are exchanged. On the other hand, non-Abelian anyons have their

quantum state changed via a unitary matrix when two of them are exchanged. Another

important difference between Abelian and non-Abelian anyons regards their fusion rules.

Abelian anyons fuse into a single Abelian anyon, whereas non-Abelian anyons have multiple

fusion channels. We can store and process information using the fusion rules and braiding

statistics of these anyons, respectively. However, only non-Abelian anyons can be used

to implement non-trivial quantum gates. Ising [18, 26] and Fibonacci [26, 27] anyons

are the most celebrated candidates for TQC, but only the latter offers a universal set of

topologically protected quantum gates. Nonetheless, Abelian anyons are still useful for

quantum computation tasks, such as storing quantum information (quantum memory). In

this quantum computation scheme, we achieve fault tolerance by encoding information non-

locally and processing it using braidings that depend only on the topology of anyons. Anyons

emerge as localized excitations in a topological phase of matter, provided there exists an

energy gap and a ground state topological degeneracy, which is robust against external

interactions [28, 29].

Despite the enormous theoretical success of anyons and their implications for TQC, their

physical realization is, to this day, a challenge. Superconductor-semiconductor nanowires are

promising candidates for Majorana zero modes [30, 31], which are quasi-particles that obey

the same fusion and braiding rules as the Ising anyons. Different approaches involve studies

of lattice models [17, 18] and in systems with Fractional Quantum Hall Effect (FQHE).

Experimental data [32, 33] suggest the emergence of Abelian anyonic excitations at the

quantum Hall effect for filling fraction ν = 1
3
. Additionally, there is some evidence that Ising

anyons can be found at filling ν = 5
2
quantum Hall state [34, 35] and Fibonacci anyons exist

in the ν = 12
5
quantum Hall state [36].
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1.3 Fractional Quantum Hall Effect

The Fractional Quantum Hall Effect was experimentally discovered by Ref. [37] in 1982.

These results demonstrated that by placing a system of two-dimensional electron gas under

a strong perpendicular magnetic field, the Hall resistivity becomes quantized ρxy =
2πℏ
e2

1
ν
and

takes values at plateaux with non-integer values of filling fractions ν ∈ Q. In contrast to the

Integer Quantum Hall Effect, first discovered in [38], the theoretical description of the FQHE

is more challenging as it cannot be understood using free electrons. Coulomb interactions

appear to be essential prerequisites for obtaining the plateaux at non-integer values of filling

fractions. By including these interactions, the Hamiltonian governing these systems becomes

HFQHE =
1

2me

∑
j

(−iℏ∇j + eAj)
2 +

ke
2

∑
i ̸=j

e2

|ri − rj|
(1.2)

whereme is the mass of the electron, e is the charge of the electron, ke is Coulomb’s constant,

and Aj = A(rj) is the vector potential of the magnetic field evaluated at the point rj.

Of course, finding exact analytic solutions of Eq. (1.2) is impossible, as we would have

to diagonalize a many-body interactive Hamiltonian. Nevertheless, finding approximate

solutions using trial wavefunctions has become a successful alternative. This was pioneered

by Laughlin [39] who proposed

ΨL(z) =
∏
i<j

(zi − zj)
Λ e

−
∑

i
|zi|

2

4l2
B (1.3)

as a trial ground state wavefunction at filling fraction ν = 1
Λ
. Here, z = (z1, z2, . . . ) refers

to a vector of the holomorphic coordinates z = x + iy of all different electrons in the 2-

dimensional plane and lB =
√

ℏ
eB

the magnetic length. The Laughlin wavefunction is anti-

symmetric and corresponds to a system of electrons for odd Λ, whereas it’s symmetric and

represents a bosonic system for even Λ. The trial wavefunction for quasi-particle and quasi-

hole excitations of Eq. (1.3) can be found in [40]. After a brief inspection, one finds that

the quasi-particles and quasi-holes describe Abelian anyons.
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Following Laughlin’s work, further trial wavefunctions were discovered. A major

breakthrough was the idea to build these trial wavefunctions using conformal blocks from

certain Conformal Field Theories (CFTs). The motivation behind this is two-fold. Primarily,

it was known that the quantum Hall effect could be described by effective field theory

description via the 2 + 1 dimensional Chern-Simons (CS) theories [41, 42]. Secondly, a

duality between Topological Quantum Field Theories (TQFTs) in 2 + 1 dimensions and

CFTs in 1 + 1 dimensions was discovered by Witten [43]. A more pedagogical introduction

to FQHE and its connection to CS and CFT theories can be found in [40].

It turns out that one can construct the Laughlin wavefunction using a free boson CFT.

Additionally, Moore and Read [44] constructed the Pfaffian Moore-Read wavefunction, with

excitations obeying non-Abelian Ising statistics, using the critical Ising CFT Minimal Model

M(4, 3) to describe the ν = 5
2
FQHE.

ΨMR(z) = Pf

(
1

zi − zj

)∏
i<j

(zi − zj)
Λ e

−
∑

i
|zi|

2

4l2
B (1.4)

where the Pfaffian Pf
(

1
zi−zj

)
= A

(
1

z1−z2
1

z3−z4 · · ·
)
is the antisymmetrized product over all

electron pairs. More details about this subject can be found in [45, 46]. Alternative proposals

suggest that the ν = 5
2
state is described by the anti-Pfaffian state [47, 48]. Likewise, the

Read-Rezayi wavefunction [49] can be constructed using a Zk parafermionic field theory. The

parafermionic theory with k = 3 has excitations that exhibit Fibonacci braiding statistics,

hence offering the possibility of universal topological quantum computation. The Read-

Rezayi state is seen as a generalization of the Moore-Read as the former allows the clustering

of electrons into groups of k-electrons. Its derivation involves symmetrization over all possible

clustering configurations, as illustrated below

ΨRR(z) = S
(∏
i1<j1

(zi1 − zj1)
2 · · ·

∏
ik<jk

(zik − zjk)
2

)∏
i<j

(zi − zj)
Λ−1 e

−
∑

i
|zi|

2

4l2
B (1.5)
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It is worth mentioning that all three wavefunctions that we introduced here represent spin-

polarized states. The proposal for spin-singlet states in FQHE was discussed in [50] (Halperin

state) and further studied in [51, 52]. In particular, the Non-Abelian Spin-Singlet (NASS)

states introduced in [51] generalize the Moore-Read, thus yielding Fibonacci statistics. The

physical realization of the NASS states has been studied in fast-rotating cold atoms [53] and

in two-dimensional coupled wires [54].

1.4 Lattice Models

Lattice models are prime candidates for realizing topological systems that might be

applicable in the field of quantum computing. Several examples hint at the existence of

Abelian anyons in these systems. These systems can also be understood as quantum error-

correcting codes. Kitaev’s toric code [17] serves as an example of Z2 topological order

emerging by placing a square lattice spin system on a torus. Later, it was realized that

toroidal geometry was not necessary, leading to generalizations such as the surface or planar

code [55, 56]. Here, Z2 topological order implies that this is an Abelian anyon model

described by the vacuum I and the excitations e, m, and f , where e and m are bosons,

and their composition f = e⊗m is a fermion. The four-fold degenerate ground state of the

toric code Hamiltonian defines the code-space, and the anyonic excitations correspond to

errors. Error detection is performed with vertex and plaquette stabilizer operators, defined

as products of four Pauli operators. Lately, neutral Rydberg atoms placed on Kagome and

Ruby lattices were proposed as candidates for quantum computing and quantum memory

[57, 58] with topological properties. Numerical and experimental results [59, 60] claim the

realization of a topological spin liquid using neutral atoms and the mechanism of Rydberg

blockade [61, 62]. These results suggest the emergence of the Z2 topological order of the

toric code using Rydberg atoms.

Numerous theoretical results predict the emergence of non-Abelian anyons within lattice

models. Kitaev first found Ising anyons in Ref. [18] from a spin system in a honeycomb lattice

interacting with an external magnetic field. The extensive study of non-Abelian statistics
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emerging from Abelian anyons has been conducted through either the introduction of lattice

twists [63, 64, 65, 66] or punctures [67, 68].

In more recent years, significant progress has been made by numerically simulating

Abelian and non-Abelian anyons in NISQ devices. In Ref. [69], the Abelian topological

order of the toric code was realized using superconducting qubits. Followed by observing

non-Abelian topological order on the same quantum hardware in [70]. Similar results were

found using a quantum processor based on traped-ions [71].

1.5 New Schemes for Topological Quantum Computa-

tion

This dissertation aims towards developing new tools and schemes for realizing non-Abelian

anyons, which are the fundamental components of topological quantum computers. More

specifically, we construct a coset CFT wavefunction that generalizes the anyonic statistics

of the Moore-Read wavefunction. The Moore-Read state has been proposed to describe

systems in fractional quantum Hall effect and exhibit excitations with non-Abelian (Ising)

anyonic statistics [44]. Nonetheless, the experimental results for the observation of the

Ising anyons and the Moore-Read state in FQHE with filling factor ν = 5
2
are to this

day non-conclusive. Experimentally, the particular non-Abelian signature of the quantum

Hall state is observed by measuring the longitudinal resistance or conductance. The coset

wavefunction construction, which we introduce in Chapter 5, suggests that a family of Moore-

Read type of wavefunctions could be realized and utilized for universal topological quantum

computation. These new coset wavefunctions are expected to have different experimental

signatures, depending on their quantum statistics, and could be observed in FQHE.

Apart from FQHE systems, we investigate the possible realization of non-Abelian anyons

in Rydberg atoms placed on Ruby lattices. This was motivated by the observation of a

Z2 topological order, with Abelian anyonic statistics, in these lattice models [59]. Here, we

propose that Ising (non-Abelian) anyons can be realized in these systems by introducing

8



punctures with mixed boundary conditions, as described in [68]. In order to experimentally

define the topological qubit and perform the braiding, we introduce two ancillary qubits.

These ancilla qubits are atoms different than Rubidium (e.g., 23Na) that form the Ruby

lattice. This scheme could be feasible in the near future, using current devices, and could

improve the efforts for fault-tolerant quantum computation.

1.6 Outline

This thesis is organized as follows. In Chapter 2, we provide a literature review of anyons with

particular emphasis on Non-Abelian anyons and their implications for quantum computation.

We introduce the basic properties that systems in topological phases of matter ought to have.

Next, we introduce the Ising and Fibonacci anyon models and we demonstrate how to use

them to construct quantum gates and perform quantum computation. In Chapter 3, we

briefly introduce Conformal Field Theories in d ≥ 3 and d = 2 spacetime dimensions. In

particular, we discuss fundamental concepts such as Virasoro algebra and primary fields.

Next, we review a special family of CFTs known as Minimal Models using the Coulomb-

Gas formalism. In Chapter 4, we calculate the braiding matrices from conformal blocks

of CFT Minimal Models. In particular, we provide explicit calculations for four-point and

six-point amplitudes and illustrate the strategy for higher-order amplitudes. In Chapter 5,

we introduce a wavefunction construction based on the coset CFT SU(2)⊗k1 /SU(2)k. We

demonstrate the requirements to obtain a well-defined wavefunction that can describe a

gapped state. Then, we find certain properties of these wavefunctions, such as the braiding

statistics and their clustering properties. In Chapter 6, we review Rydberg atoms and the

Rydberg blockade mechanism. Next, we perform numerical simulations on a system of

Rydberg atoms placed on a Ruby lattice with mixed-boundary punctures and verify the

Z2 topological order. Finally, we consider a system of four punctures, coupled with four

ancillary qubits, in order to realize the Ising braid group for quantum computation.
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Chapter 2

Quantum Computation using

Non-Abelian Anyons

2.1 Anyons

All fundamental quantum mechanical particles are either bosons or fermions, depending

on their quantum statistics. This restriction arises from the topological properties of the

rotation group SO(3) describing our four-dimensional spacetime. To illustrate this property,

let us consider two identical particles. Performing a complete rotation of one particle around

the second is equivalent to a double exchange of the two particles. In a three-dimensional

space, such a trajectory can always be deformed to the trivial path, where a trivial path

implies no rotation at all. Therefore, the operator that generates the double exchange of

these two particles is equal to the identity and its possible eigenvalues are +1 for bosons and

−1 for fermions. In two spatial dimensions, the previous topological property is no longer

valid. As we try to deform the path of a complete rotation into smaller paths, we eventually

come across the second particle and further deformations into smaller paths are no longer

possible. As a result, we observe a new family of ”particles” with peculiar quantum statistics,

known as anyons [25].

10



Based on their braiding and fusion properties, anyons can be categorized into two distinct

types: Abelian anyons and non-Abelian anyons. For Abelian anyons, the exchange or braid

of two of them introduces a global phase into the quantum state

|a, b⟩ → eiθ |a, b⟩ (2.1)

where θ is an arbitrary phase. Evidently, bosons and fermions are nothing but special cases

of Abelian anyons for θ = 0 and θ = π. On the other hand, the exchange of two non-Abelian

anyons changes the quantum state via a unitary matrix

|a, b⟩µ → Uµν(a, b) |a, b⟩ν (2.2)

A key distinction between Abelian and non-Abelian quantum states is the degeneracy of the

latter. We label this degeneracy by the parameter µ = 1, 2, . . . , g, where g defines the total

number of degenerate states. Hence, the state |a, b⟩µ is a column vector of dimension g, and

the unitary matrix Uµν(a, b) is g × g dimensional.

Within a system of N anyons, the possible exchanges of anyons are elements of the braid

group BN [72]. While Abelian anyons are related to the one-dimensional representation of

the braid group, non-Abelian anyons are associated with higher-dimensional representations.

The generators of the braid group bi , for 1 ≤ i ≤ N − 1, represent a counter clockwise

exchange of the ith and (i + 1)th anyons, whereas the b−1
i represent a clockwise exchange of

them. These generators obey the following consistency relations

bibj = bjbi for |i− j| ≥ 2 (2.3)

bibi+1bi = bi+1bibi+1 for 1 ≤ i ≤ N − 1 (2.4)

The first equation indicates that non-neighboring braid generators commute, and the second

is the Yang-Baxter equation. Both equations can be understood diagrammatically from

Figure 2.1.

11



1 2 3 21 3

b1

1 32

b−1
2 bibi+1bi

=

bi+1bibi+1

Figure 2.1: Example of the braid group. Notice that for the bi braiding, we move the
second under the first, while for b−1

i , we move the first under the second.

Figure 2.2: Example of anyonic braiding. A counter-clockwise exchange of two anyons in
the two-dimensional spatial plane translates into braiding in the three-dimensional spacetime.
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In addition to their braiding statistics, anyons have rich fusion properties. By bringing

two anyons very close together, they can annihilate and create new anyons. This procedure

is algebraically defined by the fusion rules

α⊗ β =
∑
γ

Nγ
αβγ (2.5)

The different outcomes of this process are called fusion channels. We can observe that

if a type α anyon and a type β anyon are fused, the result can be either a single anyon

or many different depending on Nγ
αβ. By definition, Abelian anyons are associated with a

single fusion channel and one-dimensional Hilbert spaces, whereas non-Abelian anyons have

multiple channels and higher-dimensional Hilbert spaces. Clearly, the existence of multiple

channels is crucial as it creates degenerate states.

Non-Abelian anyons are promising candidates for quantum computation, known as

topological quantum computation, due to their braiding and fusion rules [73]. We can

encode quantum information into a logical qubit using the two fusion channels of non-

Abelian anyons. A greater number of channels leads to Hilbert spaces with dimensions

larger than two and generalizations known as qudits, where a qudit is a d-dimensional unit of

quantum information. Quantum gates can be implemented by considering braiding matrices

or products of them, as illustrated in Figure 2.2. These are associated with the two or

higher-dimensional representations of the braid group as we are dealing with non-Abelian

anyons. These non-commuting matrices provide enough non-triviality to construct useful

quantum gates.

2.2 Topological Phases of Matter

While anyon-based quantum computation has achieved significant theoretical progress, its

physical realization remains elusive. Unlike different architectures (superconducting, trapped

ions, cold atoms, etc.), there is no hardware for TQC. One of the major difficulties is the

experimental observation of anyons that can be utilized for quantum computation.
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As we discussed in the previous sections, anyons exist in two spatial dimensions. Yet,

our world has at least three spatial dimensions. It turns out that anyons emerge as quasi-

particles or quasi-holes in systems with fermionic or bosonic degrees of freedom by restricting

their motion into a two-dimensional plane. Such systems, with anyonic excitations, are said

to be in a topological phase and are characterized by the following three properties

1. Degenerate ground state

2. An energy gap between the ground and excited states

3. Anyonic quasi-particles or quasi-holes excitations

Topological phases of matter are peculiar phases of matter which cannot be explained by

the Ginzburg-Landau theory [74, 75], as there is no local order parameter to distinguish

between different phases. It was proposed in [76] that these systems are described by

topological order, which is characterized by long-range entanglement.

Both experimental and theoretical results in the literature suggest that topologically

ordered states might appear in the following systems. In fractional quantum Hall effect

systems [39] where anyons emerge from fermionic degrees of freedom (electrons) in the

presence of an external magnetic field, which breaks the time-reversal symmetry. Unlike,

the integer quantum Hall effect in the case of the fractional the Coulomb interactions

between electrons are crucial. Kitaev’s original work proposed lattice spin models [17, 18] for

topologically ordered systems. Lastly, the most recent findings show evidence of quantum

spin liquid phase in neutral cold atoms [59, 60].

Searching for topological matter is extremely important in the quantum computing

community, as it protects against errors and offers a scheme for fault-tolerant quantum

computation. Quantum information is stored in the Hilbert space of the degenerate

ground states, which is separated from the excited states by an energy gap. Assuming

low temperature the external interactions can cause local perturbations but they are not

enough to excite the system due to the energy gap. The system will always remain in the

degenerate subspace and can go from one of these states to another through braiding [28, 29].
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Unitary gates are implemented through braiding the anyonic excitations; however, when we

braid anyons we only care about the topology of the trajectories, small perturbations on the

trajectories result in the same gate.

Nevertheless, there are still a few caveats we need to address, as pointed out in

[77]. Firstly, these anyonic quasi-particles or quasi-holes must be well separated to avoid

interactions that might destroy the degeneracy. Thermal quasiparticles-quasiholes might be

created, which might cause unintentional braiding. To avoid these problems, we require low

temperatures, lower than the energy gap.

2.3 Ising Anyon Model

One of the simplest and most extensively studied anyon models in the literature for

potential applications in topological quantum computation is the Ising model [18]. A more

comprehensive review of Ising anyons, discussing their fusion and braiding properties, can

be found in [26, 77]. This model has three degrees of freedom: a non-Abelian anyon σ,

a Majorana fermion ψ, and finally, the vacuum I. The non-trivial fusion rules of these

“particles” follow a closed algebra

ψ ⊗ ψ = I , ψ ⊗ σ = σ , σ ⊗ σ = I⊕ ψ (2.6)

A logical qubit can be constructed using the Ising anyon model as follows. To begin,

consider three Ising anyons σ1, σ2, σ3 and let them fuse. From the previous set of fusion

rules, we get σ ⊗ σ ⊗ σ = 2σ. The final outcome of the fusion is a new Ising anyon σ4,

multiplied by a factor of 2, indicating two independent ways of fusing the three Ising anyons.

The first way is to fuse σ1 and σ2 into the vacuum, followed by fusing the vacuum with

σ3. The second method involves fusing σ1 and σ2 into a fermion, followed by a fusion of a

fermion with the σ3. These two fusion channels form the qubit states |0⟩ and |1⟩, respectively.
However, this is not the entire story since we could have started by fusing σ2 with σ3 and

then fuse their outcome with σ1. In this case, we get yet again two independent channels
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that form the qubit states |0′⟩ and |1′⟩. The order of the fusion matters, as they can be two

different but linearly dependent basis sets for the qubit, as shown in Figure 2.3. The primed

and unprimed basis are related via the F (fusion) matrix, which is defined in Figure 2.4.

Additionally, the exchange of two anyons, whose worlds lines fuse in the past, is given by the

diagonal R matrix as shown in Figure 2.4. In order to obtain more complicated exchange

matrices involving anyons whose world lines don’t intersect, we need first to change the basis

via the F matrix, perform the exchange using the diagonal R matrix and then change the

basis again.

The F and R matrices can be obtained by applying the pentagon and hexagon identities

as instructed in [73]. Using the unprimed basis, so that the exchange of σ1 and σ2 is diagonal,

we find the following matrix representations

F =
1√
2

1 1

1 −1

 (2.7)

R = e−i
π
8

1 0

0 i

 (2.8)

The braiding of σ1 and σ2 is defined by the matrix

b1 = R = e−i
π
8

1 0

0 i

 (2.9)

Furthermore, we can consider the braining of σ2 and σ3, which is implemented by b2. As

previously described, finding b2 is more complicated. First, we have to switch to the primed

basis using the F matrix, then carry out the exchange of σ2 and σ3 in the new basis, and

finally, return to the unprimed basis

b2 = F−1 · R · F =
ei

π
8√
2

 1 −i
−i 1

 (2.10)
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σ σ σ

I

σ

= |0⟩

σ σ σ

ψ

σ

= |1⟩

σ σ σ

I

σ

= |0′⟩

σ σ σ

ψ

σ

= |1′⟩

Figure 2.3: A qubit construction using Ising anyons. Starting from three anyons, after
fusion, there are two different channels to obtain another Ising anyon on both the primed
and unprimed basis.
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Figure 2.4: Top: The algebraic definition F (fusion) matrix. Bottom: The definition R
(exchange) matrix. These matrices are valid for all anyon models.
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As discussed in [78, 79], we can construct several logical quantum gates simply through

the braiding generators. Notice that the fusion matrix F matches the Hadamard gate, and

the exchange matrix R is the same as the S-phase gate up to a global phase. Furthermore,

we can construct all Pauli matrices by combining products of b1 and b2 matrices as follows

X = b1 · b2 · b2 · b1 (2.11)

Y = b−1
1 · b−1

1 · b2 · b2 (2.12)

Z = ei
π
4 b1 · b1 (2.13)

Of course, these are all single qubit gates. In order to study more complex problems involving

interacting qubits we need to introduce entangling 2 qubit gates such as the CNOT and CZ

gates. It turns out these can be constructed by considering the fusion of five Ising anyons

CNOT = ei
3π
8 b−1

3 · b4 · b3 · b1 · b5 · b4 · b−1
3 (2.14)

CZ = ei
π
8 b1 · b−1

5 · b3 (2.15)

In the previous definition of CNOT and CZ gates, the generators of the braid group involved

are no longer 2× 2 matrices. Instead, they are 4× 4 matrices since the 5 Ising anyons span

a four-dimensional Hilbert space. The matrix representations of the four-dimensional braid

group will be discussed later in Chapter 4. In fact, we observe that N anyons, including

anyons that appear at the end as fusion products, create a 2N−1 dimensional Hilbert space.

Unfortunately, b1 and b2 don’t generate a universal set of quantum gates since we can’t get

the T-phase gate using braiding. This means that we cannot have a universal topological

quantum computer using Ising anyons [79]. We are forced to implement the T-phase gate

through a non-topologically protected method, not braiding, which spoils fault tolerance.
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2.4 Fibonacci Anyon Model

The second non-Abelian anyon model under discussion is the Fibonacci model [27]. This

model has two degrees of freedom the vacuum, represented by I, and the non-Abelian anyon,

denoted by τ , which obey the non-trivial fusion rule

τ ⊗ τ = I ⊕ τ (2.16)

To define a logical qubit, we need to fuse three Fibonacci anyons, which gives τ ⊗τ ⊗τ =

I ⊕ 2τ , and restrict to the sector with the outcome of a Fibonacci anyon. Yet again, the

order of the fusion matters† and gives rise to two different qubit basis as can be seen from

Figure 2.5. The two bases are related by the fusion matrix

F =

γ−1 γ−
1
2

γ−
1
2 −γ−1

 (2.17)

where γ = 1+
√
5

2
is the golden ratio.

Similarly to the previous section, we get the exchange matrix R or b1 which represents

the braiding of τ1 and τ2. On the unprimed basis, we find

b1 = R =

ei 4π5 0

0 e−i
3π
5

 (2.18)

The b2 braiding matrix which corresponds to the exchange of τ2 and τ3 is obtained by

changing basis via the F matrix as follows

b2 = F−1 · R · F =

 γ−1ei
4π
5 γ−

1
2 e−i

3π
5

γ−
1
2 e−i

3π
5 −γ−1

 (2.19)

†The order of the fusion doesn’t matter only when the fusion outcome of the 3 Fibonacci anyons is the
vacuum.
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τ τ τ

I

τ

= |0⟩

τ τ τ

τ

τ

= |1⟩

τ τ τ

I

τ

= |0′⟩

τ τ τ

τ

τ

= |1′⟩

Figure 2.5: A qubit construction based on Fibonacci anyons. Starting from three anyons,
after fusion, there are two different channels to obtain another Fibonacci anyon on both the
primed and unprimed basis.
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Contrary to the Ising model, Fibonacci offers universal quantum computation [80]

since the braid group generated by b1 and b2 is dense in SU(2). This is a result of the

Solovay–Kitaev theorem, which states that given a set of single-qubit gates that form a

dense subset of SU(2), we approximate any arbitrary quantum gate, as explained in [81].

However, constructing logical quantum gates requires a large number of braidings in a specific

order, which is complicated even for simple gates. Single qubit gates such as the Pauli and

the Hadamard gates were implemented by applying more than 30 braiding matrices in a

specific order in [80, 82, 83]. Product combinations of b1 and b2 that approximate two-qubit

gates, such as the CNOT, were also found in [82, 84].

Another important distinction between Ising and Fibonacci anyons regards the scaling of

the Hilbert space. In the case of the latter, the dimension grows according to the Fibonacci

sequence as we add more anyons.

2.5 Experimental Approaches to Topological Quantum

Computation

In order to utilize these theoretical anyon models for topological quantum computation their

experimental detection is required. Various experimental setups have been proposed for

the observation of exotic quasi-particles following anyonic quantum statistics. As discussed

in Chapter 1, two of the most prominent experimental approaches involve studies of the

fractional quantum Hall effect. Despite these efforts, the direct experimental observation

of Abelian anyons and their statistics has been observed only recently [32, 33], whereas

non-Abelian anyons remain elusive.

It was proposed that the anyonic braiding statistics could be probed in fractional quantum

Hall systems via Fabry-Perot interference experiments. The experimental setup, illustrated

in Figure 2.6, consists of a two-dimensional electron gas, two quantum point contacts (QPCs),

and an antidot that controls the number of quasi-particles localized between the two QPCs.
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Figure 2.6: A two-point contact Fabry-Perot interference experiment designed to detect
anyonic braiding statistics.
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The presence of the two QPCs allows for the edge current to scatter resulting in the

tunneling current amplitudes t1 and t2.
† The first current tunnels before the antidot whereas

the second tunnels right after the antidot. In the end, both currents will contribute to

the total longitudinal conductivity. However, as the second tunneling current goes around

the antidot, its quantum state changes since the anyons from the tunneling current wind

around anyons in the antidot. Thus, resulting in non-trivial interference between the two

currents. The signature for the experimental observation of Abelian anyons at filling ν = 1
3

through such interference experiments was proposed in [85] and studied in [86, 87, 88]. More

recently, in Ref. [32] the authors were able to overcome previous experimental challenges,

such as edge/bulk Coulomb interactions and Aharonov-Bohm phase dominating over the

anyonic phase, and directly observe the Abelian braiding statistics of this state.

Similar proposals [89, 90, 91] can be found in the literature for non-Abelian anyons

and the state at filling ν = 5
2
. Finding the predicted oscillatory value of the longitudinal

conductance is less straightforward since braiding non-Abelian anyons doesn’t introduce a

global phase but changes the state via a unitary matrix U . It can be found that

σxx ∼ |t1|2 + |t2|2 + 2Re(t1 ∗ t2eiϕ ⟨ξ0|U |ξ0⟩) (2.20)

where |ξ0⟩ corresponds to the current tunneling at the first QPC and U |ξ0⟩ at the second.

Experimental results suggesting the emergence of non-Abelian anyons using Fabry-Perot

interference can be found in [92, 93]. In the more recent work of Ref. [93], a different filling

factor ν = 7
2
is been examined as a candidate for exhibiting non-Abelian anyons.

†In the weak backscattering regime, these tunneling currents are mainly due to quasiparticle excitations.
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Chapter 3

Conformal Field Theories

In this chapter, we will provide a brief introduction to Conformal Field Theories (CFTs)

following [94, 95]. These are Quantum Field Theories that are invariant under conformal

transformations. The group of conformal transformations is an extension of the Poincare

symmetry group (translations, spatial rotations, and boosts), which describes all relativistic

field theories. The additional symmetries include dilations or scale transformations and

special conformal transformations, which are a composition of inversion and translation

transformations.

In particular, we will focus on CFTs in two spacetime dimensions, as they have an infinite

dimensional algebra of conformal transformations. This mathematical structure allows us

to find exact solutions for certain CFTs, such as the Minimal Models, Liouville theory,

and WZW models. CFTs are powerful mathematical theories that can be used to describe

numerous phenomena in different fields of physics. In two dimensions, they can be used

to study condensed matter [96, 97, 98]. Specifically, they can be used to describe phase

transition and critical points of two-dimensional systems. A few prominent examples that

have been studied using CFT regard the description Ising model at criticality [99], the

tricritical Ising model [100], and the 3-state Potts model in [101]. Conformal Fields Theories

have contributed significantly to developments in string theory [102, 103, 104].
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3.1 The Conformal Group in d Dimensions

Consider a flat d dimensional spacetime with the Minkowski metric tensor gµν using the

gravitational sign convention (−,+, · · · ,+). A conformal transformation is a coordinate

transformation xµ → x′µ, which preserves the metric tensor up to a scale factor

g′µν(x
′) = Λ(x)gµν(x) (3.1)

To obtain the generators and the symmetries of the conformal group, we will study the

infinitesimal transformations xµ → x′µ = xµ + ϵµ(x). One finds that, up to the first order,

the metric changes according to

gµν → g′µν = gµν − (∂µϵν + ∂νϵµ) (3.2)

The conformal factor Λ(x) can also be expanded for infinitesimal transformations, up to first

order, as follows

Λ(x) = 1 +
2

d
∂κϵ

κ(x) (3.3)

After some algebra, we find that in d ≥ 3 spacetime dimensions, the infinitesimal change in

the coordinates can be at most quadratic in terms of the x coordinate. The most generic

transformation is given by

ϵµ = aµ + bµνx
ν + cµνρx

νxρ (3.4)

From Eq. (3.4), we observe that the zeroth term (i.e., ϵµ = aµ) corresponds to spacetime

translations. Similarly, we find that the linear term (i.e., ϵµ = bµνx
ν) results in dilations,

spatial rotations, and boosts. Finally, the quadratic term corresponds to the special

conformal transformations. Hence, the conformal group is a generalization of the Poincare

group, which includes dilations and special conformal transformations.
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Finally, the number of free parameters can be deduced in the following way. We notice

that aµ is an arbitrary vector and the rest parameters are constrained by

bµν = αgµν +mµν (3.5)

cµνρ = gµρbν + gµνbρ − gνρbµ (3.6)

bµ =
1

d
cκκµ (3.7)

where mµν is an antisymmetric tensor. To summarize, there are in total (d+2)(d+1)
2

free

parameters for the conformal group accounting for one scalar α, two vectors aµ and bµ, and

a rank 2 tensormµν . Overall, this is equal to the number of parameters of the group SO(d, 2).

By exponentiating these infinitesimal transformations, we obtain the finite transformations

presented in Table 3.1 along with their generators. More details about conformal field

theories in d ≥ 3 dimensions can be found in the fourth chapter of [94].

3.2 Conformal Field Theories in Two Dimensions

The Conformal Group in Two Dimensions

Most of the previously discussed results regard the conformal group and CFTs in d ≥
3 dimensions. The case of CFTs in two dimensions requires separate discussion as the

conformal group has an infinite number of generators [99]. This is due to the existence

of infinitely many coordinate transformations† that preserve the conformal symmetry. For

the remainder of this chapter, our consideration will shift to a two-dimensional Euclidean

metric, a positive signature metric tensor, which is related to the Minkowski metric by a

Wick rotation x0 → −ix0. One finds that the infinitesimal transformations ϵ satisfy the

Cauchy-Riemann equations

∂0ϵ
0 = ∂1ϵ

1 , ∂0ϵ
1 = −∂1ϵ0 (3.8)

†These transformations are not necessarily well-defined everywhere.
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Table 3.1: Generators and finite transformations of the conformal group.

Transformation Finite Transformation Generator

Translation x′µ = xµ + aµ Pµ = −i∂µ

Dilation x′µ = αxµ D = −ixµ∂µ

Rotation x′µ =Mµ
ν x

ν Lµν = i(xµ∂ν − xν∂µ)

SCT x′µ = xµ−bµx2
1−2b·x+b2x2 Kµ = −i(xµxν∂ν − x2∂µ)
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The study of two-dimensional conformal field theories becomes more convenient by adopting

a new set of holomorphic and anti-holomorphic complex coordinates. These are defined by

z = x0 + ix1 , z̄ = x0 − ix1 (3.9)

ϵ = ϵ0 + iϵ1 , ϵ̄ = ϵ0 − iϵ1 (3.10)

∂z =
1

2
(∂0 − i∂1) , ∂z̄ =

1

2
(∂0 − i∂1) (3.11)

Upon solving the Cauchy-Riemann Eq. (3.8) with the complexified coordinates z

and z̄, we obtain a holomorphic z → f(z) and an anti-holomorphic z̄ → f̄(z̄). Thus,

the local conformal group in two dimensions is defined by the infinite set of all analytic

functions f(z), representing the conformal transformations. However, it’s worth noting that

this isn’t precisely a group, as it includes functions that aren’t always invertible or well-

defined. Nonetheless, we can define a subset of analytic functions that satisfy all necessary

requirements and form the global conformal group by

f(z) =
a z + b

c z + d
(3.12)

where the parameters (a, b, c, d) ∈ C satisfy the constraint equation a d− b c = 1. It can be

proved all transformations described in Table 3.1 can be generated from the global conformal

group.

In order to identify the generators of the local conformal group, we take into consideration

the infinitesimal transformation z → z′ = z + ϵ(z) and assume a Laurent expansion around

z = 0

ϵ(z) =
∞∑

n=−∞

cnz
n+1 (3.13)
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It follows that the generators of these transformations can be separated into holomorphic

and anti-holomorphic components as follows

ln = −zn+1∂z , l̄n = −z̄n+1∂z̄ (3.14)

obeying the Witt algebra

[ln, lm] = (n−m)ln+m (3.15)

[l̄n, l̄m] = (n−m)l̄n+m (3.16)

[ln, l̄m] = 0 (3.17)

Clearly, there is an infinite number of generators, one corresponding to each value of n.

Furthermore, we notice that generators L−1, L0 and L1, which satisfy a finite subalgebra,

generate the global conformal group. It turns out, the Witt algebra admits an extension,

known as Virasoro algebra [105, 106]

[Ln, Lm] = (n−m)Ln+m +
c

12
n2(n− 1)δn+m,0 (3.18)

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n2(n− 1)δn+m,0 (3.19)

[Ln, L̄m] = 0 (3.20)

where the constant c is called central charge. This central charge is related to the c-theorem

of the renormalization group (RG) flow in quantum field theories as it corresponds to the

value of the c function at fixed critical points [107].

Primary Fields

Let us now consider a field ϕ(z, z̄) with scaling dimension ∆ and planar spin s. We define

the holomorphic and anti-holomorphic conformal dimensions as

h =
1

2
(∆ + s) , h̄ =

1

2
(∆− s) (3.21)
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A field ϕ(z, z̄) is a primary field if under any local conformal transformation z → w(z) and

z̄ → w̄(z̄) it follows the rule

ϕ′(w, w̄) =

(
dw

dz

)−h(
dw̄

dz̄

)−h

ϕ(z, z̄) (3.22)

Any field that only transforms according to Eq. (3.22) for the global conformal transforma-

tions is called quasi-primary. The remaining fields will be referred to as secondary.

Under a local conformal transformation, correlation functions involving N primary fields

ϕi(z) follow the equation

⟨ϕ1(w1, w̄1) · · ·ϕN(wN , w̄N)⟩ =
N∏
i=1

(
dw

dz

)−hi

w=wi

(
dw̄

dz̄

)−hi

w̄=w̄i

⟨ϕ1(z1, z̄1) · · ·ϕN(zN , z̄N)⟩ (3.20)

Due to this transformation rule, the two-point and three-point functions are completely fixed,

whereas the four-point functions depend only on a single variable, the anharmonic ratio

x = (z1−z2)(z3−z4)
(z1−z3)(z2−z4) . Three points can be fixed by appropriately choosing the free parameters

in the global conformal transformation Eq. (3.12).

3.3 Minimal Models

In this section, we review a special class of two-dimensional conformal field theories, the

rational conformal field theories (RCFTs), which are characterized by a finite number of

primary fields†. In particular, within the families of all RCFTs, we will consider the so-

called Minimal Models. Following the work in [108, 109, 110], these can be classified into

unitary representations with c ≥ 1, unitary representations with c < 1, and non-unitary

representations‡. Here we will focus on the c < 1 unitary Minimal Models, most commonly

in the literature labeled by M(k+2, k+1), where k ≥ 1 is an integer number. In particular,

they will be studied using the Coulomb-Gas formalism introduced in [111, 112, 113]. Similar

†Equivalently, RCFTs have a finite number of representations of the Virasoro algebra.
‡A non-unitary Minimal Model has primary fields with negative conformal dimensions.
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results have been obtained using the BRST formalism as studied in [114]. We consider a

massless scalar field φ in two spacetime dimensions coupled to the scalar curvature R. The

action of this theory becomes

S =
1

8π

∫
d2x

√
g (∂µφ∂

µφ+ 2γφR) (3.23)

with an imaginary coupling constant γ = i
√
2α0. By adding a background charge α0 at

infinity the central charge gets shifted to c = 1− 24α2
0.

†

The primary fields of the CFT, defined by Eq. (3.23), are expressed as vertex operators,

including both a holomorphic and an anti-holomorphic part

Φα(z, z̄) = ei
√
2αφ(z,z̄) (3.24)

where each primary field has charge α and conformal dimension

hα = α2 − 2α0α (3.25)

For each primary field, there is a conjugate field Φ̃α ≡ Φ2α0−α, which has the same conformal

dimension as Φα but different charge. Furthermore, each primary field Φα(z, z̄) can be

decomposed into a holomorphic and anti-holomorphic vertex operator as ‡

Φα(z)⊗ Φ̄α(z̄) = ei
√
2αφ(z) ⊗ ei

√
2αφ̄(z̄) (3.26)

This decomposition introduces the chiral primary fields Φα(z) and Φα(z̄), which have only

holomorphic or anti-holomorphic dependence. By considering only the holomorphic or anti-

holomorphic sector of the primary fields we can study chiral CFTs.

†The free massless boson theory has a central charge c = 1.
‡This decomposition is not entirely valid as it doesn’t correctly account for the zero-mode of φ, which is

neither holomorphic nor anti-holomorphic. Nevertheless, it’s useful and yields correct results for correlation
functions and amplitudes.
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Studying the properties of primary fields is highly important as they represent physical

observables, such as the energy density and spin, of the underlying physical system. This

is most often achieved by calculating correlators or amplitudes. For example, let’s consider

the correlator function of N primary fields

⟨Φα1(z, z̄)Φα2(z, z̄) · · ·ΦαN
(z, z̄)⟩ =

∏
i<j

|zi − zj|4αiαj (3.27)

which can be reduced into the chiral correlator

⟨Φα1(z)Φα2(z) · · ·ΦαN
(z)⟩ =

∏
i<j

(zi − zj)
2αiαj (3.28)

It turns out these correlators are further constrained by the internal symmetry of the

massless boson field. In particular, the action defined by the Eq. (3.23) is invariant under

the transformation φ → φ + a. Therefore, the correlators in Eqs. (3.27) and (3.28) must

also be invariant, giving rise to the charge neutrality condition

N∑
i=1

αi = 2α0 (3.29)

Correlators that don’t satisfy the charge neutrality condition are identically equal to zero.

At this point, the choice for an imaginary coupling constant γ becomes clear, as otherwise,

the right-hand side of the Eq. (3.29) would become imaginary. Of course, that would mean

that the charge neutrality condition couldn’t be satisfied for any primary field. In order to

successfully define non-vanishing correlators, one may have to replace a primary with its

conjugate. Both fields having the same conformal dimension represent the same physical

observable. Additionally, we can also include in the correlator the Q± screening charges.

These are operators with zero conformal dimension and charge α± = ±1, defined as

Q± =

∫
d2wΦ±(w)Φ̄±(w̄) , Φ±(w) = ei

√
2α±φ(w) (3.30)
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To obtain the Minimal Models M(k + 2, k + 1), we introduce a cutoff on the number of

possible charges α by requiring the ratio α+

α−
to be rational. It’s convenient to choose

α+ =

√
k + 2

k + 1
, α− = −

√
k + 1

k + 2
(3.31)

We find that M(k + 2, k + 1) possesses a finite number of primary fields, each labeled by a

pair of integers (r, s), where r = 1, . . . , k, and s = 1, . . . , k + 1. The charge and conformal

dimension of the primary field Φ(r,s) are given, respectively, by

α(r,s) =
(1− r)(k + 2)− (1− s)(k + 1)

2
√

(k + 1)(k + 2)
(3.32)

h(r,s) =
[r(k + 2)− s(k + 1)]2 − 1

4(k + 1)(k + 2)
(3.33)

It follows that the conjugate field becomes Φ̃(r,s) = Φ(k+1−r,k+2−s) and the background charge

can be written as

α0 =
1

2
√

(k + 1)(k + 2)
(3.34)

By bringing these primary fields very close together, we can fuse them. The outcome of

a fusion is in general a linear combination of new primary fields. It was shown by Verlinde

[115] that the primaries of M(k + 2, k + 1) satisfy the following fusion rules

Φ(r,s) ⊗ Φ(r′,s′) =

min(r+r′−1,2q−1−r−r′)∑
r′′

2
=|r′−r|+1

min(s+s′−1,2p−1−s−s′)∑
s′′

2
=|s′−s|+1

Φ(r′′,s′′) (3.35)

Of particular importance are the primary fields with r = 1, which form a closed algebra

thanks to the fusion rules

Φ(1,s) ⊗ Φ(1,s′) =

min(s+s′−1,2k+3−s−s′)∑
s′′

2
=|s′−s|+1

Φ(1,s′′) (3.36)

where
2
= denotes incrementing the summation variable by 2.
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The Minimal Model with k = 1 corresponds to a trivial CFT, with only two primaries,

Φ(1,1) and Φ(1,2), and thus won’t be studied. For k ≥ 2, the charge and dimension of

these primary fields are summarized in Table 3.2. For convenience, we will denote the

holomorphic part of the primary field Φ(1,2) by σ(z) and it’s conjugate by σ̃(z). Finally,

the anti-holomorphic part of Φ(1,2) will be expressed by σ̄(z). Hence, we can represent the

non-chiral primary field Φ(1,2)(z, z̄) = σ(z)σ̄(z̄). We can adopt a similar notation for the

primaries with s = 3, 4, . . . via the operators ϵ, ϵ′, . . . as indicated in Table 3.2.

In the context of quantum computation applications, we are primarily interested in the

chiral correlator of 2N primary fields Φ(1,2). The Hilbert space of our qubits, or more

generally qudits, will be spanned by these correlators. To define them, we start with the

non-chiral correlation function

G(2N)(z, z̄) =
〈
σ1 · · ·σ2N−1σ̃2NQ

N−1
−
〉

(3.37)

where z = (z1, . . . , z2N), σ = Φ(1,2), and σj = σ(zj, z̄j). To define a non-vanishing correlator,

we inserted N−1 screening operators Q− and used the conjugate field for one of the primary

fields. Without loss of generality, we replaced the last primary by it’s conjugate.

According to the Ref. [116] the non-chiral correlator in Eq. (3.37) can be split into

holomorphic and antiholomorphic parts as

G(2N)(z, z̄) =
∑
µ

|F (2N)
µ (z)|2 (3.38)

where we sum over the conformal blocks of the chiral model labeled by µ. The chiral

correlator, frequently referred to as the conformal block, is given by

F (2N)
µ (z) =

√
Nµ

∮
µ

dN−1w I(2N)(z,w) (3.39)

where
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Table 3.2: Charge and conformal dimension of r = 1 primary fields in the Minimal Model
M(k + 2, k + 1).

Primary Field Symbol Dimension Charge

Φ(1,1) I 0 0

Φ(1,2) σ k−1
4(k+2)

k+1

2
√

(k+1)(k+2)

Φ(1,3) ε k
k+2

k+1√
(k+1)(k+2)

Φ(1,4) ε′ 3(3k+1)
4(k+2)

3(k+1)

2
√

(k+1)(k+2)

...
...

...
...

Φ(1,k+1) N/A k(k−1)
4

k(k+1)

2
√

(k+1)(k+2)
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I(2N)(z,w) =

〈
σ1 · · ·σ2N−1σ̃2N

N−1∏
j=1

Φ−(wj)

〉
(3.40)

where w = (w1, . . . , wN−1), σj = σ(zj), and Nµ are normalization constants determined

by matching the expressions in Eqs. (3.37) and (3.38).

The conformal block Eq. (3.39) is obtained by performing N − 1 contour integrals.

One distinguishes between different conformal blocks by the position of the contours of

integration; µ labels the collective choice.
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Chapter 4

Quantum Computation using CFT

Minimal Models

This chapter presents in detail the construction of qudits and braiding-based quantum gates

from the Minimal Models M(k + 2, k + 1) for k ≥ 2 that were discussed in [117].

4.1 Braiding and Fusion Matrices

As outlined in the previous section, chiral amplitudes are not single-valued functions, as they

depend on the choice of the contours of integration. Conformal blocks form a basis for these

amplitudes, the dimensionality of which depends on the number of primary fields and the

integer k labeling the CFT. This basis is mapped onto the basis for the Hilbert space of

qubits within quantum computation.

The number of independent conformal blocks can be deduced directly from the fusion

rules of the CFT. The exchange of two primary fields σ at positions ηi and ηj is equivalent

to a change of basis from Fµ to F ′
µ via an exchange matrix,

F ′
µ =

∑
ν

(Rij)µνFν (4.1)
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These exchange matrices lead to braiding and fusion matrices [118, 119] that can be mapped

onto quantum gates. We discuss how this is done in detail for four-point and six-point σ

amplitudes.

4.2 Four-point Amplitudes

The simplest non-trivial amplitude of interest is the four-point correlation function, which

involves four σ primary fields. The non-chiral four-point correlation function becomes non-

vanishing by introducing one negative screening charge and by replacing one of the σ fields

with its conjugate σ̃ as follows

G(4)(η, η̄) = ⟨σ(η1, η̄1)σ(η2, η̄2)σ(η3, η̄3)σ̃(η4, η̄4)Q−⟩ (4.2)

with η = (η1, . . . , η2N). Or written in terms of the conformal blocks

G(4)(η, η̄) = |F (4)
1 (η)|2 + |F (4)

2 (η)|2 (4.3)

There are two conformal blocks associated with this four-point function for all values of

the integer k, as can be easily deduced from the fusion rules in Eq. (3.36). These two

conformal blocks form a two-dimensional Hilbert space, corresponding to a single qubit. We

can simplify the calculations using the conformal invariance of the theory, which allows one

to fix: η1 → 0, η2 → x, η3 → 1, and η4 → ∞, where x = η12η34
η13η24

is the anharmonic ratio with

ηij = ηi − ηj. After a global conformal transformation the conformal blocks become

F (4)
µ (x) =

√
Nµ

∮
µ

dw I(4)(x,w) (4.4)

where

I(4)(x,w) = lim
η4→∞

(
η13η24

η12η23η34η41

)2hσ

⟨σ(0)σ(x)σ(1)σ̃(η4)Φ−(w)⟩ (4.5)
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To evaluate the two conformal blocks, we need to carefully choose the contour of

integration in order to avoid the branch points and singularities at 0, x, 1,∞. This can be

done by choosing two branch cuts along the real axis; one that goes from 0 to x and another

one from 1 to ∞. We obtain two different contours which encircle (0, x) and (1,∞), as seen

in Figure 4.1. After shrinking the contours and using the Eq. (3.28), the two conformal

blocks are defined as

F (4)
1 (x) =

√
N1[x(1− x)]

k+1
2(k+2)

∫ x

0

dw [w(x− w)(1− w)]−
k+1
k+2 (4.6)

F (4)
2 (x) =

√
N2[x(1− x)]

k+1
2(k+2)

∫ ∞

1

dw [w(w − x)(w − 1)]−
k+1
k+2 (4.7)

Upon integrating, we obtain these conformal blocks in terms of Hypergeometric functions

F (4)
1 (x) =

√
N1

Γ2( 1
k+2

)

Γ( 2
k+2

)
x

1−k
2(k+2) (1− x)

k+1
2(k+2)

2F1

(
k + 1

k + 2
,

1

k + 2
;

2

k + 2
;x

)
(4.8)

F (4)
2 (z) =

√
N2

Γ( 1
k+2

)Γ(2k+1
k+2

)

Γ(2k+2
k+2

)
[x(1− x)]

k+1
2(k+2)

2F1

(
k + 1

k + 2
,
2k + 1

k + 2
;
2(k + 1)

k + 2
;x

)
(4.9)

To understand the physical content of these conformal blocks, we should compare them with

the operator product expansion (OPE). In the limit x→ 0, we observe that

F (4)
1 (x) ∼ x−

k−1
2(k+2) [1 +O(x)] , F (4)

2 (x) ∼ x
k+1

2(k+2) [1 +O(x)] (4.10)

The OPE can be derived from the fusion rules of Eq. (3.36). Specifically, for the product

σ(x)σ(0), we get a linear combination of the I and ε fields, as defined in Table 3.2. The

coefficients of each field in this expansion are fixed by the conformal invariance of the left

and right-hand sides. Thus, we get

σ(x)σ(0) ∼ x−
k−1

2(k+2) I+ x
k+1

2(k+2) ε(0) (4.11)
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∞

Figure 4.1: Two independent contour choices of the integral in Eq. (4.4). The first choice
reduces to an integral from 0 to x, whereas the second geives the interval from 1 to ∞.
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By comparing the Eqs. (4.10) and (4.11), we find that the conformal blocks F (4)
1 and

F (4)
2 have intermediate states I and ε, respectively. Schematically, they are given by the two

diagrams shown in Figure 4.2.

The normalization constants Nµ, for µ = 1, 2, are determined by comparing the

expressions in Eqs. (4.2) and (4.3) for the non-chiral amplitude G(4). Calculating the non-

chiral amplitude can be avoided using an argument based on monodromy transformations

around 0 and 1. As explained in the ninth chapter of [94], the monodromy transformation

around 1 becomes diagonal if we change bases and evaluate the conformal blocks F (4)
µ (1−η).

The conformal blocks in the new basis must provide a decomposition of the non-chiral

amplitude similar to the Eq. (4.3). This leads to linear constraints that determine

the normalization constants up to an overall multiplicative factor, which suffices for our

application to quantum computation. After some algebra, we obtain

N1 = N sin
π

k + 2
, N2 = N sin

3π

k + 2
(4.12)

where N can be determined using Eq. (4.2), but is not needed for our purposes.

For the four-point chiral amplitude, we derive two braiding matrices, R12 and R23, and

a fusion matrix R13, where Rij corresponds to the exchange of positions ηi ↔ ηj. These

matrices are defined diagrammatically in Figure 4.3.

The braiding matrix R12 is diagonal because the two fields we exchange fuse together.

More specifically, the non-zero elements are the coefficients of the two channels, namely the

I and ϵ, found previously. From the OPE (4.11), we deduce

R
(4)
12 =

e−iπ k−1
2(k+2) 0

0 eiπ
k+1

2(k+2)

 (4.13)

The other two exchange matrices can be found using standard Hypergeometric and Gamma

function identities. After some algebra, we obtain
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σ1

σ2

I

σ3

σ4

F (4)
1 =

σ1

σ2

ε

σ3

σ4

F (4)
2 =

Figure 4.2: Two conformal blocks of the four-point function. The first block corresponds
to an intermediate vacuum state while the second to ε.

σ2

σ1

µ

σ3

σ4

=
∑

ν(R12)µν

σ1

σ2

ν

σ3

σ4

σ1

σ3

µ

σ2

σ4

=
∑

ν(R23)µν

σ1

σ2

ν

σ3

σ4

σ1

σ2

µ

σ3

σ4

=
∑

ν(R13)µν

σ1

σ2

ν

σ3

σ4

Figure 4.3: Exchange matrices of the four-point correlator.
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R
(4)
13 =

cos θk sin θk

sin θk − cos θk

 (4.14)

where cos θk =
1
2
sec π

k+2
. The matrix R23 was deduced from

R23 = R13R12R
−1
13 (4.16)

R
(4)
23 =

 eiπ
k−1

2(k+2) cos θk e−iπ
k+1

2(k+2) sin θk

e−iπ
k+1

2(k+2) sin θk −e−iπ
3k+1
2(k+2) cos θk

 (4.15)

Ising Statistics

As an example, consider the k = 2 case, which corresponds to the critical Ising model. In this

case, the σ primary corresponds to the Ising anyon while the ϵ gives the Majorana fermion.

The diagonal braiding matrix becomes the S-phase gate (up to a phase), while the fusion

matrix reduces to the Hadamard gate, matching the Eqs. (2.7) and (2.8)

R
(4)
12 = e−i

π
8

1 0

0 i

 , R
(4)
13 =

1√
2

1 1

1 −1

 (4.17)

As discussed in Chapter 2, these matrices can be used to implement quantum gates [78, 79]

but are not enough to achieve universal quantum computation [79] because we have no way

to construct the T-phase gate by exchanging Ising anyons.

Fibonacci Statistics

Universal quantum computation can be achieved for k = 3, corresponding to the tri-critical

Ising model M(5, 4). Up to a global phase, we obtain the matrices that appear in the

Fibonacci anyon model in Eqs. (2.17) and (2.18)

R
(4)
12 =

e−iπ5 0

0 ei
2π
5

 , R
(4)
13 =

γ−1 γ−
1
2

γ−
1
2 −γ−1

 (4.18)

44



where γ =
√
5+1
2

is the golden ratio. The set in Eq. (4.18) is dense in SU(2) [80], leading

to universal quantum computation, as shown in [80, 82, 83]. However, the Minimal Model

M(5, 4) cannot be used as a foundation for fault-tolerant quantum computation due to the

absence of a gapped state. This will be discussed in more detail in Chapter 5, where we will

explore an alternative proposal using the coset CFT SU(2)⊗3/SU(2)3. This proposal leads

to universal quantum computation based on the braiding matrices of the Eq. (4.18) as well

as fault-tolerant quantum computation since SU(2)⊗3/SU(2)3 possesses a gapped state.

4.3 Five-point Amplitudes

Next, we consider the five-point chiral amplitude of four σ fields and one ε field. This is

not an amplitude of the type as the Eq. (3.39), which we use for quantum computation.

However, it is needed for the six-point chiral amplitude of σ fields.

The correlator needs a single negative screening charge and a conjugate ϵ field in order

to obey the charge neutrality condition,

I(5)(η, w) = ⟨σ1σ2σ3σ4ε̃5Φ−(w)⟩ (4.19)

From the fusion rules as specified in Eq. (3.36), we deduce that there are two (three)

conformal blocks for k = 2 (k ≥ 3), defined diagrammatically in Figure 4.4, and in terms of

contour integrals by

F (5)
µ (η) =

√
Nµ

∮
µ

dwI(5)(η, w) (4.20)

As before, the normalization constants Nµ are evaluated using a monodromy argument. In

particular, we find

N1 = N sin2 2π

k + 2
, N2 = N sin2 3π

k + 2
,

N3 = 8N cos2
π

k + 2
cos

2π

k + 2
sin2 3π

k + 2
(4.21)

up to an overall multiplicative constant N , which is not needed for our purposes.
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σ1

σ2

I ε

σ3

σ4ε5

F (5)
1 =

σ1

σ2

ε I

σ3

σ4ε5

F (5)
2 =

σ1

σ2

ε ε

σ3

σ4ε5

F (5)
3 =

Figure 4.4: Conformal blocks of the five-point function. In the case of the critical Ising
model (k = 2), the third conformal block vanishes since ε⊗ ε = I.

σ2

σ1
µ1 µ2

σ3

σ4ε5

=
∑

ν(R12)µν

σ1

σ2
ν1 ν2

σ3

σ4ε5

σ1

σ3
µ1 µ2

σ2

σ4ε5

=
∑

ν(R23)µν

σ1

σ2
ν1 ν2

σ3

σ4ε5

σ3

σ2
µ1 µ2

σ1

σ4ε5

=
∑

ν(R13)µν

σ1

σ2
ν1 ν2

σ3

σ4ε5

Figure 4.5: Exchange matrices of the five-point correlator. In our notation each channel
µ is represented by a pair (µ1, µ2). For the first channel we have (I, ε), for the second (ε, I),
and the third (ε, ε).
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The conformal blocks of the five-point amplitude reduce to integrals that can no longer

be calculated analytically. Nevertheless, we can still extract information about their braiding

and fusion matrices. Here we are interested in the exchange matrices depicted in Figure 4.5.

The braiding matrix R12 is easily obtained from the OPE (4.11)

R
(5)
12 = e−iπ

k−1
2(k+2)


1 0 0

0 eiπ
k

k+2 0

0 0 eiπ
k

k+2

 (4.22)

The fusion matrix R13 is found by converting five-point functions into four-point functions,

as explained in Appendix B in more detail. We obtain

R
(5)
13 =


ck ck −

√
dk

ck
dkωk−c3k

s2k

(ωk+ck)
√
dk

sktk

−
√
dk

(ωk+ck)
√
dk

sktk

ωkck−dk
sktk

 (4.23)

where ck = cos θk, dk = − cos 2θk, sk = sin θk, tk = tan θk, and ωk = eiπ
3(k+1)
2(k+2) . The braiding

matrix R23 is deduced from the Eq. (4.16).

Fibonacci Statistics

For example, we can evaluate the exchange matrices for the tri-critical Ising model (k = 3).

Specifically, we can find the braiding matrices, R
(5)
12 and R

(5)
23 , and the fusion matrix R

(5)
13 . By

substituting k = 3, we obtain

R
(5)
12 =


e−i

2π
5 0 0

0 ei
π
5 0

0 0 ei
π
5

 (4.24)
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R
(5)
13 =


γ−1 γ−1 −γ−3/2

γ−1 −(1+ei
π
5 )

γ2
−γ−5/2ei

2π
5

−γ−3/2 −γ−5/2ei
2π
5 −(γ−1+γei

π
5 )

γ2

 (4.25)

and

R
(5)
23 =


ei

π
5 γ−1 e−i

2π
5 γ−1 −e−i 2π5 γ−3/2

e−i
2π
5 γ−1 ei

π
5 γ−1 −e−i 2π5 γ−3/2

−e−i 2π5 γ−3/2 −e−i 2π5 γ−3/2 ei
π
5 − γ−2

 (4.26)

These expressions will not be used to construct braiding-based quantum gates but are needed

to evaluate the exchange matrices for six-point amplitudes.

4.4 Six-point Amplitudes

Next, we consider the amplitude involving six σ fields. From Eq. (3.36), we know there are

four conformal blocks for k = 2 and five conformal blocks for k ≥ 3, as shown in Figure 4.6.

Using the OPE σ(η5)σ(η6) ∼ η
− k−1

2(k+2)

56 I + η
k+1

2(k+2)

56 ε(η5) to expand near η6 = η5, we notice

two different subspaces, one for the 1−k
2(k+2)

and one for the k+1
2(k+2)

powers of η56. The first

one contains F (6)
1 and F (6)

2 is similar to the four-point amplitude, whereas the second one

contains F (6)
3 , F (6)

4 and F (6)
5 and is similar to the five-point amplitude.

The exchange matrices corresponding to the exchanges η1 ↔ η2, η1 ↔ η3 and η2 ↔ η3

can be found using the four-point and five-point matrices,

R(6) =

R(4) 0

0 R(5)

 , R ∈ {R12, R13, R23} (4.27)

For the critical Ising model (k = 2), the 4 × 4 exchange matrices have been studied in

[78, 79]. Confirming these results, we observe that the last conformal block decouples and

the remaining 2× 2 blocks correspond to a system of two interacting qubits
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F (6)

1 =

σ1
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σ3

σ4

σ5

σ6

ε ε

I
F (6)

2 =

σ1

σ2

σ3

σ4

σ5

σ6

I ε

ε

F (6)
3 =

σ1

σ2

σ3

σ4

σ5

σ6

ε I

ε

F (6)
4 =

σ1

σ2

σ3

σ4

σ5

σ6

ε ε

ε

F (6)
5 =

Figure 4.6: Conformal blocks of the six-point function. For k = 2 the last conformal block
vanishes.
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R(6) =


R(4) 0 0

0 R(4) 0

0 0 r

 , R ∈ {R12, R13, R23} (4.1)

where r is an irrelevant phase. These matrices are gates acting on two qubits; thus, we can

construct entangling gates such as the CNOT and CZ gates. However, they do not lead to

universal quantum computation [80]. Compared to the 4-dimensional representation of the

braid group introduced in Chapter 2, we can have the identification b1 = R
(6)
12 , b2 = R

(6)
23 , etc.

For k = 3 and k > 4, the exchange matrices form a sufficient set of gates for universal

quantum computation. The entangling quantum gates can be implemented based on the

5× 5 exchange matrices.

Although we focused the discussion on exchange matrices Rij, i, j = 1, 2, 3, the above

method can be straightforwardly extended to include the point η4. To obtain exchange

matrices involving the points η5 or η6, we need to consider different limits that reduce the

six-point amplitude to different four- and five-point amplitudes. For example, to calculate

the exchange matrix R15 we can expand near η4 = η3 using the OPE σ(η4)σ(η3) ∼ η
− k−1

2(k+2)

34 I+

η
k+1

2(k+2)

34 ε(η3). We obtain two distinct subspaces, one corresponding to the four-point results

obtained earlier, but with conformal blocks F (6)
1 and F (6)

4 , and the other corresponding to a

five-point amplitude with conformal blocks F (6)
2 , F (6)

3 , and F (6)
5 . All other exchange matrices

are constructed similarly.

4.5 Higher-point amplitudes

The dimensionality of Hilbert space (number of conformal blocks) depends on both N and

k. For the four-point amplitude (N = 2) we have two conformal blocks for all k, due to the

fusion rule σ × σ ∼ ε (Eq. (3.36) with s = s′ = 2). For the six-point amplitude (N = 3), we

have four conformal blocks for k = 2 and five conformal blocks for all other cases (k ≥ 3).

Using Eq. (3.36), we can find the number of conformal blocks for higher-point amplitudes.

In particular, for N = 4, we have eight conformal blocks for k = 2, thirteen for k = 3, and
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fourteen for all other cases (k ≥ 4). For k = 2 (critical Ising model), the dimensionality of

Hilbert space is 2N−1, whereas for k = 3 (tricritical Ising model), it follows the Fibonacci

sequence. General expressions for other k ≥ 4 can be found using the fusion rules.

Although higher-point amplitudes cannot be explicitly calculated, we can still obtain the

exchange matrices by following the procedure discussed above for the six-point amplitude.

For example, to find the matrices R12, R13 and R23 for the eight-point amplitude, we will

work in the limit η8 → η7 and η6 → η5. We obtain the exchange matrix for the eight-

point correlator as a block diagonal matrix, with each block corresponding to a four-point

or five-point correlator. This procedure can be generalized to arbitrary N .
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Chapter 5

Moore-Read Wavefunctions beyond

Ising Statistics

This chapter presents, in detail, the construction of the Moore-Read wavefunction quantum

statistics differing from the Ising model, using coset CFTs as discussed in [117].

5.1 Wavefunctions from Conformal Blocks

The conformal blocks we studied earlier compose the fundamental ingredient for constructing

the qubits. However, by themselves, they don’t correspond to physical states that can be

realized in Nature. The issue becomes clear by recalling that any quantum mechanical system

is generally described by a wavefunction or a density matrix, which is, in fact, an ensemble

of different wavefunctions. These wavefunctions have to be well-defined and single-valued

functions everywhere [120]. On the other hand, it’s easy to observe that conformal blocks

have pole singularities and are generally multi-valued functions as a result of the branch cuts

that appear.

We overcome these problems in the following way. Let us consider the conformal blocks

Fµ(η) involving 2N primary fields σ = Φ(1,2) at positions η = (η1, . . . , η2M). Next, we insert

into the correlator 2M fields ψ that obey abelian fusion rules at positions z = (z1, . . . , z2M).
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The amplitude Fµ(η; z) corresponds to a single-valued function by demoting the positions η

into parameters. The newly defined amplitude still has poles at z and η. To eliminate them,

we introduce the Jastrow factor J that has zeroes at the position of these poles canceling

the singularities. Therefore, we are led to consider the wavefunction as the product of two

chiral amplitudes

Ψµ;η(z) ∝ J (η; z)Fµ(η; z) (5.1)

The first term is a chiral amplitude built from a free boson ϕ CFT. To its definition, we need

to introduce the holomorphic vertex operators V at positions η = (η1, . . . , η2M) and W at

positions z = (z1, . . . , z2M) and a screening charge Q to fix the charge neutrality condition.

These are defined in terms of the free boson according to

Vj = e
i 1

2
√
Λ
ϕ(ηj) , Wj = ei

√
Λϕ(zj) , Q = e

− i√
Λ

∫
d2w
2π

ϕ(w,w̄)
(5.2)

The Jastrow factor is defined as an amplitude of V and W operators given by

J (2N,2M)(η; z) = ⟨V1 . . .V2NW1 . . .W2MQ⟩ (5.4)

Following the reference [46] one can write the Jastrow factor in an explicit form as

J (2N,2M)(η; z) =
2M∏
i<j

zΛij

2N∏
a<b

η
1
4Λ
ab

2N∏
a=1

2M∏
i=1

(ηa − zi)
1
2 e−

1
4

∑2M
i=1 |zi|2e−

1
8Λ

∑2N
a=1 |ηa|2 (5.5)

where Λ is a positive integer that represents the inverse filling of FQHE. Similarly, the second

term of (5.1) is defined as

F (2N,2M)
µ (η; z) = ⟨σ1 · · ·σ2Nψ1 · · ·ψ2M⟩ (5.6)

where σj = σ(ηj) and ψj = ψ(zj) are primaries of a more complicated chiral CFT, such as

the Minimal Model M(k + 2, k + 1). Notice that the amplitude in Eq. (5.6) might have to

be modified by introducing conjugate fields and screening charges, as discussed in Chapter
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3, in order to satisfy the charge neutrality condition. Calculations of amplitude with an

arbitrary number of σ and ψ operators have been performed for the critical Ising model in

[52, 121]. By mapping conformal blocks into wavefunctions, we map the braiding matrices

into unitary quantum gates. These braiding matrices act as unitary transformations mixing

the states Ψµ;η, as long as all conformal blocks yield states in the degenerate vacuum of the

system. Moreover, as was emphasized in [122], for the braiding statistics of the wavefunction

to match the monodromy around the branch points of the multi-valued part of the function,

we need to ensure that the Berry holonomy vanishes. It was demonstrated in [46] using the

plasma analogy that the Berry holonomy vanishes for the Moore-Read (MR) wavefunction.

The previously defined steps provide a way to construct wavefunctions from conformal

blocks of an arbitrary CFT. Despite that, not every CFT is a good candidate for fault-tolerant

quantum computation. An important last requirement is to construct wavefunctions with an

energy gap. Only then is boundary CFT dual to a topological bulk that satisfies the three

properties that characterize systems in a topological phase of matter defined in Chapter 2.

Following these instructions, we obtain the FQHE wavefunctions developed in [39, 44, 49].

In particular, in [44], the Moore-Read wavefunction was constructed using the critical Ising

Minimal Model M(4, 3). In this calculation, σ is the Φ(1,2) primary field with conformal

dimension h(1,2) =
1
16

and ψ is the Φ(1,3) primary field with conformal dimension h(1,3) =
1
2
.

These fields acquire a nice physical meaning in the context of FQHE. We can interpret the

product of ψ and W represents the electrons of the electron gas. Whereas the product of σ

and V corresponds to the quasi-holes with Ising braiding statistics that are emerging in the

fractional quantum Hall system. Unfortunately, braiding alone does not lead to universal

quantum computation.

We are interested in finding different CFTs that can be used to construct energy-gapped

wavefunctions which can offer universal topological quantum computation. An obvious choice

would be to consider different Minimal Models M(k+2, k+1) for k ≥ 3. This was motivated

by observing Fibonacci statistics in the tri-critical Ising model M(5, 4). As shown in [46]

using the plasma analogy, to construct a gapped state that will lead to fault-tolerant quantum
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computation, the dimension of ψ must be less than 1. In the critical Ising model M(4, 3),

this requirement is satisfied because ψ can be chosen as the primary field Φ(1,3) which has

conformal dimension h(1,3) =
1
2
< 1. In the CFT Minimal Models M(k+2, k+1) with k ≥ 3,

we cannot identify ψ with any of their primary fields; therefore, we cannot construct a gapped

wavefunction starting from the Eq. (5.1). Attempts to construct MR-like wavefunctions for

Minimal Models M(k + 2, k + 1) with k > 2 were studied in [46].

5.2 Coset CFTs

The next step is to study various coset CFTs that might be able to support wavefunctions

with an energy gap. Specifically, we propose an alternative construction of the MR

wavefunction based on the coset SU(2)⊗k1 /SU(2)k, where SU(2)k is the Wess-Zumino-

Witten (WZW) model based on the gauge group SU(2) at level k. For k = 2, it reduces

to the MR wavefunction because the critical Ising model M(4, 3) is isomorphic to the

coset SU(2)1 ⊗ SU(2)1/SU(2)2. More generally, the entire family of the Minimal Models

M(k + 2, k + 1) can be constructed from a similar coset SU(2)k−1 ⊗ SU(2)1/SU(2)k as

explained in [123, 124, 125, 126] (GKO method). The choice of the coset CFT is motivated

by observing that the two theories SU(2)⊗k1 /SU(2)k and M(k + 2, k + 1) share properties

even for k > 2. In particular, we find that all primary fields Φ(1,s) with 1 ≤ s ≤ k + 1

belonging to the Minimal Model M(k + 2, k + 1) are also primaries of the SU(2)⊗k1 /SU(2)k

coset CFT. These primaries share the same conformal dimensions, fusion rules, and braiding

statistics in both theories. The advantage of the coset CFT is having a new primary field of

conformal dimension 1
2
for all k, which is also present in the MR wavefunction. More details

about coset construction can be found in [127, 128, 129]. Different approaches can be found

in the literature, including from Chern-Simons theories [130], from functional integrals [131],

and using the BRST formalism [132]. Cosets have also been studied for non-rational CFTs

such as the Liouville theory [133] and parafermionic CFTs [134].

To construct the coset CFT, we start by reviewing the fundamental properties of the

WZW theories that satisfy the affine Kac-Moody algebra SU(2)k (level k : k ∈ Z+). These
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are rational conformal field theories that were first studied in [135]. A brief review of the

Wess-Zumino-Witten theory can be found in Appendix C.

The Kac-Moody algebra is an infinite-dimensional generalization to the standard Lie

algebra [136]. In particular, for SU(2)k the generators obey the algebra

[Jan, J
b
m] = ifabcJ cn+m + iknδabδn+m,0 (5.7)

where fabc is the structure constant of the SU(2) Lie algebra and n,m ∈ Z. The level

k introduces a cut-off on the number of irreducible representations of SU(2)k, which are

defined by “spin” number j = 0, 1
2
, . . . , k

2
. The number of primary fields in these theories

equals the number of “spin” representations. Each primary field has a conformal dimension

given by

hj =
j(j + 1)

k + 2
(5.8)

It is instructive to first review the SU(2)k−1⊗SU(2)1/SU(2)k coset CFT and demonstrate

how to obtain the Minimal Models using these three different WZW theories. We will denote

the primary fields of these models as θj1m1
for the SU(2)k−1 with j1 = 0, 1

2
, . . . , k−1

2
, χj2m2

for

the SU(2)1 with j2 = 0, 1
2
, and υjm for the SU(2)k with j = 0, 1

2
, . . . , k

2
. Here, the number

m takes values from −j to j. The coset representations (primary fields) are identical to the

Minimal models M(k + 2, k + 1); this can be seen by decomposing the SU(2)k−1 ⊗ SU(2)1

representations into a direct sum of SU(2)k⊗M(k+2, k+1) representations. The primary

fields of the coset have conformal dimensions given by

h =
j1(j1 + 1)

k + 1
+
j2(j2 + 1)

3
− j(j + 1)

k + 2
+ ω (5.9)

where ω = (j1 − j)2 if j1 − j is an integer and ω = (j1 − j)2 − 1
4
if j1 − j is a half-integer

number, as explained in [137, 138].
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Here we are interested in the primary fields of the type Φ(1,s), with s = 1, 2, . . . , k + 1.

These can be constructed by choosing the “spin” representations according to [124]

(j1 = 0)k−1 ⊗ (j2 = 0)1 = (j = 0)k ⊗ Φ(1,1) ⊕ (j = 1)k ⊗ Φ(1,3) ⊕ · · · (5.10)

(j1 = 0)k−1 ⊗ (j2 =
1

2
)1 = (j =

1

2
)k ⊗ Φ(1,2) ⊕ (j =

3

2
)k ⊗ Φ(1,4) ⊕ · · · (5.11)

where the j = 3
2
component in the right-hand side of Eq. (5.10) vanishes for k = 3.

Additional terms appear in the direct sum for k > 3, which can be found using the GKO

method.

Next, we can proceed and study the SU(2)⊗k1 /SU(2)k coset. This CFT can be constructed

from k copies of an SU(2)1 and one SU(2)k WZW theory. The primary fields of each level 1

theory will be denoted by χ
[i]ji
mi , where here the index i = 1, 2, . . . k labels the particular copy

of the SU(2)1 and the “spin” ji can be either 0 or 1
2
. Similarly, the SU(2)k primaries are

defined by υjm, with j = 0, 1
2
, . . . , k

2
. The coset primary fields Φ(1,s) can be obtained from Eqs.

(5.10) and (5.11). In particular, we are interested in the explicit definition of the Φ(1,2) field,

as it’s a main component of the wavefunction of Eq. (5.1). Though primaries with s ≥ 3

participate in the wavefunction through fusion, their explicit definition is not necessary. For

“spin”-1
2
Eq. (5.8) gives the conformal dimensions

hχ =
1

4
, hυ =

3

4(k + 2)
(5.12)

To simplify the notation, we will drop the index j and use m = ± to denote m = ±1
2
. Then,

the primary field σ = Φ(1,2) can be constructed in the following way

σ[i] = χ
[i]
+ τ̄+ + χ

[i]
− τ̄− (5.13)

Evidently, this does not lead to a unique definition since we can consider any of the SU(2)1

factors in the coset to construct σ. We will identify σ ≡ σ[k]. Using Eq. (5.9), we obtain
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its conformal weight hσ = hχ − hυ = k−1
4(k+2)

, in agreement with the minimal model result in

Table 3.2.

Agreement with the minimal model M(k+2, k+1) is expected because the latter can be

constructed from the coset SU(2)k−1 ⊗ SU(2)1/SU(2)k. The field σ in the minimal model

is also given by Eq. (5.13) with χ± in the (single) SU(2)1 factor in the coset SU(2)k−1 ⊗
SU(2)1/SU(2)k.

5.3 Coset Amplitudes

Next, we aim to evaluate amplitudes using the coset definition. As demonstrated in [129,

131], an amplitude of the coset SU(2)⊗k1 /SU(2)k factorizes into a product of amplitudes of

SU(2) at levels 1 and −(k + 4) according to

⟨SU(2)⊗k1 /SU(2)k⟩ = ⟨SU(2)1⟩ ⊗ · · · ⊗ ⟨SU(2)1⟩ ⊗ ⟨SU(2)−k−4⟩ (5.14)

Following these definitions, the chiral conformal blocks for the 2N-point amplitude ⟨σ1 . . . σ2N⟩
are found from†

F (4)
µ (η) =

√
Nµ

∑
n1...n2N

X [k]
n1...n2N

Yµ;n1...n2N
(5.15)

where each correlator is given by

X [k]
n1...n2N

= ⟨χ[k]
n1
(η1) · · ·χ[i]

n2N
(η2N)⟩ (5.16)

Yµ;n1...n2N
= ⟨υn1(η1) · · · υn2N

(η2N)⟩ (5.17)

As discussed in [138], these correlators are solutions to the Knizhnik–Zamolodchikov (KZ)

equation [139]. However, here we will use the free field representation of SU(2)k [140, 141]

to evaluate them. The primary fields are defined in terms of a massless free boson φ̃ and

a (β, γ) bosonic ghost system. Correlators are evaluated using the Coulomb gas formalism.

†Henceforth, we will associate the primary field σ to the index n = ± instead of m = ±.
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Charge neutrality is enforced using screening charges and conjugate fields as needed. Charge

neutrality translates into the constraint
∑2N

i=1 ni = 0.

As an example, we can find the four-point correlator involving four σ primary fields. The

sum in Eq. (5.15) reduces to

F (4)
µ (η) = 2

√
Nµ[X+−−+Yµ;+−−+ +X−−++Yµ;−−++ +X−+−+Yµ;−+−+] (5.18)

The factor of 2 comes from taking into account the symmetry between amplitudes (++−−)

and (−−++), etc. As before, a global conformal transformation fixes three points: η1 → 0,

η2 → x, η3 → 1 and η4 → ∞. A detailed calculation of SU(2)k correlators can be found in

Appendix C. For SU(2)1 we obtain the two linearly independent functions

X+−−+ =
4π2

Γ
(
1
3

)3
√

1− x

x
, X−−++ =

4π2

Γ
(
1
3

)3√ x

1− x
(5.19)

while the remaining one can be found from the constraint equation

X−+−+ = −X+−−+ −X−−++ (5.20)

Similarly, we obtain the functions for the two SU(2)k conformal blocks by setting k → −k−4

in the corresponding expressions (C.7) - (C.12)

Y1;+−−+ = −
Γ
(

1
k+2

)
Γ
(
k+3
k+2

)
Γ
(
k+4
k+2

) (1− x)−
1

2k+4x
3

2k+4 2F1

(
− 1

k + 2
,

1

k + 2
;
k + 4

k + 2
;x

)
(5.21)

Y1;−−++ =
Γ
(

1
k+2

)
Γ
(
k+3
k+2

)
(k + 4)Γ

(
k+4
k+2

) (1− x)−
1

2k+4x
2k+7
2k+4 2F1

(
k + 1

k + 2
,
k + 3

k + 2
;
2(k + 3)

k + 2
;x

)
(5.22)

Y2;+−−+ =
Γ
(

1
k+2

)
Γ
(
− 3
k+2

)
2Γ
(
− 2
k+2

) ((1− x)x)−
1

2k+4 2F1

(
− 3

k + 2
,− 1

k + 2
;

k

k + 2
;x

)
(5.23)

Y2;−−++ = −
Γ
(
− 3
k+2

)
Γ
(

1
k+2

)
Γ
(
− 2
k+2

) ((1− x)x)−
1

2k+4 2F1

(
− 3

k + 2
,− 1

k + 2
;− 2

k + 2
;x

)
(5.24)
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with the constraint equation

Yµ;−+−+ = −Yµ;+−−+ − Yµ;−−++ , µ = 1, 2 (5.25)

After some algebra involving Hypergeometric function identities, we arrive at compact

explicit expressions for the conformal blocks given of Eq. (5.18)

F (4)
1 = −

√
N1

32π2Γ2
(

1
k+2

)
Γ3
(
1
3

)
Γ
(

2
k+2

)x 1−k
2k+4 (1− x)

k+1
2k+4 2F1

(
1

k + 2
,
k + 1

k + 2
;

2

k + 2
;x

)
(5.26)

F (4)
2 =

√
N2

12π2(1− k)Γ
(
− 3
k+2

)
Γ
(

1
k+2

)
kΓ3

(
1
3

)
Γ
(
− 2
k+2

) x
k+1
2k+4 (1− x)

k+1
2k+4

2 F1

(
k + 1

k + 2
,
2k + 1

k + 2
;
2(k + 1)

k + 2
;x

)
(5.27)

in agreement with our earlier result given by the Eqs. (4.8) and (4.9). It follows that the

exchange matrices one obtains from the coset construction coincide with their counterparts

in the corresponding minimal model.

For a sanity check, we should also confirm that we obtain correct exchange matrices for

general correlators in the coset CFT SU(2)⊗k1 /SU(2)k by using the Eq. (5.18).

As a first example, under the transformation η1 ↔ η3 (x ↔ 1− x), it is easy to see that

Xn ↔ Xn′ and Xn′′ → Xn′′ , where n = + − −+, n′ = − − ++, and n′′ = − + −+. Also,

using Hypergeometric identities, we obtain

Ym → R
(4)
13 Ym′ , Ym′ → R

(4)
13 Ym , Ym′′ → R

(4)
13 Ym′′ (5.28)

where the two conformal blocks of the Y function are organized into a vector as

Ym =

 √
N1Y1;m

√
N2Y2;m

 (5.29)
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and R
(4)
13 is defined in Eq. (4.14). It follows from Eq. (5.18) that the conformal blocks

transform under

F (4) → R
(4)
13 F (4) , F (4) =

 F (4)
1

F (4)
2

 (5.30)

as expected. Similarly, we find that under the transformation η1 ↔ η2, we obtain

XmYm → R
(4)
12 Xm′Ym′ , Xm′Ym′ → R

(4)
12 XmYm , Xm′′Ym′′ → R

(4)
12 Xm′′Ym′′ (5.31)

where R
(4)
12 is defined in Eq. (4.13). Then we find that the conformal blocks also transform

via the R
(4)
12 . By combining these two results, it’s trivial to prove that the coset construction

gives the correct exchange matrix even for the transformation η2 ↔ η3.

5.4 Coset Wavefunctions

In the CFT Minimal Models M(k+2, k+1) with k ≥ 3, we cannot identify ψ (hψ < 1) with

any of their primary fields; therefore, we cannot construct a gapped wavefunction defined by

the Eq. (5.1).

A gapped wavefunction can be constructed from the coset CFT SU(2)⊗k1 /SU(2)k for all

k, generalizing the Ising anyonic excitations of the MR wavefunction, to which it reduces for

k = 2 [44]. Since the Φ(1,s) primary fields with 1 ≤ s ≤ k + 1 in M(k + 2, k + 1) can be

mapped onto primary fields in SU(2)⊗k1 /SU(2)k with the same fusion rules and conformal

dimensions. The correlators of the field σ computed in SU(2)⊗k1 /SU(2)k are equivalent to

those computed in the Minimal Model M(k + 2, k + 1). On the other hand, correlators

involving the ψ field must be computed in SU(2)⊗k1 /SU(2)k. We define the ψ field in the

SU(2)⊗k1 /SU(2)k coset by

ψ[ij] = χ
[i]
+χ

[j]
− + χ

[i]
−χ

[j]
+ (5.32)

Evidently, Eq. (5.32) does not lead to a unique definition of ψ since we can consider any

pair of SU(2)1 factors in the coset to construct ψ. The simplest generalization of the MR

wavefunction requires one of the SU(2)1 factors must be shared with the one in the definition
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of σ (Eq. (5.13)). Since in the previous section we identified σ ≡ σ[k], here we will have

to define ψ ≡ ψ[1k]. We also identify the conjugate primary field σ̃ = Φ(k,k) ≡ σ[1]; thus

generalizing the critical Ising model result. Following these definitions, we obtain the fusion

rules

σ ⊗ ψ ∼ σ̃ , ψ ⊗ ψ ∼ I (5.33)

for all k, which is the same as in the critical Ising model. It should be stressed here that the

fusion rule for two σ primary fields (i.e., σ ⊗ σ) does not involve ψ for k > 2; it follows the

Eq. (3.36) and involves the fields I, ε, ε′, . . . , which appear in the Table 3.2. The k = 2 is

a special case, as we observe that ψ = ε = Φ(1,3). From Eq. (5.9), we obtain its conformal

weight hψ = 2hχ = 1
2
< 1, satisfying the requirement for a gapped wavefunction that leads

to fault-tolerant quantum computing for k = 3 and k > 4.

Since ψ obeys Abelian fusion rules, the amplitudes ⟨σ1 · · · σ2Nψ1 · · ·ψ2M⟩ and ⟨σ1 · · · σ2N⟩
have the same number of conformal blocks. Diagrammatically, these are shown in Figure

5.1 for four σ fields (N = 2). Moving the ψ fields to different positions does not affect these

conformal blocks.

Correlators of ψ are constructed as products of SU(2)1 theories, similar to the factors of

correlators of σ, as per Eq. (5.15). The 2M -point ψ correlator is found to reproduce the

Pfaffian wavefunction, as in the case of the critical Ising model

⟨ψ1 · · ·ψ2M⟩ =
∑
m

X [1]
mX

[k]
m̄ = Pf

(
1

zi − zj

)
(5.34)

where the two SU(2)1 terms are defined as

X [1]
m1...m2M

= ⟨χ[1]
m1

(z1) · · ·χ[1]
m2M

(z2M)⟩ (5.35)

X
[k]
m̄1...m̄2M

= ⟨χ[k]
−m1

(z1) · · ·χ[k]
−m2M

(z2M)⟩ (5.36)
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σ1

σ2 σ3 ψ1 ψ2M

σ4
· · ·

ε σ σ

σ1

σ2 σ3 ψ1 ψ2M

σ4
· · ·

I σ σ

Figure 5.1: The two conformal blocks for N = 2 and arbitrary M . These correlators are
independent of the location of the ψ operators.
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Having defined a method to construct amplitudes that involve σ or ψ fields, we can now

proceed to build more interesting states involving both fields simultaneously. More generally,

we construct the correlator Fµ(η; z) involving 2N σ and 2M ψ primary fields by

Fµ(η; z) =
√
Nµ

∑
n,m

X [1]
mX

[k]
m̄,nYµ;n (5.37)

where Nµ are the normalization constants defined in Chapter 4 and the three WZW factors

are given by

X [1]
m = ⟨χm1(z1) · · ·χm2M

(z2M)⟩ (5.38)

Xm̄[k],n = ⟨χn1(η1) · · ·χn2N
(η2N)χm̄1(z1) · · ·χm̄2M

(z2M)⟩ (5.39)

Yµ;n = ⟨υn1(η1) · · · υn2N
(η2N)⟩ (5.40)

It is important to note that the multi-valued part of the conformal block appears in the

last factor, as the fields in SU(2)1 obey Abelian fusion rules. By combining Eqs. (5.5) and

(5.34), we can derive a gapped wavefunction of the Eq. (5.1). To better understand the

properties of these coset wavefunctions, i it would be instructive to study a few particular

choices for the numbers N and M .

N=1 and M=1

For a state with two σ and two ψ operators, we obtain the wavefunction by setting N = 1 and

M = 1. The factor ⟨σσ⟩ gives a single conformal block; thus the F (2,2) correlator becomes

F (2,2) =
∑
m1,m2

X [1]
m1m2

X
[k]
+−m̄1m̄2

Y+− +
∑
m1,m2

X [1]
m1m2

X
[k]
−+m̄1m̄2

Y−+ (5.41)
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where Y+− = Y−+ = η
3

2(k+2)

12 , and similarly all the SU(2)1 correlators are easily computed via

the following equation

Xm1...m4 = ⟨χm1(w1) · · ·χm2M
(w2M)⟩ =

∏
m†

∏
i<j

(wi − wj)
mimj

2 (5.42)

After some algebra, we find that

F (2,2) = 2
η

1−k
2k+4

12

z12

(η1 − z1)(η2 − z2) + (η1 − z2)(η2 − z1)√
(η1 − z1)(η1 − z2)(η2 − z1)(η2 − z2)

(5.43)

Notice that the exchange η1 ↔ η2 leads to the same factor as the one obtained for the

propagator ⟨σ1σ2⟩. The corresponding Jastrow factor can be found in Eq. (5.5)

J (2,2) =
√

(η1 − z1)(η1 − z2)(η2 − z1)(η2 − z2)z
Λ
12η

1
4Λ
12 e

− |z1|
2+|z2|

2

4 e−
|η1|

2+|η2|
2

8Λ (5.44)

Finally, the wavefunction becomes

Ψη1,η2(z1, z2) ∝ η
1
4Λ

− k−1
2(k+2)

12 zΛ−1
12 ξe−

|z1|
2+|z2|

2

4 e−
|η1|

2+|η2|
2

8Λ (5.45)

where ξ = (η1 − z1)(η2 − z2) + (η1 − z2)(η2 − z1) is a polynomial in (z1, z2). Thus, Ψ has no

singularities in (z1, z2) for Λ ≥ 1.

N=2 and M=1

In order to obtain a state with more interesting physics, we need to consider four σ and two

ψ operators; thus, by setting N = 2 and M = 1. The factor ⟨σσσσ⟩ gives two conformal

blocks. Omitting overall normalization constants (cf. with Eq. (5.18)), after some algebra

we obtain

F (4,2)
µ =

2

z12

2∏
i=1

4∏
a=1

(ηa − zi)
− 1

2Ξ (5.46)

†The m index of the product is constraint so that
∑

imi = 0.
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where Ξ is a polynomial in (z1, z2), defined as

Ξ = ξ(14)(23)X+−−+Yµ;+−−+ + ξ(12)(34)X−−++Yµ;−−++ + ξ(13)(24)X−+−+Yµ;−+−+ (5.47)

in terms of the polynomials

ξ(ab)(cd) = (ηa − z1)(ηb − z1)(ηc − z2)(ηd − z2) + (z1 ↔ z2) (5.48)

The corresponding Jastrow factor is found to be

J (4,2) = zΛ12

4∏
a<b

η
1
4Λ
ab

4∏
a=1

2∏
i=1

(ηa − zi)
1
2 e−

|z1|
2+|z2|

2

4 e−
|η1|

2+···+|η4|
2

8Λ (5.49)

and the wavefunctions for the two conformal blocks are

Ψµ;η(z1, z2) ∝
4∏
a<b

η
1
4Λ
ab z

Λ−1
12 Ξ e−

|z1|
2+|z2|

2

4 e−
|η1|

2+···+|η4|
2

8Λ (5.50)

These two wavefunctions are well-defined, with no singularities for Λ ≥ 1. In the case of

k = 2, they exactly match the MR wavefunctions, derived in Ref. [44], using the critical

Ising model and exhibiting Ising anyonic excitations.

It is straightforward, albeit cumbersome, to generalize the above results to arbitrary

numbers of σ and ψ fields.

Braiding Statistics

As a sanity check, we wish to demonstrate that the wavefunction, constructed from the coset

SU(2)⊗k1 /SU(2)k, reproduces the braiding statistics found in Chapter 4, using the Minimal

models M(k + 2, k + 1) for every k ≥ 2. Specifically, we will show the explicit calculations

for four and six σ fields. Braiding statistics for wavefunctions with a higher number of σ

operators can be easily generalized.
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The simplest wavefunction with non-trivial braiding statistics, that we can define involves

four σ and two ψ primaries. This is given by the product

Ψµ;η(z1, z2) = J (4,2)F (4,2)
µ;η (z1, z2) (5.51)

Since the Jastrow factor doesn’t contribute to the braiding statistics, we can neglect it and

consider

Ψµ;η ∝
√
Nµ[X−−++ξ(12)(34)Yµ;−−++ +X−+−+ξ(13)(24)Yµ;−+−+ +X+−−+ξ(14)(23)Yµ;+−−+]

(5.52)

The different channels of Ψµ;η and the normalized conformal blocks
√
NµYµ;n, are grouped

into the column vectors Ψη and Yn. Then, we write

Ψη ∝ X−−++ξ(12)(34)Y−−++ +X−+−+ξ(13)(24)Y−+−+ +X+−−+ξ(14)(23)Y+−−+ (5.53)

where Yn is given by Eq. (5.29) and the wavefunction vector is defined by

Ψη =

 Ψ1;η

Ψ2;η

 (5.54)

Let us now consider the exchange η1 ↔ η3. This transforms ξ(12)(34) into ξ(14)(23) and vice

versa while keeping ξ(13)(24) the same. On the other hand, the X and Y terms transform

according to Eq. (5.28). Thus, the wavefunction in Eq. (5.54) transforms according to

Ψη → R
(4)
13 Ψη (5.55)

The rest of the exchange matrices are evaluated in a similar fashion, following the results

discussed in the previous section.
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Next, we consider the wavefunction of six σ fields. Once again, we can ignore the Jastrow

factor in order to obtain the braidings. The wavefunction is defined as

Ψη ∝ X+++−−−ξ(123)(456)Y+++−−− +X++−+−−ξ(124)(356)Y++−+−−

+X++−−+−ξ(125)(346)Y++−−+− +X++−−−+ξ(126)(345)Y++−−−+

+X+−++−−ξ(134)(256)Y+−++−− +X+−+−+−ξ(135)(246)Y+−+−+−

+X+−+−−+ξ(136)(245)Y+−+−−+ +X+−−++−ξ(145)(236)Y+−−++−

+X+−−+−+ξ(146)(235)Y+−−+−+ +X+−−−++ξ(156)(234)Y+−−−++ (5.56)

Under the exchange η1 ↔ η3 and by considering and generalizing the transformation rules

of the ξ, X, and Y terms we previously discussed, we get

Ψη → R
(6)
13 Ψη (5.57)

where the dimension of the R
(6)
13 matrix and it’s elements depend on the conformal blocks

Y . For k = 2, there are two conformal blocks that are related to the critical Ising CFT

and support Ising anyonic statistics. In this case, we end up with a 4 × 4 dimensional

matrix R13. For k > 2, there are five conformal blocks that are related to Fibonacci anyonic

statistics. In this case, we end up with a 5× 5 dimensional matrix R13. One way to simplify

the calculations and obtain these braiding matrices is by working in the η6 → η5 limit, as

explained in Chapter 4. The study of the rest of the exchange matrices is similar.

Clustering Properties

The wavefunction we constructed based on the coset SU(2)⊗k1 /SU(2)k has a few important

similarities with the Moore-Read (based on the minimal model M(4, 3)) [44] and the Read-

Rezayi wavefunction (based on the parafermionic theory Z3) [49]. Firstly, we observe that for

k = 2, the coset is equal to the critical Ising theory; hence the wavefunction matches the MR

state. It’s easy to check that for larger k, the ground state (zero quasi-hole and quasi-particle
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excitations) coset wavefunctions are identical to the MR ground states, defined by Eq. (1.4).

However, we observe that they differ in terms of the excitations. For k = 3, we find that

the excitations of the coset wavefunction exhibit Fibonacci braiding statistics. Fibonacci

anyons have also been found to emerge in the RR state. However, the coset wavefunction

we propose here differs from the RR with regard to its clustering properties.

To understand the clustering properties of the coset wavefunctions (for k ≥ 2), we

consider 2M ψ and zero σ fields, which gives the MR Pfaffian ground state. This vanishes

when more than two ψ fields come together at a single point. Therefore, we cannot have a

clustering of more than two ψ fields. This property remains true even if we include 2N σ

fields in the wavefunction. On the other hand, the Zk RR state allows the clustering of k

particles.

These wavefunctions are generally eigenstates of complicated many-body Hamiltonians.

By inspecting the clustering properties of our wavefunctions, we can get insights and study

specific toy model Hamiltonians. Indeed, the coset wavefunction based on SU(2)⊗k1 /SU(2)k

corresponds to a Hamiltonian with three-body interactions, similar to the MR wavefunction.

On the other hand, the RR wavefunction corresponds to k + 1− body interactions.

Energy Gap

To better understand the gap, let us couple our system (coset CFT) to a spinless fermionic

field c in the state

|Ψc⟩ = N ⟨ei
√
λ
∫
d2zψ(z)c†(z,z̄)⟩ |0c⟩ (5.58)

where |0c⟩ is the vacuum state annihilated by all fermionic operators c(z, z̄), λ ∈ C, and N
is a normalization constant. The expectation value is taken with respect to the coset CFT

and involves the ψ field. We may similarly include the Jastrow factor.

We recover the correlators (5.34) of the ψ field by projecting onto the basis states

|z1, . . . , z2M⟩ ≡ c†1 · · · c†2M |0c⟩, where cj ≡ c(zj, z̄j)

⟨z1, . . . , z2M |Ψc⟩ = NλM ⟨ψ1 · · ·ψ2M⟩ (5.59)
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The normalization constant is easily computed

N = ∥ |Ψc⟩ ∥−1 , ∥ |Ψc⟩ ∥2 = ⟨e−i|λ|
∫
d2zψ(z)ψ̄(z̄)⟩ (5.60)

Moreover, the two-point function in the fermionic system is easily expressed in terms of

the CFT correlator as follows

⟨Ψc|c1c2|Ψc⟩ = −λ⟨ψ1ψ2e
−i|λ|

∫
d2zψ(z)ψ̄(z̄)⟩

⟨e−i|λ|
∫
d2zψ(z)ψ̄(z̄)⟩ (5.61)

showing that it is a two-point function in the CFT perturbed by the operator iψψ̄, which

is the energy operator in the Ising CFT. Since this operator has conformal dimensions

(h, h̄) = (1
2
, 1
2
), the coupling constant λ has the dimension of mass. Since h < 1, this is

a relevant perturbation and drives the system to a phase in which the two-point function

decays exponentially and not as a power law. This behavior, short-range correlations, can

be seen explicitly in the following way. Indeed, by taking Fourier transforms, we obtain

⟨Ψc|ckc−k|Ψc⟩ =
λk̄

|k|2 + |λ|2 (5.62)

where ck ≡ c(k, k̄), which is a propagator for a massive particle of mass |λ|. It follows that

in position space, the propagator decays exponentially

⟨Ψc|c1c2|Ψc⟩ ∼ e−|λ||z2−z1| (5.63)

This asymptotic behavior is intimately related to the existence of a gap in the system. This

can be seen explicitly. Indeed, the state |Ψc⟩ is the ground state of the “trial” Hamiltonian

Hc =

∫
d2k

(2π)2

(
c†k c−k

) |k|2−|λ|2
2

λk̄

λ̄k − |k|2−|λ|2
2

 ck

c†−k

 (5.63)

Finally, by diagonalizing Hc, we obtain a finite energy gap, for |λ|2 > 0.

70



Chapter 6

Non-Abelian Statistics from Rydberg

Atoms

In this chapter, we provide numerical results (using DMRG) for the observation of non-

Abelian statistics in lattices with Rydberg atoms, from the work [142].

6.1 Rydberg Atoms

Neutral atoms have become promising candidates for large-scale quantum computers, either

by using optical lattices [143, 144, 145] or via Rydberg atoms [146, 147, 148]. Rydberg atoms

are atoms whose electrons are excited to high energy values, with the principal quantum

number n ≫ 1. Experimentally, the neutral atoms can be trapped in two-dimensional

arrays of optical tweezers, as described in [149]. Progress in developing programmable

quantum simulators based on neutral Rydberg atoms can be found in [148, 150]. Results

that demonstrate high-fidelity quantum gates can be found in [151, 152]. In addition, they

have applications in quantum error correcting codes [153, 154] and neural networks [155].

A key component of the Rydberg atoms, which appears in these paradigms, is the

Rydberg blockade mechanism [61]. Loosely speaking, atoms excited in the Rydberg have

very large dipole moments, as the positive and negative charge separation is proportional to

71



the large principal quantum number n. Bringing two such excited atoms close together leads

to strong repulsive dipole forces. According to the blockade mechanism, if a particular atom

is found in an excited Rydberg state, then neighboring atoms are energetically favorable to

be in the ground state, as illustrated in Figure 6.1.

In more recent years, Rydberg atoms have also been suggested as potential platforms for

realizing Kitaev’s toric code [59] and, more generally, topological phases of matter [60]. In

particular, the authors probed a Quantum Spin Liquid (QSL) phase by placing Rubidium-

87 atoms on a Ruby (or Kagome) lattice and fine-tuning two free parameters: the Rabi

frequency Ω of oscillation between the ground and Rydberg state, and the laser detuning

∆. Particularly, they observed Z2 topological order with emerging Abelian anyons e and m.

Additionally, the authors found that by properly varying the detuning on the boundary of

the lattice, the boundary changes from an e-condensate to an m-condensate and vice versa.

In this chapter, we follow the work in Refs. [59, 60], and introduce lattice punctures with

mixed boundaries (where both e and m anyons condensate). By doing so, it’s theoretically

predicted to acquire non-Abelian statistics [67, 68]. We perform numerical simulations using

the DMRG technique to verify the stabilization of a QSL phase with one, two, and four

mixed boundary punctures.

6.2 Model

Hamiltonian

We consider 87Rb neutral atoms placed on the sites of a Ruby lattice, with lattice spacing

a, governed by the Hamiltonian

H =
Ω(t)

2

∑
j

(e−iϑ(t)bj + eiϑ(t)b†j)−
∑
j

∆j(t)nj +
1

2

∑
j,k

V (rjk)njnk (6.1)

where each site j contains at most one atom. Equivalently, we can consider the atoms located

on the links of a Kagome lattice, this duality is shown in Figure 6.2.
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Figure 6.1: The energy graph of the Rydberg blockade mechanism for two interacting
Rydberg atoms. The zero energy ground state requires both atoms to be in the ground state
|gg⟩. If either one atom is in the excited Rydberg (|gr⟩ or |rg⟩), then the system has energy
Ω. On the other hand, the double excitation into |rr⟩ has an energy that follows the “blue”
line, with energy is much larger than 2Ω for distance less than the blockade distance Rb.

Ruby
Kagome

Figure 6.2: The equivalence between a Ruby and a Kagome lattice. For the former, the
atoms are located on the sites of the lattice, whereas for the latter, they are on the links.
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Each atom is effectively in a two-level quantum system and can be either in the ground

state |g⟩j or the Rydberg state |r⟩j. The two states are separated by a time-dependent Rabi

frequency term Ω(t). Excitations from the ground state to the Rydberg state are driven by

a laser with detuning ∆j(t), which can be individually adjusted for each atom. The time-

dependent parameter ϑ(t) that appears in Eq. (6.1) is the laser phase. The operators bj

and b†j, which are introduced in the Rydberg Hamiltonian, are bosonic lowering and raising

operators for the two-level quantum system {|g⟩j , |r⟩j} at the site j and are defined as

bj = |g⟩j ⟨r| , b†j = |r⟩j ⟨g| (6.2)

The “particle” number operator is defined as nj = b†jbj = |r⟩j ⟨r| and determines whether the

atom on the specific site is excited or not by projecting onto the Rydberg state. Furthermore,

for every site j, we can define the local Pauli operators

Xj = bj + b†j = |g⟩j ⟨r|+ |r⟩j ⟨g| (6.3)

Yj = i(bj − b†j) = i(|g⟩j ⟨r| − |r⟩j ⟨g|) (6.4)

Zj = bjb
†
j − b†jbj = |g⟩j ⟨g| − |r⟩j ⟨r| (6.5)

The local Pauli Zj operator can be written in terms of the “particle” number operator nj

as Zj = I − 2nj. Finally, there is a strong repulsion due to the van der Waals potential

V (rij) = Ω(Rb/rij)
6, where Rb is the Rydberg blockade radius. Hence, for every atom in

the Rydberg state, there exists a barrier that blocks atoms inside a radius Rb from getting

excited. In the subsequent numerical simulations, we will fine-tune the lattice spacing a

and Rabi frequency Ω so that for each excited atom, its six closest neighbors are within the

blockade radius.
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String Operators

In order to study the different phases of matter that may emerge in this system and probe a

potential topological phase, we have to introduce the non-local topological string operators

ZS =
∏
j∈S

Zj , XS′ =
∏
j∈S′

Xj (6.6)

where the S string goes perpendicular to the links of the Kagome lattice, whereas the S ′

string is defined parallel to links. The non-local nature of the string operators makes them

perfect tools for diagnosing topological order. These operators were introduced in [18] for

an exactly solvable Z2 lattice gauge theory. In the context of gauge theories, the XS′ and

ZS string operators are the Wilson and ’t Hooft lines, respectively. In terms of the Abelian

anyons, an open Z string creates two m anyons at its endpoints, whereas an open X string

operator creates two e anyons.

As observed in [59, 60], this Rydberg atom model has three distinct phases: a trivial

phase for small ∆/Ω, a valence bond solid (VBS) phase for large ∆/Ω, and a quantum spin

liquid (QSL) phase for intermediate values of ∆/Ω. We identify the phase of our system by

measuring closed and open loops for both X and Z topological string operators, as shown

in Figure 6.3. The expected values of the string operators that characterize each phase are

summarized in Table 6.1.

Encoding Logical States

The boundaries of the Ruby lattice can either be periodic or open. The former choice results

in the toric code [18], which has four-fold ground state degeneracy. The latter gives the

planar or surface code [55, 56], which is experimentally more feasible. In the planar code,

the boundaries can either be rough or smooth. The type of boundary is associated with

the type of anyon condensation. Specifically, we will use the following notation: smooth

boundaries have e-condenstation, and rough boundaries have m-condensation.

75



Z
X

Z
X

Figure 6.3: Left: A closed “hexagonal” Z and X string operator in a lattice with open
boundary conditions. Right: A closed “top-bottom” Z and X string operator in a lattice
with periodic boundary conditions on the top and bottom regions.

Table 6.1: Expectation values of Open and Closed string operators in the three different
phases of matter.

Phase Open Z Open X Closed Z Closed X

Trivial 0 1 0 1

SQL 0 0 1 1

VBS 1 0 1 0
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The planar code has Hilbert space dimensionality that depends on the boundaries and

the genus of the plane. For a genus-0 plane, we need alternating boundaries in order to create

a two-dimensional Hilbert space and encode a logical qubit. For a genus-1 plane, we can

encode a qubit using uniform boundaries, as shown in Figure 6.4. Uniform rough boundaries,

which correspond to an m-condensate, allow us to define two logical ground states: |I⟩ with
no anyons (trivial state) and |m⟩ containing m anyons in the puncture. Similarly, smooth

boundaries, which correspond to an e-condensate, give two ground states: the trivial state

|I⟩ and one that contains e anyons in the puncture, denoted by |e⟩. To construct a four-

dimensional Hilbert space spanned by states (|I⟩ , |e⟩ , |m⟩ , |f⟩), where |f⟩ = |e⟩ ⊗ |m⟩, we
require a puncture and mixed boundaries in both lattice and puncture.

An alternative construction of a four-dimensional space can be achieved by simply

considering two mixed-boundary punctures while keeping a uniform lattice boundary. The

four-degenerate ground states can be probed by measuring the four non-local string operators

ZC , XC′ , ZS, and XS′ , as illustrated in Figure 6.5. The expected values of these operators

for the four ground states are given in Table 6.2.

Before we discuss the mixed-boundary punctures further, it’s instructive to consider the

case of two punctures with uniform boundaries. Let’s consider, for instance, a system with

e-condensed boundaries. We can define the two logical operators ZC and XS′ , which we

measure. The presence of an e anyon is verified by measuring ⟨ZC⟩ = −1 otherwise we find

⟨ZC⟩ = 1. The second logical operator, XS′ , describes the overlap of the ground state with

the state that results from adding an e anyon to each puncture. Similarly, we can work with

m-condensed boundaries. We find that the presence of an m anyon within a puncture is

verified by measuring ⟨XC′⟩ = −1 or ⟨XC′⟩ = 1 otherwise.

Following Ref. [68], an important ingredient for the observation of the Ising statistics is

the creation of the superposition states via the two mixed boundary punctures, which we

name p1 and p2

|±⟩12 =
|e⟩12 ± |m⟩12√

2
(6.7)

77



Figure 6.4: Left: A logical qubit is encoded in a planar code with rough boundaries and a
puncture. Right: A logical qubit is encoded in a planar code with smooth boundaries and a
puncture.

Figure 6.5: Two mixed boundary punctures on a non-periodic lattice. The closed logical
string operators ZC and XC′ with the loops C and C ′ are around puncture p1 are introduced
to measure the e and m anyons, respectively. Similarly, we define the logical ZS and XS′

operators, where the S and S ′ are paths connecting the rough (m-condensate) and smooth
(e-condensate) boundaries of the two punctures, respectivelly.
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Table 6.2: Expectation values of string operators defined in Figure 6.5 for the four
degenerate ground states |I⟩, |e⟩, |m⟩ and |f⟩. In addition, we present the expectation
values for the superposition states |±⟩, introduced in Eq. (6.7).

State ZC XC′ ZS XS′

|I⟩ 1 1 0 0

|e⟩ -1 1 0 0

|m⟩ 1 -1 0 0

|f⟩ -1 -1 0 0

|+⟩ 0 0 1 1

|−⟩ 0 0 - 1 -1
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For the numerical simulations to be discussed in the next section, the lattice will be

placed in an infinite cylinder along the x-axis. Due to the periodicity across the boundaries

in the y-direction, we can define the logical operators ZC and XC′ in the following way.

Instead of measuring the string that encloses the entire puncture, we measure two strings

around the circumference of the cylinder: one before and one after the puncture. Thus, we

can define the logical Z around the first puncture p1 by taking the product of ZC1 and ZC2

or around the second puncture p2 with the product of ZC2 ZC3 . The same procedure can be

repeated for XC′ . The closed loops C1, C2, C3 in the y-direction around the cylinder can be

found in Figure 6.6.

Punctures

We introduce the punctures by removing unit cells of atoms on a Ruby lattice. In the QSL

regime, a m-consdasate emerges in the boundaries of the punctures. This can be detected

by measuring a finite ⟨Z⟩ and a vanishing ⟨X⟩ “open” string operator that starts and ends

at the boundary. An e-condensation can be achieved by decreasing the detuning to ∆′ < ∆.

On the other hand, this is characterized by the vanishing ⟨Z⟩ and finite ⟨X⟩ operators.

Here, we are interested in mixed-boundary punctures. These were created by only changing

the detuning of the boundary sites on half of the boundary. Specifically, the detuning was

reduced to ∆′ = 0.48∆ on highlighted sites shown in Figure 6.7.

6.3 Numerical Methods

We find the ground state |ψ0⟩ of the Rydberg Hamiltonian, defined in Eq. (6.1), by using the

iDMRG algorithm of the TenPy library [156]. Since we are using the infinite-size Density

Matrix Renormalization Group (iDMRG) method, we effectively place the Ruby lattice in

an infinite cylinder. This cylinder will be periodic in the vertical direction and will have an

infinite length on the horizontal axis.
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Figure 6.6: Two mixed boundary punctures on a lattice with periodic boundary conditions
on the top and bottom.

Z1
X1
Z2
X2

Figure 6.7: Mixed-boundary puncture on the Ruby lattice. Sites highlighted in gray have
detuning ∆′ = 0.48∆. The boundary-boundary string operators are used to identify the
type of condensation.
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For the iDMRG calculations, we fix the parameters of our system, according to Ref. [60].

Specifically, we choose: Ω = 2π × 1.4 × 106 Hz, ϑ = 0, Rb = 2.4a and Rtrunc =
√
7a, where

a is the lattice spacing and Rtrunc is the truncation distance for the numerical calculations.

The only free parameter will be the detuning ∆, which we will vary within the range (1, 6)

in order to identify the different phases of matter.

The expectation value of a Z string operator for a given ground state can be deduced,

using TenPy packages, as each local Zj operator of the non-local Z string can be written as

I− 2nj. On the other hand, the evaluation of a X string operator is a bit more tedious and

is given by the following procedure. Given the ground state |ψ0⟩, we find the time evolved

state |ψτ ⟩ = Uτ |ψ0⟩, where τ = 4π
3
√
3Ω
, and the time evolution operator is given by

Uτ = e−iτH
′

(6.8)

and the prime Hamiltonian is derived from Eq. (6.1) by setting ∆ = 0 and ϑ = − iπ
2

as

follows

H = i
Ω

2

∑
j

(bj − b†j) +
1

2

∑
j,k

V (rjk)njnk (6.9)

In this way, measuring the X string for the state |ψ0⟩ is equivalent to measuring the Z for

the time-evolved state |ψτ ⟩. This was realized in [59], by demonstrating that

eiτH
′
Ze−iτH

′
= X (6.10)

This duality is explicitly shown in Figure 6.8. Finally, for the time evolution of the ground

state, we changed the van der Waals interaction strength by reducing the blockade radius

Rb = 1.53a and the truncation distance Rtrunc = a. By doing so, each atom would interact

through H ′ only with its two closest neighbors. Thus, the time-evolution Hamiltionan is

“local” and only contains interactions within each Kagome triangle.
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6.4 Results

Our numerical calculations aim to verify the following three properties

1. Our system has a QSL phase even after we introduce a puncture

2. We get mixed boundaries with both e and m anyonic condensations

3. The states with anyons on the punctures, defined as |e⟩ and |m⟩, can be constructed

Upon evaluating the expectation value of the string operators Z and X for closed loops,

we find a QSL phase emerging for detuning values between ∆ = 3.25 and ∆ = 3.75. As

explained in the previous section, a QSL phase is stabilized when these string operators are

both non-vanishing. This result is illustrated in Figure 6.9.

Next, we need to verify that the puncture has mixed boundaries. To do this, we have to

measureZ andX string operators that begin and end on the same “part” of the boundary, as

shown in Figure 6.6. We find that the component of the boundary with detuning ∆′ = 0.4∆

has vanishing Z and close to one X string, as expected for a e-condensate. Similarly, we

find that the rest of the boundary, where the detuning is ∆, has Z value close to one and

X close to zero, suggesting a m-condensate. The numerical results are summarized in Table

6.3.

Next, by executing the iDMRG multiple times with various initializations, we were able

to find the |e⟩ and |m⟩ ground states that are described in Table 6.2. The |e⟩ state is

characterized by alternating positive and negative Z (of magnitude close to one) string

operators across the puncture, while the X has a constant sign. The |m⟩ is characterized by

alternating positive and negative X (of magnitude close to one), while the Z has a constant

sign. These numerical results are shown in Table 6.4. Finding the other two ground states,

the |I⟩ and |f⟩, that appear in the toric code is not relevant.

Finally, we normalize the expectation values of our non-local operators by calculating the

joint expectation value of two strings. For example, the normalized expectation value of the

string operator ZS is obtained by averaging ⟨ZSi
⟩/
√

⟨ZSi
ZSj

⟩ over the strings i and j.
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Figure 6.8: Example of the duality between the Z and X operators defined along the S
and S’ paths, as explained in Eq. (6.10).
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Figure 6.9: Expectation values of closed Z and X strings as a function of ∆/Ω, obtained
using iDMRG averaged over all single-hexagon loops in a 6× 4 infinite cylinder system.
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Table 6.3: Numerical results for normalized expectation values for the string operators
shown in Figure 6.7.

Operator Expectation Value

Z1 0.0259± 0.0129

X1 1.086± 0.0612

Z2 0.974± 0.196

X2 0.300± 0.0496
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Table 6.4: Numerical results for normalized expectation values for the string operators
shown in Figure 6.6. Note that the values for ⟨ZS⟩ should be 0 but have high standard error
values, such that they are consistent with 0 with 2 standard errors. The high standard error
can be attributed to the small bond dimension in iDMRG simulations.

Operator |e⟩ |m⟩

ZC1 1.007± 0.0487 −1.154± 0.0990

ZC2 −1.0266± 0.0523 −0.931± 0.000849

ZC3 1.015± 0.0543 −0.999± 0.0633

XC′
1

0.826± 0.136 1.261± 0.0313

XC′
2

1.111± 0.0994 −0.811± 0.312

XC′
3

1.072± 0.0224 1.097± 0.0535

ZS −0.309± 0.301 −0.495± 0.329

XS′ −0.000183± 0.000113 −0.0132± 0.00648
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6.5 Quantum Computation using Rydberg Atoms

In order to realize non-Abelian anyons, we need to consider a system with four mixed-

boundary punctures, p1, p2, p3, and p4. The punctures p1 and p2 can be in any of the

following states: |I⟩12, |e⟩12, |m⟩12, |f⟩12 = |e⊗m⟩12. It’s pedagogical to review the physical

meaning of these states. The first state in which no anyons can be found in the boundary

of each puncture. The second and third corresponds to the state with an e and m anyon

at each boundary boundary†, respectively. Finally, the remaining state has both types of

anyons in each boundary. Similar definitions can be made for p3 and p4 punctures. This is

critical in order to construct the superposition states |±⟩12 and |±⟩34, defined in Eq. (6.7).

In the system with four punctures, we will focus on a two-dimensional subspace of the

entire Hilbert space, spanned by the states |+⟩12 |+⟩34 and |−⟩12 |−⟩34. These superposition

states can also be written as

|±⟩12 |±⟩34 =
1√
2
(|I⟩1234 ± |f⟩1234) (6.11)

where the four-puncture logical states corresponding to I and f are given by

|I⟩1234 =
1√
2
(|e⟩12 |e⟩34 + |m⟩12 |m⟩34) (6.12)

|f⟩1234 =
1√
2
(|e⟩12 |m⟩34 + |m⟩12 |e⟩34) (6.13)

It follows that the transformation matrix for the two basis sets {|+⟩12 |+⟩34 , |−⟩12 |−⟩34} and

{|I⟩1234 , |f⟩1234} is the fusion matrix of the Ising anyon mode

F =
1√
2

1 1

1 −1

 (6.14)

†An alternative interpretation is the following: if the system is given by the state |e⟩, then an e anyon
can be found in the boundary of one puncture. This anyon will travel to the second puncture and annihilate
into the condensation.
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These states, which are relevant for quantum computation, can be constructed by

applying the string operators ZS and XS via additional ancilla atoms†, introduced in Ref.

[157]. These ancillary atoms have to be different than Rubidium so that they can be moved

around by a laser without affecting the Ruby lattice atoms. For example, we can choose

23Na, but this choice is not unique. Using the ancillary atom as a control qubit and the

Rydberg atom at site j as the target, we can define the controlled-Z gate

CZa
j = |0⟩a ⟨0| ⊗ I+ |1⟩a ⟨1| ⊗ Zj (6.15)

where the physical implementation of the CZa
i gate have studied in [158, 159, 160, 161]. The

Eq. (6.15) gives Zj whenever the ancilla is projected into the state |1⟩a. We can repeat this

method by moving the ancilla along the string S in order to obtain

CZa
S =

∏
j∈S

CZa
j = |0⟩a ⟨0| ⊗ I+ |1⟩a ⟨1| ⊗ZS (6.16)

The XS′ operator can be obtained via the Eq. (6.10), upon finding the S string conjugate

to S ′ as shown in Figure 6.8, as follows

CXa
S′ = eiτH

′ · CZa
S · e−iτH

′
(6.17)

By defining the ancilla paths S and S ′, as explained in Figure 6.6, this method enables

us to obtain the states |e⟩12 and |m⟩12, given the initial state |I⟩12. Furthermore, we can

create the superposition states in Eq. (6.7) by using two ancilla qubits. The first ancilla

implements the CZa1
S1

string between them-condensed boundaries, whereas the second ancilla

gives CXa2
S′
1
string between the e-condensed boundaries. The product of these two controlled

†The ancilla atoms are a two-level quantum system, hence a qubit.
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gates gives

CZa1
S CX

a2
S′ = |00⟩a1a2 ⟨00|⊗I+ |10⟩a1a2 ⟨10|⊗ZS+ |01⟩a1a2 ⟨01|⊗XS′+ |11⟩a1a2 ⟨11|⊗ZSXS′

(6.18)

which creates a superposition of the X and Z strings, upon projecting the ancilla states

onto 1√
2
(|01⟩± |10⟩). It is instructive to review the preparation of the superposition state by

an explicit example. Consider the two mixed-boundary punctures system prepared in trivial

ground state |I⟩, coupled with two ancilla qubits initialized in the state |ψ(2)⟩a1a2 . Then, by
applying the X and Z strings we get

|Φ(2)⟩ = CXa1
S1

· CZa2
S2

|ψ(2)⟩a1a2 |I⟩12 (6.19)

where |ψ(2)⟩a1a2 is an arbitrary state of the two ancillary qubits. It is evident from Eq. (6.18)

that |Φ(2)⟩ is, in general, a superposition of all four ancilla states {|00⟩ , |10⟩ , |01⟩ , |11⟩}. To
retrieve the |±⟩12 states, we perform measurements on the ancilla qubits that project onto

the Bell states

|Ψ±⟩ = 1√
2
(|01⟩ ± |10⟩) (6.20)

then the state in Eq. (6.19) becomes

|Φ(2)⟩ =
∑
σ=±

cσ |Ψσ⟩a1a2 |σ⟩12 (6.21)

where the coefficients c± depend on the choice of the initial state |ψ(2)⟩ of the ancilla qubits.

Next, we consider a system with four mixed-boundary punctures p1, p2, p3 and p4,

prepared in the topologically trivial ground state |I⟩. In order to create a state in the two-

dimensional Hilbert subspace spanned by the basis {|+⟩12 |+⟩34 , |−⟩12 |−⟩34}, we need to

introduce four ancilla qubits initialized into |ψ(4)⟩a1a2a3a4 . Following the previous procedure,

we can apply the string operators XS′
12
, ZS12 , XS′

34
, ZS34 , where the strings S12 (S34) connect
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the punctures p1, p2 (p3, p4). We obtain the state

|Φ(4)⟩ = CXa1
S1

· CZa2
S2

· CXa3
S3

· CZa4
S4

|ψ(4)⟩a1a2a3a4 |I⟩1234 (6.22)

where |ψ(4)⟩ is an arbitrary state. We select the superposition states |±⟩12 |±⟩34, by

performing measurements on the ancilla qubits that project onto a state in the span of

{|Ψ+⟩a1a2 |Ψ+⟩a3a4 , |Ψ−⟩a1a2 |Ψ−⟩a3a4}. Thus, getting

|Φ(4)⟩ =
∑
σ=±

cσ |Ψσ⟩a1a2 |Ψ
σ⟩a3a4 |σ⟩12 |σ⟩34 (6.23)

Similarly, we can obtain the |I⟩1234 and |f⟩1234 states, introduced in Eqs. (6.12) and (6.13),

by projecting into the space spanned by the states |Ψ+⟩a1a2 |Ψ+⟩a3a4 ± |Ψ−⟩a1a2 |Ψ−⟩a3a4 .
As highlighted in Chapter 1, the process of quantum computation requires the following:

state preparation, application of unitary gates, and then measurement. In this quantum

computing scheme, we initialize the quantum state by performing measurements on the

ancillary qubits; thus causing the Eq. (6.23) to collapse† into |σ⟩12 |σ⟩34, with σ = ±.

However, by measuring the ancilla, they decouple and can no longer be used to apply

quantum gates. To remedy this, instead of fixing the initial state by an ancilla measurement,

we first apply the quantum gates and then measure all ancilla qubits. This can be understood

in the following way. Let’s assume that we initialize the system into the state |σ⟩12 |σ⟩34 and
then apply the unitary gate U . The final state is a superposition

∑
σ′=±

Uσσ′ |σ′⟩12 |σ′⟩34 (6.24)

where Uσσ′
is a 2× 2 matrix. It turns out that we can implement U (acting on the Rydberg

system with four-punctures) by acting on the ancilla qubits with a dual unitary Ũ such that

Ũ |Ψσ⟩a1a2 |Ψ
σ⟩a3a4 =

∑
σ′=±

Ũσσ′ |Ψσ′⟩a1a2 |Ψ
σ′⟩a3a4 (6.25)

†The states that collapse into the other |Φ±⟩ Bell states, are discarded
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where the 2× 2 matrix Ũσσ′
is the transpose of Uσσ′

. Finally, by applying the unitary gate

Ũ on the state |Φ(4)⟩ and then measuring the ancilla qubits with outcome σ, the state of the

system can collapse to the desired final state. To be more precise, for the system collapses

into the Eq. (6.24), we need to prepare the initial state of the ancilla so that all cσ coefficients

are equal.

To implement the braid group of the Ising anyon model, we apply the dual exchange

matrices

R̃12 = ei
π
4
Xa1Xa2 , R̃23 = e−i

π
4
Za2Za3 , R̃34 = ei

π
4
Xa3Xa4 , R̃41 = e−i

π
4
Za4Za1 (6.25)

on the ancilla qubits. Then by measuring the ancillary qubits, we realize the exchange

matrices Rij, acting on the four-puncture system of Ising anyons. The Ising fusion matrix

F (Eq. (6.14)) is similarly implemented via its dual

F̃ = R̃−1
12 R̃23R̃

−1
12 (6.26)

acting on the ancilla qubits.

In order to define two logical qubits and construct entangling gates (e.q., CZ, CNOT), we

need to add two more mixed-boundary punctures into the lattice and two ancillary qubits.

In general, we observe that to create N logical qubits, we need to consider a system of

2N + 2 mixed-boundary punctures p1, . . . , p2N+2, and an equal number of ancilla qubits,

a1, . . . , a2N+2.
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Chapter 7

Conclusion and Outlook

In this thesis, we studied and developed schemes for fault-tolerant quantum computation

via braiding non-Abelian anyons in two ways: by constructing mathematically consistent

CFT wavefunctions and by numerically simulating Rydberg atoms with mixed boundary

lattice punctures. Regarding the former, conformal field theories have been extremely useful

in building trial energy-gapped wavefunctions with anyonic excitations in the fractional

quantum Hall effect. This approach was motivated by the description of FQHE using a

low-energy effective Chern-Simons theory in three spacetime dimensions [41, 42] and the

duality between CS and CFTs theories [43]. Of course, not every CFT can describe systems

in topological phases of matter; a key ingredient is the existence of an Abelian field operator

with a conformal dimension h < 1.

Several CFT wavefunctions have been proposed in the literature in order to describe

fractional quantum Hall states and their anyonic excitations at different filling fractions. In

the early-1980s, Laughlin introduced a wavefunction corresponding to a free boson CFT in

order to explain FQHE at filling ν = 1
Λ
. Experimental results suggest that these states

exhibit Abelian anyonic excitations [32, 33]. However, for quantum computation, we are

interested in non-Abelian anyons whose braid group suffices for the implementation of non-

trivial quantum gates. A quantum Hall state supporting Ising anyons was later proposed by

Moore and Read [44], with a ground state characterized by including a Pfaffian term onto
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the Laughlin ground state. In particular, this state was constructed by using the conformal

blocks of the critical Ising CFT M(4, 3). To this day, one of the promising candidates

for the experimental observation [34, 35] of this state is the FQHE at filling ν = 5
2
. This

state is also related to the Majorana zero modes (MZMs) that are predicted at the edges

of p + ip superconductors [162, 163], which follow the Ising braiding statistics. Several

different wavefunctions such as the Read-Rezayi, Halperin, and non-Abelian spin-singlet

(NASS) state [49, 50, 51] can be found in the literature. The Read-Rezayi wavefunction is

a generalization based on the parafermionic Z3 CFT which supports Fibonacci anyons and

offers the possibility for universal topological quantum computation. On the other hand,

the Halperin and NASS differ from the Moore-Read state as they describe unpolarized-spin

systems.

In Chapters 4 and 5, we constructed an energy-gapped wavefunction based on the coset

CFT SU(2)⊗k1 /SU(2)k. This was motivated by the Moore-Read wavefunction that was based

on the Minimal Model M(4, 3) and exhibits excitations with Ising statistics. We showed that

the coset CFT SU(2)⊗k1 /SU(2)k contains a primary field of the same conformal weight, fusion

rules, and correlators as σ ≡ Φ(1,2) in the Minimal Models. Additionally, the coset CFT

contains a field ψ of conformal weight h = 1
2
and Abelian fusion rules, which aren’t present

in Minimal Models with k > 2. Finding a primary with conformal dimension less than one is

critical in order to obtain a gapped state that can give fault-tolerant quantum computation.

These properties allowed us to use correlators of the coset CFT to generalize the quantum

statistics of the Moore-Read wavefunction for k ≥ 3 in a way that leads to fault-tolerant

universal quantum computing. Explicit calculations for the braiding and fusion matrices

involving six anyonic excitations were calculated in detail in Chapter 4. Additionally, we

“sketched” the generalization to an arbitrary number of anyons for every k.

In more recent years, two different approaches have gained a lot of interest in the scientific

community. The first method regards the search for anyons in lattice models of neutral

Rydberg atoms. In Refs. [59, 60, 164], the authors suggested that the Z2 topological

order, which includes the e and m Abelian anyons, can be found by properly fine-tuning the
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dynamics of the Rydberg atoms in Ryby and Kagome lattices. Further, research supports

the existence of this topological phase of matter in different lattices, such as the honeycomb

lattice [165]. In Chapter 6, we introduced four mixed boundary punctures in a Ruby lattice

with Rydberg atoms. We verified that the system has a quantum spin liquid phase for

intermediate values of ∆/Ω and the existence of both smooth and rough boundaries across

the punctures. We showed how to construct the superposition states |±⟩ (defined in Eq.

(6.7)) by introducing ancillary qubits. By doing so, we constructed quantum gates that

realize the Ising braiding group.

The second method involves the simulation of Abelian and non-Abelian anyonic statistics

using the current NISQ devices. This paradigm is better understood in terms of quantum

error-correcting codes. A toric code-like degenerate ground state is prepared corresponding

to no anyonic excitations at all. Then, anyons and their braiding can be implemented via

unitary gates that mimic the effects of the non-local Pauli string operators. Error protection

is guaranteed by measuring the stabilizers during the process of quantum computation. More

specifically, the Z⊭ topological order of a surface code was realized using superconducting

qubits [69]. Different topologically ordered states corresponding to non-Abelian states were

simulated using superconducting quantum hardware [70, 166]. To simulate non-Abelian

braiding and fusion matrices lattice twists were implemented, as described in [63], effectively

by deforming the stabilizer operators. Similar results have been found using different

platforms, such as ion-traps (D4 topological order) [71], photonics (D3 topological order)

[167], and Rydberg atoms (Fibonacci anyons) [168].

A possible future extension of the work presented in this dissertation would be to

simulate the wavefunction based on the SU(2)⊗k1 /SU(2)k coset CFT via NISQ hardware.

In particular, the simulation of theories with k = 3 and k ≥ 5 can lead to surface codes with

Fibonacci or different non-Abelian braiding matrices that could offer universal topological

quantum computation. In this framework, the wavefunction of four anyons would be mapped

into a qubit, whereas a higher number of anyons would lead qudits.
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It would be interesting to find a system that will provide a physical realization of the

coset wavefunction. Existing CFT wavefunctions such as the Pfaffian Moore-Read [44], the

anti-Pfaffian [47], the Read-Rezayi [49], and several others have all been proposed to describe

states in the fractional quantum Hall effect. For example, non-conclusive data support the

existence of the Moore-Read state (Isign anyonic excitations) in the FQHE at filling ν = 5
2

[34, 35] and the Read-Rezayi (Fibonacci anyonic excitations) in the FQHE at filling ν = 13
5

[36]. Motivated by that, we would like to understand if the coset wavefunctions with k ≥ 3

could also be realized in FQHE with different fillings and what would be the experimental

signatures of these states (e.g., expected thermal Hall conductance). Another idea would be

to better understand the connection of these coset quantum Hall states to two-dimensional

superconductors. Similar works for the Moore-Read and Read-Rezayi states can be found

in [162, 169]. This would offer more avenues for the experimental detection of non-Abelian

anyons, which are required in order to build a universal topological quantum computer.

Furthermore, it would be instructive to explore connections of the coset wavefunction to

different states, such as the non-Abelian spin-singlet (NASS) state. This is motivated by the

observation that the coset SU(2)⊗k1 /SU(2)k is isomorphic to SU(k)2/U(1)
⊗(k−1). Thus, for

k = 3, the coset CFT introduced in this thesis can be understood in terms of two free bosons

and the SU(3)2 theory. As the latter has been proposed to emerge in fast-rotating cold atoms

[53] and two-dimensional coupled multi-component quantum wires [54], this could suggest

new experimental directions.

Finally, it was recently proposed that a generalized Ising model could be realized in the

Rydberg atom platform by introducing a second excited energy state [170]. As discussed in

Ref. [170], different quantum spin models including the Potts model can be mapped into

this generalized Ising model. Motivated by the connections of the 3-state Potts model to

the Z3 and the M(6, 5) CFT, it would be interesting to explore similar connections between

Rydberg atoms and the coset SU(2)⊗k1 /SU(2)k.
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Appendix A

Quantum Computation Preliminaries

As discussed in Chapter 1, the basic unit of information in the field of quantum computation

is the qubit |ψ⟩ = a |0⟩+ b |1⟩, as defined in Eq. (1.1). The coefficients a and b are complex

numbers that are normalized by the condition |a|2+ |b|2 = 1. The states |0⟩ and |1⟩ form the

basis of the two-dimensional Hilbert space. This is not a unique basis choice. By choosing

a = 1√
2
and b = ± 1√

2
, we can write

|±⟩ = 1√
2
(|0⟩ ± |1⟩) (A.1)

which defines a second set that spans the two-dimensional Hilbert space. More generally, if

both coefficients a and b are non-zero, then the qubit is in a superposition state.

Similarly, a system with two qubits can be written, in terms of the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩},
as the linear superposition

|ψ⟩ = a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩ (A.2)

with the normalization condition |a|2 + |b|2 + |c|2 + |d|2 = 1. These states are even richer, as

the two qubits can be correlated via quantum entanglement. Such quantum correlations are,

in fact, stronger than classical correlations [171]. A commonly used set of entangled states
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are the four Bell states

|Φ±⟩ = 1√
2
(|00⟩ ± |11⟩)) (A.3)

|Ψ±⟩ = 1√
2
(|01⟩ ± |10⟩) (A.4)

which form a second basis for the four-dimensional Hilbert space of the two-qubit system.

Having defined the qubit, in order to perform quantum computation, we need to act with

a unitary quantum gate. In order to apply any arbitrary computation, a universal set of

quantum gates is required. A convenient universal set includes the Hadamard, T-phase, and

S-phase gates

H =
1√
2

1 1

1 −1

 , S =

1 0

0 i

 , T =

1 0

0 ei
π
4

 (A.5)

which are three single-qubit gates and a two-qubit (entangling) gate with matrix represen-

tation

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (A.6)

A quantum algorithm can be designed by appropriately using these quantum gates and

by introducing additional qubits, if necessary. After processing the quantum information,

we recover information about the final state of the system via a measurement.

117



Appendix B

Details of calculations for the

2N-point amplitudes

Details of the five-point amplitude

In the mimimal model M(k + 2, k + 1) with k ≥ 3, the five-point correlator ⟨σ1σ2σ3σ4ε5⟩
(Eq. (4.19)) has three conformal blocks shown in Figure 4.4. The calculation of the exchange

matrices involving the points η1, η2, and η3 can be simplified by working in the η5 → η4 limit.

To this end, we need to change bases so that σ4 and ε5 fuse together. A suitable change of

basis is shown in Figure B.1. It involves four-point amplitudes that can be found explicitly.

The first correlator K1 transforms trivially. The other two correlators, K2 and K3, tranform

to K′
2 and K′

3 via a matrix D, as shown. Working in the Coulomb gas formalism, after fixing

three points, we obtain these four-point correlators in terms of Hypergeometric functions

K2(x) = x−
2k
k+2 (1− x)

k+1
k+2

∫ ∞

1

dww
2k
k+2 (w − x)−

2k+2
k+2 (w − 1)−

k+1
k+2

=
Γ
(

1
k+2

)2
Γ
(

2
k+2

) (1− x)−
k

k+2x−
2k
k+2 2F1

(
1

k + 2
,− 2k

k + 2
;

2

k + 2
;x

)
(B.1)
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K3(x) = x−
2k
k+2 (1− x)

k+1
k+2

∫ x

0

dww
2k
k+2 (x− w)−

2k+2
k+2 (1− w)−

k+1
k+2

=
Γ
(
− k
k+2

)
Γ
(
3k+2
k+2

)
Γ
(

2(k+1)
k+2

) (1− x)
k+1
k+2x−

k
k+2 2F1

(
k + 1

k + 2
,
3k + 2

k + 2
;
2(k + 1)

k + 2
;x

)
(B.2)

K′
2(x) = x−

2k
k+2 (1− x)

k+1
k+2

∫ 1

x

dww
2k
k+2 (w − x)−

2k+2
k+2 (1− w)−

k+1
k+2

=
Γ
(

1
k+2

)
Γ
(
− k
k+2

)
Γ
(
1−k
k+2

) (1− x)−
k

k+2x−
k

k+2 2F1

(
− k

k + 2
,
k + 1

k + 2
;
1− k

k + 2
; 1− x

)
(B.3)

K′
3(x) = x−

2k
k+2 (1− x)−

k
k+2

∫ 1

x

dww− 2k+2
k+2 (w − x)

2k
k+2 (1− w)−

k+1
k+2

=
Γ
(

1
k+2

)
Γ
(
3k+2
k+2

)
Γ
(

3(k+1)
k+2

) (1− x)
k+1
k+2x−

2k
k+2 2F1

(
1

k + 2
,
2(k + 1)

k + 2
;
3(k + 1)

k + 2
; 1− x

)
(B.4)

After some algebra, we find the elements of the transformation matrix D. These are given

by

D11 =
sin 2π

k+2

sin 3π
k+2

, D12 =
sin 4π

k+2

sin 3π
k+2

, D21 = D22 = −
sin π

k+2

sin 3π
k+2

(B.5)

After applying this basis change to the five-point correlators depicted in Figure 4.4, and

using the OPE σ(η4)ε(η5) ∼ η
− k

(k+2)

45 σ(η4) + η
k+1
k+2

45 ε′(η4), we deduce in the limit η5 → η4

F (5)
1 ≈ η

− k
k+2

45 F (4)
1 (B.6)

F (5)
2 ≈ η

− k
k+2

45 D11F (4)
2 + η

k+1
k+2

45 D12F (4)
3 (B.7)

F (5)
3 ≈ η

− k
k+2

45 D21F (4)
2 + η

k+1
k+2

45 D22F (4)
3 (B.8)

where the four-point correlators F (4)
1 , F (4)

2 are depicted in Figure 4.2 and F (4)
3 is depicted in

Figure B.2.
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Since this correlator does not require screening charges, we readily deduce the algebraic

expression

F (4)
3 = η

k
2(k+2)

12 (η13η23)
k+1

2(k+2) (η14η24η34)
− 3k+1

2(k+2) . (B.9)

Using the explicit expressions in Eqs. (B.6) - (B.8), involving four-point amplitudes, we

easily obtain the exchange matrices of the five-point amplitudes depicted in Figure 4.4

corresponding to exchanges between the positions η1, η2, and η3.
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ε

I
ε

σ

σ

=

I σ

ε σ

σ

ε

ε
I

σ

σ

= D11

ε σ

ε σ

σ +D12

ε σ

ε σ

ε′

ε

ε
ε

σ

σ

= D21

ε σ

ε σ

σ +D22

ε σ

ε σ

ε′

Figure B.1: Basis change for the mixed four-point correlators. The LHS of the first, second
and third line are denoted as K1, K2 and K3 respectively. On the RHS we have the correlators
K′

1, K′
2 and K′

3.

σ1

σ2

ε

τ3

ε′4

F (4)
3
=

Figure B.2: The four-point function ⟨σ1σ2σ3ε′4⟩
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Appendix C

Wess-Zumino-Witten Models

The classical action of the WZW models is given by

S =
k

16π

∫
d2xTr[∂µg−1∂µg] + k Γ (C.1)

with

Γ = − i

24π

∫
d3yϵαβγTr[g̃

−1∂αg̃g̃−1∂β g̃g̃−1∂γ g̃−1] (C.2)

where g(x) is a matrix bosonic field associated with a Lie algebra g. It should be clarified

here, that g(x) lives in a two-dimensional manifold with a Lie group G, whereas g̃(x) is an

extension into a three-dimensional manifold. As explained in [94, 172], the quantum theory

of Eq. (5.7) requires k to be an integer.

A straightforward way to evaluate correlators in the SU(2)k WZW model is through the

Wakimoto free-field representation in which the WZW model is expressed in terms of a free

boson field φ and a ghost system consisting of boson β and γ fields. The central charge c of

the theory and background charge α0 are given in terms of the level k of the WZW model as

c = 3− 12α2
0 =

3k

k + 2
(C.3)
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The primary fields Φj
m(z) depend on two parameters taking the values j = 0, 1

2
, . . . , k

2
and

m = −j, . . . , j. In the free-field representation,

Φj
m(z) = γj−m(z)e−2ijα0φ(z) (C.4)

To compute correlators, we also need the conjugate fields Φ̃j
m(z) and screening charges Q+.

Following the Ref. [141], the conjugate of the highest-weight field is given by

Φ̃j
j(z) = β2j−q−1(z)e2i(j−q−1)α0φ(z) (C.5)

The other fields can also be expressed in terms of boson fields, but we will not need explicit

expressions. In general, there are two possible screening charges. For our purposes, we only

need to introduce the positive screening charge

Q+ =

∫
dwβ(w)e2iα0φ(w) (C.6)

Here, we will concentrate on amplitudes involving primary fields with j = 1
2
. To simplify

the notation, we will define these fields by Φ± ≡ Φ
1
2

± 1
2

.

The four-point correlators of fields Yµ,m1m2m3m4 with j = 1
2
and mi = ± (i = 1, 2, 3, 4),

have two conformal blocks labeled by the parameter µ = 1, 2 We obtain the non-vanishing

amplitudes

Y1,+−−+ = ⟨Φ+(η1)Q+Φ−(η2)Φ−(η3)Φ̃+(η4)⟩

= − [x(1− x)]
1

2(k+2)

∫ x

0

dw
[w(x− w)(1− w)]−

1
k+2

x− w

− [x(1− x)]
1

2(k+2)

∫ x

0

dw
[w(x− w)(1− w)]−

1
k+2

1− w

= −
Γ
(
− 1
k+2

)
Γ
(
k+1
k+2

)
Γ
(

k
k+2

) (1− x)
1

2k+4x−
3

2k+4 2F1

(
− 1

k + 2
,

1

k + 2
;

k

k + 2
;x

)
(C.7)
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Y1,−−++ = ⟨Φ−(η1)Q+Φ−(η2)Φ+(η3)Φ̃+(η4)⟩

= [x(1− x)]
1

2(k+2)

∫ x

0

dw
[w(x− w)(1− w)]−

1
k+2

w

− [x(1− x)]
1

2(k+2)

∫ x

0

dw
[w(x− w)(1− w)]−

1
k+2

x− w

= −
Γ
(
− 1
k+2

)
Γ
(
k+1
k+2

)
qΓ
(

k
k+2

) (1− x)
1

2k+4x
2k+1
2k+4 2F1

(
k + 1

k + 2
,
k + 3

k + 2
;
2k + 2

k + 2
;x

)
(C.8)

Y1,−+−+ = ⟨Φ−(η1)Q+Φ+(η2)Φ−(η3)Φ̃+(η4)⟩

= [x(1− x)]
1

2(k+2)

∫ x

0

dw
[w(x− w)(1− w)]−

1
k+2

w

− [x(1− x)]
1

2(k+2)

∫ x

0

dw
[w(x− w)(1− w)]−

1
k+2

1− w

=
Γ
(
− 1
k+2

)
Γ
(
k+1
k+2

)
Γ
(

k
k+2

) (1− x)
1

2k+4x−
3

2k+4 2F1

(
1

k + 2
,
k + 1

k + 2
;

k

k + 2
;x

)
(C.9)

Y2,+−−+ = ⟨Φ+(η1)Φ−(η2)Φ−(η3)Q+Φ̃+(η4)⟩

= [x(1− x)]
1

2(k+2)

∫ ∞

1

dw
[w(w − x)(w − 1)]−

1
k+2

w − x

+ [x(1− x)]
1

2(k+2)

∫ ∞

1

dw
[w(w − x)(w − 1)]−

1
k+2

w − 1

=
Γ
(
− 1
k+2

)
Γ
(

3
k+2

)
2Γ
(

2
k+2

) (1− x)
1

2k+4x
1

2k+4 2F1

(
1

k + 2
,

3

k + 2
;
k + 4

k + 2
;x

)
(C.10)

Y2,−−++ = ⟨Φ−(η1)Φ−(η2)Φ+(η3)Q+Φ̃+(η4)⟩

= [x(1− x)]
1

2(k+2)

∫ ∞

1

dw
[w(w − x)(w − 1)]−

1
k+2

w

+ [x(1− x)]
1

2(k+2)

∫ ∞

1

dw
[w(w − x)(w − 1)]−

1
k+2

w − x

= −
Γ
(
− 1
k+2

)
Γ
(

3
k+2

)
Γ
(

2
k+2

) (1− x)
1

2k+4x
1

2k+4 2F1

(
1

k + 2
,

3

k + 2
;

2

k + 2
;x

)
(C.11)
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Y2,−+−+ = ⟨Φ−(η1)Φ+(η2)Φ−(η3)Q+Φ̃+(η4)⟩

= [x(1− x)]
1

2(k+2)

∫ ∞

1

dw
[w(w − x)(w − 1)]−

1
k+2

w

+ [x(1− x)]
1

2(k+2)

∫ ∞

1

dw
[w(w − x)(w − 1)]−

1
k+2

w − 1

=
Γ
(
− 1
k+2

)
Γ
(

3
k+2

)
2Γ
(

2
k+2

) (1− x)−
3

2(k+2)x
1

2k+4 2F1

(
1

k + 2
,
k + 1

k + 2
;
k + 4

k + 2
;x

)
(C.12)

Notice that only two of these functions are independent for each conformal block, because

of the constraints

Yµ,+−−+ + Yµ,−−++ + Yµ,−+−+ = 0 , µ = 1, 2 (C.13)

We obtain the expressions (Eq. (5.19)) from the corresponding X1,m1m2m3m4 for k = 1. The

second conformal block does not contribute in SU(2)1 [138].
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