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S Y N O P S I S

The central theme of this thesis are quantum field theories, a set of theories devised in 1920-1970 with
the goal of describing the interactions between elementary particles such as electrons, quarks and
photons. For weakly interacting particles, such as low energetic electrons, these field theories can be
approximately solved through perturbation theory and this solution provides us with predictions
for observable quantities such as the decay rates of these particles. Since about the 1970s, these
predictions have been tested, and verified, with astounding accuracy in particle accelerators such
as the ones at CERN. When these particles are strongly interacting, as is the case for low energetic
quarks, this approximate solution no longer works and we must usually rely on computer simulations.
Such simulations can evidently only consider information at a finite number of positions, which
forces us to approximate them by quantum theories on a lattice. These lattice field theories can then
be linked to the original field theory by taking the limit where the lattice points are infinitely close.

This discretization trick eliminates a lot of degrees of freedom, but nevertheless, dealing with the
remaining degrees of freedom has a complexity that still scales exponentially with the system
size. This is still unmanageable if we consider realistically sized systems. In fact, this exponential
complexity is one of the main properties of any quantum theory of interacting particles and there
exist many ways to deal with this. In this thesis we will use a relatively new method, which uses the
fact that these degrees of freedom can be represented by so called tensor networks.

One of the quantum field theories that we will simulate with this approach is the (chiral) Gross-Neveu
model, which was devised in 1974 to study the phenomenon of spontaneous mass generation in the
proton and neutron in a simpler one-dimensional context. Here we will encounter an important
shortcoming of lattice models, i.e. the fact that they cannot respect all symmetries of the continuous
field theories. Indeed, it is obvious that a lattice theory can not have all translation and rotation
symmetries that are possible in the continuum world, so that we can only hope that these symmetries
reappear if we take the grid points sufficiently close. For some symmetries, such as translation
symmetry, this is not very surprising, but the continuous formulation of the chiral Gross-Neveu
model has a chiral symmetry which enforces a gapless excitation in the spectrum, and this symmetry
is also broken by the discretization procedure. The simulated field theory will therefore not have
this guarantee, and it is far from trivial that these massless particles would still appear if we take
the grid sufficiently fine. Nevertheless, throughout our research we constructed a suitable lattice
regularisation of the chiral Gross-Neveu model and, on top of this, we also identified a mechanism
that motivates the emergence of the massless particle.

Broadly speaking this thesis consists of two parts. A first part where I explain the relevant literature
in three chapters. In the second part, I will present my publications, each with a small introductory
paragraph to connect the presented research to the relevant parts of the introduction.

In the first chapter of the first part I will present the postulates of quantum mechanics and motivate
them through a simple experiment that will show that this, admittedly strange, set of rules is
necessary to understand the interaction of electrons with a magnetic field. In the next step, I will
define quantum lattice models by considering long chains of electrons i.e. spin chains, and here we
will see why these systems have so many degrees of freedom.

In the last part of the first chapter, I introduce tensor networks and analyse their most important
properties. Firstly, I will introduce “matrix product tensor network states” as an ansatz for ground-
states of quantum systems. I will also look to correlations within these states and introduce the
concept of quantum entanglement. Furthermore, I will present an algorithm to find the MPS with
minimal energy gives some Hamiltonian. Secondly, I will introduce “quasi-particle tensor network
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states” as an ansatz for excitations on top of the groundstate. Lastly, I will analyse which tensor
networks are symmetric with respect to certain symmetry, an analysis that will later help us identify
some interesting properties of spin chains.

In the second chapter, I will take a look at two spin chains that are particularly important in the
lattice description of field theories, these are the Ising model and the Su-Schrieffer-Heeger model.
During the analysis of the Ising model, I will learn about spontaneous symmetry breaking and the
associated concept of phases and transitions between them. Note that everybody who ever made ice
cubes is already familiar with the classical analogue of these concepts. Here the phases are the liquid
and solid forms of water, and the associated symmetry is the translation symmetry of the liquid that
is broken when the water crystallizes. These models are also the starting point of the physics that I
investigated during my own research. I will then use the SSH model to introduce the concept of
(symmetry-protected) topological order. For our purposes this is a symmetry that guarantees the
presence of a massless excitation at the edge of our chain. To prove the existence of these excitations,
I will use the MPS methods presented in the first chapter.

In the first part of the third chapter, I review the one-dimensional version of quantum field theory.
Here, I will present the chiral Gross-Neveu model, which is a model for self-interacting fermions,
and approximately solve the model so that I can compare these results to later simulations. During
this analysis, I will also discuss the chiral symmetry and its impact on the spectrum. I will also
discuss bosons, such as the famous Higgs boson, that are self interacting. The reoccurring theme in
all these field theory calculation will be a divergent energy density, and to deal with it I will take a
look at renormalisation. This will lead to the conclusion that field theories are only well defined as
limits of underlying models with less degrees of freedom. The conclusion is that lattice models are
more then a numerical tool, they offer a beautiful interpretation of the renormalisation theory that is
a key ingredient of quantum field theory.

In the second part of the third chapter, I take a closer look at this lattice construction and explicitly
show that the SSH model can be used to describe and simulate non-interacting fermions. I will also
reconsider the chiral symmetry and discuss why it cannot survive on the lattice.

In the second half of the thesis, I take a closer look at my research. The reoccurring theme here
is the before mentioned limit of lattice models. In the first paper, I studied a generalization of the
Ising model that turns out to be a lattice regulator for some rather complex field theory that we will
also study in the first half. The second and third papers discuss a novel lattice regularization of the
(chiral) Gross-Neveu model. Throughout the process of finding this regularization we learn a lot
about the field theory itself.
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N E D E R L A N D S TA L I G E
S A M E N VAT T I N G

Het centrale thema van deze thesis is kwantumveldentheorie, een theorie die ontstaan is omstreeks
1920-1970, met als doel de interaties tussen elementaire deeltjes zoals elektronen, quarks en fotonen
te beschrijven. Wanneer deze deeltjes zwak interageren, zoals het geval is voor laag-energetische
elektronen, kan de veldentheorie benaderend opgelost worden en kunnen we voorspellingen maken
aan de hand van storingsrekening. Deze voorspellingen worden sinds ongeveer 1970 met enorme
nauwkeurigheid experimenteel bevestigd door deeltjesversnellers zoals deze in CERN. Wanneer deze
deeltjes echter sterk interageren, zoals bijvoorbeeld het geval is voor laag-energetische quarks, kunnen
we de theorie niet meer benaderend oplossen en moeten we vertrouwen op computersimulaties.
Dergelijke computersimulaties kunnen echter slechts rekening houden met informatie op een eindig
aantal locaties, wat aanleiding geeft tot kwantum theorieen die op een rooster leven. Om deze
kwantummechanische roostersystemen dan te linken aan de oorspronkelijke kwantumveldentheorie,
nemen we de roosterpunten dichter en dichter tot we opnieuw een continue wereld hebben.

Door de kwantumveldentheorieën op een rooster te benaderen, is het aantal vrijheidsgraden en
dus de numerieke complexiteit wel afgenomen. Maar deze schaalt nog steeds exponentieel met
het aantal roosterpunten en wordt dus veel te groot als realistische systeemgroottes beschouwen.
Deze exponentiële schaling is één van de typerende kenmerken van elke kwantumtheorie van
interagerende deeltjes, en door de jaren heen zijn er enorm veel manieren bedacht om hier mee om
te gaan. In deze thesis gebruiken we een relatief nieuwe methode, waarbij gebruik gemaakt wordt
van het feit dat de enorme hoeveelheid vrijheidsgraden kan voorgesteld worden door zogenaamde
tensornetwerken.

Één van de kwantumveldentheorieen die we op deze manier zullen simuleren is het (chiraal) Gross-
Neveu model, dat in 1974 werd opgeschreven om in een ééndimensionale context het fenomeen te
bestuderen waar de protonen en neutronen hun massa aan te danken hebben. Hierbij komt er een
andere beperking van de roostermodellen naar boven, met name het feit dat ze niet alle symmetrieën
van de continue wereld kunnen respecteren. Zo kan een roostertheorie natuurlijk nooit symmetrisch
zijn onder alle mogelijke verschuivingen en rotaties van een continue wereld. We kunnen dus alleen
maar hopen dat dergelijke symmetrieën op een emergente manier naar boven komen wanneer we
de afstand van tussen roosterpunten voldoende klein wordt. Voor sommige symmetrieën, zoals
deze vershuivingssymmetrie is dit niet zo verbazingwekkend, maar de continue formulering van
het chiraal Gross-Neveu model heeft een symmetrie die ervoor zorgt dat het spectrum altijd een
massaloze excitatie bevat, en deze wordt ook noodzakelijk gebroken op het rooster. De simuleerbare
roostertheorie zal deze garantie dus niet hebben, en het is dan ook helemaal niet evident dat deze
massaloze deeltjes toch tevoorschijn zouden komen wanneer we het rooster voldoende fijn maken.
Desondanks zijn we er tijdens ons onderzoek in geslaagd om een roosterformuling van het chiraal
Gross-Neveu model te vinden waarbij deze emergente symmetrie en bijhorende massaloze excitatie
op een robuste manier tevoorschijn als we het rooster voldoende fijn maken.

In grote lijnen bestaat de thesis uit twee delen. Het eerste deel is een literatuurstudie, waarin we in
drie hoofstukken de relevante voorkennis uit de doeken doen. In het tweede deel presenteer ik mijn
publicaties met steeds een kort woordje uitleg om de connectie te maken met de literatuurstudie uit
eerste deel.

Concreet zal ik in het eerste hoofdstuk de postulaten van de kwantummechanica invoeren en kijken
naar een simpel experiment om in te zien dat deze (toch wel vreemde) verzameling aan regels nodig
zijn om de interactie van elektronen met magnetische velden te beschrijven. In de volgende stap
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definieer ik de nodige roostersystemen door lange kettingen van dergelijke elektronen te beschouwen.
We zien hier ook waarom deze systemen zoveel vrijheidsgraden hebben.

Ik rond het eeste hoofdstuk af door tensornetwerken en hun belangrijkste kenmerken te analyseren.
Eerst zal ik “matrix product tensor network states” invoeren als beschrijving voor laag-energetische
kwantumtoestanden. Ik zal ook kijken naar correlaties binnen dergelijke toestanden en het concept
van kwantumentanglement introduceren. Ik beschrijf ook een algoritme om de toestand met
minimale energie te vinden voor een bepaald model. Vervolgens voer ik “quasi-particle tensor
network states” als beschrijving van excitaties bovenop de laagst energetische toestand. Tenslotte
bestudeer ik welke tensornetwerken symmetrisch zijn onder bepaalde symmetrieën. Dit zal me later
helpen om bepaalde interessante kenmerken van de elektronenkettingen te identificeren.

In het tweede hoofdstuk bekijken we twee spinketens die zeer belangrijk zijn voor de roosterbeschrijv-
ing van veldentheorieën, deze zijn het Ising model en het Su-Schrieffer-Heeger (SSH) model. Tijdens
de analyse van het Ising model bespreek ik ook het concept van spontane symmetriebreking en
het gerelateerde concept van fasen en fasetransities. Merk op dat iedereen die al eens een ijsblokje
gemaakt heeft deze concepten eigenlijk al kent. In die context zijn de verschillende fasen de vloeibare
en vaste vorm van water, en de relevante symmetrie is deze van verschuivingen die niet meer
aanwezig is wanneer het water een ijskristal vormt. Via het SSH model introduceren we vervolgens
het concept van topologische orde. Voor onze doeleinden is dit een exotische symmetrie die de
aanwezigheid van een massaloze excitatie op de rand van onze ketting garanderen. Om het bestaan
van deze excitaties aan te tonen steun ik op de MPS die we eerder invoerden.

Tenslotte kijken ik in het eerste deel van het derde hoofstuk naar de ééndimensionale versie van
kwantumveldentheorie. Concreet beschouwen we een model voor fermionen, zoals bijvoorbeeld
elektronen, die sterk met zichzelf interageren. Dit is het (chiraal) Gross-Neveu model en we zullen dit
model benaderend oplossen, zodat we dit resultaat kunnen vergelijken met latere simulaties. Ik zal
hier ook in meer detail uitwijden over de chirale symmetrie. Ik bestudeer bovendien bosonen, zoals
bijvoorbeeld het gekende Higgs boson, die met zichzelf interageren. Tijdens deze analyses worden we
steeds opnieuw geconfronteerd met het feit dat continue wereld aanleiding geeft tot een divergente
energiedensiteit. We zullen dit probleem oplossen met behulp van renormalisatie en komen tot
de conclusie dat veldentheorieën eigenlijk enkel te begrijpen zijn als limieten van onderliggende
modellen met minder vrijheidsgraden, zoals bijvoorbeeld een roostermodel. De conclusie is dat
roostersystemen veel meer zijn dan een numerieke methode; ze bieden ons een prachtige interpretatie
van de renormalisatieprocedure die nodig is om veldentheorieën te bestuderen.

In het tweede deel van het derde hoofdstuk ga ik dieper in op deze roosterconstructie en toon
ik concreet aan dat het SSH model gebruikt kan worden om niet-interagerende fermionen te
beschrijven/simuleren. Ik ga hier ook in op de chirale symmetrie en waarom deze niet kan overleven
op het rooster.

In het tweede helft van de thesis presenteer ik mijn eigen onderzoek. Het overkoepelende thema
is hier dat ik de eerder genoemde roosterprocedure om veldentheorieën te definiëren. In de eerste
paper kijk ik naar een veralgemening van het Ising model dat perfect kan dienen als definitie van de
interagerende boson theorie. In de tweede en derde papers gebruik ik een veralgemening van het
SSH model om een roosterregularisatie van het Gross-Neveu model op te schrijven.
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Part I

C O L L E C T E D R E S U LT S F R O M T H E L I T E R AT U R E





1

T H E E S S E N T I A L S O F Q U A N T U M
M E C H A N I C S

If you are not completely confused by quantum mechanics,
you do not understand it.

John Wheeler

Before we delve into quantum mechanics, let us first think about the ingredients that are essential
for any theory of nature. Firstly, our description must contain a set of labels that characterizes the
configuration of our system of interest; physicist call this set of labels the state. Additionally, if we
want to connect the theory to reality, we must specify the outcome of measurements given the state.
Finally, if we want our theory to make predictions about the future we must specify a set of rules
that specify how the state changes as time moves forward. For example, to describe the state of your
favorite coffee mug you must specify its location, speed, color, etc. and clearly the outcome of a
measurement of any of these properties will simply tell you what that label is, furthermore the time
evolution in this example is given by Newton’s famous laws.

In essence, quantum mechanics is simply a different set of rules/postulates that seem to be very
good at describing the behaviour of certain phenomena in nature. In what follows we will however
see that these rules are very counter-intuitive hence Wheeler’s famous quote.

1.1 The postulates

In quantum mechanics the state |ψ⟩ of a system is described by a vector in some Hilbert space H,
the details of this Hilbert space depend on the degrees of freedom that are relevant for the physical
system under investigation.

The observables (i.e. quantities that we can measure) of a quantum theory are represented by
self-adjoint linear operators Ô acting on this Hilbert space. Such self-adjoint operators can always
be decomposed in terms of their eigenvectors Ô = ∑i λi |Oi⟩ ⟨Oi| so that Ô |Oi⟩ = λi |Oi⟩. A
measurement of this observable in the state |ψ⟩ has outcome λi with probability pi = ⟨ψ|Oi⟩ ⟨Oi|ψ⟩.
Contrary to classical physics, a measurement also influences the state of the system itself. Indeed,
after a measurement with outcome λi, the state of the system has changed to |Oi⟩. Schematically, we
can represent a measurement as

|ψ⟩ pi=⟨Oi |ψ⟩2

−−−−−−→

outcome of the measurement : λi

state after the measurement : |Oi⟩
. (1)

It is now easy to show that the average outcome of a measurement is ∑i piλi = ⟨ψ|O|ψ⟩.

One particularly important observable is the Hamiltonian Ĥ that can be used to measure the energy
of a state, but also generates its time evolution according to the Schrodinger equation

i
d
dt

|ψ(t)⟩ = Ĥ |ψ(t)⟩ ↔ |ψ(t)⟩ = e−iĤt |ψ(t = 0)⟩ . (2)

3



the essentials of quantum mechanics

Note that this means that the expected value of any measurement remains constant under time
evolution for states that satisfy H |ψ(t)⟩ = E |ψ(t)⟩, we can therefore call such states stationary
solutions of the schrodinger equation.

1.1.1 A spinning electron: the Stern Gerlach experiment

Before accepting these strange postulates, let us at try to come up with some experiment that
motivates their validity. The setup of the experiment is shown in figure 1 and consists of some hot
electrons that are sent through a magnetic field B⃗ = z⃗ez and then hit a screen at the right.

If we interpret these electrons as tiny spinning charged balls they will have some magnetic dipole
proportional to their angular momentum L⃗ so that they will feel a force Fz ∝ Lz∂z(Bz) that accelerates
them up or downwards by an amount proportional to Lz, their rotation speed around the z-axis. The
upshot is that we can measure the rotation speed of the electron along the z-axis by looking at its
final position when it hits the screen. For hot electrons, we expect random spins and consequently
random upward acceleration, so that they should be hitting the screen at all possible locations
highlighted in red in the figure. However, if this experiment is performed we find that the electrons
only end up in the two green spots which means that the measured electron spin can only take on
two discrete values.










































































































Figure 1: Hot electrons are shot through through a uniformly changing magnetic field before they hit a screen.
The classical and quantum predictions for their paths are respectively shown in red and green. In reality we
only observe the green result.

The solution to this discrepancy is to interpret the electron spin as a quantum degree of freedom. To
do this let us consider the Hilbert space that is spanned by two mutually orthogonal vectors

|↑⟩ =
[

1
0

]
and |↓⟩ =

[
0
1

]
(3)

so that we have the states

|ψ(α, β)⟩ = ∑
i∈{↑,↓}

ψi |i⟩ = α |↑⟩+ β |↓⟩ =
[

α
β

]
with |α|2 + |β|2 = 1 . (4)

Furthermore, we define operators

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
= |↑⟩ ⟨↓|+ |↓⟩ ⟨↑| = −i |↑⟩ ⟨↓|+ i |↓⟩ ⟨↑| = |↑⟩ ⟨↑| − |↓⟩ ⟨↓| (5)

and postulate that these can be used to measure the spin of our electron, up to some constant,
along the x,y and z axis respectively. The second postulate then learns us that the outcome of
measurements of the z-component of the electron spin must be ±1, up to that constant, as is
observed in the experiment.

4



1.2 tensor networks

Finally, to fully appreciate the weirdness of quantum mechanics, let us consider the a setup where
the electrons first move through a a magnetic field in the z-direction, then the upper beam moves
through a magnetic field in the x-direction and finally the left beam goes through a magnetic field in
the z-direction. By the time the electrons hit the third magnetic field we have already measured their
z-spin in the first magnet, so we would expect to observe a single spot. However, once again we see
two spots of equal brightness. To understand, or at least reproduce this result, let us carefully apply
the measurement postulate. After the first magnet we know that the state must be |↑⟩. However,
the second gate measured µx = +1 so that the post measurement state is the eigenvector of σx

with positive eigenvalue +1 : |⊙⟩ = 1√
2

[
1 1

]T
= 1√

2

(
|↑⟩+ |↓⟩

)
and the outcomes of the last

measurement of the z-component will be +1 / −1 with respective probabilities ⟨↑ |⊙⟩2 and ⟨↓ |⊙⟩2

that are both 1/2 thus explaining the outcome of the experiment.

1.1.2 Many spinning electrons: spin chains

Now that we know how to apply these postulates to a single electron, let us take a look at the more
interesting case where there are many electrons placed in long one dimensional chains. States in this
system live in the tensor product space of all the individual local Hilbert spaces and for a chain of
length L they can be written as

|ψ⟩ = ∑
i1,i2,···iL∈{↑,↓}

ψi1,i2,···iL |i1⟩ ⊗ |i2⟩ ⊗ · · · |iL⟩

∑
i1,i2,···iL∈{↑,↓}

|ψi1,i2,···iL |2 = 1 (6)

where the ψi1,i2,···iL tensor has one index per electron in the chain. The reason that we are interested
in such spin chains is because large systems are often much more interesting than their individual
building blocks due to the phenomenon of emergence. For example, even though the behaviour of a
single isolated human is quite boring, when many humans are together we get emergent phenomena
such as cities, traffic, politics etc. which cannot be understood in terms of the individual humans.

1.2 Tensor networks

To situate this section let us first note that the total number of degrees of freedom in these spin
chain wavefunctions is dim(ψ) = 2L − 1 and that this becomes extremely large as L grows. In fact,
storing the wavefunction of a 37 site spin chain already requires 1 terabyte of storage and even more
alarmingly simply increasing the length to 38 sites already doubles the required storage to 2 terabyte
! Furthermore, finding the wavefunction which has the lowest possible expectation value for the
energy (i.e. find |ψ⟩ so that ⟨ψ|Ĥ|ψ⟩ is minimal) w.r.t. some Hamiltonian amounts to optimizing a
function with 2L−1 parameters which, for L > 40 is sure to crash almost any computer! One possible
solution, that is the topic of this section, is to constrain the optimization problem to a smaller class of
wavefunctions that contain less parameters and are therefore more manageable.

1.2.1 Matrix product states

To find and motivate our ansatz, let us first remember that a general tensor Tij can always be
rewritten as its QR decomposition

Tij = ∑
α∈1:min(dim(i),dim(j))

QiαRαj (7)

where Q is left orthogonal, i.e. ∑ Q∗
kjQki = δij. Furthermore, for later convenience, we rewrite the

wavefunction ψi1,i2,···iL as

ψi1,i2···iN = [Bl ]α1 ψα1,i1,i2···iN ,αN+1 [Br]αN+1 (8)
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the essentials of quantum mechanics

where Bl = Br = [1] and ψ1,i1,i2···iN ,1 = ψα1,i1,i2···iN ,αN .

If we now perform a QR decomposition of ψα1,i1,i2···iN ,αN with i = {α1, i1} and j = {i2, · · · iN , αN+1}
we get

ψα1,i1,i2···iN ,αN = Alα1,i1,α2 ψα2,i2,i3,···iN ,αN+1 (9)

and this procedure can be iteratively repeated, always taking i = {the first two indices} and
j = {all other indices}, until we obtain

ψα1,i1,i2···iN ,αN = Alα1,i1,α2 Alα2,i2,α3 ψα3,i3,i4,··· ,iN ,αN+1

= · · ·
= Alα1,i1,α2 Alα2,i2,α3 · · ·ψαN ,iN ,αN+1 (10)

which is now in terms of smaller 3-leg tensors that each have one “physical” leg and two “bond” legs
that communicate with neighbouring tensors. Nevertheless, this trick did not reduce the complexity
of the state because the dimension of the internal leg grows as 2(distance to the edge of the chain) so that
these tensors are still impractically large if the length of the chain is long enough to be interesting.
Therefore, to get a useful ansatz we enforce that the bond dimensions of the 3-leg tensors remains
below some threshold which leads to the ansatz

ψMPS;i1,···iN ({An=̂Aαn ,in ,αn+1}) = [Bl ]α1 Aα1,i1,α2 Aα2,i2,α3 · · · AαN ,iN ,αN+1 [Br]N+1 (11)

that depends on the set of N distinct An tensors with dimension strictly below D × 2 × D, the total
number of parameters is now L × D × 2 × D which scales only linearly with the length of the chain.
One big advantage of this ansatz is that we can use it to describe infinitely long spin chains with a
finite number of parameters by imposing some repeating pattern onto the {An}, for example in the
case of a one-site unit cell we get

ψMPS(A) = · · · Aαn−1,in−1,αn Aαn ,in ,αn+1 Aαn+1,in+1,αn+2 · · · (12)

which now only depends on a single tensor A with dimension D × 2 × D. Note that this no longer
contains the boundary tensors Bl and Br because they are moved to infinity.

Finally, before we move on to analyse these matrix product states, let us first introduce some graphical
notation that will greatly simplify everything that follows. In this notation, We represent N-index
tensors as a box with N-legs sticking out, for example a 2-leg tensor Aij is drawn as






































































































 

QR

(13)

and its contraction with another 2-leg tensor is




































































































 

QR

. (14)

With this notation our matrix product 12 state become :






































































































 

QR

. (15)
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1.2 tensor networks

Gauge fixing and expectation values

The first important property of the infinite matrix product states is that there is some freedom in the
choice of the local tensor A. Indeed, for any invertable tensor T the matrix product states

ψMPS(A) and ψMPS(TAT−1) (16)

generate identical wavefunctions ψi1,···iN . Such freedom is called a gauge freedom and we can use it
to enforce some additional useful properties onto the local A tensors. In particular, we could try to
find a gauge transformation L so that the new tensor
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(17)

is left orthogonal, a property that we can graphically depict as
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. (18)

From a numerical perspective we can always find this Al by first constructing some initial guess
Lguess (this could be any random tensor) and then performing a QR decomposition on the Lguess A
tensor i.e.






































































































 

QR . (19)

From this first step we get some guess for Al and a new, hopefully better, guess for the gauge
transformation L. This new guess can then be used to re-iterate the algorithm and if it converges we
have found our Al and L. Similarly, we can always find a gauge transformation R such that
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with
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through a similar algorithm based on the RQ decomposition.

Finally, note that if such gauge fixings are found, we can additionally define LAR = Ac and C = LR
and gauge fix the matrix product state in the so called mixed representation
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(23)
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where the position of the Ac or C is arbitrary because the mixed gauge tensors satisfy

AlC = Ac = CAr . (24)

A final gauge fixing is that C can always be made diagonal by absorbing the required unitaries
(coming from the singular value decomposition of C) into the Al and Ar.

Local observables and two point functions

The upshot of all this gauge fixing is that expectation values of local one site observables, computed
in the center gauge, are

⟨ψ|O|ψ⟩ =










































































































(25)

where we used the left and right orthogonality conditions of the gauge fixed tensors to ”collapse”
the part of the network that does not contain any operators. Note that this implies that the Ac tensor
alone must contain all the local information about the state.

Furthermore, it is also often interesting to look at the two point function of some operator O :

C(O)n,m = ⟨ (On − ⟨On⟩)(Om − ⟨Om⟩) ⟩
= ⟨OnOm⟩ − ⟨On⟩ ⟨Om⟩ (26)

where the subscripts n and m signify sites of the lattice. The physical motivation behind this object
is that it tells us how much a measurement of O at site m will influence a later measurement of
that operator at site n. In particular if Cn=m = ⟨(O − ⟨O⟩)2⟩ = 0 we have that the outcome of a
measurement of O is predetermined so that, for this particular observable, these states behave like
classical states would. In terms of our center gauged representation we get :










































































































 

− ⟨On⟩ ⟨On⟩ . (27)

To proceed we expand the transfer matrix Tα1,α2
β1,β2

= ∑i Arβ1,i,β2 Ar∗α1,i,α2
in terms of its left and right

eigenvectors

Tα1,α2
β1,β2

=












































































































, (28)

which upon insertion into expression 27 gives












































































































. (29)

Note that the term with α = 1 does not appear due to the fact that (λ1, L1, R1) = (1, 1, C2) so that it
neatly cancels with ⟨On⟩ ⟨Om⟩. For large separations the term with the largest λα dominates and we
get

C(O)n,m ∝ λm−n
2

∝ e−(m−n) log(1/λ2) (30)
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1.2 tensor networks

which shows us that correlations of measurements in quantum states represented by matrix product
states decay on length scales of the order

ξMPS = log(1/λ2) . (31)

We call this the correlation length, and note that we have found that its long distance behaviour does
not depend on the operator of choice, but only on the state itself.

Entanglement entropy

Another important concept in quantum many body physics is the entanglement entropy of a state.
To arrive at this concept and see why it can be helpful, let us consider an observer that can only
perform measurements on a part of the chain. In particular, we will be interested in observers that
can only look at the right half of a spin chain. For such observers all accessible information will be
of the form

⟨Oobs⟩ = ∑
i

c2
i ⟨ψRi ;MPS(Ar)|Oobs|ψRi ;MPS(Ar)⟩ (32)

where we have introduced the singular values ci of the C tensor and a set of states

|ψRi ;MPS(Ar)⟩ =i ArArArArAr (33)

that satisfy ⟨ψRi ;MPS(Ar)|ψRj ;MPS(Ar)⟩ = δij. The interpretation of this is that the expected outcome
of a measurement for a local observer is according to the classical probability distribution

probabilityi = c2
i with outcomei = ⟨ψRi ;MPS(Ar)|Oobs|ψRj ;MPS(Ar)⟩ (34)

to which we can associate an entropy

S = −∑
i

pi log(pi) = −∑
i

c2
i log(c2

i ) . (35)

In our context this entropy can be interpreted as a measure for the uncertainty in measurement
outcomes on the right half of the chain due to its coupling with the left half.

Energy Optimization

Up to now we have been studying properties of fixed matrix product states. However, to really
make this ansatz relevant we must find an algorithm that helps us find the MPS that minimizes the
expectation value of a Hamiltonian

H = ∑
n∈lattice

Hn (36)

that is the sum of local interactions Hn. To proceed, it is worth noting that such operators can always
be represented as a product of local 4-leg tensors










































































































. (37)

Such operators are called matrix product operators and they form an active research topic by
themselves. Here however, we will simply use them as a simple graphical trick to represent the
infinite sum of local contributions. As an example, the MPO tensor










































































































M

=

1 −gσz σx
0 0 σz
0 0 1


αβ

(38)
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represents the sum of local terms H = ∑n∈lattice −gσz,nσz,n+1 + σx,n which is a Hamiltonian that we
will study in the next chapter. To see that this is true let us multiply two such matrices1 −gσz σx

0 0 σz
0 0 1


n

1 −gσz σx
0 0 σz
0 0 1


n+1

=

1n1n+1 −g1nσz,n+1 1nσx,n+1 + σx,n1n+1 − gσz,nσz,n+1
0 0 σz,n+11n
0 0 1n1n+1


(39)

and observe that the topright element of this tensor (that now acts on two physics sites) is exactly
the two-site Ising Hamiltonian. Further multiplication with the MPO tensor then leads to the N-site
Ising Hamiltonian appearing in the topright corner. With this matrix product representation the
expectation value of the energy becomes

⟨ψMPS|H|ψMPS⟩ = · · ·










































































































 

· · · = · · ·










































































































 

· · · . (40)

To proceed, let us assume that there exist Hl and e so that










































































































(41)

where the first tensor on the right-hand side is the left fix point of the state, MPO transfer matrix.
Together with a similar expression for Hr in terms of the right fix point we then get

⟨ψMPS|H|ψMPS⟩ =










































































































 

+ (L − 1)e =










































































































 

+ Le . (42)

which, not surprisingly, diverges in the limit L ↔ ∞.

Nevertheless, we can still interpret the non divergent terms in this formula as a local energy density
and try to optimize those. To do this we momentarily relax the gauge fixing conditions from equation
24 and reinterpret the AC and c tensors as independent variables. With this assumption it is easy to
find the Ac;opt and copt that optimize the energy and from those we get two matrix product states

...AlAlAlAc;opt ArArAr... and ...AlAlAlCopt ArArAr... (43)

that are no longer invariant under translations but nevertheless have lower energy then the initial
state ψMPS([Al , Ar, Ac]gauge fixed). To proceed we try to find Al;opt that can be used to construct a
new translation invariant state

Al;opt All;opt All;opt All;opt All;opt (44)

which could then be brought into the center gauged representation so that the first step could be
repeated until convergence. Naively, we could simply take new Al;opt = Ac;optC−1

opt but this choice is
not guaranteed to be left orthogonal. Instead we try to find left orthogonal Al;opt so that :

ϵL=̂||Ac;opt − Al;optCopt||2 (45)

is minimal. Luckily the solution to this kind of matrix optimization problem is well known to be
Al;opt = UlV l,† where Ul , V l,† are the isometries in the singular value decomposition of Ac;optC†

opt.
As said, we can now reiterate this algorithm until converged in which case we have found a state for
which the energy cannot be lowered by making local changes. One important subtlety is that this
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algorithm is not guaranteed to converge towards the lowest energy eigenstate, in fact, it is not even
guaranteed to converge at all. However, in practice the algorithm seems sufficiently robust to tackle
the problems presented in this thesis.

Finally, to find this e and Hl let us first define the projector




















































































(46)

and instead find the solution to






















































































, (47)

which no longer depends on e and is therefore a is simple linear problem that can be solved
numerically with the generalized minimal residual method or similar. The solution of the original
problem is then Hl = H̃l with




















































































 . (48)

1.2.2 Quasi particle states

Let us now try to use the tensor network idea to create a suitable ansatz for excited states of a
Hamiltonian. At first glance, we might want to re-use the matrix product states, but the optimization
algorithm for these states is only suited to find the groundstate. We could circumvent this by adding
a Lagrange multiplier, imposing orthogonality to the groundstate, to the cost-function but this
becomes unpractical for higher excited states1. Instead we will use the intuition that excitations
typically only differ from the groundstate on a small number of sites so that they may be well
described by states of the form

· · ·












































































































· · · (49)

where the left and right isometries represent the groundstate. Furthermore, expressing this Ansatz
in momentum space gives












































































































. (50)

which, similarly to the matrix product states, have some gauge freedom that is given by









































































































. (51)

1 In fact this would even be ill defined in the thermodynamic limit.

11



the essentials of quantum mechanics

We can use this freedom to find impose orthogonality of B and Al i.e.

0 =










































































































(52)

where NAl , x are respectively the nullspace of Al and the remaining gauge invariant information that
uniquely parameterizes the excitation. The final, gauge fixed ansatz for the excitations is therefore

|xp⟩ = ∑
n

eipn













































































































with B at site n

(53)

and this state is by construction orthogonal to the groundstate. Furthermore, it is easy to check that,
due to this gauge fixing

⟨xp|yk⟩ = 2πδ(p − k) tr(x ∗ y) . (54)

Energy optimization

Now that we have a smart ansatz for excited states, let us consider its energy

⟨Bp|H|Bp⟩ =










































































































. (55)

To simplify, note that this contains three types of terms where the upper B is respectively left, right
or on the same site as the lower B, grouping these terms gives us

⟨Bp|H|Bp⟩ = (∑
n

eipn)︸ ︷︷ ︸
Lchain














































































































 (56)

which is in terms of the Hl , Hr tensors from equation 41 and two new tensors Hll and Hbr that are
defined as :












































































































+ · · · (57)

and similarly for Hbl. To extract the actual Hbr tensor from this we first rewrite this equation as































































































(58)

and note that is a simple linear problem of the form Hbr = a + b Hbr with solutions that are easily
obtained through numerical methods such as using the generalized minimal residual method (i.e.
GMRES).

Finally, optimizing 1
Lchain

⟨Bp |H|Bp⟩
⟨Bp |Bp⟩ leads to the eigenvalue problem

































































































(59)
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where in fact B should be interpreted as NAl x with x the degrees of freedom that are to optimized.

Note that this algorithm must not be iterated so that it is in principle relatively cheap to find these
excited states given the groundstate. Furthermore, higher excited states are easily found by probing
different momenta which immediately results in orthogonal states.

1.2.3 Symmetries in quantum mechanics and tensor networks

In the remainder of this thesis we will often encounter scenarios where we want to consider
wavefunctions that are symmetric under the action of elements g from a symmetry group G 2 i.e.
∀g ∈ G : g · |ψ⟩ = |ψ⟩. In particular, we will be interested in so called local symmetry groups of the
form

ĝ =
⊗

n∈lattice

ĝlocal

=
⊗

n∈lattice

 ∑
i,j∈{↑,↓}

U(g)i,j |in⟩ ⟨jn|
 (60)

where the set {U(g)i,j} satisfies the group properties under matrix multiplication. Furthermore,
because of Maschke’s theorem, we can always write glocal as a direct sum of irreducible group
elements Dl,phys with possible degeneracy dl

glocal =
⊕

l∈irreps

Dl,phys(g)dl (61)

i.e. there exists a basis {|l, m, α⟩ : l ∈ irreps, m = 1, · · · , dim(lth irrep), α = 1, · · · , dl} where the
representations of the group elements are all block diagonal. 3

If we express the symmetry condition, ⊗n∈lattce ĝlocal · |ψ⟩ = |ψ⟩ in terms of matrix product states we
get
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(62)

where, for the second equation, we used the fact that the states ψMPS(A) and ψMPS(AU(g)) are equal
if and only if their local tensors are related by a gauge transformation T(g). Furthermore, because
U(g)U(h) = U(gh), we must also have that TgTh = Tgh such that these gauge transformations must
also be a representation of the group4 so that they are also block diagonal in basis that we will label
{|lα, mα, α⟩ : l ∈ virtual irreps, m = 1, · · · , dim(lalpha), α = 1, · · · , dlα}.

With this labeling for the physical and virtual levels we get

A = ∑
lα ,mα ,α̃
li ,mi ,ĩ

lβ ,mβ ,m̃

|lα, mα, α̃⟩ |li, mi, ĩ⟩ ⟨lβ, mβ, β̃| A lα ,mα ,α̃
li ,mi ,ĩ

lβ ,mβ ,m̃

(63)

and because of the Winger-Eckard theorem

A lα ,mα ,α̃
li ,mi ,ĩ

lβ ,mβ ,m̃

= ⟨lβ, mβ, β̃| A |lα, mα, α̃⟩ |li, mi, ĩ⟩ (64)

2 A group G is a set of elements {g} and a rule · for combining them so that (1) ∀g, h ∈ G : g · h ∈ G (2) ∃ 1 ∈ G s.t.∀g ∈ G :
1 · g = g · 1 = g (3) ∀g ∈ G ∃ h ∈ G s.t. g · h = 1. For example, the set {12×2, σx} form a group under matrix multiplication.
Another, more complicated, example is the set {eiϕσx : ∀ϕ} which again forms a group under matrix multiplication.

3 For the examples in the previous footnote this is the basis where σx is diagonal i.e. {|+⟩ , |−⟩} and to make the connection
with the main text we simply relabel these as {|l = +⟩ , |l = −⟩}. Note that we do not need the m and α here.

4 In fact it is sufficient that TgTh = eiω(g,h)Tgh for some collections of phases ω(g, h) so that Tg may be a projective representation
of the group.
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this can be written as

A lα ,mα ,α̃
li ,mi ,ĩ

lβ ,mβ ,m̃

= Areduced
lα ,α̃
li ,ĩ

lβ ,β̃

⟨lβ, mβ|lα, mα; li, mi⟩ . (65)

Here ⟨lβ, mβ|lα, mα; li, mi⟩ is a Clebsch-Gordan coefficient that encodes the structure of the group,
the Areduced tensors, which no longer depends on the internal indices, contains all remaining free
variational parameters.

Up to now this section was very theoretical because we kept the group G undefined, in the following
sections we will study some examples to gain some intuition for the implications of our analysis.

Example : Z2 symmetry

Let us start with the simplest symmetry group which contains only the identity and the spin flip (i.e.
Glocal = {1, σx}) which gives us two symmetry constraints

|ψ⟩ = |ψ⟩ and ⊗n∈lattice σx,n |ψ⟩ = |ψ⟩ . (66)

Note that the second condition clearly eliminates some degrees of freedom from the state because, for
example, the coefficients ψ↑,↑,··· ,↑ and ψ↓,↓,··· ,↓ in Eq. 6 must be the same. To see how this observation
follows from our more general framework, let us first note that the representation of our group in
the {|+⟩ = |l = 0⟩ , |−⟩ = |l = −1⟩} basis is

Ug=1 =

[
1 0
0 1

]
and Ug=σx =

[
1 0
0 −1

]
. (67)

Similarly, on the virtual level our Tg must be built from the irreducible representations [1] =
Dl=0(g = 1) = Dl=0(g = σx) = Dl=−1(g = 1) = −Dl=−1(g = σx) which means that, in the right
basis |l, α⟩, the Tg tensors will be of the form

Tg=1 =

[
1d0×d0

1d−1×d−1

]
and Tg=σx =

[
1d0×d0

−1d−1×d−1

]
(68)

with d0 and d−1 the multiplicity of the trivial (i.e. charge zero) and nontrivally (i.e. charge -1)
transforming basis vectors.

With these representations, it is now clear that, Eq. 62 can only be satisfied if the A tensor is of the
form

Aα,0,β =

[
Areduced

dtriv×dtriv
0

0 Areduced
dnontriv×dnontriv

]
and Aα,−1,β =

[
0 Areduced

dtriv×dnontriv
Areduced

dnontriv×driv
0

]
(69)

which is consistent with Eq. 65 if ⟨lβ|lα; li⟩ = δlβ+li ,lα . From a numerical point of view this is great
because we can now represent these tensors as sparse matrices which requires less storage space and
avoids needless multiplications of zero times something.

Example : U(1) symmetry

For this example we will work with the slightly more complicated U(1) group Glocal = {eiϕσx : ∀ϕ}.
In the {|+⟩ = |l = 1⟩ , |−⟩ = |−1⟩} basis, the local action of this group is represented by the matrices

U(ϕ) =

[
eiϕ 0
0 e−iϕ

]
(70)
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1.2 tensor networks

which is indeed in terms of the U(1) irreps {Dl(ϕ) = [eilϕ] ∀ l ∈ Z}. Similarly any gauge
transformation must be built from these irreps and in the |l, α⟩ basis they are of the form

T(ϕ) =



. . .
e−2iϕ1d−2×d−2

e−iϕ1d−1×d−1

1d0×d0

eiϕ1d1×d1
e2iϕ1d2×d2

. . .


(71)

with dl the multiplicity of the charge l sector. The conclusion is that A can only satisfy the symmetry
constraint if

Aα,1,β =



. . . Ared
0d−2×d−2 Ared

0d−1×d−1 Ared
0d0×d0 Ared

0d1×d1 Ared
0d2×d2 Ared

. . .


(72)

and

Aα,−1,β =



. . .
Ared 0d−2×d−2

Ared 0d−1×d−1

Ared 0d0×d0
Ared 0d1×d1

Ared 0d2×d2

Ared
. . .


(73)

which is of the proposed form if ⟨lβ|lαli⟩ = δlβ+li ,lα . Note that, these tensors only couple even virtual
charges to odd virtual charges and vice versa, we can represent this graphically as:
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The contraction of these tensors into a state will lead to the equal weight superposition of two matrix
product states with a larger unit cell

ψ(A) = O
d

d

E
v

en

E
v

en ⊕

O
d

d

E
v

en

O
d

d

(75)

so that that injective U(1) symmetric MPS cannot have a one site unit cell i.e. they must always break
the translation symmetry.
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2

S P I N C H A I N S

The whole is greater than the sum of the parts.

Aristotle

In this chapter we will apply the postulates and MPS ansatz to study two spin chains : the Ising
and Su-Schrieffer-Heeger model. We will see that these spin chains display complicated emergent
behaviour, that leads to e.g. magnetisation, due to the entanglement between the different sites.

The first model is relatively simple, but nevertheless serves as a great example to apply the ideas of
quantum mechanics to a concrete problem. Furthermore, in the first paper we studied a modification
of the Ising model that introduces a new kind of symmetry with far reaching implications for the
possible groundstates, hence the introduction of the model here.

The SSH is similarly simple but allows us to showcase some very nontrivial implications of certain
symmetries. This is also the model that we built upon for the second and third papers contained in
this work.

2.1 The transverse field Ising model

The Hamiltonian operator, for the quantum Ising model is given by

Ĥ =
1
a ∑

n∈lattice
−gσ̂z,nσ̂z,n+1 + σ̂x,n (76)

where σ̂x,n, σ̂y,n and σ̂z,n are the Pauli matrices that measure the magnetic field for the individual
spins and a is the distance between the points on the lattice. For positive g the interpretation of
the first term is that neighbouring spins want to align their spins along the z direction. Similarly
the second term makes it so that all spins want to align along the x direction1. The subtlety of the
model is that [σz,nσz,n+1, σx,n] ̸= 0 so that it is impossible to find states that simultaneously optimize
both constraints. In general such inability to optimize different terms in a Hamiltonian is called
frustration and we will see that it leads to interesting emergent behaviour when g ≈ ±1.

2.1.1 Discrete symmetry and the breaking thereof

To start, let us note that both operators in the Z2 group containing the identity and the spin flip
along the x-direction

X̂ = ∏
n∈lattice

σ̂x,n (77)

commute with the Hamiltonian i.e. the group GZ2 = {1̂, X̂} is a symmetry of the Ising Hamiltonian.
Consequently ⟨ψ|X|ψ⟩ = ⟨ψ|eiHtXe−iHt|ψ⟩ so that ∀ |ψ⟩ the expectation value of X is conserved
throughout the time evolution generated by the Schrodinger equation. Furthermore, because
⟨ψ|H|ψ⟩ = ⟨ψ|XHX|ψ⟩ we find that the states |ψ⟩ and X |ψ⟩ must have the same energy so that the

1 More accurately, the expectation value of the first term will be low for states that have their spins aligned along the z direction.
Similarly, the expectation value of th second term will be low for states with all spins pointing in the x-direction.
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spectrum must either contain states that are symmetric under the spin flip operator or pairs of states
that are mapped onto one another under the pin flip operator.

For example, when g = 0, the first term in the Hamiltonian vanishes and the Hamiltonian is no
longer frustrated so that we can simply write down the state that optimizes all remaining terms in
the Hamiltonian :

|ψ⊙⟩ = · · · |⊙⟩ |⊙⟩ |⊙⟩ |⊙⟩ · · · (78)

with |⊙⟩ = 1
2
(
|↑⟩+ |↓⟩

)
the eigenvector of σx with negative eigenvalue (i.e the spin is “pointing” in

the negative x-direction), the energy density of this state is E(g = 0)/L = e(g = 0) = −1. The low
lying excitations, i.e. eigenstates of the Hamiltonian with energy just above that of the groundstate
are obtained by flipping a single spin of the groundstate along the x-direction e.g.

|ψsingle flip⟩ = σ̂z,2 |ψ⊙⟩ = · · · |⊙⟩ |⊗⟩ |⊙⟩ |⊙⟩ · · · (79)

and such states carry some localized energy Esingle flip − EGS = 2 at the site where the spin was
flipped. Note that all these state are mapped onto themselves by the action of the spin flip operator
i.e. X̂ |ψ⟩ = λ |ψ⟩ ∀ |ψ⟩ ∈ (the spectrum of H) so that this spectrum is an example of a symmetric
phase.

Similarly for g ≫ 1 the first term in the Hamiltonian vanishes so that we can again simultaneously
optimize all terms in the Hamiltonian. However, in this case we find that there exist two states

|ψ↑⟩ = · · · |↑⟩ |↑⟩ |↑⟩ |↑⟩ · · · and |ψ↓⟩ = · · · |↓⟩ |↓⟩ |↓⟩ |↓⟩ · · ·
with lowest energy density e(g ≫ 1) = −g that are mapped onto each other by the action of the spin
flip operator. Similarly, the low lying excitations come in pairs

|ψsingle kink⟩ =
(
· · · σ̂x,1σ̂x,2

)
|ψ↑⟩ = · · · |↓⟩ |↓⟩ |↑⟩ |↑⟩ · · · (80)

or

|ψsingle anti-kink⟩ = · · · |↓⟩ |↓⟩ |↑⟩ |↑⟩ · · · (81)

with local energy cost Esingle kink or antikink − EGS = 2g. These states are also mapped onto one another
by the action of the symmetry group. This phenomenon where the symmetry of the Hamiltonian
is no longer present in its individual eigenstates is named spontaneous symmetry breaking and it
plays a crucial role in the description of many physical processes throughout many fields.

To differentiate between these two types of behaviour it is useful to consider the so called ferromag-
netic order parameter

Oferromagnet = ⟨ω(g)|σz,n|ω(g)⟩ (82)

where |ω(g)⟩ is the groundstate at that coupling. This order parameter is zero (nonzero) in the
symmetric ( symmetry broken) regime respectively. Physically, a nonzero expectation value for this
quantity implies that measurements of σz at different sites will tend to give a coordinated result,
which means that our spin chin will have a macroscopic magnetic field that is pointing in the
z-direction. In fact, Ising model was first introduced to explain the spontaneous magnetization of
naturally occurring materials such as magnetite (Fe2+Fe3+

2 O4).

2.1.2 Kink condensation and the restoration of symmetry

Let us now move away from these extremal points and look at large but finite couplings g. Here |ψ↑⟩
is no longer an eigenstate of the Hamiltonian but it is fair to assume that we can Taylor expand the
actual lowest energy eigenstate |ω⟩ and eigenvalue Eω in terms of the small parameter 1/g i.e.|ω⟩ =

up to
normalization |ψ↑⟩+ 1

g |ψ(1)⟩+ 1
g2 |ψ(2)⟩+ · · ·

Eω = −gL + E(1) + 1
g E(2) + · · ·

. (83)
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2.1 the transverse field ising model

With these assumptions, and after neglecting small terms containing 1/g, the eigenvalue problem
H |ω⟩ = Eω |ω⟩ becomes(

∑
n∈lattice

σz,nσz,n+1

)
|ψ(1)⟩︸ ︷︷ ︸

large term in Hamiltonian
acts on

sought after correction of wavefunction

+

(
∑

n∈lattice
σx,n

)
|ψ↑⟩︸ ︷︷ ︸

small term in Hamiltonian
acts on

original wavefunction

= −L |ψ(1)⟩+ E(1) |ψ(↑)⟩ . (84)

To proceed we project this equation onto the original groundstate ⟨ψ↑| and exited states

⟨k| ∈ {⟨ψsingle kink or antikink| , ⟨ψpairs of kinks and anti-kinks| , · · · }

which leads to

E(1) = ⟨ψ↑|
(

∑
n∈lattice

σx,n

)
|ψ↑⟩ (85)

(Ek − L) ⟨k|ψ(1)⟩ = ⟨k|
(

∑
n∈lattice

σx,n

)
|ψ↑⟩ . (86)

so that

|ψ(1)⟩ = ∑
k∈excited states of H0

|k⟩ ⟨k|ψ(1)⟩ = ∑
k

∑
n∈lattice

(
⟨k|σx,n|ψ↑⟩

∆Ek

)
|k⟩ (87)

where Ek is the original local energy of the |k⟩ excitation compared to that of the groundstate.

The upshot is that, for small nonzero 1/g, the groundstate becomes a quantum superposition
containing all states |k⟩ that can be reached by acting on the original groundstate |ψ↑⟩ with a single
σx operator; physically these are kink-antikink pairs with separation 1. As 1/g grows |ψ(2)⟩ will
also become relevant and one can easily check that this correction contains all states that can be
reached by acting on |ψ↑⟩ with two σx operators i.e. the kink-antikink states with separation 2 and
the states containing two kink-antikink pairs with separation 1. In general acting with subsequent
σx, to generate the higher order terms that become relevant as 1/g grows, can either increase the
distance of the already existing kink-antikinks or introduce a new separation one kink-antikink. The
emerging picture is that the groundstate is no longer a simple product state and that measurements
of σz,n may also result in projection of the state onto one of these bubbles. This leads to a decrease in
the order parameter.

Furthermore, because the correct groundstate is now a superposition of different product states, we
get that knowledge of some part of the chain results affects later measurements of the remaining
part. For example, if we measure a kink between sites n and n + 1 we know that the remaining part
of the chain must contain an antikink somewhere2. Consequently the entropy of these states will
increase as 1/g grows larger.

2.1.3 Analytical solution

Finally, for completeness let us try to find the spectrum of H at general couplings. To do this, we
first redefine our coordinate system so that

σx,n → σz,n and σz,n → −σx,n

and the Hamiltonian becomes

H = ∑
n∈lattice

−σx,nσx,n+1 − gσz,n . (88)

2 This is true because every |k⟩ in 87 contains an even number of kink-antikink pairs.
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Further re-expressing this in terms of the raising operator σ†
n = 1√

2

(
σx,n + iσy,n

)
and its Hermitian

conjugate σ−
n

1√
2

(
σx,n − iσy,n

)
gives

H = ∑
n∈lattice

(
σ†

n + σ−
n

) (
σ†

n+1 + σ−
n+1

)
− g

(
2σ†

nσ−
n − 1

)
(89)

which is quadratic in the operators so that the different length scales will decouple after a Fourier
transform. However, a naive Fourier transform σ†

k = ∑n∈lattice e−iknσ†
n of these raising and lowering

operators is not favourable because these σk would not satisfy the usual fermionic {c†
k , cl} = 2π δk,l

or bosonic [c†
k , cl ] = 2πδk,l commutation relations that, as we will see, are crucial for the construction

of eigenstates of H. The origin of this problem sits in the fact that the original spin degrees of
freedom satisfy the fermionic commutation relations {c†

m, cn} = 1 when m = n but behave as bosons
[c†

m, cn] = 0 when m ̸= n. To fix this problem, we add strings of σz tensors to the creation operators
i.e.

c†
n =

(
∏

m<n
σz,m

)
σ†

m (90)

so that the c†
n now satisfy the fermionic commutation relations {c†

n, cm} = δn,m for all n and m. In
terms of these operators the Hamiltonian becomes

H = ∑
n∈lattice

−
(

c†
n − c−n

) (
c†

n+1 + c−n+1

)
− 2gc†

nc−n (91)

and a Fourier transform in terms of c†
k = ∑n∈lattice e−iknc†

n leads to

H =
∫ π

−π

dk
2π

(
−2
(

g + cos(k)
)

c†
k ck + eikckc−k + e−ikc†

−kc†
k

)
(92)

=
∫ π

0

dk
2π

[
c†

k c−k

] [−2g(1 + cos(k)) 2i sin(k)
−2i sin(k) 2g(1 + cos(k))

]
︸ ︷︷ ︸

Hk(g)

[
ck

c†
−k

]
. (93)

Finally, we diagonalize Hk(g) = U†(g)

[
Ek(g) 0

0 −Ek(g)

]
U(g) with Ek = 2

√
1 + g2 − 2g cos(k) so

that

H =
∫ π

0

dk
2π

Ek(p†
k pk − p−k p†

−k) (94)

where we have defined new creation and annihilation operators

[
pk

p†
−k

]
= Uk(g)

[
ck

c†
−k

]
that still

satisfy {p†
k , pl} = 2π δk,l . The final form of the Hamiltonian is then

H =
∫ π

−π

dk
2π

Ek p†
k pk −

∫ π

0
dk Ek (95)

=
∫ π

−π

dk
2π

Ek p†
k pk − E0 . (96)

To find the spectrum we define the so called number operators nk = p†
k pk and note that [nk, nl ] = 0

so that we can simultaneously diagonalize all these operators. In particular, the groundstate will be
the “empty” state |ω(g)⟩ for which

⟨ω(g)|nk|ω(g)⟩ = 0 ∀ k , (97)

higher excited states can be built by “filling” some of the available energy levels by acting on |ω(g)⟩
with some particle creation operators p†

k and this introduces an additional energy Ek. The energy of
the available levels, labeled by their momentum, is shown in figure 2 below. Note that the energy
cost associated to the first few excited states becomes lower as g approaches one. In particular, at
g = 1 the elementary excitation becomes gapless which causes them to condense.
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2.2 the ssh model

Figure 2: The available energy levels for the transverse field Ising model. The vacuum is the state where all
these levels are empty and excited states are constructed by filling one (or more) of these levels which creates an
energy Ek(g) on top of the energy density of the vacuum.

2.2 The SSH model

For this model, we immediately work in terms of the fermionic cn operators that satisfy {c†
n, cm} = δn,m

because these turned out to be more suitable for Fourier transforms. The Hamiltonian is

H =
1
a ∑

n∈Z
−i
(

1 +
m
2

)
c†

2nc2n+1 − i
(

1 − m
2

)
c†

2n+1c2n+2 + h.c. (98)

and the interpretation of this Hamiltonian is that the fermions may hop to neighbouring sites due
to the time evolution. Furthermore, for m > 0 they would rather hop across even bonds then odd
bonds. Note that [c†

2nc2n+1 + h.c., c†
2n+1c2n+2 + h.c.] ̸= 0 so that the groundstates for m ̸= ±2 cannot

optimize all terms that appear in the Hamiltonian.

2.2.1 Continuous symmetry and the lack of breaking thereof

The Hamiltonian of the SSH model commutes with all operators in the U(1) group :

g(ϕ) = ∏
n∈lattice

eiϕc†
ncn + e−iϕ(1 − c†

ncn) = ∏
n∈lattice

e2iϕ(c†c−1/2) , (99)

the local action of this group is simply to give a phase eiϕ to the occupied part of the wavefunction
and a phase e−iϕ to the empty part of the wavefunction. Similarly to what we discussed for the
Ising model this symmetry implies that the states ĝ(ϕ) |ψ⟩ and |ψ⟩ must have the same energy
∀ ϕ and at first sight this seems to imply that there might be two regimes with broken/unbroken
U(1) symmetry respectively. However, it turns out that continuous symmetries of one dimensional
quantum systems are always respected in the spectrum. To intuitively understand this let us first
look at the m = 2 case where the fermions can only hop over even bonds (i.e. between sites 2n
and 2n + 1). Here the Hamiltonian describes an infinite set of uncoupled 2-spin systems and the
groundstate becomes

|ψeven dimer⟩ = · · · |D⟩2n−2,2n−1 |D⟩2n,2n+1 |D⟩2n+2,2n+3 · · · (100)

where |D⟩2n,2n+1 = 1√
2

(
|01⟩ − i |10⟩

)
satisfies

i
(

c†
2nc2n+1 − c†

2n+1c2n

)
|D2n,2n+1⟩ = − |D2n,2n+1⟩ (101)

i.e. D2n,2n+1 locally minimizes the energy of the hopping term. Note that g(ϕ)D2n,2n+1 = D2n,2n+1
so that the state 100 is symmetric with respect to the action of the U(1) symmetry. Furthermore, as
we move away from this m = 2 point the perturbative corrections to the groundstate will come from
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states |k⟩ that can be reached by acting on the original groundstate with the perturbation. These
corrections are therefore of the form

|corrections to dimer state at m = 2⟩ = i
(

c†
αcα+1 − h.c.

)
|ψeven dimer⟩ ∀α ∈ Z (102)

and these are all U(1) symmetric so that the corrected vacuum will remain U(1) symmetric, even
after these corrections.

Although enticing, the previous argument is not necessarily true because the perturbative expansion
for the groundstate may fail when the couplings are sufficiently far from m = 2. Nevertheless,
there exists a more general argument, that proves that states in the spectrum of Hamiltonians with
continuous symmetries will always be invariant under the action of the symmetry group.

2.2.2 Analytic solution

For general m we can easily find a solution to the Schrodinger equation if we separate the length
scales by going to momentum space. Before doing so it is important to note that the Hamiltonian
113 and state 100 break translation symmetry. With this in mind we propose independent Fourier
expansions for the even/odd sitesc†

2n =
∫ π
−π

dk
2π exp(ikn)ϕ†

k
c†

2n+1 =
∫ π
−π

dk
2π exp(ikn)ψ†

k
(103)

and after this transformation the Hamiltonian becomes

H =
1
a

∫ π

−π

dk
2π

[
ϕ†

k ψ†
k

]  0 e
ik
2

(
2 sin( k

2 ) + im cos ( k
2 )
)

e
−ik

2

(
2 sin( k

2 )− im cos ( k
2 )
)

0

 [ϕk
ψk

]
. (104)

Similar to what we did for the Ising model, it is now straightforward to find Uk(m) so that :

H =
1
a

∫ π

−π

dk
2π

[
ϕ†

k ψ†
k

]
U†

k

[
Ek 0
0 −Ek

]
Uk

[
ϕk
ψk

]
(105)

=
1
a

∫ π

−π

dk
2π

(
p†

k pkEk − h†
k hkEk

)
(106)

where Ek =
√

4 sin2 k/2 + m2 cos2(k/2). Note that there are now two available energy levels Ek

and −Ek per momentum that respectively correspond to the modes p†
k and h†

k . Consequently, the
lowest energy eigenstate |ω(m)⟩ will now be the state where all negative/positive energy levels are
respectively filled/empty i.e. ⟨ω(g)|h†

k hk|ω(g)⟩ = 2π

⟨ω(g)|p†
k pk|ω(g)⟩ = 0

∀ k . (107)

Excited states can be constructed by removing/adding particles with respectively negative/positive
energy. The available energy levels are shown in figure 3 below.

2.2.3 Winding numbers and the symmetries protecting them

From the analytical solution we see that, at m = 0, the mass of the elementary excitation vanishes so
that we could also interpret this point as a phase transition where some excitation condenses. At first
sight it seems as if this transition cannot be associated to an order parameter because states on both
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2.2 the ssh model

Figure 3: The available energy levels for the SSH model. The vacuum is the state where levels with posi-
tive/negative energy are respectively empty/full. Note that there are two types of excitation per momentum
created by emptying the lower branch with hk or filling the upper branch with p†

k .

sides of the transition are U(1) symmetric states with a two site unit cell, in fact the groundstate at
−m is simply the one at m translated over a single site.

Nevertheless, we are still able to define some notion of order parameter if we first realize that the
model has two Z2 symmetries, particle hole P and time reversal T , that act as

P† c2n P = c†
2n

P† c2n+1P = c†
2n+1

and


T † c2n T = c2n

T † c2n+1 T = −c2n+1

T † cnumberT = c∗number

. (108)

To proceed, let us note that their action on the momentum dependent creation and annihilation
operators must be

P† ϕk P = ϕ†
−k

P† ψk P = ψ†
−k

and


T † ϕk T = ϕ−k

T † ψk T = −ψ−k

T † cnumberT = c∗number

. (109)

so that invariance of a generic quadratic Hamiltonian

H =
1
a

∫ π

−π

dk
2π

[
ϕ†

k ψ†
k

]
d⃗(k)⃗σ︸ ︷︷ ︸

Hk

[
ϕk
ψk

]
(110)

under their combined actions requires

P†T † H T P = H → H(k) = −σz H(k)σz . (111)

The upshot is that any such Hamiltonian will be for the form H(k) = dx(k)σx + dy(k)σy with
d⃗(0) = d⃗(2π) so that the d⃗(k) traces closed loops through the {dx, dy} plane with which we can
associate a winding number ν, that is +1 when the loop encircles the dx = dy = 0 point and 0 if it
does not. This winding number can then be interpreted as an order parameter because we can not
tune a Hamiltonian with ν = 1 to another with ν = 0 without closing the gap or breaking the T P
symmetry.

For our Hamiltonian in particular we find that

Hk =

(
1 − m

2

)
sin k · σx +

((
1 − m

2

)
cos k − 1 − m

2

)
· σy

and the corresponding loops are depicted in figure 4 above. Here the winding number is ν = 1 form
m > 0 and 0 when m < 0.
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Figure 4: The loops traced by d⃗(k) as k goes from −π to π. Note that we can associate a winding number that is
respectively +1, 0 for the green, blue loops and that a transition from one phase to the other must either cross
the dx = dy = 0 point or include dz(k) ̸= 0.

2.2.4 Interfaces between topologically distinct chains

One particularly interesting property of this winding number can be observed if we note that any
matrix product state, that is symmetric under the combined actions of the g(ϕ) and T P symmetries,
must necessarily break translation symmetry and be associated with a set of virtual unitaries T(ϕ)
and TTP that can counteract the action of the symmetry on the virtual level. Furthermore, these
virtual unitaries must satisfy T†

TPU(ϕ)TTP = U(−ϕ) which forces the degeneracies of positive and
negative U(1) charges to be equal i.e. dlU(1) = −lU(1). The conclusion is that any gapped state with
these symmetries must be represented as

O
d

d

E
v

en

E
v

en

or O
d

d

E
v

en

O
d

d
(112)

where the smallest allowed representations on the odd leg are of the form qU(1)
⊕−qU(1). Further-

more, we know that translations map H(m) → H(m) and |ψeven/odd/even⟩ → |ψodd/even/odd⟩ so these
different types of matrix product states must correspond to groundstates of Hamiltonians with
different winding numbers.

Consequently, the groundstate for a Hamiltonian

H =
1
a ∑

n∈lattice
−i
(

1 +
mn

2

)
c†

2nc2n+1 − i
(

1 − mn

2

)
c†

2n+1c2n+2 + h.c. (113)

with site dependent mass mn chosen so that it extrapolates from the ν = +1 to the ν = 0 phase, must
be of the form

O
d

d

E
v

en

Odd

O
d

d

E
v

en

O
dd

O
dd

, (114)

where the central tensor that represents the interpolation region must carry an extra “odd” leg if
we want to avoid it being identically zero due to the symmetry constraints. The upshot is that the
groundstate of this model is at least twofold degenerate because the smallest odd representation of
U(1) is two dimensional. Furthermore, the difference between these two degenerate groundstates
must be localized at the interface because we know that, far away from the interface nothing special
is going on. Therefore we arise at the conclusion that the spectrum of any Hamiltonian that describes
an interface between topologically distinct phases must necessarily contain a localized massless
excitation.
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Q U A N T U M F I E L D T H E O R I E S

It doesn’t matter how beautiful your theory is, it doesn’t
matter how smart you are. If it doesn’t agree with
experiment, it’s wrong.

Richard Feynman

Up to now we have been studying models where the degrees of freedom lived on a discrete grid
(i.e. lattice) which is a natural construction when describing the behavior of electrons (and other
particles) in crystalline materials. We will now try to define a different type of theory, where the
degrees of freedom are defined everywhere in space (i.e a continuous space), and which are more
natural to describe situations where particles move around in an empty background such as space.

To start this endeavour, we will try to construct the Hilbert space for such continuous theories. As
a reminder, for lattice models we characterized states |ψ⟩ in the Hilbert space by a set of numbers
ψi1,i2,···iN with iα ∈ {↑, ↓} that tell us how much the basis vector |i1⟩ |i2⟩ · · · |iN⟩ contributes to the
superposition in |ψ⟩. Similarly, a state for a continuous theory would have to be characterized by a
set of numbers ψsome indices which has one index for every position in the uncountable many points
in our continuous space. The implication of this is that every set of basis vectors for a possible
Hilbert space would fail to contain some vectors, i.e. we cannot really define this Hilbert space. In
fact, we already encountered this problem when we were studying infinitely long spin chains in
the previous section and the solution was to simply interpret the infinitely long chains as a limit
of chains with ever increasing lengths. Here, however, this limit is not well defined because any
infinitesimally small part of our continuous world must already contain infinitely many degrees of
freedom and is therefore already ill defined.

In the first half of this chapter we will mostly ignore this problem and act as if such a Hilbert space
exists. The idea is that we define a set of operators that represent creation and annihilation operator
and then interpret the Hilbert space as the collection of vectors that can be reached by acting with
these operators onto a reference state |0⟩. For example, we could have created all possible basis
vectors for our spin chain Hilbert space from the reference state |0⟩ = |· · · ↓↓↓ · · ·⟩ and the action of
all spin flip operators {σx,n, σy,n∀n}. The downside of this construction is that we are still dealing
with states in an uncountably large Hilbert space and that it is therefore impossible to perform
numerical simulations even when the system is small. In the second half of this chapter we will
therefore explore an alternative formulation where the continuous world is interpreted as the limit
a → 0 of a sequence of lattice worlds. In fact, we will see that this interpretation of a field theory as
a limit of underlying theories is also forced onto us if we use the construction.

From a philosophical perspective, these theories are very strange as they are only defined as the
limit of a series of underlying models. Nevertheless, these theories have been proven to be incredibly
accurate descriptions of the sub-atomic world so that they, according to the inverse of Feynman’s
quote, must be correct at the length scales that are currently available through these experiments.
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3.1 Fermionic field theories

The first type of field theory that we will be interested in is built by the action of the operators ψ†
α(x)

and ψβ(x) that are defined through the fermionic commutation relations
{ψ†

α(x), ψβ(y)} = δαβδ(x − y)
{ψα(x), ψβ(y)} = 0
{ψ†

α(x), ψ†
β(y)} = 0

, (115)

where the subscript index signifies that there may exist several of these operators at every position.
Note that these commutation relations are simply a continuous generalization of {c†

n, cm} = δn,m.

From these operators we can define the density operators ρα(x) = ψ†
α(x)ψα(x) that satisfy ρα(x)ψ†

α(y) |ψ⟩ =
ψ†

α(y)(ρα(x) + δ(x − y)) |ψ⟩ so that the ψ†
α(x) create particles that are being counted by this density

operator. Furthermore, these density operators all commute so that we can define the reference state
by the condition

⟨0F|Nα(x)|0F⟩ = 0 ∀ x, α (116)

i.e. the reference state is the state that contains zero particles everywhere. Finally, note that the
commutation relations guarantee that

ψ†
α(x)ψ†

α(x) |0F⟩ = 0 (117)

so that the local fermionic Hilbert space cannot contain states with two of these fermionic degrees of
freedom at the same position.

3.1.1 Free fermions

Let us now consider the (1+1)-dimensional Dirac Hamiltonian

H =
∫

dx
(

ψ†
α(x)iγ0

αβγx
βγ∂xψγ(x) + mψ†

α(x)γ0
αβψβ(x)

)
(118)

that contains two fermionic flavours (i.e. α ∈ 1, 2). The matrices γ0 and γx satisfy {γµ, γν} = 2ηµν.
One important detail is that different solutions for the γµ matrices are related by local unitary
transformations of the fields ψα → Uαβψβ that leave the spectrum of the Hamiltonian unchanged
i.e. different choices such as (γ0 = σy, γx = iσx) or (γ0 = σz, γx = iσy) generate identical physics. In
what follows we will use the first of these choices.

Before we analyse the spectrum let’s note that the Hamiltonian commutes with

gV(θV) = eiθV Qvector with Qvector =
∫

dx
(

ψ†(x)ψ(x)
)

(119)

=
∫

dx
(

ψ†
1(x)ψ1(x) + ψ†

2(x)ψ2(x)
)

∀θV so that ⟨Qvector⟩ is a conserved quantity. Furthermore if m = 0 we find an additional symmetry :

gA(θA) = eiθAQaxial with Qaxial =
∫

dx
(

ψ†(x)γ5ψ(x)
)

(120)

=
∫

dx
(

ψ†
1(x)ψ1(x)− ψ†

2(x)ψ2(x)
)

∀θA with γ5 = γ0γx, that guarantees the conservation of ⟨Qaxial⟩.

26



3.1 fermionic field theories

To diagonalize this Hamiltonian we simply re-express it in terms of the usual momentum modes
ψγ(x) =

∫ dk
2π eikxψγ(k) that satisfy {ψ†

α(k), ψβ(l)} = 2πδαβδ(k − l) to get

H =
∫ dk

2π

[
ψ†

1(k) ψ†
2(k)

] [ k −im
im −k

] [
ψ1(k)
ψ2(k)

]
, (121)

which can be further diagonalized with some U(k)

H =
∫ dk

2π

[
ψ†

1(k) ψ†
2(k)

]
U†(k)

[
E(k) 0

0 −E(k)

]
U(k)

[
ψ1(k)
ψ2(k)

]
(122)

=
∫ dk

2π
E(k)

(
ρp(k)− ρh(k)

)
(123)

where E(k) =
√

k2 + m2 and ρp,h(k) the number operators corresponding to the positive/negative
energy branches that are displayed in figure 5 below.

Figure 5: The available energy levels for the free fermion.

As per usual, the groundstate is the state where all negative/positive energy levels are filled/empty
so that we can no longer add/remove particles from them. Consequently p |GS⟩ = h† |GS⟩ = 0 so
that

⟨GS|nh|GS⟩ = 2πδ(0) and ⟨GS|np|GS⟩ = 0 ∀ k . (124)

Excited states are build by adding/removing particles with positive/negative energy, their energy
compared to that of the groundstate is simply E(k).

Finally, we note that the energy of the groundstate itself is

EGS = ⟨GS| H |GS⟩ = −2πδ(0)
∫ dk

2π

√
k2 + m2 (125)

which has a divergence due to the δ(0) and an additional divergence that is coming from the integral
over the infinitely many momenta. The first integral can be understood if we realize that

2πδ(0) = lim
p→0

lim
L→∞

∫ L/2

−L/2
dx eipx = lim

L→∞
L (126)

where L is the length of our continuous universe that was assumed to be infinite. Consequently,
this first divergence is simply due to the fact that we are calculating the total energy rather then
the energy density. The second integral diverges because we keep integrating up to k → ∞ which
corresponds to fluctuations of the field at arbitrarily small length scales. Nevertheless this term is
not really a problem because it is a simple constant term that does not influence the energy of the
excited states.

3.1.2 Self-interacting fermions : the generalized Gross-Neveu model

Let us now try to find the spectrum of the following Hamiltonian

HGN =
∫

dx ∑
c

ψcγ0γxi∂xψc −
g2

x
2N

(∑
c

ψ†γ0ψ)2 −
g2

y

2N
(∑

c
ψ†γ0γ5ψ)2 (127)
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where c runs over N different fermions flavours. These different flavours are indistinguishable and
therefore this model has a SU(N) symmetry that mixes up those flavours. Additionally, whenever
g2

x = g2
y we find that the Hamiltonian commutes with the vector and axial U(1) symmetries, here

the model is named the chiral Gross-Neveu model. If we however pick g2
x ̸= g2

y we find that only a
Z2 subgroup {1, gaxial(θV = π)} of the axial U(1) still commutes with the Hamiltonian. Finally for
g2

x = 0 or g2
y = 0 we get that the SU(N) flavour symmetry and U(1) vector symmetry mix up with

charge conjugation symmetry which gives rise to an enlarged O(2N) symmetry group. Furthermore,
we note that g2

x and g2
y are dimensionless parameters so that there is no mass scale present in this

theory, consequently we do not expect to find massive particles in this theory.

To reveal the physics contained in this model let us try to find an eigendecomposition for the
Hamiltonian. To do this we can no longer rely on a Fourier transform since it is not quadratic
in the fermions. There are however many approximate methods that do the trick quite well. For
example, if we focus on states |Φ⟩ that can be written as direct product |Φ⟩ = |ϕ⟩

⊗
N of single

flavour wavefunctions |ϕ⟩ we find that the energy per flavour is

⟨H⟩Φ
N

=
∫

dx ⟨ϕ|ψ†γ0i∂xψ|ϕ⟩ − g2
x

2N2 ⟨Φ|
(

∑
c

ψ†γ0ψ

)2

|Φ⟩ −
g2

y

2N2 ⟨Φ|
(

∑
c

ψ†γ0iγ5ψ

)2

|Φ⟩ (128)

where we have used the fact that the first term does not couple the different flavours. To proceed we
expand the square of the sum that appears in the second term

⟨Φ|
(

∑
c

ψ†
c γ0ψc

)2

|Φ⟩ = ∑
c
⟨Φ|

(
ψ†

c γ0ψc

)2
|Φ⟩+ ∑

c
∑

c′ ̸=c
⟨Φ|

(
ψ†

c γ0ψc

) (
ψ†

c′γ
0ψc′

)
|Φ⟩ (129)

= N ⟨ϕ|
(

ψ†γ0ψ
)2

|ϕ⟩+ N(N − 1) ⟨ϕ|ψ†γ0ψ|ϕ⟩2
, (130)

and similar for the third term. If we are then only interested in the spectrum when N is large we can
neglect the first type of contribution and the energy per flavour becomes

⟨H⟩Φ
N

=
∫

dx ⟨ϕ|ψ†γ0i∂xψ|ϕ⟩ − g2
x

2
⟨ϕ|ψ†γ0ψ|ϕ⟩2 −

g2
y

2
⟨ϕ|ψ†γ0iγ5ψ|ϕ⟩2

(131)

which must now be optimized w.r.t. the wavefunction ⟨ϕ|. However, a much simpler task is to
optimize

Ve f f (σ, π, ϕ) =
∫

dx ⟨ψ†γ0γxi∂xψ⟩ϕ + g2
xσ

(
σ

2
− ⟨ψ†γ0ψ⟩ϕ

)
+ g2

yπ

(
π

2
− ⟨ψ†γ0iγ5ψ⟩ϕ

)
(132)

which is equivalent because the variational optima for σ and π satisfy

σ = ⟨ϕ|ψ†γ0ψ|ϕ⟩ and π = ⟨ϕ|ψ†γ0iγ5ψ|ϕ⟩ (133)

and can be re-inserted into Ve f f (σ, π, ϕ) to get back the original expression 131. Alternatively,
optimization of Ve f f w.r.t ⟨ϕ| gives∫

dx
(

ψ†γ0γxi∂xψ − g2
xσψ†γ0ψ − g2

yπψ†γ0iγ5ψ
)
|ϕ⟩ = Ee f f |ϕ⟩ (134)

which after a Fourier transform of the ψ field becomes

∫ dk
2π

[
ψ†

1(k) ψ†
2(k)

] [ k −ig2
xσ + g2

yπ

ig2
xσ + g2

yπ −k

] [
ψ1(k)
ψ2(k)

]
|ϕ⟩ = Ee f f |ϕ⟩ . (135)

After a final diagonalization we find∫ dk
2π

√
k2 + (g2

xσ)2 + (g2
yπ)2

(
np(k)− nh(k)

)
|ϕ⟩ = Ee f f |ϕ⟩ (136)
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so that the sought after state with minimal Ee f f will have all hole/particle states occupied/empty. Its

effective energy density is : Ee f f =
Ee f f

2πδ(0) = −
∫ dk

2π

√
k2 + (g2

xσ)2 + (g2
yπ)2 and with this the density

of the effective potential becomes

Ve f f =
Ve f f

2πδ(0)
=

⟨H⟩Φ
2πNδ(0)

=
1
2

g2
xσ2 +

1
2

g2
yπ2 −

∫ dk
2π

√
k2 + (g2

xσ)2 + (g2
yπ)2 (137)

which can be optimized w.r.t. the auxiliary fields σ and π.

However, similarly to the groundstate energies of the free theories above we find that this quantity
is divergent due to the infinitely many momenta i.e. Ve f f (σ, π) = −∞ so that it makes no sense to
optimize it. To solve this we must cut off the momentum integral at some large but finite value Λ
which essentially means that we neglect fluctuations at the smallest scales. We then get the following,
regularized effective potential

Ve f f =
g2

xσ2

2
+

g2
yπ2

2
− 1

2
(g4

xσ2 + g4
yπ2) log

 2Λ√
g4

xσ2 + g4
yπ2

+ · · · (138)

where the · · · indicate that we have neglected terms that are suppressed as the cutoff Λ grows to
infinity. In what follows we will analyse the optima of this effective potential in the O(2N) and chiral
cases separately.

O(2N) Gross-Neveu model

For the g2
y = 0 case we get that the variational minimum of the effective potential lies at

g2
y = 0 →

σ2 = 4Λ2

g4
xe

e−2/g2
x

π2 = 0
(139)

and according to 134 this means that the elementary excitations have gained a mass

m f = g2
xσ = 2Λe−1/g2

x (140)

despite the dimensionless couplings. There is however one big problem remaining, namely the fact
that this fermion mass diverges in the limit Λ → ∞. To remedy this we must further modify the
theory and state that the coupling gx depends on the cutoff in a way defined by the condition

∂m f (Λ, gx(Λ))

∂Λ
= 0 → Λ

∂gx(Λ)

∂Λ
= − g3

x
2

(141)

the final renormalized theory should then be interpreted as the limit of a series of field theories

HGN,true = lim
Λ→∞

HGN(g(Λ), Λ) (142)

and this limit will have a well defined fermion mass m f that no longer depends the cutoff. Note that
we define such a limit procedure for any desired m f mass by simply fixing the initial conditions for
the differential equation 141.

Finally we note that this model actually has two groundstates corresponding to σ = ±σ0. Conse-
quently the elementary excitations will be kinks propagating from one vacuum to the other rather
than local fermionic excitations one one vacuum. The mass ratios of these kinks compared to that of
the fermions can be extracted from the O(2N) symmetry, most importantly the elementary excitation
is always 2N-fold degenerate due to this symmetry.
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Chiral Gross-Neveu model

Let us now focus on couplings g2
x = g2

y = g2, here we get that the optimum of the effective potential
sits at

g2
x = g2

y = g2 → σ2 + π2 =
4Λ2

g4e
e−2/g2

(143)

and the corresponding fermion mass

m f = g2
√

σ2 + π2 = 2Λe−1/g2
(144)

remains identical to what we found before. In particular this still depends on the cutoff Λ so that it
must be renormalized by defining a suitable limit of models.

One important detail is that 143 implies that there are infinitely many groundstates lying on the
circle with σ2 + π2 constant. However, this is a result of our mean field calculation, had we taken
quantum fluctuations into consideration we would have found a single groundstate with infinite
correlation length that is the superposition of all these infinite solutions. A stricter motivation for this
is that our model started with a U(1) axial symmetry which cannot be broken due to a continuum
version of the arguments discussed in section 2.2.1, in particular there exists a continuum version of
the Mermin Wagner theorem the proof that is named after Coleman.

3.2 Bosonic field theories

The second type of field theory arises from the action of operators c(x) and c†(x) with bosonic
commutation relations 

[c(x), c†(y)] = δ(x − y)
[c(x), c(y)] = 0
[c†(x), c†(y)] = 0

(145)

that also lead to a set of density operators ρ(x) = c†(x)c(x) that mutually commute and therefore
allow us to define the empty reference state

⟨0B|ρα(x)|0B⟩ = 0 ∀ x . (146)

The crucial distinction with our fermionic degrees of freedom is that(
c†(x)

)n
|0B⟩ ̸= 0 ∀n (147)

so that the local Hilbert space at position x0 spanned by c(x0) and c†(x0) contains countable infinite
many states that correspond to the eigenvalues 0, 1, 2, · · · of the bosonic number operator.

From these creation and annihilation operators we can also define the operators
ϕ(x) =

∫ dk
2π

√
1

2|k|
(

eikxc(k) + e−ikxc†(k)
)

Π(x) = −i
∫ dk

2π

√
|k|
2

(
eikxc(k)− e−ikxc†(k)

) (148)

where the c(k) are the Fourier exponents of c(x). Note that we have introduced factors
√

k and
√

k
−1

so that the ϕ, Π operators are respectively dimensionless and of mass dimension one. One can easily
check that these new operators satisfy

[ϕ(x), Π(y)] = iδ(x − y)
[ϕ(x), ϕ(y)] = 0
[Π(x), Π(y)] = 0

(149)
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which is the position dependent generalization of the commutation relation [q, p] = i that has
been experimentally shown to hold for the operators that measure te position and momentum of
sub-atomic particles.

3.2.1 The free boson

The Hamiltonian that we want to study is

H f b =
∫

dx
1
2

Π2 +
1
2

∂xϕ∂xϕ (150)

and to find its spectrum we simply re-express it in of the original creation and annihilation operators
by inserting the definitions 148

H f b =
∫ dk

2π
|k| c†(k)c(k) (151)

which reveals that the groundstate is simply the empty reference state |0B⟩ and the first excited state
is gapless.

To nevertheless reveal some interesting physics let us look at the two point function of the fields

⟨ϕ(x)ϕ(y)⟩ − ⟨ϕ(x)⟩ ⟨ϕ(y)⟩ =
∫ dk1dk2

(2π)2
1

2
√
|k1k2|

eik1x−ik2y ⟨0B|c(k1)c†(k2)|0B⟩︸ ︷︷ ︸
δ(k1−k2)

=
∫ dk

4π

1
k

eik(x−y) (152)

which diverges due to contributions from both small and large momenta. The latter divergence is
similar to what we encountered before, and can be dealt with by the introduction of a momentum
cutoff and a suitable limit procedure. To deal with the first divergence we subtract the similarly
divergent term ⟨ϕ2(0)⟩. The regularized two point function is then

⟨ϕ(x)ϕ(y)⟩ − ⟨ϕ2(0)⟩ =
∫ dk

4π

1
|k|
(

eik(x−y) − 1
)

e−
|k|
Λ

= −
∫ ∞

−∞

dk
4π

∫ ∞

1/Λ
dα
(

eik(x−y) − 1
)

e−α|k| (153)

where on the second line we eliminated the |k|−1 by expressing it as an integral. Furthermore, if we
split the positive and negative k contributions we get

⟨ϕ(x)ϕ(y)⟩ − ⟨ϕ2(0)⟩ = −
∫ ∞

0

dk
4π

∫ ∞

1/Λ
dα e−αk

(
eik(x−y) + e−ik(x−y) − 2

)
=

1
4π

∫ ∞

1/Λ
dα

(
1

α − i(x − y)
+

1
α + i(x − y)

− 2
α

)

=
1

4π

(
log(

1
Λ

− i(x − y)) + log(
1
Λ

+ i(x − y))− 2 log(
1
Λ
)

)
=

1
2π

log(Λ(x − y)) . (154)

Note that this result seems to implies that, at fixed and finite cutoff, the correlations between
measurements of the ϕ field grow with the spatial distance between these measurements. This is,
however, unphysical and to find bounded two point correlations we must instead interpret ei

√
Kπϕ,
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with K a dimensionless parameter, as the elementary operator. Indeed the two point correlation
function of these operators is

⟨ei
√

Kπϕ(x)e−i
√

Kπϕ(y)⟩ − ⟨ei
√

Kπϕ(x)⟩ ⟨e−i
√

Kπϕ(y)⟩ = e−πK(⟨ϕ(x)ϕ(y)⟩−⟨ϕ2(0)⟩) (155)

=

(
1

Λ(x − y)

)K/2

(156)

which has a well defined limit x − y → ∞ but still diverges in the limit Λ → ∞. To avoid this last
divergence we could again try to make K cutoff dependant in a way that makes the limit Λ → ∞
well defined. However, if we try this we find that K(Λ) must satisfy (x − y) log( 1

Λ(x−y) )
dK
dΛ = K

which depends on (x − y) so that this method cannot make the two point function well defined
for all (x − y). Instead we will choose to make our elementary operator cutoff dependant, i.e.
ϕR = ΛK/4ei

√
Kπϕ so that that the cutoff dependency naturally drops out at all separations (x − y).

This process is named field renormalisation.

3.2.2 The self interacting boson

In the previous section we found that the physically meaningful bosonic operators are complex
exponentials ϕR = ΛK/4ei

√
Kπϕ and ϕ†

R = ΛK/4e−i
√

Kπϕ of the field rather then the field itself. With
this in mind we propose the interacting Hamiltonian

H f b =
∫

dx
1
2

Π2 +
1
2

∂xϕ∂xϕ − 2y cos(2
√

πKϕ) , (157)

note that the cosine term can be interpreted as ϕRϕR + ϕ†
Rϕ†

R i.e. a simple two point term for our
renormalized fields. To find the spectrum of this Hamiltonian we can not rely on Fourier transforms
because the interaction term is not quadratic or perturbation theory because the interaction term
contains all powers of the θ field. In fact, to deal with this theory we will first need to introduce
some additional machinery that will be the topic of the next two subsections.

Local bosonic Hilbert space

The first thing we will need are two bases of eigenvectors for the local field q̂ = ϕ(x0) and momentum
operators p̂ = Π(x0). To achieve this we will start from the orthonormal set {|q⟩ , ∀q} of q̂
eigenvectors i.e. q̂ |q⟩ = q |q⟩. From these we can then build the resolution of the identity 1 =∫

dq |q⟩ ⟨q| which allows us to write a general vector |ϕ⟩ in terms of this first basis

|ϕ⟩ =
∫

dq |q⟩ ⟨q|ϕ⟩ =
∫

dqϕ(q) |q⟩ . (158)

Note that this is just the infinite dimensional generalisation of equation 4. If we now define the
action of the momentum operator in this basis as

p̂ |ϕ⟩ =
∫

dq i∂qϕ(q) |q⟩ (159)

we get (
q̂ p̂ − p̂q̂

)
|ϕ⟩ =

∫
dq
(

iq∂qϕ(q)− i∂q(qϕ(q))
)
|q⟩ (160)

=
∫

dq(−i)ϕ(q) |q⟩ (161)

= −i |ϕ⟩ (162)

so that our q and p operators satisfy the desired commutation relations.
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Now that we have defined the action of the momentum operator in the position basis we can search
its eigenvectors

p̂ |p⟩ = p |p⟩ =
∫

dqi∂q p(q) |q⟩ (163)

so that p(q) = e−ikq and |p⟩ =
∫

dqe−ikq |q⟩. This provides us with an alternative expression for the
identity 1 =

∫
dp |p⟩ ⟨p|.

Finally, the overlap between these vectors is given by :

⟨p|q⟩ =
∫

dxeipx ⟨x|q⟩ = eipq (164)

where we have used the fact that the |x⟩ vectors are orthonormal i.e. ⟨x|q⟩ = δx,q.

As a sidenote we remark that these operators can also be represented as infinitely large matrices

q̂ =
1√
2



0
√

1 0 0√
1 0

√
2 0

0
√

2 0
√

3
0 0

√
3 0

. . .


and p̂ =

i√
2



0 −
√

1 0 0√
1 0 −

√
2 0

0
√

2 0 −
√

3
0 0

√
3 0

. . .


(165)

which can be shown to also satisfy the desired commutation relation. One could then, in principle,
also find the eigenvectors of these matrices establish equation 164 and the different resolutions of the
identity.

Path integrals

The second thing we need is the transition probability from an initial state |q0⟩ at time 0 to a finial
state |qN⟩ at time T through the time evolution generated by some Hamiltonian

Z = ⟨qN |e−iĤT |q0⟩ = ⟨qN |e−iĤ∆Te−iĤ∆T · · · e−iĤ∆T |q0⟩ (166)

or, using the resolution of the identity 1 =
∫

dq |q⟩ ⟨q|

Z =
∫

dqN−1dqN−2 · · · dq1 ⟨qN |eiH∆T |qN−1⟩︸ ︷︷ ︸
ZN,N−1

⟨qN−1|eiH∆T |qN−2⟩︸ ︷︷ ︸
ZN−1,N−2

· · · ⟨q1|eiH∆T |q0⟩︸ ︷︷ ︸
Z1,0

. (167)

If we now focus on a single term, and assume that our Hamiltonian is of the form Ĥ = p2/2 + V(q̂)
we find that

ZN,N−1 = e−iV(qN)∆T ⟨qN |e−i 1
2 p̂2∆T |qN−1⟩ (168)

= e−iV(qN)∆T ⟨qN | e−i 1
2 p̂2∆T

(∫
dpN |pN⟩ ⟨pN |

)
|qN−1⟩ (169)

=
∫

dpNe−i( 1
2 p2

N+V(qN))∆T ⟨qN |pN⟩ ⟨pN |qN−1⟩ (170)

which, due to ⟨p|q⟩ = eipq, can be rewritten as

ZN,N−1 =
∫

dpNe
i∆T

(
pN

qN−qN−1
∆T − p2

N
2 −V(q)

)
. (171)
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The remaining integral over the momenta is now Gaussian and its solution is well known to be

ZN,N−1 = e
i∆T

(
1
2

( qN−qN−1
∆T

)2
−iV(q)

)
(172)

so that Z becomes

Z =
∫  ∏

α∈N−1,···1
dqα


︸ ︷︷ ︸

integration over paths

e
i∆T ∑β∈N,···0

(
1
2

(
qβ−qβ−1

∆T

)2
−V(q)

)
︸ ︷︷ ︸

contribution per path

. (173)

To gain some intuition on why this is a useful result let us look at figure 6. First, for one particular










































































































Figure 6: graphical representation of the sum over histories interpretation of quantum mechanics that is obtained
from the path integral formulation.

set of values for the integration variables {qα} we can draw the resulting path through space and
time. The exponential in equation 173 can then be interpreted as the contribution of that path
towards the total transition probability. The integration over the different sets of {qα} then simply
adds up all these individual contributions. Note that these individual contributions are phases so
that they may interfere with each other. This picture is easily generalized to the limit ∆T → 0; here
we get

Z =
∫
[dq(t)]e

i
∫

dt
(

1
2

(
∂q(t)

∂t

)2
−V(q(t))

)
(174)

where
∫
[dq(t)] is compact notation for the integration over all possible histories of the field config-

uration. Finally, a “straightforward” generalization to include the position dependent fields leads
to

Z =
∫
[dϕ(x, t)]ei

∫
dtdx

(
1
2 (∂tϕ(x,t))2− 1

2 (∂xϕ(x,t))2−V(ϕ(x,t))
)

(175)

which will turn out to be a formidable tool in the next section.

Note that the fields ϕ(x, t) are now no longer non commuting operators but simple scalar fields. The
“quantumness” of this formulation sits in the fact that the probability to end up at the final state is a
sum over all possible histories that this field could have taken to end up there.

Effective infrared theories from path integrals

If we apply the path integral formulation to our self interacting bosonic theory we find

Z =
∫
[dϕ(x, t)]ei

∫
dtdx

(
1
2 (∂tϕ∂tϕ−∂xϕ∂xϕ)+2y cos 2

√
πKϕ

)
(176)

and this is often expressed in terms rescaled fields ϕres =
√

πKϕ and a complex time coordinate
τ = it

Z =
∫
[dϕ(x, τ)]e

∫
dτdx

(
− 1

2πK (∂tϕ∂tϕ+∂xϕ∂xϕ)+2y cos 2ϕ
)

. (177)
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Note that we are again implicitly assuming the existence of momentum cutoff Λ and corresponding
minimal length scale ∆xcut = 1/Λ so that integrals converge. Let us now define

ϕ(x, τ) = ϕIR(x, τ) + ϕUV(x, τ) (178)

where ϕIR(x) and ϕUV(x) respectively correspond to the long and short wavelength fluctuations
of the field; in terms of Fourier components they respectively have momenta |kIR| ∈ [0, Λ/b] and
|kUV | ∈ [Λ/b, Λ]. Consequently the path integral can be rewritten as

Z =
∫
[dϕIR][dϕUV ]e

∫
d2x
(
− 1

2πK ((∂ϕIR)
2+(∂ϕUV)

2)+2y cos 2(ϕIR+ϕUV)
)

(179)

where we have used the shorthand notation (∂ϕ)2 = (∂tϕ)2 + (∂xϕ)2 and d2x = dxdτ.

The big idea of the following section consists of two steps. First we will (approximately) solve
the integral over the UV degrees of freedom which results in an effective path integral that has a
new (slightly larger) minimal length scale ∆xcut(b) = b∆xcut. In the second step we define a new
“Laboratory” coordinate frame xlab = bx so that, in terms of these coordinates, the minimal length
scale and cutoff remain constant. The net effect of this procedure is that we will have obtained a new
path integral that describes only the low energy degrees of freedom of the original compact boson
Hamiltonian.1

To begin this endeavour, let us first assume that y is small and Taylor expand the exponential

Z = ZIR

∫
[dϕUV ]e−

1
2πK

∫
d2x(∂ϕUV)

2



1

+2y
∫

d2 x̃ cos 2(ϕ̃IR + ϕ̃UV)

+2y2
(∫

d2 x̃ cos 2(ϕ̃IR + ϕ̃UV)

)2


(180)

where we have denoted ZIR =
∫
[dϕIR]e−

1
2πK

∫
d2x(∂ϕIR)

2
and ϕ̃ = ϕ(x̃, τ̃) for co

In what follows we will repeatedly use the identity∫
[dϕ]e

∫
d2 p

(
− 1

2 ϕ(p)A(p)ϕ(p)+J(p)ϕ(p)
)
= α(Λ)e

∫
d2 p 1

2 J(p)† A−1(p)J(p) (181)

with α(Λ) some cutoff dependant factor. This identity is simply the multidimensional generalization
of the Gaussian integral

∫
dxe−

1
2 ax2+bx =

√
2π/aeb2/2a.

(1) If we express the first term in momentum space we get the Gaussian integral with J(p) = 0 and
A(p) = p2/πK so that :

Z1 = ZIR

∫
[dϕUV ]e−

1
2πK

∫
d2x(∂ϕUV)

2
(182)

= α(Λ)ZIR = α(Λ)ZIR;lab (183)

where ZIR;lab is the infrared path integral in the laboratory coordinates.

(2) For the second term we must do some more work: first we expand the cosine into

cos 2(ϕ̃IR + ϕ̃UV) = cos(2ϕ̃IR) cos(2ϕ̃UV)− sin(2ϕ̃IR) sin(2ϕ̃UV) (184)

to get

Z2 = 2yZIR

∫
d2 x̃ cos(2ϕ̃IR)

∫
[dϕUV ]e−

1
2πK

∫
d2x(∂ϕUV)

2 1
2

(
e2iϕ̃UV + h.c.

)
︸ ︷︷ ︸

independent of ϕIR

(185)

1 To my best knowledge a similar procedure is not known in the Hamiltonian, formalism hence the effort to explain path
integrals.
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where we have dropped the terms proportional to sin(2ϕ̃UV) because those are integrals of asymmet-
ric functions. The remaining ϕIR independent part can be again be solved by re-expressing ϕ(x, τ)
field as Fourier series so that

Z2 = yZIR

∫
d2 x̃ cos(2ϕ̃IR)

∫
[dϕUV ]e

∫ d2 p
4π2

(
1

2πK ϕUV(p)p2ϕUV(p)+2ieipx̃ϕUV(p)
)
+ h.c. (186)

which through application of the Gaussian integral becomes

Z2 = y α(Λ)ZIR

∫
d2 x̃cos(2ϕ̃IR) e

− 1
2
∫

p∈UV d2 p K
2πp2 + h.c.︸ ︷︷ ︸

2e−K ln(b)

(187)

(188)

which only depends on the width of the integrated momenta so that we can easily take the limit Λ
to infinity. Finally, in the laboratory coordinates xlab = bx we get

Z2 = 2 b2y e−K ln(b) α(Λ)ZIR;lab

∫
d2 x̃labcos(2ϕ̃IR;xlab) (189)

(3) If we consider the square in the first term

Z = 2y2 ZIR

∫
[dϕUV ]e−

1
2πK

∫
d2x(∂ϕUV)

2
(∫

d2 x̃ cos 2(ϕ̃IR + ϕ̃UV)

)(∫
d2 ˜̃x cos 2( ˜̃ϕIR + ˜̃ϕUV)

)
(190)

and expand cos(· · · )2 as

cos2(ϕ̃IR + ϕ̃UV)cos2( ˜̃ϕIR + ˜̃ϕUV) = cos2(ϕ̃IR − ˜̃ϕIR)cos2( ˜̃ϕUV − ϕ̃UV) (191)

+ terms proportional to sin(ϕ̃UV) and sin( ˜̃ϕUV)

we get

Z3 = 2y2ZIR

∫
d2 x̃d2 ˜̃x cos 2(ϕ̃IR − ˜̃ϕIR)

∫
[dϕUV ]e−

1
2πK

∫
d2x(∂ϕUV)

2 1
2

(
e2i(ϕ̃UV− ˜̃ϕUV) + h.c.

)
︸ ︷︷ ︸

independent of ϕIR

(192)

= y2ZIR

∫
d2 x̃d2 ˜̃x cos 2(ϕ̃IR − ˜̃ϕIR)

∫
[dϕUV ]e

∫ d2 p
4π2

(
1

2πK ϕUV(p)p2ϕUV(p)+2i(eipx̃−eip ˜̃x)ϕUV(p)
)
+ h.c.

(193)

= y2α(Λ)ZIR

∫
d2 x̃d2 ˜̃x cos 2(ϕ̃IR − ˜̃ϕIR)

e
− 1

2
∫ d2 p

4π2 (e
ipx̃−eip ˜̃x) πK

p2 (e−ipx̃−e−ip ˜̃x)
+ h.c.︸ ︷︷ ︸

f (x̃− ˜̃x)

 . (194)

To proceed we note that the x → 0 and x > b/Λ limits of f (x) are respectively f (x → 0) = 1 and
f (x > b/Λ) = 1

b . The second, not so obvious, limit can be derived from the realization that, for these
separations, the phases in the complex exponential will be rapidly oscillating functions so that they
will cancel under the integral. The upshot of all this is that the

∫
d2 x̃d2 ˜̃x integral will only pick up

contributions if x̃ − ˜̃x is sufficiently small. With this, and the further approximation ϕ̃IR − ˜̃ϕIR ≈ ∂ϕIR
we get :

Z3 ≈ y2α(Λ)ZIR

∫
d2 x̃(∂ϕIR)

2 (195)

which remains unchanged in the laboratory coordinates.

(1+2+3) Finally, bringing everything together we get :

Z ≈ α(Λ)
∫
[dϕIR]e−

1
2πK

∫
d2xlab(∂ϕIR;lab)

2
(

1 + 2yb2e−K ln(b)
∫

d2 x̃lab cos(2ϕ̃IR;lab) + y2
∫

d2 x̃lab(∂ϕ̃IR;lab)
2
)

(196)
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which can be interpreted as the first order Taylor expansion of

Z(b) = α(Λ)
∫
[dϕ]e

∫
d2xlab

(
−
(

1
2πK +y2

)
(∂ϕIR;lab)

2
+2
(

e−K ln bb2y
)

cos 2ϕIR;lab

)
. (197)

Therefore, the low energy degrees of freedom (i.e. those with momentum p < Λ/b) are described by
an effective action with new couplingsy → y(b) = ye−K ln bb2

1
2πK → 1

2πK(b) =
1

2πK + y2 . (198)

To simplify these expressions we choose b = 1 + db i.e. we only trace away a very thin momentum
shell. With this we get 

dy
db = limdb→0

y(1+db)−y(1)
db = (2 − K)y

dK
db = limdb→0

K(1+db)−K(1)
db = −y2

(199)

so that d
db

(
(2 − K)2 − y2

)
= 0 i.e. δ = (2 − K(b))2 − y2(b) remains constant throughout the flow

towards the effective IR. In figure 7 we show the lines of constant δ as blue lines and with arrows
pointing towards the low energy effective theories.
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Figure 7: The renormalization group flow of the self interacting boson. The black lines have constant δ and
the arrows point towards increasing b i.e. lower energies. The red dots in the top/bottom left show the zero
correlation length fix points and the dotted red line at the K > 2 axis shows the free boson model with infinite
correlation length. The leftmost dashed green line indicates a direct transition from the ⟨ϕ⟩ = nπ to the
⟨ϕ⟩ = ±π/2 phase, along this line the correlation length diverges as a power-law as approach the K-axis. The
second dashed green line indicates a KT transition where the correlation length diverges exponentially fast near
δ → 0+.

From this figure see that every compact boson theory with initial couplings in the right wedge will
eventually flow towards the y = 0 axis. This means that, in this wedge, the cos(2ϕ) term has no
influence on the infrared physics i.e. this term is irrelevant. For all other initial y ̸= 0 points the
flow is to the fix points in the upper or lower left corners that correspond to some gapped phase
where the cos(2ϕ) term is the most relevant contribution to the Hamiltonian. The effect is that ϕ
will develop long range order along the minima/maxima of cos(2ϕ). Finally we note that the initial
cutoff Λ no longer appears in these flow equations so that the flow diagram of the Λ → ∞ model
will still be the one displayed in figure 7.

Kosterlitz Thoules transition

In this section we will study the behaviour of the correlation length as we tune the couplings of our
model from the the top wedge to the right wedge as indicated by the rightmost green line in figure 7.
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Before we start, note that we already know that the correlation length must diverge as we approach
the edge of the right wedge, so that the only remaining question is the nature of the divergence. To
find this, let us first rewrite dK/db in terms of δ

dK
db

= −y2 = δ − (2 − K)2 (200)

and then use δ as a measure of distance to the critical point. Additionally, we know that the
correlation length, in terms of the laboratory coordinates behaves as ξlab → ξlab(b + db) so that :
dξlab = ξlabdb.

If we now integrate these equations along a path of constant δ that starts at our point of interest
(where ξlab = ξ and K = KUV ≫ 2) and ends at the fixed point (where KIR = −∞) we getb = 1√

δ

(
arctan(KUV−2√

δ
)− arctan(KIR−2√

δ
)
)
= π√

δ
ξ

ξ f ixpoint
= eb . (201)

The first equation tells us that we must trace over more momenta to reach the trivial IR theory if we
start from a UV theory closer to the critical line and together with the second equation, which relates
the original correlation length with that of the IR theory, we get :

ξ = ξ f ixpointe
π√

δ (202)

which is the desired behaviour of the correlation length as we approach the critical point.

Furthermore, it is worth noting that the Taylor expansion of 1/ξ in terms of δ is identically zero
which means that a perturbative treatment of the y term in the original Hamiltonian would have
never revealed this kind of phase transition.

Direct phase transistion

In this section, we want to know the scaling of the correlation length as we cross the y = 0 line for
K < 2. Looking back at figure 7 we see that, close to the y = 0 line the value of K remains unchanged
under our RG flow. Consequently we can just integrate

dy
db

= (2 − K)y (203)

along a path of constant K that starts at our point of interest (where ξlab = ξ) and ends at some
reference point (where ξ = ξre f an y = yre f ), this gives usln(yre f /y) = (2 − K)b

ξ/ξre f = eb (204)

which leads to

ξ = ξre f

(
1
y

) 1
2−K

(205)

a power law divergence of the correlation length as the y = 0 axis is approached.

Higher cosine terms in the compact boson

The y term in the Hamiltonian 177 has a Z2 symmetry :

ϕ → ϕ + π (206)
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and we saw that the phase diagram contained two symmetry broken phases, one where y becomes
infinitely positive and ϕ condenses around 0 = 2π and π and another where y becomes infinitely
negative and ϕ condensed around ±π/2).

Similarly, we can define the model

HLL =
∫

dx
πK
2

Π2 +
1

2πK
(∂xϕ)2 + 2yN cos(Nϕ) (207)

that contains the N−th power of the physical fields that we defined in section 3.2.1. This model now
has a ZN symmetry

ϕ → ϕ + 2π/N (208)

and a similar analysis reveals a phase diagram where the symmetry broken phases now have N
distinct groundstates with ϕ = 0, 2π/N, 3π/N, · · · and ϕ = π/2 + 2π/N, π/2 + 3π/N · · · .

One very important property of these higher order terms is that the lowest N perturbation will
always be the most relevant. To clarify, consider a UV theory with yN cos(Nϕ) and yM>N cos(Mϕ).
In the large K regime both terms will be irrelevant and effective theory for the infrared degrees of
freedom has yN = yM = 0. As we move K to smaller values we will eventually pass through a KT
transition and enter a phase where ZN symmetry is broken because the yN coupling starts to grow
towards the IR. Eventually, for even smaller values the yM coupling will also become relevant and
break the remaining ZM symmetry.

3.3 Fermionic lattice field theories

In the previous sections we have introduced quantum field theory in its usual formulation. This
approach turned out to be very effective for free models but we saw that interactions lead to divergent
corrections that had to be regularized, i.e. ,we had to introduce a cutoff Λ for the allowed momenta
in the Fourier transforms of the fields. Furthermore, we found that observables such as the IR mass
scale depends on this cutoff, which lead to the idea that a continuous model had to be interpreted as
a limit of a series of models. The idea of this section is that we can similarly take the limit of a series
of lattice models with ever decreasing intersite distance a.

In what follows we will demonstrate this by first demonstrating one particular approximation of
the free fermion field theory on a lattice and then define the limit procedure that reproduces the
spectrum of the original continuum construction. In the final part we will highlight a limitation of
this method and discuss the profound physical consequences of this limitation.

3.3.1 There: From free fermions to the SSH model

As a reminder the Hamiltonian for the free fermion was

H =
∫

dx
(

ψ†
α(x)iγ0

αβγx
βγ∂xψγ(x) + mψ†(x)γ0ψ(x)

)
(209)

and the particular choice of gamma matrix did not influence the spectrum. For this discussion it will
be useful to make a choice where γ0γx = σx and γ0 = σy so that

H =
∫

dx i
(

ψ†
1(x)∂xψ2(x) + ψ†

1(x)∂xψ2(x)
)
+ im

(
ψ†

1(x)ψ2(x)− ψ†(2)ψ1(x)
)

. (210)

By now we already know that such Hamiltonians are only well defined when supplemented with
some momentum cutoff Λ so that it only describes physics at lengths scales smaller then a = 1

Λ .
Consequently, it is fair to assume that we must only look at the following subset of field operatorsψ†

1(x = na) = c†
2n√
a

ψ†
2(x = na) =

c†
2n+1√

a

(211)
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where we divide by
√

a to get dimensionless lattice operators. Note that we have placed the
first/second component of the fermion field at even/odd lattice sites respectively and that this step
makes it so that the U(1)axial symmetry of the m = 0 field theory does not survive on the lattice. We
will motivate this peculiar staggered pattern in section 3.3.3 below, for now let us just move on and
also approximate derivatives as ∂xψ†

1(x = na) = c†
2n+2−c†

2n
a
√

a

∂xψ†
2(x = na) =

c†
2n+1−c†

2n−1√
a

(212)

and define a dimensionless lattice mass mlatt = ma so that

H ≈ 1
a ∑

n
ic†

2n (c2n+1 − c2n−1) + ic†
2n+1 (c2n+2 − c2n) + imlatt

(
c†

2nc2n+1 − c†
2n+1c2n

)
. (213)

For mlatt = 0 this model has a symmetry c2n → c2n+1 and c2n+1 → c2n+2 which in terms of the
original fermionic fields ψ†

1(x) → ψ†
2(x)

ψ†
2(x) → ψ†

1(x = x + a)
(214)

represents the Z2 subgroup of the axial U(1) symmetry up to corrections of O(a). Furthermore, if

want the field theory property γ5H(m)γ5 = H(−m) to hold on the lattice, i.e. H(m)
single−−−→
shift

H(−m)

we must modify Equation 213 to

H ≈ 1
a ∑

n
ic†

2n (c2n+1 − c2n−1) + ic†
2n+1 (c2n+2 − c2n)

+ i
mlatt

2

(
c†

2nc2n+1 − c†
2n+1c2n

)
− i

mlatt
2

(
c†

2n+1c2n+2 − c†
2n+2c2n+1

)
(215)

which is exactly the SSH Hamiltonian that we studied before!

One crucial remark is that we could have made a different initial choice for the γ matrices and that
the resulting lattice model would not necessarily describe the same physics. In fact the unitary
equivalence of fermion models with different γ matrices was lost together with the chiral U(1)axial
when we staggered the fermions. For example, the original formulation of this discretization
procedure by Kogut and Susskind chose γ0γ5 = σx and γ0 = σz, which leads to

H ≈ 1
a ∑

n
c†

2n (c2n+1 + c2n−1) + c†
2n+1 (c2n+2 + c2n)

+ mlatt

(
c2nc†

2n − c2n+1c†
2n+1

)
(216)

(217)

which now has a mass term that prefers anti-ferromagnetic order instead of dimer order. The upshot
is that, dependant on the choice of γ matrices, we will find a different type of mass term on the
lattice. In the second chapter we will discuss an example where the Kogut Susskind discretization is
unfavourable compared to the one presented here. For now, let us just accept that the one presented
here is a more logical choice.

3.3.2 And back again: From SSH to free fermions

From the previous section we suspect that

lim
a→0

HSSH(a, mlatt(a)) = lim
Λ→∞

H f ree f ermion(Λ, m(Λ)) , (218)
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3.3 fermionic lattice field theories

to verify this let us remind ourselves of the dispersion relation of the SSH model

Eklatt
= ±1

a

√
4 sin2(klatt/2) + m2

latt cos2(klatt/2) (219)

where we have written klatt, mlatt to stress that these are dimensionless quantities on the lattice. For
the momentum specifically this means that klatt describes physics on the length scale of 1/klatt lattice
sites, the inverse physical distance associated with these phenomena is therefore k−1

phys = ak−1
latt.
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Figure 8: Starting at some initial lattice model with a = a0 and mlatt = m0 we reach the continuumlimit a → 0
by simultaneously and iteratively halving both mlatt and a so that mlatt(a)/a = mphys remains constant. This
procedure defines a continuous model where the mass of the elementary excitation is well defined.

Sadly, simply taking the limit a → 0 is not a valid procedure as this pushes the energy of all
excitations to infinity. The correct procedure is shown in figure 8 above, we start with some lattice
model with a = a0 and mlatt = m0 so that the energy gap in terms of dimensionfull variables is
Ephys = m0/a0. From this initial model we can reach a = 0 by iteratively and simultaneously halving
a and mlatt so that the gap expressed in physical units Ephys =

mlatt,new
anew

remains constant.

Furthermore, we can also re-express the dispersion relation in terms of a dimensionfull momentum
k = klatt

a

ωk = ±
√

4
a2 sin2(

ka
2
) + m2 cos2(

ka
2
) (220)

and for sufficiently small momenta ka ≪ 1 (i.e. momenta that correspond to length scales much
larger then the lattice spacing) this can be expanded as

ωk = ±
√

k2 + m2 . (221)

Therefore, as a → 0 we recover the original dispersion relation.

3.3.3 Fermion doubling

Let us now reconsider the ad-hoc step where we staggered the fermions and broke the U(1) symmetry.
The natural choice, which respects the symmetry, would have been

ψ†
α(x = na) =

c†
n,α√

a
(222)

and

∂xψ†
α(x = na) =

c†
n+1,α − c†

n−1,α

2a
√

a
. (223)
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quantum field theories

If we still work with the previous convention for the γ matrices, the m = 0 lattice Hamiltonian
becomes

H ≈ 1
a ∑

n

i
2

c†
n,1
(
cn+1,2 − cn−1,2

)
+

i
2

c†
n,2
(
cn+1,1 − cn−1,1

)
+ h.c. (224)

and at first sight we can now simply perform the continuum procedure and identify the field
theoretic dispersion with that of lattice around klatt = 0. However upon closer inspection equation
224 only couples ceven,1 to codd,2 and ceven,2 to codd,1 so that we can write

H ≈ Heven,1;odd,2
⊕

Hodd,1;even2 (225)

where, up to relabeling of the indices

H1,2 = H2,1 =
1
a ∑

n

i
2

c†
n,1
(
cn+1,2 − cn−1,2

)
+ h.c. (226)

is the critical SSH model ! Consequently, the number of infrared degrees of freedom of this lattice
model is double that of the original field theory. More general, one can show that it is impossible
to discretize the Dirac Hamiltonian so that the resulting lattice Hamiltionian has continuous chiral
symmetry, locality and the correct particle content in the limit a → 0. Therefore, if we want the
correct number of degrees of freedom in the continuum we have to break the continuous chiral
symmetry, the best we can do is to still retain its (approximate) Z2 subgroup, which is exactly what
we did in the previous section.

3.4 Bosonic lattice field theories

For bosonic theories the approach is very similar to what we did before. For example the operators
in the interacting boson from equation can be represented byϕ(x = na) = qn

Π(x = na) = 1
a pn

(227)

where the qn and pn matrices are the infinite dimensional matrices from equation 165. If we also
define the dimensionless lattice coupling ylatt = a2y we find

HLL ≈ ∑
a

1
a

(
πK
2

p2
n +

1
2πK

(
ϕn+1 − ϕn

)2
+ 2ylatt cos(2qn)

)
(228)

and one could then also define a suitable limit of such lattice models.
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4

A M O D I F I E D I S I N G C H A I N

The motivation for this project was a tweaked version of the Ising Hamiltonian

Hmod = ∑
i
−gσz

i σz
i+1 + CZi−1,i+1σx

i (229)

where CZi−1,i+1 is the controlled Z-operator |↓↓⟩ ⟨↓↓|+ |↓↑⟩ ⟨↓↑|+ |↑↓⟩ ⟨↑↓| − |↑↑⟩ ⟨↑↑| that acts
as the identity except when it acts on two spin up spins, in which case it generates a minus sign.
Similarly to the original Ising model, there is a Z2 symmetry which now contains contains the
identity and a nonlocal generalization of the spin flip operator

X̂mod =
⊗

σx
i
⊗

CZi−1,i+1 (230)

which can be represented by a matrix product operator, similar to how we represented the Ising
Hamiltonian in equation 37.

To intuitively appreciate the impact of this modification, let us consider the third order corrections to
one of the large g groundstates e.g. |↑⟩⊗N . According to section 2.1.2 this contribution will contain
(among others) states that contain three consecutive down spins. In this case these spins are flipped
through the action of the modified spinflips CZi−i,i+1σx

i and the addition CZ generates a phase that
depends on the order of operations as is depicted in figure 9 below.


































































Figure 9: Two different orders of operations that can be used to construct the third order correction containing
Kink-Antikink pairs with separation 3. Due to the presence of the additional CZ these two orders will generate
the same same state up to a minus sign so that it is conceivable that their contributions will cancel in the
perturbative series.

The upshot is that the contribution of these three spin bubbles to the corrected vacuum will be
suppressed (compared to the usual Ising model), because the contributions from the different
diagrams will tend to cancel out. Consequently we do not expect the mechanism by which the
order is restored to be the simple kink condensation of the Ising model. In fact, this simple intuitive
perturbative argument can be made rigorous by a modification of the arguments in section 1.2.3. This
type of generalization is a whole field in itself, so we will not discuss the details of the procedure.
All we need to know is that Hamiltonians with nonlocal Z2 symmetries can never have a symmetric
phase where the elementary excitation is massive; we are therefore guaranteed that the phase
diagram of this model will be drastically different from that of the usual Ising model.

To find this, a priori unknown, phase diagram we approximated the grounstate and excited states of
this model with MPS en quasiparticle states respectively. The phase diagram we found contained an
extended critical phase for g ∈ [−0.9, 0] where the infrared degrees of freedom are well described by
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a modified ising chain

the Luttinger Liquid field theory we discussed in section 3.2.1. Furthermore, the transition at g = 0
turns out to be a KT transition driven by a cos(2ϕ) term 1.

1 In the paper the compactification ratio of the compact scalar is π/2 so we have that ϕmaintext = 2ϕpaper . Therefore the cos(4ϕ)
perturbation that is mentioned in the paper corresponds to a cos(2ϕ) perturbation in terms of the convention handled in the
previous chapter.
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We construct a one-dimensional local spin Hamiltonian with an intrinsically nonlocal, and therefore anoma-
lous, global Z2 symmetry. The model is closely related to the quantum Ising model in a transverse magnetic field,
and contains a parameter that can be tuned to spontaneously break the nonlocal Z2 symmetry. The Hamiltonian
is constructed to capture the unconventional properties of the domain walls in the symmetry-broken phase.
Using uniform matrix product states, we obtain the phase diagram that results from condensing the domain
walls. We find that the complete phase diagram includes a gapless phase that is separated from the ordered
ferromagnetic phase by a Berezinskii-Kosterlitz-Thouless transition, and from the ordered antiferromagnetic
phase by a first-order phase transition.

DOI: 10.1103/PhysRevB.99.195132

I. INTRODUCTION

Spontaneous symmetry breaking in quantum many-body
systems can be characterized by the nonzero expectation value
of an order parameter. In symmetry-broken systems, there
exists a basis such that each ground state is uniquely character-
ized by its uniform and nonzero value for the order parameter.
For certain symmetry-breaking patterns and in certain spatial
dimensions, it is possible to consider states where the order
parameter is nonuniform and contains a topological defect
[1,2], such as, for example, a domain wall in one dimension or
a vortex in two dimensions. Because such topological defects
are stable and cannot be created by local operators, it is
possible that they bind fractional quantum numbers associated
with unbroken global symmetries. In fact, many examples of
systems where this occurs are known. Among the earliest ex-
amples are the Jackiw-Rebbi [3] or the Su-Schrieffer-Heeger
model [4], where domain walls bind half-integer U(1) charge,
and the spin-1/2 soliton in quantum spin chains [5].

The binding of fractional quantum numbers to topological
defects is closely related to Lieb-Schultz-Mattis-Oshikawa-
Hastings (LSMOH) theorems [6–8], which forbid the exis-
tence of short-range entangled phases that do not break any
microscopic on-site and spatial symmetries. In the original
LSMOH theorems, the relevant on-site symmetry was U(1)
or SU(2), and the spatial symmetry was simply lattice trans-
lation symmetry. However, by now, LSMOH theorems exist
for many other on-site and spatial symmetries [9–13]. An
intuitive way to understand the connection between LSMOH
theorems and fractionalization of topological defects is to
imagine a system in a symmetry-broken phase, such that
condensation of topological defects drives it to a disordered
phase. If the defects carry fractional quantum numbers, this
condensation transition cannot result in a short-range entan-
gled, featureless state. An interesting example is the spin-1/2
Heisenberg antiferromagnet on the square lattice. Because this
model has half-odd integer spin per unit cell, the LSMOH
theorem forbids a short-range entangled symmetric ground
state. If we assume the ground state is a valence-bond solid

(VBS), topological defects in the Z4 valued order parameter
carry spin-1/2 [14]. In the Néel phase, spin-wave excitations
in topological sectors with an odd skyrmion number carry mo-
menta around (0, π ) or (π, 0) [15]. Condensing the skyrmions
therefore leads to the fourfold ground-state degeneracy of
the VBS phase [16,17]. These observations also lie at the
basis for the original theory of deconfined quantum criticality
[18], which was proposed to describe a Landau-forbidden
continuous phase transition between the Néel and VBS orders.
Recently, a 1D Hamiltonian with a LSMOH constraint was
constructed such that in the VBS phase the domain walls
bind a nontrivial projective representation of Z2 × Z2 [19].
The authors of Ref. [19] argued that condensing these domain
walls results in a deconfined quantum critical point in the
phase diagram, separating two different symmetry-broken
phases.

Another context in which fractionalized quantum numbers
and/or unconventional zero modes bind to topological de-
fects, is at the boundary of symmetry-protected topological
(SPT) phases [20–24]. One of the most notable examples is
the time-reversal symmetric superconducting boundary state
of the 3D topological insulator, where a vortex traps a Majo-
rana mode [25]. In the nontrivial 3D bosonic SPT phase with
U(1) × ZT

2 symmetry, where ZT
2 is time-reversal symmetry,

boundary vortices bind a Kramers pair in their core [26]. In
Ref. [27], the authors showed that for certain 2D SPT phases
with Zn × Zm symmetry, boundary domain walls associated
with broken Zn symmetry carry fractional charge under Zm,
and vice versa. When the symmetry group is Zn × Zm × Zp,
there exist 2D bosonic SPT phases such that a boundary
domain wall of Zn binds a nontrivial projective representation
of Zm × Zp [27].

It was recognized early on that the physics of deconfined
quantum critical points and the boundaries of SPT phases
are closely related [26]. More recently, systems where a
LSMOH theorem applies were interpreted as the boundary of
a SPT phase with both on-site and spatial symmetries [28,29].
All these systems also share the property that a topological
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theta term or Wess-Zumino-Witten term is essential to ob-
tain the correct nonlinear sigma model effective-field theory
[15,29–32]. The physical meaning of such terms is exactly
that they provide the topological defects with the correct
properties such as fractional quantum numbers. By now, a
deeper unified language for the physics of LSMOH theorems,
SPT surface states, and deconfined quantum critical points
has emerged in terms of ’t Hooft anomalies [33–39]. For UV
lattice models, a ’t Hooft anomaly simply means that a global
symmetry is realized in an intrinsically nonlocal way [23,34].
In the context of LSMOH theorems, ’t Hooft anomalies can
occur because of the non-on-site nature of the spatial sym-
metries. In the context of SPT phases, a local symmetry in
the bulk can effectively act as a nonlocal symmetry on the
low-energy boundary or surface modes. The common wisdom
is that when a nonlocal symmetry with nontrivial ’t Hooft
anomaly gets spontaneously broken, topological defects in the
corresponding order parameter will acquire unconventional
properties such as fractional quantum numbers. However, it
is important to note that fractionalization is not the only
unconventional property of defects that can occur when a
nonlocal symmetry gets broken. Another possibility is that
the defects have nontrivial statistics [40]. For example, on
the boundary of a 3D bosonic topological insulator with
U(1) � ZT

2 symmetry, the vortices become fermions [26,41].
In this paper, we consider a 1D model with a Z2’t Hooft

anomaly where similar phenomena occur. In particular, we
construct a spin Hamiltonian for which, in the symmetry-
broken phase, the domain walls between the two vacua behave
as semions in a sense that we specify below. It can be inter-
preted as the edge Hamiltonian of a 2D bosonic SPT phase
corresponding to the nontrivial element of H3(Z2,U (1)) =
Z2 [23,24,42]. The Hamiltonian is closely related to the
1D quantum Ising model in transverse magnetic field, and
contains a parameter that we can tune to condense the domain
walls. We show that this model indeed has a nonlocal Z2

symmetry that can be written in matrix product operator
(MPO) form. We find that the Hamiltonian we construct
has close connections to anyon chains [43,44] and that—
-not surprisingly—its symmetry is of the CZX type [23].
Upon condensing the “semionic” domain walls, there occurs
a Berezinskii-Kosterlitz-Thouless (BKT) transition [45,46] to
a Luttinger liquid phase [47] with an emergent U(1) × U(1)
symmetry. The Luttinger liquid description of the gapless
regime agrees with the Chern-Simons description of 2D SPT
phases [48]. We numerically study the entire phase diagram
with uniform matrix product states and also find a first-order
transition, making the phase diagram very similar to that of
the XXZ model. We expect our model to capture the generic
boundary phase diagram of the nontrivial 2D bosonic Z2 SPT
phase. In Ref. [49], the authors constructed gapped boundaries
of SPT phases using symmetry extensions. However, we did
not find a natural way to incorporate these symmetry exten-
sions in our minimal effective model for the domain walls.

II. “SEMIONIC” DOMAIN WALLS

We imagine a situation where the Z2 symmetry of a
2D nontrivial bosonic SPT is spontaneously broken on the

boundary. We also assume that the symmetry-breaking-
induced gap is much smaller than the bulk gap. In this case,
the low-energy degrees of freedom will be the domain walls
on the boundary and the dynamics will be effectively 1D. In
this section, we discuss the imprint of the Z2’t Hooft anomaly
on the boundary symmetry-breaking phase.

Based on the group cohomology classification of bosonic
SPT phases [24], a natural guess for the property of the bound-
ary domain walls that distinguishes them from conventional
Ising domain walls is that they have unusual fusion rules. In
particular, if we consider three domain walls localized in some
region, pairwise annihilating the first two or pairwise annihi-
lating the last two gives a relative minus sign. Schematically,

(1, 2)3 = −1(2, 3) , (1)

where we numbered the domain walls and the brackets denote
a pairwise annihilation process. That this is indeed the correct
property of the anomalous domain walls can be verified by the
tensor network constructions of 2D SPT phases [23,50]. The
intuition behind these unusual fusion rules is now, analogous
to Haldane’s argument for the gaplessness of the spin-1/2
chain [15,51,52], that in a path integral representation these
minus signs will lead to destructive interference which pre-
vents the disordered phase from having short-range correla-
tions.

Let us elaborate on why Eq. (1) implies that the domain
walls can be interpreted as semionic quasiparticles. For this,
we consider a state with 2N domain walls. We order the
domain walls and pair them up in neighboring pairs, i.e., we
represent the state as

(1, 2)(3, 4) . . . (2N − 1, 2N ) , (2)

where now we interpret the brackets as indicating that these
domain wall pairs were created together from the vacuum.
This choice of pairing is arbitrary and merely serves as
a reference configuration. Let us now create an additional
domain wall pair. There are two possibilities to do this. The
first is that we create the pair between two other pairs, such
that the state, e.g., becomes

(1, 2)(3, 4)(1′, 2′)(5, 6) . . . (2N − 1, 2N ) , (3)

where we denote the newly created pair with primes. This
state can simply be relabeled to obtain the reference state with
2N + 2 domain walls:

(1, 2)(3, 4)(1′, 2′)(5, 6) . . . (N − 1, N )

→ (1, 2)(3, 4)(5, 6)(7, 8) . . . (2N + 1, 2N + 2) . (4)

The second possibility is that we create the pair in between
two domain walls that were paired up in the reference state. In
that case, we obtain, for example,

(1, 2)(3, 4)(5(1′, 2′)6) . . . (2N − 1, 2N ) . (5)

Now applying rule Eq. (1) implies that this state is equal to

(1, 2)(3, 4)(5(1′, 2′)6) . . . (2N − 1 , 2N )

→ −(1, 2)(3, 4)(5, 6)(7, 8) . . . (2N + 1, 2N + 2) . (6)
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So, we see that the creation of a pair of domain walls at
position x gives a minus sign if the number of domain walls to
the left of x is odd, while we get no minus sign if the number
of domain walls to the left of x is even. This implies that
the creation operator for a single domain wall at site x would
produce a factor of ±i if the number of domain walls to the
left is odd, which agrees with the findings of Ref. [53]. This
justifies the term semionic, which refers to “half-fermion”
statistics.

III. EFFECTIVE MODEL

A. The Hamiltonian

In this section, we construct a 1D effective Hamiltonian
that captures the semionic nature of the domain walls de-
scribed above. As a first step, we recall the Kramers-Wannier
self-duality mapping of the 1D quantum Ising model in a
transverse magnetic field. If we call the original Ising spins
the σ spins, then we can introduce τ spins living in between
the Ising spins, which represent domain walls. We use the
convention that a τ spin is zero if its two neighboring σ spins
are equal and is one when its neighboring spins are different.
The Ising Hamiltonian can be written either in terms of the
original σ spins, or in terms of the domain walls represented
by τ spins:

H =
∑

i

−Jσ z
i σ z

i+1 + Bσ x
i ,

↔ H ′ =
∑

i

−Jτ z
i+1/2 + Bτ x

i−1/2τ
x
i+1/2 . (7)

Here τ i represent the Pauli matrices, but acting on the domain-
wall states. The σ spins are taken to live on the integer-
valued lattice sites, while the τ spins live on the half-integer
lattice sites. Under this duality, the ferromagnetic interaction
of the σ spins maps to a chemical potential for the τ domain
walls, while the magnetic field maps to a hopping and pair
creation term for the domain walls. This is easily understood,
since increasing the ferromagnetic interacting suppresses the
existence of domain walls while the magnetic field will flip σ

spins and cause domain walls to be created and move around.
So, H ′ represents the dynamics of domain walls, which can
condense (by lowering their chemical potential) and give rise
to a disordered phase.

To construct a Hamiltonian that has semionic domain
walls, we first keep both the σ and τ spins. Since now our
Hilbert space consists of both the σ and τ spins simultane-
ously, we need a term that enforces the τ spins to represent
domain walls of the σ spins. This is easily done with a Z2

Gauss-law term:

HGauss = −g
∑

i

σ z
i τ z

i+1/2σ
z
i+1 . (8)

The Gauss constraint term commutes with all terms that we
will add to the Hamiltonian later on; so, by taking g > 0
large enough, the low-energy states will live in the subspace
where the τ spins represent domain walls of the σ spins.
This subspace characterized by σ z

i τ z
i+1/2σ

z
i+1 = 1 has a nice

graphical representation. If we represent the σ spins as hor-
izontal links and the τ spins as vertical links, such that we

−

(a)

(b)

FIG. 1. (a) Graphical representation of the state
|01̃11̃00̃01̃10̃10̃11̃0〉, where j̃ denote the τ spins and j denote
the σ spins. (b) Action of the Hamiltonian term HDyn on states in the
subspace satisfying σ z

i τ z
i+1/2σ

z
i+1 = 1.

obtain a 1D lattice that is a sequence of coordination number
three vertices, then the low-energy subspace is in one-to-one
correspondence with all coverings of this lattice with strings
that end on the vertical links. The precise correspondence is
that a zero state represents the absence of a string, and the
one state represents the presence of a string. We illustrate this
graphical representation in Fig. 1(a).

The chemical potential term for the domain walls is the
same as in the Ising model:

Hμ = −μ
∑

i

τ z
i+1/2 . (9)

As a final term, we need an analog of the domain-wall
hopping/pair creation term τ x

i−1/2τ
x
i+1/2 of the transverse field

Ising model. Denoting the domain-wall states with {|0̃〉 , |1̃〉}
and the σ -spin states with {|0〉 , |1〉}, we define the term HDyn

by its action on any subsequent τ -σ -τ triplet as

|1̃01̃〉 ↔ −|0̃10̃〉, (10)

|1̃11̃〉 ↔ |0̃00̃〉, (11)

|0̃01̃〉 ↔ |1̃10̃〉, (12)

|1̃00̃〉 ↔ |0̃11̃〉 , (13)

and HDyn is zero on any state that violates the Gauss term.
We give a graphical representation of the action of HDyn in
Fig. 1(b). The only difference between HDyn and the con-
ventional Ising model term τ x

i−1/2τ
x
i+1/2 is the minus sign in

Eq. (10). This term represents the creation of a domain-wall
pair when there are an odd number of domain walls to the left
of it. Equation (11) also represents a pair creation/annihilation
process, but with an even number of domain walls to the left.
The easiest way to see this is to look at Fig. 1(b), and to realize
that the σ spins encode the parity of the number of τ spins to
the left of it. Equations (12) and (13) represent domain-wall
hopping.
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We now take the Hamiltonian H to be the sum of all
preceding terms:

H = HGauss + Hμ + HDyn . (14)

We claim that this Hamiltonian captures the universal low-
energy physics at the boundary of the nontrivial 2D bosonic
Z2 SPT phase. In the next section, we first discuss the global
Z2 symmetry of this Hamiltonian. In Sec. V, we numerically
study the phase diagram of H as a function of μ and show that
this model indeed does not have a gapped, disordered phase,
which is the hallmark of the edge physics of a nontrivial 2D
SPT phase. At this point, we also want to mention that for μ =
0, our Hamiltonian H is very closely related to the anyonic
chains that have previously been constructed in the literature
[43,44]. Specifically, our model at μ = 0 can be obtained
by constructing an anyon chain with the F symbols of the
SU(2)1 modular category. However, there is one important
difference compared to the usual anyonic-chain construction.
In Refs. [43,44], the vertical links, corresponding to our
domain wall or τ degrees of freedom, are fixed while here they
are allowed to fluctuate. We will see below that the connection
with the SU(2)1 anyon chain at μ = 0 fits nicely with the
phase diagram we obtain numerically.

B. Z2 symmetry

Although the Hamiltonian in Eq. (14) is very closely
related to the transverse Ising model, it does not have the same
Z2 symmetry

⊗
i σ

x
i . However, H does have a low-energy Z2

symmetry. To expose it, we focus on states in the Hilbert space
that do not violate the Gauss term, i.e., we only consider states
that satisfy σ z

i τ z
i+1/2σ

z
i+1 = 1. We now claim that the relevant

Z2 symmetry is given by

(−1)#strings
⊗

i

σ x
i , (15)

i.e., it flips all the σ spins and adds a minus sign when the
number of strings is odd. Note that we can add the minus
sign before or after flipping all the σ spins, since this does
not change the number of strings. Because the minus sign
commutes with the product of σ x, it is clear that this symmetry
squares to the identity.

The sign (−1)#strings appears to be a very nonlocal operator.
However, we can encode it via local operators by noting
that counting the number of strings is equivalent to counting
the number of right-hand endpoints of strings. A right-hand
endpoint of a string can be detected locally, and we can assign
a minus sign to it using a diagonal matrix for every τ spin and
the σ spin to the left of it. We then let the operator add a minus
sign when both these spins are one, which indeed corresponds
to the situation where a string comes from the left and ends on
that τ spin. Concretely, if we define

CZi = |00̃〉〈00̃| + |10̃〉〈10̃| + |01̃〉〈01̃| − |11̃〉〈11̃| (16)

to act on σ -spin i and τ -spin i + 1/2, then the symmetry can
be written as a product of local matrices as

⊗
i

CZi

⊗
i

σ x
i . (17)

HDyn −

HDyn −−

Symm Symm

FIG. 2. Graphical illustration of the commutation relation be-
tween the Z2 symmetry in Eq. (17) and HDyn. Both paths in the
diagram (first HDyn, then the symmetry, and vice versa) commute.

Using the graphical representation one can easily check that
this operator commutes with HDyn, as we illustrate in Fig. 2.
The operator Eq. (17) also trivially commutes with Hμ.

There are a few important points we need to clarify about
the Z2 symmetry. The operators

⊗
i CZi and

⊗
i σ

x
i do not

commute. As a result, the operator in Eq. (17) does not square
to the identity and does not truly represent a Z2 symmetry.
It is only when we project into the low-energy subspace
satisfying the Gauss constraint σ z

i τ z
i+1/2σ

z
i+1 = 1 that it acts

as in Eq. (15), and is a true Z2 symmetry. If we take the
tensor product of local matrices in Eq. (17) and project it into
the subspace satisfying the Gauss term, then we end up with
a nonlocal MPO representation of the Z2 symmetry. So, the
correct statement is that the Hamiltonian we are considering
has a Z2 MPO symmetry in its low-energy subspace satisfying
the Gauss term.

C. Simplified Hamiltonian

The Hamiltonian in Eq. (14) has the clearest physical inter-
pretation in terms of the dual domain-wall variables we used
in the previous sections. However, we can also reformulate
it using only the original σ spins. In these variables, the
Hamiltonian Eq. (14) becomes

H =
∑

i

CZi−1,i+1σ
x
i − μσ z

i σ z
i+1 , (18)

where we introduced the notation CZi j , which is the same
matrix as defined in Eq. (16), but now acting on the σ spins
labeled by i and j. Since we have omitted the domain walls,
we no longer need the Gauss term in the Hamiltonian. In terms
of the σ spins, the Z2 symmetry becomes⊗

i

σ x
i

⊗
i

CZi,i+1σ
z
i . (19)

One can check that this operator, which is now manifestly
a MPO, indeed squares to the identity and commutes with
the Hamiltonian Eq. (18). Because this MPO corresponds to
the nontrivial element in H3(Z, U(1)), the Hamiltonian in
Eq. (18) cannot have a unique, short-range entangled ground
state [23].

IV. CONDENSATION OF DOMAIN WALLS: FIELD
THEORY ANALYSIS

Before discussing our numerical results in the next section,
we first turn to a low-energy field theory analysis. Given that
gapless boundary modes of 2D bosonic symmetry-protected
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phases are known to have a Luttinger liquid description [48],
we expect that if our model has a gapless regime it will flow
to this effective field theory in the IR. Here we follow the
conventional notation (with units such that u = 1) [54], and
write the Luttinger liquid or compact free-boson action as

L0 = 1

2πK
(∂μφ)2 . (20)

The compactification radius of φ is taken to be π . We define
the dual field θ (x) via the relation ∂xθ = ∂tφ/K . Canonical
quantization implies that the boson fields φ and θ satisfy the
commutation relation

[φ(x), ∂yθ (y)] = iπδ(x − y) . (21)

From the canonical commutation relation, it follows that
the operator which shifts φ by a constant α is given by
exp [−i α

π

∫
dx ∂xθ (x)]. The compactification condition on φ

implies that this operator should be the identity operator
when α = π , which implies that θ is also compact with
compactification radius 2π . We can write the Luttinger liquid
Hamiltonian as

H = 1

2π

∫
dx

(
K (∂xθ )2 + 1

K
(∂xφ)2

)
. (22)

From this Hamiltonian, we recognize the R-duality 2φ ↔ θ ,
K ↔ 1/4K of the free-boson Conformal Field Theory (CFT).

As was shown in previous works [42,48,55], in the non-
trivial SPT phase the global Z2 symmetry acts on the fields as

φ → φ + π

2
, θ → θ + π . (23)

From this symmetry action, we see that there exist no Z2

symmetric terms of the form cos(2mφ) or cos(mθ ) with m ∈
Z that we can add to the Luttinger liquid Lagrangian to create
a gap, and at the same time obtain a unique, symmetric ground
state. This is the fingerprint of the ’t Hooft anomaly, which
excludes the existence of a gapped, disordered phase.

The global symmetry operator which implements the shifts
in Eqs. (23) is given by exp (−i

∫
dx[ 1

2∂xθ (x) + ∂xφ(x)]). It
follows that the operator which creates a domain wall at
position x is given by [53]

D̂†(x) = e−i( 1
2 θ (x)+φ(x)). (24)

At this point, we import a result from our numerical simu-
lations presented in the next section. As detailed below, we
find that the translation symmetry of the lattice Hamiltonian
acts an internal Z3 symmetry in the low-energy Luttinger
liquid description. Specifically, our numerics show that under
a translation by one lattice site, the domain-wall creation op-
erator D̂† picks up a phase ei2π/3. This is to be compared with
the Luttinger liquid description of the XXZ spin chain, where
translation symmetry acts as an internal Z2 symmetry in the
effective field theory. The Z3 symmetry action on the domain-
wall creation operator does not allow us to unambiguously
determine its action on the boson fields φ and θ . However,
we do not expect the Z3 symmetry to be anomalous because
the gapped ferromagnetic phase of our lattice Hamiltonian is
translationally invariant. So, we can without loss of generality

take the internal Z3 symmetry to act as [48]

φ → φ , θ → θ − 4π

3
. (25)

The scaling dimension of cos(mφ) is m2K
4 , while the scaling

dimension of cos(mθ ) is given by m2

4K . The most RG-relevant
perturbations of the Luttinger liquid respecting all symme-
tries are therefore given by cos(4φ) and cos(6θ ). So in the
parameter range 1/2 < K < 9/2, the Luttinger liquid has no
symmetry respecting relevant perturbations. The cos(4φ) term
is irrelevant for K > 1/2, while it is relevant for K < 1/2.
So, at K = 1/2, which is the self-dual point of the free-boson
CFT, there is a BKT transition to a gapped phase where the
φ field gets pinned to one of the minima of the cos(4φ)
term. This gapped phase spontaneously breaks the global Z2

symmetry, but preserves translation symmetry. We therefore
identify it with the ferromagnetic phase of our microscopic
Hamiltonian [Eq. (18)] obtained for large μ > 0. From the
perspective of the ferromagnetic phase, the BKT transition
into the Luttinger liquid phase results from the condensation
of Z2 domain walls. As noted above, the Hamiltonian in
Eq. (18) constructed to describe this domain-wall condensa-
tion takes the form of an SU(2)1 anyon chain when μ = 0.
Therefore, it is natural to expect that the BKT transition
in this model will occur at μ = 0, since the self-dual point
of the free-boson CFT is equivalent to the SU(2)1 Wess-
Zumino-Witten CFT. We will confirm this in the next section
containing our numerical results.

The sine-Gordon Lagrangian L0 + gcos(4φ) of course
also describes the original BKT transition in the 2D classical
XY model [56] or 1D quantum XXZ Hamiltonian. However,
there is one important distinction compared to the present
discussion. In the XY model, there is a microscopic U(1)
symmetry on both sides of the BKT transition, which in
the field theory language is associated with the charge Q =∫

dx ∂xφ, i.e., the winding of the boson field. In the Luttinger
liquid phase, there is an additional emergent U(1) symme-
try, with charge Q̃ = ∫

dx ∂tφ. In the semionic domain-wall
Hamiltonian, both U(1) symmetries are emergent and only
present in the Luttinger liquid phase. This distinction does not
appear in the field theory description, however, which captures
the behavior around the Luttinger liquid fixed point. Once
the cosine term becomes relevant, the theory will flow to a
gapped fixed point, where the U(1) symmetry ceases to have
any physical meaning.

V. NUMERICAL RESULTS

In this section, we explore the phase diagram of our effec-
tive model numerically, and confirm the theoretical consider-
ations above. Our simulations were performed using tangent-
space methods for uniform matrix product states (MPS) [57];
in particular, we use the VUMPS algorithm [58] for finding
variational MPS approximations for the ground state of the
Hamiltonian, and apply the quasiparticle excitation ansatz
[59] for computing the low-lying excited states. Because the
framework of uniform MPS works directly in the thermody-
namic limit, we do not experience any finite-size errors, and
the only refinement parameter is the MPS bond dimension.
For simplicity, we simulate the model using the reduced form
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FIG. 3. The phase diagram of the Hamiltonian [Eq. (14)] as
obtained by uniform MPS simulations. Both the ferromagnetic (FM)
and antiferromagnetic (AFM) phases can be understood in the limit
of large |μ| by the relation to the standard transverse-field Ising
model. The semionic nature of the domain-wall hopping and cre-
ation introduces a gapless Luttinger liquid (LL) phase in between;
the transitions are of the BKT type (LL → FM) and first-order
(LL → AFM).

of the Hamiltonian in Eq. (18). In Fig. 3, we summarize the
phase diagram that we have obtained by our simulations.

We start in the ferromagnetic phase (μ > 0). In the limit
of large μ, we recover the standard ferromagnetic transverse-
field Ising model, for which the order parameter 〈σ z

i 〉 signals
the Z2 symmetry breaking. For the Ising model, a variational
MPS simulation generically yields one of the two states
with maximal symmetry breaking; moreover, since these
two ground states are connected by the symmetry operation⊗

i σ
x
i , these two ground states have exactly the same entan-

glement structure. For the nonlocal MPO symmetry [Eq. (19)]
in our model, this is no longer the case as we always find the
same MPS |ψMPS〉 as a variational optimum at a given bond
dimension. The second ground state is found by acting with
the MPO on the first, which increases the bond dimension.
Correspondingly, the entanglement spectra of the two ground
states are different and, in particular, the bipartite entangle-
ment entropy of |ψMPS〉 is smaller. As MPS ground-state ap-
proximations induce a bias towards low-entanglement states,
this explains why we find only one variationally optimal
ground state at a given bond dimension. To characterize the
Z2 symmetry breaking in our simulations, we compute the
quantity λ = 〈ψMPS| O |ψMPS〉1/N , where O is the MPO oper-
ator in Eq. (19) and N is the diverging system size; in uniform
MPS simulations this “overlap per site” is easily computed
directly in the thermodynamic limit. From the inset of Fig. 4,
we clearly see that the Z2 symmetry is spontaneously broken
in the ferromagnetic phase, but that the symmetry breaking
vanishes as μ = 0 is approached.

In a system where different ground states are related
through an MPO symmetry, the elementary excitations have
a topological nature, in the sense that they are created by a
local operator with an MPO string attached [60]. Here, the
MPO string serves as the generalization of the Jordan-Wigner
string in the Ising model. The MPS quasiparticle ansatz is
straightforwardly generalized to the case of MPO strings [60],
and we can compute the excitation energy within the non-
trivial topological sector for every value of the momentum.
In Fig. 4, we plot the spectrum for different values of μ.
Interestingly, the absolute minimum of the dispersion relation
continuously shifts from momentum p = π in the Ising limit
to p = 2π

3 at the critical point where the gap closes. This
tells us that the domain-wall creation operator in a long-
wavelength continuum theory for the gapless phase picks up a
phase ei2π/3 under translation. So, in an effective field theory
description, translation symmetry will act as an internal Z3

symmetry. In the previous section, we used this result in our

FIG. 4. The excitation energy as a function of momentum in the
topological (domain wall) sector for five values of μ (the spectrum is
reflection symmetric for p → −p). Energies were obtained with the
MPS quasiparticle ansatz with an MPO string and bond dimensions
up to D = 100. We observe that the minimum of the dispersion
relation (indicated with the larger symbol) shifts as μ varies, where
the gap closes at momentum ±2π/3 as μ = 0 is approached. In the
inset, we provide the value of λ = 〈ψMPS| O |ψMPS〉1/N as a function
of μ (for system size N → ∞), and we indicate the five points for
which we have computed the spectrum.

Luttinger liquid analysis. Next to the gap closing at p = 2π
3 ,

we also find additional local minima close to momentum zero
and 2π

3 that correspond to the lower edges of the three- and
five-particle continuum, respectively (note that two-kink and
four-kink states do not show up in the topological sector).

From the excitation spectra in the topological sector (kink
sector), we learn that the kink gap closes around μ = 0,
resulting in the condensation of kink-antikink pairs. Because
of the nontrivial fusion properties of these kinks, the result
cannot be an isolated critical point. Rather, the model enters
a gapless phase for μ � 0. The central charge in this phase
can be determined from MPS simulations through the scaling
of the entanglement entropy as a function of the effective
correlation length in the MPS ground-state approximations
(a technique known as finite-entanglement scaling [61,62]).
In Fig. 5, we clearly show that the central charge is c = 1
throughout the gapless phase. The phase transition from this
U(1) phase into the gapped phase for μ > 0 is expected to
be of the BKT type, which we can confirm from the behavior
of the correlation length as the critical point is approached
in the gapped phase. The correlation length is a quantity
that converges slowly with the bond dimension, so we apply
extrapolation techniques [63] for finding the correct value of
the correlation length at each value of μ > 0. In Fig. 6, we
observe that the correlation length diverges exponentially as
log ξ ∝ (μ − μc)−1/2 and find a value for the critical point
that is close to μc = 0.

For large negative μ, we expect to recover the properties
of the antiferromagnetic Ising model, for which the order
parameter is the staggered magnetization 〈(−1)iσ z

i 〉. In Fig. 7
one can see that the staggered magnetization clearly signals
the phase transition into the gapless phase around μ = −0.9,
where it drops discontinuously to zero. This suggests that
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FIG. 5. The bipartite entanglement entropy S as a function of the
correlation length ξ for variational MPS ground states at different
values of μ in the critical region and varying bond dimensions. In the
gapless phase, we consistently find a scaling S = c

6 log ξ + S0 with
values of c around 1, where S0 is a nonuniversal (i.e., μ-dependent)
constant related to the UV scale of the problem. To collapse the data
for different values of μ, we have subtracted S0. Fitting a single line
through all data points, we find c ≈ 1.02 (blue line), in very good
agreement with the effective Luttinger-liquid theory.

the transition is first order, which is confirmed by plotting
the behavior of the correlation length as a function of the
bond dimension in our MPS simulations (inset of Fig. 7).
We observe that the correlation length remains finite upon
approaching the transition from the antiferromagnetic side.
In fact, even arbitrarily close to the first-order transition, the
correlation length in the antiferromagnetic phase remains of
order one.

FIG. 6. The correlation length ξ as a function of μ as the BKT
transition is approached; the values for the correlation length were
extrapolated from MPS simulations up to bond dimension D = 70.
We have fitted (blue line) these values to the form log ξ ∝ (μ −
μc )−1/2; we find a value of about μc ≈ −0.05, which is consistent
with the expected value of μc = 0 given the relatively small bond
dimensions used in our simulations.

FIG. 7. The staggered magnetization ms = 〈(−1)iσ z
i 〉 as a func-

tion of μ; the discontinuous jump clearly signals a first-order tran-
sition. As a further confirmation, in the inset we plot the effective
correlation lengths as a function of the MPS bond dimension D for
different values of μ around the transition (the markers indicate the
chosen values); in the critical region the correlation length grows
indefinitely, whereas in the gapped region it remains clearly finite.

VI. DISCUSSION

1D Hamiltonians with an anomalous Z2 MPO symmetry
have previously been studied in the literature [23,64–66], but
to the best of our knowledge these models do not contain a pa-
rameter that enables a spontaneous breaking of the anomalous
symmetry, and are therefore not based on a physical picture of
the unconventional domain-wall fusion properties. Reference
[27] did construct microscopic models to study domain walls
on the boundaries of SPT states, but only those with fractional
quantum numbers or nontrivial projective representations.
The modified Ising chain is expected to be closely related
to strange correlator partition functions obtained from the
nontrivial bosonic Z2 SPT phase, as studied previously in
Refs. [67–70]. These strange correlator partition functions
have a natural interpretation as loop models [67,68], which
makes them tractable for certain analytical calculations. How-
ever, there is no unique strange correlator partition function,
and different partition functions can give rise to very different
critical behavior. Given the simplicity and associated physical
picture of the modified Ising chain, we expect it to be a
faithful effective model for the boundary of the nontrivial Z2

SPT. It would therefore be interesting to understand whether
the modified Ising chain can be mapped to other (integrable)
models known in the literature. Because of its simplicity, it
might also be worth it to see if it can be realized in cold atom
experiments.

The phase diagram we obtain for the modified Ising chain
is very similar to that of the spin-1/2 XXZ model. Upon vary-
ing the chemical potential for the domain walls, we find three
phases: a ferromagnetic phase, a Luttinger liquid regime, and
an antiferromagnetic phase. The ferromagnetic phase is sep-
arated from the Luttinger liquid by a BKT transition and the
antiferromagnetic phase is separated from the Luttinger liquid
by a first-order transition. In the antiferromagnetic regime,
the correlation length in our model stays order of order one,
even close to the first-order transition into the Luttinger liquid.
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This behavior is again very similar to the XXZ spin chain,
where the correlation length is exactly zero in this regime.
Interestingly, the XXZ Hamiltonian also has a “perturbative”
anomaly that is closely related to the ’t Hooft anomaly of
our model [33,37,38]. The perturbative anomaly in the XXZ
model is associated to translation symmetry, which acts on the
low-energy modes as an effective Z2 symmetry. This anomaly
is the same as the chiral anomaly of the 1D Dirac fermion [36],
and the g ↔ −g anomaly of the SU(2)1 Wess-Zumino-Witten
CFT [38,71]. It is also the same anomaly as the one associated
with the nonlocal MPO symmetry of our model [37,38,69].

Condensation of defects in the order parameter of sponta-
neously broken anomalous symmetries often leads to emer-
gent symmetries. In fact, such emergent symmetries are
one of the hallmarks of deconfined quantum critical points
[18,39,72]. For example, at the proposed deconfined quantum
critical point describing the 2D Néel-VBS transition, there is
an emergent SO(5) symmetry which allows to rotate between
the Néel and VBS order parameters, which should be treated
on equal footing at the transition point [72]. In the 1D model
studied here, there is a U(1) × U(1) symmetry that emerges
after condensing the anomalous domain walls, although there
is no deconfined quantum critical point or a physical interpre-
tation for the emergent symmetry in terms of rotating between
different order parameters. One point to make in this context
is that the emergent U(1) × U(1) symmetry of the Luttinger
liquid, acting as (φ, θ ) → (φ + α1, θ + α2), is closely related
to the self-duality of the free-boson CFT, which interchanges
φ and θ . From the symmetry action Eqs. (23), we see that both
φ and θ can serve as order parameters for the Z2 symmetry,
so it is the self-duality which states the equivalence of these
two order parameters (which signal the breaking of the same
symmetry) at the BKT transition. In the context of deconfined
quantum critical points, recent progress has shown that also
in two spatial dimensions emergent symmetries are often
closely related to dualities, in the sense that knowing dual
formulations of a particular theory can help in understanding
its emergent symmetries [39].

Our construction of the microscopic model can be general-
ized to arbitrary discrete groups, by doing a similar “anyonic-
chain” construction with the group cohomology data instead
of the F symbols of a modular category. As was shown in
Ref. [53] using a field theory analysis, in the case of ZN sym-
metry, the domain walls are expected to have parafermionic
statistics [73]. It would be interesting to understand the
connection between these symmetry-broken phases and the
recently studied parafermionic chains [74,75], which were
argued to also realize BKT transitions [76]. The anyonic-chain

construction, however, is not restricted to Abelian symme-
tries and realizes domain walls which cannot be captured
by the parafermion formalism. In particular, we can even go
back to the original anyonic-chain construction based on F
symbols and ask what is the precise nature of the defects in
the corresponding “symmetry-broken” phases of the nonlocal
MPO “symmetries” [43,44]. These symmetry-broken phases
are closely related to gapped boundaries of 2D topologi-
cally ordered phases. This connection is manifested clearly
in tensor-network representations of the relevant topological
phases, and has been exploited to study anyon condensation
numerically [60,77,78].

VII. CONCLUSION

In this paper, we have constructed a simple spin-chain
Hamiltonian that exhibits an anomalous Z2 symmetry by
explicitly modeling the semion statistics of the associated
Z2 domain wall configurations. The resulting Hamiltonian is
analogous to the Ising model, and shares with it an ordered
ferromagnetic phase and antiferromagnetic phase. However,
due to the anomalous realization of the symmetry, a gapped
disordered phase is ruled out [23]. Instead, we find a gapless
Luttinger liquid phase that is separated from the ordered
ferromagnetic phase by a phase transition of the BKT type,
and from the ordered antiferromagnetic phase by a first-order
phase transition. This model is believed to capture the univer-
sal physics of the boundary of 2D SPT phases.

The reasoning on which this paper is based can also be
applied to the boundaries of 3D SPT phases with discrete
symmetries. In the symmetry-broken phase, the ’t Hooft
anomaly will manifest itself via unconventional properties of
the junctions of domain walls, which again have a natural
interpretation in terms of the group cohomology data specify-
ing the SPT phase. If one could construct an effective model
that captures the anomalous properties of the domain-wall
junctions, then one could perhaps gain some insight into the
boundary phase diagram of 3D SPT phases.
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A L AT T I C E R E G U L A R I Z AT I O N O F
T H E G R O S S N E V E U M O D E L

In this work we construct a lattice regularization of the Gross Neveu model

H =
∫

dx ∑
c

ψ†
c γ0γx∂xψc −

g2
x

2

(
∑

c
ψ†

c γ0ψc

)
(231)

which, as mentioned before has a chiral Z2 and a continuous O(2N) symmetry.

The first step towards this lattice regularisation was already made during Jutho his PhD where he
used the recipe of Kogut and Susskind, where γ0γ5 = σx and γ0 = σz to find the Hamiltonians

H =
1
a ∑

n
∑

c
cn,cc†

n+1,c + c†
n+1,ccn,c +

g2
x

2

(
∑

c
cn,cc†

n,c − cn+1,cc†
n+1,c

)2

(232)

=
1
a ∑

n
∑

c
σn,cσ†

n+1,c + σ†
n+1,cσn,c − g2

xσz,n,cσz,n+1,c (233)

that are respectively in terms of the N fermionic degrees of freedom that satisfy {cn,c, c†
m,c̃} = δc,c̃δn,m

and their hard boson equivalents that satisfy {σn,c, σ†
n,c} = δc,c̃ and [σn,c, σ†

m ̸=n,c̃] = δc,c̃. With this
choice the lattice regularized self interaction term is simply that of the Ising model so that the
elementary excitations are kinks as is to expected from a good lattice regularization of the Gross
Neveu. However, it turns out that this choice breaks the O(2N) so that the kinks are no longer
guaranteed to have the correct degeneracy. The hope was that this degeneracy and the corresponding
symmetry would be restored in the limit g, a → 0 but this did not happen.

After a lot of frustration we later realized that the O(4) symmetry only remains local if we choose
γ0γ5 = σy and γ0 = σx before discretizing the continuum Hamiltonian. This insight lead us to

H =
1
a ∑

n
∑

c
i
(

cn,cc†
n+1,c − c†

n+1,cc†
n,c

)
+

g2
x

2

(
∑

c
i
(

cn,cc†
n+1,c − c†

n+1,cc†
n,c

)
− i
(

cn+1,cc†
n+2,c − c†

n+2,cc†
n+1,c

))2

(234)

which has the correct O(4) symmetry so that it is guaranteed to have the correct kink degeneracies.
An in depth derivation of this Hamiltonian and its relation with topological phases such as those
in the SSH model are described in the 2nd and 3th part of the paper. In the 4th part we identify
the spectrum of the lattice model at large N and find that this reproduces all field theory results.
The 5th part discusses some tensor network tools and in the 6th part these are applied to find the
N = 2 spectrum and discuss the corresponding continuum limit. In the final section we discuss the
entanglement of the groundstate for different couplings, in particular show that the entanglement
spectrum of the interacting theory is simply that of the free Hamiltonian at a finite interval.
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1 Introduction

Lattice field theory, and in particular, lattice gauge theory, has been among the most
successful techniques to probe the non-perturbative behaviour of quantum field theories
(QFTs), such as those appearing in the standard model. The accurate determination of the
proton and neutron masses has been one of the most noteworthy triumphs resulting from
this effort. The default approach is to apply Monte Carlo sampling to the path integral in
discretised Euclidean spacetime [1–5].

In recent years, the use of tensor network methods has been proposed as an alterna-
tive [6], with the promise that these are able to access dynamical information and do not
suffer from sign problems in the case of fermionic densities or far-from-equilibrium situa-
tions [7]. One can apply tensor renormalisation group techniques as an alternative to Monte
Carlo sampling to the path integral in discretised spacetime [8–18]. Alternatively, one can
target the wave functional using a tensor network ansatz and apply variational techniques
using the field theory hamiltonian (where only the spatial dimensions are discretised) [19–
44]. This approach is also closely related to the various experiments and proposals for the
analog or digital quantum simulation of lattice field theory using various platforms such as
trapped ions, superconducting circuits or cold atoms in optical lattices (see ref. [6] and refer-
ences therein). Aside from preliminary explorations of Z2 and U(1) gauge theories in (2+1)
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dimensions [21, 26, 28, 34, 43], most of the tensor network effort has so far been invested
in QFTs in (1+1) dimensions, and in particular the λφ4 model [8, 9, 17, 18, 20, 22, 24] and
the Schwinger model, i.e. (1+1)-dimensional quantum electrodynamics, (as well as non-
abelian generalizations thereof) [19, 23, 25, 27, 29–31, 33, 35–39, 41, 44]. These models are
superrenormalizable, meaning that the coupling constant has a positive mass dimension
and sets the energy scale. The relation between the lattice and continuum parameters is
governed by a limited number of divergent diagrams, and observables converge like power
laws in the lattice spacing a as the continuum limit is approached.

In this manuscript, we use lattice field theory and tensor network tools (numerical and
analytical) to probe the non-perturbative properties of the Gross-Neveu (GN) model [45],
a (1+1)-dimensional model of N massless but interacting fermion flavours, which shares
several non-perturbative features with (3+1)-dimensional quantum chromodynamics (see
refs. [13, 42] for tensor network studies of the closely related Thirring model, an integrable
model for a single massive interacting fermion flavour). The GN interaction has a discrete
chiral symmetry and is marginally relevant, (i.e. renormalisable and asymptotically free).
The interaction term leads to spontaneous breaking of this chiral symmetry and, associated
with this, dynamical mass generation. Here observables converge logarithmically slow as
the continuum limit is reached. This increases the importance of symmetries prohibiting
the presence of other marginally relevant perturbations that could spoil the already slow
convergence. Indeed, it turns out to be crucial to meticulously construct the lattice Hamil-
tonian so as to maximally preserve the symmetries of the field theory, in order to reliably
obtain the continuum limit.

Being a paradigmatic model, the GN model has been the subject of several numerical
and theoretical studies. Theoretical studies have focused on determining the scattering
matrix and full excitation spectrum [46–48], as well as a precise determination of the mass
gap [49–54] using a variety of techniques, including thermodynamic Bethe ansatz, large N
expansions and the variationally optimised renormalisation group. Most numerical lattice
studies use Monte Carlo techniques on the Euclidean lattice, where the fermions are dealt
with by replacing the four point interaction by a coupling to an auxiliary bosonic field (us-
ing a Hubbard-Stratonovich transformation) and integrating out the resulting quadratic
fermion terms, leaving the calculation of the fermion determinant as a computational prob-
lem [55–57]. In particular, there has been interest in the phase diagram at finite tempera-
ture and chemical potential, and the possible existence of an inhomogeneous phase [58, 59].

A lattice prescription of the kinetic term of the fermion model can be obtained using the
Wilson prescription [60] or using the staggered formulation of Kogut and Susskind [61, 62].
The former explicitly breaks the chiral symmetry, resulting in additive mass corrections
that need to be compensated by a properly tuned bare mass term, in order to reach the
continuum limit. Furthermore, the Wilson prescription also leads to Aoki phases [63, 64],
where reflection (parity) symmetry is broken and a pseudoscalar condensate is formed.
Triggered by interest from the optical lattice community, the phase diagrams of this ‘Gross-
Neveu-Wilson’ lattice model and its chiral extension in the limits N →∞ and N = 1 were
studied in recent publications [65, 66], and feature both trivial, topological and symmetry
broken Aoki phases.
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The staggered formulation, on the other hand, exhibits remnant lattice symmetries
which prohibit perturbative mass corrections. For the particular case of a lattice Hamil-
tonian (i.e. continuous time) in (1+1) dimension, this remnant symmetry corresponds to
full translation invariance of the staggered model [62]. Spontaneous breaking of discrete
chiral symmetry can then be related to Peierls dimerisation, so that the GN model with
N = 2 also arises as a continuum description of polyacetylene. In particular, the GN
model provides a good description of the resulting topological soliton (kink) that inter-
polates between the two ground states [67, 68] and which is traditionally described as an
explicit domain wall in the Su-Schrieffer-Heeger (SSH) model [69]. While the GN model
as low-energy field theory in the context of the SSH model is well documented [70], the
reverse direction where the SSH model is used as inspiration to construct a precise lattice
regularisation of the GN model was, to the best of our knowledge, not considered.

The outline of this paper is as follows. Section 2 summarises the field theoretic descrip-
tion of the model. In section 3 we construct the lattice model and discuss the dynamical
mass generation and kink degeneracy from a condensed matter perspective. In section 4, a
large-N mean-field solution is given and found to be consistent with the large N field the-
ory. Section 5 introduces the symmetric uniform matrix product state (MPS) ansatz, which
is then used in section 6 to numerically probe the low-energy behaviour of the model for
N = 2. In section 7, we discuss the continuum limit from the point of view of entanglement.
Finally, section 8 provides a concluding discussion and outlook.

2 Gross-Neveu model in a nutshell

We first provide a short introduction to the GN model and its symmetries before porting
it to the lattice. The Lagrangian density for the GN field theory reads

L =
N∑

c=1
ψ̄ci/∂ψc + g2

2

(
N∑

c=1
ψ̄cψc

)2

(2.1)

where c labels the N different flavours or colours of fermions, ψc is the two-component
Dirac spinor for flavour c, /∂ = γ0∂0 + γ1∂1 and ψ̄c = ψ†cγ

0, where {γµ, γν} = 2gµν and gµν
is the inverse metric tensor.

The model has an obvious SU(N) flavour mixing symmetry that can be extended
to an O(2N) symmetry, which also includes the total U(1) particle number symmetry
and the charge conjugation symmetry (which relates the two disconnected components of
O(2N)). This O(2N) symmetry is made explicit by rewriting the Dirac spinor in terms
of its Majorana components. By choosing a specific set of gamma matrices where both
γ0 and γ1 are strictly imaginary (so that β = γ0 is imaginary and thus antisymmetric,
whereas α = γ0γ1 is real symmetric), the Majorana components correspond to the real
and imaginary components of the Dirac spinor, i.e. ψc = (λ2c−1 + iλ2c)/

√
2 and thus

λ2c−1 = (ψc + ψ∗c )/
√

2 and λ2c = −i (ψc − ψ∗c ) /
√

2, which then yields

L =
2N∑

m=1
λmi/∂λm + g2

2

( 2N∑

m=1
λmλm

)2

(2.2)
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with λ̄m = λT
mγ

0. This formulation shows the explicit invariance under λm → Omnλn for
O ∈ O(2N). Coleman’s theorem for relativistic theories [71], related to the Mermin-Wagner
theorem in condensed matter or statistical physics [72], guarantees that this continuous
symmetry cannot be broken and is thus present in the spectrum of the theory.

The GN model has an additional Z2 chiral symmetry that acts as ψ → γ5ψ and
prohibits perturbative contributions to the condensate σ =

∑
c∈N 〈ψ̄cψc〉, or thus, a per-

turbative mass term. Nonetheless, this Z2 symmetry is spontaneously broken and gives rise
to a non-perturbative mass scale. The effect that the ground state exhibits a dimension-
ful condensate, despite the absence of dimensionful parameters, other than the ultraviolet
(UV) regulator scale, is known as dimensional transmutation. The required renormalization
group (RG) invariant mass scale can be obtained from the β function

β(g) = dg
d logµ = β0g

3 + β1g
5 +O(g7) (2.3)

as

Λ = µe−
∫ g(µ)

β(g)−1dg = µ
(
−β0g

2
) β1

2β2
0 e

1
2β0g2

[
1 +O(g2)

]
(2.4)

where µ is the regulator scale. This mass scale Λ is only an infrared (IR) scale for asymp-
totically free theories (β0 < 0). Furthermore, the mechanism by which it enters the IR
theory (if any) must necessarily be non-perturbative. For the O(2N)-symmetric GN model,
the first terms in the β function were calculated to be β0 = −N−1

2π and β1 = N−1
4π2 [73, 74].

The condensation of σ gives rise to a rich spectrum of massive particles [46, 48, 75, 76].
Given the O(2N) symmetry, some understanding of the representation theory of the corre-
sponding Lie-algebra so(2N) is useful to label this spectrum. There are two distinct fun-
damental (half) spin representations of dimension 2N−1, which are transformed into each
other by conjugation or by application of a reflection element from O(2N) (determinant
−1). The other fundamental representations r = 1, . . . , N − 2 are tensor representations,
with r = 1 the defining (vector) representation. We also refer to the spinor representa-
tions as projective representations, which generalise the concept of ‘representations up to
a phase’ — as opposed to linear representations such as the tensor representations — to
arbitrary groups.

The spectrum of the GN model contains both trivial and topological excitations, i.e.
kinks that interpolate between the two vacuum states. Unlike in conventional (i.e. Ising-
type) Z2 symmetry breaking, where the kink from one vacuum to the other is unique, in
the case of GN the kinks are of the Callen-Coleman-Gross-Zee type [77] and bind massless
fermions. They transform according to the fundamental spinor representations [47]. This
is similar to Jackiw-Rebbi kinks [78] and we will interpret this from a condensed matter
perspective as the protected gapless edge modes on the interface between a trivial and SPT
phase, when constructing the lattice model. Trivial elementary excitations are labelled by
a principal quantum number n = 1, . . . , N − 2 and have a mass mn relative to the kink
mass mK given by [48, 75]

mn = 2mK sin πn

2N − 2 (2.5)
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For every n, there are multiplets of these excitations labeled by r = n, n− 2, . . . ,≥ 0, the
linear fundamental representations of so(2N). These multiplets are fermionic (bosonic) for
r (and thus also n) odd (even). The elementary fermion corresponds to n = 1 and thus
transforms according to the defining vector representation of O(2N). An exact result for
the mass of this elementary fermion was derived in ref. [49], namely

m1 = (4e)
1

2N−2

Γ
(
1− 1

2N−2

)ΛMS (2.6)

in terms of a specific choice for the RG-invariant scale ΛMS, known as the modified minimal
subtraction scheme when using dimensional regularisation. Note that for N = 2, the
elementary fermion is not stable and decays into two kinks, i.e. m1 = 2mK . In that case,
eq. (2.6) is providing a definition for (twice) the kink mass mK .

When using a different regularisation scheme, such as the lattice Hamiltonian intro-
duced next, the coupling and its UV dependence differ. As a result, the RG independent
scales Λ defined from eq. (2.4) need to be matched between different regularisation schemes.
In what follows, we obtain ΛMS = 8

eΛlat using an exact solution of the lattice model in
the limit N → ∞. A more standard yet involved Feynman diagram calculation of the
scattering matrix in appendix A proves that this relation is valid for all values of N .

3 Lattice Hamiltonian

To construct a lattice regulated version of the GN Hamiltonian, we follow the staggered
fermion formulation from ref. [62]. While this procedure is well known, we review it with
some detail, in order to properly motivate our lattice proposal for the GN interaction.

One interpretation of the staggering procedure, which is useful for what follows, is to
discretise the two components of the Dirac spinor at positions differing by half a lattice
spacing, i.e. ψc,1(na) → φc,2n/

√
a and ψc,2((n + 1

2)a) → φc,2n+1/
√
a, with a the lattice

spacing. Furthermore, we choose the matrix α = γ0γ1 appearing in the kinetic term of the
Dirac Hamiltonian off-diagonal. With this choice the free massless Dirac Hamiltonian only
couples derivatives of the first component to the second component of the Dirac spinor, and
vice versa. For such terms a symmetric finite difference approximation of the derivative1
leads to e.g.

∫
ψ†c,2(x)∂xψc,1(x)dx→

∑

n

a ψ†c,2

((
n+ 1

2

)
a

)
∂xψc,1

((
n+ 1

2

)
a

)

→
∑

n

a ψ†c,2

((
n+ 1

2

)
a

)
ψc,1((n+ 1)a)− ψc,1(na)

a

→
∑

n

1
a
φ†c,2n+1 (φc,2n+2 − φc,2n) (3.1)

1The staggered fermion formulation is often introduced with the two spinor components discretized at
the same positions and an asymmetric finite difference scheme, e.g. forward for ∂ψ1 and backward for ∂ψ2.
Explicitly shifting the discretisation positions of the two components leads to the same end result, but is
somewhat more aesthetically pleasing, and also clarifies how to deal with terms where both components
(not their derivates) appear on the same position, e.g. ψ†1ψ2.
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Combined with the requirement that α is real to make the O(2N) symmetry explicit (and
thus easier to preserve in the lattice model) leads to α = σx, and the resulting lattice
Hamiltonian is given by

aH =
∑

n

Kn,n+1 (3.2)

with K the (N -flavor) tight-binding or hopping operator

Kn,n+1 =
N∑

c=1
(−i)(φ†c,nφc,n+1 − φ†c,n+1φc,n) =

2N∑

m=1
(−i)χm,nχm,n+1 (3.3)

where we have introduced Majorana modes χm,n as φc,n = (χ2c−1,n + iχ2c,n)/
√

2 to make
the O(2N) symmetry of this lattice operator explicit.

Before adding the GN four point interaction, let us first discuss how to add an explicit
mass term. Having fixed α = γ0γ1 = σx, the field theory allows for any choice β = γ0 =
cos(θ)σy + sin(θ)σz. The original proposal of Susskind in ref. [62] was β = γ0 = σz, which
is then trivially discretised into a lattice mass term on the doubled lattice as

∆
∑

n

(−1)n
N∑

c=1
φ†c,nφc,n (3.4)

with ∆ = ma the mass in dimensionless lattice units. This clearly indicates how one-site
translations on the staggered lattice flip the sign of the mass term, and can thus be related
to a lattice remnant of the discrete chiral transformation ψ → γ5ψ. However, this lattice
term breaks the O(2N) symmetry, as can be made explicit by rewriting it in terms of the
Majorana components.

The alternative choice β = σy yields terms involving both components of the Dirac
spinor on the same position, which can be discretised on our staggered lattice by averaging
one of the two components over the two nearby positions. This gives rise to an alternative
lattice mass term, which takes the form of a staggered hopping

∆
2
∑

n

(−1)nKn,n+1 (3.5)

and thus respects the O(2N) symmetry. This term is well known from the SSH model,
where the alternating hopping strengths result from dimerisation.

On the lattice, these two mass terms, resulting from two different choices for β (and
thus, ultimately, a different choice of basis for the Dirac spinor in the continuum) are not
equivalent. From the periodic table of topological insulators and superconductors [79, 80],
it is well known that the SSH mass term preserves sublattice symmetry (class AIII or BDI),
which gives rise to a protected topological invariant labeled by Z. Sublattice symmetry is
also known as chiral symmetry in that context, but we refrain from using this terminology,
as it is clearly different from the chiral symmetry of the field theory relevant to our study,
and which is broken by either mass term.

Writing the Hamiltonian terms in momentum space after blocking two sites, they take
the form

N∑

c=1

∫ π

−π
Ψc(p)†

(
~d(p) · ~σ

)
Ψc(p) dp (3.6)
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similar to the field theory Hamiltonian but with ~d(p) a periodic function of the lattice
momentum p ∈ [−π,+π) on the blocked lattice. A gapped model has nonzero ~d(p) for all
p. Sublattice symmetry imposes that ~d(k) is confined to a two-dimensional space, and the
topological invariant corresponds to the winding number of ~d(p) around the origin. Both
the kinetic term in eq. (3.2) and the SSH mass term in eq. (3.5) only have non-zero dx and
dy components, in particular dx(p) = sin(p)(1 + ∆

2 ) and dy(p) = (1 + ∆
2 ) + cos(p)(1− ∆

2 ).
They lead to a well-defined winding number, which is non-zero for ∆ < 0 (shifting the unit
cell definition is equivalent to ∆→ −∆), thus indicating a symmetry-protected topological
(SPT) phase protected by either sublattice symmetry or bond-centred inversion, where the
latter is also defined for interacting systems. Susskind’s mass term [eq. (3.4)] corresponds
to dz(p) = ∆ and breaks the topological invariant. In the field theory, the kinetic term has
a single component (i.e. dx(p) = p if α = σx), and so either choice of β is equivalent. While
the winding number is undefined as momentum space is unbounded, topological features
still manifest themselves when considering a domain between positive and negative mass,
which gives rise to gapless edge modes, as described by Jackiw and Rebbi [78]. Hence, the
SSH mass term provides a more faithful lattice description of the massive Dirac field.

We can rewrite the mass term from eq. (3.5) as

∆
2
∑

n

(−1)nKn,n+1 = ∆
2
∑

n

(−1)nΣn,n+1,n+2 (3.7)

with the three-site operator

Σn,n+1,n+2 = K2n,2n+1 −K2n+1,2n+2
2 , (3.8)

which plays the role of a local order parameter, i.e. the lattice equivalent of ψ̄ψ. Whereas
Kn,n+1 has non-zero expectation value even with respect to the ∆ = 0 ground state,
Σn,n+1,n+2 is an absolute measure for the mass condensate. With this, it has now become
straightforward to formulate a lattice Hamiltonian for the GN model,

aH =
∑

n

(
Kn,n+1 −

g2

4 Σ2
n,n+1,n+2

)
, (3.9)

where the interaction coefficient was changed from g2/2 to g2/4 as we associated one
interaction term with every site of the doubled lattice. Doing so, this model has single-
site translation invariance, which corresponds to the lattice remnant of discrete chiral
symmetry, as well as O(2N) symmetry. The projective nature of the O(2N) action on the
single-site Hilbert space, which is discussed in section 5, in combination with translation
invariance enables the application of the Lieb-Schultz-Mattis theorem [81]: this model
cannot have a unique, gapped ground state. It is critical for g = 0, but we expect the
interaction to be marginally relevant and lead to a symmetry broken state for g 6= 0.
The Mermin-Wagner theorem excludes the O(2N) symmetry to be broken, thus leading to
dimerisation, the lattice manifestation of a mass condensate, as the most likely scenario. By
adding an explicit SSH mass term, a two-dimensional phase diagram is obtained, depicted
in figure 1, where the Hamiltonian in eq. (3.9) (i.e. the ∆ = 0 line) can be identified as a
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O(2N) SPT phase trivial phase

c = N

∆

g

Figure 1. Phase diagram of the lattice GN Hamiltonian from eq. (3.9) with additional SSH
mass term from eq. (3.5). The point g = ∆ = 0 is the lattice realisation of the N -flavour free
fermion conformal field theory, which plays the role of a UV fixed point. For negative/positive
mass perturbations the ground state is in a symmetry protected/trivial gapped phase respectively.
The GN model has no explicit mass term and corresponds to a first order phase transition between
those phases, i.e. it has two gapped ground states with zero and non-zero topological invariant
respectively. The continuum limit of the Gross Neveu model approaches the c = N point via the
red arrows, while the black arrows denote the continuum limit of N massive fermions.

first order phase transition between the trivial and non-trivial SPT phase. While this is
somewhat similar to the Z2-symmetry breaking phase of the Ising model being a first order
line between the explicit symmetry-broken regimes with positive and negative longitudinal
field, the topologically distinct nature of the phases at both sides of the transition results in
symmetry fractionalisation in the kink excitations that interpolate between the two ground
states at the first order line.

We confirm that the low-energy behaviour of this lattice model does indeed replicate
all features of the Gross-Neveu field theory in the next sections using a large N calculation
(section 4) and by constructing an MPS ansatz (sections 5 and 6). The MPS ansatz is not
only used for numerical simulations for N = 2, but also provides further insight into the
symmetry structure of the excitation spectrum for general N .

4 Large-N solution

Similar to the original paper of Gross and Neveu [45], we first study our lattice model in
the limit of N → ∞, but within the Hamiltonian formalism. In the limit N → ∞, the
permutation symmetry corresponding to exchanging the different flavours in combination
with monogamy of entanglement [82, 83] can be used to argue that the ground state |Ψ〉
will be a product state over the different flavours, where each flavour is described by the
same state: |Ψ〉 = |φ〉⊗N . The energy of this state is given by

EΨ =
∑

n

(
N 〈φ|kn,n+1 −

g2

4 σ
2
n,n+1,n+2|φ〉 −

g2

4 N(N − 1) 〈φ|σn,n+1,n+2|φ〉2
)

(4.1)

with kn,n+1 and σn,n+1,n+2 the single-flavour versions ofKn,n+1 and Σn,n+1,n+2 respectively.
The GN interaction splits into N terms which act on a single flavour, and N(N − 1) terms
which act across different flavours, and are transformed into a product of expectation values
due to our product state ansatz: correlations between flavours vanish for N →∞. In order
to obtain finite results, we take the limit N → ∞ while keeping λ = g2(N − 1) fixed. As
g2 itself goes to zero, the self-interaction of the flavours vanishes.
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Minimising the energy with respect to φ yields, after adding a Langrange constraint
for the normalisation, a self-consistent eigenvalue problem for the state |φ〉:

∑

n

(
kn,n+1 −

λ 〈σn,n+1,n+2〉
2 σn,n+1,n+2

)
|φ〉 = Eφ |φ〉 (4.2)

where the Lagrange parameter Eφ can be interpreted as the energy of a single flavor, and

EΨ = N(Eφ + λ

4
∑

n

〈φ|σn,n+1,n+2|φ〉2) (4.3)

Assuming a dimerised solution, we set 〈φ|σn,n+1,n+2|φ〉 = (−1)nσ0. The state |φ〉
of a single flavor is now determined as the ground state of the quadratic mean-field (i.e.
Hartree-Fock) Hamiltonian

HMF =
∑

n

kn,n+1 + λσ0
2 (−1)nσn,n+1,n+2 (4.4)

in which λσ0 plays the role of an SSH mass. The mean-field Hamiltonian is diagonalised
by blocking the lattice and going to momentum space, which gives rise to single particle
energies

ε(p) = ±
√

4 sin2(p/2) + λ2σ2
0 cos2(p/2). (4.5)

with, as before, p ∈ [−π,+π) the lattice momentum on the blocked lattice. One can verify
that the self-consistency condition for σ0 is equivalent to minimising EΨ/N = 〈φ|HMF|φ〉+∑
n
λ
4σ

2
0, or thus

eΨ
N

=λ

2σ
2
0 −

∫ π

−π

dp
2π

√
4 sin2(p/2) + λ2σ2

0 cos2(p/2) (4.6)

with eΨ the energy density associated with the sites of the blocked lattice. The value of σ0
is thus determined by the condition

1
λ

=
∫ π

−π

dp
2π

cos2(p/2)√
4 sin2(p/2) + λ2σ2

0 cos2(p/2)
. (4.7)

This can be further expanded as

1
λ

= 1
π

K
(
1− λ2σ2

0
4

)
− E

(
1− λ2σ2

0
4

)

1− λ2σ2
0

4

(4.8)

with K and E the complete elliptic integral of the first and second kind, respectively. An
asymptotic expansion for small λσ0, which is the dimensionless mass and should go to zero
to recover the continuum limit, yields

1
λ

=− 1
2π

[
log

(
λ2σ2

0
64

)
+ 2

]
+O

(
λ2σ2

0 log
(
λ2σ2

0
))

(4.9)
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As a result, the effective fermion mass is in the large-N limit given by

am1 = λσ0 = 8
e exp

[
− π

(N − 1)g2

] (
1 +O(g2)

)
(4.10)

such that m1 is indeed proportional to the RG-invariant mass scale Λ that was introduced
in section 2, with µ = a−1. In particular, by comparing to the N → ∞ limit of the exact
result in eq. (2.6), i.e. m1 = ΛMS, we are lead to conclude that if we define

Λlat = 1
a

(
(N − 1)g2

2π

) 1
2N−2

exp
[
− π

(N − 1)g2

]
(4.11)

then Λlat = 8
eΛMS and thus we should recover

m1/Λlat = 8
e

(4e)
1

2N−2

Γ(1− 1
2N−2)

(1 +O(g2)) (4.12)

in the continuum limit g → 0. However, the N → ∞ solution is in itself not sufficient
to support this conclusion, as other N dependent scale factors might appear. A careful
comparison between Λlat and ΛMS using the fermion-fermion scattering amplitude at finite
N leads to the same result, as explained in appendix A.

Henceforth, we omit the lattice spacing a, as it appears trivially in length or mass
scale quantities and does not directly affect the distance to the continuum limit. So we
stop differentiating between dimensionless lattice and field theory quantities.

5 Matrix product states

For finite N , correlations between the different flavours cannot be ignored, and the ground
state of our lattice model is a fully correlated quantum state, both in the spatial and in
the flavour direction. We now try to approximate this ground state using a MPS ansatz,
which is known to capture the quantum correlations in low-energy states of gapped local
Hamiltonians for quantum spin chains [84]. The MPS ansatz associates with every site n
of such a spin chain a 3-leg tensor A(n) of size Dn−1 × d×Dn, with d the local Hilbert
space dimension of the physical index. The left (respectively right) virtual index of size
Dn−1 (Dn) is then contracted with the right virtual index of the previous (left virtual
index of the next) tensor, resulting in a correlated state whose bipartite entanglement for
a cut between site n and site n + 1 is upper bounded by log(Dn), independent of the
system size (in accordance with the area law for entanglement entropy in one-dimensional
systems [85]). By defining a unit cell, i.e. a periodic n dependence in the tensors A(n), we
can describe quantum states directly in the thermodynamic limit.

Our lattice model is easily translated into a spin chain using a Jordan-Wigner trans-
formation

φc,n =


 ∏

n′<n

∏

c′
σzc′,n′




∏

c′<c

σzc′,n


σ−c,n (5.1)
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where we introduce a linear ordering in the flavour direction c = 1, . . . , N , and thus asso-
ciate N qubits or spins with each site, so that the local Hilbert space dimension is 2N . We
keep these N qubits together (as opposed to treating them as N individual sites) in order
to preserve the O(2N) symmetry and to be able to capture it in the MPS ansatz. Using
this particular ordering in the Jordan-Wigner transformation, the generators of the asso-
ciated Lie algebra so(2N) transform into a sum of one-site operators so that the resulting
symmetry transformations act on-site. The local Hilbert space of a site can be identified
with the direct sum of the two fundamental so(2N) spinor representations (each of which
has dimension 2N−1) with opposite total fermion parity.

In order to construct SO(2N) symmetric MPS,2 the virtual indices of the tensors should
also carry representations of the group [86, 87] and the local tensors A(n) should intertwine
the representation on the right virtual index with the tensor product of the representations
on left virtual and physical index. The representation on the physical index, i.e. the
direct sum of the two fundamental spinor representations, is projective.3 Therefore, if the
right virtual index is associated with a linear representation (i.e. a direct sum of tensor
representations of SO(2N)), then the left virtual index should also be projective (and thus
be composed of spinor irreducible representations), and vice versa. We are thus naturally
led to a two-site unit cell. This is the MPS manifestation of the Lieb-Schultz-Mattis
theorem [88]: MPS represent finitely correlated (and thus gapped) states, and cannot
be simultaneously invariant under translation symmetry and an on-site symmetry whose
physical action is projective. As the on-site symmetry is continuous and cannot be broken,
we thus propose an ansatz for the ground state with a two-site unit cell, in line with the
expected dimerisation:

|ψ[A1, A2]〉 =
∑

~s

(∏

n∈Z
A1,s2nA2,s2n+1 |s2ns2n+1〉

)
= A1 A1A2 A2 (5.2)

We can also formulate MPS-based ansätze for elementary excitations on top of the
ground state [89–91], as well as kink excitations that interpolate between the two ground
states. Both topologically trivial excitations and kinks can be created by modifying a
single tensor (which has an effect on an extended region) and building a proper momentum
superposition (unlike in semiclassical studies where the kinks or solitons are localised in
real-space). The ansatz for kinks, where the two different ground states (corresponding to
a one-site shift of the unit cell) surround the new tensor, is diagrammatically represented as

|Kp〉 =
∑

n



eipn A1 A1A2 A2

+

A1 B2

B1

2n

2n+ 12n− 1

A1




(5.3)

2By working with the representations of the Lie-algebra so(2N), we effectively only impose SO(2N)
symmetry. However, we discuss the role of the additional mirror symmetry that extends SO(2N) to O(2N)
for the particular case N = 2 which was used in our simulations, and find that it is unbroken.

3The spinor representations of (S)O(N) are linear representations of the universal covering group, known
as (S)Pin(N).
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with once again p ∈ [−π,+π) the momentum on the blocked lattice. The new tensors
(labelled Bi) carry an additional leg corresponding to the Hilbert space of the irreducible
representation of the excitation that is being targeted. In the case of kinks, as depicted
here, the two virtual legs of B tensors need to be identical and thus carry the same rep-
resentations, and it follows automatically that physical symmetry sector of the kink states
needs to be a spinor representation. These constructions are well-known in the case of
half-integer spin chains [92], where they also correspond to the renowned result that the
elementary excitations in e.g. the half-integer spin Heisenberg chain are spinors [93, 94].
The analogous construction for topologically trivial excitations on top of a single ground
state illustrates that these are labelled by linear irreducible representations of SO(2N). For
an in-depth review on these excited states and their implementation we refer to ref. [91].

The variational ansatz for excitations gives rise to an energy-momentum dispersion
relation, e.g. EK(p) for the kink state |Kp〉, from which we can extract a range of mass
scales related to its value, inverse curvature and higher derivatives at p = 0, where the
dispersion relation has its minimum. Indeed, by fitting

EK(p) = mK,1

(
1 + p2

2m2
K,2

+ · · ·
)

(5.4)

to the dispersion relation for small values of the lattice momentum p, we obtain two different
mass scales.4 Alternatively, expecting relativistic invariance, we can rewrite this expansion
for the square of the energy as

EK(p)2 = m2
K,1 +

m2
K,1

m2
K,2

p2 + · · · (5.5)

and thus interpret the ratio mK,1/mK,2 as an effective speed of light, which should go to
one if Lorentz invariance is obtained in the continuum limit.

In a theory near a relativistic continuum limit, information about the particle masses is
also encoded in the ground state, more particularly in the spectrum of inverse correlation
lengths. This is true for trivial excitations, by writing two-point correlation functions
using the Källén-Lehmann representation [95]. To extract the kink mass from a correlation
function, one needs to study the correlation of string operators. In the MPS language,
the corresponding inverse correlation length can easily be extracted by studying the mixed
transfer matrix, made from two different ground states. In this particular case, these two
ground states are related by a one-site shift, and we define

mK,3 = − log


ρ




A1 A2

A2 A1




 , (5.6)

with ρ the spectral radius (largest magnitude eigenvalue). The right hand side of this
equation gives an inverse length scale, and requires a (dimensionless) velocity to give an
energy scale. Again we assume this velocity to be one as we approach the continuum

4One could expand further and introduce an arbitrary amount of mass scales.
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limit, and we will directly compare mK,3 as another estimate of the kink mass. Note
that the eigenvectors of the mixed transfer matrix, due to the different nature of the two
legs on which they act, also transform according to spinor representations, reflecting the
spinorial nature of the kinks to which the mixed transfer matrix is related. One could
also calculate the leading eigenvalue in the trivial transfer matrix as an estimate for the
fermionic correlation length an hence inverse fermion mass.

While (inverse) correlation lengths converge slowly as a function of the MPS bond
dimension, a scaling theory for their behaviour was recently developed based on a parameter
δ that quantifies the level spacing in the logarithmic eigenvalue spectrum of the transfer
matrix (which should become continuous in the infinite bond dimension limit). We refer
to refs. [17, 96] and use these techniques to extrapolate reported mass values to the infinite
bond dimension limit.

6 Simulation of the N = 2 mass gap

As a first application of our MPS simulations, we compute the different estimations of the
mass gap mK of the kink that interpolates between the two vacua for N = 2. Hereto,
we first find the optimal MPS representation of the ground state using the “variational
algorithm for uniform matrix product states” (VUMPS) [97], which directly minimises the
energy (density) (i.e. variationally) in the thermodynamic limit.

Our implementation of this algorithm, as well as the algorithm for computing the
dispersion relation using the excitation ansatz, can be found in “MPSKit.jl” [98], an open
source package for MPS algorithms using the scientific programming language Julia. This
package builds upon “TensorKit.jl” [99], a lower level open source package for representing
and manipulating tensors with arbitrary (abelian and non-abelian) symmetries.

Specifically for N = 2, we enforced the tensors to be representations of SO(4), or
rather its universal cover Spin(4). This group is equivalent to SU(2)×SU(2) and irreducible
representations are labeled by a tuple of two SU(2) quantum numbers, i.e. half integers or
integers. The resulting representation is a projective (i.e. spinor) representation of SO(4) if
only one of both quantum numbers is a half-integer. With both quantum numbers integer
or half-integer, a linear (i.e. tensor) representation of SO(4) is obtained. This symmetry
can easily be understood by considering the two sets of generators,

S+ = (S−)† =
∑

n

φ†1,nφ2,n (6.1)

Sz =
∑

n

φ†1,nφ1,n − φ†2,nφ2,n

2 (6.2)

T+ = (T−)† = i
∑

n

φ†1,nφ
†
2,n (6.3)

T z =
∑

n

φ†1,nφ1,n + φ†2,nφ2,n − 1
2 (6.4)

corresponding to rotations in flavour space (odd fermion subspace of single occupancy) and
in some pseudospin space (even fermion subspace of zero or double occupancy), exactly
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Figure 2. Extrapolated mass scales and a fit to small couplings, presented in two different ways.
The linear behaviour in the second panel follows from the leading order contribution in log(mK).
The error bars correspond to the uncertainty in the δ → 0 extrapolations. Fits are made against
the inverse correlation length (mK,3) data and take the form log(mK,3) = log(CΛlat) and C is
consistent with the value predicted by the field theory results up to 4%.

as in the Hubbard model at half filling [100]. The disconnected part of O(4) (or its dou-
ble cover, Pin(4)) is generated by a fermionic particle-hole transformation on one of the
fermion flavours, and has the effect of interchanging the two SU(2) factors. It thus results
in degeneracies between sectors (j1, j2) and (j2, j1), i.e. whenever j1 6= j2, these two repre-
sentations will always come together as (j1, j2)⊕ (j2, j1), where the direct sum constitutes
a proper (linear or projective) representation of O(4). While this extra symmetry is not
enforced on our MPS representation, it does seem to be perfectly preserved in the ground
states we find numerically. Exploiting the Spin(4) ∼= SU(2)× SU(2) symmetry has enabled
us to push the bond dimension to D ≈ 4000.

Using the exact equation for the mass gap [eq. (2.6)], the relation between ΛMS and
Λlat proven in appendix A, and the fact that the kink mass is half the fermion mass for
N = 2, we obtain that the dimensionless mass of the elementary kinks for N = 2 should
approach the value

mK = 8
e

√
e

π

1√
2π
ge−π/g

2 (6.5)

in the continuum limit.
Figure 2 depicts four extrapolated mass scales as a function of the coupling. The

blue dots, referred to as mK,3, i.e. the inverse correlation length extracted from the mixed
transfer matrix, are relatively cheap to compute but require careful extrapolation towards
δ = 0. This extrapolation is illustrated in figure 3. Here, we present a handful of linear
extrapolations for each coupling. One fit considers only the 5 highest bond dimension
simulations, other extrapolations discard the highest bond dimensions and use the 5 next
best bond dimensions. The resulting variation in the extrapolated mass gap gives rise the
error bars depicted in figure 2. In a similar manner, the largest correlation length extracted
from the normal transfer matrix (topologically trivial sector) should be determined by the
fermion mass, and half of this value should also provide an estimate of the kink mass in
the continuum limit. It is depicted by the green dots in figure 2. Note that for large values
g & 4 (which are not relevant for the continuum limit), the fermion mass (as extracted
from the inverse correlation length), is less than twice the kink mass. Hence, at those
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Figure 3. Extrapolation of the inverse correlation length of the mixed transfer matrix (topological
sector), corresponding to the mass estimator mK,3, as a function of δ, the spacing in the logarithmic
spectrum of the transfer matrix [96]. For every value of the coupling g2 we show a handful of linear
extrapolations towards δ = 0 each taking different points into consideration. For example at
g2 = 0.56 we have highlighted the 5 points with highest bond dimension and the corresponding
extrapolation in green. Another extrapolation where we discarded the 4 points with highest bond
dimension is highlighted in red. These extrapolate to slightly different masses which allows us to
estimate the error on the extrapolation that is shown in figure 2.

values of the coupling constant, the lattice model is likely to exhibit a stable particle in
the topologically trivial sector.

The pink and red dots in figure 2 correspond to the gap and inverse curvature obtained
from the excitation ansatz, referred to as mK,1 and mK,2 before. These points converge
more quickly with bond dimensions and require little extrapolation, yet are more costly to
obtain. We have only calculated these points for a selection of couplings. The observation
that the value of the gap, its curvature and the inverse correlation length coincide clearly
shows an emergent Lorentz symmetry with speed of light equal to one, as intended. To
further illustrate this, we plot the kink dispersion relation at g = 1.4 in figure 4 and
compare the dispersion to the relativistic prediction E2

p = m2 + p2. Even for relatively
large lattice momenta up to p ≈ π/2 the correspondence is good. Note that the mass
here is already of the order of 0.4 in lattice units, and we are thus already quite far from
the proper continuum limit. For even larger values of g2, where the mass becomes of the
order of one in lattice units, deviations between the different mass scales can be observed,
as expected.

To compare our mass data to the proposed continuum limit of eq. (6.5), it is useful
to consider the right panel of figure 2 where log(mK) is displayed as a function of 1/g2.
For sufficiently small couplings the logarithm is dominated by −π/g2 resulting in a linear
relation that is ideal for fitting. A fit of the form log(mK) = − π

g2 +log(g)+log (C) is shown
in both panels and we find C ≈ 1.121 for the inverse correlation length data mK,3. This
value compares well with the expected result C = 8

e

√
e
π

1√
2π = 1.092, but shows a small

overshoot of about 3%. Note that the logarithmic contribution to the fit complicates the
fitting process and makes the fit parameter very sensitive to data in the small g regime,
where the masses become extremely small and thus hard to pinpoint exactly. Nonetheless,
we do conclude that this data provides ample evidence for the continuum limit of our lattice
model being well described by the GN field theory, as intended.
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Figure 4. The kink energy as a function of the momentum on the blocked lattice for g = 1.4, as
compared to the corresponding Einstein energy-momentum relation, indicating Lorentz invariance
over a relatively large range of momenta.

7 Entanglement structure of the groundstate

Another advantage of tensor network representations of quantum states is that they give
full access to the entanglement structure of the state, which is an interesting concept in
its own right as it provides an fresh perspective into the quantum correlations of the state
and has thus received a lot of attention lately. In particular, the half-space reduced density
matrix defines the entanglement Hamiltonian HE via

Trhalf space (|Ψ〉 〈Ψ|) = ρ̂ = e−2πHE (7.1)

which for a relativistic field theory is also known as the modular or Rindler Hamiltonian
(corresponding to an accelerating observer). For a conformal field theory (CFT), the
modular Hamiltonian can be mapped back to the original Hamiltonian using a conformal
(logarithmic) transformation. In a gapped theory close to a CFT in the ultraviolet (UV),
we expect the entanglement structure, which is anyway determined by UV modes of the
theory,5 to follow the CFT prediction closely up to length scales of the correlation length.
The logarithmic mapping should thus transform the modular Hamiltonian onto the CFT
Hamiltonian on a finite system with length approximately given by the logarithm of the
correlation length in the system. This argument was recently formalised for CFTs perturbed
by a relevant interaction by Cho, Ludwig and Ryu [101]. In what follows we will first
calculate the prediction for the entanglement spectrum for general N . We will then check
that the prediction matches our simulations for N = 2 despite the marginal nature of our
interaction term.

7.1 General result

Anticipating that the entanglement spectrum corresponds to the CFT spectrum on a finite
system with open boundary conditions, we thus compute the spectrum for N free fermions
(the UV fixed point of our model) on a finite interval of length L. As before, we denote

5This is an example of a ultraviolet-inrared duality; the lowest entanglement modes (dominant singu-
lar values) are related to short-range degrees of the freedom, the infinite abundance of which causes the
divergence of the entanglement entropy in the continuum limit.
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with λm (m = 1, . . . , 2N) the 2N Majorana fields, and with λm,1 and λm,2 their two spinor
components. After partial integration, the CFT Hamiltonian is given by

HE =
∫ L

0

∑

m∈2N
2iλm,1∂xλm,2 (7.2)

Conformal boundary conditions can be of the type

λm,1|0 = λm,2|L = 0 and ∂xλm,2|0 = ∂xλm,1|L = 0 (7.3)

which results in a standing wave expansion with half-integer momenta




λm,1(x) =
√

2
L

∑

k>0
λ̂m,1(k) sin

(
π (k − 1/2)x

L

)

λm,2(x) =
√

2
L

∑

k>0
λ̂m,2(k) cos

(
π (k − 1/2)x

L

) , (7.4)

and which we, in analogy to the boundary conditions on the circle, refer to as the Neveu-
Schwarz type. Other possible boundary conditions are

λm,1|0 = λm,1|L = 0 and ∂xλm,2|0 = ∂xλm,2|L = 0 (7.5)

with resulting standing-wave expansion




λm,1(x) =
√

2
L

∑

k>0
λ̂m,1(k) sin

(
πkx

L

)

λm,2(x) =
√

2
L

∑

k>0
λ̂m,2(k) cos

(
πkx

L

)
+
√

1
L
λ̂m,2(0)

(7.6)

to which we refer as the Ramon type. In both cases, the prefactors where chosen such that
the Majorana modes obey their usual anti-commutation relations

{λ̂(k)m,i, λ̂(l)n,i} = δm,nδk,lδi,j . (7.7)

To construct a Fock space we need to define normal fermionic modes. For k 6= 0 we
can define φ̂m(k) = λ̂m,1(k) + iλ̂m,2(k), which again transform under the fundamental
(i.e. vector) representation of SO(2N). The 2N zero modes λ̂m,2(0) are grouped into N
additional fermions αc with c ∈ 1, . . . , N . In terms of these operators and after proper
normalisation so that Tr(e−2πHE ) = 1, the resulting entanglement Hamiltonian is given by

H(NS) =
+∞∑

k=1

2N∑

m=1

π(k − 1/2)
L

φ†m(k)φm(k) + N

π

+∞∑

k=1
log

(
1 + e−2π π(k−1/2)

L

)
(7.8)

for the Neveu-Schwarz boundary conditions and

H(R) =
+∞∑

k=1

2N∑

m=1

πk

L
φ†m(k)φm(k) + 0

N∑

c=1
α†cαc + N

π

+∞∑

k=1
log

(
1 + e−2π πk

L

)
+ N

2π log(2) (7.9)
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Figure 5. The inverse gap between the first two eigenvalues of the entanglement Hamiltonian in
the trivial sector as a function of L = log(κξkink). The error bars on the singular values are obtained
in a similar fashion to those of the inverse correlation length (see figure 3). The blue line is the
CFT prediction 2

πL and describes the extrapolated data well for κ ≈ 2.83.

for Ramon boundary conditions. Due to the zero modes, all eigenvalues of H(R) will be
at least 2N fold degenerate. In particular, the ground state will be an SO(2N) scalar in
the Neveu-Schwarz case and a direct sum of the two fundamental spinor representations
in the Ramon case. More generally, as higher excited states are obtained by acting with
the vector operators φ†m on those ground states, all eigenspaces of H(NS)

E will transform as
tensor representations, whereas all eigenspaces of H(R)

E will transform according to spinor
representations. It is thus straightforward to relate these two towers of eigenvalues to the
entanglement spectrum obtained across cuts corresponding to virtual bonds with linear
representations (for NS) and with projective representations (for R).

7.2 Numerics for N = 2

For N = 2, the lowest excited state of the entanglement Hamiltonian with NS boundary
conditions, i.e. k = 1 in eq. (7.8) is a (1/2, 1/2) quartet (the SO(4) vector representation)
with gap:

E
(NS)
1 − E(NS)

0 = π

2L (7.10)

Where L = log(κξkink) is the typical length scale of the system after the comformal map-
ping. The free fit parameter κ takes care of setting the UV scale. In figure 5 we show the
inverse gap 1

E
(NS)
1 −E(NS)

0
= 2π

(
log(λ(NS)

1 − λ(NS)
0 )

)−1
as a function of L, with λ(NS)

i the i-th

largest eigenvalue of ρ̂(NS), the reduced density matrix for a cut across the MPS bond with
linear representations. The line corresponds to the prediction 2

πL, and for κ = κfit ≈ 2.83
the data coincides with this prediction.

Filling the k = 1 mode twice results in an energy π
L sextet (the antisymmetric rank-2

tensor representation of SO(4)). There are two possibilities to obtain energy 3
2
π
L , namely

by filling the mode k = 2 (a vector representation), or filling the k = 1 mode with 3
particles (an antisymmetric rank-3 tensor representation, which is equivalent to the vector
representation for SO(4)). For the difference between the ground state energy in the two
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Figure 6. On the right we show the CFT prediction for the gaps in the entanglement spectrum,
for N = 2 and in the limit of large L. The vertical axis is rescaled by π/L. The left and right
towers corresponds to NS and R boundary conditions, respectively. The plot in the left shows gaps
in the entanglement spectrum, relative to the first gap in the NS sector, as extracted from the MPS
representation of the ground state of our lattice model. Error bars are obtained in a similar fashion
to those of the inverse correlation length (see figure 3). For sufficiently small couplings the ratios
converge to those predicted in the right panel. The dotted lines are a guides for the eye. The full
blue line is the prediction for the first gap in the Raymond sector from 7.11.

sectors we find

E
(R)
0 − E(NS)

0 = log(2)
π

+ 2
π

+∞∑

k=1
log

(
1 + e−2π πk

L

1 + e−2π π(k−1/2)
L

)
(7.11)

which can be shown to converge to π
4L for sufficiently large L (or thus, exponentially large

correlation lengths). Here, we have assumed that the same length parameter L can be used
for the two types of boundary conditions (NS or R). These eigenvalues, and a few more,
for both H(NS) and H(R), relative to π/L, are depicted in the right panel of figure 6. In
the left panel we show the corresponding ratios obtained trough extracted MPS data. The
gaps − 1

2π log
(
λi/λ

(NS)
0

)
are rescaled by twice the gap in the NS sector which according

to figure 5 is approximatly π/L. As anticipated, towards the continuum limit (i.e. large
L) all ratios converge to the predicted value. Note, however, that significant lattice effects
for smaller L are present, as the logarithmic mapping in the definition of the modular
Hamiltonian makes it exponentially harder for the entanglement spectrum (as compared
to e.g. the excitation spectrum) to correspond with the continuum limit. In particular,
additional degeneracies between different SO(N) representations which are predicted by
the CFT result are not exactly reproduced away from the continuum limit. Finally, the
predicted value for the gap between the groundstate energies in the Raymond and Neveu
Schwarz sector (cfr. eqs. (7.11) and (7.10)) is also shown; it matches well with the data
even for smaller L where this is not expected.

To further highlight this last peculiar observation, we use the gap between the domi-
nating entanglement eigenvalues in the trivial sector to predict the gap for the topological
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Figure 7. The gap between the two ground states of the modular Hamiltonian as a function of
the squared coupling. The dotted line represents the CFT prediction from eq. (7.11), where L was
eliminated using eq. (7.10), so that no free parameters remain. The error bars and shaded area
correspond to uncertainties in the extrapolated entanglement eigenvalues.
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Figure 8. The bipartite entanglement entropy along the different cuts as a function of the loga-
rithmic length scale L. The error bars are calculated in a similar fashion to those in figure 3. The
curves represent the entropies corresponding to the entanglement spectra predicted from entangle-
ment hamiltonians eqs. (7.8) and (7.9). We find good agreement except for very large L; this is due
to ill converged MPS results, as was also the case in figure 2.

sector, by eliminating L between eq. (7.11) and eq. (7.10). Figure 7 compares this pre-
diction to the actual values of E(R)

0 − E(NS)
0 = − 1

2π log
(
λ

(R)
0 /λ

(NS)
0

)
. We obtain excellent

agreement, even for large couplings far away from the continuum limit, where the CFT
prediction is no longer expected to hold. Indeed, beyond g2 & 4, the correlation length ξ
is less than a lattice site.

Finally, figure 8 shows the scaling of the total bipartite entanglement entropy along
trivial and topological cuts of the MPS as a function of the logarithmic length scale
L = log(κfitξkink). The curves are the predicted entropies calculated from reduced den-
sity matrices corresponding to eqs. (7.8) and (7.9). Again there is good agreement apart
from large L where the MPS results are not sufficiently converged.

8 Discussion and outlook

We have constructed a lattice regulated version of the GN model that preserves the full
O(2N) symmetry, and has a lattice remnant of the discrete chiral invariance. This pre-
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scription differs from the typical regularisation using Wilson fermions (i.e. the Gross-Neveu-
Wilson model, which has recently received attention from the cold atoms community), and
also takes a different prescription for the mass term as proposed in the original staggered
formulation by Susskind. This prescription is well known in the context of the SSH model,
but a Gross-Neveu type interaction resulting from it had, to the best of our knowledge,
not been considered.

By studying this lattice model in the limit of large N — where mean field theory
becomes exact — as well as at N = 2 using MPS simulations, we have established that its
low energy behaviour replicates all the features (and in particular degeneracies) expected
from the field theory. At the same time, we argued how the resulting lattice model lies
at the first order phase transition between a trivial and topological insulator (according
to symmetry class BDI in the ten-fold way), and much of the degeneracies in both the
excitation and entanglement spectrum can be reinterpreted from that perspective. At
the quantitative level, we observed that the non-perturbative behaviour of this marginally
relevant interaction makes it especially challenging to accurately probe the continuum
limit. The mass remains very small for a significant range of the coupling constant, and
then shoots up quickly, so that the regime where MPS can probe the behaviour of the
continuum limit is rather small.

As the spectrum of massive particles becomes more interesting for larger values of N ,
it would be interesting to also study the model in this regime. However, our results on
the entanglement structure indicate why using MPS simulations for larger values of N
is non-trivial. The entanglement structure, and in particular the entanglement entropy, is
dominated by the UV CFT of the model, which is that of N massless free fermions. We thus
anticipate a linear scaling of the entanglement entropy in the number of fermion flavours,
which translates to an exponential scaling in N of the required MPS bond dimension, in
order to obtain similarly accurate results. It is an interesting question whether exploiting
the full (S)O(2N) symmetry of the model could help to overcome this exponential scaling.
However, this first requires that the necessary representation data (Clebsch-Gordan coeffi-
cients and/or 6j-symbols) of (S)O(2N) are computed, as these are less readily available for
general N .

Other potentially interesting directions of further research concern the phase diagram
for finite values of the temperature and chemical potential, which are also within the scope
of MPS simulations [13, 22, 30, 36, 38]. There is active interest in the possible existence
of an inhomogeneous phase at sufficiently large values of the chemical potential [58, 59].
This interest is again spurred by the similarity of the GN model with QCD. Due to the
sign problem, probing the QCD phase diagram with lattice Monte Carlo at moderate den-
sities and with realistic values of the quark masses (the regime interesting for heavy ion
experiments) is near impossible. While an inhomogeneous phase in the GN phase diagram
would result in breaking of translation invariance, a continuous symmetry of the field the-
ory, there might be arguments to believe that the Coleman-Mermin-Wagner theorem does
not apply and the GN model could indeed exhibit such a phase. Coleman explicitly as-
sumed relativistic invariance in his version of the theorem, which is broken by the chemical
potential, whereas more general arguments against continuous symmetry breaking rely on
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the specific dispersion relation and the counting of the would-be Goldstone bosons that
restore the symmetry, which is non-trivial when breaking spacetime symmetries. It would
be interesting to study if MPS techniques can shed a new perspective on this question,
though infinite MPS simulations would also need to choose a particular unit cell and would
also struggle with incommensurate filling fractions.

A final extension, which we explore in a future publication,6 is to apply the discreti-
sation scheme presented in this paper to the chiral extension (with full continuous chiral
symmetry) of the Gross-Neveu model. Preliminary results indicate that the resulting lattice
model has emerging continuous chiral symmetry along a critical line in the phase diagram
that corresponds to a deconfined quantum phase transition.
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A Matching the lattice regularisation with MS dimensional regularisa-
tion

The beautiful result eq. (2.6) of Forgacs et al. [49] gives the exact mass gap for the O(2N)
Gross-Neveu model in terms of ΛMS, where the latter is given by eq. (2.4), but with coupling
g2
MS(µ = 1/a) of the MS-scheme instead of our lattice coupling g2. To relate ΛMS to our

Λlat, one needs to match the dimensional regularisation scheme to our lattice regularisation
scheme. In particular, we require the first coefficient c1 in the expansion

1
g2
MS

= 1
g2 + c1 + c2g

2 + . . . . (A.1)

The standard strategy to obtain such a matching is to compare results for a physical quan-
tity, which by definition should be independent of the particular renormalisation scheme.
We consider the two-fermion scattering S-matrix in the large energy/momentum regime,
where perturbation theory is reliable, and the physics is well described by weakly inter-
acting massless Dirac fermions. Notice that for the lattice regularised version ‘large en-
ergy/momentum’ E means Λlat � E � 1/a, with the first inequality assuring the weakly
interacting regime and the latter inequality assuring the QFT continuum regime. In fig-
ure 9 we display the different Feynman diagrams that contribute up to one loop to this
scattering process. Notice that, as in the original Gross-Neveu paper [45], it is convenient to
decompose the quartic term g2

2

(
ψ̄aψa

)2
in the QFT (2.1) (or −g2

4 Σ2
n,n+1,n+2 in the lattice

6G. Roose et al., in preparation.
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Figure 9. The Feynman diagrams contributing to the two fermion scattering S-matrix up to
second order.

Hamiltonian (3.9)) by introducing a Hubbard-Stratanovich field σ with trivial propagator
−i and interactions:

−gσψ̄aψa in the QFT and g√
2
σΣn,n+1,n+2 on the lattice (A.2)

For reference, we first briefly discuss the computation in the MS scheme. To get the
Feynman rules one first needs the free-field propagator (see e.g. [102])

〈0|T (ψa(x0, x1)ψb(y0, y1)) |0〉 =
∫
d2p

2π2
i/p

p2 + iε
e−ip(x−y) (A.3)

using relativistic notation (with e.g. p2 = p2
0 − p2

1, x = (x0, x1)).
The Feynman rules then read:

1

a

a′

a

a′

k

k′

p k=
i/p

p2 + iε

1

a

a′

a

a′

k

k′

p k
= −i

1

a

a′ b

b′

p

p′

q

q′

a

a′ b′

b

p

p′

q

q′l + p − p′

l

a

a′ b′

b

p
l

l + p′ − p
p′

q

q′
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a′ b′

b

p

p′

q
l

l + q′ − q
q′

a

a′

b

b′

p

p′ + l

p′

q

q′ − l

q′

a

a′

b

b′

p

p′ + l

p′

q

q + l

q′

a

a′

a

a′

k

k′

p

k

= −igδaa′ (A.4)
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With the conventions of [102], writing S = 1+ iT , the tree-level diagram (a) then gives
for iT :

(a) = ig2 × (u(p′)u(p))(u(q′)u(p))︸ ︷︷ ︸
K1

× δaa′δbb′(2π)2δ2(p+ q − p′ − q′)︸ ︷︷ ︸
K2

(A.5)

with the second factor K1 on the first line arising from the projection on the particular
fermion polarisations of the in- and out-modes that we consider, while the third factor K2
(second line) arises from the colour conservation and momentum conservation. Notice that
we do not consider the crossing diagrams for the outgoing legs, which gives terms in iT

proportional to a different colour pre-factor δab′δba′.
Using the standard machinery of dimensional regularisation and ‘Diracology’, we then

obtain for the second diagram (b) in the MS scheme:

(b) = −iNg
4

2π log −(p− p′)2

µ2 ×K (A.6)

with K = K1×K2 the same polarisation factor and colour/momentum conservation factor
as for (a). Furthermore for the diagrams (c) and (d) we find:

(c) + (d) = +i g
4

2π log −(p− p′)2

µ2 ×K (A.7)

Finally one can verify that the individual (logarithmic) UV divergencies in diagrams (e)
and (f) cancel out when summed together. (e)+(f) is therefore scheme independent and
plays no role in the matching. Notice that these separate UV divergencies in (e) and (f)
would require a marginal counter term ∝ (ψaγµψa)(ψbγµψb) which is prohibited by the full
O(2N) symmetry.

Collecting the different terms together we finally find up to order g4 (neglecting scheme
independent terms and terms ∝ δab′δba′):

iT = ig2(1− (N − 1)g2

2π log −(p− p′)2

µ2 )×K (A.8)

for the S-matrix in the MS scheme.
Let us now turn to the computation of the same diagrams, but now with our lattice

Hamiltonian (3.9). As a first ingredient we consider the free-field propagator. From the
free Hamiltonian (3.2) one easily shows:

〈0|T (φm(t)†φn(u)) |0〉 = θ(t− u)
∫ π

0

dk1

2π e
ik1(m−n)−iω(k1)(t−u) (A.9)

−θ(u− t)
∫ π

0

dk1

2π e
ik1(n−m)−iω(k1)(u−t)

with ω(k1) = 2 sin |k1|, the particle energies (in lattice units) corresponding to the momenta
k1 (and we have omitted the colour indices). Using the Fourier representation of the step-
function θ(t) we can rewrite the expression for the propagator above as:

∫ +∞

−∞

dk0

2π

∫ π

−π

dk1

2π

(
θ(k1) i

k0 − ω(k1) + iε
+ θ(−k1) i
k0 + ω(k1)− iε

)
eik

1(m−n)−ik0(t−u) (A.10)
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Notice that here we are not blocking the staggered sites, and the two Dirac spinor compo-
nents now transpire in the two different branches −π/2 ≤ k1 < π/2 and π/2 ≤ k1 < 3π/2
of the (angular) spatial momentum k1 of our single component fermions. In particular,
with the identification of the physical (lattice-independent) momentum

p1 = 2k1

a
(A.11)

we have φ2n+1 ≈ φ2n for small momenta |p1| � 1/a, corresponding to the Fourier
transformed right-handed Dirac component ψR in the Weyl representation, while the
identification

p1 = 2k − 2π
a

(A.12)

gives φ2n+1 ≈ −φ2n for |p1| � 1/a, corresponding to the Fourier transformed left-handed
Dirac component ψL. One can easily verify that these identifications give the correct
positive energy k0 > 0 poles (in lattice units) in the first term of our propagator (A.10)
k0 ≈ a|p1|, both for the right-moving fermions (p1 > 0) and left-moving fermions (p1 < 0),
while the second term of our propagator gives the proper poles for the anti-fermions.

We are now ready to write down the Feyman rules for our Hamiltonian (3.9) with
decomposed interaction term (A.2):

1

a

a′

a

a′

k

k′

p k = i(k0 + 2 sin k1)
k02 − 4 sin2 k1 + iε

1

a

a′

a

a′

k

k′

p k
= −i (A.13)

1

a

a′

a

a′

k

k′

p k

= g√
2
δaa′
(
cos(k1′)− cos(k1)

)
.

Here for the expression of the fermion-propagator we summed the two terms in (A.10).
Also notice the extra momentum structure in the vertex vis-á-vis the vertex rule (A.4)
in the MS-scheme. For small physical momenta p1 (see (A.11) and (A.12)) this structure
simply expresses the fact that the ψ̄ψ term couples the right-handed Dirac components
(k1 ≈ 0) to the left-handed components (k1 ≈ π).

For the tree-level diagram (a) in figure 9 we then find (replacing p→ k and q → h):

(a) = ig2 ×
(
cos(k1′)− cos(k1)

) (
cos(h1)− cos(h1′)

)

︸ ︷︷ ︸
K1

× δaa′δbb′(2π)2δ2(k + h− k′ − h′)/2︸ ︷︷ ︸
K2

(A.14)

Taking into account the different normalisations (e.g. 〈k|k′〉 = 2πδ(k−k′) here, and 〈p|p′〉 =
4πEpδ(p − p′) in the QFT computation) one can show that this reduces to the tree-level
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MS result (as it should) for small momenta |p1a| � 1, either on the right branch from
eq. (A.11) or on the left branch of eq. (A.12). Notice that for a non-vanishing scattering
in this continuum limit, we either need k1, h1′ ≈ 0 (right-movers) and k1′, h1 ≈ π (left-
movers) or the other way around. Since for the remainder we are only interested in the
continuum QFT limit, we can effectively set K1 = 4 and anticipate that k1−k1′ = π+ ∆1,
with ∆1 � 1.

For the loop diagram (b) we then find (with again K = K1 ×K2):

(b) = −Ng
4

2 × I1 ×K (A.15)

where I1 is the loop-integral:

I1 =
∫

d2l

(2π)2

{(
(l0 + ∆0)− 2 sin(l1 + ∆1)

(l0 + ∆0)2 − 4 sin2(l1 + ∆1) + iε

)

×
(

l0 + 2 sin l1

l02 − 4 sin2 l1 + iε

)
(cos(l1 + ∆1) + cos l1)2

}

here ∆0 = k0− k0′ and as we already mentioned ∆1 = k1− k1′−π. By closing the contour
for the l0 integration either in the upper or lower complex plane, and with a proper change
of variables, we then arrive at the following expression for I1:

I1 = i

∫ 0

−π

dl1

2π

{(
−∆0 + 2 sin l1 − 2 sin(l1 −∆1)

(∆0 − 2 sin l1)2 − 4 sin2(l1 −∆1)

)
×
(
cos l1 + cos(l1 −∆1)

)2

+
(

∆0 + 2 sin l1 − 2 sin(l1 + ∆1)
(∆0 + 2 sin l1)2 − 4 sin2(l1 + ∆1)

)
×
(
cos l1 + cos(l1 + ∆1)

)2
}

With some effort one can then finally extract the continuum limit |∆µ| � 1 of this integral,
by isolating the logarithmic divergencies ∆µ → 0 around l1 = 0 and l1 = −π, arriving at
the leading behaviour:

I1 = i

2π
(
4− 12 log 2 + 2 log

(
−(∆02 − 4∆12)

)
+O(∆µ2)

)

Notice that only this leading behaviour corresponds to the Gross-Neveu QFT continuum
limit, the higher order power corrections are specific to the lattice regularisation, in QFT
speak they correspond to irrelevant perturbations of the Gross-Neveu QFT.

Moving over to the loop diagram (c), we obtain:

(c) = −g
4

4 × I2 ×K (A.16)

with now the loop-integral I2 reading (for the case k1′, h1 ≈ 0):

I2 = −
∫

d2l

(2π)2

{(
(l0 −∆0)− 2 sin(l1 −∆1)

(l0 −∆0)2 − 4 sin2(l1 −∆1) + iε

)
×
(

l0 + 2 sin l1

l02 − 4 sin2 l1 + iε

)

× (cos(k1′ + cos(l1 −∆1))× (cos l1 + cos(∆1 + k′))

× (cos l1 + cos(l1 −∆1))
}
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Proceeding in a completely similar fashion as for the computation of I1, we eventually find
the leading continuum behaviour:

I2 = i

2π
(
12 log 2− 4− 2 log

(
−(∆02 − 4∆12)

))
(A.17)

It is easy to show that we get the same term from the diagram (d), while as we explained
above we can forget about the (e) and (f) diagrams for the matching as these diagrams
will be finite and universal for a manifest O(2N) symmetric regularisation scheme like
ours. Collecting all the relevant diagrams we then find for the QFT S-matrix in our lattice
regularisation:

iT = ig2
(

1− (N − 1)g2

2π

(
log

(−(p− p′)2

µ2

)
+ 2− 6 log 2

))
×K (A.18)

where µ = 1/a and we have identified (see (A.11) and (A.12)) the physical momenta and
energies:

∆02 − 4∆12 =
(
(p0 − p0′)2 − (p1 − p1′)2

)
× a2 (A.19)

Finally, we are ready to match the two schemes. By comparing the lattice result in
eq. (A.18) with the MS result in eq. (A.8), and demanding iT = iT we immediately find:

1
g2
MS

= 1
g2 −

N − 1
2π (6 log 2− 2) + . . . (A.20)

and if we plug this result in the definition (2.4) for Λ, we obtain:

ΛMS = 8
e

Λlat (A.21)

by which we have shown explicitly that the matching result based on the large N mean-field
computation of section 4, generalises to any finite N , in particular to N = 2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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The next obvious step was to find a lattice regularization of the Chiral Gross Neveu model. Here,
the impact of the Nielsen Ninoyima theorem is very prominent, because avoiding doublers forces
us to replace the chiral Z2 with translation symmetry which can not be expanded to a continous
U(1) group on the lattice. Consequently we lose the guarantee that there is a gapless mode in the
spectrum of the lattice model. The upshot is that we must either fail to find the correct continuum
limit or that there must exist some other mechanism that provides us with the gapless mode.

The first thing we did was to simply apply our discretisation procedure to the chiral Gross Neveu
field theory. With this we found a Hamiltonian

H =
1
a ∑

n
∑

c
i
(

cn,cc†
n+1,c − c†

n+1,cc†
n,c

)
+

g2
x

2

(
∑

c
i
(

cn,cc†
n+1,c − c†

n+1,cc†
n,c

)
− i
(

cn+1,cc†
n+2,c − c†

n+2,cc†
n+1,c

))2

+
g2

y

2

(
cn,cc†

n,c − cn+1,cc†
n+1,c

)2
(235)

that has a ferromagnetic phase for g2
y ≫ g2

x and a dimerized phase for g2
x ≫ g2

y. The continuum limit
of this lattice model can only be the chiral Gross Neveu model if there is a direct transition from the
ferromagnetic to the dimerized phase which is usually a fine tuned occurance. Indeed, a generic
transition between these two regimes is either first order or via a intermediate phase where both
symmetries are broken or both unbroken.

In the first part of the paper we obtain the phase diagram for large-N via a Slater determinant Ansatz
and find that there is an intermediate phase where both symmetries are spontaneously broken.
However, we also find that the width of this intermediate region is extremely small, so that it is
not inconceivable that it may vanish due to quantum correction which usually destroy order. To
verify this intuition, we performed a careful MPS analysis of the N = 2, case where we obtained the
desired direct transition along which one can take the continuum limit.

In the remainder of the paperv we motivate that this phase diagram is in fact not fine tuned because,
the symmetries of the model exclude a phase where both order parameters are unbroken. Further-
more we find that the kinks in the dimer order parameter carry some localized antiferromagnetic
charge so that restoration of the dimer order due to kink condensation inevitably also leads to
condensation of the ferromagnetic order parameter.
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1 Introduction

Discretizing quantum field theory (QFT) on a lattice in space or spacetime has been a
very successful strategy to study interacting quantum fields using computational methods.
The prevalent approach for the last decades has been to study the partition function of a
quantum field theory, often including interacting gauge fields, on a spacetime lattice using
some kind of Monte Carlo sampling. Indeed, the research field of lattice gauge theory has
been tremendously successful in explaining the hadron masses and various other equilibrium
properties of the standard model [1–3]. More recently, there has been a renewed interest
in quantum fields on a spatial lattice, either for classical simulation using the formalism
of tensor networks, but also for quantum simulation using cold atoms or other discrete or
analogue quantum simulators [4, 5].

While the lattice (both in space and in spacetime) has the advantage of regularizing
the divergences that typically occur as a result of the infinitely many degrees of freedom
in a QFT, it is well known that certain symmetries of the field theory cannot be realized
exactly in the lattice description. The most notorious example is that of chiral symmetry,
which is a continuous U(1) symmetry of the massless Dirac operator in even spacetime
dimensions. Even the discrete Z2 subgroup of the chiral symmetry cannot be implemented
as an on-site symmetry in a local lattice model without causing a doubling of the number
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of Dirac fermions, a result known as (or resulting from) the Nielsen-Ninomiya theorem [6].
By staggering the components of the Dirac spinor, it is possible to remove some of the
doublers (and in particular all of them when only discretizing space in a (1+1)-dimensional
theory) [7]. The staggered model still breaks the full continuous chiral symmetry, but a
single-site shift in the direction of staggering behaves as a discrete chiral transformation
in the low-energy limit. The difficulty of realizing the chiral symmetry on the lattice
is a consequence of the mixed ’t Hooft anomaly [8] between the chiral and charge U(1)
symmetries [9]. Upon gauging the U(1) charge symmetry this ’t Hooft anomaly gives rise
to the Adler-Bell-Jackiw anomaly [10, 11], i.e. after gauging the current associated with the
continuous chiral symmetry is no longer preserved.

In this work, we study the generalized Gross-Neveu (GGN) model in 1+1 dimen-
sions [12]. The GGN model consists of N massless Dirac fermions interacting via two
different interaction terms g2

x(ψ̄ψ)2 and g2
y(ψ̄iγ5ψ)2. When g2

x = g2
y , the interaction terms

preserve the continuous chiral symmetry of the massless Dirac operator. Along this line
with equal couplings, Coleman’s theorem rules out the possibility that the chiral symmetry
is broken spontaneously in (1 + 1)-dimensions. But even despite the absence of Goldstone
modes, the mixed anomaly between the chiral symmetry and the charge conservation
symmetry implies that the theory cannot be trivial in the infrared and must host a massless
mode [8]. Everywhere away from the special line g2

x = g2
y with continuous chiral symmetry,

the remaining discrete chiral symmetry in the GGN Lagrangian is broken spontaneously,
just as in the conventional GN model. The main question we address here is how much
of these features of the continuum GGN model survive after discretizing the theory on a
spatial lattice. Given that many properties of the continuum GGN phase diagram crucially
hinge on the chiral symmetry and its ’t Hooft anomaly, it is a priori not clear that a lattice
discretized model — which breaks the chiral symmetry explicitly due to that same ’t Hooft
anomaly — will reproduce the continuum phase diagram (both at small and large coupling).

Our analysis starts with a mean-field or large-N calculation, which produces two different
phase diagrams for the continuum and the lattice model, but suggests that fluctuations
beyond mean-field theory (or subleading terms in the 1/N expansion) could be able to
remove the apparent discrepancy. A fully unbiased matrix product state simulation for
the N = 2 lattice GGN model confirms this expectation, and produces a phase diagram
which contains a critical line that has the same infrared behaviour as the chiral GN model.
This critical line appears as a Landau-forbidden second order phase transition of the lattice
model which separates two gapped phases with unrelated spontaneously broken discrete
symmetries. We argue that this Landau-forbidden phase transition can occur as a critical
line in the lattice model due to the presence of two different Lieb-Schultz-Mattis (LSM)
obstructions [13–15], which are lattice versions of the continuum ’t Hooft anomalies. One
of these LSM obstructions is related to a lattice version of the mixed ’t Hooft anomaly
between the remaining discrete chiral symmetry and the charge conservation symmetry.
The other LSM obstruction is less well-known, and it relies on a combination of several
different symmetries including charge conjugation and spatial reflection symmetry.

The paper is structured as follows. In the following section, we start by providing a
short review of the (chiral) GN model. More specifically, we highlight some often overlooked
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symmetries of the model and use bosonization to provide a nonperturbative argument for
the existence of a critical line in the phase diagram. In the same section we introduce the
lattice model based on the symmetries that are present in the continuum. Section 3 presents
the mean field solution, which coincides with the large-N limit, for both the continuum
and the lattice model, and discusses its shortcomings. In section 4 we use tensor network
methods to determine the phase diagram of the N = 2 lattice model. The phase diagram
exhibits a critical line between two symmetry broken phases, which we can identify with
the chiral GN QFT in the continuum limit. In section 5, we reinterpret our lattice model
from a condensed matter perspective to further discuss the nature of our critical line in the
context of the LSM theorem. Section 6 summarises our main conclusions.

2 Generalized Gross-Neveu model

We study the generalized Gross-Neveu model [12] with N flavors, which in the continuum
is described by the following action:

S =
∫

dxdt


∑

c

ψ̄ci/∂ψc + g2
x

2N

(∑

c

ψ̄cψc

)2

+
g2
y

2N

(∑

c

ψ̄ciγ5ψc

)2

 , (2.1)

where ψc is the two component Dirac spinor for each of the flavors c = 1, . . . , N . The
matrices γµ satisfy the usual Clifford algebra {γµ, γν} = 2ηµν (we use η = diag(1,−1)) and
are used to define ψ̄c = ψ†cγ

0, /∂ = γµ∂µ, and γ5 = γ0γ1. In the remainder of this section
we review all the symmetries of this action, discuss the phase diagram and re-express the
action in terms of bosonic fields.

2.1 Review of the continuum symmetries

In the general case g2
x 6= g2

y 6= 0, the relevant internal symmetries are:1

SU(N) flavor rotation: ψc → Ucc′ψc′ (2.2)
U(1) charge rotation: ψc → eiθψc

ZD2 discrete chiral transformation: ψc → γ5ψc

ZC2 charge conjugation: ψc → γCψ
∗
c ,

where the unitary matrix γC is defined such that γ†Cγ0γC = −(γ0)T and γ†Cγ5γC = (γ5)T.
Besides these internal symmetries, the action naturally has spacetime symmetries, namely
the full Poincaré group, which includes Lorentz transformations, spacetime translations,
spatial reflection and time reversal. From these, we only highlight the reflection symmetry,
which acts as

ZR2 spatial reflection: ψ → γRψ , x→ −x , (2.3)

where γR satisfies γ†Rγ0γR = γ0 and γ†Rγ5γR = −γ5. A typical choice is γR = γ0.
1The various symmetries also interact. Charge conjugation flips the rotation angle of charge U(1) (and

combines with it into an O(2) group) as well as of chiral (axial) rotation. The discrete chiral transformation
also anticommutes with the spatial reflection (toghether they generate the Pauli group).
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Let us now make a particular basis choice, such that the gamma matrices are given by
the Pauli matrices γ5 = σx and γ0 = σy. In this basis we find that γC = 1 and γR = σy. The
bilinears ψ̄ψ and ψ̄iγ5ψ transform respectively as scalar and pseudoscalar quantities with
respect to both reflection and charge conjugation, whereas both or of course pseudoscalars
with respect to the discrete chiral tranformation.

For g2
y = 0, the charge conjugation action C can be extended to a Z⊗N2 symmetry by

applying it to each flavor separately. Furthermore, this Z⊗N2 symmetry can be combined
with the charge U(1) and flavor SU(N) symmetries into a larger O(2N) symmetry, which
can be made manifest by rewriting the complex Dirac fermions ψc in terms of two real
Majorana fermions: ψc = (χ2c−1 + iχ2c)/

√
2, where χ†c = χc and {χc, χc′} = 2δc,c′ . Similarly,

an enhanced O(2N) symmetry is also present when g2
x = 0. This O(2N) group now contains

the DC symmetry action (generating a Z⊗N2 symmetry group when g2
x = 0), and again the

U(1) and SU(N) symmetry groups. The O(2N) symmetry at g2
x = 0 becomes explicit after

rewriting the complex Dirac fermions ψ′c = exp(iπσx/4)ψc in terms of two real Majorana
fermions: ψ′c = (χ′2c−1 + iχ′2c)/

√
2.

Finally, when the two interaction coefficients g2
x and g2

y are equal, the generalized
Gross-Neveu model is known as the ‘chiral Gross-Neveu model’, which can be interpreted
as a (1+1)-dimensional version of the ‘Nambu-Jona-Lasinio’ model [16, 17]. Here the chiral
symmetry becomes continuous, i.e.

UA(1) : ψc → eiθAγ5ψc (2.4)

becomes a symmetry of the action.

2.2 Phase diagram and bosonization

The phase diagram of the generalized Gross-Neveu (GN) model is well-understood2, and
we review it here. First, for g2

y = 0, the action reduces to that of the conventional GN
model. In this case, the interaction leads to dynamical mass generation for the Dirac
fermions, spontaneously breaking the discrete chiral symmetry, which is characterized by
the fact that the vacuum obtains a chiral condensate: 〈ψ̄ψ〉 6= 0. For g2

x = 0, the situation
is analogous to that of the conventional GN model, as we can transform the g2

x and g2
y

interaction terms into each other with a chiral symmetry rotation, where now the chiral
condensate is characterized as 〈ψ̄iγ5ψ〉 6= 0. As long as g2

x 6= g2
y , the IR physics does not

change if we move away from the lines with either g2
x = 0 or g2

y = 0. In particular, for
g2
x > g2

y , the dynamical mass generation is associated with a chiral condensate 〈ψ̄ψ〉 6= 0,
whereas 〈ψ̄iγ5ψ〉 remains zero (and vice versa for g2

x < g2
y).

Along the g2
x = g2

y chiral line, the IR physics drastically changes due to the presence of
the continuous chiral symmetry, which is a proper symmetry at the quantum level, as no
gauge fields are included. The Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem [25–
27] excludes spontaneous breaking of this continuous chiral symmetry, which automatically
implies that both 〈ψ̄ψ〉 = 0 and 〈ψ̄iγ5ψ〉 = 0. However, despite the fact that there is

2The conventional (g2
x = 0 or g2

y = 0) and chiral (g2
x = g2

y) GN models are even integrable, such that the
entire spectrum can be computed exactly — see e.g. refs. [18–24].
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no chiral condensate along the line g2
x = g2

y , the Dirac fermions nevertheless acquire a
dynamically generated mass.

To better understand the mechanism responsible for dynamical mass generation along
(and close to) the line g2

x = g2
y , it is insightful to consider the bosonized version of eq. (2.1)3.

Here, we only consider the N = 2 case, both for simplicity of the presentation and because
this is also the model that we study numerically (for details of the bosonization procedure
for general N , we refer to [32]). Bosonization allows us to map the fermion action to a
theory of two compact bosons φ1 and φ2 with compactification radius 2π. Under this
mapping, the kinetic term becomes

ψ̄1i/∂ψ1 + ψ̄2i/∂ψ2 →
1

8π
[
(∂µφ1)2 + (∂µφ2)2

]
, (2.5)

and the chiral transformation ψc → eiθAγ5ψc corresponds to a shift of the scalar fields:
φc → φc + θA. The mappings for fermion bilinears are:




ψ̄1ψ1 + ψ̄2ψ2 → − 1

α(cosφ1 + cosφ2)
ψ̄1iγ5ψ1 + ψ̄2iγ5ψ2 → 1

α(sinφ1 + sinφ2) ,
(2.6)

where 1
α is a UV-cutoff. Using these relations, we arrive at the following bosonized action:

S =
∫

d2x
1

8π
[
(∂µφ1)2 + (∂µφ2)2

]
+ g2

x

4α2 (cosφ1 + cosφ2)2 +
g2
y

4α2 (sinφ1 + sinφ2)2 (2.7)

=
∫

d2x
1

8π
[
(∂µφ1)2 + (∂µφ2)2

]
+
g2
x + g2

y

4α2 cos(φ1 − φ2)

+
g2
x − g2

y

4α2 cos(φ1 + φ2)
(
1 + cos(φ1 − φ2)

)
.

If we now write the boson fields as φ1 = θ + ϕ and φ2 = θ − ϕ, then the bosonized action
takes on a particularly simple form:

S =
∫

d2x
1

2πK (∂µθ)2 + 1
2πK (∂µϕ)2 +

g2
x + g2

y

4α2 cos(2ϕ)

+
g2
x − g2

y

4α2 cos(2θ)(1 + cos(2ϕ)) , (2.8)

where K = 2. Along the line with continuous chiral symmetry, i.e. when g2
x = g2

y , this
action describes one interacting boson ϕ, which transforms trivially under the chiral U(1)
symmetry, and one free boson θ, which transforms as θ → θ + θA. The scaling dimension of
cos(2ϕ) is equal to K, so this term is marginal at the classical level (recall that K = 2).
However, cos(2ϕ) becomes relevant at the quantum level because the coefficient of the
(∂µϕ)2 term renormalizes to a value (2πKren)−1 with Kren smaller than two (this can be
seen from the Kosterlitz RG equations [33]). As a result, the cos(2ϕ) term causes the ϕ
field to condense.

3Note that we are using Abelian bosonization in this work. One can also use non-Abelian bosonization [28–
30], which shows that the chiral GN model is equivalent to a SU(N)1 Wess-Zumino-Witten CFT with a JJ̄
deformation [31].
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In the chiral GN model the compact boson θ is gapless because (1) the chiral U(1)
symmetry forbids terms of the form cos(nθ), and (2) θ can not be disordered by proliferating
vortices (i.e. instantons which change the winding of θ). The reason for the latter is that
the charge current in the presence of a spatially varying θ configuration, relative to the
charge current of the vacuum, is given by the Goldstone-Wilczek formula [34]:

Jµ = 2
2πεµν∂νθ . (2.9)

From this relation we see that the electric charge corresponds to the winding of θ along
the spatial direction: Q =

∫
dx ∂xθ/π. As a consequence, vortices in θ are forbidden by

the charge conservation, i.e. by the U(1) charge symmetry. This is a manifestation of the
‘t Hooft anomaly, which rules out a trivial IR fixed point if both the charge and chiral
U(1) symmetries are to be preserved. We thus arrive at the conclusion that the IR fixed
point of the chiral GN model is a single compact boson. This conformal field theory has a
central charge c = 1, instead of c = 2 as for two free Dirac fermions (g2

x = g2
y = 0). This is

a manifestation of the fact that the fermions have acquired a mass.
When moving away from the line with equal couplings the continuous chiral symmetry

breaks down to the discrete chiral symmetry ZD2 . From eq. (2.8), we see that the effective
action describing the IR physics close to the chiral line is

S =
∫

d2x
1

2πK (∂µθ)2 + δ cos 2θ , (2.10)

where we have introduced δ = (g2
x − g2

y)/4α2 and we have dropped an irrelevant term. The
cos(2θ) term in eq. (2.10) is relevant for the same reason that the cos(2ϕ) discussed above
is relevant (the classical value K = 2 gets renormalized to smaller values if δ 6= 0). In
section 4 we will show that we can recover the IR physics described by (2.10) by simulating
the GGN on the lattice, even though we cannot preserve the chiral symmetry explicitly. As
we will see below, one consequence of the loss of continuous chiral symmetry is that the
relation δ = (g2

x − g2
y)/4α2 no longer holds for the parameters of our lattice model, which

we introduce in the next section. Furthermore, on the lattice there are additional irrelevant
perturbations, such that K is not guaranteed to be equal to 2. However, in section 4 we
will show that K approaches 2 in the continuum limit.

2.3 Lattice model

Let us now introduce the specific lattice discretization of the GGN that we will study. We
use a particular realization of the standard staggered fermion discretization [7, 35], where
the two components of the Dirac fermions are defined to live on neighbouring lattice sites.
The free/kinetic part of the Hamiltonian is obtained by using a symmetric finite difference
approximation for the spatial derivative, and by using the same basis choice (γ5 = σx

and γ0 = σy) as in the previous section. In this way, we arrive at the following kinetic or
hopping term on the lattice:

HK = a−1∑

n

Kn,n+1 (2.11)

= −ia−1∑

c

(
ϕ†c,nϕc,n+1 − ϕ†c,n+1ϕc,n

)
, (2.12)
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where n (c) labels the lattice sites (flavors), a is the lattice constant, and ϕ†c,n and ϕc,n are
fermionic creation and annihilation operators satisfying {ϕ†c,n, ϕ†c′,n′} = {ϕc,n, ϕc′,n′} = 0
and {ϕc,n, ϕ†c′,n′} = δc,c′δn,n′ . The kinetic term admits two different mass terms, which,
with our basis choice, are given by

mψ̄ψ → mψ†σyψ → ma(−1)n
(
Kn−1,n −Kn,n+1

2

)
(2.13)

mψ̄iγ5ψ → mψ†σzψ → ma(−1)n (On −On+1) , (2.14)

with On =
∑
c ϕ
†
c,nϕc,n. Note that both mass terms are odd under a translation by one lattice

site, as expected from the fact that a single-site translation should behave as the discrete
chiral transformation in the low-energy limit. The first mass term mψ†σyψ translates
on the lattice to a bond order parameter, which promotes dimerization on even or odd
lattice bonds, whereas the second mass term mψ†σzψ results in a polarization of the lattice
fermions on either the even or odd lattice sites, i.e. it creates an imbalance between the
average occupation of the even and odd lattice sites.

For the discretized interaction terms, we simply take the squares of both possible mass
terms/order parameters. The final lattice Hamiltonian then takes on the following form:

H = a−1∑

n


Kn,n+1 −

g2
x

4N

(
Kn,n+1 −Kn+1,n+2

2

)2

− g2
y

4N (On −On+1)2


 . (2.15)

This Hamiltonian manifestly preserves the internal U(1), SU(N), ZC2 and ZD2 symmetries
of the continuum model, as well as the spatial translation and reflection symmetries. As
mentioned above, the discrete chiral symmetry of the QFT does not act as an exact internal
symmetry, but can be related to one-site spatial translations T in the low-energy limit.
Regarding the reflection symmetry, it should be noted that the lattice exhibits two possible
reflection transformations, namely across bonds and across sites. From the form of γR in
the reflection in the continuum, it can be noted that it interchanges the two components
of the Dirac spinor. As we are using the staggered formulation, this should amount to
interchanging even and odd sites on the lattice, which corresponds to a bond-centered
reflection. A bond-centered reflection n→ 1− n in itself maps Kn,n+1 to −K−n,−n+1, so
we also need to add a local action, such that the φn operators on neighbouring sites acquire
an opposite sign. A local charge rotation exp(inπ

∑
c φ
†
c,nφc) (which acts as the identity

every second site) accomplishes this goal. Below, we denote with RB this bond centered
reflection, including the additional on-site action. A site-centered reflection (including the
same on-site action) can be interpreted as T RB, or thus as the combination of a discrete
chiral transformation and a reflection.

For our MPS simulations, we further transform the lattice fermion Hamiltonian in
eq. (2.15) into a lattice spin Hamiltonian via a Jordan-Wigner transformation, where each
fermion operator is represented in terms of Pauli matrices as

ϕc,n =


 ∏

n′<n

∏

c′
σzc′,n′




∏

c′<c

σzc′,n


σ−c,n , (2.16)
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where σ− = (σx − iσy)/2, and we have introduced a linear ordering for the different flavors.
In a previous work [35], we have numerically studied the two-flavor version of the lattice
Hamiltonian in eq. (2.15) with g2

y = 0 using MPS. We were able to take the continuum
limit of our numerical results and recover some of the QFT results to very high accuracy,
thus confirming the validity of both our lattice Hamiltonian and our MPS methods.

Before concluding our discussion of the lattice Hamiltonian, let us point out a subtlety
about the O(2N) symmetries which are present in the continuum action when either g2

y = 0
or g2

x = 0. If g2
y = 0, then the full O(2N) symmetry of the continuum model is present

in the lattice Hamiltonian, and acts in a local way. This is possible because the O(2N)
symmetry group contains the C symmetry action, which acts locally in the lattice model,
and generates a Z⊗N2 symmetry by acting on each flavor separately if g2

y = 0. Indeed,
this was the motivation for our basis choice of the gamma matrices, where γC = 1. As
explained in the previous section, the continuum model at g2

x = 0 also possesses an O(2N)
symmetry, where now the Z⊗N2 subgroup is generated by acting with the DC on each flavor
separately. The DC symmetry on the lattice, however, does not act locally as it contains
a discrete chiral symmetry action D, which we discussed above. As a result, there is no
lattice analogue of acting with DC on a single fermion flavor. This implies that the duality
for interchanging gx ↔ gy, which exist in the continuum and is generated by applying a
π/2 chiral rotation, does not exist in the lattice model. Despite this shortcoming of the
discretization, we argue below that our numerical results for N = 2 with both g2

x and g2
y

non-zero agree well with the results expected from the continuum model.

3 Large-N solution

In this section we analyse the GGN model in the large-N limit, where mean-field theory
becomes exact. In order to keep this paper self-contained, we first review the large-N solution
of the continuum model. We compare the solutions of the continuum and lattice theories,
and discuss the implications of the broken continuous chiral symmetry on the lattice.

3.1 Continuum model

The Hamiltonian of the generalized Gross-Neveu model in the continuum is:

H =
∫

dx
(
ψ̄iγx∂xψ −

g2
x

2N (ψ̄ψ)2 − g2
y

2N (ψ̄iγ5ψ)2
)
, (3.1)

where, as before, ψ is a 2N -component Dirac spinor. In taking the N →∞ limit we can
exploit the monogamy of entanglement to write the ground state as a product state over
the different flavors: |Ψ〉 = |φ〉⊗N (see e.g. ref. [36]). The energy per flavor of such states is
given by:

E

N
=
∫

dx
〈
ψ̄siγ

x∂xψs −
g2
x

2N (ψ̄sψs)2 − g2
y

2N (ψ̄siγ5ψs)2
〉

− g2
x

2
N − 1
N

〈
ψ̄sψs

〉2
− g2

y

2
N − 1
N

〈
ψ̄siγ5ψs

〉2
, (3.2)
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where ψs is a 2-component single-flavor Dirac spinor. For sufficiently large N the terms
proportional to the expectation values of the fluctuations, i.e. 〈(ψ̄sψs)2〉 and 〈(ψ̄siγ5ψs)2〉,
can be neglected. Varying the energy with respect to the single-flavor wave function while
using a Lagrange multiplier to ensure normalisation, gives the following eigenvalue problem:

∫
dx
(
ψ̄siγ

x∂xψs − g2
xσ ψ̄sψs − g2

yπ ψ̄siγ5ψs
)
|φ〉 = HMF |φ〉 = EMF |φ〉 , (3.3)

where σ and π respectively are the (translationally invariant) expectation values 〈ψ̄sψs〉
and 〈ψ̄siγ5ψs〉, such that these equations have to be solved self-consistently. For now we
can easily diagonalize the effective mean-field Hamiltonian in momentum space and we find
the following single-particle dispersion relation:

εMF(k) = ±
√
k2 + g4

xσ
2 + g4

yπ
2 . (3.4)

The groundstate |Ω〉 of HMF simply corresponds to the filled Dirac sea of the states with
negative energy. We define the effective potential as the energy density of |Ω〉:

Veff(σ, π) = g2
x

2 σ
2 +

g2
y

2 π
2 −

∫ dk
2π

√
k2 + g4

xσ
2 + g4

yπ
2 . (3.5)

Let us now introduce polar coordinates for the order parameters:



σ = ρ cos θ
π = ρ sin θ ,

(3.6)

where we have used, not coincidentally, the same notation as in the bosonization formula (2.6).
Indeed, under chiral transformations the θ field from eq. (3.6) transforms identically to the
θ field introduced in eq. (2.8). Using the ρ and θ variables, the effective potential can be
written as

Veff(ρ, θ) = g2

2 ρ
2 + ∆g

2 ρ2 cos 2θ −
∫ dk

2π

√
k2 + (g4 + ∆g2)ρ2 + 2g2∆gρ2 cos 2θ , (3.7)

where g2 = (g2
x + g2

y)/2 and ∆g = (g2
x − g2

y)/2. Minimizing this effective potential (after
introducing a cutoff Λ) is equivalent to solving the mean-field self-consistency equations.
If ∆g 6= 0, and assuming ρ2 6= 0, one finds that the minima of Veff are located at either
θ = 0, π or θ = ±π/2 because Veff depends only on θ via cos 2θ. Using this fact, we find
from minimizing the effective potential with respect to ρ2 that

ρ2 =





4Λ2

g2x
e−2π/g2x if g2

x ≥ g2
y

4Λ2

g2y
e−2π/g2y if g2

x ≤ g2
y ,

(3.8)

such that σ and π are never simultaneously equal to zero, except when g2
x = g2

y = 0. We
are therefore led to the conclusion that the Dirac fermions acquire a mass for all non-zero
values of the couplings.

A non-zero value for ρ also implies that the chiral symmetry is spontaneously broken.
For the chiral GN model, however, this is an artefact of the large-N limit, as the CHMW
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theorem implies that in 1 + 1 spacetime dimensions fluctuations around mean-field theory
will restore the continuous chiral symmetry at any finite N [37]. However, although the
chiral symmetry is restored beyond mean-field theory, the Dirac fermions nevertheless
remain everywhere gapped. The physical picture is that, at finite N , the field ρ2 = σ2 + π2

retains a non-zero expectation value, thus providing a mass scale for the fermions, while at
the same time, the long-range order for the θ field in mean-field theory is replaced with
quasi-long range or algebraic order at finite N . The effective IR action describing these
fluctuations is exactly the compact boson introduced previously in eq. (2.10).

3.2 Lattice model

Let us next perform the mean-field analysis of our proposed lattice version of GGN model.
Once again we exploit the monogamy of entanglement and calculate the energy of the
groundstate with respect to the states |Ψ〉 = |φ〉⊗N :

〈H〉
N

=
∑

n

〈
kn,n+1

〉− g2
x

2
〈
σn,n+1,n+2

〉2 − g2
y

2
〈
πn,n+1

〉2
, (3.9)

where we have already neglected terms proportional to expectation values of fluctuations
and introduced the following shorthand notations:

kn,n+1 = −i(ϕ†c,nϕc,n+1 − ϕ†c,n+1ϕc,n) (3.10)

σn,n+1,n+2 = 1
2(kn,n+1 − kn+1,n+2) (3.11)

πn,n+1 = ϕ†c,nϕc,n − ϕ†c,n+1ϕc,n+1 . (3.12)

Variation with respect to the single-flavor wave function while using a Lagrange multiplier
to ensure normalisation, gives the following eigenvalue problem

∑

n

(
kn,n+1 − g2

x 〈σn,n+1,n+2〉σn,n+1,n+2 − g2
y 〈πn,n+1〉πn,n+1

)
|φ〉 = EMF |φ〉 , (3.13)

similar to what we found in the continuum model. We are interested in states with a two-site
unit cell. Consequently, we diagonalize (3.13) under the conditions that 〈σn,n+1,n+2〉 =
(−1)nσ and 〈πn,n+1〉 = (−1)nπ. The resulting single-particle dispersion relation is very
similar to that obtained for the continuum model in eq. (3.4):

εMF(k) = ±
√

4 sin2 (k/2
)

+ g4
xσ

2 cos2 (k/2
)

+ g4
yπ

2 , (3.14)

and leads to the following effective potential for σ and π:

V L
eff(σ, π) = 〈H〉

NsN
= g2

x

2 σ
2 +

g2
y

2 π
2 −

∫ π

−π

dk
2π

√
4 sin2(k/2) + g4

xσ
2 cos2(k/2) + g4

yπ
2 , (3.15)

where Ns is the number of lattice sites. In contrast to the continuum effective potential in
eq. (3.5), the lattice effective potential is never invariant under continuous chiral rotations,
i.e. rotations in the (σ, π) plane. As we will now argue, this has some non-trivial implications.
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Figure 1. (The colorscale and y-axis is the same for all three figures). The effective potential
Veff(σ, π) of the lattice model as a function of σ and π for three different combinations of the coupling
constants. All figures have g2

x = 6.0 but g2
y is taken from 2.6 to 2.8 and finally to 3.2. These

couplings are chosen so that the leftmost figure sits in the bond density wave phase, where the
effective potential has two minima with nonzero σ. The second figure represents the coexistence
region where both order parameters are nonzero. Note that in this coexistence region the effective
potential is close to spherically symmetric even this far away from the continuum limit. Finally, we
show the effective potential for a value of g2

y where the minima are found for nonzero π and the
groundstate has a sublattice-polarized fermion occupation.

Most notably, we will find that the absence of continuous chiral symmetry leads to a different
mean-field phase diagram on the lattice as in the continuum.

For g2
x � g2

y , V L
eff is shown in the left panel of figure 1, where we find two mimima

along the π = 0 axis. Increasing g2
y eventually brings us into a coexistence region where

both σ and π are non-zero, corresponding to four distinct minima in the effective potential
as shown in the central panel of figure 1. Further increasing g2

y gradually moves the four
minima towards the σ = 0 axis and eventually causes them to merge in pairs on said axis.
The resulting mean-field phase diagram is shown in figure 2. In figure 3, we plot both σ
and π along a cut of constant g2

x = 6. This plot clearly shows the coexistence region where
both σ and π are non-zero. Fig. 3 also reveals that both σ and π change continuously as
a function of g2

y , which implies that the coexistence region is bounded by two mean-field
Ising transitions.

In the second panel of figure 3 we plot the width of the coexistence region along g2
y as

a function of g2
x. Interestingly, we find that this width becomes extremely narrow for small

couplings. In particular, the width decays exponentially according to ∆g2
y ∝ g2

xe
−2π/g2x .

This suggests that fluctuations beyond mean-field theory can have a non-trivial effect on
the phase diagram. Generically, the only effect of fluctuations on a continuous mean-field
transition consists of slightly shifting the location of the transition and changing the critical
exponents. Here, however, because we have two mean-field transitions that are exponentially
close to each other in parameter space, it is conceivable that quantum fluctuations can
cause them to merge into a single transition. One reason to expect this is that quantum
fluctuations generically tend to restore the symmetry and thus increase the extent of the
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Figure 2. The value of the order parameters σ (left) and π (right) that minimize the large-N
effective potential V Leff(σ, π) as a function of the two couplings g2

x and g2
y.
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y

0.0

0.2

0.4
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0.8
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π
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0.6

∆
g
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c
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t

Figure 3. The left panel depicts the behavior of the order parameters σ and π throughout the
phase transitions for fixed g2

x = 6. Here we can clearly see that there is a coexistence phase where
both order parameters are nonzero. The right panel plots the width of this coexistence region as a
function of g2

x. The fitted curve is of the form ∆g2
y ∝ g2

x exp(−2π/g2
x).

symmetric (i.e. disordered) phase in favor of the symmetry broken phase. Applied to our
setting, this implies that the two phase boundaries of the coexistence region, which are
already exponentially close in mean-field theory, will be pushed even closer together by the
quantum fluctuations. In the following section, we will simulate the N = 2 GGN model
with MPS and show that the coexistence region indeed disappears in favor of a direct
continuous transition.

To summarize, we have found that, although a large-N or mean-field analysis can be
used to correctly capture the physics of dynamical mass generation in the GN model (both
in the continuum and on the lattice), near the line with continuous chiral symmetry one is
nevertheless forced to go beyond mean-field theory. In the continuum, quantum fluctuations
are necessary to restore the broken continuous chiral symmetry, whereas on the lattice
these same fluctuations are required to merge the two mean-field Ising transitions into
a single c = 1 CFT. It is interesting that even though the quantum fluctuations play a
different physical role in the continuum and on the lattice, they ultimately give rise to the
same physics.

4 Matrix product state simulations at N = 2

This section presents the results of our numerical simulations of the N = 2 GGN model with
tensor networks. We use matrix product states (MPS) [38] as a variational class of states for
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approximating the ground state of the lattice Hamiltonian in eq. (2.15) at different values for
(g2
x, g

2
y). More specifically, we work with infinite MPS with a two-site unit cell and use the

VUMPS algorithm [39] to find a variationally optimal ground-state approximation directly
in the thermodynamic limit. We have explicitly encoded the SU(2)⊗U(1) symmetry into
the MPS tensors, allowing us to reach much higher accuracy.4 The only approximation in
our simulations comes from the finite MPS bond dimension D, which controls the amount
of quantum fluctuations that are taken into account. The bond dimension D corresponds
to a truncation of the Schmidt spectrum at a certain treshold ε along any cut in the MPS.
In our simulations, we set this truncation threshold ε to a fixed value (which indirectly
determines D), extract an effective length scale associated to this truncation [42, 43], and
use this scale to extrapolate our results to the infinite-D limit. We estimate the error on
the extrapolation as the change in its value when the highest bond dimension ground state
is discarded from the extrapolation procedure. For more details concerning the numerical
procedures, we refer to our previous paper, where we applied the same MPS techniques to
the conventional GN model [35].

To get a first rough idea of the location of the phase transition for N = 2 we have
scanned the parameter space using MPS with truncation error of the order ε ≈ 10−4.
The corresponding bond dimensions range from D ∼ 10 for points far from criticality to
D ∼ 120 for points close to criticality. The resulting approximate phase diagram is shown
in figure 4. We clearly find two large different regions characterized by either σ = 〈ψ̄ψ〉 6= 0
and π = 〈ψ̄iγ5ψ〉 = 0 or σ = 0 and π 6= 0. For these low values of the MPS bond dimension,
we also find a small coexistence region, where both expectation values are nonzero, in line
with the lattice mean-field results from the previous section.

Let us now focus on a particular cut g2
y = 0.77− 1.94(g2

x − 1.96), indicated by the full
white line in figure 4, through the phase transition and check whether the two mean-field
Ising transitions and the coexistence region in between survive, or whether these transitions
actually merge into a single continuous transition. In the left/right panel of figure 5 we
respectively show the two order parameters/inverse correlation length (1/ξ) as g2

x is tuned
along the cut. To each of these quantities, we fit a power law and extract a value for the
critical point, resulting in values g2

x = 1.929 (for σ), 1.930 (for π) and 1.929 (for 1/ξ) that
agree reasonably well, thus indicating a direct transition.

To further confirm the scenario of a direct transition, we now try to verify that, close
to the critical line, we recover a compact boson theory in the infrared so that the transition
has central charge c = 1. For compact bosons, the scaling dimensions of operators einθ are
well known (see e.g. ref. [44]), and are given by ∆n = n2K

4 . The scaling dimensions of the
operators relevant to our discussion, i.e. the operator driving the phase transition (cos 2θ) and
the order parameters (cos θ and sin θ), are respectively ∆pert = K and ∆order = K/4. From
this we find that the critical exponents for the correlation length ν and order parameter β are

ν = 1
2−K , β = K

8− 4K . (4.1)

4Our implementation of the MPS algorithms can be found in the Julia package “MPSKit.jl” [40], whereas
the (non-abelian) symmetric tensor operations are performed using the “TensorKit.jl” [41] package.
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Figure 4. The phase diagram as computed with infinite MPS with truncation error ε ≈ 10−4. We
show the expectation value of the σ (left) and π (right) order parameters as a function of g2

x and g2
y.

The full white line indicates the cut that we will analyse in detail below, the dotted lines depict
lines we used to study the scaling of K towards the continuum limit.
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Figure 5. (Left) The extrapolated order parameters σ and π (plotted in orange and blue respectively)
as g2

x and g2
y are tuned to take us trough the transition along g2

y = 0.77− 1.94(g2
x − 1.96). (Right)

The extrapolated inverse correlation length for the same couplings. The highest bond dimensions
used for these simulations are of the order 1100. The continuous lines represent four independent
power-law fits to the numerical data (for σ, π, and for both sides of ξ−1 separately).

Using these relations, we obtain four different estimates for K at the point (g2
x, g

2
y) ≈

(1.93, 0.83), corresponding to the critical exponents ν for both order parameters and two
critical exponents for the correlation length, i.e. one for either side of the phase transition.
The four values for K we obtain in this way are respectively K = 1.351, 1.381, 1.351 and
1.267, and agree reasonably well with each other.

Finally, we note that extracting K via the scaling of the order parameter or correlation
length is numerically very costly due to the fact that we need many data points close to
the transition to accurately fit the critical exponents. Alternatively, we can also obtain
K directly from the two-point function of the operators eiθ = σ+iπ√

σ2+π2 at the critical line,
which at large distances should fall off as

〈eiθ(x)e−iθ(x
′)〉 ∼ 1

|x− x′|K/2 . (4.2)

In the left panel of figure 6 the two-point function of the data point closest to the extrapo-
lated critical coupling (g2

x, g
2
y) ≈ (1.93, 0.83) is shown. The different colors correspond to

decreasing values of the MPS truncation threshold. We have fitted a power law to the data
with the highest bond dimension, and find a value K ≈ 1.257, again consistent with the
previous methods.
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Figure 6. (Left) The two-point correlator of the eiθ field at transition for the data point closest to
the transition i.e. (g2

x, g
2
y) ≈ (1.93, 0.83). The exponent for the fitted decay is K ≈ 1.257 consistent

with all previous estimates. (Right) The logarithmic derivative of the two point function, using a
finite difference estimator of the data in the left panel. For the larger bond dimensions we see a
plateau spanning over roughly 80 sites; the value of this plateau coincides with K. In both figures
the different colors correspond to decreasing values of the MPS truncation threshold, which are
shown on the right.

In order to make the algebraic decay more clear from the MPS data, in the right panel
of figure 6 we show the logarithmic derivative of the two-point function, i.e.

η(x) := −2
d
(
log |〈eiθ(0)e−iθ(x)〉|

)

d log x , (4.3)

where again the different colored points correspond to increasing bond dimensions. For
the smallest bond dimensions η(x) is monotonically decreasing, corresponding to faster
than algebraic decay. However, for the larger bond dimensions we can clearly identify
a range where η(x) is constant, corresponding to a range of algebraic decay; the value
for K can now simply be read off as the value of η(x) at the plateau. We estimate the
error for K by considering the standard deviation σK away from the plateau value ηp, i.e.
σ2
K = 〈(η(x)− ηp)2〉, calculated using the data points near the centre of the plateau. Using

the plateau in η(x) obtained at the largest bond dimensions, we find K = 1.3944± 0.0006.
Note that the value for K extracted from η(x) (K = 1.394) is slightly different from the
value we previously obtained via the direct fit in the leftmost plot of figure 6 (K = 1.257).
The value obtained from η(x) is less prone to fitting errors, and it also agrees better with
the previous estimates for K based on the scaling behaviour of the order parameters and
the correlation length.

Finally, to establish a critical continuum limit we need to study the running of K as
we move towards g2

x = g2
y = 0 along the critical line. To do this, we studied four additional

cuts g2
y = 1.47 − 1.65(g2

x − 6.25), g2
y = 0.81 − (g2

x − 0.81), g2
y = 0.49 − (g2

x − 0.49) and
g2
y = 0.42− (g2

x − 0.42), indicated by the dotted white lines in figure 4. For these cuts, we
first estimate the position of the critical point from low bond dimension MPS calculations
of the order parameters, and then estimate K by identifying the plateaus at the transition
point. These plateaus, and the respective estimates for K, are shown in figure 7 and
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Figure 7. The logarithmic derivative of the two-point function for various points (g2
x, g

2
y) ≈

(6.22, 1.52) top-left, (1.05, 0.57) top-right, (0.56, 0.42) bottom-left and (0.47, 0.37) bottom-right, close
to the phase transition. The dotted lines indicate the value of the plateau and the corresponding
extrapolated value of K. The bond dimensions used in these simulations range up to 2500 for the
g2
x ≈ 0.47 point. The color coding is the same as in figure 6.

0 1 2 3 4 5 6

g2
x

1.4

1.6

1.8

2.0

K

Figure 8. The running Luttinger parameter K as a function of the coupling g2
x. We also show

the error measure σK as defined in the text. The dotted line indicates the expected continuum
behaviour and for sufficiently small couplings we see a clear trend towards this line.

figure 8 respectively. For sufficiently small values of (g2
x, g

2
y) we find a clear trend towards

K = 2, indicating that the continuum limit of our lattice model along the critical line is
consistent with the bosonized QFT description of the chiral Gross-Neveu model discussed
in section 2.2.
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5 The chiral GN model as a Landau-forbidden phase transition

In the previous section, we have shown that we can recover the behavior of the continuum
GGN model at N = 2 on the lattice, despite the absence of an exact microscopic continuous
chiral symmetry. In this section, we will interpret this result from a condensed matter point
of view, and discuss the connection to Landau-forbidden phase transitions.

We will again focus on the region of parameter space close to where we recover the chiral
GN model. The IR physics is then described by the compact boson action in eq. (2.10).
The discrete symmetries of the GGN model that act non-trivially on the compact boson θ,
as discussed in section 2.1, are:

ZD2 : θ → θ + π (5.1)
ZC2 : θ → −θ (5.2)
ZR2 : θ → −θ. (5.3)

The value of K in eq. (2.10) is such that the cos 2θ operator is relevant, which means that
the IR fixed point is indeed a compact boson only when δ = 0. For δ > 0, the cosine term
will pin θ to either π/2 or −π/2, such that ZD2 , ZC2 and ZR2 are all spontaneously broken.
However, for δ > 0 the ground states are still symmetric under the products DR and DC
(which act non-trivially on θ). For δ < 0, the cosine term will pin θ to either 0 or π, in
which case ZD2 is spontaneously broken, but ZC2 and ZR2 are preserved.

On the lattice, the reflection operator R corresponds to a bond-centered reflection RB
(which also includes an on-site action), as discussed in section 2.3. The DR symmetry, on
the other hand, is realized on the lattice as a site-centered reflection RS , i.e. the reflection
center now coincides with a lattice site. These two different reflection operators are related
by RS = T RB, where T is the translation operator, which is consistent with the fact
that the latter implements the discrete chiral symmetry on the lattice. The bond-centered
reflection symmetry RB is broken when δ > 0 (π = 〈ψ̄iγ5ψ〉 6= 0), and is preserved when
δ < 0 (σ = 〈ψ̄ψ〉 6= 0). For the site-centered inversion symmetry, the converse is true, i.e.
RS is preserved when δ > 0, and broken when δ < 0. That the two different gapped phases
indeed respect either the bond- or site-centered reflection symmetry can also be understood
intuitively from the fixed-point, i.e. zero correlation length, representatives of these two
phases. This is shown schematically in figure 9.

The above discussion brings us to the interesting conclusion that the chiral GN model
can be interpreted as a continuous phase transition between two gapped phases which break
different global symmetries. According to the standard Landau theory of phase transitions,
such a continuous transition should be a fine-tuned or multi-critical point, which can only
be realized by tuning two independent relevant parameters to zero. Here, we find that
this is not the case, and we can go between the two symmetry-broken phases via a single
continuous transition, by tuning a single parameter. A natural question is thus what is
special about our model that makes a direct transition generic and not fine-tuned. As we
will now argue, it is the ‘t Hooft anomaly which places the GGN model outside the standard
Landau theory.
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a)

b)

c)

Figure 9. A cartoon picture of zero correlation length representatives of the two symmetry broken
phases. a) represents the two charge density waves that occur for large g2

y (π 6= 0). Full/empty
dots represent filled/empty sites. b) represents the two different ground states with bond order for
large g2

x (σ 6= 0). The connected dots represent the dimerized states (|10〉+ |01〉)/
√

2 in the fermion
occupation basis. c) represents a kink in the σ condensate. Imposing inversion symmetry around
the central site automatically breaks all possible inversion symmetries around bonds, which ensures
that any such defect nucleates a non-zero value of the π order parameter.

On the lattice, the ‘t Hooft anomaly between the ZD2 and the U(1) charge symmetry is
known as the ‘Lieb-Schultz-Mattis’ (LSM) theorem [13–15]. It states that at half-filling,
the lattice Hamiltonian can only be gapped if either the charge U(1) or the translation
symmetry is broken. Note that in our case, with N = 2 flavors of fermions per site, half
filling actually implies that we have one unit of charge per lattice site. We thus also need
to invoke the SU(2) flavor symmetry to argue that the average charge is 1/2 per flavor per
site. The LSM theorem then states that a gapped ground state implies that either charge,
flavor or translation symmetry are broken. In 1 + 1 dimensions, we know from the CHMW
theorem that the continuous charge and flavor symmetries cannot be broken spontaneously,
so every gapped phase must necessarily break translation symmetry. Let us now assume
that we are in a gapped phase where RS is broken. A general mechanism to restore the
RS symmetry is to condense the kink or domain wall excitations. However, because of the
relation RS = T RB, and from the fact that T must be broken, we conclude that restoring
the RS symmetry must necessarily imply that we break the RB symmetry (assuming that
we transition to a gapped phase). This means that condensing the kink excitations must
simultaneously restore the RS symmetry, and break the RB symmetry. We thus conclude
that the ‘t Hooft anomaly must endow the kink excitations with a special property that
their condensation triggers the spontaneous breaking of RB. In figure 10, we plot the
large-N mean-field solution for the ground state of the lattice model with twisted boundary
conditions, such that the ground state contains a single kink in the σ order parameter.
Near the center of the kink, we see that the π order parameter becomes non-zero, such
that condensing these kinks will induce a uniform non-zero value for the π order parameter,
signaling a spontaneous breaking of RB.

Finally, let us comment on the role of the ZC2 symmetry. It turns out that there is a
further ‘t Hooft anomaly, i.e. a LSM obstruction on the lattice, between the charge and
flavor symmetries, the C symmetry, and the RS symmetry. As we show in the appendix, a
ground state of a local and gapped Hamiltonian with an average charge of 1/2 per flavor and
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−0.25
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0.25

0.50

σ
or
π

Figure 10. A site-dependent solution of the large-N self-consistency equations with antiperiodic
boundary conditions for σ (blue), the orange points indicate the π order parameter. The couplings
are g2

x = 6.0 and g2
y = 2.3 ie. in bond ordered phase but close to the transition. Note that the

expectation value of π becomes nonzero near the domain wall in σ.

per site cannot be invariant under site-centered reflection symmetry. Because the charge
and flavor symmetries cannot be broken due to the CHMW theorem, it thus follows that the
ZC2 symmetry must be broken in the gapped phase which preserves RS , i.e. when δ > 0 such
that π = 〈ψ̄iγ5ψ〉 6= 0. We thus again arrive at the conclusion that kink condensation in
the C-broken (and also RB-broken) phase, which restores the charge conjugation symmetry,
must necessarily induce RS breaking if we are to transition to a gapped phase.

The above discussion of course does not imply that in the presence of the ‘t Hooft
anomalies, there is necessarily a direct continuous transition between a gapped phase with
broken RS symmetry and a gapped phase with broken RB symmetry. It is always possible
to have 1) an intermediate region of coexistence where both symmetries are broken, 2) an
intermediate gapless region where both symmetries are restored, or 3) a first order transition
between the two phases. The ‘t Hooft anomalies only provide us with a mechanism to
explain why a direct continuous transition, if it occurs, is not fine-tuned. This is similar to
how the Lieb-Schultz-Mattis theorem is used to motivate the ‘deconfined quantum critical
points’ [45, 46], which are a special type of Landau-forbidden continuous phase transitions
in 2 + 1-dimensional lattice spin models [47].

6 Conclusion

In this work we have studied the GGN model on the lattice. In discretizing the GGN model,
particular attention was paid to maintaining the maximal amount of global symmetries
of the continuum theory. The lattice model used here only fails to preserve the O(2N)
symmetry along the line with g2

x = 0, and the continuous chiral symmetry, which is present
when g2

x = g2
y . The latter symmetry has a ’t Hooft anomaly, and plays a crucial role in

determining the phase diagram of the continuum model. In large-N or mean-field theory, we
found that the broken continuous chiral symmetry results in a coexistence region where both
〈ψ̄ψ〉 and 〈ψ̄iγ5ψ〉 are non-zero. Interestingly, the width of this coexistence region decreases
exponentially with the couplings. To go beyond mean-field theory, we have simulated the
N = 2 lattice GGN model with MPS. We found that the effect of quantum fluctuations
beyond mean-field theory is to remove the coexistence region completely, and replace it with
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a single continuous transition between the phase with 〈ψ̄ψ〉 6= 0 and 〈ψ̄iγ5ψ〉 = 0, and the
phase with 〈ψ̄ψ〉 = 0 and 〈ψ̄iγ5ψ〉 6= 0. The critical line is described by a single compact
boson CFT, which is the IR fixed point of the chiral GN model. Although on the lattice
the critical line is no longer a straight line under 45◦ in the g2

x− g2
y plane (as is the line with

continuous chiral symmetry in the continuum model), we found from our MPS simulations
that the scaling behaviour of the chiral condensates 〈ψ̄ψ〉 and 〈ψ̄iγ5ψ〉 away from the
critical line is the same as that predicted by the continuum theory. We have also interpreted
the lattice phase diagram from a condensed matter perspective, and explained how the
chiral GN model can be recognized as a ‘Landau-forbidden’ phase transition (similar to the
deconfined quantum critical point in 2+1 dimensions) which is not fine-tuned because of the
presence of two different ‘t Hooft anomalies, or Lieb-Schultz-Mattis theorems on the lattice.

This type of continuous transition has been discussed before in the condensed matter
literature. Indeed, on the lattice the chiral condensates 〈ψ̄ψ〉 and 〈ψ̄iγ5ψ〉 are the order
parameters for respectively a bond order density wave or a ‘Valence Bond State’ (VBS) and
a ‘Charge Density Wave’ (CDW). The VBS breaks the site-centered reflection symmetry,
but preserves the bond-centered reflection and charge-conjugation symmetries. For the
CDW, the situation is reversed, i.e. it preserves the site-centered reflection symmetry, but
breaks the bond-centered reflection and charge-conjugation symmetries. Haldane has found
a similar transition in a study of the phase diagram of the antiferromagnetic XXZ chain
with next-nearest-neighbour interactions [48] (in the spin language, the CDW corresponds
to antiferromagnetic or Néel order). This model is closely related to the N = 1 GGN model,
and it was recently discussed in more detail and generalized in ref. [49]. In ref. [50], the
authors studied the phase diagram of the one-dimensional half-filled Hubbard model with
an additional nearest-neighbour repulsive interaction using quantum Monte Carlo, and
again evidence for a direct continuous transition between a VBS and CDW was found.
Because the authors of [50] considered spinful fermions, their Hubbard model is closely
related to the N = 2 GGN model, although the two interaction terms used in ref. [50] are
different from the ones we obtained here by directly discretizing the continuum GGN model.
Another place where a direct continuous transition between VBS and CDW phases has been
found (again using quantum Monte Carlo) is the Su-Schrieffer-Heeger model [51]. This is a
model of fermions hopping on a chain coupled to phonons, and its connections to the GN
model were discussed early on in ref. [52]. The work presented here makes the connection
between the continuous VBS-CDW transition and the GGN model more explicit, as we
start by directly discretizing the continuum action of the GGN model. In contrast to the
above mentioned previous studies of the VBS-CDW transition, we have also emphasized the
importance of two different Lieb-Schultz-Mattis theorems for obtaining a direct continuous
transition. Recently, the authors of ref. [53] have constructed a spin Hamiltonian which
was shown [54] to exhibit a direct continuous transition between a VBS phase and an Ising
ferromagnet phase. The different Lieb-Schultz-Mattis theorems present in this spin model
and their importance for the Landau-forbidden phase transition were also discussed in great
detail [53].

In the future, it will be interesting to generalize our numerical results to the GGN model
with an odd number of Majorana fermions, in which case the kinks bind an odd number of
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Majorana zero modes [55] and transform as isospinors under the SO(Ñ) symmetry group,
where Ñ counts the number of Majorana fermions [56]. To simulate these kinks with MPS,
one can make use of the results of ref. [57], where it was explained how Majorana zero modes
are realized in tensor network states. Another interesting direction is of course to generalize
our results to 2+1 dimensional systems, where discretizing a continuum theory with ‘t Hooft
anomalies might provide a route to construct lattice models with a deconfined quantum
critical point. Such a construction is highly desirable, as there is currently no conclusive
proof for the existence of a direct phase transition between two different symmetry-broken
phases in 2+1 dimensions, despite an impressive numerical effort [58–70].
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A Lieb-Schultz-Mattis obstructions from charge and flavor symmetries,
charge conjugation and site-reflection symmetry

In this appendix we show that there exists a Lieb-Schultz-Mattis (LSM) obstruction (i.e.
a ‘t Hooft anomaly on the lattice) in the presence of charge, flavor, C and RS symmetry.
In particular, we will show that there cannot exist a quantum state which simultaneously
satisfies the following two properties: 1) it is the ground state of a local and gapped
Hamiltonian describing a quantum many-body system on a one-dimensional lattice, and 2)
it respects all the symmetries mentioned above. To show this, we will rely on the fact that
the ground state of every local Hamiltonian with an energy gap can be approximated by an
injective5 finite-bond dimension MPS to arbitrary precision [71, 72]. So, it remains to prove
that there cannot exist an injective MPS which respects the charge and flavor symmetries,
the charge conjugation symmetry and the site-centered reflection symmetry. Our proof will
make heavy use of the ‘fundamental theorem of MPS’ [73], which allows us to express the
global symmetry properties of MPS’s in terms of local conditions on the constituent tensors.

Recall that the gapped phases of interest in this work break translation over a single
lattice site (which is the lattice version of the discrete chiral symmetry, so it must be broken
in the gapped phases). Because our system has a two-site unit cell, we need two different
rank-three tensors [A1]iαβ and [A2]iαβ to construct the MPS (we call i the physical index of
the MPS tensor, and α and β the virtual indices). Concretely, the MPS’s we are interested

5The injectivity property is a technical condition on MPS tensors which we only mention for completeness
in this work — we will not define it in detail. It suffices to mention that the injectivity condition is physically
equivalent to the requirement that the MPS is not a macroscopic superposition or a so-called ‘cat state’.
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in take the form

|ψ〉 = lim
L→∞

∑

{ij}
〈v|Ai11 Ai22 Ai31 Ai42 · · ·A

i2L−1
1 Ai2L2 |v〉|i1, i2, i3, i4, · · · , i2L−1, i2L〉 , (A.1)

where the states |ij〉 are a basis for the local Hilbert space on site j. For injective MPS, the
effect of the choice of boundary vector |v〉 decays exponentially away from the edge, such
that in the limit L→∞, the state is independent of |v〉.

We now use the fact that we can combine the total charge U(1) and flavor SU(2)
symmetry in order to apply separate U(1) transformations on the two flavors (i.e. the total
charge combined with the diagonal elements from SU(2)). We henceforth refer to this as
the charge and flavor U(1) symmetries. The fundamental theorem now implies that an
injective MPS of the form in eq. (A.1) can only be invariant under the charge and flavor
U(1) symmetry if the following relations hold [73, 74]:

∑

j

[
Uc(θ)

]
ij A

j
1 = eiq1θV (θ)Ai1Ṽ (θ)† (A.2)

∑

j

[
Uc(θ)

]
ij A

j
2 = eiq2θṼ (θ)Ai2V (θ)† , (A.3)

where Uc(θ) is the local unitary symmetry action corresponding to a U(1) rotation over
an angle θ on flavor c, and V (θ) and Ṽ (θ) are invertible matrices acting on the virtual
indices, which without loss of generality can be taken to be unitary matrices [73]. It is
straightforward to see that eqs. (A.2) and (A.3) are sufficient for the MPS in eq. (A.1) to be
invariant under the U(1) symmetries. The fact that these local conditions are also necessary
is not obvious, but has been proven rigorously in the MPS literature [73, 74].

Similarly, the fundamental theorem also implies that the MPS in eq. (A.1) is invariant
under the charge conjugation and site-centered reflection symmetries iff the following
relations are true [73, 74]:

∑

j

[MC ]ij A
j
1 = (−1)n1CAi1C̃

† (A.4)

∑

j

[MC ]ij A
j
2 = (−1)n2C̃Ai2C

† (A.5)

∑

j

[
M1
R

]
ij

[
Aj1

]T
= (−1)m1RAi1R̃

−1 (A.6)

∑

j

[
M2
R

]
ij

[
Aj2

]T
= (−1)m2R̃Ai2R

−1 , (A.7)

where ni,mi ∈ {0, 1}, and MC and M i
R are the local unitary matrices respectively imple-

menting the charge conjugation symmetry and site-centered reflection symmetry on the
physical indices; for our specific model the on-site action depends on the site (even or odd).
Furthermore, the site-centered reflection also transposes the MPS matrices as a result of
the reordering of the lattice sites. The matrices C, C̃, R and R̃ are invertible, and C and
C̃ can without loss of generality be taken to be unitary.
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To start our proof, we first note that the U(1) symmetries and the charge conjugation
satisfy the following commutation relation:

MCUc(θ) = eiθUc(−θ)MC (A.8)

Using this relation, we can evaluate ∑j

[
MCU(θ)

]
ij A

j
1 and ∑

j

[
MCU(θ)

]
ij A

j
2 in two

different ways. The first way gives us

∑

j

[
MCU(θ)

]
ij A

j
1 = (−1)n1eiq1θ

(
V (θ)C

)
Ai1
(
Ṽ (θ)C̃

)†
(A.9)

∑

j

[
MCU(θ)

]
ij A

j
2 = (−1)n2eiq2θ

(
Ṽ (θ)C̃

)
Ai2
(
V (θ)C

)† (A.10)

The second way of evaluating this expression leads to

∑

j

[
MCU(θ)

]
ij A

j
1 = (−1)n1ei(1−q1)θ (CV (−θ))Ai1

(
C̃Ṽ (−θ)

)†
(A.11)

∑

j

[
MCU(θ)

]
ij A

j
2 = (−1)n2ei(1−q2)θ

(
C̃Ṽ (−θ)

)
Ai2
(
CV (−θ))† (A.12)

For injective MPS, equating (A.9) and (A.10) with (A.11) and (A.12), tells us that the
following conditions must hold:

V (θ)C = eiqθCV (−θ) (A.13)
Ṽ (θ)C̃ = eiq̃θC̃Ṽ (−θ) (A.14)

q1 = 1− q + q̃

2 (A.15)

q2 = 1 + q − q̃
2 (A.16)

At this point, we find it convenient to fix the phase of the matrices V (θ) and Ṽ (θ) by
redefining them as e−iqθ/2V (θ)→ V (θ) and e−iq̃θ/2Ṽ (θ)→ Ṽ (θ) (note that this also implies
q1 + q/2− q̃/2→ q1 and q2 − q/2 + q̃/2→ q2), such that the above equations become

V (θ)C = CV (−θ) (A.17)
Ṽ (θ)C̃ = C̃Ṽ (−θ) (A.18)

q1 = q2 = 1
2 (A.19)

From these relations, we conclude that one of two situations is realized. Either V (θ) contains
integer charges 0 and {Q,−Q} (Q ∈ N+) and Ṽ (θ) contains half odd-integer charge pairs
{q/2,−q/2} (q ∈ 2N + 1), or V (θ) contains half odd-integer charge pairs and Ṽ (θ) contains
integer charges.

For the final step in our proof we use that the reflection and U(1) symmetries commute:

MRUc(θ) = Uc(θ)MR , (A.20)
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and evaluate ∑j

[
Uc(θ)MR

]
ij

[
Aj1

]T
in two different ways, similarly as before. Equating the

two different outcomes now produces the following relations:

RV (θ) = eiQRθṼ ∗(θ)R (A.21)
R̃Ṽ (θ) = eiQRθV ∗(θ)R̃ (A.22)

These equations imply that the charges of V (θ) are equal, up to a permutation, to the
charges of Ṽ (θ) shifted by QR. If such a QR exists, then from our considerations above
it follows that it should be a half odd-integer. However, it is not hard to see that the
integer charges 0 and {Q,−Q} cannot be obtained by shifting the half odd-integer charges
{q/2,−q/2} by some overall half odd-integer (provided that there are a finite number of
charges, i.e. provided that the MPS bond dimension is finite). So we have arrived at an
inconsistency, from which we conclude that there cannot exist an MPS which is invariant
under all the symmetries.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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C O N C L U D I N G R E M A R K S A N D
O U T L O O K

The important thing is to never stop questioning

Albert Einstein

In this thesis we studied quantum field theories on the lattice via the Hamiltonian formalism.
The advantage of the lattice regulator is the minimal length scale a that naturally removes all UV
divergences from the field theory. Furthermore, the resulting lattice theories have well defined
Hilbert spaces, so that they are a natural candidate for numerical simulations that are crucial to gain
a nonperturbative understanding of strongly interacting field theories such as QCD. In this work,
these numerical simulations were performed within the framework of tensor networks which are a
class of variational ansätze that, due the area law of entanglement, provide a natural description
of the ground state and first few excited states of these lattice models. Note that a Lagrangian
formulation of lattice regularized field theories is also possible and has been extensively studied
using Monte Carlo simulations, and more recently by applying tensor-based implementations of the
renormalization group. The advantage of the tensor-based approaches, either for the Hamiltonian
or the path integral, is that they do not suffer from the sign problem that arises in Monte Carlo
sampling of fermionic path integrals at finite density. Furthermore, the Hamiltonian formulation of
quantum field theory, and quantum mechanics in general, also allows to study dynamical processes
such as the scattering and decay of particles, for which the (Euclidean) path integral is not really
suitable.

Furthermore, the MPS ansatz, and tensor network states in general, can be thought of as states built
from the action of a finite depth unitary circuit on a product state. In the, hopefully relatively near,
future quantum computers will be able to manipulate and optimize such finite depth quantum
circuits. They would thus be able to simulate Hamiltonian quantum lattice systems (and Hamiltonian
lattice field theory in particular). With this in mind, it is very timely to study Hamiltonian lattice
field theory and identify the correct discretization procedures. However, in the first part of this thesis
found that certain properties of quantum field theories, in particular chiral symmetry, cannot be
captured through (Hamiltonian) lattice field theory. Consequently, it might seem as if these concepts
can never be simulated on a (quantum) computer which, in turn, seems to imply that something
is missing from this description. Also the infinite-dimensional local Hilbert space associated with
bosonic fields poses issues for tensor network simulations and (future) quantum simulations. In
the second part we nevertheless managed to perform numerical matrix product state simulations
of the compact boson as the low energy description of a modified Ising chain, and the chiral
Gross-Neveu model as a non fine-tuned direct transition between an antiferromagnetic and a dimer
phase. The upshot of this is that chiral symmetries, and perhaps other anomalous symmetries,
are not really symmetries of the underlying regularized field theory, but rather an artefact of our
perturbative treatment of field theory. For the chiral Gross Neveu model in particular, we found
that the anomalous chiral symmetry emerged from the fact that kinks in one order parameter
carried charge of the other, as well as from the non-trivial interplay between different reflection and
translation symmetries. Indeed, we found that the direct transition required to get a continuum limit
with continuous chiral symmetry was not only present, but is also the expected behaviour of these
lattice models.
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concluding remarks and outlook

Another interesting observation is that certain predictions of Einstein’s famous general relativity
are also inherently incompatible with the lattice regulator. For example, the Nielsen-Ninomiya
theorem excludes regions of spacetime with a single left or right mover that are predicted to exist
in the interior of a black hole. Consequently, a lattice regularization of a black hole and the related
Hawking radiation may shed some light onto the physics behind horizons.

Another generalization of the work presented in this thesis would be to construct a lattice model
with a nonlocal Z2 ⊗ Z2 symmetry. Similarly to the modified Ising model, such models cannot have
symmetric gapped phases and would therefore most likely display a non-trivial phase diagram with
an infrared description that is again closely related to compact bosons.

Finally, we note that this thesis only dealt with quantum physics in one spatial dimension, whereas
the world around us most certainly has three (macroscopic) spatial dimensions. In principle, one can
quite easily generalize the MPS ansatz to two or even three spatial dimensions, but the resulting
tensor networks do not have a gauge-fixed representation, so that it is more difficult to optimize such
states. Nevertheless, this is still possible and in future work it would be very interesting to construct
lattice regularizations of field theories in higher dimensions. For example, the 2+1 dimensional
version of the Gross Neveu model has recently been shown to emerge as the low energy description
of certain twisted bilayer graphene materials.
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