
Monte Carlo Modelling of QED

Interactions in Laser-Plasma

Experiments

Robbie Alexander Watt

April 2021

Submitted in partial fulfilment of the requirements for the degree of Doctor of
Philosophy in Physics of Imperial College London and for the Diploma of Imperial

College London

Department of Physics
Imperial College London

Prince Consort Road
SW7 2AZ

United Kingdom



Declaration of Originality

I, the author, declare that the material presented in this thesis is my own work.
Exceptions to this are acknowledged or referenced within the text.

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a
Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers
are free to copy, distribute or transmit the thesis on the condition that they attribute

it, that they do not use it for commercial purposes and that they do not alter,
transform or build upon it. For any reuse or redistribution, researchers must make clear

to others the licence terms of this work.

1



To my parents

2



Abstract

This thesis is concerned with the development of a start-to-end Monte Carlo simulation
capability for laser based QED experiments.

A physics package has been developed for Geant4 which models particle-photon inter-
actions, including the Breit-Wheeler process and photon-photon scattering. The interac-
tions are treated as a beam of particles travelling through a static photon field. Gaussian
process regression has been used to increase the event calculation rate by a factor of
∼ 1000.

A strong field QED event generator that models the nonlinear Breit-Wheeler process
and nonlinear Compton scattering has been developed and integrated into Geant4. Deep
learning has been used to emulate this package and increases the calculation rate by
a factor of ∼ 1000, allowing the package to be used as a forward model for Bayesian
inference to aid the design and analysis of strong field QED experiments.

The tools developed were used to design and analyse a photon-photon collider experi-
ment at the Gemini laser facility. This collided a ∼ 50 fs beam of gamma rays (> 100MeV)
with a ∼ 40 ps beam of x-rays (∼ 1.5 keV). Using optimum beam conditions, simulations
predict a signal-to-noise ratio of ∼ 0.1, meaning a statistically significant measurement of
the Breit-Wheeler process could be made with ∼ 100 shots. However, during the exper-
iment the electron beam obtained was sub-optimal, reducing the signal-to-noise ratio to
∼ 2× 105, making it unlikely that a measurement was possible.

No signatures of elastic photon-photon scattering were detected in the experiment,
enabling a bound of 4.9 × 1012 µb to be placed on the photon-photon scattering cross-
section at a centre of mass energy ωCM ≈ 0.66me. While still far above the predicted QED
cross section, this is the most stringent bound placed to date, improving upon previous
work by three orders of magnitude.
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Chapter 1

Introduction

Electromagnetic phenomena is a subject that has captivated scientists for millennia. Since
the technological revolution of the 19th century, gaining the ability to harness electromag-
netism has had an immeasurable impact on society. Given its omnipresence today, one
would be forgiven for believing the theory is fully understood. However, there are still
unanswered questions regarding electromagnetic phenomena at the extremes, such as how
a charge interacts with a strong electromagnetic field. These types of interaction are the
subject of this work, and the theoretical tool we will use to study them is quantum
electrodynamics (QED).

We will begin by exploring how QED came to fruition, starting with a short history
of classical electromagnetism. We will see that inadequacies in the theory lead to the
quantum revolution which dominated physics in the 20th century. Out of this revolution
came QED, which is the most stringently tested theory in physics to date.

1.1 A Brief History of Classical Electromagnetism
and Quantum Mechanics

Electromagnetism has not always been understood as a universal theory, with electric
and magnetic forces traditionally viewed as two distinct phenomena. Although it has
been suggested that its discovery occurred as early as 1000 BC [1], the first mention of
magnetism in literature dates back to a 4th-century BC Chinese book [2]. This writing
simply refers to the ability of magnetised rocks (known as lodestones) to attract iron,
however, in the following centuries these rocks started to be used as a navigational tools
through the invention of the compass. The fascination with electric phenomena likely
dates back much later due to naturally occurring events such as lightning

Beyond its application for navigation, electricity and magnetism were seen as little
more than a curiosity. However, this changed during the 17th century as scientists dis-
covered ways of generating electricity. This quickly lead to studies in electrostatics, with
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Joseph Priestley realising that the force between electric charges exhibits the same be-
haviour as the gravitational force between massive objects (i.e. the force diminishes with
the inverse square of the distance between the charges or masses) [3]. This was proved
quantitatively by Charles-Augustin de Coulomb in 1785 [4].

The first insight that there may be a link between electric and magnetic phenomena,
came in 1820, when Hans Christian Ørsted discovered that the act of moving a current
carrying wire near a compass would temporarily deflect the needle [5]. This was further
studied by André-Marie Ampère, culminating in the development of a mathematical de-
scription, known today as Ampère’s law. Not long after, the opposite process (converting
magnetism into electricity) was confirmed by Michael Faraday, and in doing so he cre-
ated the first electric dynamo [6]. Faraday went on to perform over 16,000 experiments
throughout his career [5], making him one of the greatest experimental physicists of the
19th century.

With the groundwork set, it would take one of the greatest theoretical physicists of
the 19th century, James Clerk Maxwell, to fully unite electricity and magnetism with a
mathematical theory. Applying his knowledge of fluid mechanics, Maxwell proposed the
existence of the electromagnetic field. He described the source and dynamics of this field
by a set of equations, known today as Maxwell’s equations. This led Maxwell to introduce
the revolutionary concept of electromagnetic waves and calculated that they travel at the
speed of light, c. From this, he concluded that light itself was an electromagnetic wave,
stating that [7]

“we can scarcely avoid the inference that light consists in the transverse
undulations of the same medium which is the cause of electric and magnetic
phenomena.”

By the late 19th century, Maxwell’s theory of electromagnetism had become well es-
tablished. At this time, Lord Rayleigh and Sir James Jeans were applying electromagnetic
theory to study the radiation emitted from a body (known as black-body radiation). They
knew the source of this radiation was oscillating electric charges within the object’s mate-
rial and, by applying thermodynamical principles, derived the following equation for the
spectrum of emitted radiation

Bλ(T ) =
2c kBT

λ4
(1.1)

where λ is the wavelength of the radiation, T is the temperature of the body and kB is
Boltzmann’s constant. This is known as the Rayleigh-Jeans law and is plotted in figure
1.1. This spectrum agreed with experimental observations at low frequencies, however,
diverges at high frequencies. This was clearly unphysical and later became known as the
Rayleigh-Jeans catastrophe.
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Figure 1.1: Plots of the spectra radiance of a black body, predicted by Rayleigh-Jeans
(red) and Planck (blue).

At the same time Max Planck was also studying the thermal radiation from a black-
body. However, rather than using a theoretically approach, he tackled the problem heuris-
tically, by attempting to fit functions to experimental data. From this he obtained the
following law

Bλ(T ) =
2hc2

λ5
1

exp
(

hc
λkBT

)
− 1

(1.2)

where h is Planck’s constant. This is also plotted in figure 1.1 and does not exhibit
divergent behaviour.

Following the success of his experimental fit, Planck set to develop a theoretical un-
derstanding behind it. He started by attempting to apply thermodynamic principles,
however, reluctantly had to accept a statistical mechanics approach to succeed. The the-
ory came with the unexpected consequence that the radiation was emitted in discrete
quanta (photons) of energy, E = hν. Soon after, Albert Einstein developed the idea of
photons, using it to explain the photoelectric effect [8].

This led to the rapid development of quantum mechanics during the 1920s. Given
the wave-particle duality exhibited by photons, Louis de Broglie proposed that matter
particles (e.g. electrons) may exhibit wave-like properties. If this was the case, then there
should be a wave equation describing their motion. In 1926, Austrian physicist Erwin
Schrödinger was the first to derive such an equation, which described the behaviour of
the wavefunction, Ψ [9]. Initially, the nature of Ψ was not fully understood, until Max
Born interpreted it as the probability amplitude, whose modulus squared is equal to
probability density. With this, quantum mechanics was Born.
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1.2 Quantum Electrodynamics

Schrödinger applied his equation to calculate the spectral energies of the hydrogen atom,
and his results agreed well with experimental measurements [9]. However, the equation
was not consistent with special relativity. The solution to this problem came in 1928, when
Paul Dirac derived a relativistically consistent wave equation for the electron [10]. When
solving his equation, Dirac obtained both physical positive energy states and unphysical
negative energy states. To get around this problem, he proposed the concept of the Dirac
sea [11]. Here, he treated the vacuum as the state in which all negative energy states
are filled in accordance with Pauli’s exclusion principle. A hole in a negative energy
state would respond to an electromagnetic fields as if it were a positively charged particle.
Dirac initially believed these holes to be protons, however, he soon realised that they must
have the same mass as the electron, giving rise to the ‘anti-electron’. These anti-electrons
were then discovered experimentally by Carl Anderson in 1932, who later named them
positrons [12].

Dirac’s theory predicted that an electron in a positive energy state could transition
into an unoccupied negative energy state, resulting in the emission of electromagnetic
radiation. This corresponds to electron-positron annihilation and is demonstrated in
figure 1.2 (a). Following this, came a flurry of activity into more processes involving the
electron. Work carried out by Hans Bethe and Walter Heitler [13] and others [14, 15, 16]
showed that electron positron pairs could be produced through the annihilation of a
photon in the nuclear field of an atom (Zγ → Ze+e−). At the same time, Lev Landau
and Evgeny Lifshitz [17] shown that the pairs could also be produced by the collision of
two nuclei (ZZ → ZZe+e−). However, perhaps the most striking prediction came from
work carried out by Gregory Breit and John Wheeler [18]. By studying the impact of
two light quanta on an electron in a negative energy state, they showed the possibility of
creating electron-positron pairs from the vacuum.

During the same period, Fritz Sauter was studying the effect of a constant electric
field on the Dirac sea [19]. He suggested that if the field was sufficiently strong, then a
negative energy state electron could tunnel into a positive energy state, as demonstrated
in figure 1.2 (b). The field strength at which this tunnelling would become significant is

Ec =
m2

ec
3

e~
= 1.326× 1018Vm−1 (1.3)

and is known as the Schwinger field after Julian Schwinger who gave a complete theoretical
description of the process in 1951 [20]. This was the first description of a nonperturbative
QED interaction, with more nonperturbative phenomena, such as vacuum polarisation,
studied soon after by Heisenberg and Euler [21, 22].

Despite the early success of QED, issues quickly arose in the form of infinities when
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Figure 1.2: Diagrams of the Dirac sea, showing the positive and negative energy states
separated by a gap of 2mec

2. (a) shows Dirac annihilation as a electron fills a negative
energy state, resulting in the emission of photons. (b) shows a strong field applied to
the sea, resulting in the tunnelling of an electron in a negative energy state to a positive
energy state.

attempting to perform perturbative calculations beyond first order. On top of this, in the
1940s more precise measurements of the Lamb shift and magnetic moment of the electron
showed discrepancies with the theory. It was not until the end of the 1940s that the
problem was solved through the process of renormalisation, with significant contributions
by Shin’ichiro Tomonaga [23], Richard Feynman [24, 25, 26], Schwinger [27, 28, 29] and
Freeman Dyson [30, 31]. This enabled perturbative QED calculations to be performed to
any order. Since then QED has become one of the most successful theories in physics,
acting as a blueprint for other quantum field theories (e.g. quantum chromodynamics)
and providing the most accurate predictions of experimental measurements (e.g. electron
magnetic moment [32]) to date.

Despite certain aspects of QED being incredibly well tested, there remains little to no
experimental evidence of other QED predictions. Examples include the Breit-Wheeler
process, photon-photon scattering and Schwinger pair production. The reason for this is
the extreme energies or field strengths required for the interactions to take place. However,
such conditions are routinely found in many astrophysical environments.

For example, field strengths close to or exceeding that of the Schwinger field are
thought to occur in both extremely short lived events, such as gamma ray bursts [33]
and supernova explosions [34], as well as more stable objects such as the magnetosphere
of strongly magnetised neutron stars [35] and the accretion disks of black holes [36].
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Figure 1.3: Peak laser intensity against year. Adapted from [45].

This gives rise a number of nonlinear QED effects, including pair production [37, 38, 39],
quantum synchrotron emission [35] and vacuum birefringence [40].

Another aspect of astrophysics that gives rise to exotic QED interactions is the massive
scale of the universe. Particles propagating through the intergalactic medium travel vast
distances, giving time for even highly unlikely interactions to become significant. An
example of this is the high energy (< 100GeV) cut-off in the cosmic gamma ray spectrum
observed at Earth [41, 42] . This is due to these gamma rays annihilation with the cosmic
microwave background. This mechanism was thought to be well understood, however,
recent observations have found a larger level of high energy photons from quasar 3C 279
reaching Earth that expected from QED calculations [43]. This demonstrates the need
for more experimental work, to better understand these astrophysical environments.

1.3 Laser Based QED Experiments

To perform a laboratory study of exotic QED interactions found in astrophysics requires
a method of producing strong electromagnetic fields. These can be achieved using a
high power laser, which have seen an exponential growth in peak intensity over the past
few decades, as shown in figure 1.3. This was driven by the invention of chirped-pulse
amplification (CPA), for which Donna Strickland and Gerard Mourou were awarded the
2018 Nobel prize [44].

A useful parameter when discussing high power lasers is the normalised vector poten-
tial

a0 =
eE0

mecω
= 0.60

(
I

1018Wcm−2

)1/2(
λ

µm

)
. (1.4)
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The significance of this parameter is that if a0 = 1 (corresponding to an intensity of
∼ 1018Wcm−2 for a wavelength of 1µm), an electron in the field will gain an energy of
mec

2 over the wavelength of the laser. This leads to the nonlinear motion of the electron
as the magnetic force becomes comparable to the electric force. Reaching this regime has
led to a number of all-optical, high energy radiation sources, that can be used to study
QED interactions. These include: electron beams through laser wakefield acceleration
(LWFA) [46, 47, 48]; ion beams through laser-solid interactions [49, 50, 51]; x-ray betatron
radiation from a LWFA [52]; and gamma ray radiation from Compton scattering [53] and
bremsstrahlung emission [54].

Despise these advances, we can see from figure 1.3 that laser intensities are still several
orders of magnitude off the regime where nonlinear QED effects become important. At
current trends we are unlikely to reach this for some years to come. However, the elec-
tromagnetic field is not a Lorentz invariant. It is therefore useful to define the following
parameters

η =

√
−(Fνµpµ)2

mcEc

χ =
~
√
−(Fνµkµ)2

2mcEc

(1.5)

for electrons/positrons and photons respectively. Here, Fνµ is the electromagnetic tensor,
pµ is the four momentum of an electron and kµ is the four wavevector of a photon.
These are often referred to as quantum parameters, with η, χ > 1 characterising the
onset of nonlinear QED interactions becoming dominant. We can view η as the observed
field strength in the rest frame of an electron in units of Ec. Although there is no rest
frame for a photon, χ is defined in a similar way. Both η and χ depend linearly on the
field strength and momentum of the particle. Therefore, by firing a relativistic beam of
particles towards a counter-propagating laser, it is possible to observe strong field QED
phenomena with a laboratory field strength several orders of magnitude lower than Ec.

The first attempt to probe the nonlinear QED regime occurred during the E-144
experiment at the Stanford Linear Accelerator (SLAC) in 1996. Here, they accelerated a
beam of electrons to 46.6 GeV before colliding it with a laser of strength a0 ≈ 0.3, resulting
in a quantum parameter of η ≈ 0.2. A diagram of the experimental setup is shown in
figure 1.4 (a). As the electrons interacted with the field, a beam of high energy gamma
rays was emitted, providing the first evidence of nonlinear Compton scattering [55]. The
experiment was also able to provide the first evidence of the nonlinear Breit-Wheeler
process [56], as some of the emitted gamma rays interacted with the field to produce
electron-positron pairs. On average n ≈ 6 laser photons were absorbed per scattering or
pair production event. As the experiment operated with a0, χ < 1, these nonlinear effects
were highly suppressed, resulting in only ≈ 100 pairs generated over 22000 shots.

We can see from figure 1.3, that peak laser intensities have increased significantly since
the mid 90s. This has lead to a renewed interest in studying strong field QED interactions,
with recent experiments carried out by Cole et al. (2018) [57] and Poder et.al (2018) [58]
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(a) Burke et al., SLAC (1997) [56] (b) Cole et al., Gemini (2018) [57]

Figure 1.4: Diagrams of strong field QED experiment setups. (a) shows the setup of the
E-144 experiment at SLAC. (b) shows the setup of the radiation reaction experiment at
Gemini. Although the quantum parameter of experiments has not improved over two
decades, diagram making software clearly has.

using the Gemini laser facility. These experiments were focused on the back reaction that
a charge experiences due to the emission of radiation (known as radiation reaction) and
a diagram of the setup can be found in figure 1.4 (b). To do this, they used a LWFA
to accelerate an electron beam to ∼ 2GeV (significantly lower than E-144) and collide it
with a tightly focused laser pulse of of strength a0 ≈ 10 (significantly higher than E-144).
This resulted in a similar nonlinear quantum parameter of η ≈ 0.2. In both experiments
radiation reaction was observed, however, large uncertainties were experienced due to
shot-to-shot fluctuations.

Following the success of E-144 and recent Gemini experiments, new strong field QED
campaigns are being planned which will take advantage of higher energy facilities, includ-
ing FACET-II at SLAC [59], and LUXE at the European X-FEL [60, 61]. With high
energy electrons and more intense lasers, these experiments hope to probe closer to the
regime where strong field QED processes become dominant.

1.4 Monte Carlo and Machine Learning

A typical laser based QED experiment will have a low expected signal (e.g. E-144 with
100 pairs over 22000 shots) and due to the presence of high energy gamma rays, the back-
ground noise levels will be high. This makes carrying out detailed numerical modelling
of such experiments vital, to maximise both the signal-to-noise ratio and chance of a suc-
cessful result. Due to the large scale of the simulations, and the inherent randomness of
the interactions, the Monte Carlo method is ideal for performing such calculations.

Monte Carlo methods are a group of algorithms that use repeated random sampling
to obtain results. The first person to realise their potential to carry out simulations of
physical systems was the Polish-American scientist Stanislaw Ulam. During the 1940s,
whilst playing games of solitaire, Ulam attempted to calculate the probability of winning
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(a) ENIAC (b) Perceptron

Figure 1.5: (a) shows Fran Bilas programming the first electronic general-purpose digi-
tal computer named ENIAC [65]. (b) shows Frank Rosenblatt with the Mark I Percep-
tron machine [66].

given a randomly shuffled deck of cards. Through his own calculations, he was unable
to find the answer, however, his genius was to envision the ability of new electronic
computers to rapidly simulate games and use this to calculate probabilities [62]. Ulam
quickly realised that this same method could be applied to a physical problem he was
working on, neutron diffusion. After discussions with John von Neumann, the first Monte
Carlo simulation was carried out using the ENIAC computer at Los Alamos [63], shown
in figure 1.5 (a). By solving neutron diffusion, the goal of the simulation was to predict
the explosive power of a fission device. Due to the secretive nature of their work, the
project was given the code name Monte Carlo, in reference to the Monte Carlo casino in
Monaco [64].

Since its invention, the Monte Carlo method has become ubiquitous in nuclear and
particle physics. This had lead to the development of a number of open source, Monte
Carlo simulation packages with examples including Geant4 [67, 68, 69], FLUKA [70, 71]
and MCNP [72]. Many of the simulations performed in this work have been carried out
using the package Geant4. Standing for ‘GEometry ANd Tracking’, Geant4 models the
passage of high energy particles through matter. It is built using C++ and heavily relies
on the object-oriented approach, making it easy to extend the package to our problem.

Performing Geant4 simulations of QED experiments is time consuming and compu-
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tationally expensive. Therefore, in this work we have used machine learning algorithms
to greatly increase the efficiency of these calculations. Like Monte Carlo methods, ma-
chine learning falls under the topic of computational statistics, and also has its roots in
scientists building machines to play games.

The term machine learning was coined in 1959 by Arthur Samuel [73], using it to
describe an algorithm he developed to play checkers. However, Samuel was not the first
to contemplate machine intelligence, with Alan Turing discussing the topic in his 1950
seminal paper ‘Computing Machinery and Intelligence’ [74]. In this work he proposed the
Turing test, a set of questions a computer must pass to be considered intelligent. This
gave rise to the topic of artificial intelligence (AI), which covers the attributes of computer
learning, reasoning and problem solving. Machine learning is considered a subset of this,
which specifically focuses on learning trends from data, without explicit programming.

Not long after Samuel’s work, the first example of an artificial neural network, called
the perceptron, was designed by Frank Rosenblatt at Cornell Aeronautical Laboratory
[75]. The name perceptron was initially used to describe the custom built machine that
the neural network algorithm ran on, which is shown in figure 1.5 (b). It contained an
array of photocells, used to detect a 20×20 pixel image, randomly connected to ‘neurons’
which act like neurons within the brain. Each neuron has a weight in the form of a
resistance, which is learned by rotary variable resistors called potentiometer, driven by
electric motors [76]. This machine was used as a linear classifier and was capable of
distinguishing between simple shapes or characters.

Beyond the initial success of the perceptron, there were few advances in the area of
machine learning over the following decades. This was partially due to lack of funding
and criticism by Minksy and Papert (1969) [77] claiming that multi-layer perceptrons,
required to learn nonlinear mappings, would be difficult to train. However, this changed
in the 80s and 90s, coinciding with the rapid increased in computational power and the
rediscovery of the backpropagation algorithm [78].

Today, machine learning algorithms are typically divided into three distinct sets: su-
pervised learning, unsupervised learning and reinforcement learning. A discussion of these
can be found in ref. [76]. In this work, we will focus on regression algorithms which are
a subgroup of supervised learning. Given a data set comprising of input vectors with
corresponding target vectors, the goal of regression is to learn a mapping from the input
to the target which generalises to unseen inputs. The two algorithms we will use are
Gaussian process regression [79] and neural network regression [76].

1.5 Thesis Outline

The work in this thesis is concerned with the development of software capable of modelling
laser based QED experiments. The contents of the subsequent chapters are as follows.
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Chapter 2: Theory of Electrodynamics

We will review the theory of charged particles interacting with electromagnetic fields.
Starting with a review of classical electrodynamics, we will find inconsistencies which
require QED to solve. Finally, we will introduce QED effects in strong background elec-
tromagnetic fields.

Chapter 3: Machine learning and Monte Carlo Methods

We will review the computational methods used in this work. We will start by discussing
the two common approaches to statistical inference which are maximum likelihood es-
timation and Bayesian inference. These methods will then be used to discuss both the
Monte Carlo method and machine learning algorithms used throughout in this work.

Chapter 4: Modelling Particle-Photon Processes in Geant4

We will present the development of a new photon physics package for Geant4. This pack-
age includes the Breit-Wheeler process, photon-photon scattering and Compton scattering
in a slowly varying, radiation field. We will show how a Gaussian process regression can
be used to greatly increase the efficiency of the package. Finally, we will demonstrate an
application, using the package to study the efficacy of a photon collider experiment using
the radiation from a laser heated hohlraum.

Chapter 5: Modelling Strong Field QED Interactions

In this chapter we will present the development of a new strong field QED package which
models the nonlinear Breit-Wheeler process and nonlinear Compton scattering in a back-
ground field. Applications of this package include pre-experimental design and optimi-
sation and post-experimental inference. Through the development of a deep-learning
emulator, we use the package to perform Bayesian inference on a mock radiation reaction
experiment.

Chapter 6: Design and Analysis of a Photon-Photon Collider Experiment

We will use the photon physics package discussed in chapter 4 to model a photon-photon
collider experiment carried out at the Gemini laser facility. Here, we will present calcu-
lations carried out both before and after the experiment, discussing how the setup was
optimised and inference made on the experimental measurements.
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Chapter 2

Theory of Electrodynamics

In this chapter we will discuss the theory of electrodynamics, which describes the interac-
tion between charges and the electromagnetic field. We will take a historical path through
the topic, starting with a discussion of the classical theory. This is capable of explaining
most of the electromagnetic phenomena we observe, however, breaks down at small scales.
Therefore, quantum electrodynamics (QED) is required to explain phenomena at the ex-
tremes. In the final part of this chapter, we will study QED in a strong field background,
where nonlinear effects become dominant.

Before beginning, we will briefly mention the formalism and units system used through-
out this chapter. As both classical and quantum electrodynamics are relativistic theories,
they can be expressed in a manifestly covariant form. However, this adds an extra layer
of complexity, when discussing classical electrodynamics. Therefore, in section 2.1 we will
work predominately with the three-vector form of equations.

However, as we move on to discussing QED, we will present equations in a manifestly
covariant form. Here we will use the same conventions as Jackson [80] and Peskin [81],
in which a three-vector quantity is denoted using a boldface variable and a four-vector
quantity is denoted using an italic variable with a Greek index, e.g.

a = (a1, a2, a3) aµ = (a0, a1, a2, a3). (2.1)

The metric tensor is given by

ηµν = diag(1,−1,−1,−1) (2.2)

and the scalar product of two four-vectors is

a · b = ηµνaµbν . (2.3)
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The four-vector derivative is

∂µ =
(1
c

∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
. (2.4)

Finally, in section 2.1 we will use SI and all constants will be expressed explicitly.
However, as we move to QED, to prevent equations become unwieldy a natural units
system will be used. Here, we will set the following

~ = c = 1. (2.5)

2.1 Classical Electrodynamics

The two fundamental building blocks of classical electrodynamics are the Lorentz force
and Maxwell’s equations. These describe a coupled system in which the action of the field
on the charges is governed by the Lorentz force and the action of the charges on the field
is governed by Maxwell’s equations.

Any discussion of classical electrodynamics would of course be incomplete without a
review of Maxwell’s equations, therefore this is where this section will start. We will then
proceed to study the dynamics of a charged particle in an external electromagnetic field.
Here we will use the Lagrangian and Hamiltonian formalisms, as a similar approach will be
taken when discussing QED. Having reviewed the foundations of classical electrodynamics,
we will move on to discuss more advanced topics, including the emission of radiation from
an accelerating charge and the back reaction that the charge experiences as a result. We
will see hows this leads to a fundamental flaw in classical electromagnetism, one which
can only be fixed by moving to a quantum theory.

2.1.1 Maxwell’s Equations

If we define the electromagnetic field in terms of its electric, E, and magnetic, B, compo-
nents, Maxwell’s equations are given by

∇ · E =
ρ

ε0

∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0J+ µ0ε0
∂E

∂t

(2.6)

where ρ is the charge density, J is the current density, and ε0 and µ0 are the permittivity
and permeability of free space respectively. Alternatively, we can define the field in terms
of the four-potential, Aµ = (φ/c,A). Here, φ is the electric potential and A is the
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magnetic vector potential. These are linked to the electric and magnetic fields through

B = ∇×A

E = −∇φ− ∂A

∂t
.

(2.7)

Using Aµ, we can write Maxwell’s equations in a more condense, and covariant form

∂2Aµ = µ0J
µ (2.8)

where Jµ = (cρ,J) is the four-current.

2.1.2 Charged Particle Dynamics

A charge located inside an electromagnetic field will feel a force from the field and act
back on it. In this section, we are only concerned with the dynamics of the particle, so
will assume the charge is small and the back-action is of negligible effect. The equations
of motion for the charge can be derived by applying Hamilton’s principle of least action.
This states that the path taken by a system, going from configuration 1 at time t1 to
configuration 2 at time t2, is the one in which the action,

A =

∫ t2

t1

L[Qi(t), Q̇i(t), t]dt (2.9)

is minimised (δA = 0). Here, L is the Lagrangian and depends on the generalised coordi-
nates of the system, Qi(t), their time-derivatives, Q̇i(t), and time explicitly. By applying
the principle of least action to equation 2.9, we can derive the following [82, 80]

d

dt

(
∂L

∂Q̇i

)
− ∂L

∂Qi

= 0 (2.10)

which are known as the Euler-Lagrange equations of motion.
An equivalent description of the system can be obtained using the Hamiltonian for-

malism. Here, rather than defining the system using Q̇i, we use the canonical momentum,

Pi =
∂L

∂Q̇i

. (2.11)

The Hamiltonian is defined through the Lagrangian

H = Q ·P− L (2.12)

and is the total energy of the system. The motion of the system is now given by two,
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first-order differential equations

dPi

dt
= − ∂H

∂Qi

dQi

dt
=
∂H

∂Pi

(2.13)

which are known as Hamilton’s equations. From them, we can see that if a generalised
coordinate does not appear in the Hamiltonian, then it is a conserved property of the
motion. This is also true of the Lagrangian and is a consequence of Noether’s theorem.

We can now apply these methods to the system of interest, a relativistic particle
in an external electromagnetic field (φext, Aext). The generalised coordinates are the
components of the particle’s position, Q = (x, y, z), and their time derivatives are the
components of the particle’s velocity, Q̇ = (vx, vy, vz). For this system, the Lagrangian is
given by [80]

L = −γ−1mc2 + qv ·Aext − qφext (2.14)

where γ = (1−v2/c2)−0.5 is the Lorentz factor and q and m are the charge and mass of the
particle respectively. The first term in equation 2.14 is the Lagrangian for a free particle
and the second two terms account for the interaction with the field. Using equation 2.11
the conjugate momentum of Q is

P = γmv + qAext = p+ qAext (2.15)

where p is the ordinary kinetic momentum. By applying equation 2.12, and rewriting the
result in terms of P, the Hamiltonian of the system is given by [80, 83]

H =
√
m2c4 + (P− qAext)2 + qφext. (2.16)

The motion of the particle can now be obtained through either Euler-Lagrange equa-
tions or Hamilton’s equations. This will not be carried out here but can be found in
Landau and Lifshitz (1971) [83]. The final result, written in terms of the electric and
magnetic fields, is the familiar Lorentz force

dp

dt
= q(E+ v ×B). (2.17)

From the Lorentz force we can also derive the rate of change of the particles energy,
E = γmc2, due to the interaction with the field, through the definition of work

dE

dt
= v · dp

dt
= qE · v (2.18)

where we have used the vector property (a× b) · a = 0.
The four-momentum of the particle is pµ = (E

c
,p), and allows us to combine equations
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2.17 and 2.18 into a single manifestly covariant form

dpµ

dτ
=

q

mc
(∂µAν − ∂βAµ)pν

=
q

mc
F µνpν

(2.19)

where dτ = γdt is the infinitesimal proper time and F µν is the electromagnetic field
tensor.

2.1.3 Electron Motion in a Monochromatic Plane Wave

Having derived the general equations of motion for a charged particle in an arbitrary elec-
tromagnetic field, we will now look at the specific case of an electron in a monochromatic
plane wave. This is a system which will come up multiple times throughout this chapter.
Here, we will assume the wave is linearly polarised and propagating in the +z direction.
By making use of the Coulomb gauge (∇ ·A = 0), in a vacuum we have φ = 0. Therefore,
the wave is fully defined by the vector-potential, A = (Ax, Ay, 0), which we will assume is
a twice-differentiable function of the wave phase ψ = kz − ωt. Here k is the wavenumber
and ω is the wave frequency.

As the wave does not vary in either x or y, from equation 2.16 we can see the same is
also true for the Hamiltonian. Therefore, the conjugate momenta Px and Py are constants
of the electron’s motion

d

dt
(px − eAx) =

d

dt
(py − eAy) = 0. (2.20)

If we set the boundary condition that the electron is initially at rest before the arrival of
the wave, we can solve these equations to give the x and y components of the electron’s
momentum

px = eAx py = eAy. (2.21)

The field does vary in z however, and the conjugate momentum, Pz, is not a constant.
To find the motion of the electron along this direction we can solve the Euler-Lagrange
equation, giving

dpz
dt

= ev · ∂A
∂z

(2.22)

where we have used Az = 0. By applying the chain rule to the right hand side of this
equation, we can write it as

ev · ∂A
∂z

= ev · ∂A
∂t

∂t

∂z
=
e

c
v · E =

1

c

dE

dt
(2.23)

where we have used equation 2.7 and equation 2.18 in the third step. This reveals a
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second constant of the electron’s motion

d

dt
(E − cpz) = 0. (2.24)

As the electron is stationary before the arrival of the wave, its initial energy and z com-
ponent of momentum are E = mc2 and pz = 0 respectively. Using this we can solve
equation 2.24 to give

pz =
p2x + p2y
2mc

=
eA2

2mc
(2.25)

where we have used γ =
√

1 + ( px
mc

)2 + ( py
mc

)2 + ( pz
mc

)2. By introducing the parameter a =

eA/mc, known as the normalised vector potential, we can rewrite the three components
of the electron’s momentum as

px = axmc py = aymc pz =
a2

2
mc. (2.26)

We can see this parameter plays a significant role in the dynamics of the electron. If
|a| > 1, the electron gains and loses an energy of E > mc2 every wave period and its
motion is dominated by relativistic effects.

The electron gains a momentum component both perpendicular (x and y) and par-
allel (z) to the direction of the wave. The perpendicular component is proportional to
a, resulting in the electron quivering in the field, but the time averaged motion is zero.
However, the parallel component is proportional to a2, which results in the electron drift-
ing in the direction of the field. The average velocity which the electron drifts at is given
by

vD
c

=
〈pz
γ

〉
=

a2

4 + a2
. (2.27)

The full trajectory of the electron can be obtained by integrating the equations in 2.26.
If we assume the field is sinusoidal and polarised in the x direction, it can be written as

a = a0 cosψ x̂ (2.28)

and there is no motion in the y direction. The trajectory in the x and z directions are
given by the following

dx

dt
=
c

γ
a0 cosψ

dz

dt
=

c

2γ
a20 cos

2ψ

(2.29)
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Figure 2.1: Electron motion in a plane wave with a0 = 3 as observed in the (a) labora-
tory frame and (b) average rest frame.

which, upon integrating yields

x =
a0c

ω
sinψ

z =
a20c

4ω

(
ψ +

1

2
sin 2ψ

) (2.30)

and is plotted in figure 2.1 (a). This shows both the quiver and drift motion of the electron
in the laboratory frame. The average rest frame of the electron is obtained by boosting
with a velocity vD in the z direction. The trajectory of the electron in this frame is shown
in figure 2.1 (b) with both components exhibiting simple sinusoidal motion. However, the
z-component oscillates at twice the frequency, resulting in a figure-of-eight track.

2.1.4 Power Radiated from an Accelerating Charge

In the previous section, we assumed the charge was small and had no effect on the elec-
tromagnetic field. However, this is not always the case, as is evident from Maxwell’s
equations. In this section we will examine the action of a charge on the electromagnetic
field and deriving a formula for the power emitted. We will use two approaches to tackle
this problem. In the non-relativistic limit, an elegant pictorial description can be used,
however, in the relativistic limit, a more mathematically rigorous approach is required.

Non-Relativistic Radiated Power

This pictorial derivation, which is shown in figure 2.2, was originally presented by J. J.
Thomson, however, here we will follow the discussion given by M. Longair [84]. The
diagram shows a stationary charge at the origin at time t = 0. The initial electric field
configuration due to the charge is represented by the dashed lines. The charge then
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(a) Accelerating charge (b) Field components

Figure 2.2: Diagram demonstrating the emission of radiation from an accelerating
charge. (a) shows the field configurations of a charge initially at rest at the origin
(dashed lines), and moving to the right at δv (solid lines). The red rings show the
boundaries between the field configurations before, during and after the acceleration.
(b) shows an enlarged picture of the field configuration inside the shell. The field is de-
composed into radial and tangential components.

experiences an acceleration to a velocity δv � c over a time interval ∆t. After some
time t, we can distinguish between the field configuration inside and outside of a sphere
of radius r = ct. Inside the sphere, the field lines point radially out from the charge.
However, outside the sphere the field configuration is not yet aware that the charge has
moved, as information cannot travel faster than the speed of light. Therefore, the field
lines still point radially out from the origin. Between the two configurations there is a
shell of thickness c∆t where the field lines must join up. Within this shell, there is a
tangential component of the electric field, propagating out at the speed of light. This
corresponds to the emission of a pulse of electromagnetic radiation.

In figure 2.2 (b) we can see the two components of the field inside the shell. Using
this, the ratio of the tangential and radial components of the electric field is

Eθ

Er

=
∆v t sin θ

c∆t
. (2.31)

By replacing the radial component with Coulomb’s law, the tangential component can be
written as

Eθ =
q|v̇| sin θ
4πε0c2r

(2.32)

where |v̇| = ∆v/∆t is the acceleration of the charge. As there is a tangential electric field
which changes over the pulse duration, Maxwell’s equations tell us there must also be an
azimuthal magnetic field, Bφ = Eθ/c. The energy flux in the field is given the Poynting
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vector
S =

E×B

µ0

=
q2|v̇|2 sin2 θ

16π2ε0c3r2
r̂ (2.33)

which, upon integrating over solid angle, gives the formula for total power emitted

P =
q2|v̇|2

6πε0c3
(2.34)

and is known as the Larmor formula [85].

Relativistic Power

For a more mathematically rigorous approach, which correctly predicts the emission from
a relativistic charge, we should solve Maxwell’s equations for the system. Doing so is a
fairly involved calculation and can be found in Jackson [80]. The result is the Liénard-
Wiechert fields [86]

E(r, t) =
q

4πε0

[
n̂− β

γ2(1− β · n̂)R2
+

n̂× [(n̂− β)× β̇]

c(1− β · n)3R

]
ret

B(r, t) =
n̂× E(r, t)

c
.

(2.35)

where β = v/c is the normalised velocity of the charge, r0 is the location of the charge,
r is the location of the observer, n̂ is the unit vector in the r− r0 direction, R = |r− r0|
and the right hand side of the equation is evaluated at the retarded time tr = t−R/c.

The first term in equation 2.35, which only depends on β, is known as the velocity
field and is proportional to R−2. The second term, which depends on both β and β̇, is
known as the acceleration field and is proportional to R−1. Far away from the charge the
velocity field will vanish and only the acceleration field will remain. Therefore, the energy
flux is given by the radial component of Poynting’s vector [80]

[S · n̂]ret =

[
E×B

µ0

· n̂

]
ret

=
q2

16π2cε0

[
1

R2

∣∣∣∣∣ n̂×
[
(n̂− β)× β̇

]
(1− β · n̂)3

∣∣∣∣∣
2 ]

ret

. (2.36)

This equation gives the power per unit area, detected by an observer at time t and emitted
by the charge at the retarded time tr = t− R(tr)/c. However, the important quantity is
the power emitted by the charge with respect to its own time. This can be obtained by
considering the total energy emitted by the charge as it accelerates between times tr = T0

to tr = T1

E =

∫ t=T1+R(T1)/c

t=T0+R(T0)/c

[s · n̂]retdt =
∫ tr=T1

tr=T0

s · n̂ dt

dtr
dtr (2.37)

and is given by the integrand of the equation on the right-hand side. We can then define
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(a) Laboratory frame

Figure 2.3: Normalised angular distribution of radiation emitted by a non-relativistic
(blue) and a relativistic (red) charge with an acceleration parallel to its velocity. At
high velocities the distribution collapses onto the motion axis.

the power radiated per unit solid angle as

dP (tr)

dΩ
= R2 s · n̂ dt

dtr
=

q2

16π2cε0

∣∣n̂×
[
(n̂− β)× β̇

]∣∣2
(1− n̂ · β)5

. (2.38)

This equation is plotted in figure 2.3 for both a non-relativistic (|β| = 0.01) and a rel-
ativistic (|β| = 0.9) charge where β ‖ β̇. In the non-relativistic case, we can see a
double lobe characteristic of a sin2θ distribution. This is the same angle dependence that
appeared in equation 2.33 during the pictorial derivation. In the relativistic case, the
emission becomes beamed along the axis of motion. It can be shown that the root mean
square of the emission angle is [80]

〈θ2〉1/2 = 1

γ
(2.39)

Therefore, at higher velocities the beaming will become more apparent as the cone angle
shrinks.

By integrating equation 2.38 over solid angle we retrieve Liénard’s result

P =
q2γ6

6πcε0

[
β̇

2 − (β × β̇)2
]
. (2.40)

for the total power emitted by a relativistic charge. This increases rapidly with γ and
suggests radiation effects can dominate a particle’s motion for ultra-relativistic charges.
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2.1.5 Radiation Spectrum From an Accelerating Charge

Having found the total power emitted from an accelerating charge, we will now turn our
attention to the spectrum of the radiation. Following Jackson [80], we will define the
radiation spectrum such that its integral over the frequencies measured by an observer,
ω, gives the energy emitted, W , per unit solid angle, i.e.

dW

dΩ
=

∫ ∞

0

d2I

dωdΩ
dω (2.41)

where I is the intensity. As we wish to work with the observer’s frequencies, we will start
by rewriting equation 2.38 in terms of the observer’s time

dP (t)

dΩ
=

c

ε0

[
R2E2

]
ret

= |A(t)|2. (2.42)

If we assume the particle is accelerated over a finite duration, the total energy emitted is
also finite. We can then write the total energy emitted per unit solid angle as

dW

dΩ
=

∫ ∞

−∞
|A(t)|2dt. (2.43)

By applying a Fourier transform, this equation can be expressed as an integral over
frequency rather than time

dW

dΩ
=

∫ ∞

−∞
|A(ω)|2dω (2.44)

where
A(ω) =

1√
2π

∫ ∞

−∞
A(t)eiωtdt (2.45)

is the Fourier transform of A(t). Therefore, by comparing equations 2.41 and 2.44, we
can write the radiation spectrum as

d2I

dωdΩ
= 2|A(ω)|2 (2.46)

where the factor of 2 has arisen due to only integrating over positive frequencies and
assuming |A(ω)|2 is symmetric1. To obtain the spectrum as a function of the charge’s
motion, we can insert the electric field from equation 2.35 which yields [80]

d2I

dω dΩ
=

q2ω2

16π3cε0

∣∣∣∣∣
∫ ∞

−∞
n̂×

(
n̂× β(tr)

)
eiω(tr−n̂·r(tr)/c)dtr

∣∣∣∣∣
2

(2.47)

where integration by parts has been performed to simplify the final form.
1This must be the case if A(t) is real, see Jackson [80] for details.
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2.1.6 Thomson Scattering and Synchrotron Spectra

Equation 2.47 shows that all we require to calculate the radiation spectrum from the
motion of a charge, is a time record of r and β. However, even for relatively simple
motion, the analytical calculation is involved. In this section we will briefly discuss the
radiation spectrum from two different systems. The first will be the emission from an
electron interacting with a plane wave. The second will be the emission from an electron
performing instantaneous circular motion. We will come back to both these systems in
the final part of this chapter when discussing the quantum motion of charges in strong
fields.

Thomson Scattering

The emission of radiation from an electron interacting with a plane wave is commonly
referred to as Thomson scattering. For this system, we can simplify the calculation of
equation 2.47 by noting that the electron exhibits periodic motion at the frequency of the
wave. Therefore, we can write2

β(t+mT ) = β(t) r(t+mT ) = mr0 + r(t) (2.48)

where m is an integer, T = 2π/ω0 is the wave period and r0 is the total displacement
gained over one cycle. By inserting this into equation 2.47 and using the definition of the
Dirac delta function,

∑
m e

imx =
∑

m 2πδ(x− 2mπ), we arrive at the following [87]

d2I

dωdΩ
=
e2ω2

4π2c

∣∣n̂× (n̂×
∞∑

m=−∞

Fmδ(ω − ωm))
∣∣2 (2.49)

where
ωm =

2πm

T − n̂ · r0/c
Fm =

ωm

2π

∫ T

0

β(t)eiωm(t−n̂·r(t)/c). (2.50)

Therefore, the spectrum exhibits harmonic behaviour, with a fundamental frequency that
is not simply the frequency of the wave, but also depends on the net displacement of the
electron.

The calculation of Fm is involved, so it will not be carried out here, however, has been
discussed by multiple authors. The case of an initially static electron has been studied
by Sarachik et. al [88]. Lau et. al. [87] has provided a review of the back-scattering
radiation. Finally, a full review of the general interaction has been carried out by Esarey
et. al. [89].

Figures 2.4 (a) and (b) show plots of the Thompson scattering spectrum from a 50MeV

2In this equation, t is the retarded electron time, however, for the following discussion we have
dropped the subscript r.
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Figure 2.4: Normalised Thompson scattering spectrum. (a) shows the spectrum for a
weak field with only one harmonic present. (b) shows the spectrum for a strong field
in which multiple harmonics are present. The grey dashed lines show the boundaries of
the harmonics.

electron interacting with a weak (a0 = 0.3) and strong (a0 = 1.0) field respectively. In the
weak field case, only one harmonic is present with a maximum fundamental frequency of
ω1 = 4γ2ω0. Although this is a classical result, the up-shift in energy can be explained by
boosting into the average rest frame of the electron and considering a photon elastically
scattering off the electron. If the photon scatters back along the boost axis, its energy
will be Doppler shifted by a factor of 4γ2. The up-shift in energy is reduced for larger
scattering angles.

In the strong field case, a significant proportion of the radiation is emitted at higher
harmonics. We can use the same heuristic, quantum argument to explain these higher
harmonics. They result from multiple wave photons scattering off the electron at the same
time, producing a single high energy photon. Therefore, the intensity of the higher har-
monic will have a strong dependence of a0 which results in them being highly suppressed
for a0 < 1. When higher harmonics are present in the spectrum it is often referred to as
nonlinear-Thompson scattering.

Synchrotron Radiation

Later in this chapter, when studying the quantum emission from an accelerating charge,
we will see there are few systems for which calculations of the radiation spectrum can be
performed exactly. Therefore, approximations must be made, such as the quasi-stationary
and weak field approximations. If these approximations are valid, we can assume the
charge experiences instantaneously circular motion, simplifying the calculations. Here,
we will review the classical equivalent to this, known as synchrotron radiation.

Even for this simple instantaneously circular motion, solving equation 2.47 is chal-
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Figure 2.5: Plot of synchrotron function.

lenging. The full calculation can be found in Jackson [80], with the final result for an
electron giving

d2I

dωdΩ
=

e2

12π3cε0

(ωρ
c

)2( 1

γ2
+ θ2

)2[
K2

2/3(ψ) +
θ2

(γ−2 + θ2)
K2

1/3(ψ)

]
(2.51)

where ρ is the radius of curvature, K2/3 and K1/3 are modified Bessel functions of the
second kind and their argument is given by

ψ =
ωρ

3c

( 1

γ2
+ θ2

)3/2
. (2.52)

The modified Bessel functions is exponentially suppressed for ψ > 1. Therefore, we can
define a critical frequency beyond which there is little energy in the spectrum at any
angle. Using ψ = 1/2 and θ = 0, this is given by

ωc =
3

2
γ3
c

ρ
. (2.53)

The total intensity spectrum, integrated over solid angle is

dI

dω
=

√
3

4

e2

πcε0
γ fsynch

( ω
ωc

)
(2.54)

where
fsynch(x) = x

∫ ∞

x

K5/3(x)dx (2.55)

is the classical synchrotron function and is plotted in figure 2.5.
At a synchrotron, an oscillating magnetic field device (e.g. a wiggler or undulator)

is often inserted into the beam path, causing the electrons to emit radiation. With a
magnetic field strength of |B| = 1T and an electron beam of energy E = 3GeV, the
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critical frequency is ωc ∼ 6 keV, where we have used ρ = p/e|B|. This hard source of
x-rays has become an invaluable tool in many areas of scientific research.

If we look at a more extreme example from astrophysics, the magnetic field of pulsars
can reach in excess of |B| = 109T [90]. The critical frequency for the same electron beam
is ωc ∼ 6 × 103GeV, several orders of magnitude larger than the energy of the electron
itself. This is clearly unphysical and suggests a breakdown in the theory. We will discuss
the solution to this problem later in this chapter.

2.1.7 Radiation Reaction

When an accelerating charge radiates, energy and momentum are taken away by the
field, a process known as radiation reaction. In section 2.1.2, when deriving the Lorentz
force, we did not consider the self-interaction between the charge and its radiated field.
Therefore, radiation reaction is not accounted for in equation 2.17. However, as we already
know the power that is lost due to radiation (equation 2.34 for |β| � 1 and equation 2.40
for |β| . 1), adding an extra damping term to the equations of motion, i.e.

dp

dt
= q(E+ v ×B) + FRR

dpµ

dτ
=

q

mc
F µνpν + Fµ

RR

(2.56)

should be a relatively simple task.

Lorentz-Abraham Force

In the nonrelativistic limit, from the definition of work done over the time interval t1 <
t < t2, we can write ∫ t2

t1

FRR · vdt = −
∫ t2

t1

Pdt = − q2

6πε0c3

∫ t2

t1

v̇2dt (2.57)

where equation 2.34 has been used. By applying integration by parts, the right-hand side
of this equation can be written as

∫ t2

t1

FRR · vdt = − q2

6πε0c3

(
[v̇ · v]t2t1 −

∫ t2

t1

v̈ · vdt

)
. (2.58)

If the motion is periodic, the first term will vanish and we can identify the radiation
reaction force as

FRR = mτradv̈ (2.59)
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where τrad = q2/6πε0mc
3. This is the Lorentz-Abraham force [91] and has the following

relativistic generalisation

Fµ
RR = τrad

(
d2pµ

dτ 2
− pµ

m2c2
dpν

dτ

dpν
dτ

)
(2.60)

known as the Lorentz-Abraham-Dirac (LAD) force [92].
The radiation reaction force has the unusual property that it is proportional to the

third derivative of the particle’s position. This leads to unphysical behaviour. To examine
this, we can solve the full equation of motion for a radiating charge in an external field

mv̇ = Fext +mτradv̈ (2.61)

where Fext = q(Eext+v×Bext) is the Lorentz force. The general solution to this equation
is [93]

mv̇(t) = mv̇(t0)e
(t−t0)/τrad − et/τrad

τrad

∫ t

t0

Fext(t
′)e−t′/τraddt′ (2.62)

where t0 is a constant and v̇(t0) is the acceleration at this time. If there are no external
fields, the second term will vanish. We are left with the first term, which suggests the
charge will exponentially accelerate over a timescale τrad (with τrad = 6.26 × 10−24 s for
an electron). This is clearly unphysical and is known as a runaway solution.

One approach to remove runaway solutions is to ensure the acceleration tends to
zero once the forces have finished acting. This is achieved by applying the boundary
conditions t0 → ∞ and v̇(t0) → 0. By making the substitution s = (t′ − t)/τrad, equation
2.62 becomes

mv̇(t) =

∫ ∞

0

FL(t+ τrads)e
−sds (2.63)

and does not exhibit exponential growth. However, it suggests that the acceleration of
the charge at time t, depends on the force it experiences at all times in the future. This
clearly breaks causality and should also be discarded.

Landau-Lifshitz Force

The unphysical solutions, which plague the nonrelativistic Lorentz-Abraham force, are
still present in the fully relativistic LAD equation as they stem from the third derivative
of position [93]. Therefore, to remove them, the order of the equation of motion should
be reduced. Landau and Lifshitz [83] proposed a method for doing this by assuming
the radiation reaction term is always much smaller than the Lorentz term, such that
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Figure 2.6: Demonstration of the radiation reaction force on an electron interacting
with an intense laser pulse. Shown is the energy of the electron against time without
radiation reaction included (black) and with radiation reaction included (red).

mv̇ = Fext +O(τrad). By substituting this into equation 2.61 we get

mv̇ = Fext + τrad
dFext

dt
+O(τ 2rad)

= q(E+ v ×B) + τrad

[
q
(dE
dt

+ v × dB

dt

)
+

q

m

(
E+ v ×B

)
×B

]
+O(τ 2rad).

(2.64)

If we ignore contributions of order O(τ 2rad) we can identify the Landau-Lifshitz force as

FLL = τrad

[
q
(dE
dt

+ v × dB

dt

)
+

q

m

(
E+ v ×B

)
×B

]
. (2.65)

A similar method can be applied to the LAD equation to give the Landau-Lifshitz force
for a relativistic charge [83]

Fµ
LL =

q τrad
mc

[
(∂σF

µν)pνp
σ +

q

c
F µνFνσp

σ +
q

m2c3
(F νσpσ)

2pµ

]
. (2.66)

The Landau-Lifshitz force is generally accepted as the correct classical description
of radiation reaction as it appears in the classical limit of fully quantum calculations
[94]. The result of radiation reaction on an electron interacting with a laser pulse is
demonstrated in figure 2.6. Without the force included, the electron’s energy oscillates
but ultimately leaves the laser unaffected. However, when the force is included, the
oscillations cause the electron to radiate and it leaves with a lower energy.
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2.2 Quantum Electrodynamics

In the previous section, we found situations in which classical electrodynamics predict
unphysical behaviour. Specifically, for the case of radiation reaction we found runaway
solutions or non-causal forces. Both these effects occur over a characteristic time-scale
given by τrad, so we can define a characteristic length-scale as

c τrad =
e2

6πε0mc2
=

2

3
αλ̄c (2.67)

where α ≈ 1/137 is the fine structure constant and λ̄c is the reduced Compton wavelength.
The reduced Compton wavelength is a length which is well within the quantum realm
and c τRR is considerably smaller. Therefore, it should come as no surprise that QED is
required to explain these phenomena.

In classical electrodynamics, both the electromagnetic field and charged particles are
treated as distinctly different objects. However, in QED both the charged particles (i.e.
electrons and positrons) and electromagnetic radiation (i.e. photons) are described by
fields. The field used to represent the particles is known as the Dirac field, denoted by
ψ whereas electromagnetic radiation is represented by the Maxwell field, denoted by Aµ.
Through quantisation of these fields, particles appear as excited states. This gives rise to
a theory of electrodynamics that is both quantum and relativistic.

In this section we will give a brief overview of QED, starting as we did for classical
electrodynamics, with the Lagrangian for the system. From this, interaction probabilities
can be calculated through perturbation theory, however, such calculations are not the
aim of this work so will not be presented here. After reviewing the method of calculating
interaction probabilities, we will discuss some specific two body quantum processes that
are of importance to this work.

2.2.1 Calculating QED Cross-Sections

Most of the experiments linked to this work can be described as scattering experiments.
Here, we interact two beams of particles (denoted by subscripts 1 and 2) and observe
the particles that come out. Between experiments, there will be a number of parameters
which change. Therefore, if we want to compare the number of scattering events, N , that
occurred in one experiment to another, we should divide by these quantities. This gives
rise to the total cross-section for the interaction

σ =
N

ρ1 l1 ρ2 l2A
(2.68)

where ρ1,2 is the beam density, l1,2 is the beam length and A is the overlap area between
the beams.
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We are also interested in the momentum distribution of the particles which scatter
out. It is therefore useful to define the differential cross-section. In the case where there
are only two outgoing particles (denoted by subscripts 3 and 4), the differential cross-
section gives the probability of scattering into final states with momenta p3 and p4. Due
to conservation laws in the centre-of-mass (CM) frame, only two of the six components
of the momentum are not fixed. If we use the polar, θ, and azimuthal, φ, angles of the
scattering axis as the free parameters, the differential cross-section is given by dσ/dΩ,
where dΩ = sinθ dθ dφ.

Following Peskin and Schroeder [81], to perform a calculation of the cross-section for
a process, we should start from the Lagrangian of the system. As we are now interested
in interacting fields, it is more appropriate to work with the Lagrangian density, L, rather
than the Lagrangian itself. However, to be more succinct, we will also refer to L as the
Lagrangian. L is a function of one or more fields, φ(x), and their derivatives, ∂µφ(x)3.
Therefore, the action is given by

A =

∫
L(φ(x), ∂µφ(x))d4x (2.69)

which we can apply the principle of least action to, resulting in the Euler–Lagrange
equations for a field

∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (2.70)

The total Lagrangian for QED can be decomposed into three parts

LQED = LDirac + LMaxwell + Lint

= ψ̄(i/∂ −m)ψ − 1

4
F µνFµν − eψ̄γµψAµ

(2.71)

where ψ(x) is the Dirac field operator Aµ(x) is the Maxwell field operator, /∂ = γµ∂µ

where γµ are Dirac matrices and natural units (~ = c = 1) have been used. LDirac is
the free Lagrangian for electrons and positrons, LMaxwell is the free Lagrangian for the
electromagnetic field and Lint, describes the interaction between the Dirac and Maxwell
fields.

We can obtain the equations of motion for these fields by inserting LQED into equation
2.70. By setting φ = Aµ and applying the Lorenz gauge we obtain the following [81]

∂ν∂
νAµ = eψ̄γµψ (2.72)

which, by comparing to equation 2.8 and identifying jµ = eψ̄γµψ as the current density
operator, gives the QED equivalent of Maxwell’s equations. By setting φ = ψ we obtain

3Here x is a four vector but we have dropped the index when it is the argument of a function.
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the equations of motion for the Dirac field

(i/∂ −m)ψ = e /Aµψ (2.73)

which is known as the Dirac equation.
For an arbitrary field, solving these equations of motion is extremely difficult, if not

impossible. Therefore, to proceed, approximations have to be made through perturbation
theory. To apply perturbation theory, it is assumed that the interaction term in the
Lagrangian is much smaller than the free terms. However, it is more convenient to work
with the interaction Hamiltonian rather than interaction Lagrangian of the system. We
can write the Hamiltonian as

H = H0 +Hint (2.74)

where the interaction term is[81]

Hint = −
∫

Lintd
3x =

∫
eψ̄γµψAµd

3x (2.75)

.
We will define a process as an interaction in which the system starts in state 〈i| at

time ti and evolves to a final state |f〉 at time tf . This evolution occurs according to the
following operator

U(t, t0) = T e−i
∫ t
t0

Hint(t
′)dt′ (2.76)

known as Dyson’s formula, where T is the time-ordering operator. The initial and final
states are assumed to be eigenstates of the free Hamiltonian in the asymptotic limit
ti → −∞ and tf → ∞. The probability amplitude for the evolution from |i〉 to |f〉 is

Sfi = lim
ti→−∞

lim
tf→∞

〈f |U(ti, tf ) |i〉 (2.77)

which is known as the S-matrix. Calculations of this matrix can be performed for a
given process by expanding in powers of Hint ∝

√
α. Each term in this expansion can be

expressed as a Feynman diagram. These diagrams are drawn according to the Feynman
rules where the number of vertices corresponds to the order of the term. This greatly
reduces the complexity of the calculation, however, it is beyond the scope of this work
and will not be carried out here.

The structure of the S-matrix is such that it contains the probability of no inter-
action occurring and a delta function corresponding to the conservation of momentum.
Therefore, we can extract these to define the scattering amplitude

Sfi = δfi + i(2π)4δ4(pµf − pµi )Afi (2.78)
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Figure 2.7: Diagram of binary collision in the CM frame of the system.

where pµf and pµi are the initial and final total four-momentum of the system. In terms
of Afi, the differential cross-section for a binary collision in the CM frame is given by
[81, 95] (

dσ

dΩ

)
CM

=
1

64π2E2
cm

|p1|
|p3|

|Aif |2 (2.79)

where Ecm is the centre of mass energy and p1 and p3 are the momentum of an initial
and final state particle respectively (see figure 2.7).

2.2.2 Two-Body Scattering Processes

The lowest order scattering process one could imagine would involve two particles colliding
to produce a third. However, such a process is unphysical as energy and momentum
cannot be conserved. Therefore, the lowest order physical scattering process involves two
incoming particles and two outgoing particles. A diagram of such a process is shown in
figure 2.7. When discussing the cross-sections of two-body interactions, is it useful to write
them as functions of Lorentz-invariant variables. Therefore, we will use the Mandelstam
variables

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 − p3)
2 = (p4 − p2)

2

u = (p1 − p4)
2 = (p3 − p2)

2

(2.80)

which encode all the important parameters of the interaction, including the particles’
energy, momentum and angles.

Table 2.1 gives a summary of all the two-body QED processes which have been grouped
based on the initial state particle types. Here, we are particularly interested in processes
which have a photon in the initial state (i.e. the electron-photon and photon-photon
systems). Part of this work has been to develop a new QED package for Geant4 which
includes the Breit-Wheeler process, Compton scattering and photon-photon scattering.
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Table 2.1: Two-body QED processes.

Electron-Electron Electron-Photon Photon-Photon
Møller scattering Compton scattering Breit-Wheeler process
e±e± −→ e±e± e±γ −→ e±γ γγ −→ e+e−

Bhabha scattering Photon-photon scattering
e+e− −→ e+e− γγ −→ γγ

Dirac annihilation
e+ e− −→ γγ

Table 2.2: Low order QED processes which take place in the nuclear field of an atom.

Nuclear-Electron Nuclear-Photon
Mott scattering Bethe-Heitler process
Ze± −→ Ze± Zγ −→ Ze+e−

Bremsstrahlung Photon splitting
Ze± −→ Ze±γ Zγ −→ Zγγ

Delbrück scattering
Zγ −→ Zγ

Therefore, in the remainder of this section we will provided a more detailed discussion of
each. For a full review of the whole of table 2.1, see Jauch 1980 [96].

However, before moving on, it is important to mention some interactions which take
place inside the nuclear field of an atom, Z, that are also important to this work. These
are summarised in table 2.2. Apart from Mott scattering, each process has a counterpart
from table 2.1 with a similar lowest order Feynman diagram. However, in the nuclear
field processes, one or more of the real photons are replaced by a virtual photon. The
nucleus is still present after the interaction so these processes cannot be described as two
body interactions.

Compton Scattering

Compton scattering describes the interaction between a photon and a charged particle
(e±γ → e±γ). It was first observed by Arthur Compton in 1923 [97] when he measured
the transfer of energy from a high energy photon to an electron. Therefore, the process
is often described as inelastic scattering. However, in the CM frame it is always elastic
as there is no transfer of energy. The lowest order Feynman diagrams which contribute
to this process are of second order (∝ α2) and an example is shown in figure 2.8 (a).

The frame of reference we will use for calculations in this work is the CM frame.
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Figure 2.8: Example of lowest order Feynman diagrams which contribute to (a) Comp-
ton scattering (b) the Breit-Wheeler process and (c) photon-photon scattering.

Here, the differential cross-section for Compton scattering is complex but can be found
in Jauch 1980 [96]. However, it is plotted along with the total cross-section in figures 2.9
(a) and (b) respectively. Due to the difference in the mass of the scattering particles, the
differential cross-section is asymmetric with a strong preference for back-scattering.

Although complex in the CM frame, in the rest frame of the electron, the differential
cross-section simplifies significantly to [98]

dσCS

dΩ
=

α2

2m2

(
ω′

ω

)2(
ω

ω′ +
ω′

ω
− sin2θ

)
(2.81)

where ω is the frequency of the incoming photon, ω′ is the frequency of the outgoing
photon and θ is the scattering angle. Through conservation of momentum and energy we
can relate the outgoing frequency to the incoming frequency

ω′ =
ω

1 + ω
m
(1− cosθ)

. (2.82)
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Figure 2.9: Plots of the differential cross-section (left column) and the total cross-
section (right column) for Compton scattering, the Breit-Wheeler process and photon-
photon scattering.
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Integrating equation 2.81 over solid angle gives the total Compton cross-section [96]

σCS =
2πα2

m2

{
1 + ω

ω3

[
2ω(1 + ω)

1 + 2ω
− log(1 + 2ω)

]
+

log(1 + 2ω)

2ω
− 1 + 3ω

(1 + 2ω)2

}
. (2.83)

In the non-relativistic limit, ω � m, from equation 2.82 we can see ω′ → ω. Therefore,
the interaction in the electron’s rest frame is elastic. Equations 2.81 and 2.83 then reduce
to

dσ

dΩ
=
α2

m2
(1 + cos2θ) and σ =

8πα2

3m2
(2.84)

respectively, which are the differential and total cross-sections for Thomson scattering.

The Breit-Wheeler Process

The Breit-Wheeler process is the annihilation of two photons to produce an electron
positron pair (γγ → e+e−). It was first predicted in 1934 [18], however, has never been
directly detected to date. By enabling two photons to interact, the Breit-Wheeler process
demonstrates that the electromagnetic field is nonlinear. This shows a profound difference
between QED and classical electromagnetism. The lowest order Feynman diagrams which
contribute to the Breit-Wheeler process are again of second order and an example is shown
in figure 2.8 (b).

The differential cross-section for the Breit-Wheeler process is given by [96]

dσBW

dΩ
=
α2β

m2s

[
1 + 2βsin2θ − β4 − β4sin4θ

(1− β2cos2θ)2

]
(2.85)

where β =
√
1− s−1 is the velocity of the pair in the CM frame and θ is the angle

between the collision and scattering axes. Integrating over solid angle we get the total
Breit-Wheeler cross-section

σBW =
πα2(1− β2)

2m2

[
(3− β4)log

1 + β

1− β
− 2β(2− β2)

]
. (2.86)

Equations 2.85 and 2.86 are plotted in figure 2.9 (c) and (d) respectively. The cross-
section exhibits a threshold at

√
s = 2mc2, below which the value is zero. This is due

to the rest-mass of the electron-positron pair. For the process to occur the energy of the
incoming photons must at least be large enough to create the pair at rest.

Comparing figures 2.9 (b) and (d), we can see that the total cross-section for Compton
scattering and the Breit-Wheeler process are of the same order of magnitude when above
the threshold. Therefore, it is not the smallness of the cross-section that has prevented
the Breit-Wheeler process from being detected but the threshold behaviour. Creating the
high energy photon sources, required to get over the threshold, that are also dense enough
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to produce a detectable number of pairs is challenging.

Photon-Photon Scattering

In QED a photon cannot couple directly to another photon. Therefore, perturbing the
S-matrix to second order yields no process where two incoming photons scatter into two
outgoing photons. However, this is not the case if we expand to higher orders. Figure
2.8 (c) shows a diagram of a fourth order term (∝ α4) describing photon-photon scat-
tering (γγ → γγ). This was first discussed by Euler and Kockel in 1935 [21] and again
demonstrates the non-linearity of the electromagnetic field.

The differential cross-section for photon-photon scattering is again complex and can
be found in Tollis (1965) [99]. It is plotted along with the total cross-section in figures
2.9 (e) and (f). The overall shape of the differential cross-section is similar to that of the
Breit-Wheeler process, however, is ≈ 104 times smaller due to the factor of α2. Therefore,
photon-photon scattering has also never been directly observed in the laboratory.

Another difference between photon-photon scattering and the Breit-Wheeler process
is the absence of the threshold. Taking advantage of this, experiments have been proposed
to detect photon-photon scattering in the non-relativistic limit using IR lasers [100]. In
this limit, the differential and total cross-sections simplify considerably to

dσγγ
dΩ

=
139

8100

α4

2πm2

( ω
m

)6
(3 + cos2θ)2 (2.87)

and
σγγ =

973

10125

α4

π2m2

( ω
m

)6
(2.88)

respectively. These decay rapidly with ω and along with the low value for the total
cross-section, makes such experiments challenging.

2.3 Strong-Field Quantum Electrodynamics

Perturbative QED is one of the most successful theories to date, with theoretical calcu-
lations agreeing with experimental measurements to extreme precision (e.g. the electron
magnetic moment [101]). In section 2.2.1 we made the assumption that the interaction
Hamiltonian was small compared to the free Hamiltonian. This allowed us to expand in
powers of Hint. However, we can see from equation 2.75, that if the field is large, such
that the normalised vector potential a0 & 1, the perturbative calculation is destined to
fail. This is demonstrated on the left of figure 2.10 which shows an electron emitting and
absorbing an arbitrarily large number of photons n. Calculating the probability of this
event would involve summing over all n which is not feasible.

To solve this issue we take a new approach to QED known as the Furry picture [103].
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Figure 2.10: Feynman diagram of nonlinear Compton scattering in a strong field back-
ground. The left diagram demonstrates the perturbative calculation with an arbitrarily
large number of photons absorbed and re-emitted. The right diagram demonstrates the
equivalent process in the Furry picture with the double line of the electron representing
the strong field background. Diagram from Mackenroth and Piazza 2011 [102]

This makes use of the correspondence principle [104] which allows the electromagnetic
field to be treated classically, when the number of photons is large. Therefore, we can
split the field into a large external background, which is treated classically, and a small
quantum perturbation

Aµ = Aµ
ext + Aµ

int. (2.89)

This gives rise to the following Hamiltonian

H = H0 +Hext +Hint = H ′
0 +Hint (2.90)

where we have absorbed the external field Hamiltonian into the free Hamiltonian. If the
classical field is a plane wave, the eigenstates of H ′

0 are known as Volkov states [105]. To
calculate the probability of an interaction, the same method discussed in section 2.2.1
is used, however, now we assume the initial and final states are Volkov states in the
asymptotic limit. To represent an electron or positron in a strong background field, a
double line is used in Feynman diagrams as shown on the right of figure 2.10.

We can form a heuristic argument as to why a0 controls nonlinear effects by expressing
it in terms of ~

a0 =
eE

ωmc
=
λ̄CEe

~ω
. (2.91)

Therefore, we can view a0 as the energy the field exerts on an electron, over the Compton
wavelength, in units of the photon’s energy. If a0 ≥ 1 an electron is likely to absorb
multiple photons during an interaction and nonlinear effects become dominant. In a
similar way, we can define a field which exerts an energy of mc2 on the electron, over the

54



e−

γ

e−

(a) Nonlinear Compton Scattering

γ

e+

e−

(b) Nonlinear Breit-Wheeler process

Figure 2.11: Feynman diagrams for (a) nonlinear Compton scattering and (b) the non-
linear Breit-Wheeler process in a strong background field.

Compton wavelength

Ec =
mc2

eλ̄
=
m2c3

e~
≈ 1.32× 1018 V/m. (2.92)

This is known as the Schwinger limit and is the field at which nonlinear quantum effects
become dominant [106]. For example, a field of this strength is capable of producing pairs
from the vacuum, a process known as vacuum polarisation [19, 22, 20]. It is also the field
strength at which nonlinear QED effects, such as the recoil from the emission of a high
energy photon, start to dominate the motion of an electron. However, the electric field is
not a Lorentz invariant. Therefore, it is useful to define the following Lorentz invariant
parameters

η =

√
−(Fνµpµ)2

mcEc

χ =
~
√
−(Fνµkµ)2

2mcEc

(2.93)

where pµ is the electron’s four momentum and kν is the photon’s four wave vector. These
are often referred to as the electron and photon quantum parameters respectively. We
can view η as the field strength in the rest frame of the electron in units of Ec. Although
there is no rest frame for a photon, χ is defined in a similar way. Therefore, when χ, η > 1

nonlinear quantum effects must be considered.
In this section we will study two nonlinear QED interactions, nonlinear Compton scat-

tering and the nonlinear Breit-Wheeler process. Unlike in the weak field case the lowest
order Feynman diagrams which contribute to these processes are of order α and are shown
in figure 2.11. This is because momentum conservation is provided by the background
field. There are of course many other nonlinear QED processes one could study. These
include trident pair production [107, 108], double nonlinear Compton scattering [109, 110]
and photon splitting in a strong field [111]. However, these are higher order processes and
of less importance to this work.
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2.3.1 Nonlinear Compton Scattering In a Plane Wave

Calculating the nonlinear Compton scattering rate, with a field configuration from a high
intensity laser, is analytically challenging. Therefore, to simplify the calculations, the laser
is often approximated as an infinite, monochromatic plane wave [112, 113, 114, 115, 116].

A nonlinear Compton scattering event in such a wave involves the electron absorbing
n wave photons and emitting a single high energy photon (e− + nγ → e− + γ). We can
calculate the energy of the emitted photon using conservation of momentum

pµ + nkµ = p′µ + k′µ (2.94)

where pµ and p′µ are the initial and final momentum of the electron, kµ is the wavevector
of a laser photon and k′µ is the wavevector of the emitted photon. In the Furry picture, the
motion of the electron in the background field is treated classically and can be obtained
by solving the Lorentz force (equation 2.19) which gives

pµ = pµ0 +
a20m

2

2k · p0
kµ (2.95)

where pµ0 is the momentum of the electron before it interacts with the wave. Upon
substituting this into equation 2.94 and rearranging, we get[116]

nk · p0 = k′ · p0 +
(
n+

a20m
2

2k · p0

)
k · k′ (2.96)

where we have used p · k = p0 · k, because kµ is lightlike. If we assume the electron and
wave collide head-on, we can write their momenta as

pµ0 = γm(1, βn̂) kµ = ω(1,−n̂) (2.97)

and the momentum of the emitted photon as

k′µ = ω′(1, n̂′) (2.98)

where n̂ · n̂′ = cos θ. Using these definitions, we can rearrange equation 2.96 to give the
frequency of the scattered photon

ω′ =
nω

1 + κn(a0)γ(1− β)(1 + cosθ)
(2.99)

where
κn(a0) = n

ω

m
− βγ +

a20γ(1− β)

2
. (2.100)

Equation 2.99 gives a one-to-one mapping of the scattering angle to the energy of the
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Figure 2.12: Normalised photon frequency against scattering angle for nonlinear Comp-
ton scattering in a plane wave with a0 = 1.

emitted photons. It is plotted in figure 2.12 and shows the emission is highly beamed along
the electron axis. This beaming becomes more pronounced for higher energy electrons.
We can use equation 2.99 to investigate what happens in the low intensity limit. Letting
a0 → 0, and assuming the electron is static (γ = 1), we have κn(a0) = nω/m, which
results in equation 2.82 for n = 1. This shows the equation is consistent with linear
Compton scattering.

Having studied the kinematics, the next step is to calculate the interaction probability.
In the low field case, this involves calculating a cross-section. However, a more sensible
quantity when discussing an electron interacting with an infinite wave is the emission rate.
A full calculation of this rate is performed by Ritus [106]. The final result for a circularly
polarised wave, as a function of x = ω′/E0 where E0 is the energy of the electron, is
[116, 117]

dWn

dx
=
α2m2

4E0

{
− 4J2

n(z) + a20

(
1− x+

1

1− x

)[
J2
n−1(z) + J2

n+1(z)− 2J2
n(z)

]}
(2.101)

where Jn is a Bessel function of the first kind and

z =
2a0√
1 + a20

√
x (nu− (1 + nu)x)

u(1− x)
u =

4E0 ω

m2(1 + a20)
. (2.102)

Figure 2.13 (a) shows equation 2.101 summed over n for an E0 = 500MeV electron in
a field with a0 = 1. Comparing this figure with figure 2.4 we can see the same harmonic
structure that appears in nonlinear Thomson scattering. A formal proof that the nonlinear
Compton rate tends to the nonlinear Thomson rate in the low energy limits is provided
by Harvey and Heinzl [116].

As equation 2.99 provides a one-to-one mapping between ω′ and θ, we can use it to
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Figure 2.13: Normalised photon energy (a) and angle (b) distributions from nonlinear
Compton scattering of an 500MeV electron in a plane wave field with a0 = 1.0.

derive the scattering rate as a function of angle, through the change of variables formula

dWn

dΩ
=

dW

dx

dx

dΩ
. (2.103)

This is plotted in figure 2.13 (b). The photons are emitted into a cone of angle
√

〈θ2〉 ≈
1/γ, the same relationship we found for classical emission.

2.3.2 Strong Field QED processes in a Quasi-Stationary Field

In recent work, calculations of nonlinear Compton scattering have been performed which
go beyond the infinite wave case to include pulse effects [118]. However, to perform the
calculation of a realistic experiment, there are additional effects that must be considered.
To reach the high field conditions (a0 � 1, χ ∼ 1) required to study strong field QED
process, tightly focused laser pulses are required. This introduces spatial effects which
are not accounted for in a plane wave. To overcome this, two approximations are often
made.

The first is the quasi-stationary approximation, which assumes the field is static over
the duration of the interaction. This allows the scattering rate to be calculated within a
static field. For the field to be considered static, we require that the coherence time of the
interaction, tcoh ≈ λ̄CEcrit/cE0, is much smaller than the wave period [106]. Therefore,
the quasi-stationary approximation applies if a0 � 1.

The second approximation is that the fields are relatively weak. As we require the
probability to be Lorentz invariant, there are only four invariant parameters it can depend
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on. Two are given in equation 2.93 and the other two are

f = −FνµF
νµ

2E2
crit

g = −
F ∗
νµF

νµ

4E2
crit

(2.104)

=
|E2 −B2|
E2

crit

=
|E ·B|
E2

crit

where
F ∗
νµ =

1

2
εµναβF

αβ (2.105)

and εµναβ is the Levi-Civita symbol. For the field to be considered weak, we require that
[119, 120]

f, g � 1 η2 � Max(f, g). (2.106)

If true, the electron/photon interaction probabilities can be written as a function of η/χ
only.

As noted by Kirk et. al. [119], these approximations are likely to be appropriate in
strong field QED experiments for the foreseeable future. Next generation laser facilities
will reach intensities of I ≈ 1024Wcm−2 at a wavelength of λ ≈ 1µm. We can write
the normalised vector potential as a = 855 I1/2[1024Wcm−2]λ[µm], showing the quasi-
stationary condition is easily met. As for the weak field approximation, it will always
hold true for a single plane wave as g = f = 0. For two counter-propagating waves f
and g do not vanish, however, we can write f, g < 1.6 × 10−5I[1024Wcm−2]. Therefore,
laser intensities will have to increase by several orders of magnitude for the weak field
approximation not to hold.

Quantum Synchrotron Radiation

Although we are interested in nonlinear Compton scattering (i.e. the interaction between
an electron and wave), if the approximations above hold, the interaction is equivalent to
quantum synchrotron emission. The differential rate of quantum synchrotron emission
for a relativistic electron was found by Erber to be [39]

dW

dχ
=

√
3α
η

γ

F (η, χ)

χ
(2.107)

where

F (η, χ) =
4χ

3η2

[(
1− 2χ

η
+

1

1− 2χ/η

)
K2/3(δ)−

∫ ∞

δ

K1/3(t)dt

]
(2.108)
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Figure 2.14: Synchrotron emission plots. (a) shows the quantum synchrotron function
(solid line) and the classical synchrotron function (dashed line) in both the low energy
case (η = 0.1, red) and the high energy case (η = 1.0, blue). (b) shows the Gaunt factor
as a function of η.

is the quantum synchrotron spectrum and

δ =
4χ

3η2

(
2χ

η
− 1

)−1

. (2.109)

In the classical limit, ~ → 0, this function becomes [119]

F (η, χ) → fsync

(
4χ

3η2

)
(2.110)

where fsync(x) is the classical function given by equation 2.55.
Both the classical and quantum synchrotron functions are plotted in figure 2.14 (a).

For low energy photon emission, there is good agreement between the classical and quan-
tum emission. However, at high fields strengths, the classical function gives a non-zero
probability of emitting a photon with a higher energy than the electron itself. This un-
physical behaviour does not appear for the quantum function.

Radiation Reaction

To obtain the average power emitted by an electron in a strong field, we can multiply
equation 2.107 by the emitted photon energy and integrate, giving

P =
2

3
αη2g(η) (2.111)
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Figure 2.15: Nonlinear Breit-Wheeler plots. (a) shows the differential pair emission
function for a low energy (χ = 1, red) and a high energy (χ = 10, blue) interaction.
(b) shows the total pair emission function

where
g(η) =

3
√
3

2πη2

∫ η/2

0

F (η, χ)dχ (2.112)

which is plotted in figure 2.14 (b). As we saw for both classical synchrotron radiation (see
section 2.1.6) and nonlinear Compton scattering in a plane wave (see section 2.3.1), the
radiation is emitted into a cone of angle

√
〈θ2〉 ≈ 1/γ. This is effectively parallel to the

direction of motion for an ultra-relativistic electron. Therefore, using equation 2.111, the
force on the electron is

F = −2

3
αη2g(η)p̂ (2.113)

where p̂ is the direction of the electron’s motion. By setting g(η) = 1 we get the ultra-
relativistic limit of the Landau-Lifshitz force [117]. Therefore, we can view g(η) as a
quantum correction and is known as the Gaunt factor.

Equation 2.113 still misses a key aspect of the quantum motion of an electron in a
strong field. By calculating a continuous, average force, we are neglecting the stochastic
behaviour of emission. This leads to an effect known as straggling [121] and allows the
electron to enter classically forbidden regions.

The Nonlinear Breit-Wheeler Process

Just as Compton scattering can occur in a strong background field, so can the Breit-
Wheeler process (γ′ + nγ → e−e+). Again using the quasi-static, weak-field approxima-
tions Erber found the differential Breit-Wheeler decay rate, as a function of the photon’s
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quantum parameter χ, to be [39]

dW±

dη−
=
αm

ω
χ
dT (χ)

dη−
(2.114)

where η− is the quantum parameter for the electron and [122]

dT (χ)

dη−
=

1

2
√
3πχ2

[(
2χ

η−
− 1 +

1

2χ/η− − 1

)
K2/3(δ)−

∫ ∞

δ

K1/3(t)dt

]
(2.115)

is the differential pair emissivity function, and δ is given by equation 2.109. Upon normal-
ising dT±(χ)/dη−, we obtain the probability distribution for the emission of an electron
with quantum parameter η−. As the electron and positron have equal mass, the prob-
ability of scattering at a specific energy is equal. Therefore, dT (χ)/dη− = dT (χ)/dη+,
where η+ is the quantum parameter of the positron, and the distribution is symmetric
around η± = χ. A plot of dT (χ)/dη± is shown in Figure 2.15 (a). For low energy photons,
the energy is spread evenly between the pair. However, for higher energy photons, one
particle is likely to receive most of the energy.

Upon integrating equation 2.114, we get the total rate for pair production

W± =
αm

ω
χT (χ) (2.116)

where T (χ) is the total pair emissivity function and is plotted in figure 2.15 (b). In the
limits of small and large χ, T±(χ) can be approximated as

T±(χ) ∝

exp
(
− 4

3χ

)
χ� 1

χ−1/3 χ� 1

. (2.117)

At small χ, the probability of pair production is highly suppressed. T±(χ) reaches a
maximum at χ ≈ 8 before slowly decaying at higher values.
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Chapter 3

Machine learning and Monte Carlo
Methods

The aim of this work has been to develop the capabilities to carry out large scale sim-
ulations of quantum systems. Due to the inherent random nature of quantum systems,
statistical methods are an invaluable tool for their study. Statistical methods also form
the basis of all machine learning techniques, which have been used throughout this work.
Therefore, We will start this chapter with a brief discussion of statistical inference. We
will then move on to discuss the machine learning methods used in this work to reduce
the computational cost of the large scale simulations. Finally, we will discuss the Monte
Carlo method which is used to study quantum systems.

3.1 Maximum Likelihood Estimation and Bayesian
Inference

As physicists, our goal is to observe some physical system and derive a model that predicts
how the system behaves. Given a set of observations of the system, statistical inference
is a useful tool for solving this problem. It allows us to make predictions about unknown
parameters in our model or test whether our model is to be believed given the observations.
Two commonly used methods for statistical inference are maximum likelihood estimation
(MLE) and Bayesian inference (BI). Here we will give a quick overview of both methods
and discuss when one might be chosen over the other. However, before starting it is useful
to quickly review the framework of statistical inference. We will assume we have a series
of observations which form an independent and identically distributed (i.i.d.) data set
D = {xi |i = 1, . . . , N} where N is the number of samples. To keep the discussion general,
each observation, xi, is a multidimensional random variable of size D. We will also assume
xi is generated by some unobserved probability density function p(x | θ). Here, θ is a
vector of the model parameters and our goal is to infer it from the data set.

63



3.1.1 Maximum Likelihood Estimation

MLE is a method for finding the value of θ that gives the highest probability of generating
the observed data. For a given value of θ, the joint probability of observing the data set
is

L(θ) = p(X | θ) =
N∏
i=1

p(xi | θ) (3.1)

where X is a matrix formed by stacking the vectors xi row-wise. L(θ) is known as the
likelihood function and the value of θ which maximises it is known as the maximum
likelihood estimate. However, because equation 3.1 is the product of probabilities, finding
the maximum is prone to arithmetic underflow errors when performed numerically. This
problem can be solved by maximising the logarithm of L(θ) instead, which occurs at the
same value of θ, as the logarithm function is monotonically increasing. Therefore, the
MLE is given by

θML = argmax
θ

N∑
i=1

log p(xi | θ) (3.2)

To carry out MLE we must first assume the functional form of p(x |θ). The process of
doing so is is known as model selection, which is discussed in detail in sections 3.2.1 and
3.2.3. However, it can be an expensive process and it is often more convenient to simply
assume the data is Gaussian distributed

p(x | θ) = N (x | µ,Σ) = (2π)−k/2 det(Σ)−1/2 exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(3.3)

where the two model parameters, µ and Σ are the mean and covariance respectively and
k is the number of dimensions. Using equation 3.2 we can find the MLE for the model
parameters

µML =
1

N

N∑
i=1

xi ΣML =
1

N

N∑
i=1

(xi − µML)(xi − µML)
T . (3.4)

There are a variety of reasons for assuming a Gaussian distribution. For example, in
systems with a large number of particles, a Gaussian distribution can appear due to the
central limit theorem. It may also just be mathematical convenience to assume one. Many
problems can be solved analytically with a Gaussian distribution whereas a numerical
approach would be required with other distributions [76].

As we will see in the next section, BI is an integral problem (equation 3.5) whereas
MLE is an optimisation problem. Integral problems are more computationally expensive
than optimisation problems and this is the main reason one might choose MLE over BI.
However, being an optimisation problem, MLE suffers from the well known issue of finding
a local minimum rather than the global minimum if L(θ) is non-convex. Another issue
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with MLE is that it can be heavily biased for small sample sizes. As an example, if we flip
a coin three times and observe three heads, using MLE we would assume the probability of
landing heads is 1. Both these issues can be removed by moving to a Bayesian treatment.

3.1.2 Bayesian Inference

In BI, instead of assuming θ has a true value, we treat it as random variable with an
associated probability distribution. Our goal now shifts from estimating the most probable
value of θ to estimating the distribution over θ given our data p(θ | X). This gives
an intuitive framework for understanding the uncertainty in our model parameters. To
calculate p(θ |X) we relate it back to L(θ) through Bayes’ theorem

p(θ |X) =
p(X | θ) p(θ)∫
p(X | θ) p(θ)dθ

. (3.5)

Here, p(θ) reflects our knowledge of θ before observing the data and is known as the
prior distribution. Using the observed data, equation 3.5 updates our knowledge of θ

to give the posterior distribution p(θ | X). The denominator of equation 3.5 is known
as the marginal likelihood or evidence and is a D dimensional integral over the model
parameters.

The appearance of a prior in equation 3.5 is a key aspect of Bayesian methods. It
solves the bias problem of MLE when the sample size is small. Using BI on the coin flip
example with a non-informative prior (a uniform distribution between 0 and 1) we will
obtain a less extreme estimate of the probability of heads. However, some people regard
the inclusion of a prior in Bayesian methods as a flaw. If an inappropriate prior is used,
BI can also lead to a biased estimate. Setting the prior is also a subjective choice and
is often chosen for analytical convenience rather than being based on knowledge of the
system [123].

The computationally expensive part of performing BI is calculating the marginal in
equation 3.5. Before the development of Markov chain Monte Carlo sampling methods (see
section 3.3.1) and the recent increased in computational power, BI was only practical when
equation 3.5 can be solvable analytically. This occurs for a given likelihood function if the
form of the prior is chosen such that the posterior is in the same probability distribution
family. The prior which has this property is called the conjugate prior of the likelihood
function [124]. A convenient mathematical property of Gaussian distributions is that the
conjugate prior, if the covariance is fixed, is itself Gaussian. If we use a Gaussian prior on
the mean p(µ) = N (µ0,Σ0), we obtain a Gaussian posterior p(µ |X) = N (µ∗,Σ∗) where

µ∗ = Σ∗Σ
−1
0 µ0 +NΣ∗Σ

−1µML

Σ−1
∗ = Σ−1

0 +NΣ−1.
(3.6)

65



As N → ∞, Σ∗ → O and µ∗ → µML and the posterior becomes infinitely peaked around
the MLE solution. BI and MLE are therefore equivalent for an arbitrarily large data set.

For a full Bayesian approach we should not fix Σ and treat it as a random variable.
There is no direct conjugate prior for Σ, however, we can define a conjugate prior for its
inverse, known as the precision matrix, and is given by the Wishart distribution [125].
When both µ and Σ are unknown, the conjugate prior is simply the product of their
individual conjugate priors, known as the Gaussian-Wishart distribution. In section 3.2.3
we will see this analytical method of solving equation 3.5 is useful for Bayesian regression.

Even if equation 3.5 is too computationally expensive to solve and it is not appropriate
to assume a conjugate prior, it can still be useful to define a prior on the model parameters.
Using the same method as MLE, we can make a point estimate of θ by maximising
equation 3.5. This is known as the maximum a posterior (MAP) estimate. The marginal
does not depend on θ so the MAP estimate is

θMAP = argmax
θ

p(X | θ) p(θ). (3.7)

This is useful to constrain the estimate of θ when the data set is small [76].

3.2 Machine Learning Methods

Machine learning algorithms can be broadly divided into three categories, supervised
learning, unsupervised learning and reinforcement learning [76]. In this work, we are
predominantly interested in regression methods, which fall under the supervised learning
category. In regression, our data set is replaced with a set of N input-target pairs,
D = {xi, ti|i = 1, ..., N}, where xi is the same D dimensional vector as before, and ti is
a single valued variable. We will assume the data has been generated from the following
model

t(x) = f(x) + ε (3.8)

where f(x) is some unknown function and ε is a random noise term. Our goal is to learn
the mapping function, f(x), from our data set D.

Regression can be approached from either a maximum likelihood or Bayesian stance.
This section will start by discussing the maximum likelihood approach, and the basic
method of linear regression. We will then build up to more powerful methods such as
neural network regression. The same approach will be taken when discussing Bayesian
regression, starting with linear Bayesian regression and building up to Gaussian process
regression.
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3.2.1 Linear Regression

In linear regression we assume f(x) can be written as a linear function of the model
parameters

f(x) = θ0 + θ1x1 + . . .+ θDxD = θTx (3.9)

where θ are the model parameters (sometimes referred to as weights), and x = (1, x1, ..., xD)
T

has been extended to account for a fixed offset. Using MLE, we can find the value of θ
that is most likely to generate the data set. If we assume ε is Gaussian with zero mean
and variance σ2, the likelihood is given by

p(t|X,θ, σ) =
N∏
n=i

N (tn|θTxn, σ
2) (3.10)

and the log-likelihood is

log p(t|X,θ, σ) = N

2
log
( 1

2πσ2

)
− 1

2σ2
(t− θTX)T (t− θTX) (3.11)

where and t is a vector of the target variables. Inserting equation 3.11 into equation 3.2
and maximising for θ and σ2 separately gives

θLR = (XTX)−1XT t

σ2
LR =

1

N
(t− θT

MLX)T (t− θT
MLX).

(3.12)

An example of linear regression applied to a synthetic data set is shown in figure 3.1. A
different approach which yields the same result as equation 3.12 involves minimising the
sum of the squared residuals and is known as least-squares regression. However, MLE is
a more flexible framework as it is not limited to Gaussian data. For example, Poisson
regression is often used for discrete data sets. However, there is no closed form solution
to equation 3.2 in this case and a numerical treatment is required [126].

Feature Mapping

The linear model given by equation 3.9 is useful if the data itself is linear. If this is not
the case, linear regression has a poor predictive performance. The top left plot of figure
3.2 shows data which has been generated by the function t(x) = 0.6 sin(2πx)+N (0, 0.25)

and the top right plot shows a linear fit to this data set. We can clearly see the linear
fit does not capture the features of the data set. However, this problem can be solved
through feature mapping.

The term linear regression is used to refer to a model which is a linear function of the
weights. However, it does not have to be a linear function of x [76]. A more generic linear

67



0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

t

Figure 3.1: A linear regression fitted to synthetic data. The data was generated by the
function t(x) = 0.3 + 0.7x+N (0, 0.1). The red line shows the MLE solution with θLR =
[0.304, 0.656]. The blue shaded area is ±1σ from the MLE solution with σLR = 0.109.

model than equation 3.9 can be formed by taking the sum of M nonlinear functions of x

f(x) = θ0 + θ1φ1(x) + . . .+ θMφM(x)

= θTφ(x)
(3.13)

where θ = (θ0, . . . , θM)T and φ = (1, φ1, . . . , φM)T . The set of nonlinear functions {φj(x)}
are known as basis functions. We can view the basis functions as mapping x from a
D dimensional space into a M dimensional space. This is known as feature mapping.
Performing MLE for equation 3.13, again assuming a Gaussian likelihood, gives

θFM = (ΦTΦ)−1ΦT t

σ2
FM =

1

N
(t− θT

MLΦ)T (t− θT
MLΦ

T )
(3.14)

where Φ is the N × D design matrix, formed by applying φ(x) to each data point and
stacking the output row-wise. Replacing Φ with X in equation 3.14 yield the same result
as equation 3.12.

Polynomial regression is an example where feature mapping is used. Assuming we
have a single input dimension (D = 1), the basis functions for polynomial regression are
{φj(x) = xj}. We can apply polynomial regression to the data set in 3.2 (a) for a better
fit. The data has two stationary points, therefore, it is reasonable to assume M = 3 will
give a good fit. This is shown in figure 3.2 (c) and indeed the fit better captures the
features of the data. The estimate of σ2 is also significantly reduced for the polynomial
fit.

We can learn a more complex model by increasing M . A more complex model can
pass closer to the data points and reduce the estimated variance. If we increase M above
the number of data points, our model has enough freedom to pass through all the points
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(d) M = 15

Figure 3.2: Linear regression with feature mapping, fitted to synthetic data. (a) shows
the data set generated by the function t(x) = 0.6 sin(2πx) + N (0, 0.25), (b) shows a
linear fit to the data set, (c) shows an M = 3 order fit, and (d) shows an M = 20 order
fit.

exactly. This is shown in figure 3.2 where M = 15. This mode may fit the data set
perfectly, however, it will not generalise well as it had extracted the residual variation
of the data as a feature [127]. This problem is known as over-fitting. Over-fitting is a
common problem in machine learning algorithms, especially for large complex models.

Regularisation

Regularisation is a method used to combat over-fitting. Without it, we would not be
able to learn a complex model on data sets of limited size. The oscillations between data
points in figure 3.2 (d) is caused by the weights exploding to large values [76]. To prevent
this, a penalisation term is included when maximising the log likelihood. The sum of the
likelihood and penalisation is known as a loss or cost function

E(θ) = logL(θ) + P (θ). (3.15)
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The most commonly used penalisation term is the sum of the squares of the weights

P (θ) =
λ

2σ2
θTθ (3.16)

where λ is the regularisation coefficient, and controls the strength of the regularisation.
Parameters such as λ, which are not obtained during the learning processes, are known
as hyperparameters. Maximising equation 3.15 with respect to θ gives

θRR = (λI−ΦTΦ)−1ΦT t (3.17)

which is known as ridge-regression [128].
Setting the value of λ is important for creating a model which generalises well to

new data. In each of the plots in figure 3.3 a polynomial model with M = 15 is fitted
to the same data set as figure 3.2. In figure 3.3 (a) λ is set too large and the model
does not fit the data well. This is known as under-fitting In figure 3.3 (b) λ has been
reduced significantly and the model does fit the data set well. However, it exhibits large
oscillations, which suggest the model is once again over-fitting. Finally, figure 3.3 (c)
shows a model where λ has been optimised. This model is expected to generalise well to
unseen data. Optimising λ is another problem which falls under model selection. This
will be discussed in the following section.

Other regularisation terms can be used. These are often of the form

P (θ) =
λ

2σ2

M∑
j=1

|θj|q (3.18)

where q = 2 gives ridge-regression. When q = 1 equation 3.18 is known as the Lasso
regression penalty [129]. This penalty has the benefit of driving some of the model weights
to zero. This allows us to start from a complex model then learn the most important
features, producing a simpler model. However, there is no analytical solution for Lasso
regression and the optimisation must be performed numerically.

Model Selection

There are aspects of the model that are not learned during the training process. Two
examples we have encountered are hyperparameters and the form of L(θ). Optimising
these is known as model selection. One of the most common approaches to model selection
is cross-validation [130]. In cross-validation, the data set is separated into a training set
and a validation set. A range of different models are trained on the training set. The
likelihood function is then calculated for each model using the validation set. This is used
as a model performance metric as it gives the ability of the model to generalise to unseen
data. The model with the maximum likelihood is chosen as the optimum model.
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(b) λ = 10−10
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(c) λ = 10−4

Figure 3.3: Ridge-regression fits to a synthetic data set generated by t(x) =
0.6 sin(2π x) + N (0, 0.25). (a) λ = 10 and the model is under-fitting. (b) λ = 10−10

and the model is over-fitting. (c) λ = 10−4 and the model is optimised

Cross-validation works well for large data sets. However, it does not work as well for
small data sets as the partitioning reduces the size of the training set further. A small
validation set is also an issue as the performance metric may be poor due to noise. To solve
theses issues, k-fold cross-validation is often used. Here, the data set is separated into
k subsets. Training is then performed on k − 1 subsets and validation on the remaining
subset. This is then repeated k times, where a different subset is left out each time. The
model which performs best on average is selected as the optimum. This provides a robust
method for model selection, however, also greatly increases the computational time as k
times more models are trained [76].

The are other approaches to model selection, such as information criterion methods
that do not require the partitioning of the data set. These include the Akaike information
criterion (AIC) [131] and the Bayesian information criterion (BIC) [132]. The AIC and
BIC metrics are simple to calculate, however, they tend to favour overly simple models
[76]. In section 3.2.3 we will see a Bayesian analysis provides a robust approach to model
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Input Layer Hidden Layer Hidden Layer Output Layer

Figure 3.4: Diagram of feedforward neural network with two hidden layers. The trans-
parency of the connections between nodes represents the weights θij. Diagram was cre-
ated with NN-SVG [133].

selection that does not involve partitioning the data.

3.2.2 Neural Network Regression

Linear regression is of limited use as we are required to set the basis functions before
training. If we have prior knowledge of the data set features, we can select appropriate
basis functions for the data. If we do not have prior knowledge, we must use a large
number of basis functions to cover a wide range of possible features. The number of basis
sets rises exponentially with the dimension of the data. Therefore, this is not a practical
approach for high dimensional data. Neural network regression gets around this problem
by using nonlinear parametric basis functions which adapt during the training process.

Artificial neural networks (NNs), are a collection of connected nodes which are ar-
ranged into layers. They are loosely based on the biological network of the brain. By en-
coding f(x) within the network they can be used as a nonparameteric regression method.
In a feedforward NN all the layers are fully connected to adjacent layers and the con-
nections do not form loops. A diagram of a feedforward NN is shown in figure 3.4. To
make a prediction with a pre-trained NN, the components of x are passed into the nodes
of the input layer. The output of the nodes in the second layer are given by the sum of
the inputs multiplied by a weight, θij, and passed through a nonlinear activation function
h(·). This then continues through the network and f(x) is obtained at the output layer.
The transparency of the connections in figure 3.4 represent the value of θij.
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Neural Network Functional Form

We will now give a more mathematically rigorous description of neural network regression
[76, 134]. As we have already mentioned, NN regression gets around the problem of
fixed basis functions by allowing them to change during the training process. The basis
functions are chosen to have the same form as 3.9, transformed by a nonlinear activation
function

zj = h

(
D∑
i=0

θ
(1)
ij xi

)
(3.19)

where θ(1)ij are the weights where (1) refers to the first set of connections and i = 0, ..., D

and j = 0, ...,M are the indices of the nodes in the first and second layer respectively.
There are many choices of activation function which change how the NN learns. Model
selection can be used to choose the optimum activation function. However, this is com-
putationally expensive, so in this work we have used the sigmoid function

h(x) =
1

1 + e−x
(3.20)

which is one of the more commonly used activation functions [134]. For a multidimensional
target, with K dimensions, the network function is given by

fk(x,θ) =
M∑
j=0

θ
(2)
kj h

(
D∑
i=0

θ
(1)
ij xi

)
(3.21)

where k = 1, ..., K. To add extra layers to the network, we simply pass equation 3.21
through the activation function and use this as the basis function. Extra layers allow
for progressively higher-level features to be extracted. However, even single hidden layer
NNs can approximate any continuous function to arbitrary accuracy if the network has a
sufficiently large number of hidden nodes [135].

Some of the topics discussed in section 3.2.1 can also be applied to NN regression.
Deep (many layers) NNs often have a large number of free parameters, making overfitting
a problem. They are therefore better suited to large data sets. However, overfitting can be
reduced by adding a regularisation penalty for θij. In the deep learning literature this is
referred to as weight decay. Model selection is also an important part of designing an ac-
curate NN. NNs have a large number of hyperparameters which are not learned during the
training process such as the number of nodes and layers in the network. Cross-validation
can be used, however, this can come at a large computational cost, as it involves train-
ing many neural networks. To reduce the computational costs, intelligent optimisation
algorithms have been designed which make use of Bayesian optimisation [136].
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Figure 3.5: Example of a NN regression. (a) Shows the training and validation loss.
The dash grey line shows the iteration at which the training should stop. (b) Shows
the data set and NN regression fit.

Training a Neural Network

To optimise the weights, we will use MLE. The log-likelihood is given by

logL(θ) =
N

2
log
( 1

2πσ2

)
− 1

2σ2

K∑
k=1

N∑
n=1

{tkn − fk(xn,θ)}2 (3.22)

where we have once once again assumed the data is Gaussian distributed. fk(xn, θ) is a
complicated function, so there is no closed form solution to ∇θ logL(θ) = 0. Therefore,
a numerical method such as gradient descent is used. This involves randomly initialising
θ and updating it by

θ(i+1) = θ(i) − η∇L(θ(i)) (3.23)

where η is known as the learning rate. Most modern deep learning packages, (e.g. Tensor-
Flow [137]) include extensions to gradient descent such as the AdaGrad [138] and Adam
[139] algorithms. These offer a reduction in the learning time compared to basic gradient
descent. These algorithms require an efficient method of calculating ∇L(θ(i)). This is
carried out using a method called backpropagation. This involves calculating the deriva-
tive by repeatedly applying the chain rule and iterating from the end of the network back.
A more thorough discussion of the backpropagation algorithm is given by Bishop [76].

Due to the large number of parameters in the neural network, this training algorithm
will likely cause overfitting. To prevent this, cross-validation is used during the training
process. During the first few interactions of equation 3.23 the validation loss will decrease.
However, once the model begins to overfit the validation loss will increase. This is shown
in figure 3.5 (a). At the turning point, the model is optimised for generalising to unseen
data. Figure 3.5 (b) shows the optimised model fitted to the data set.
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3.2.3 Bayesian Regression

Bayesian regression offers a more robust way to assess uncertainty in the model. It also
provides us with the ability to compare models without splitting the data into a test
and validation set. In reviewing Bayesian regression, we will again discuss the linear
regression model given by equation 3.13, however, we will now treat θ as a random
variable. Assuming the data is Gaussian distributed (see equation 3.10), if we assign
a Gaussian prior on θ, the posterior will also be Gaussian due to the conjugate prior
property. Assuming a zero mean prior, p(θ) = N (θ | 0,Σ0), the posterior is given by
p(θ | t,X) = N (θ | θN,ΣN) where

θN = σ−2ΣNΦ
T t Σ−1

N = Σ−1
0 + σ−2ΦTΦ (3.24)

are the posterior mean and covariance respectively. If we let Σ0 = αI, the log of the
posterior is

log p(θ | t,X) =
N

2
log
( 1

2πσ2

)
− 1

2σ2
(t− θTΦ)T (t− θTΦ)− α

2
θTθ

= logL(θ) + P (θ)
(3.25)

where P (θ) is the same as equation 3.16 with α = λ/σ2. Therefore, the MAP solution for
Bayesian regression with a Gaussian prior is equivalent to ridge regression. This shows
how the prior acts to regularise our estimate of θ.

The aim of building a model is not just to estimate θ but also to make predictions,
t∗, at unseen data points x∗. To do so, we need to calculate the predictive distribution

p(t∗ | x∗,X, t) =

∫
p(t∗ | x∗,θ)p(θ | t,X)dθ. (3.26)

Once again, the mathematical properties of the Gaussian distribution allow this integral
to be calculated analytically, giving

p(t∗ | x∗,X∗, t) = N (t∗ | θT
Nφ(x∗), σ

2 + φ(x∗)
TΣNφ(x∗)). (3.27)

An example of Bayesian regression is plotted in figure 3.6. The mean function E[t] =
θT
Nφ(x∗) is shown as the red line. The shaded blue area shows one standard deviation

from the mean function. There is a contribution from both the intrinsic noise in the data
set and the uncertainty in the model parameters, which grows rapidly outside the domain
of the data set.
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Figure 3.6: A Bayesian regression fitted to synthetic data. The data was generated by
the function t(x) = 0.3 + 0.7x + N (0, 0.1). The red line shows the mean function and
the blue shaded area shows the standard deviation from equation 3.27.

Bayesian Model Selection

The problem with cross-validation when used for model selection is that it requires par-
titioning of the data set. Bayesian model selection offers a robust alternative where none
of the data is wasted. To explain Bayesian model selection we will use a hierarchical de-
scription, where Bayes’ rule is successively applied [79]. At the first level of the hierarchy
are the model parameters, θ, at the second level are the hyperparameters, λ, and at the
third and final level are the discrete set of model structures, {Hi}. In Bayesian model
selection, each of θ, λ and H are treated as random variables.

We can write the posterior over θ for a given model structure and set of hyperparam-
eters as

p(θ | t,X,λ,Hi) =
p(t |X,θ,Hi)p(θ | λ,Hi)

p(t |X,λ,Hi)
(3.28)

where the denominator is

p(t |X,λ,Hi) =

∫
p(t |X,θ,λ,Hi)p(θ | λ,Hi)dθ. (3.29)

Taking this as the likelihood at the second level and introducing a prior over the hyper-
parameters, p(λ | Hi), the posterior over λ is given by

p(λ | t,X,Hi) =
p(t |X,λ,Hi)p(λ | Hi)

p(t |X,Hi)
(3.30)

where the denominator is

p(t |X,Hi) =

∫
p(t |X,Hi)p(λ | Hi)dλ. (3.31)

We can then repeat this processes for the model structures by introducing a prior p(Hi)
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to give

p(Hi | t,X) =
p(t |X,Hi)p(Hi)

p(t |X)
(3.32)

where the denominator is

p(t |X) =
∑
i

p(t |X,Hi)p(Hi). (3.33)

We can combine equations 3.32, 3.30 and 3.28 to produce the predictive distribution

p(t∗ |x∗,X) =
∑
i

∫ ∫
p(t∗ |x∗,Hi) p(θ |t,X, λ,Hi) p(λ|t,X,Hi) p(Hi |t,X)dθdλ. (3.34)

Simply put, Bayesian model selection considers all possible models and gives a prediction
that is the average of each result weighted by their likelihood.

If θ, λ and H are high dimensional, Bayesian model selection involves many integrals
which many not be solvable analytically. A numerical solution is then required, such as
MCMC, which is computationally expensive. Therefore, a common approach is to only
perform a fully Bayesian analysis at the first level and use maximum likelihood to obtain
the optimum values for the hyperparameters and model structures. This is know as type 2
maximum likelihood [140] and is commonly used for training Gaussian process regression
models.

3.2.4 Gaussian Process Regression

Linear regression assumes f(x) is a parametric function, with the form decided before
inference. However, as we discussed in section 3.2.2, this can be impractical, as to generate
a good predictor it requires some prior knowledge of the data set features. Neural network
regression bypasses this issue by allowing the basis functions to change during the training
process. However, this introduces more model parameters which leads to over fitting for
small data sets. Kernel methods offer an alternative solution to the fixed basis function
issue. Here we will discuss Gaussian process regression, which is an example of a Bayesian
kernel method.

We can arrive at the regression formula for Gaussian process regression by either as-
suming a distribution over the model parameters or a distribution over the fitting function
[79]. We will start with the model parameters distribution view which follows directly on
from linear Bayesian regression. Ignoring the intrinsic noise in the data, we can rewrite
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the mean function and variance of equation 3.27 as

E[f∗] = θT
Nφ(x∗)

= φ(x∗)
TΣ0Φ(ΦTΣ0Φ+ σ2I)−1t

= k(x∗)(K+ σ2I)−1t

(3.35)

and

V[f∗] = φ(x∗)
TΣNφ(x∗)

= φ(x∗)
TΣ0φ(x∗)− φ(x∗)

TΣ0Φ(ΦTΣ0Φ+ σ2I)−1ΦTΣ0φ(x∗)

= k(x∗,x∗)− k(x∗)
T (K+ σ2I)−1k(x∗)

(3.36)

respectively, where we have defined k(x,x′) = φ(x)TΣ0φ(x
′), k(x) = φ(x)TΣ0Φ and

K = ΦTΣ0Φ. The function k(x,x′) is known as a kernel or covariance function. This
leads to an alternative view of regression, where instead of defining a set of basis functions
which in turn defines a kernel, we can directly define the kernel. This is known as the
kernel trick [76] and is useful when the basis functions map to a high dimensional space,
making their direct calculation expensive. A commonly used kernel is the radial basis
function (RBF)

kRBF(x,x
′) = σ2 exp

(
− (x− x′)2

2α2

)
(3.37)

where α and σ are hyperparameters. The Taylor expansion of the RBF kernel is infinite.
This implies the corresponding basis function is an infinite dimensional vector. However,
because it is never directly calculated, equations 3.35 and 3.36 are still tractable. For an
extensive list of kernel functions and their properties, see Rasmussen and Williams [79].

An alternative approach to deriving equations 3.35 and 3.36 is to define a distribution
directly over functions f(x) rather than the model parameters θ. To do so requires
the use of stochastic processes. A stochastic process is a generalisation of a probability
distribution to functions. In the same way that a joint probability distribution can be
defined over a set of random variables, indexed by an integer i, a stochastic process is
defined over a set of random variables, with a continuous variable index t. Historically,
the index t was often time, leading to the name stochastic “process” [141]. In our case the
function f(x) is a set of random variables indexed by the continuous variable x. If any
finite set {f(xi)} has a joint Gaussian distribution, this is known as a Gaussian process.
A Gaussian process over f(x) is written as

f(x) ∼ GP(m(x), k(x,x′)) (3.38)
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where the mean function and covariance function are given by:

m(x) = E[f(x)]

k(x,x′) = E[(f(x−m(x))(f(x′ −m(x′)].
(3.39)

To demonstrate the function-space view of Gaussian process regression, we will define
a Gaussian process prior with zero mean and an RBF kernel, f(x) ∼ GP(0, kRBF(x,x

′))

Figure 3.7 (a) shows 50 sample functions drawn from the prior. We now wish to update
the prior using the training data set. The joint probability of the training outputs, t,
observed at X and noise free predictions f∗ observed at x∗ is given by

p

 t

f∗

 = N

(
0,

K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

). (3.40)

Using the property of conditioning on a joint Gaussian distribution (see Bishop page 85
[76]) we can calculate posterior distribution p(f∗ | X, t,X∗) from equation 3.40. This is
equivalent to applying Bayes’ theorem. This gives a Gaussian process with mean and
variance

E[f∗] = K(X∗,X)[K(X,X) + σ2I]−1t

V[f∗] = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2I]−1K(X,X∗)
(3.41)

respectively. This is the vector equivalent of equations 3.35 and 3.36. Figure 3.7 (b) shows
50 sample functions drawn from the posterior distribution with two data points. We can
think of the training process as removing all the functions from the prior which do not
pass through the data points.

By defining the regression through a kernel rather than basis functions we have re-
moved the model parameters. However, the kernel includes hyperparameters which must
be learned from the data. As Gaussian process regression is a Bayesian approach, we
should use Bayesian model selection to set the hyperparameters. However, it is usu-
ally too computationally expensive to perform a full Bayesian treatment and a type 2
maximum likelihood approach is used instead. The log marginal likelihood is given by

log p(t |X) = log

∫
p(t | f ,X)p(f |X)df

= −1

2
tT (K+ σ2I)−1t− 1

2
log|K+ σ2I| − n

2
log 2π

(3.42)

and is maximised w.r.t the kernel hyperparameters. Figure 3.8 (a) shows an example of
a Gaussian process regression fitted to a synthetic data set using the RBF kernel. Also
shown is a surface plot of log p(t |X) with varying α and σ. This has a single stationary
point giving the optimum values for α and σ. If the log marginal likelihood space was
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Figure 3.7: Gaussian process samples. (a) shows 50 samples drawn from the prior
Gaussian process with zero mean and an RBF kernel covariance. (b) shows 50 samples
drawn from the posterior Gaussian process.
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Figure 3.8: Gaussian process regression. (a) shows a Gaussian process regression fit to
synthetic data. (b) shows the log marginal as a function of α and σ.

multi-modal, the type 2 maximum likelihood approach would not give a good predictor.
In this case a full Bayesian treatment is required.

3.3 Monte Carlo Methods

Monte Carlo methods cover a wide range of computational algorithms and are ubiquitous
across all areas of physics. The common theme of all Monte Carlo algorithms is the
repeated random sampling to obtain a solution. In this work Monte Carlo methods are
used both to simulate probabilistic high energy physics systems and solve high dimensional
integrals encountered in Bayesian analysis. In both these cases the Monte Carlo algorithm
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is used to find the expectation of a function, f(x), given by

E[f ] =
∫
f(x)p(x)dx (3.43)

where x is a random variable with an associated probability distribution p(x). If x has a
large number of dimensions, this integral is computationally expensive. However, we can
make a Monte Carlo estimate of equation 3.43 given by

E[f ] ≈ f̂ =
1

N

N∑
i

f(xi) (3.44)

where xi is a set of independent random samples of p(x) [142]. The variance on the
estimator is

V[f̂ ] =
σ2
f

N
(3.45)

where σ2
f is the variance of f(x). The error on the estimator decreases as 1√

N
and is

independent of the dimensions of x. Therefore, calculating the Monte Carlo estimate is
more efficient than standard numerical integral methods for large dimensional integrals.
However, there are caveats to using a Monte Carlo estimate which may reduce this ef-
ficiency. Although V[f̂ ] is independent of the dimensions of x, generating independent
samples of p(x) may not be. Even if the samples can be efficiently generated, f(x) may
be small in the region p(x) is large. The computational complexity is therefore shifted
to obtaining samples from p(x) in this region. In the remainder of this section we will
discuss the sampling and variance reduction techniques used in this work.

3.3.1 Sampling methods

The success of the Monte Carlo method relies on the efficient generation of samples. All
the sampling methods discussed here first require a method to sample from the uniform
distribution u ∼ U(0, 1). In this work the Mersenne Twister generator has been used
for this purpose [143]. This produces high quality samples with a period of 2219937 − 1.
With uniform samples we can apply a more advanced method to sample from a generic
distribution. The three methods we will discuss in this section are transform sampling,
rejection sampling, and Markov chain Monte Carlo (MCMC) sampling.

Transform sampling

The goal of transform sampling is to find a function which transforms our uniform samples,
u, into samples from p(x) (i.e. find the function x = h(u)). To do this the change of
variables formula is used

p(x) = p(u)
∣∣∣du
dx

∣∣∣ (3.46)
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where p(u) = 1, and is integrated to give

u = F (x) =

∫ x

−∞
p(x′)dx′ (3.47)

where F (x) is the cumulative distribution function (CDF) of p(x). Samples from p(x) are
then given by

x = F−1(u). (3.48)

This method is relatively simple, however, it is only useful if F−1(u) can be obtained
efficiently [76].

Rejection Sampling

Rejection Sampling is a more general sampling method that can still be applied when
transform sampling is difficult [144]. It makes use of a proposal distribution, q(x), from
which samples can be easily obtained. The first step is to find the scaling constant, given
by

M = sup
{p(x)
q(x)

}
(3.49)

such that the function M q(x) complete encloses p(x). A proposal sample, x0, is drawn
from q(x) and a uniform sample, u0, is drawn from U(0, M q(x0)). The sample x0 is
accepted if u0 < p(x0) otherwise it is rejected and new samples x1 and u1 are taken and
tested. This continues until a sample is accepted.

The fraction of samples accepted is given by the ratio of the area under p(x) to the
area under Mq(x). In general this ratio decreases exponentially with the dimensionality
of x. Therefore, using rejection sampling to estimate E[f ] with equation 3.44 offers no
benefit over grid based integration methods which also scale exponentially.

Markov Chain Monte Carlo

As we have seen with rejection sampling, it gets exponentially more expensive to gen-
erate independent samples as the number of dimensions increases. Markov chain Monte
Carlo (MCMC) methods remove this problem by generating non-independent samples. A
Markov chain is a stochastic process, describing a sequence of random variables, in which
the probability of observing xi+1 only depends on xi

p(xi+1, | x1, . . .xi) = p(xi+1 | xi). (3.50)

The chain is fully defined by the probability distribution over the initial variable, p(x0)

and the transition probabilities between states T (xi,xi+1) = p(xi+1 | xi). The chain is
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said to be stationary if p(xi+1) = p(xi) where

p(xi+1) =
∑
xi

T (xi,xi+1)p(xi). (3.51)

The goal of this sampling method is to define a Markov chain with a stationary distribution
given by the distribution which we wish to sample from.

The first algorithm for sampling from a Markov chain was proposed by Metropolis in
1949 [145]. Like rejection sampling, this uses a proposal distribution, q(x |x∗), which can
already be sampled from. The proposal distribution gives the probability of obtaining a
new state x and only depends on the previous state x∗. Given some initial state, x0, the
proposal distribution is sampled to give a candidate state, x∗. This state is then accepted
with probability

A(x∗,xi) = min
(
1,
p(x∗)

p(xi)

)
. (3.52)

If the state is accepted, we set xi+1 = x∗ otherwise we reject the new state and set
xi+1 = xi.

Unlike rejection sampling, the efficiency of MCMC does not decrease exponentially
with the number of dimensions [76]. This makes it a practical method for solving the high
dimensional integrals encountered in Bayesian inference. However, there are drawbacks to
MCMC methods including the initial samples being drawn from the wrong distribution
and the generation of correlated samples. Both these issues increase the Monte Carlo
error. The initial sampling problem can be solved by throwing away the start of the chain,
a process known as burn-in. Uncorrelated samples can be obtained with an increased
computational cost by taking samples which are far apart in the chain and discarding the
rest. Extensions to the base Metropolis algorithm have been developed which attempt
to reduce the correlation in the chain. These include the Metropolis-Hastings algorithm
[146], Gibbs sampling [147] and Hamiltonian Monte Carlo sampling [148]. However, all
methods are inefficient if a small number of samples are required.

3.3.2 Variance Reduction

In this work, we are interested in modelling interactions with low probabilities. For
example, in a nonlinear Breit-Wheeler experiment, discussed in chapter 5, the probability
of a seed electron producing an electron positron pair can be lower than 10−8. If we
model N electrons, the number of pairs produced follows a binomial distribution where
the probability of each interaction is p. If we want to estimate p, using the crude method
given by equation 3.44 the relative error is given by

error =

√
V[p̂]
E[p̂]

=

√
1− p

Np
(3.53)
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where we have used the variance of a binomial distribution as Np(1−p). To get a relative
error of 1% would require 1012 samples. Variance reduction techniques attempt to reduce
the number of samples required for a given error. In this work we have used two types of
variance reduction, cross-section biasing and importance sampling.

Cross-Section Biasing

Cross-section biasing artificially increases the probability of a process occurring by mul-
tiplying the cross-section by some factor b. In Geant4, we are often modelling discrete
processes occurring in volumes with constant material properties. Therefore, the proba-
bility of the process occurring over some length l is

pbias(x ≤ l) = 1− e−b σρ l

≈ b p(x ≤ l)
(3.54)

where p(x ≤ l) is the unbiased probability and the first order Taylor expansion requires
b σρ l � 1. Thus, the number samples required to achieve a given error is reduced by
factor of b. However, if b σρ l 6� 1 there is no analytical solution linking pbias(x ≤ l) and
p(x ≤ l). This limits the level of cross-section biasing which can be used.

Importance Sampling

Importance Sampling is a common extension to the crude method of approximating in-
tegrals given by equation 3.44 [149]. It is useful for both variance reduction and when
p(x) is difficult to sample from. Starting from equation 3.43 we introduce a proposal
distribution, q(x) to give ∫

f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx

≈ 1

N

N∑
i=1

f(xi)wi

(3.55)

where wi =
p(xi)
q(xi)

and the samples are taken from q(x) rather than p(x). The factors wi

are known as the importance weights and correct for the fact we have sampled from the
wrong distribution. Therefore, by carefully selecting q(x) we can obtain more samples in
areas where f(x) is large, reducing the error in the estimate.
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Chapter 4

Modelling Particle-Photon Processes
in Geant4

In classical electrodynamics, when two waves of light meet, they simply pass through
each other unaffected. The lack of interaction gives rise to a linear theory, evident from
Maxwell’s equations. However, the prediction of the Breit-Wheeler process in 1934 [18]
suggests photons can interact. This implies the theory of quantum electrodynamics must
be nonlinear. This has some profound consequences, such as the concept of superposi-
tion, at the heart of classical electrodynamics, no longer holding true [150]. In quantum
electrodynamics, the two lowest order photon-photon interactions (expanding in α), are
the linear Breit-Wheeler process and photon-photon scattering [151, 152]. Both these
processes are described as binary interactions as they involve two incoming particles col-
liding to produce two outgoing particles. In the case of the Breit-Wheeler process, the
incoming particles are two photons and the outgoing particles are an electron-positron
pair (γγ → e+e−). For photon-photon scattering all the incoming and outgoing particles
are photons (γγ → γγ). Understanding these processes is not only vital from a theoretical
point of view, but it is also of astrophysical importance. They are predicted to play an
important role in a range of phenomena throughout the universe [150, 153, 154, 42, 155].
However, from the collision of two real photons, neither photon-photon scattering nor the
linear Breit-Wheeler process have been observed in the laboratory.

As shown in figure 4.1, the peak of the Breit-Wheeler cross-section is of the same
order of magnitude as Dirac annihilation and Compton scattering, both of which were
observed over 80 years ago [97, 156]. However, unlike Dirac annihilation and Compton
scattering, the Breit-Wheeler process has a strict centre-of-mass (CM) energy threshold.
From the Mandelstam variables (see equation 2.80), the invariant CM energy squared for
a two particle system is

s = m2
1 +m2

2 + 2(E1E2 −−→p1 · −→p2). (4.1)
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Figure 4.1: Comparison of total cross-section for Dirac annihilation (DA, red), the
Breit-Wheeler process (BW, blue), Compton scattering (CS, black) and photon-photon
scatter (PS, green).

Here, we have set c = 1, which will be used throughout this chapter, along with ~ = me =

1. Creating an electron-positron pair at rest requires s = 4, which sets this CM threshold.
To date, no experiment has interacted two photon sources which are of sufficient energy
and density to produces a detectable number of Breit-Wheeler pairs.

In contrast to the Breit-Wheeler process, photon-photon scattering produces two mass-
less particles and exhibits no threshold behaviour. However, the cross-section does decay
rapidly below s = 4 as σ ∝ s3. Photon-photon scattering is also a higher order process
than the Breit-Wheeler process, and the cross-section is a factor of α2 = 5.32 × 10−5

smaller. For these reasons, to detect photon-photon scattering we again need high energy
and density photon sources, which have not been created in the laboratory.

Despite the difficulties, over the past few years a number of experimental schemes
have been proposed to detect the Breit-Wheeler process [157, 158, 159, 160]. All these
experiments involve the generation of high energy gamma ray sources to overcome the
CM threshold. However, this leads to an experimental environment that is inherently
noisy. There are two large sources of noise: the gamma rays interacting directly with
single particle detectors; and photons interacting with the experimental setup, producing
background electron-positron pairs through the Bethe-Heitler process. For a successful
experiment, the ratio of signal Breit-Wheeler pairs to background noise should be max-
imised. An estimation of the background noise can be obtained by modelling the passage
of the high energy particles through the experimental setup. A number of publicly avail-
able Monte Carlo particle tracking codes exist for this purpose, including Geant4, Fluka
and MCNP [67, 161, 162]. In this work, Geant4 has been used to analyse the background
noise of a Breit-Wheeler detection experiment that we will discuss in detail in chapter 6.
It would be useful to model both the signal and noise within a single framework, making
for easier experimental optimisation. However, the Breit-Wheeler process is not included
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Figure 4.2: Diagram of binary collision in both the laboratory frame and the centre of
mass frame.

within the standard Geant4 physics package. Therefore, we have developed a new binary
particle-photon interaction package for Geant4, which includes the Breit-Wheeler process.

Geant4 is a Monte Carlo platform for modelling the passage of high energy particles
through matter. To include the particle-photon processes of interest here, they must be
modelled within this same framework. This has been achieved by treating one of photon
sources as a static photon field. High energy particles are sampled and tracked through
this field, and this process is referred to as an event. In this work, we will refer to photons
from the field as static and particles tracked through the field as dynamic. Using this
method, the temporal evolution of the static photon field is not accounted for. Therefore,
this package is designed for modelling experiments with asymmetric sources, in which one
is constant in time over the duration of the interaction, to a good approximation.

In this chapter we will start by discussing the development of this physics package,
which includes the Breit-Wheeler process, photon-photon scattering and Compton scat-
tering. We will then show how the efficiency of the interaction algorithm can be greatly
increased by implementing a Gaussian process regression. Finally, we will demonstrate
the capabilities of the package, by studying the prospect of detecting the Breit-Wheeler
process and photon-photon scattering in a thermal radiation field.

4.1 Package Development

The base interaction algorithm, which we will discuss here, is the same for all three
particle-photon processes. This is because each process consists of a binary collision, which
can be represented by the diagram shown in figure 4.2. This diagram, which shows the
collision in both the laboratory and CM frames, highlights all the important parameters
which are contained within the four momenta of the particles. Here, the subscripts d and
s refer to the dynamic particle and static photon respectively, and the subscripts 1 and
2 refer to the two outgoing particles. The primed indices refer to properties in the CM
frame.
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The interaction algorithm is carried out if a dynamic particle enters a static radiation
volume that has been defined within the computational domain. The algorithm has two
parts to it. The first part involves calculating the probability that the dynamic particle
interacts in the field. If the interaction occurs, the second part of the algorithm is carried
out. Here, the properties of the two outgoing particles are calculated. In the following
sections, we will review both parts of the algorithm.

4.1.1 Interaction Probability

When a dynamic particle enters a static photon field it can do so at any arbitrary angle
in the simulation frame. To simplify the calculation we rotate the frame such that the
z-axis is the direction of propagation of the dynamic particle. We will refer to the original
and rotated frames as the simulation and dynamic particle frames respectively. The field
is fully defined by a spectral photon density per unit solid angle, n(ωs, θs, φs). Here, ωs

is the static photon energy and θs, φs are the static photon polar and azimuthal angles
defined in the dynamic particle frame. The cross-section, which is proportional to the
probability of the interaction occurring, is a function of s. We can use equation 4.1 to
calculate s, which, depending on whether the dynamic particle is massive, reduces to

s =

2Edωs(1− cos θs) md = 0

m2
d + 2Edωs

(
1−

√
1− m2

d

E2
d
cos θs

)
md 6= 0

(4.2)

where Ed is the energy of the dynamic particle and md is its mass. For the rest of this
chapter, we will only consider massive particles that are electrons or positrons so md = 1.

The interaction between the dynamic particle beam and the static photon field occurs
at a constant average rate making it a Poisson process. Therefore, the probability that
the dynamic particle will travel a length, x, is given by the exponential distribution with
the following PDF

P (x) = λ−1
d e−x/λd (4.3)

where λd is the mean free path (MFP) of the dynamic particle in the static field. When
travelling through a beam of massless particles, the MFP is governed by [163]

1

λd
=

∫ 2π

0

dφs

∫ π

0

dθs

∫ ∞

0

dωs Θ(s− smin)σ(s)n(ωs, φs, θs) (1− cos θs) (4.4)

where (1−cos θs) accounts for the relative velocity between the particles and Θ(s−smin) is
the Heaviside step function which sets the CM energy threshold. For the case of photon-
photon scattering there is no threshold, however, by defining smin we can speed up the
calculation by ignoring highly unlikely interactions. This three dimensional integral is
solved by quadrature using Simpson’s rule.
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After solving equation 4.4, the distance which the dynamic particle travels before
interacting is obtained by sampling from the PDF in equation 4.3. This is performed using
inverse transform sampling (see section 3.3.1) as the CDF can be inverted analytically.
Therefore, the propagation length is given by

x =
−log(1− u)

λd
(4.5)

where u ∼ U(0, 1). If x is longer than the static photon field, the dynamic particle
will propagate through unaffected. However, if x is shorter, the dynamic particle will
propagate to x, then interact.

4.1.2 Interaction Dynamics

At the interaction point, the dynamic particle is removed and replaced with two new
particles, the type of which depends on which process occurred (an electron-positron pair
for the Breit-Wheeler process, two photons for photon-photon scattering and a photon
and electron or positron for Compton scattering). However, before adding in the new
particles, their four momentum in the simulation frame, P µ

1/2, must be known. This can
easily be found in the CM frame, P µ′

1/2 due to conservation laws. However, the CM frame
is not yet defined as we do not known which static photon the dynamic particle interacted
with. The properties of this photon (ωs, θs and φs) are obtained by sampling from the
integrand of equation 4.4. For an arbitrary static photon field, this is a complex function
of three dimensions. Inverse transform sampling would be inefficient, therefore, rejection
sampling is used. With both incoming particles defined, equation 4.2 is used to calculate
s.

P µ′

1/2 has three free parameters, E ′
1/2, θ′1/2 and φ′

1/2. We can calculate E ′
1/2 from equation

4.2, which simplifies in the CM frame to

E ′
1/2 =

(s+m2
1/2 −m2

1/2)

2
√
s

. (4.6)

For both the Breit-Wheeler process and photon-photon scattering, the outgoing particles
have the same mass, therefore, they receive the same energy of E ′

1/2 =
√
s/2. For Compton

scattering, however, the masses are not equal and the electron/positron receives E ′
1 =

(s+ 1)/2
√
s while the photon receives E ′

2 = (s− 1)/2
√
s.

Due to conservation of momentum, the outgoing particles scatter along the same axis.
The angle between the scatter axis and the interaction axis is given by θCM and is shown
in figure 4.2. θCM is distributed according to the differential cross-section. We therefore
set θ′1 = θCM and again use inverse transform sampling to obtain θCM. The CDF for the
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differential cross-section is

C(θCM) =

∫ θCM

0
(dσ/dΩ) sin θCM dθCM∫ π

0
(dσ/dΩ) sin θCM dθCM

(4.7)

which cannot be inverted analytically. Therefore, equation 4.7 is inverted numerically
and tabulated over a range of values of s. θCM is then interpolated from the table as
required. Likewise, we set φ′

1 = φCM which is sampled from the uniform distribution,
φCM ∼ U(0, 2π). Using conservation of momentum, the scattering angles for particle 2
are then easily obtained through θ2 = π − θ1 and φ2 = φ1 − π.

Having obtained P µ′

1/2 in the CM frame, we now need to transform it into the simulation
frame. This involves applying the inverse of the transform which takes the incoming
particles to the CM frame. Starting from the dynamic particle frame, a trivial rotation
of φs around the z-axis is performed such that the y-component of the static photon
momentum is zero. After doing so, the total four momentum of the system is

P µ
T = P µ

d +Kµ
i =


Ed + ωs

ωs sin θs

0

pd + ωs cos θs

 (4.8)

where pd is the magnitude of the three momentum of the dynamic particle. If the dynamic
particle is a photon, pd = Ed, whereas for an electron or positron, pd =

√
E2

d − 1. The
CM frame is obtained by applying a Lorentz boost along a vector in the x− z plane given
by Γµ

ν . However, rather than boosting along an arbitrary axis, it simpler to break the
operation into a rotation around the y-axis and a Lorentz boost along the z-axis

P µ
CM = Γµ

ν P
ν
T = Rµ

ν Λ
ν
ρ P

ρ
T . (4.9)

Here, Rµ
ν is the rotation with an associated angle of

tanφ =
ωs sin θs

pd + ωs cos θi
(4.10)

and Λν
ρ is the Lorentz boost with a velocity of

β =

√
p2d + ω2

s + 2 pd ωs cos θs
Ed + ωs

. (4.11)

Upon applying the inverse of these transforms to obtain P µ
1/2, the two new particles are

added to the simulation.
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Table 4.1: Static photon energy spectra implemented in the package.

Source Name f(ωs) Parameters and Description
Monoenergetic n′δ(ωs − ω′) Monoenergetic source with energy ω′ and

density n′. Used for benchmarking and for
approximating a laser.

Grey-body
ω2
s

π2

ε

eωs/T − 1
Thermal radiation source of temperature T
and emissivity ε. Used to model a photon
source in thermodynamic equilibrium, such
as astrophysics systems or radiation from a
hohlraum.

User-defined Tabulated Spectrum read from file. Used to model
complex sources of radiation, possibly from
an atomic simulation or experimentally
measured.

4.1.3 Static Photon Field

By treating the photon source as a static field and fully defining it by n(ωs, θs, φs), we are
ignoring both spatial and temporal gradients. To account for spatial gradients, a static
photon field can be built up from smaller sub fields, each with a different n(ωs, θs, φs).
However, due to the static nature of the Geant4 computational domain, it is not easy
to account for temporal gradients. This reduces the types of experiments which can
be modelled using this package. However, there are also benefits to using this method
including a reduction in the computational complexity. Modelling binary interactions
between two beams of particles where both are treated dynamically is an N-body problem
with complexity that scales as O(N2) where N is the number of particles. In the algorithm
presented here, this is reduced to O(N), however, the integral in equation 4.4 must be
carried out for each event and is expensive to compute. In section 4.3 we will discuss
methods for speeding this up.

Further constraints are also placed on the static field for computational savings. Defin-
ing n(εi, θi, φi) requires the allocation of a three dimensional array which can be memory
intensive if many sub-fields are used. To reduce this, we assume the static photon’s energy
does not depend on its angle. This allows us to separate the static photon density into
purely angle and energy dependant parts, n(εs, θs, φs) = f(ωs) Φ(θs, φs). By including
multiple ways of defining f(ωs) and Φ(θs, φs), we are able to model a diverse range of
interactions. These are summarised in tables 4.1 and 4.2, and any combination can be
used to build up the field.
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Table 4.2: Static photon angle distributions implemented in the package.

Source Name Φ(θs, φs) Description and Parameters
Beam δ(θs − θ′)δ(φs − φ′) Collimated source in the direction de-

fined by θ′ and φ′. Used for bench-
marking and approximating a large
focal length laser.

Point source
1

r2
δ(θs − θ′)δ(φs − φ′)

θ′ = cos−1
z

r

φ′ = tan−1
y

x

Emission at a distance r = (x, y, z)
from a point source. Used when the
size of the emission surface is small
compared to r.

Isotropic
sin θs

4π
Photon distribution is the same at all
angles. Used to model a photon source
in thermodynamic equilibrium, such as
astrophysics systems or radiation from
a hohlraum.

User defined Tabulated Distribution read from file. Used to
model a complex photon source, such
as the radiation observed close to a
burn-through foil.

4.2 Test Simulations

In this section we will present some benchmark simulations which test the implementation
of the algorithm discussed in section 4.1. By choosing a relatively simple setup, calcula-
tions for both the interaction probability and the outgoing particle’s momentum can be
performed directly, working with distributions over parameters. We will then compare
these direct calculations to the estimates made by the Monte Carlo algorithm.

To carry out these test simulations, we will use the most simple photon source possible,
with density given by

n(ωs, θs, φs) = n′δ(ωs − ω′)δ(θs − θ′)δ(φs − φ′) (4.12)

which corresponds to a monoenergetic and beamed source in tables 4.1 and 4.2 respec-
tively. We will also assume the dynamic particle is travelling perpendicular to the static
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photons. The momenta of the particles is then given by

Pd
µ =


Ed

0

0

pd

 ks
µ =


ω

ω

0

0

 (4.13)

which simplifies equations 4.10 and 4.11 to

tanφR =
ωs

pd
β =

√
p2d + ω2

s

Ed + ωs

. (4.14)

The final simplification we will make is that the particles scatter in the CM frame with
φcm = 0. This angle corresponds to a rotation around the Lorentz boost axis and has no
effect on the energy of the particles in the simulation frame. Therefore, we can write the
momentum of the final state particles in the CM frame as

P1
µ′
=


E ′

1

0

p′1/2 sin θcm

p′1/2 cos θcm

 P2
µ′
=


E ′

2

0

−p′1/2 sin θcm

−p′1/2 cos θcm

 . (4.15)

4.2.1 Interaction Probability

Upon inserting the field density from equation 4.12 into equation 4.4 and using θ′ = 90◦,
the MFP simplifies significantly to the following

1

λd
=

0 s′ < smin

n′σ(s′) s′ > smin

(4.16)

where s′ = 2E ′
d ω

′. If the static photon field has a length ls, and we pass through a beam
of Nd dynamic particles, the expected number of interactions is

Nint = Nd (1− e−x/λd). (4.17)

This equation is plotted in figure 4.3 as a function of ω′, for each of the three processes.
Also plotted are estimates of Nint calculated using the algorithm described in the previous
section. We can see the Monte Carlo estimates agree well with the analytical calculation.
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Figure 4.3: Number of interactions against static photon energy using analytical cal-
culation (dash line) and the Monte Carlo algorithm (markers). (a) shows the Breit-
Wheeler process, (b) shows photon-photon scattering and (c) shows Compton scattering
events. Cross-section biasing has been used to reduce errors.

4.2.2 Interaction Dynamics

The second part of the algorithm involves calculating the four momenta of the final state
particles in the simulation frame. Here, we will focus on the following two components of
the four momentum

E1/2 = P 0
1/2 θ1/2 = cos−1

(
P 3
1/2

p1/2

)
(4.18)

which are the simulation frame energy and polar scattering angle respectively. By applying
transforms to the particles’ momentum distribution in the CM frame, we can directly
obtain PDFs for E1/2 and θ1/2. These PDFs can also be estimated from the Monte Carlo
algorithm and compared.

By assuming φcm = 0, the only free parameter of the system in the CM frame is the
polar scattering angle θcm. This has a PDF, p(θcm), which is distributed according to
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the differential cross-section. From p(θcm) we can obtain distributions over x = E1/2, θ1/2

through the change of variables formula

p(x) =
∑

θcm∈g−1(x)

p(θcm)

|g′(θcm)|
(4.19)

where x = g(θcm) and the sum accounts for multiple solutions of g−1(x). To solve equation
4.19, we require E1/2 and θ1/2 as a functions of θcm. These are obtained through equation
4.18 where

P1/2
µ = Rµ

ν Λ
ν
ρ′ P1/2

ρ′

=


γ(E1/2

′ ± β p′ cos θcm)

sin θcm

γ sinφR (βE1/2
′ ± p′ sin θcm)

γ cosφR (βE1/2
′ ± p′ cos θcm)


. (4.20)

Here, γ = (1−β2)−1/2 is the Lorentz factor and +/− is used for particle 1/2 respectively.
In general, E1/2, θ1/2 = g(θcm) cannot be inverted analytically, so a numerical inversion is
used1.

When the two outgoing particles have equal mass, the distributions over the simulation
frame parameters are identical (i.e. p(E1) = p(E2) and p(θ1) = p(θ2)). This is the case
for both the Breit-Wheeler process and photon-photon scattering. However, for Compton
scattering the particles have a different mass and the distributions over the simulation
frame parameters are different (i.e. p(E1) 6= p(E2) and p(θ1) 6= p(θ2)). Therefore, across
the three processes, there are four unique distributions over both energy and angle, which
are shown in figure 4.4. Also plotted here are estimates of the distributions obtained from
the Monte Carlo algorithm given in section 4.1. A good agreement with the analytical
calculation is found across all processes.

4.3 Gaussian Process Regression Extension

For a realistic two beam experiment, the source distributions cannot be described by delta
functions as used in the section 4.2. In this case, the direct calculation we performed is
more inefficient than the Monte Carlo algorithm presented in section 4.1. However, due
to the low probability of interaction the algorithm requires a large number of particles
to be simulated to reduce the Monte Carlo error. Variance reduction techniques, such as
cross-section biasing (see section 3.3.2), can be used to reduce some of the computational

1The inversion is only possible analytically for photon-photon scattering due to both the outgoing
particles being massless.
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Figure 4.4: Unique distributions of E1/2 and θ1/2 for the three processes in the package.
Here an Ed = 1GeV dynamic particle beam was interacted at 90◦ with an ωs = 5keV
static photon field. In each plot the blue curve shows the direct calculation of equation
4.19 and the red histogram shows the estimate from the algorithm in section 4.1. (a)
and (b) shows Ee and θe for the Breit-Wheeler process. (c) and (d) shows Eγ and θγ
for photon-photon scattering. (e) and (f) shows Ee and θe for the Compton scattered
electron/positron. (g) and (h) shows Eγ and θγ for the Compton scattered photon.



costs, although not all. The two expensive parts of the model are calculating λd from
equation 4.4 and sampling the static photon properties. In most simulations of interest to
this work, the sampling is rarely performed as the probability of a single event interacting
is much less than 1. However, λd must be calculated for each event making it by far the
most intensive part of the algorithm.

We can solve this problem using an approximation to λd demoted by λa, calculated
with a cheaper function than equation 4.4. An interpolation table is a common method
of approximation and is already used in the algorithm for sampling from the differential
cross-section. Here, the differential cross-section table is calculated once and then used
in all future simulations. However, a λa interpolation table would be simulation specific,
as it depends on the photon density n(ωs, θs, φs) which changes between simulations.
Generating a three dimensional interpolation table before every simulation would likely
take more computational resources, not less.

In this work, we have used an alternative approach, where a regression model is used
to calculate λa which is trained dynamically as the simulation progresses. We have used
Gaussian process regression (GPR) as this is a nonparametric method, so no prior knowl-
edge of the functional form of λd is required (see section 3.2.4). GPR is also a Bayesian
method, allowing us to quantify the uncertainty of our estimate. As we will see, the
Bayesian paradigm is an important aspect which allows us to extend the algorithm pre-
sented in section 4.1 with a regression model that is both trained and used during run-
time. In this section, we will discuss the extension of the algorithm and provide examples
showing its benefits.

4.3.1 Gaussian Process Regression Algorithm

Equation 4.4 is an expensive function mapping the dynamic particle’s properties, x ≡
(Ed, θd, φd), to the MFP, λd = λd(x). The components of x are not explicitly stated in
equation 4.4, however, it depends on them through the rotation to the dynamic particle
frame. Due to the threshold behaviour of some QED processes, λd can vary rapidly with
small changes in x. Therefore, it is more computationally efficient to learn a function
which returns the log of the MFP estimate, i.e.

λa = ef(x) (4.21)

where f(x) is the GPR model. In using a GPR, we have assumed that f(x) is Gaussian
distributed. Therefore, λa is log-normal distributed with mean and variance given by

µλa = exp

(
µf −

σ2
f

2

)
σ2
λa

=
[
exp(σ2

f )− 1
]
exp(2µf + σ2) (4.22)
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where µf and σ2
f are the mean and variance of f(x).

To train the GPR a data set, D = {xi, log(λi)}, is required. This is generated by
calculating equation 4.4 for a limited number of events. In the units system of Geant4,
the dimensions of x vary over vastly different scales. Therefore, if the regression model
is trained directly on D it would perform poorly. To solve this problem x is normalised
using min-max feature scaling.

We can summarise the GPR extension to the algorithm in the following three stages:

Gaussian Process Algorithm

1. Data accumulation: For the first nt events, λ is obtained by solving equation 4.4.
The result is saved, generating D.

2. Training: After simulating nt events the GPR is trained on D by optimising the
hyperparameters.

3. Acceleration: For subsequent events, σλa is calculated using equation 4.22. If
σλa < σmax where σmax is a user defined limit, we set λd = µλa . If σλa > σmax

equation 4.4 is solved and the result is appended to D. After another nt points
are added to D the hyperparameters are again optimised.

During stage 1, apart from saving D, the extended and original algorithms perform
the same calculations. Therefore, both calculate events at approximately the same rate.
During stage 2, the extended algorithm pauses the calculations of new events while the
hyperparameters are optimised. The original algorithm will overtake the extended algo-
rithm slightly at this point. However, during stage 3, this is reversed. As D grows, σλa

will decrease. There is then a higher probability that the GPR is used over equation 4.4,
and can be performed much quicker. This then leads to a dramatic increase in the rate
at which new events are calculated.

Through the extended algorithm presented here, the acquisition of D occurs at run-
time. This offers several advantages over a pre-trained model where D is generated before.
For example, a pre-trained model requires prior knowledge of how x is distributed to be
effective. If not, generating D involves unnecessary calculations of highly unlikely values of
x. We may also encounter large errors from extrapolation of points outside the boundary
of D. Having a prior knowledge of how x is distributed is difficult if the dynamic particles
are not primary but generated through a multi-step process. Finally, using a dynamic
data set has the advantage that it automatically minimises the number of times equation
4.4 is calculated for a desired uncertainty.
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4.3.2 GPR Algorithm Test

Having discussed the advantages of the extended GPR algorithm, we will now demonstrate
this. Here, we will use a simplified Breit-Wheeler detection experiment. By performing the
same simulation with both algorithms, we can observe the computational saving provided
by the extended one. Here, we will use a dynamic gamma ray source of Nγ = 108 particles,
with a divergence of 10mrad and a Gaussian energy spectrum with mean 1GeV and
standard deviation 0.25GeV. This will interact with an isotropic black body radiation
field

n(ωs, θs, φs) =
ω2
s

π2

1

eω/T − 1

sin θs
4π

(4.23)

of temperature T = 300 eV and length l = 1 cm. However, before we can use the algorithm
to its full potential, the two additional parameters σmax and nt should be optimised.

Optimising Algorithm Parameters

The parameter σmax sets the limit above which the GPR is too uncertain to use. If this
is set too high, there will be a large error in our estimate of the number of interactions,
NBW. However, if it is too low, equation 4.4 will be performed unnecessarily and there will
be little gain in efficiency. The optimum σmax is given by the largest value at which the
GPR extended algorithm and the original algorithm produce the same result. However,
both these algorithms are statistical and include uncertainty in NBW due to the finite
number of events simulated. Therefore, we will run an ensemble of simulations for both
methods and compare the distributions over NBW. An example of this comparison is
shown in figure 4.5 (a) for two different values of σmax. When σmax = 0.01 there is little
difference between the distributions. However, for σmax = 1.0 this is not the case and the
GPR algorithm adds significantly more uncertainty to the estimate. This is more clearly
demonstrated in figure 4.5 (b) which presents a scan over σmax. We can also see the mean
of NBW shifts down as σmax is increased. This is due to the exponential transform applied
in equation 4.21. This is an asymmetric transform and leads to λa being overestimated
on average and the mean of NBW decreasing.

The second parameter, nt, is the number of data points taken between optimising the
GPR hyperparameters. Setting this to a large value will have a detrimental effect on
the efficiency as the GPR is queried many times without optimised hyperparameters. To
obtain the smallest error for each event, we would set nt = 1. However, the hyperparamter
optimisation is the most computationally intensive part of GPR, scaling as O(N3

d ) where
Nd is the number of events in D. Apart from the initial few events, it is also unlikely that
the addition of a single event will have much effect on the optimum hyperparameters.
Therefore, setting nt too low will also have a detrimental effect on efficiency. Figure 4.6
is a plot of simulation run-time against nt and demonstrates the trade-off between these
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Figure 4.5: Effect of varying σmax. (a) compares histograms for the original algorithm,
given in red, to the GPR extended algorithm, given in blue (σmax = 0.01) and black
(σmax = 1.0). (b) shows the change in the average and standard deviation of NBW

against σmax. The blue dashed line and shaded area shows the mean and standard devi-
ation of the original algorithm.
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Figure 4.6: Effect of varying the parameter nt on the simulation run-time

two factors.
With the parameters set to σmax = 0.01 and nt = 30, figure 4.7 shows a comparison of

the number of events calculated against run-time and a running average of the GPR error.
For the first ≈ 104 particles, both algorithms have the same rate of event calculation. We
can see that during this period, the average σλa remains above σmax, meaning the GPR is
rarely used. However, beyond this point the average σλa drops below σmax and the event
rate increases dramatically. The average σλa then fluctuates just below σmax as few new
data points are added to D. By the end of the simulation, the inclusion of the GPR has
increased the rate of event calculation by a factor of ∼ 100.

In some circumstances the same static photon field will be used for multiple simula-
tions. For example, when optimising an experimental setup with a fixed photon source.

100



0 50000 100000 150000 200000
Run time (s)

101

102

103

104

105

106

107
Ev

en
ts

No GPR
With GPR
Pretrained GPR

(a) Events calculated against run-time

0 20000 40000 60000 80000 100000
Event

10 2

10 1

a
/

a

(b) Model error against event number.

Figure 4.7: Demonstration of GPR algorithm efficiency. (a) shows the number of events
calculated against the simulation run-time for the original algorithm (red), the un-
trained GPR extended algorithm (blue) and the pre-trained GPR extended algorithm
(black). (b) shows a running average, taken over 103 events, of σλa for the untrained
GPR extended algorithm.

In this case, we can save the GPR model at the end of the first simulation, then use it
pre-trained in the follow simulations. The effect this has on the rate of event calculation is
also shown in 4.7 (a). We can see this avoids the slows data accumulation stage, providing
an increase in efficiency from the start. By still allowing D to grow dynamically for the
pre-trained model, we still maintain the advantages discussed previously.

4.4 QED Experiments With a Thermal Radiation Field

In this final section, we will demonstrate the capabilities of this new physics package by
using it to model a Breit-Wheeler and photon-photon scattering detection experiment.
The reason for using Geant4 as the framework for this package is that it has an extensive
toolkit, which enables full start-to-end simulations to be performed. For example, within
a single simulation we can model the generation of the dynamic particle source; the
tracking of particles through fields; the interaction between particles and detectors; and
the generation of background noise. Although vital for a successful experiment, we will
not consider the last two parts here. However, in chapter 6 they will be discussed in detail
for a real Breit-Wheeler detection experiment.

Here, we will study the prospect of detecting the Breit-Wheeler process and photon-
photon scattering using a thermal radiation field. This setup was originally proposed by
Pike et. al [157], using a laser-heated hohlraum to produce the thermal radiation field.
Using a megajoule class laser, such as the national ignition facility (NIF), a hohlraum
radiation temperature of 300 eV can be reached over a length of ≈ 1 cm [164]. To generate
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the second sources, they suggested using the bremsstrahlung emission from a beam of
LWFA electrons in a high-Z material foil. LWFA are capable of producing > 2GeV

beams with charges in excess of 100 pC [165].
The time-scales of these sources are vastly different, with the radiation from a hohlraum

varying over nanoseconds and a LWFA beam varying over femtoseconds. Therefore, we
can safely assume the thermal radiation field is static over the duration of the interaction.
This makes these sources ideal for demonstrating the package presented here.

Pike [166] has studied in detail how important experimental parameters, such as ra-
diation temperature, electron beam energy, and bremsstrahlung foil thickness, affect the
yield of Breit-Wheeler pairs. Therefore, we will not investigate them all here but instead
focus on where this package excels. This is the ability to perform experimental optimisa-
tion within a fully integrated 3-dimensional simulation. We will assume the experiment
is to be performed with a fixed laser system. Therefore, the electron beam and radiation
field cannot be easily changed. The only part which can be easily varied is the converter
foil. The properties of the bremsstrahlung emission depends on both the thickness of the
foil and the material. However, as we will see, these can both be summarised in a single
parameter, known as the radiation length.

4.4.1 Bremsstrahlung Converter

As a beam of electrons passes through a material, bremsstrahlung radiation is emitted,
due to electrons scattering off the nuclear field of atoms. The high energy gamma rays
produced can themselves interact in the nuclear field, producing electron-positron pairs
through the Bethe-Heitler process. This causes a cascade as the number of particles
increases but their individual energy decreases. This is detrimental for two reasons. The
production of electron-positron pairs leads to a large background noise sources, especially
for detecting the Breit-Wheeler process. Also, the gamma ray energy may fall below the
required CM threshold.

Both bremsstrahlung and the Bethe-Heitler process occur over a similar characteristic
length, X0, known as the radiation length [167]. For Z < 4, a good approximation for the
radiation length in a single element material is [168]

1

X0

= 4αr2e
NA

A

{
Z2[Lrad − f(Z)] + ZL′

rad

}
(4.24)

where A is the mass number, α is the fine structure constant, re is the classical electron
radius, NA is Avogadro’s constant and

Lrad = ln(184.15Z−1/3); L′
rad = ln(1194Z−2/3). (4.25)

The function f(Z) is known as the Coulomb correction and for Z < 92, can be approxi-
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Figure 4.8: Visualisation of a Breit-Wheeler production event. An electron (red line) is
incident on a gold foil target. This produces a high energy photon (green line) through
bremsstrahlung emission. The electron is swept off axis by a magnetic field and the
photon propagates into a thermal radiation field. Here the photon undergoes the Breit-
Wheeler process, producing an electron (red line) / positron (blue line) pair.

mated by [169, 167]

f(Z) = a2

[
(1 + a2)−1 + 0.20206− 0.0369 a2 + 0.0083 a4 − 0.002 a6

]
(4.26)

where a = αZ.
Through bremsstrahlung, on average an electron’s energy will decrease by a factor of

1/e over X0. Similarly, the mean free path of a photon due to the Bethe-Heitler process
is 9

7
X0. Therefore, to suppress cascades, producing the highest energy gamma ray beam

possible, the converter foil thickness should be on the order of X0.

4.4.2 Detecting the Breit-Wheeler Process

To detect the Breit-Wheeler process, it is important that the Bethe-Heitler pairs generated
in the converter foil and residual electrons are removed. This can be achieved by placing
an on-axis magnet before the radiation field. For electrons up to 2GeV, a 30 cm magnet
with a field strength of B = 1T is sufficient. This is demonstrated in figure 4.8, which
shows a single event from a Geant4 simulation. Here, we can see the generation of a
bremsstrahlung photon, the tracking of particles through the field, and the production of
a Breit-Wheeler pair in the radiation field.

To optimise the converter for the maximum number of Breit-Wheeler pairs, we could
vary both the thickness and material. However, the only important parameter is the
number of radiation lengths. This is determined by both the thickness and material of
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Figure 4.9: Geant4 simulations caried out to optimise the converter thickness using
109 primary events. (a) shows the Breit-Wheeler pair yield and (b) shows the Photon-
Photon scatter yield, both as functions of converter thickness. The errors arise from the
Monte Carlo method. To reduce these, cross-section biasing has been used.

the converter. Therefore, we can fix the material as gold and only vary the thickness.
The radiation length for gold is X0 = 3.344mm. Figure 4.9 (a) shows the Breit-Wheeler
pair yield, NBW, when the converter thickness is varied around this value. We can see
the competition between the photon creation and cascades, with an optimum reach at
≈ 2mm. Here, a large number of pairs are produced (∼ 30000 from 109 primary electrons).
This demonstrates the feasibility of using this scheme to detect the Breit-Wheeler process,
provided the background noise is not too significant.

By performing a more detailed simulation, with the thickness set to 2mm, we can
examine the energy and angle distribution of the Breit-Wheeler pairs produced. This is
shown in figure 4.10. We can see the Breit-Wheeler pairs have a broad energy spectrum
extending up to the energy of the primary electrons. However, the angle distribution
is narrow, and sharply peaked around the gamma ray axis. The beaming is due to the
gamma ray carrying most of the momentum in the interaction. This is one of the major
benefits of this scheme. The Breit-Wheeler pairs can be easily captured and transported
off to detectors with a second on-axis magnet. If they were emitted at all angles, the
interaction region would have to be surrounded by detectors to capture a large fraction
of the pairs.

4.4.3 Detecting Photon-Photon Scattering

We can also perform a similar analysis to study the prospect of using this setup to detect
photon-photon scattering. In figure 4.9 (b), a scan over the converter thickness has
again been performed, this time investigating the effect on the photon-photon scattering
yield. The maximum is again obtained at ≈ 2mm, so the setup is optimised for both
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Figure 4.10: Energy and angular distribution of electron-positron pairs, generated
through the Breit-Wheeler process. Also shown are the marginalised distributions..

processes. This is to be expected, as the cross-section for both the Breit-Wheeler process
and photon-photon scattering are maximised at the same CM energy (s = 4). However,
the total yield of photon-photon scattering events is significantly reduced compared to
Breit-Wheeler pairs. With only ≈ 1 event per shot, when the noise is also considered,
this would be a very challenging measurement to make.

The energy and angle distribution from photon-photon scattering with a converter
thickness of 2mm is shown in figure 4.11. We can see the interaction products are again
beamed along the gamma ray source axis. Although this is a benefit for detecting the
Breit-Wheeler process, it becomes a hindrance for detecting photon-photon scattering.
As both the signal and bremsstrahlung background consist of photons, separating them is
difficult. The only way to do so is to detect both signal and noise, then look for signatures
in the distribution due to photon-photon scattering.

In figures 4.12 (a) and (b) we can see the marginalised energy and angle distributions,
for both the bremsstrahlung background and the photon-photon scattering signal. The
bremsstrahlung background is many orders of magnitude brighter and covers the same
range of energies and angles as the photon-photon signal. Therefore, it is not possible to
detect photon-photon scattering with this setup. However, it may be possible to reduce the
wings of the bremsstrahlung angle distribution if the beam is collimated before entering
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Figure 4.11: Energy and angular distribution of electron-positron pairs, generated
through photon-photon scattering. Also shown are the marginalised distributions.

the radiation field.
The probability of photon-photon scattering occurring is proportional to α4. There-

fore, we should also consider the probability of two processes proportional to α2 happen-
ing together. For example, a photon could produce an electron positron pair through
the Breit-Wheeler process, then emit a photon through Compton scattering. This in-
teraction will also be proportional to α4, however, it will depend on the square of the
photon density and radiation field length. The energy and angle distributions of photons
produced through this two-step interaction are also shown in figures 4.12 (a) and (b). For
the parameters used here, the two-step process occurs at a rate ≈ 10 times higher than
photon-photon scattering. As these photons are generated at the same location, they
cannot be removed with a collimator. The only way to suppress the two-step process,
without limiting photon-photon scattering, is to bring the CM energy below the Breit-
Wheeler threshold. However, this is difficult if sources with a broad energy spectrum are
used.
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Figure 4.12: Energy and angle distributions of photons produced in Breit-Wheeler pro-
cess (BW, red), Compton scattering (CS, blue), and photon-photon scattering (PPS,
black). (a) shows the energy distributions and and (b) shows the angular distributions.

4.5 Summary

In this chapter, we have presented the development of a new physics package for Geant4
that models particle-photon processes. To integrate the package with Geant4, we treat
the photon source as static, which limits the types of experiments which can be modelled.
However, in doing so we have reduced the complexity of the problem. It has also led to a
scheme in which a GPR can be implemented, leading to a large increase in the algorithm
efficiency.

Using Geant4 as the framework for the package enables start-to-end simulations of
experiments to be performed. We have demonstrated this by studying the prospect of
using the photon-photon collider, proposed by Pike et. al, to detect both the Breit-
Wheeler process and photon-photon scattering. Using realistic experimental parameters,
this scheme can produce a large number of Breit-Wheeler pairs. This is in agreement with
the previous study of this setup by Pike [166], suggesting a measurement could be made
with only a few shots.

However, there are several challenges that will make using this setup to detect photon-
photon scattering extremely difficult. These challenges include: the small value for the
cross section; the outgoing particles being the same particle type as the bremsstrahlung
source; the scattered photons beaming along the bremsstrahlung source axis; and back-
ground noise due to the two-step process involving the Breit-Wheeler process and Comp-
ton scattering. The first two will be true for any photon-photon scattering experiment.
However, the second two are due to the setup. If two symmetric photon sources are used,
there is no dominant axis, making photons more likely to scatter into an angle less dom-
inated by noise. Because the two-step process depends on the square of the field density
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and length, by reducing these parameters we can bring the rate below the photon-photon
scattering rate. However, this also reduces the number of photon-photon scattering events,
which is already small. To suppress the two-step process without this happening, the CM
energy of the collision can be brought below the threshold for the Breit-Wheeler process.
The cross-section for photon-photon scattering also decays rapidly below this value, so
two monoenergetic sources at ≈ 0.5MeV should be used. This could be generated using
an inverse Compton source, as suggested by Micieli et. al. [170, 159].

The processes discussed here are binary, and depend on the photon density in a linear
way. At higher photon densities, nonlinear effects can dominate. For the nonlinear Breit-
Wheeler process, the extra particles in the interaction reduce the energy required by each
one to overcome the CM threshold. This allows low energy but high density photon
sources to be used, such as a high-power IR laser. These types of experiments will be
studied in the next chapter.
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Chapter 5

Modelling Strong Field QED
Interactions

The classical mechanism through which an accelerating charge emits electromagnetic ra-
diation has been extensively studied and understood since the late 19th century [85]. As
the charge radiates, it loses energy at a rate given by the Larmor formula. This loss
of energy implies a damping force on the charge, however, this is not accounted for in
the Lorentz force. Early attempts to amend this by Abraham [171] and Dirac [92], led
to unphysical predictions such as runaway solutions and forces from the future (see sec-
tion 2.1.7). It was not until the 1970s that Landau and Lifshiz found a solution to this
problem, by reducing the order of the Abraham force [83]. The resulting Landau-Lifshiz
equation of motion is generally accepted as the correct form for radiation reaction in the
classical limit.

In deriving the Landau-Lifshiz equation, it is assumed that the force experienced
by the charge from the external field is much larger than the dampening force due to
radiation. However, in an ultra-strong electromagnetic field with η & 1 (see equation
2.93), the radiation term can no longer be considered small, making the Landau-Lifshiz
equation invalid. To derive a consistent description of radiation reaction, which holds at
all fields strengths, requires a quantum theory.

The quantum theory of radiation reaction is an active area of research, requiring
experimental evidence to test predictions. However, reaching these conditions in the
laboratory is challenging and only a few experiments have been carried out to date. The
first to probe the quantum regime was the E144 experiment at SLAC which took place
in the 1990s [55, 56]. By interacting a 46.6GeV electron beam with an a0 ≈ 0.3 laser, a
nonlinear quantum parameter of η ≈ 0.2 was reached. This provided the first evidence of
nonlinear Compton scattering (see figure 5.1 (a)). However, no direct measurements were
made to determine the effect of radiation reaction on the electron spectrum.

As a laser with a0 < 1, was used, the experiment operated in the predominantly
linear regime, in which nonlinear effects were highly suppressed. However, in two more
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Figure 5.1: Feynman diagrams for (a) nonlinear Compton scattering and (b) the non-
linear Breit-Wheeler process in a strong background field. The double lines used for the
leptons represent the interaction with the strong background field.

recent experiments by Cole et al. [57] and Poder et al. [58] radiation reaction has been
observed in the nonlinear regime with a0 > 10. The measurements obtained during the
Cole experiment were found to be more consistent with the fully quantum description of
radiation reaction, whereas the Poder measurements were found to be more consistent
with the quantum corrected Landau-Lifshitz equation. However, both experiments had
large uncertainties in the overlap location due to the micron precision required. In addition
to this, only a limited number of interactions were observed, highlighting the need for more
experimental data.

A second nonlinear QED interaction of interest in a strong electromagnetic field is
the nonlinear Breit-Wheeler process (see figure 5.1 (b)). This causes a photon passing
though a field with χ & 1 (see equation 2.93), to decay into an electron-positron pair.
Although the linear Breit-Wheeler process, which was discussed in chapter 4, has never
been directly observed in the laboratory, its nonlinear counterpart has. This was during
the E144 experiment at SLAC [56], in which the high energy gamma rays emitted through
nonlinear Compton scattering combined with laser photons to produce electron-positron
pairs. On average n ≈ 6 laser photons were absorbed per interaction [172]. As this
experiment operated in a regime dominated by linear effects, the interaction was highly
unlikely, with only ≈ 100 pairs detected over 22000 shots.

This two-step interaction through which electron-positron pairs were created is an
example of a QED cascade [173, 174, 175, 176, 177]. Here, through multiple nonlinear
Compton scattering and nonlinear Breit-Wheeler events, a single seed particle can produce
many final state particles. Understanding the dynamics of these cascades is important
from an astrophysical perspective as they are predicted to occur in a number of extreme
environments throughout the universe [35, 150].

Modelling strong field QED cascades requires a number of considerations. A direct
QED approach is intractable due to the high level of multiplicity [178]. State of the art
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calculations are limited to systems which contain only two additional particles in the final
state [179, 172, 107, 108, 180]. As well as this, prolific generation of pairs leads to the
depletion of the background field [181]. To account for these effects, the QED-PIC method
has been developed [119, 120, 182]. This couples a Monte Carlo emission algorithm with
the standard particle-in-cell (PIC) approach. To do so, the cascade is approximated by
the product of multiple first order interactions with a classical transition in between. This
is referred to as a semi-classical treatment and enables us to model both the generation
and dynamics of cascades.

Current laser facilities are only able to operate with a relatively modest nonlinear
quantum parameter (χ, η < 1) and the extent of a cascade is limited. However, a large
number of high energy photons are still generated, leading to a noisy experimental envi-
ronment (for the same reason discussed in chapter 4). Detailed numerical modelling is
then vital for both pre-experiment optimisation and post-experiment analysis. Therefore,
we have developed a new strong field QED package for this purpose. This can either be
used as a stand-alone piece of software or integrated with Geant4 to perform start-to-end
simulations of experiments.

In this chapter we will discuss the development of this package and demonstrate some
of its applications. We will start by reviewing the set of equations which the package
solves and outline our specific implementation. One of the possible uses of this package
is as a forward model for performing post experimental inference. However, the Monte
Carlo algorithm used by the package is too slow for this purpose. Therefore, a machine
learning emulator which can perform calculations far more quickly, has been developed.
In this chapter we will discuss the implementation of this emulator and demonstrate its
ability by performing Bayesian inference on mock experimental data.

5.1 Strong Field QED Package Development

The underlying Monte Carlo algorithm, which this package uses, was originally developed
by Kirk et. al [119] and then adapted to include stochastic effects by Duclous et.al [120].
Since its development it has been integrated into a number of PIC codes [183, 184, 185].
This allows the bulk dynamics of an electron-positron plasma, generated through QED
cascades, to be modelled. However, current laser facilities are not capable of reaching the
regime in which plasma effects are important on the cascade dynamics. As the package
discussed here has been developed as a tool for designing such experiments, it does not
model the plasma dynamics. By ignoring particle-particle interactions, we can treat a
strong field QED experiment, involving a beam of particles moving through a background
field, as a system of independent events. This can be parallelised to a higher degree than
QED-PIC, reducing the simulation run-time.

In this section we will present an overview of this new strong field QED package,
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starting with a discussion of the equations which are solved. We will then review the
specifics of the package, including the numerical methods used and the options the package
provides. Finally, we will discuss how importance sampling can be used to reduce the
computational costs in modelling an experiment.

5.1.1 System of Equations

At the heart of the Monte Carlo algorithm is the quasi-classical treatment of the radiation
field. Using the Furry picture [103], we can split the electromagnetic field into a large
classical background and small quantum fluctuations (as discussed in section 2.3). The
motion of the particles through the field is then treated classically, with point-like QED
interactions. Under the quasistatic and weak field approximations (see section 2.3.2), the
rate of nonlinear Compton scattering, Wγ, and the nonlinear Breit-Wheeler process, W±,
are given by equations 2.107 and 2.116 respectively.

This semi-classical treatment of the particle’s motion leads to a kinetic equation de-
scribing the dynamics of the probability distribution function (PDF) over the particle’s
phase space coordinates x = (r,p). The PDF for the electrons and positrons is denoted
by f±, for gamma rays by fγ and their motion governed by [182, 175, 121, 174]

∂f±
∂t

+ v · ∇f± + Fext · ∇pf± =

(
∂f±
∂t

)
QED

∂fγ
∂t

+ cv · ∇fγ =

(
∂fγ
∂t

)
QED

(5.1)

where Fext = e(Eext + v × Bext) is the external Lorentz force. The left hand side of
equation 5.1 describes the classical motion of the particles. This is a null geodesic for
photons and the Lorentz motion for electrons and positrons. The terms on the right hand
side of equation 5.1 account for particle sources and sinks due to QED effects and, using
the jargon of statistical mechanics, can be viewed as a collision operator. The only two
QED processes which we will consider here are nonlinear Compton scattering and the
nonlinear Breit-Wheeler process. Therefore, we can write the collision operator for the
electrons and positrons as [174](

∂f±
∂t

)
QED

=

∫
f±(t,x,p

′)wγ(p
′,p′ − p)d3p′

− f±(t,x,p)

∫
wγ(p,k)d

3k+

∫
fγ(t,x,k)w±(k,p)d

3k

(5.2)

where the first term accounts for an electron or positron leaving the state through non-
linear Compton scattering; the second term accounts for the reverse process where an
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electron or positron enters the state through nonlinear Compton scattering; and finally,
the third term accounts for electrons or positrons entering the state through the nonlinear
Breit-Wheeler process. The equivalent collision operator for photons is [174](

∂fγ
∂t

)
QED

=

∫
[f−(t,x,p) + f+(t,x,p)]wγ(p,k)d

3p−

fγ(t,x,k)

∫
w±(k,p)d

3p

(5.3)

where the first term accounts for the emission of photons from nonlinear Compton scat-
tering and the second term accounts for the photon annihilating through the nonlinear
Breit-Wheeler process.

In equations 5.2 and 5.3, wγ(p,k) is the rate at which an electron or positron with
momentum p emits a photon with wavevector k and is given by [117, 175]

wγ(p,k) =

∫ η/2

0

dWγ

dχ
δ
(
~k− 2χ

η
p
)
dχ (5.4)

where dWγ/dχ is given by equation 2.107. The delta function ensures that the photon is
emitted in the same direction as the electron or positron1. Equivalently, w±(k,p) is the
rate at which a photon with wavevector k annihilates to form an electron and positron
with momentum p

w±(k,p) =

∫ 2χ

0

dW±

dη
δ
(
p− η

2χ
~k
)
dη (5.5)

where dW±/dη is given by equation 2.114.
Equations 5.1 to 5.5 form a system of six-dimensional, coupled, nonlinear integro-

differential equations and as a result, approximations are often required to solve them. For
example, a study of cascades has been carried out by Sokolov et al. [174] and Bulanov et
al. [177] using a one dimensional plane wave approximation. An alternative approach was
suggested by Neitz and Di Piazza [186], where a Fokker-Planck expansion is performed in
the limit of the emitted photon energy being much smaller than the electron energy. Niel et
al. [187] have shown that this approximation is appropriate for η . 0.25. However, current
laser facilities are capable of operating in regimes of η > 0.25, if a tightly focused laser
is used. Under such conditions neither the one dimensional plane wave or Fokker-Planck
approximations are valid. The only option for solving the set of equations is a Monte
Carlo treatment. In the following section we will review this Monte Carlo treatment,
however, further discussion can be found in refs [175, 120, 182].

1In reality, the photons will be emitted into a cone of angle 1/γ, however, for ultra-relativistic par-
ticles this is negligible.
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5.1.2 Monte Carlo Algorithm

In the Monte Carlo approach, rather than solving equation 5.1 directly, the dynamics
of particles sampled from f± and fγ at time t = 0 are solved. Here, we will refer to
the sampling and simulation of a seed particle as an event. This event consists of the
trajectory of the seed particle and all secondary particles that are created. As we are
not considering the action of the particles on the background field, these events can be
treated as independent.

In our implementation, the flow of each event is controlled by five base classes. These
are: an event generator, particle pusher, field manager, process manager and output man-
ager. The event generator is responsible for sampling the initial phase space coordinates,
x = (r,p), from f± or fγ. The particle pusher, field manager and process manager are
then invoked at each timestep. Finally the output manager, which is responsible for han-
dling histograms, is called at the end of the event. The particle pusher, field manager and
process manager are more involved so will be discuss in detail in this section. In addition
to this, we will also discuss how the package integrates with Geant4.

Particle Pusher

Once the initial state of the particle has been sampled, the particle pusher is invoked to
solve the equation of motion. If the particle is a photon, it will always follow a simple
geodesic. In this case, a first order Euler method is sufficient for solving the equation of
motion.

The package offers the choice of two options for the electron and positron equation of
motion. If we are interested in the stochastic behaviour of particles, radiation reaction is
handled by the process manager and the particle pusher solves the Lorentz force

mv̇ = e(E+ v ×B). (5.6)

If we are not interested in the stochastic behaviour but the average motion of an electron
or positron, the particle pusher solves the quantum corrected Landau-Lifshitz equation of
motion (see equation 2.113), which includes the radiation reaction force explicitly

mv̇ = q(E+ v ×B)− 2

3
αη2g(η)v̂. (5.7)

where g(η) is the Gaunt factor, given by equation 2.112. To avoid performing the inte-
gration required to obtain g(η), we use the following approximation [188]

g(η) ≈ [1 + 4.8(1 + η)ln(1 + 1.7η) + 2.44η2]−2/3. (5.8)

Both the Lorentz and quantum corrected Landau-Lifshitz equations of motion are solved
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Figure 5.2: Trajectory of an electron in a static magnetic field. In (a) the Lorentz equa-
tion of motion has been solved and the radiation reaction force, handheld by the pro-
cess manager. In (b) the corrected Landau-Lifshitz equation of motion has been solved.

using a 4th order Runge Kutta method.
Figure 5.2 compares the trajectories of electrons in the same static magnetic field but

with the two different solvers. In (a) the Lorentz force is solved and radiation reaction is
handled by the process manager. The electron exhibits an erratic motion as the radius
of curvature changes discretely. However, in (b) the corrected Landau-Lifshitz force is
solved and the electron exhibits a smooth path inwards.

Field Manager

To solve equation 5.6 or 5.7 the electric and magnetic fields are required. In a PIC code
these are obtained self consistently by solving Maxwell’s equations. However, here we
assume the action of the particles has little effect on the background field. Therefore, to
reduce computational costs, the fields are provided by a predefined function. The func-
tion takes in a position and time coordinate and returns the electric and magnetic field
vectors, E,B = f(x, t). We have implemented three methods for defining f(x, t): a static
homogeneous field, a plane wave, and a focusing Gaussian beam. The static homoge-
neous field simply returns the same field vectors for all position and time coordinate, i.e.
E0,B0 = f(x, t) where E0,B0 are predefined vectors.

The other two fields are used to model a laser pulse. Therefore, we separate f(x, t) into
an oscillatory function g(x, t) and a temporal envelope function, h(x, t). The envelope,
which is defined as a function of the wave phase, φ = k · x− ω0t, is given by a Gaussian
wave packet

h(φ) = exp

(
− φ2

4ω2
0 τ

2

)
. (5.9)

Here, τ is the time for the intensity to fall by e−1. For the plane wave, the oscillatory
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Figure 5.3: Normalised electron field components for Gaussian pulse with ε = 0.8. (a)
shows the transverse field whereas (b) shows the longitudinal field

function is defined as a simple sinusoidal wave

g(x, t)E = E0 sin(φ) g(x, t)B = B0 sin(φ) (5.10)

where B0 = −k×E0/ω0. This function is fast to compute, however, does not include any
longitudinal fields that occur when a pulse is tightly focused. Such effects are included
by the focusing Gaussian beam. In this case, the fields are given by the solution to
the Helmholtz equation resulting from the propagation of an electromagnetic wave in a
vacuum. Here, an expansion in powers of the diffraction angle ε is used, where terminating
at first order corresponds to the paraxial approximation. The diffraction angle is given
by ε = w0/Zr where w0 is the waist of the beam at focus and Zr = |k|w2

0/2 is the
Rayleigh length. Here, we use the field obtained by expanding to fourth order, however,
an expansion up to the 11th order can be found in ref. [189]. A plot of the transverse
and longitudinal electric fields for ε = 0.8 at the focusing plane is shown in figure 5.3.

Process Manager

There are two roles performed by the process manager: calculating the distance a particle
travels before undergoing an interaction; and calculating the properties of the particles
which leave the interaction. To perform the first task, it is useful to introduce the optical
depth of a particle

τ(t) =

∫ t

0

Wdt′ (5.11)

where W is the rate of a QED interaction, given by

Wγ =

√
3α

2πτc

η

γ

∫ η/2

0

dχF (η, χ) W± =
α

τc

mc2

~ω
χT (χ) (5.12)
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Figure 5.4: Rates for QED processes. (a) shows the nonlinear Compton scattering rate
whereas (b) shows the nonlinear Breit-Wheeler process rate

for nonlinear Compton scattering and the nonlinear Breit-Wheeler process respectively,
where F (η, χ) is given by equation 2.108 and T (χ) is given by equation 2.117. Figure
5.4 show plots of Wγ and W±. The optical depth can be viewed as the number of mean
free paths that the particle has travelled. Therefore, the probability of the interaction
occurring at an optical depth of τ is p(τ) = e−τ .

At the start of each event, and when a new particle is generated, a final optical depth,
τf is sampled from p(τ). This uses inverse transform sampling (see section 3.3.1), i.e.

τf = −log(1− u) (5.13)

where u ∼ U(0, 1). As the particle travels through the simulation, its current optical
depth, τ , is obtained by solving equation 5.11 using a first order Euler method. Once
τ = τf , the particle undergoes the interaction and τ is reset.

Having determined that an interaction has occurred, the process manager then moves
on to calculate the properties of the outgoing particles. For nonlinear Compton scattering,
this involves adding a photon to the event and updating the momentum of the electron
or positron, whereas for the nonlinear Breit-Wheeler process the interacting photon is
removed from the event and an electron-positron pair is added. Before adding a new
particle to the event, its momentum must be calculated. The quantum parameter of the
new particle can be obtained by sampling from the process differential rate. This is again
carried out using inverse transform sampling. The CDF of the differential rates are given
by

C(χ) =

∫ χ

0
(dWγ/dχ

′)dχ′∫ η/2

0
(dWγ/dχ′)dχ′

C(η) =

∫ η

0
(dW±/dη

′)dη′∫ 2χ

0
(dW±/dη′)dη′

(5.14)

for nonlinear Compton scattering and the nonlinear Breit-Wheeler process respectively.
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These CDFs cannot be inverted analytically, so it is performed numerically and tabulated.
Values for η and χ are interpolated from this table during run-time. If we assume the
outgoing particles are emitted parallel to the motion of the incoming particle, we can use
equation 2.93 to calculate the outgoing particles’ momentum. With this, the new particles
are then added to the event and the simulation continues.

Geant4 Event Generator

In chapter 4 we discussed one way that particle-photon interactions can be modelled
within Geant4. To do so requires the photon source to be modelled as a static field due to
the static nature of the Geant4 computational domain. This limits the types of interaction
that can be modelled to those in which the two sources vary on vastly different timescales.
This is not the case for a strong field QED experiment at a current laser facility in which
both sources vary on femtosecond timescales.

To solve this problem, we have used an alternative approach to that used in chapter
4 and developed a strong field QED primary event generator for Geant4. Here, the event
is started by the strong field QED algorithm discussed above. Once it has finished, the
output is passed to Geant4 as a seed event. Through this scheme, the two pieces of
software can be coupled without additional approximations.

5.1.3 Importance Sampling

We can see from figure 5.4 (b), that when χ < 1 the pair production rate is severely
suppressed. During an experiment, operating in this regime, we can only expect a few
nonlinear Breit-Wheeler interactions to occur per shot. For example, during the E144
experiment a positron was detected approximately once every 200 shots [56]. Using the
Monte Carlo algorithm discussed above to make an estimate of the pair production yield
of such an experiment, would require simulating a large number of events. Therefore, to
reduce the computational costs, we have adapted the algorithm to include importance
sampling (see section 3.3.2).

To increase the number of nonlinear Breit-Wheeler interactions that occur in a simula-
tion, we need to increase the number of high energy photons. We can do this by applying
importance sampling to the nonlinear Compton scattering emission. This is achieved by
sampling the photon’s energy from a proposal distribution, q(E), rather than the true
distribution, p(E). The proposal distribution is chosen such that the probability of sam-
pling a higher energy photon is increased. This is demonstrated in figure 5.5 (a), where
we have chosen a uniform distribution for q(E). This leads to an increase in the number
of high energy photons, however, if we also update the electron’s momentum using the
proposal distribution, it will follow the wrong trajectory. Therefore, we also sample from
the true distribution to update the electron’s momentum.
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Figure 5.5: Plots of photon energy distribution emitted by a 2GeV electron beam trav-
elling through a 5.5× 105T magnetic field. (a) shows the true (red) and proposal (blue)
distributions that are sampled from during the electron’s first emission. (b) shows the
final photon energy distribution obtained by sampling from: the proposal distribution
(red); the proposal distribution then weighted (blue); and the true distribution (black
dash).

In figure 5.5 (b) we can see the effect the proposal distribution has on the photon
spectrum emitted by a beam of electrons with energy 2GeV, travelling through a magnetic
field of strength 5.5×105T, such that η ≈ 0.5. The energy spectrum obtained by sampling
from the proposal distribution is not uniform due to the electrons undergoing multiple
emission events which reduces their energy. However, we can see there are still far more
high energy photons compared to sampling from the true distribution.

Making an estimate based on the proposal distribution alone would give a biased result.
This is corrected by assigning a weight to the emitted photons, given by w = p(E)/q(E).
Figure 5.5 (b) also shows that accounting for this weight, the spectrum is the same as the
that obtained by sampling from the true distribution. These weighted photons are treated
in the same way as unweighted photon. However, if the photon decays, the secondary
particles will inherit this weight.

The benefit of applying importance sampling on the positron energy spectrum, using
the same simulation setup as above, is shown in figure 5.6. Both simulations used the
same number of seed particles, however, a more highly resolved estimate is obtained using
importance sampling.

5.2 Test Simulations

In this section we will present some benchmark simulations which test the implementation
of the algorithm discussed in section 5.1. This will involve both testing the numerical
convergence of the algorithm as well as comparisons against analytical theory.
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Figure 5.6: Positron energy spectrum obtained from a simulation of 10000 seed elec-
trons with an energy of 2GeV, travelling through a 5.5 × 105T magnetic field. In (a)
importance sampling has not been used, whereas in (b) importance sampling has been
used.

5.2.1 Numerical Convergence

The algorithm discussed in section 5.1 allows particles to move freely in space, but they
are discretised in time. Therefore, the time step, ∆t, is the only parameter relevant to
convergence. In this algorithm, the same value of ∆t is used to solve both the particle’s
equation of motion and probability of emission. However, we would expect these to have
different characteristic timescales. For the algorithm to produce reliable results, ∆t must
be small enough to resolve the shortest timescale dynamics of the two solvers.

For an electron or positron in a static magnetic field, the gyro-period is the shortest
timescale that the particle pusher must resolve. Therefore, we will define the particle
pusher constraint as

∆tpp =
2πγm

e|B|
. (5.15)

As the process manager can only interact once per timestep, the constraint should be
set such that the probability of multiple events is low. For an electron or positron in an
static magnetic field, we can estimate the probability of N emission events occurring in a
time ∆t by assuming the emission is a Poisson process2

p(N) =
(Wγ∆t)

Ne−Wγ∆t

N !
. (5.16)

To suppress the probability of multiple emissions per timestep, we require that Wγ∆t� 1.
2This is not strictly true as the reduction in energy of the electron from the emission of the photon

will change η and the rate Wγ(η) is not constant.
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Figure 5.7: Effect of increasing the time-step on (a) the number of photons emitted and
(b) the average final energy of an electron.

Therefore we can define the process manager constraint as [182]

∆tQED =
1

maxWγ

=
2π τc√
3αh0

Bcrit

|B|
(5.17)

where h0 = h(0) = 5.24 and Bcrit = Ecrit/c is the Schwinger magnetic field. A similar
calculation can be performed for the nonlinear Breit-Wheeler process, however, it will
always be larger than the photon emission [182]. The ratio of the two time-step constraints
is

∆tpp
∆tQED

=
√
3αh0γ. (5.18)

Therefore, if γ & 15, which is usually the case in a strong field QED experiment, ∆tQED <

∆tpp.
Figure 5.7 shows the effect of varying ∆t on a simulation, consisting of a beam of

1000 electrons with γ = 100, travelling perpendicular to a static magnetic field with
|B| = 1× 10−3Bcrit for 5 fs. In (a) we can see the total number of photons emitted, which
decreases dramatically around ∆tQED = 1. In (b) we can see the average γ of the electrons
at the end of the simulation. Initially, increasing ∆t, leads to a slight increase in γ, as
the electrons are emitting fewer photons. However, as ∆t is increased further the particle
pusher is no longer able to resolve the Larmor orbit and introduces large errors.

5.2.2 Analytical Benchmark

With ∆t� ∆tQED, we will now turn our attention to comparing results from the Monte
Carlo algorithm with analytical calculations. This will involve performing separate tests
of the nonlinear Compton scattering and nonlinear Breit-Wheeler modules. To simplify
the analytical calculations, in both cases the test simulation will consist of a beam of
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Figure 5.8: Nonlinear Compton scattering benchmark simulations. (a) shows the aver-
age γ of an electron beam travelling through a static magnetic field against time. (b)
shows the standard deviation of the same electron beam against time

10000 particles travelling through a static magnetic field of strength |B| = 1× 10−3Bcrit.

Nonlinear Compton Scattering

Even with this relatively simple field configuration, equation 5.1 cannot be analytically
solved. However, it is possible to analytically calculate the moments of the distribution
function. The first moment is the average evolution of the particles’ momentum and
is given by the corrected Landau-Lifshiz equation of motion (see equation 2.113). The
second moment is the evolution of the variance of the particles’ momenta. If we assume
the momentum distribution is Gaussian at all times with σ � 〈γ〉, in the limit η � 1,
Ridgers et al. [188] have shown the variance evolves according to(

dσ2

dt

)
= −2

〈∆γgPcl〉
mec2

+
〈S〉
m2

ec
4

(5.19)

where Pcl is the classical radiated power given by equation 2.34 , ∆γ = γ − 〈γ〉, and

s(η) =
55αγc

24
√
3τc

m2
ec

4η3g2(η) g2(η) =
144

55πη4

∫ η/2

0

χF (η, χ)dχ. (5.20)

Figure 5.8 (a) and (b) show how the first and second moments of an electron beam’s
distribution function vary with time, starting initially as a delta function with γ = 100.
These calculations have been performed both analytically and using the Monte Carlo
estimate and shows good agreement between the methods.
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Figure 5.9: Nonlinear Breit-Wheeler benchmark simulations. (a) shows the number of
photons in a beam travelling through a static magnetic field against time. (b) shows
the energy distribution of the electrons (or positrons) produced through the nonlinear
Breit-Wheeler.

Nonlinear Breit-Wheeler Process

Testing the nonlinear Breit-Wheeler module is a simpler task as the momentum of a
photon is not affected by a background field unless it annihilates. The decay of a beam of
photons in a static magnetic field is a Poisson process, and the average number of photons
left after a time t is N = N0 exp(−t/W±), where N0 is the initial number of photons. This
is plotted, along with an estimate from the Monte Carlo algorithm, in figure 5.9 (a) for a
beam of photons with energy Eγ = 100mec

2.
It is also possible to analytically calculate the energy distribution of the emitted elec-

trons and positrons. Defined in terms of the fraction of energy assigned to the electron
(or positron), f , the distribution is given by [37]

p(f | χ) = 2 + f(1− f)

Af(1− f)
K2/3

[
1

3χf(1− f)

]
(5.21)

where A is a normalisation constant. This is plotted in figure 5.9 (b) along with an
estimate from the Monte Carlo algorithm for the same photon beam used above. Once
again, a good agreement is found between the analytical and Monte Carlo results.

5.3 Emulating the Monte Carlo Algorithm

Aside from performing start-to-end simulations of experiments, a second application of
this package is as a forward model for post experimental, statistical inference. There are
two commonly used approaches for statistical inference, maximum likelihood estimation
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(MLE) and Bayesian inference (BI). Both these methods require calculating a forward
model many times. However, the Monte Carlo algorithm discussed in section 5.1.2 is
computationally expensive, making it impractical for this use. To solve this problem,
we have developed a machine learning emulator, trained on a data set generated by the
Monte Carlo algorithm, which takes far less time to calculate.

In this section we will discuss the development of this emulator. We will start by
examining the data set which the emulator is trained on, before discussing the type of
emulator which we have used. Finally we will demonstrate the capability of the emulator
by using it in BI of mock experimental data.

5.3.1 Emulator Data Set

Before applying any machine learning method, it is important to study the data set to
determine if the method is appropriate. Here, the data set consists of N input-output
pairs D = {xi,yi | i = 1, . . . , N} where xi is the input vector of dimensions Dx and
yi is the output vector of dimensions Dy. The number of inputs to the Monte Carlo
algorithm is larger, however, most can be categorised as either a particle parameter or a
field parameter. To simplify the discussion, we will only consider the particle parameters
as inputs and keep the field parameter as fixed at the values given in table 5.1. This is due
to the current implementation of the Monte Carlo algorithm, making it easier to generate
a training data set in which the particle parameters are varied. However, if the algorithm
was adapted so that the field parameters could vary each event, then these could also be
treated as input parameters.

If we are modelling a radiation reaction experiment, where the nonlinear Breit-Wheeler
process rate is highly suppressed (χ < 1), and focus only on the electrons, each event
consists of a mapping of the electron’s initial phase space coordinates xi ≡ (ri,pi) to its
final phase space coordinates xf ≡ (rf ,pf ). When modelling an experiment, the Monte
Carlo algorithm deals with interactions on a micrometre scale. However, the scale of the
experiment is metres, so we can treat the particles as being emitted from a point source,
ignoring the spatial component of the output, xf = (pf ). Therefore the goal of the
machine learning algorithm is to learn the predictive, conditional distribution p(xf | xi)

where Dx = 6 and Dy = 3. In the following discussion, we will use an alternative
coordinate system in which the z-component of the particle momentum is replaced with
its energy: xi = (ri, Ei, pix, piy) and xf = (Ef , pfx, pfy).

To generate the training data set, we can uniformly sample values of xi over a region of
interest, then simulate the events using the Monte Carlo algorithm. A plot of the training
data set that we will use is shown in figure 5.10 (a) where we have marginalised over all
variables other than Ei and Ef . This demonstrates the probabilistic nature of the data
set. Therefore, we may think a Bayesian approach, such as a Gaussian process regression,
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Table 5.1: Field and particle parameters used in test simulations throughout chapter.

Field Parameters Particle Parameters
Field type focusing Gaussian Particle type electron
a0 30 Energy distribution Gaussian
Duration 25 fs Energy mean 2GeV

Waist 5µm Energy s.d. 0.5GeV

Duration 30 fs

Waist 1µm

Divergence 1mrad
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Figure 5.10: Sample of the data set used to train the emulator. (a) shows the joint dis-
tribution p(Ei, Ef ) with red dashed lines corresponding to the conditional distributions
p(Ef | Ei) shown in (b).

would be a good candidate for the machine learning algorithm. However, implementing a
Gaussian process in this case would be challenging. To examine why, we will consider the
conditional distribution p(Ef |Ei), shown in figure 5.10 (b), obtained by taking a line-out
from figure 5.10 (a). The conditional distribution appears Gaussian at Ei = 0.5GeV,
however, this is not the case at 5GeV. Therefore, the data set is heteroscedastic, with
a non-Gaussian likelihood. It is possible to apply a Gaussian process regression to non-
Gaussian data [190], however, it is more computationally expensive, requiring either an
MCMC or variational approach. There is a second issue as the training time for a Gaussian
process scales poorly for larger data sets (O(N3) where N is the size of the data set).
Although the Monte Carlo algorithm is too slow to be used as a forward model in statistical
inference, it is still possible to generate a larger data set3. For these two reasons, the cost of
training a Gaussian process emulator would negate any benefits from increased run-time.

3N ≈ 107 events can be simulated in ∼ 2 hours using a 24 core, Intel Xeon Processor E5-2680 v3
[191].
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Instead, we have opted for a neural-network based machine learning method, as the
training time scale is favourable (O(N)) for large data sets. The aim of the emulator is
to model a predictive distribution with heteroscedastic variance. Therefore, a standard
feed-forward network (FFN) is not appropriate. To solve this problem, we have used
a mixture density network (MDN), originally developed by Bishop [192]. In the next
section, we will demonstrate the issues that arise when using a standard FFN and show
how they are solved with a MDN.

5.3.2 Mixture Density Network Emulator

If we parameterise the Monte Carlo algorithm using an FFN, then the emulator function,
f(xi,θ), is given by equation 3.21. To learn the network parameters, θ, we can use MLE,
which involves defining a likelihood function, that is usually assumed to be Gaussian

p(xf | xi,θ) = N (xf | f(xi,θ),Σ). (5.22)

The result of applying a Gaussian likelihood and training a FFN on the data set is
demonstrated in figure 5.11 (a). Here we have used a network architecture of two hidden
layers with 500 nodes each, a rectified linear unit activation function, and an L2-norm
regularisation term applied to the hidden layers. The network was trained to completion
using cross-validation and Σ is given by the mean of the squared residuals. This network
is capable of predicting the mean Ef for a given Ei, however, gives a poor prediction of
the data variance. This is highlighted further in figure 5.11 (b) showing the conditional
distribution p(Ef | Ei) for Ei = 0.5, 5.0GeV.

The issue with this network is that it is incapable of handling the heteroscedastic
variance. To solve this issue, we can assume that the variance is also a function of the
input. This is achieved by adding extra nodes to the output of the network, returning
both the mean function and the variance, i.e. (µ, σ) = f(xi,θ). The likelihood is then
given by

p(xf | xi,θ) = N (xf | µ(xi,θ), Σ(xi,θ)) (5.23)

and the result of applying this to our data set is shown in figure 5.11 (c). Here we have
used the same network architecture as before. This model is more flexible and capable
of modelling the changing variance. In figure 5.11 (d) we can see plots of the conditional
distribution, p(Ef |Ei). The network gives a good prediction of p(Ef |Ei) at small values
of Ei, however, at high values of Ei the prediction is poor. To understand why this is the
case, we can study the Fokker-Planck treatment of radiation reaction provided by Niel et
al. [187]. In a Fokker-Planck treatment, if the initial energy distribution is Gaussian, the
final energy distribution will also be Gaussian with a shifted mean and increased variance.
Niel et al. have shown that this treatment is appropriate in the intermediate quantum
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regime, η < 0.25. This is the same regime under which we would expect p(Ef | Ei) to be
Gaussian. At larger values of η, higher order moments become important and we cannot
use a single Gaussian to describe the distribution.

To account for the higher order moments, we need a more flexible model which can
change the functional form of p(Ef | Ei) with Ei. This can be achieved using a mixture
density network (MDN). Here, we assume the likelihood function is a mixture model, given
by the weighted sum of K components. The weighting coefficients, πk, mean functions,
µk and covariances Σk are all assumed to be functions of the input and are provided by
the output of the neural-network, (πk,µk,Σk) = fk(xi,θ). We are free to choose any set
of basis functions for the components, however, the Gaussian family are a common choice
as they form a complete set, allowing any distribution to be created. The likelihood is
now given by

p(xi | xf ,θ) =
K∑
k=1

πk(xi,θ)N (xf | µk(xi,θ), Σk(xi,θ)). (5.24)

and the result of fitting a MDN with K = 10, using the same network architecture as
before, is shown in figure 5.11 (e). This looks similar to the single component network
(figure (c)), however, looking at the conditional distribution in figure 5.11 (f) we can see
the MDN gives a far better prediction at larger values of Ei.

Emulating an Experiment

The MDN emulator provides the ability to quickly calculate the conditional distribution,
p(xf |xi). When modelling an experiment we are usually interested in the marginal output
distribution

p(xf ) =

∫
p(xf | xi)p(xi)dxi. (5.25)

This is a six dimensional integral, so a Monte Carlo estimate is used. We may now wonder
if the MDN offers any computational saving over the Monte Carlo algorithm as a Monte
Carlo estimate is required to make a useful calculation. However, far fewer samples are
required by the MDN compared to the Monte Carlo algorithm.

To demonstrate this, we will consider a test simulation consisting of an electron beam
interacting with a focusing Gaussian pulse. The simulation parameters are give in table
5.1. Figure 5.12 (a) shows the initial and final energy distribution, obtained by simulating
Ne = 106 events. We will take the final energy distribution to be the ground truth and
use it as a convergence test for the two methods. To perform this test, we require a metric
that gives a measure of how close a distribution is to the ground truth. Here we will use
the Kolmogorov–Smirnov (KS) statistic. Given two probability distributions p(x) and
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(e) 10 components joint distribution
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Figure 5.11: Neural network models fitted to a strong field QED data set. (a), (c) and
(e) shows the joint distribution p(Ei, Ef ) with a mean fit (sold red line) and two-sigma
quantile (red dashed lines). (b), (d) and (f) shows the conditional distribution p(Ef |Ei)
at Ei = 0.5, 5.0GeV for both the MDN and Monte Carlo algorithm.
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Figure 5.12: Sample convergence tests for both the MDN and Monte Carlo algorithm.
(a) shows the initial and final electron energy distribution from a highly resolved sim-
ulation. (b) shows an example of the KS statistic for a poorly resolved simulation. (c)
shows the convergence of the convergence of the Monte Carlo algorithm estimate. (d)
shows the convergence of the MDN estimate.

q(x), the KS statistic is the maximum distance between the CDFs

DKS = sup|P (x)−Q(x)| (5.26)

where P (x) and Q(x) are the CDFs of p(x) and q(x) respectively. This is demonstrated
in figure 5.12 (b) showing the KS statistic for a Monte Carlo simulation involving only 4
particles.

The effect of varying the number of samples on the Monte Carlo algorithm and MDN
estimates are shown in figures 5.12 (c) and (d) respectively. We can see the MDN converges
far faster than the Monte Carlo algorithm, requiring a factor of ∼ 103 fewer samples.
This is due to each sample of the Monte Carlo algorithm being a point estimate, whereas
samples from the MDN provide an estimate of the conditional distribution. Directly
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comparing the computational efficiency of the two methods is difficult as we use a graphics
processing unit (GPU) for the MDN. However, performing an average over 60 samples
using the MDN emulator takes ≈ 35ms on a single NVIDIA TITAN Xp GPU [193],
whereas simulating 105 particles with the Monte Carlo algorithm takes ≈ 72 s on a 24
core, Intel Xeon Processor E5-2680 v3 [191].

Multiple Output Dimensions

So far we have only demonstrated the MDN’s ability to emulate a single output dimension.
However, equation 5.24 uses a mixture of multivariate Gaussians, enabling the network
to emulate the full three dimensional probability distribution. This is demonstrated in
figure 5.13 (a), showing a surface plot of the joint distribution p(E, px), generated by the
MDN with input parameters given by table 5.1. Here we have marginalised over py as this
is perpendicular to the polarisation of the wave and not affected during the interaction.
Shown along side in figure 5.13 (b) is an estimate made by the Monte Carlo algorithm. We
can see a good agreement between the two estimates which is highlighted further in figure
5.13 (c) and (d) showing the marginalised distributions P (Ef ) and p(pxf ) respectively.

5.3.3 Bayesian Inference of a Radiation Reaction Experiment

The development of a machine learning emulator, which takes a fraction of the time
to compute, has applications in both experimental optimisation and post experimental,
statistical inference. In this section we will demonstrate this ability by carrying out
statistical inference on a numerical mock experiment.

Statistical inference is an invaluable tool which can be used to estimate unknown
experimental parameters, x, and to discriminate between different theoretical models,
{Hi}. During an experiment, we make a set of observations, D = {yi |i = 1, . . . , N}, where
N is the number of observations made. To perform inference on this data set, requires
a forward model of the experiment y = f(x,Hi), usually provided by a simulation. The
optimum values of x and Hi can be inferred by varying the inputs to the forward model
until the outputs match the experimental observations. This is equivalent to a maximum
likelihood estimate of the parameters.

As discussed in section 3.1.1, issues arise when applying MLE due to obtaining a
local maximum. A solution to this is Bayesian inference (BI), where an entire probability
distribution over the unknown parameters, p(x,Hi |y), is inferred. To carry out BI, Bayes’
theorem is applied

p(x,Hi | y) =
p(y | x,Hi)p(x)p(Hi)∑h

i=1

∫
p(y | x,Hi)p(x)p(Hi)dx

(5.27)

where h is the number of theories that we are comparing, p(x) and p(Hi) are priors
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Figure 5.13: Multi-dimensional comparison between the MDN and Monte Carlo algo-
rithm. (a) and (b) show the joint energy and x-momentum distributions for the MDN
and Monte Carlo algorithm respectively. (c) shows the marginalised energy distribu-
tions and (d) shows the marginalised x-momentum distributions.

and p(y | x,Hi) is the likelihood. If we make the common assumption that our obser-
vations exhibit Gaussian noise with variance σ2, then the likelihood function is given by
p(y | x,Hi) = N (y | f(x,Hi), σ

2). Therefore, performing the integral in equation 5.27
requires f(x,Hi) to be calculated many times. The Monte Carlo algorithm discussed in
section 5.1.2 is too slow to be practically used as a forward model. However, the MDN
emulator can be carried out many times per second, making it an ideal tool for performing
BI.

Numerical Experiment

A radiation reaction experiment involves overlapping a tightly focused laser pulse with
an electron beam to micron precision. Due to the large shot-to-shot jitter in such an
experiment there are many unknown interaction parameters. This includes the temporal
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Figure 5.14: Electron energy spectrum after interaction with µy = 0 different values of
µx.

and transverse overlap of the two beams, and the initial electron beam spectrum. To
determine these parameters from an experiment requires a diagnostic. However, during a
typical radiation reaction experiment, the only diagnostics available are the energy spectra
of the gamma rays and electrons after the interaction. Therefore, our goal is to show how
the unknown parameters can be inferred from these diagnostics.

As this discussion is for demonstrational purposes, we will analyse a simplified exper-
iment, in which the only unknown parameter is the overlap location of the two beams,
x = (µx, µy). All other interaction parameters will be set using the values in table 5.1. We
will also make a further simplification, and assume the experiment has only one diagnostic
which is the electron energy spectrum after the interaction, y = p(E). The effect that
varying x = (µx, µy) has on the electron spectrum is demonstrated in figure 5.14. As our
mock experimental data, we will take the spectrum generated with an overlap location of
x = (0, 5µm).

Bayesian Inference

Solving Bayes’ theorem for the posterior distribution over the unknown parameters,
p(x | y), requires a prior, p(x) and a likelihood p(y | x). It is common to assume the
experimental noise is Gaussian, making the likelihood function a Gaussian distribution.
However, our data set does not consist of point observations but a set of probability
distributions, y = p(E). This is also true for the forward model output, q(E) = f(x).
Therefore, we need a modified version of the Gaussian distribution, capable of handling
a probability distributions as its input. If we write the Gaussian distribution as

N (x | µ,σ) = 1√
2π det(Σ)

exp(−D2
M/2) (5.28)
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we can identify the exponent as the square of a distance DM =
√

(x− µ)T Σ (x− µ),
known as the Mahalanobis distance. Here, we require an alternative metric that gives the
distance between two probability distributions. A commonly used metric for this purpose
is the Kullback–Leibler (KL) divergence

DKL(p||q) =
∫ ∞

0

p(E)log

(
p(E)

q(E)

)
dE. (5.29)

which can replaceDM in the Gaussian distribution to give the following likelihood function

p(y | x) = 1

σ
√
2π

exp

(
− DKL(p||q)2

σ2

)
. (5.30)

By defining this likelihood, we have introduced an additional unknown parameter σ to
account for the random error in the experimental measurements. Although our data set
has been generated by a simulation, we would still expect errors due to the Monte Carlo
method and the emulator being imperfect. We can treat σ in the same way as the other
unknown parameters and learn a posterior distribution over it, p(x, | y), during inference.

Applying an appropriate prior can reduce the size of the space over which we are
searching. In this example, if

√
µ2
x + µ2

y � w0 where w0 is the laser waist at focus, the
electron beam will miss the laser. The energy spectrum will then encode no information
about the interaction location and there is no reason to search this space. Therefore, we
will set the following uniform prior p(µx,y) = U(−10µm, 10µm) for both µx and µy. The
only prior information we have about σ is that it cannot be negative. Therefore, we will
also assume a uniform prior with p(σ) = U(0, 10µm). If the upper bound is larger than
this, the data will be too noisy to make any inference.

Having defined the prior and likelihood, the posterior can be obtained using equation
5.27. However, this involves an expensive three dimensional integral over σ and the
components of x. Therefore, rather than performing the integral directly, we can sample
from the posterior using a Markov chain Monte Carlo (MCMC) method (see section
3.3.1). The result is a three dimensional probability distribution and a plot of p(µx, µy |y),
obtained by marginalising out σ, is given in figure 5.15. To generate this distribution, 4
chains of 10000 samples were taken. Using a rate of one simulation every 72s (see section
5.3.2), obtaining 40000 samples with the Monte Carlo algorithm would take ≈ 800 hours.
However, using the MDN the samples were obtained in ≈ 20 minutes.

In figure 5.15, we can see a ring of high probability. This appears due to the symmetry
of the interaction, as the laser intensity is constant around the central axis at a fixed
radius. We may expect the polarisation of the laser, which is in the x̂ direction, to
break this symmetry. Electrons which interact at x = (5µm, 0) are driven parallel to the
intensity gradient, whereas electrons interacting at x = (0, 5µm) are driven perpendicular
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Figure 5.15: Posterior probability distribution over the unknown overlap location of
an electron beam and laser pulse. Also shown are the marginalised distributions and a
white star corresponding to the true overlap location.

to the intensity gradient. However, as the electrons oscillation amplitude is given by
λ0a0/γ � w0 the effect is negligible. We can see the true value of the overlap location,
x = (5µm, 0), lies well within the region of high probability.

5.4 Summary

In this chapter, we have presented the development of a new strong field QED package,
for the design and analysis of experiments. The same Monte Carlo algorithm used here
has been previously integrated into a number of PIC codes. Using the PIC method, the
production and bulk dynamics of cascades can be modelled. However, here we have opted
for a different approach, developing the package to integrate with the Geant4 framework.
This allows for start-to-end simulations of experiments to be carried out, enabling faster
optimisation of experimental parameters.

A second application of this package is post experimental, statistical inference. Per-
forming statistical inference requires a forward model of the experiment. We have found
that the Monte Carlo algorithm is too slow for this purpose. Therefore, we have devel-
oped a machine learning emulator, using a mixture density network, which can be carried
out orders of magnitude more quickly. This enables us to perform Bayesian inference on
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experimental data, which was demonstrated in section 5.3.3.
When developing the MDN emulator a number of assumptions were made. For exam-

ple the background field parameters were kept constant. This was due to the implemen-
tation of the Monte Carlo algorithm, making it is more difficult to generate the required
data set. Future work may involve updating the Monte Carlo algorithm, such that the
field parameters are also sampled at the start of each event. This will enable the genera-
tion of a suitable data set, that can be used to train an emulator with the field parameters
as inputs.

To further simplify the data set for the MDN, secondary particles were ignored. How-
ever, during a radiation reaction experiment, the emitted photon spectrum will also be
measured. Therefore, it would also be useful to have a photon emulator when performing
Bayesian inference. This could be achieved by developing a separate MDN for the different
particle types. Including secondaries in the emulator requires additional considerations,
as the number of particles per event is no longer constant. To deal with this, an extra
node could be added to the network output which returns a distribution over the number
of particles.

The discussion of the previous two chapters has been focused on the development,
rather than application, of new physics packages. However, this will change in the next
chapter as we discuss the design and analysis of a Breit-Wheeler detection experiment.
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Chapter 6

Design and Analysis of a
Photon-Photon Collider Experiment

A fundamental difference between classical and quantum electrodynamics, is the non-
linearity of the electromagnetic field. A consequence of this is the direct interaction
of photons, which can occur through a number of difference processes. The two most
widely discussed are the Breit-Wheeler process (γγ → e+e−), shown in figure 6.1 (a),
and photon-photon scattering (γγ → γγ), shown in figure 6.1 (b). In section 1.2, we
discussed the importance of studying these processes from both a theoretical and astro-
physical viewpoint. However, despite their relevance neither has been directly observed
in any laboratory experiment to date1.

The reason that the Breit-Wheeler process has never been observed whereas other
similar QED processes have (e.g. Compton scattering and Dirac annihilation), is that
the Breit-Wheeler cross-section exhibits a relatively high centre of mass (CM) energy
threshold. For the collision of two photons, the CM energy squared is given by

s = 2ω1ω2(1− cosθ) (6.1)

where ω1 and ω2 are the energy of the two colliding photons, θ is the angle between them,
and we have set c = me = ~ = 1. To generate an electron-positron pair at rest, the
CM energy must be at least twice the rest mass of the electron (s > 4). Generating
two sources of photons which overcome this threshold and are dense enough to produce
a detectable number of pairs is challenging.

This has been apparent since the prediction of the Breit-Wheeler process, with G.
Breit and J. A. Wheeler ending their seminal paper with[18]

“It is also hopeless to try to observe the pair formation in laboratory experiments.”
1Here we are referring to the linear Breit-Wheeler process and photon-photon scattering with real

photons. The nonlinear Breit-Wheeler process was observed at SLAC in 1997 [56] and photon-photon
scattering of virtual photons was observed at CERN in 2019 [194].
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Figure 6.1: Example of lowest order Feynman diagrams which contribute to (a) the
Breit-Wheeler process and (b) photon-photon scattering.

However, this dire prediction was made before the advent of the laser, which has
lead to an exponential growth in obtainable photon densities over the past few decades.
This has lead to a number of authors proposing experimental schemes to make the first
observations of the Breit-Wheeler process [157, 158, 159, 160]. What these schemes have
in common is the production of high energy photons (ω > 1MeV), yet where they differ
is the method of generating them and their expected pair yield.

All photon-photon collider experiments require the generation of two photon sources,
which can either be asymmetric or symmetric in energy. An example of an asymmetric
setup is proposed by Pike et al. (2014) [157]. Here the authors suggest colliding a high
energy γ-ray beam (ω1 > 100MeV) with a thermal x-ray field (ω2 ∼ 500 eV). To generate
the γ-ray beam, bremsstrahlung emission of a laser wakefield accelerated (LWFA) electron
beam interacting with a high Z-material target is used. To generate the x-ray field, the
scheme takes advantage of a laser heated hohlraum, capable of producing a dense source
of photons [195]. They predict a pair yield of up to 105 per shot, however, generating the
laser heated hohlraum requires a high energy facility, which have low repetition rates.

If a symmetric collider design is used, the energy requirement of the γ-ray photon is
reduced from ω1 > 100MeV to ω1 > 0.511MeV. A number of symmetric collider designs
have been reviewed by Ribeyre et al. [158]. They found synchrotron emission from a
highly energetic electron beam in an intense laser field to be the most efficient, with a
predicted yield of 104 pairs. A separate investigation by Drebot et al. [159] demonstrated
the possibility of developing a symmetric collider at a low energy facility. Using two
Compton sources, produced by joule-class lasers, they predicted a yield of ∼ 10−4 pairs
per shot. This is far lower than the other schemes, however, opens up the possibility of
using a high repetition rate facility. A statistically significant observation of the Breit-
Wheeler process can then be made over many shots.
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Figure 6.2: Photon-photon scattering cross-section against CM energy. Also shown are
bounds applied to the cross-section by previous experiments [200, 201, 202, 203].

These photon collider schemes could also be applied to study photon-photon scatter-
ing. However, this introduces additional difficulties which must be considered. Although
there is no strict threshold in the photon-photon scattering cross-section, it decays rapidly
below the rest mass of the electron. Therefore, high energy photons are still required to
prevent the cross-section becoming vanishingly small. Photon-photon scattering is higher
order interaction than the Breit-Wheeler process, making the cross-section a factor of
α2 ≈ 5.3 × 10−4 times smaller. Finally, as all the incoming and outgoing particles are
photons, identifying an interaction event above noise will be extremely challenging.

Due to these challenges, in recent years experimental studies of photon-photon scat-
tering have focused on bounding the cross-section rather than observing the interaction.
Finding these upper limits on the cross-section is part of the search for physics beyond
the standard model. Deviations from the expected QED value could suggest photons
are capable of coupling to unknown weakly interacting particles such as axion-like or
minicharged particles [196, 197, 198, 199]. The cross-section limits that have been made
by previous studies are shown in figure 6.2. The closest of these to the QED cross-section
is that of Bernard et al. (2000) [200], however, this is still ∼ 18 orders of magnitude
higher. This is due to all four experiments operating in a regime where ωCM � me. As
we can see in figure 6.2, the cross-section is severely suppressed here.

In 2018, motivated by these photon collider proposals, an experimental campaign took
place which set out to provide the first laboratory measurements of the Breit-Wheeler
process, as well as to make the most stringent bound on the photon-photon scattering
cross-section. The experimental setup was based on the asymmetric photon collider pro-
posed by Pike et al. (2014) [157]. However, rather than using a low repetition rate system
(e.g. NIF with ∼ 1 shot / day), the Gemini laser at the Central Laser Facility (CLF)
was used (∼ 1 shot / 20 s). This significantly reduces the expected pair yield, however,
with more shots a better characterisation of the background noise and a better statistical
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analysis can be performed.
A key aspect of both the design and analysis of this experiment was detailed com-

putational modelling. Based on rough estimates of the Breit-Wheeler yield, it was ex-
pected that the signal-to-noise ratio of the experiment would be low. Therefore, large
scale Geant4 simulations, using the photon physics package discussed in chapter 4, were
performed to predict the signal-to-noise ratio and optimise the setup. During post exper-
imental analysis, these same simulations provided a method for comparing the obtained
measurements to theory.

This computational modelling is the topic of this chapter. However, before beginning,
an in depth review of the experiment will be provided. We will then discuss the numerical
modelling that was performed to optimise the setup and increase the signal-to-noise ratio.
With the optimised setup we will review the prospect of using this scheme to detect the
Breit-Wheeler process. Finally, we will discuss the numerical modelling that took place
post-experiment. From this we will be able to determine if the Breit-Wheeler process was
detactable as well as bound the photon-photon scattering cross-section.

6.1 Experiment Overview

The Gemini laser is a dual beam, 300TW Ti:Sa system, allowing us to generate and
collide two high energy-density photon sources. The experimental setup was based on
the scheme by Pike et al. (2014) with asymmetrical photon sources [157]. The higher
energy source was provided by bremsstrahlung emission of a LWFA electron beam in a
high Z-material target, whereas the lower energy source was generated through direct
laser heating of a burn-through foil. A diagram of the full experimental setup can be
found in figure 6.3. This can be separated into three parts: the γ-ray source; the x-ray
source; and the analyser magnets and particle detectors. In this section we will review
each of these parts in detail.

139



Figure 6.3: Diagram of the experimental setup showing the key components with the chamber and lead shielding removed. Starting
from the left, this diagram shows the first laser (red) focused by an off-axis parabola (OAP) into a gas cell target. This produces a
beam of electrons (blue) through the LWFA mechanism which propagate into a bismuth converter foil. This generates a beam of γ-
rays which are cut in half and collimated with blocks of tungsten. The particles then pass through an on-axis magnet which removes
residual electrons and positrons generated in the foil. The γ-ray beam then continues into the x-ray field, generated by the second laser
(red) interacting with a germanium target mounted on Kapton tape. Any positrons produce in the interaction are sent through a mag-
netic chicane to single particle detectors in a well shielded, low noise area of the experiment. This diagram was provided by E. Gerst-
mayr



6.1.1 X-Ray Source

The x-ray field was generated through the thermal emission of a laser heated 100 nm

germanium (Ge) foil. As this solid Ge foil is heated, it turns into a plasma, leading to
the emission of intense x-ray radiation predominantly due to M-L band transitions at an
energy of ∼ 1.5 keV[204]. The laser pulse had a duration of 40 ps fwhm, and a total
energy of delivering an energy of 10.72± 0.28J. It was focused to an elliptical spot, with
major and minor axes of (217 ± 6)µm × (77 ± 6)µm respectively, delivering an energy
of 10.72 ± 0.28 J each shot. The duration of the pulse was 40 ps fwhm, which is roughly
the same as the duration of the x-ray emission.

The atomic number of Ge is fairly high (Z = 32) and the foil is close to the γ-ray
beam axis. This makes the foil a potential noise source, due to γ-rays decaying into
electron-positron pairs through the Bethe–Heitler process. Crucially, these would have
the same energy range as the expected Breit-Wheeler pairs, and be generated very close to
the photon collision point, making it impossible to distinguish this noise source from the
signal. Therefore, to reduce this the Ge targets were mounted on a Kapton (C22H10N2O5)
tape with a lower average atomic number, limiting the mass of Ge close to the interaction.
A motorised tape-drive was used to change targets between shots.

To diagnose the x-ray field, a pinhole imaging system and crystal spectrometer were
used. The pinhole imaging system gave an on-shot measure of both the emission spot size
and the target alignment. The spectrometer used a flat, thallium acid phthalate (TlAP)
crystal, with a spectral window of ∼ 700 eV, centred around ∼ 1.6 keV. This spectral
window is around the M-L band transitions of Ge.

6.1.2 γ-ray Source

The γ-ray source was generated through bremsstrahlung emission, which first requires
a beam of high energy electrons. To produce these electrons, the second laser pulse
was focused into a 17.5mm gas cell filled with helium and a 2% nitrogen dopant. The
duration of the pulse was 45 ± 5 fs and the spot size was (44 ± 2)µm × (53 ± 2)µm.
This provided an energy on target of 5.51± 0.64 J, corresponding to a normalised vector
potential a0 = 1.13 ± 0.18. Through the LWFA mechanism, a beam of high energy
electrons was emitted, with a charge of ∼ 50 pC.

These electrons were interacted with a 0.5mm thick bismuth (Bi) foil, acting as a
bremsstrahlung converter. This emits a beam of high energy γ-rays (> 100MeV) with a
similar duration to that of the driving laser pulse. However, bremsstrahlung converters
also generate a large number of low energy, divergent γ-rays, which are a potential noise
source. If these divergent γ-rays were to interact with the Ge foil, or another part of
the experiential setup, they would produce background pairs through the Bethe–Heitler
process. Therefore, to prevent this, an on-axis beam collimator was used. This consisted
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of a 100mm block of tungsten (W) with a 2mm diameter hole drilled through the centre.
This absorbs any γ-ray with a divergence of greater than 10mrad. To reduce the noise
further, a 50mm tungsten block was placed just off axis, shadowing the Ge foil from the
γ-ray beam. Placing a high Z-material close the γ-ray beam axis will itself generate a
large number of background Bethe–Heitler pairs. Therefore, a 300mm on-axis magnet
with a field strength of |B| = 1T, was used to remove these before the photon-photon
interaction zone.

To diagnose the γ-ray beam, two scintilator detectors were used, each consisting of a
stack of caesium iodide (CsI) crystals. The crystals were wrapped in aluminium foil to
prevent light leakage and mounted in an aluminium frame. The first detector consisted
of 20× 20 CsI crystals, each with dimensions 2mm× 2mm× 20mm. This was positioned
such that the crystals were stacked transverse to the γ-ray beam axis. This then gives us
a measurement of the γ-ray beam profile. The second detector consisted of 33 × 47 CsI
crystals doped with thallium and with dimensions of 5mm× 5mm× 50mm. In this case,
the crystals were stacked along the direction of the γ-ray beam axis. As higher energy
γ-rays are capable of penetrating deeper into the stack, this provided a measurement of
the γ-ray beam spectrum.

6.1.3 Analyser Magnets and Single Particle Detectors

Due to the asymmetry in the energy of the colliding photons, if any Breit-Wheeler pairs
are produced, they will be highly beamed along the dominant photon axis. This is a
key advantage that a scheme with asymmetrical photon sources has over a scheme with
symmetrical sources. With the signal emitted in a known direction, detectors can be
situated in a low noise area of the experiment. If the signal was emitted at all angles,
the entire interaction zone would have to be surrounded by detectors to maximise the
detection efficiency.

To transport the particles to the detectors, a magnetic chicane was used, consisting
of an on-axis magnet and two off-axis magnets. The first of these magnets was situated
inside the target chamber and had a length of 600mm and a field strength of |B| = 0.6T.
To prevent the edge of the γ-ray beam clipping the poles, the magnet had a large gap
of 100mm. This separates the electrons from the positrons, directing them both away
from the γ-ray beam axis. The particles then leave the target chamber through a thin
Kapton window. When the electrons and positrons pass through the first magnet they are
dispersed in energy. Therefore, a set of two off-axis magnets, with a length of 600mm and
a field strength of |B| = 0.6T, were used to re-collimate the particles. These particles then
continue to a well shielded region at the back of the experimental area. By moving the
position of the magnets, the acceptance energy bandwidth of the chicane can be altered.
To both maximise the number of Breit-Wheeler pairs and minimise the background noise,
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an acceptance band of 220− 380MeV was used.
At the end of the positron arm of the chicane, single particle detectors were situated.

No detectors were used on the electron arm. This is because there are more background
processes which release electrons (e.g. the photoelectric effect), so the expected noise on
the positron arm was lower. The single particle detectors consisted of two TimePix3 [205]
detectors and a scintillation detector. Each TimePix3 detector consisted of a 256 × 256

silicon pixel array, spanning an area of ∼ 200mm2, with thicknesses of 300µm and 150µm.
These were arranged in layers to enable positron tracking and particle discrimination
based on direction. As the pixel array consists of a thin layer of silicon, these detectors
were insensitive to background γ-rays. The scintillation detector consisted of a stack
of 20 × 15 CsI crystals with dimensions 5 × 5 × 50mm and coated with a thin layer of
TiO2. Therefore, the detector spanned an area of 7500mm2, far larger than the TimePix3
detectors. However, as the scintillation detector consisted of a larger volume, it is much
more sensitive to background γ-rays.

6.2 Pre-Experiment Design and Optimisation

The key factor which determines the success of a photon-photon collider experiment is the
signal-to-noise ratio. As we can see from the previous section, this is a complex experiment
with many different parts. Therefore, calculating the signal-to-noise ratio is challenging,
and we must rely on large scale numerical simulations. To carry out these simulations
the Monte Carlo code Geant4 was used, with the addition of the photon physics package
discussed in chapter 4.

In this section we will review these large scale numerical simulation. This will involve
independently modelling both photon sources, starting with the x-ray field. We will then
go on to show how Geant4 simulations can be used to optimise the γ-ray source. Finally,
with a fully optimised setup, we will present calculations of the signal-to-noise ratio and
discuss the efficacy of the experimental setup.

6.2.1 Modelling the X-Ray Source

As discussed in chapter 4, to use the Geant4 photon physics package we must designate
one source as a static field, while the second source is treated dynamical. Due to the
difference in the duration of the driving laser pulses, the x-ray source will be treated as
static and the γ-ray beam as dynamic. To model the static field, the photon density
distribution is separated into angle and energy dependant parts n(ε, θ, φ) = f(ω) Φ(θ, φ).
These two parts are then set by choosing the most appropriate options from tables 4.1
and 4.2.

To gain a better understanding of the radiation energy spectrum, f(ω), the laser-
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Figure 6.4: Simulations of x-ray field. (a) shows the x-ray energy spectrum from a
radiation-hydrodynamics simulation carried out by J. Morton (AWE). (b) shows the x-
ray field density as a function of height above a point (red) or finite size (blue) source.
Also shown is the closest approach a γ-ray will make to the source (grey dashed).

solid interaction was modelled using a radiation-hydrodynamics code (performed by John
Morton (AWE)). The output of this simulation can be seen in figure 6.4 (a). This shows
strong emission in the 1−1.5 keV window, corresponding to M-L band transitions. Using
the tabulated source from table 4.1, we can use this exact spectrum to model f(ω).

The photon angle distribution close to a finite size emitter is complex and reviews
of the subject can be found in refs. [206] and [207]. The only option from table 4.2
that is capable of modelling this is the tabulated source. However, using this source is
both computationally expensive and memory intensive, which will limit the number of
simulations which can be performed. As we move away from a finite emitter it begins to
look more like a point source, becoming a good approximation when the distance from
the emitter, h, is much larger than the source size a. The size of the x-ray emitter will
be roughly that of the driving laser beam, so we can set a ≈ 250µm. The photon density
from an emitter of this size as well as a point source are shown as a function of h in figure
6.4. Also marked on this plot is the closest approach a γ-ray will make to the Ge foil,
which is limited due to the tungsten block in the beam path. At this value, both sources
are almost identical, suggesting a point source is an appropriate, and faster, alternative
to a tabulated source.

Having defined n(ε, θ, φ), we will now test if the temporal and spatial assumptions
that are made by the photon package (see section 4.1.3) hold for this field. The temporal
assumption is that the field remains static during the duration of the interaction, whereas
the spatial assumption is that gradients in the field can be modelled using multiple sub-
fields. To test these two assumptions, ray tracing simulations will be performed.
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Time Variation of the Field

To test the static field approximation, we will assume the duration of the x-ray field, τx,
and γ-ray beam, τγ, are roughly the same as the duration of the driving laser pulses.
Therefore, in comparison to τx we can let τγ = 0 to a good approximation. However, this
alone is not sufficient to ensure the x-ray field is static. We also require that the time
taken for the γ-ray beam to traverse the field is much smaller than τx. As the speed of
the γ-rays is fixed at c, this time is only a function of h.

To analyse the impact that τx and h have, we can perform ray tracing simulations
of γ-rays propagating through a time varying field. Examples of the observed density at
h = 1mm and h = 6mm are shown in figures 6.5 (a) and (b) respectively. Also included
in these plots are the observed density for τx → ∞. At h = 1mm the γ-ray passes
through the field quickly, so the duration has little effect. However, this is not the case
for h = 6mm which shows a significant difference.

We can further study this temporal effect by plotting the ratio of the line integrated
field density at τx = 40 ps and τx = ∞ as a function of h. This is shown in figure 6.5 (c),
and also includes a line at h = 4mm corresponding to the furthest approach of a γ-ray.
At this furthest approach, including the field duration only reduces the integrated density
by ∼ 15%. Therefore, treating the field as static (i.e. τx = ∞) will only introduce small
errors in the estimate.

Spatial Discretization of the X-ray Field

As the computational domain of a Geant4 simulation is comprised of blocks with uniform
density, to model spatial gradients the field must be split into multiple sub-fields, each with
a different value of n(ω, θ, φ). As a γ-ray passes through the field, the same calculation
is performed within each sub-field. Therefore, the computational time will scale linearly
with the average number of sub-fields entered. To optimise both efficiency and accuracy,
the spatial resolution of the field should be set prior to performing expensive calculations.

To find the optimum resolution, we can again perform ray tracing simulations. Exam-
ples of these simulations are shown in figure 6.6 (a). Here we can see the observed field
using low resolution and high resolutions, as well as the true field2. Shown alongside in
figure 6.6 (b) is the integrated density as a function of resolution, with the dashed line
corresponding to the true field value. An optimum resolution is reached at ∼ 153 voxels.
Increasing beyond this point offers diminishing returns with increases in computational
costs.

2As this is a numerical simulation, the “true field” case still requires discretization, however, it is
the γ-ray path that is discretized rather than the x-ray field.
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Figure 6.5: Ray tracing simulations of x-ray density observed by a γ-ray. (a) shows the
observed density for a γ-ray travelling 1mm above the source (b) shows the observed
density for a γ-ray travelling 6mm above the source. (c) shows the line integrated den-
sity at τx = 40 ps and τx = ∞ as a function of h. Also shown are the closest and fur-
thest approach made by a γ-ray (grey dashed).

6.2.2 Optimising the γ-ray Converter

Generating the γ-ray source required a beam of high energy electrons that was provided by
a LWFA. If we wanted to perform a full start-to-end simulation of the entire experiment,
the LWFA interaction could be modelled using a particle-in-cell (PIC) code. However,
this is unnecessary as LWFA experiments have taken place using the Gemini laser on
multiple occasions. An example of the electron beam spectra obtained during a recent
experiment by Poder et al. [165] is shown in figure 6.7.

By firing this beam of electrons into a converter foil, a beam of γ-rays are produced.
This conversion occurs through the bremsstrahlung process, due to the electrons scattering
off the nuclear field of an atom. The emitted γ-rays can themselves interact with the
nuclear field, generating electron-positron pairs through the Bethe-Heitler process. These
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Figure 6.6: Ray tracing simulations showing the effect of spatial discretization. (a)
shows the field observed by a γ-ray with a low resolution (33 voxels, blue), a high res-
olution (203 voxels, black) and the true field (red). (b) shows the line integrated density
as a function of resolution. Also shown is the true value (black dashed).
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Figure 6.7: Example of high energy electron spectra obtained during a Gemini experi-
ment (blue). Also shown is the average spectrum (red). This figure was adapted from
ref. [165].

pairs can undergo further bremsstrahlung emission, setting up a QED cascade. This
cascade has the effect of increasing the number of particles, but decreasing their average
energy.

By changing the length, lc, and material, Z, of the converter the extent of the cascade
can be controlled to suit the problem at hand. However, as discussed in section 4.4.1, these
are both manifestations of a single latent variable, the radiation length X0. Therefore,
when designing the converter, we are free to fix Z and focus on optimising lc. To reduce
the volume of material required, bismuth was selected as it has a high atomic number of
Z = 83.

If we are simply interested in maximising the signal, the optimum converter would
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Figure 6.8: Plots of metrics against converter thickness. (a) shows the number of pho-
tons with an energy greater than 170MeV per primary electron. (b) shows the energy
emitted with an angle greater than 10mrad per primary.

produce the maximum number of γ-rays above the threshold for the Breit-Wheeler process
(or at the peak of the photon-photon scattering cross-section). Taking the x-ray energy
to be ωx ∼ 1.4 keV and using equation 6.1, the threshold γ-ray energy is ωγ ∼ 170MeV

for a head on collision. However, for a successful experiment, we are not just interested
in maximising the signal, but also minimising the background noise. The most likely
particles to generate noise are those emitted with a divergence greater than 10mrad.

As metrics for optimising the converter thickness, we will use both the number of
γ-rays with ωγ > 170MeV and the total energy of particles with a divergence greater
than 10mrad. The former of these should be maximised whereas the latter should be
minimised. In figure 6.8 we can see the result of Geant4 simulations, showing the effect
of varying lc on these two metrics. The number of photons over threshold is maximised
at lc ≈ 2mm, with ≈ 0.9 γ-rays per primary electron. However, around this thickness
the energy in divergent particles starts to increase significantly. Therefore, as a trade off,
a converter thickness of lc = 0.5mm was used in the experiment.

6.2.3 Background Noise Reduction

Using the Gemini laser, electron beams with a charge in excess of 100 pC can be produced
[165]. This corresponds to ∼ 109 seed electrons interacting with the bremsstrahlung
converter. This then emits an even greater number of particles, which pass through the
experimental setup. As we will see in section 6.2.4, the expected number of Breit-Wheeler
events per shot is far lower (∼ 1/shot). Therefore, it is vital that the experimental setup
is optimised such that the number of background particles reaching the detectors does
not overwhelm any signal. This is achieved by applying shielding to different parts of the
setup.
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There are two different types of noise source, photons and leptons (electrons/positrons).
Reducing the photons is of secondary importance as they are less likely to interact with
the TimePix3 detectors and will produce a different signature if they do. However, it is
vital that the lepton noise is reduced as they cannot be distinguished from the signal.
To find the optimum shielding configuration that achieves this, Geant4 simulations were
performed iteratively for a number of shielding configurations. This was carried out until
an acceptable noise level was reached. In this section, rather than reviewing this iterative
process in detail, we will identify noise sources and demonstrate how they can be removed.

Low Shielding Configuration

As a starting point for the iterative calculations, a low shielding configuration was used.
Two cross-sectional diagrams of this configuration are shown in figure 6.9. Starting from
the left, visible in these diagram are: the target chamber walls; the γ-ray converter; the
residual electron removal magnet; the residual electron beam dump; the first magnet
in the chicane; the chamber exit window; the second magnet in the chicane; the target
area back wall; and finally the detector. To reduce the background, we need to identify
the parts of the setup that are noise sources. This can be achieved by backtracking the
particles which pass through the detector location and recording their point of origin.
From this, we can generate heat maps of noise sources, which are shown in figures 6.9 (a)
and (b) for leptons and photons respectively.

From figure 6.9 (a) and (b) we can identify three design issues, which are the cause
of the majority of the background particles. The first is the γ-ray converter, which
generates divergent particles which scatter off the experimental setup. This leads to both
background leptons and photons which originate inside the target chamber. The second
issue is the direct line of sight from scattering location, to the detector. Examples of this
include the particles which originate from the target chamber walls and exit window. The
final issue is the γ-ray beam dump. It is insufficient in size, leading to particles leaking
out into the detector location. We will now discuss the optimised shielding configuration,
showing how each of these issues can be addressed.

High Shielding Configuration

In figures 6.10 (a) and (b) we can see cross-sectional diagrams of the optimised shielding
configuration with lepton and photon source heat maps respectively. To reduce the noise
originating inside the target chamber, an off-axis block and a collimator, both made of
tungsten, have been added. The block removes the half of the γ-ray beam that is directed
towards the x-ray foil, while the collimator removes the highly divergent particles. By
introducing lead walls just outside the target chamber and surrounding the γ-ray beam
dump, direct lines of sight from scattering locations have been removed. Finally the γ-ray
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Figure 6.9: Cross-sectional diagrams of experimental setup in low shielding configura-
tion. (a) shows the lepton noise sources and (b) shows the photon noise sources.

beam dump has been significantly reinforced to prevent particles leaking into the detector
hole.

Comparing the diagrams in figure 6.9 to those in figure 6.10 we can see that both lepton
and photon noise sources have been significantly reduced. There are still some locations of
concern, such as the x-ray foil and the residual electron beam dump, however, it was not
possible to find a configuration that removed these without having a detrimental impact
on the expected signal. The number of particles reaching the detectors, for both shielding
configurations, is summarised in table 6.1. If we take the number of primary particles
in the electron beam to be 109 (corresponding to a charge of Q = 160 pC), then we can
expect a background of ∼ 17 leptons per shot.
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Figure 6.10: Cross-sectional diagrams of experimental setup in high shielding configura-
tion. (a) shows the lepton noise sources and (b) shows the photon noise sources.

6.2.4 Signal-to-Noise Ratio Calculation

As we have mentioned before, the most important factor which determines whether a
photon-photon collider experiment will be successful is the signal-to-noise ratio. Estimat-
ing the signal-to-noise ratio clearly involves two parts, a background calculation (which
was performed in previous section) and a signal calculation. With the aid of the photon
physics package discussed in chapter 4, the signal calculation can also be performed within
Geant4, using the same setup as the previous section.

Although the additional shielding reduced the background, blocking part of the γ-
ray beam will also reduce the signal. Therefore, signal calculations should be performed
for both shielding configurations. The result of these calculations is given in table 6.1.
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The presence of the shielding reduce the Breit-Wheeler signal by ∼ 40% and background
by ∼ 92%. Therefore, the benefits far outweigh the negatives. However, even with the
high shielding configuration the signal-to-noise ratio is still low at ∼ 0.1. With such a
low value, detecting the Breit-Wheeler process will require a statistical analysis. This
involves taking multiple null (without the x-ray field) and full (with the x-ray field) shots.
Evidence of the Breit-Wheeler process is then given by a statistically significant difference
in the number of particles measured on the null and full shots.

Using the expected values in tables 6.1, we can perform a rough estimate of the number
of shots required to make this measurement. Assuming 109 primary electrons per shot,
the number of particles detected on both the null and full shots are Poisson variables with
a means µN = 16.64 and µF = 16.64+1.72 = 18.36 respectively. If we take N null and full
shots each, then the standard error on our estimate of the mean is σ =

√
µ/N . In figure

6.11, we can see the 2σ error for both µN and µF against N . These become significantly
different with N ∼ 100 shots, which is an achievable number over the duration of a Gemini
campaign.

Table 6.1: Expected number of background particles and signal Breit-Wheeler pairs
reaching the detectors. The error on the background estimates is due to the Monte-
Carlo method. For the signal calculations, variance reduction methods were used to
lower the error to a negligible level.

Background leptons
(10−9 / primary)

Background photons
(10−7 / primary)

Breit-Wheeler pairs
(10−9 / primary)

Low shielding 201.5± 6.3 651± 3 2.86
High shielding 16.6± 2.3 6.5± 0.4 1.72
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Figure 6.12: X-ray and electron spectra obtained on the experiment. (a) Shows the av-
erage x-ray spectra (red) as well as the uncertainty (blue shade). (b) shows the electron
spectra (blue) for each shot as well as their average (red).

6.3 Post-Experiment Analysis

Numerical simulations are not only useful for pre-experiment optimisation, but they are
also an invaluable tool for post-experimental analysis. By enabling a comparison between
experimental measurements and theory, inference can be performed. In this section we will
review the numerical calculations that were carried out in the post-experiment phase. We
will start by updating the signal-to-noise ratio calculations of the Breit-Wheeler process,
based on the electron and x-ray spectrum obtained during the experiment. From this,
we will be able to estimate the likelihood with which the Breit-Wheeler process could
be detected. We will then switch our attention to photon-photon scattering, using the
experiment to find an upper limit on the cross-section.

6.3.1 Signal-To-Noise Ratio of the Experiment

When performing the signal-to-noise calculation in section 6.2.4, a number of assumptions
were made in regards to the input electron beam and x-ray field. On the experiment, di-
agnostics were set up to measure both, which we can use to update our signal-to-noise
calculations. Figure 6.12 (a) shows the average x-ray spectrum as well as the uncer-
tainty due to shot-to-shot fluctuations. Comparing this with figure 6.4 (a), we can see
the measurement on the experiment has far more detail than the simulated spectrum.
However, both are the same order of magnitude, so this is unlikely to drastically change
the expected Breit-Wheeler yield.

It was not possible to take shot-to-shot measurements of the electron spectrum as the
γ-ray converter destroyed the beam. Therefore, the beam path had to be cleared and only
a limited number of measurements were taken immediately prior to each data run. The
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Table 6.2: Measured variables and their uncertainty which affect the Breit-Wheeler
signal-to-noise ratio.

Beam charge X-ray density Divergence Pointing
(pC) (1013mm−3) (mrad) (mrad)
50± 7 9.0± 3.6 2.3± 0.3 0± 0.6
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Figure 6.13: Signal-to-noise ration calculations (a) Shows a distribution over the num-
ber of Breit-Wheeler pairs produced per shot. (b) shows the simulated number of back-
ground leptons (black-dashed) and experimentally observed background leptons (red).

resulting measurements are shown in figure 6.12 (b), as well as their average. Comparing
this with figure 6.7, we can see the electron spectrum is significantly lower in energy than
expected. On top of this, table 6.2 shows the average beam charge (corresponding to
3.1 × 108 primary electrons) was also lower than predicted pre-experiment. Therefore,
unlike the x-rays, the updated electron beam will affect our signal-to-noise calculation.

Changes to the electron beam will affect both the background noise and Breit-Wheeler
signal. Therefore, to update our signal-to-noise estimate, we should repeat both these cal-
culations. All the measured parameters which affect these calculations are summarised in
table 6.2. On top of the ones that have already been mentioned are the divergence and
pointing of the electron beam. To include the shot-to-shot fluctuations in the signal cal-
culations, we can use the Monte-Carlo method. This involves performing the calculation
multiple times with different inputs sampled from table 6.2 assuming a Gaussian distribu-
tion on each variable. The result of this is shown in figure 6.13 (a). This updated expected
value of (0.9±0.3)×10−4 is far lower than the previous estimate of 1.7 pairs per shot. The
main contribution to this reduction is the nonlinear scaling of Breit-Wheeler yield with
electron beam energy. This is due to both the energy dependence of the bremsstrahlung
process and the energy threshold behaviour of the Breit-Wheeler process.

To update the background noise calculation, the same Monte Carlo procedure can be
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Figure 6.14: Diagram showing the 2σ confidence level of µN and µF as a function of the
number of shots using the measured electron and x-ray spectrum

performed. However, as each calculation is computationally expensive (taking ∼ 1 day
on a 500 core cluster) this is not practical. Instead we will just perform the calculation
once using the average values in table 6.2. The resulting number of background positrons
per shot is shown as a vertical dashed line in figure 6.13 (b). Also included in this plot
is a histogram of the number of positrons observed by the TimePix3 detectors on the
null shots of the experiment. The detected background is a factor of ∼ 4 times larger
than the simulations predict. Possible reasons for this include γ-rays interacting with the
TimePix3 detectors causing false positive readings and the simulation setup not being
identical to the experimental setup.

Over the duration of the experiment ∼ 100 shots were obtained. Given an average
detected background of 3.83 and an expected yield of 0.9× 10−4 positrons per shot, it is
highly unlikely that a measurement of the Breit-Wheeler process can be made. However,
we can still perform the same analysis used in section 6.2.4 to estimate the number of
shots required to make a 2σ confidence level measurement. This is demonstrated in figure
6.14, showing that the null and full shot means only become separated after ∼ 1010 shots.
Using the Gemini shot rate of 0.05Hz, obtaining this many shots would take ∼ 6300

years, far longer than was allocated for the experiment.

6.3.2 Bounding the Photon-Photon Scattering Cross-Section

Based on the analysis of the previous section, it is highly unlikely that the experiment will
provide the first evidence of the Breit-Wheeler process. Therefore, the same is also true
for photon-photon scattering, as the QED cross-section is several orders of magnitude
smaller. However, as we discussed in the introduction to this chapter, the absence of
photon-photon scattering is still an interesting result, as it allows us to put a bound on
the cross-section.

If prolific photon-photon scattering had occurred, we would expect the presence of the
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Figure 6.15: γ-ray beam (a) divergence and (b) energy spectrum before and after inter-
acting with a high density x-ray field. The Breit-Wheeler process was not included in
these calculations.

x-ray field to produce two detectable signatures in the γ-ray beam. These are a change
in both the divergence and energy spectrum, which are demonstrated in figures 6.15 (a)
and (b) respectively. These plots show a γ-ray beams before and after interacting with
a high density x-ray field. As this is an asymmetric interaction, on average a scattering
event will increase the energy of the x-ray whereas the energy of the γ-ray will decrease.
As well as this, the presence of scattering leads to an increase in the divergence of the
beam.

As discussed in section 6.1, the experiment used two scintillator based detectors to
measure both the profile and spectrum of the γ-ray beam. Therefore, if prolific photon-
photon scattering occurred, we should be able to detect both the effects demonstrated in
figure 6.15. If not, this suggests a limit on the photon-photon scattering cross-section.
From figure 6.15, it appears that the effect on the energy spectrum is more significant than
the divergence. Therefore, we expect the γ-ray spectrometer will be a better diagnostic
for extracting a bound

In this section we will detail the steps required to go from the signal on the γ-ray
spectrometer to a bound on the photon-photon scattering cross-section. This has involved
developing a Bayesian spectral retrieval algorithm, based on the maximum likelihood
approach by Behm et al. [208], which will also be discussed in this section.

Forward Model

The γ-ray spectrometer consisted of a stack of 33× 47 CsI crystals doped with thallium
and imaged with a 14-bit EMCCD camera. This was positioned inside the γ-ray beam
path, with higher energy γ-rays penetrating deeper into the stack than lower energy γ-
rays. Extracting the spectrum from this spectrometer is an inverse problem. To solve an
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Figure 6.16: Visualisation of a Geant4 simulation consisting of a single high energy γ-
ray, interacting with the spectrometer.

inverse problem, we require a forward model of the system, whose inputs can be varied
until they agree with the measurements. In this case the input is the γ-ray spectrum
and the measurement is the signal on the spectrometer. This type of interaction can be
simulated using Geant4, as is demonstrated in figure 6.16.

Before we use Geant4 to build a forward model, we should test its ability to reproduce
the experimental measurements. In figure 6.17 (a) we can see the spectrometer response,
obtained by averaging over all the shots taken during the experiment3. In figure 6.17 (b)
we can also see the spectrometer response from a Geant4 simulation, where the average
electron spectrum in figure 6.12 has been used. These two images have roughly the same
shape, however, the experiment response is both noisier and broader along the y-direction.
The spread in the y-direction is likely due to the electron beam pointing fluctuation which
is not included in the simulations. To remove this, we can integrate along the y-direction,
producing the result seen in figure 6.17 (c). The increased noise on the experimental
response is still present and is likely due to a systematic error, such as the crystals being
misaligned. This systematic error can also be removed by introducing a correction factor
for each crystal row. This correction factor is obtained by dividing the average simulated
response by the average experimental response and is shown in figure 6.17 (d).

With the correction factor applied, the Geant4 simulations provide an accurate forward
model of the system. However, they are too computationally expensive to be used in a
Bayesian analysis due to the number of calls to the forward model. To solve this problem,
we will use the same approach as Behm et al. [208]. This involves performing a limited
number of Geant4 simulations with monoenergetic γ-ray beams of varying energy. From
this, we can generate a crystal response function, ρi(E), where i is the crystal index. A
plot of ρi(E) is shown in figure 6.18. From this the crystal response for some arbitrary

3This is not the direct readout from the camera. Postprocessing has been applied to find the en-
ergy deposited in each crystal. This work was carried out by E. Gerstmayr.
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Figure 6.17: Comparison between experimental and simulated spectrometer response.
(a) shows the experimental response, (b) shows the simulated response, (c) shows the
experimental and simulated response obtained by summing over the columns and (d)
shows a crystal row correction factor obtained by dividing the simulated response by
the experimental response.

γ-ray spectrum, f(E), can be quickly calculated with the following integral

Ii[f ] = Ci

∫ ∞

0

ρi(E)f(E)dE. (6.2)

where Ci is the correction factor given by figure 6.17 (d). This calculation can be per-
formed orders of magnitude faster than a full Geant4 simulation, making it an effective
forward model for Bayesian inference.

Bayesian Spectrum Estimation

The γ-ray spectrum, f(E), that we want to estimate is a continuous function. However,
in order to effectively apply Bayesian inference, we must find a low dimensional parame-
terisation of f(E). To do this, we can perform Geant4 simulations of the bremsstrahlung
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Figure 6.18: Crystal response function, ρi(E), obtained by performing Geant4 simula-
tions of monoenergetic γ-ray beams.
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Figure 6.19: γ-ray spectra obtained from Geant4 simulations of the bremsstrahlung con-
verter using the electron spectra in figure 6.12 (b) as inputs (red). Also plotted is the
fitting function, equation 6.3, which agrees well with the simulated spectra.

converter, using the electron spectra in figure 6.12 (b), to get a data set of typical γ-
ray spectra. From this data set, the following function was found to provide a good
approximation to the spectra

f(E;α,Ec) = α

(
1− 0.18

E2

E2
c

)
E−0.94. (6.3)

Here, we have used the same parameters as Behm et al. [208], which are the mean energy
of the γ-ray beam, Ec, and a scaling factor, α. The ability of equation 6.3 to recreate the
simulated spectrum is shown in figure 6.19.

With this parameterisation, we can now obtain the γ-ray spectrum on each shot by
applying Bayesian inference to estimate a distributions over x = (Ec, α). This involves
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applying Bayes’ theorem

p(x | y) = p(y | x)p(x)∫
p(y | x)p(x)dx

. (6.4)

where y is an observed data point, corresponding to a vector of the crystal responses. In
this equation, p(y |x) is the likelihood and p(x) = p(Ec)p(α) is a prior which we must set.

If we make the assumption that the crystals exhibit random Gaussian noise, σ, we can
write the likelihood function as

p(y | x) =
∏
i

1

σ
√
2π

exp

(
−

(
yi − Ii[f(x)]

)2
σ2

)
. (6.5)

This introduces a new parameter, σ, which should be treated the same way as Ec and
α. Given that we have little prior knowledge of Ec, α and σ, other than the fact that
they cannot be negative, we will set uniform priors on each with a lower bound of zero.
We know the upper bound for Ec cannot be greater than the maximum energy of the
electrons (∼ 800MeV) so the prior will be p(Ec) = U(0, 800MeV). Through appropriate
normalisation of the data set, we can ensure that α is never greater than 10, allowing us
to apply the prior p(α) = U(0, 10). Finally, we will set the prior on σ to be p(σ) = U(0, 1)
as if the limit is greater than this, it will be too noisy to make any inference.

With the likelihood and priors set, we can use equation 6.5 to calculate the posterior.
Given that the numerator involves a three-dimensional integral, it is most efficiently solved
using a Markov chain Monte Carlo (MCMC) method. In figure 6.20 we can see an example
of this calculation performed on a random shot. Also shown are the marginal distributions
p(α), p(Ec) and p(σ).

Bounding the Cross-section

Having developed a robust method for extracting the γ-ray spectrum from the crystal
response, we can now test if the presence of the x-ray field has an effect on the γ-ray
beam. To do this, we can run the Bayesian spectral retrieval algorithm on each shot of
the experiment and compare the distributions over Ec for null and full shots. These two
distributions are shown in figure 6.21, which appear similar. We can perform a statistical
check to see if this is the case , using the two-sample Kolmogorov–Smirnov (KS) test.
This involves calculating KS statistic, given by

D = sup
∣∣FN(Ec)− FF(Ec)

∣∣ (6.6)

where FN(Ec) and FF(Ec) are the cumulative distribution functions for the null and full
shots respectively. The null hypothesis of this test is that both null and full data sets
have been sampled from the same distribution. This is accepted at the 95% confidence
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Figure 6.20: Marginal plots of the posterior distribution for a randomly sampled shot.
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Figure 6.21: (a) shows distributions over Ec for both null and full shots. (b) shows the
effect of increasing the cross-section bias factor on Ec. Also shown on this plot is the
mean Ec from the null shots and a 95% confidence level.

level if D < 1.358 [209]. The value obtained for this data set is D = 0.216, so we can
accept the null hypothesis.

As there is no difference between the two distributions, we can conclude there was
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Table 6.3: Comparison of different photon-photon scattering experiments and the limits
put on the cross-section.

ωcm (me) σ (µb) Bound (µb) Bound / σ
Moulin (1996) 3.35 ×10−6 1.6× 10−34 1 ×10−10 6.2× 1023

Bernard (2000) 1.55× 10−6 1.8× 10−36 1.5× 10−18 5.5× 1017

Inada (2014) 1.29× 10−2 2.6× 10−13 1.7× 1010 6.4× 1022

Yamaji (2016) 1.29× 10−2 2.6× 10−13 1.9× 107 7.2× 1019

This work 0.66 0.0049 4.9× 1012 1× 1015
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Figure 6.22: Photon-photon scattering cross-section with bounds placed by previous
experiment[200, 201, 202, 203] and this work.

not a detectable level of photon-photon scattering. To find how much we would have
to bias the cross-section by so that a difference would be detectable, we can perform
multiple simulations of the experiment with an increasing cross-section. This is shown
in figure 6.21 (b), which also includes the mean and 95% confidence limit of Ec for the
null shots. Increasing the bias on the cross-section up to ∼ 1013 has little effect on Ec.
Beyond this point, Ec starts to decrease, however, the first value to be fully outside the
95% confidence level is 1015. This conservative bound corresponds to the lowest limit put
on the photon-photon scattering cross-section to date.

Using equation 6.1 and taking the energy of the γ-ray to be ω1 = 86.3MeV and the
energy of the x-ray to be ω2 = 1.4 keV, the photon CM frame energy is ∼ 0.66me.
With this, we can update the plot in figure 6.2 to include this work, as shown in figure
6.22. With a two order of magnitude improvement, this is closest bound to the QED
photon-photon scattering cross-section, to our knowledge,.
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6.4 Summary

In this chapter we have presented the numerical simulations that were carried out to
design, optimise and analyse a photon-photon collider experiment. The majority of these
simulations used the Monte-Carlo platform Geant4. With the addition of the photon-
physics package developed for this purpose (discussed in chapter 4), both signal and noise
calculations could be performed within this framework.

This capability was demonstrated in section 6.2, where full start-to-end simulations of
the experiment were performed. This provided a platform to optimise various aspects of
the experiment, starting with the photon sources. With these optimised, background noise
sources were identified and removed through an iterative process over different shielding
configurations. This lead to a significant reduction in the expected levels of background
noise. Although this shielding configuration reduced the expected signal, the reduction
in background noise was far more significant. With previously achieved electron beam
parameters, these simulations suggest that a statistically significant detection of the Breit-
Wheeler process can be made at Gemini with ∼ 100 shots.

Unfortunately, during the experimental campaign, the LWFA electron beams were
far from optimum, resulting in both a lower beam charge and energy spectrum. This
was found to have more of a detrimental effect on the Breit-Wheeler signal than the
background noise resulting in a far lower signal-to-noise ratio. With an expected signal
of ∼ 10−4 positrons per shot and a detected background of ∼ 4 positrons per shot, it is
highly unlikely that any observation has been made.

The experiment may not have been successful in its primary goal, however, the data
was still useful in enabling the photon-photon scattering cross-section to be bounded.
Previous work in this area has focused on high density sources with a lower photon
energies. At low energies the cross-section is severely suppressed, resulting in the previous
most stringent bound being ∼ 20 orders of magnitude above the value predicted by QED
[200]. In this experiment the average CM energy was ωCM = 0.66me, close to the peak
value of the QED cross-section. By looking for shifts in the average energy of the γ-ray
spectrum, an upper limit on the cross-section of σ < 4.9× 1012µb was made with a 95%

confidence limit. We believe this is most stringent bound on the QED cross-section to
date and is placed at an astrophysical relevant CM energy, just below the Breit-Wheeler
threshold.

Although the method we used here has provided the most stringent bound on the
photon-photon scattering cross-section to date, we are aware of its limitations. For the
process to actually be detected, the x-ray density would have to increase by many orders
of magnitude. This is ultimately a limitation of the asymmetric collider setup, in which
the scattered photons are emitted almost parallel to the dominant photon axis. Any mea-
surement then relies on photon-photon scattering causing a bulk change to the γ-ray beam
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properties. For these reasons a symmetric collider, with collimated and monoenergetic
photon sources, seems like the most appropriate setup for such a measurement.

The analysis presented here shows the Breit-Wheeler process can be detected using the
Gemini laser facility. However, this will rely on the facility operating at peak performance
for a large number of shots. Therefore, if the experiment is to be carried out again,
improvements should be made to increase the signal-to-noise ratio. This will both increase
the chance of detecting the Breit-Wheeler process and allow a more stringent bound to
be placed on the photon-photon scattering cross-section. One method of increasing the
signal is to bring the two photon sources closer together, increasing the densities at the
interaction zone. As shown in figure 6.9, the distance between the γ-ray converter and
x-ray foil is ∼ 800mm. This could be reduced by simply removing the space between the
converter, the tungsten block and the collimator. It could then be reduced further by
using a shorter residual electron magnet. To maintain the same line integrated magnetic
field (and and electron dispersion) the field strength of the magnet would have to increase.
This could be achieved using a pulsed electromagnet, capable of generating a far higher
field strength compared to a permanent magnet. A second method of increasing the signal
is reducing the duration of the x-ray driver. With the current setup, a large fraction of
the x-rays cannot participate in interactions as they are emitted from the foil well before
or after the γ-ray beam passes over. For a fixed laser energy, decreasing the duration
reduces the number of unused x-rays and increases the peak field density.

Further optimisation of the setup should also take place to reduce the background
noise further. Figure 6.9 shows that two of the main noise sources are the residual electron
magnet and the beam dump aperture. Both these noise sources could also be reduced
by using a shorter, pulsed electromagnet rather than a permanent magnet. The noise
source at the residual electron magnet is due to divergent gamma rays which scatter off
the magnet edge. With a shorter magnet the area of potential scattering sites is reduced.
The noise generated at the beam dump aperture is due to high energy electrons which
experience little deflection in the magnetic field. With a higher strength field these could
be sufficiently deflected into the beam dump.

Although we believe these changes will enable the Breit-Wheeler process to be de-
tected using the Gemini laser, it may be more optimal to carry out the experiment at a
different facility. Two desirable upgrades are an increase in laser energy or an increase
repetition rate. For example, using a higher energy system such as the national ignition
facility (NIF), a far higher x-ray density can be obtained. As was shown in section 4.4,
this increases the expected Breit-Wheeler yield by many orders of magnitude, enabling
a measurement to be taken with only a few shots. An example of a high repetition rate
facility, which would be ideal for carrying out this experiment, is the the Extreme Photon-
ics Applications Centre (EPAC) at the CLF. This facility is currently under development
and will house a 10Hz, petawatt class laser (built to replace the Gemini laser). This will
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have a similar peak power to Gemini, however, with an increase in repetition rate by a
factor of 200, the experiment can be carried out in a fraction of the time.
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Chapter 7

Conclusion

QED is the most stringently tested theory in physics to date. However, there still remains
many QED processes for which little to no experimental evidence exists. In recent years,
the exponential growth of peak obtainable laser intensities has opened up the opportunity
to probe some of these processes in the laboratory. However, these experiments often have
a low interaction probability, and as a result, suffer from a low signal-to-noise ratio. For
this reason, performing detailed numerical simulations of experiments is vital to optimise
both the signal-to-noise ratio and probability of a successful measurement. Therefore, the
work in this thesis has been concerned with developing the capability to perform these
simulations.

As part of this work, we have developed two Monte Carlo QED packages. The first
uses the framework of Geant4 and models two-body scattering processes, including the
Breit-Wheeler process, photon-photon scattering and Compton scattering. To seamlessly
integrate the package with Geant4, the interactions are treated as a beam of particles
travelling through a static photon field. This limits the types of photon sources that
can be modelled, however, also reduces the computational complexity of calculations.
Due to the object-oriented design, extending the package with new processes would be a
straightforward task. In future work, we plan to implement processes involving axion-like
[199] and minicharged particles [196], to study the potential of detecting beyond standard
model physics using a photon-photon collider.

The second package models QED interactions in a strong background field, and in-
cludes the nonlinear Breit-Wheeler processes and nonlinear Compton scattering. Al-
though the algorithm we have used is similar to a number of QED-PIC codes, our package
offers a number of advantages. At the intensities that are available by lasers today, the
production and dynamics of particles is unlikely to have a detectable impact on the back-
ground field. Therefore, when modelling these interactions, accounting for the action of
the particles on the classical field (i.e. solving Maxwell’s equations as a PIC code does) is
unnecessary and computationally expensive. On top of this, a PIC code is not the correct
platform to model many aspects of an experiment, such as particle tracking and detector
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interactions. By developing a strong field QED event generator, we have integrated the
package with Geant4, enabling many aspects of an experiment to be modelled within a
single framework. We believe this package will act as a useful tool for the design and
analysis of future experiments. For example, we have already applied it to study the
background noise of an upcoming strong field QED experiment at FACET-II, SLAC.

A key aspect of both the packages developed in this work are machine learning al-
gorithms, introduced to increase the efficiency of calculations. For the particle-photon
package, a Gaussian process regression was used to replace the expensive mean free path
calculation. This is a Bayesian regression method, providing the ability to carry out un-
certainty quantification. Using this we have developed an algorithm that minimises the
number of expensive calculations, given a predefined error. We believe this algorithm
could be applied to other computational physics problems, replacing low fidelity param-
eterisations or lookup tables of complex physics with an in-line solver and regression.
Given the stochastic nature of the strong field QED package, it would have also been
desirable to use a Bayesian regression method. However, this was not possible due to
the large size of the training data set and the likelihood being non-Gaussian. Therefore,
we instead opted for a mixture density network, consisting of a deep feedforward neural
network and a Gaussian mixture model. This method has the flexibility to model complex
distributions and also scales well to large data sets. Both machine learning methods were
found to provide a large increase in efficiency and we believe their use will become more
common in computational physics.

In the final part of this work, we presented the design and analysis of a photon-
photon collider experiment. Both signal and noise calculations were performed within
the Geant4 framework, made possible by the particle-photon package developed for this
purpose. During the experiment, the electron beam energies were significantly lower than
have previously been obtained using the Gemini laser. Due to the nonlinear scaling of
the Breit-Wheeler yield with electron energy, the expected signal-to-noise ratio of the
experiment was low at ∼ 2×10−5. This makes it highly unlikely that the experiment was
successful in its primary aim of detecting the Breit-Wheeler process.

However, we were still able to carry out the secondary objective of the experiment,
putting a bound on the photon-photon scattering cross-section. Previous experiments
that have attempted to do this have operated at a far lower CM energy. At low CM
energies, the cross-section is highly suppressed, resulting in a bound that is many orders
of magnitude off the predicted QED cross-section. In our experiment, the average CM
energy was ωCM ≈ 0.66me, close to the peak of the cross-section. No signatures of
photon-photon scattering were detected, enabling a bound to be placed of 4.9× 1012 µb.
Although this is still 15 orders of magnitude off the predicted QED cross-section, it is
the most stringent bound placed to date, improving upon previous work by a factor of
∼ 1000.
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Although present day experiments are still far away from detecting photon-photon
scattering, our results suggest that if optimum electron beams are obtained a Breit-
Wheeler detection experiment can be carried out using the Gemini laser facility. There-
fore, it may soon be possible to do what John Breit and Gregory Wheeler once claimed
as “hopeless” and observe pair formation in laboratory experiments.
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