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We discuss aspects of non-perturbative unitarity in quantum field theory. The additional ghost degrees 
of freedom arising in “truncations” of an effective action at a finite order in derivatives could be 
fictitious degrees of freedom. Their contributions to the fully-dressed propagator – the residues of the 
corresponding ghost-like poles – vanish once all operators compatible with the symmetry of the theory 
are included in the effective action. These “fake ghosts” do not indicate a violation of unitarity.
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1. Introduction

A consistent and fundamental quantum theory of gravity has 
to be renormalizable and unitary. On the one hand, the Einstein-
Hilbert action is perturbatively non-renormalizable, but unitary. On 
the other hand, the inclusion of terms with four derivatives in 
the gravitational action makes the theory renormalizable, but in-
troduces a spin-2 ghost spoiling the perturbative unitarity of the 
theory [1].

It has been shown that some classes of non-local theories of 
gravity can be unitary [2,3]. Specifically, when considering an ex-
ponential of entire functions, the propagator does not display any 
“extra” ghost poles: at a tree level, this type of non-local theo-
ries are unitary [4]. However, if these theories are considered to 
be non-local at a fundamental level, i.e., at the level of the bare 
theory, then quantum effects could generate infinitely many mas-
sive complex poles [5], leading to the presence of acausal effects 
on microscopic scales [6–8]. Depending on the scale of the viola-
tion, these acausal effects could still be compatible with observa-
tions, thus making non-local gravity a viable approach to construct 
a renormalizable and unitary theory of quantum gravity. How-
ever, microscopic locality is one of the fundamental properties of 
quantum field theory (QFT). Is it possible to construct a unitary 
and renormalizable theory of quantum gravity whose fundamental 
(bare) action is local?

From the point of view of QFT, starting from a local funda-
mental theory, it is the process of resumming quantum fluctua-
tions (quantum loops) at all scales that generates non-localities at 
the level of the effective action. Indeed, it has been proposed [9]
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that quantum corrections may restore unitarity: the expectation is 
that interaction can make the spin-2 ghost of Stelle-gravity un-
stable [10], or even remove it from the spectrum of all possible 
asymptotic states. In fact, due to fluctuation effects, the inverse 
dressed propagator is not simply linear in q2, rather it is a non-
local function, involving logarithms for example. If interaction is 
able to remove the ghost from the Fock space of asymptotic states, 
then the unitarity of the theory is safe.

A compelling proposal for a theory of quantum gravity based 
on local QFT is the asymptotic safety scenario for quantum grav-
ity [11–14]. According to the asymptotic-safety conjecture [15], 
a (non-perturbatively) renormalizable QFT of gravity can be con-
structed based on the existence of a suitable non-trivial fixed 
point of the renormalization group (RG) flow. The non-perturbative 
methods of the functional renormalization group (FRG) (see [14,16]
for recent reviews), based on Wilsonian idea of renormalization 
[17], indicate the existence of a fixed point in four dimensions -
the Reuter fixed point. So far this has been seen in various trun-
cations of the exact flow equations (see [18,19] and references 
therein). In the framework of the FRG, the effective action can be 
derived from the flow of the effective average action �k . The effec-
tive action is obtained in the limit of vanishing RG-scale, k → 0, 
as in this limit all quantum fluctuations are integrated out. All 
scattering amplitudes derived from the effective action at a tree 
level incorporate the effects of all quantum loops, i.e., they are 
dressed quantities. Thus, important aspects of unitarity and stabil-
ity are best discussed on the level of the quantum effective action, 
since all fluctuations effects are included [20]. In practical com-
putations however, truncations of the theory space are employed 
and the presence of a finite number of higher-derivative operators 
naturally lead to the generation of several poles in the graviton 
propagator.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In this letter we investigate the question whether the ghost-
poles of the graviton propagator observed in truncations to the 
effective action constitute a real problem for the unitarity of the 
theory, or are rather artifacts of the truncation. This would give 
a physical answer to criticisms [21] that asymptotically safe grav-
ity is not unitary [22–25]. It will be shown that the inclusion of 
quantum effects at all scales is crucial to assess unitarity of QFTs. 
We will also show with explicit examples that poles appearing 
in truncations of the effective action for a consistent QFT corre-
spond to fake degrees of freedom of the theory: their residues are 
negative only if a few terms in a derivative expansion are con-
sidered, while increasing the truncation order the absolute value 
of the corresponding residues decreases and vanishes once all op-
erators allowed by symmetry are included in the action. We will 
formulate criteria for a consistent graviton propagator and show 
the existence of propagators obeying these criteria.

2. Non-perturbative aspects of unitarity in QFT and quantum 
gravity

Perturbative expansions in QFT are typically used as a tool to 
simplify computations. While this approach can work for field the-
ories that are perturbative at all scales, it could give the wrong 
answer for theories where non-perturbative or all-orders effects 
are important.

In the following we point out some of the arguments related 
to the definition of unitarity and based on perturbation theory 
which could fail for non-perturbative field theories. We also high-
light some subtle details and ambiguities that render the issue of 
unitarity in quantum gravity even more involved. In particular we 
discuss (apparent) issues with unitarity that can easily arise when 
employing the FRG to extract the effective action.

2.1. Non-perturbative optical theorem

The optical theorem itself, complemented by the full LSZ expan-
sion of the S-matrix, do not rely on any perturbative expansion. 
The fully non-perturbative optical theorem can be represented di-
agrammatically as follows

where T is the transfer matrix. The sum in the right-hand-side 
runs over all possible intermediate states belonging to the space 
of states of the full (possibly non-perturbative) interacting theory. 
If there are no negative-norm states in the full theory, the space of 
asymptotic states is a Fock space and the sum over projectors in 
the right-hand-side defines the identity in the corresponding Fock 
space.

In the standard perturbative approach, the optical theorem 
(which follows from the condition that the S-matrix is unitary, 
S† S = 1) is translated into an infinite set of equalities, and uni-
tarity has to be satisfied at each order in perturbation theory. 
However, as we will see, if a perturbative expansion breaks down, 
this would immediately lead to a(n apparent) violation of unitar-
ity. In particular, a theory could violate unitarity at a perturbative 
level, while being non-perturbatively unitary.

2.2. Asymptotic states and vacuum

From a perturbative point of view, asymptotic states are con-
structed as free-particles states, and defined as excitations over the 
2

free-vacuum |0〉 of the (non-interacting) theory. The in- and out-
states must thus be well-separated at asymptotic times, such that 
interaction can be neglected: in this limit the Heisenberg fields 
are assumed to become free fields. When the particles approach 
each others they start interacting and this interaction is governed 
by the full Hamiltonian H = H0 + λHint , with λ � 1 to guarantee 
that interaction is just a small correction to the free Hamilto-
nian (this is equivalent to say that the couplings appearing in Hint
are small). When in a theory interaction or self-interaction is al-
ways present (e.g., when the bare theory is not free), asymptotic 
states and initial propagation should be defined using the fully-
interacting theory [26–28]. This means that in/out states should 
be eigenstates (stable particles or bound states) of the fully non-
perturbative Hamiltonian and should be defined as excitations over 
the (non-perturbative) vacuum of the full theory |�〉.

In the case of gravity, it is not even obvious that the Minkowski 
spacetime is the true vacuum of the theory. Even in the simple 
case of quadratic gravity, at least in its conformally-reduced ver-
sion, the dominant configuration in the gravitational path integral 
could correspond to a complicated “kinetic condensate” [29,30], 
rather than a “simple” flat spacetime. While this result depends 
on the structure of the full theory, it is important to keep in mind 
that a proper definition of an S-matrix requires the knowledge of 
the asymptotic states [31] about the true vacuum of the theory, 
and that the latter might be non-trivial in the case of gravity.

2.3. Effective actions, scattering amplitudes, non-perturbative unitarity 
and truncations

The quantum effective action �0 encodes the effects of all 
quantum loops and is the generator of 1PI Green functions. Thus, 
all scattering amplitudes (propagators and vertexes) computed at 
a tree level using �0 are fully-dressed, i.e., they already contain 
the effects of all quantum loops. These are given by the functional 
derivatives of the effective action:

〈 f |S|i〉 ∝〈�|T {φ(x1) . . . φ(xn)} |�〉(c) =[
δn�0[φ]

δφ(x1) . . . δφ(xn)

]
φ=0

,
(1)

where φ(xi) are fully interacting quantum fields and |�〉 is the 
vacuum of the fully interacting theory. As the quantum effective 
action includes all (perturbative or non-perturbative) effects of 
quantum loops at all momentum scales, it can be used to ver-
ify unitarity in both perturbative and (strongly or weakly) non-
perturbative QFTs.

The effective action �0 can be obtained either by solving the 
functional integral of a theory or via the FRG equation [32]

k∂k�k = 1

2
STr

{(
�

(2)

k +Rk

)−1
k∂kRk

}
. (2)

Here Rk is a regulator function and �(2)

k denotes the second func-
tional derivative of the effective average action �k . The latter is a 
RG-scale-dependent effective action, which results from the inte-
gration of fluctuating modes with momenta p ∈ (k, ∞). The quan-
tum effective action is thus obtained as the limit k → 0 of �k and 
is expected to be non-local (even when starting from a local bare 
or microscopic action, Sc = �∞) due to the integration of quantum 
fluctuations at all scales.

The FRG turned out to be a powerful tool to study the (non-
perturbative) renormalizability of field theories and explore their 
implications for infrared physics. Nevertheless, one of the draw-
backs of the FRG is the practical necessity to “truncate” the theory 
space, i.e., to use a truncated (derivative or vertex) expansion of �k , 
in order to solve Eq. (2) and derive �0. While in the case of field 
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theories which are perturbative at all scales it might be sufficient 
to consider only operators with positive or zero mass dimension, in 
general �k should contain all possible operators allowed by sym-
metry. In the case of gravity, this means that �k should contain all 
operators compatible with diffeomorphism invariance. While the 
truncated-FRG computations still allow to explore the existence 
of fixed points of the RG flow, it is clear that once a truncated 
derivative expansion for the effective action �k is employed, the 
propagator will automatically display additional (ghost or tachyon 
or tachyonic ghost) poles, which could just be an artifact of the 
truncation, rather than a problem for the theory. In particular, this 
could be the case for the ghost of Stelle gravity.

3. Non-perturbative unitarity in one-loop QED and Lee-Wick QED

In the following we use QED as a working example to show 
how fictitious ghost poles can appear in an artificially-truncated 
version of the theory.

As effective actions are typically non-local, we can assume the 
quadratic part of the QED-effective action to take the form

�
Q E D
0 [Aμ] = −1

4

∫
d4x

{
Fμν P (�)F μν

}
. (3)

The latter has to be complemented with a gauge fixing term

Sgf = − 1

2ξ

∫
d4x

{
∂μ Aμ Q (�)∂ν Aν

}
, (4)

and the corresponding propagator reads


αβ(q2) = i

q2 P (q2)

{
ηαβ −

(
1 − ξ

P (q2)

Q (q2)

)
qαqβ

q2

}
. (5)

In what follows we will fix ξ = 0. We now need to specify the 
form of P (q2). Following [33–35], at one loop this function reads

P (q2) = 1 − α

3π
log

(
−q2 + m2

th

m2
th

)
, (6)

where α is the fine structure constant and mth is a threshold 
mass, m2

th = 4m2, with m being the mass of the degree of free-
dom integrated out to obtain the one-loop effective action, typ-
ically the electron mass. Due to the presence of the logarithm, 
there is a branch cut singularity, corresponding to the production 
of particles. The scalar part of the propagator D(q2) = q−2 P−1(q2), 
with the function P (q2) given in Eq. (6), has no poles in the 
regime where the theory is valid, i.e., for momenta q2 � q2

L , with 
q2

L ∼ −10560m2
th being the Landau pole.

In what follows, we will use (3) as a toy model for the quadratic 
part of the full QED effective action, with P (q2) given in Eq. (6).

Although effective actions are generally non-local, when ex-
panding the effective action to get a low-energy effective descrip-
tion of the theory, the action can be expressed as a series of local 
terms. This corresponds to an energy, or derivative expansion, in 
which q2 is small as compared to the mass of the degree of free-
dom that has been integrated out.

Defining z ≡ q2/m2
th , the expansion about z = 0 of the function 

P (z) to the truncation order N reads

P N(z) = 1 + α

3π

N∑
n=1

zn

n
. (7)

The first term of this expansion reproduces classical electrodynam-
ics. Although the fully-dressed propagator (5) with P (q2) given 
by (6) has a unique pole at q2 = 0, the function P N(z) can show 
additional real and complex-conjugate zeros. In the case at hand, 
when N is odd the function P N (z) shows to have a zero at z � −1, 
3

Fig. 1. Real part of the poles of the truncated one-loop QED propagator as func-
tion of the truncation order N . The truncated propagator has several complex con-
jugate poles (red dots) and one tachyonic ghost-pole (blue dots) whose location 
approaches q2 = −m2

th for large truncation orders N .

i.e. q2 = −m2
th , corresponding to a stable tachyonic ghost and en-

tailing an apparent violation of unitarity. In addition, the function 
P N(z) has several complex-conjugate poles, as shown in Fig. 1. The 
fact that the ghost is also a tachyon and the fact that it appears 
only for N odd depends on the numeric factors in the effective ac-
tion. The fact that it is a ghost, i.e., that it comes with negative 
residue, comes instead from generic properties of polynomials.

The presence of the tachyonic ghost leads to an apparent vi-
olation of unitarity: while this ghost does not appear in the full 
theory (3), it does if one performs a perturbative expansion of the 
effective action. As we started from a toy model for the full effec-
tive action and we performed a derivative expansion afterwards, it 
is easy to realize that the tachyonic ghost at z � −1 is a truncation 
artifact. In general however the form of the fully-quantum effective 
action is not known a priori. It is thereby important to under-
stand in detail the origin of this additional degree of freedom and 
to come up with conditions to understand a priori, namely, with-
out knowing the form of the fully-quantum effective action �0, 
whether a pole is a genuine or fake degree of freedom of the the-
ory, i.e., a pole appearing in the full theory or a truncation artifact, 
respectively.

In the case at hand, the appearance of the additional ghost is 
due to the convergence properties of the logarithm at z = −1 and, 
in particular, to the fact that the logarithm has a finite radius of 
convergence, |z| < 1. We can understand how the fictitious pole 
is generated by visualizing the behavior of P N(z) for increasing 
values of N . This is shown in Fig. 2. As we see from the fig-
ure, when N is even P N(z) diverges positively. On the other hand, 
when N is odd, P N(z) diverges negatively and crosses the z-axis, 
thus generating a pole in the propagator. In particular, as the trun-
cation order N is increased, the position of the pole approaches 
the boundary of domain of convergence of the logarithm.1 In the 
limit N → ∞, P N(z = −1) converges to a finite value and therefore 
in this limit (equivalent to say, when the action is not truncated) 
the fictitious pole disappears.

The full (exact) form of the effective action is not known a pri-
ori and, especially within the framework of the FRG, it is often 
necessary to work within a truncation. It is then a key question, if 

1 This argument is not restricted to a logarithmic effective action. If the effective 
action contains a P (q2) with one or more branch cut singularities, then there will 
be fictitious poles approaching the boundaries of the domain of convergence of the 
function P [36]. If instead the integration of quantum fluctuations in the path inte-
gral leads to an effective action defined by an entire non-local function, there is no 
branch-cut singularity and the fake poles slowly move to infinity [36].
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Fig. 2. Function P N (z) for different truncation orders N . Increasing the truncation 
order N , the function P N (z) gives better and better approximation to the untrun-
cated function P (z). For z < 0, the truncated function P N (z) alternates positive and 
negative divergences: a zero is generated whenever P N (z) diverges negatively, i.e., 
for N odd. These zeros, corresponding to poles of the truncated propagator are only 
fictitious: they are not present in the full theory. The position of the zero quickly 
approaches the boundary of the domain of convergence of the logarithm, localed at 
z = −1.

Fig. 3. Residue of the truncated propagator evaluated at the fictitious tachyonic 
ghost pole, as function of N . As the truncation order is increased the residue ap-
proaches zero, thus making the corresponding fake degree of freedom “confined”.

we one can decide a priori whether a pole corresponds to a gen-
uine or fake degree of freedom of the theory. A possible answer 
lies in its residue. In fact, it turns out that the residue of the prop-
agator at the fake pole decreases by increasing the truncation order 
N and vanishes in the limit N → ∞, as shown in Fig. 3. The rea-
son is that in this limit there is no well-defined particle associated 
with this pole, and therefore, it cannot give any contribution to the 
fully-dressed propagator. Interestingly, this is the same mechanism 
realized in the quasi-particle approach to a Bose-Einstein conden-
sate with impurities [37], the impurity being the equivalent of the 
fake ghost pole in QFT.

As a second instructive example, let us analyze the function

P (q2) = 1 + α

3π
log

(
−q2 + m2

th

m2
th

)
− q2

M2
, (8)

which corresponds to a Lee-Wick model for QED, with a coupling 
whose sign is opposite with respect to the standard one. In this 
case P (q2) has a real pole on the principal branch of the logarithm, 
corresponding to a stable, massive ghost. An expansion of P (q2)

about q2 = 0 will generate again a tachyonic ghost and several 
complex-conjugate poles, but there will also be a stable, massive 
ghost for all N (cf. Fig. 4) which lies well within the domain of 
4

Fig. 4. Real part of the poles of the Lee-Wick model with opposite sign of the cou-
pling. In this case, beyond a fake degree of freedom represented by a blue dot, there 
is also an additional ghost pole (black dot) whose real part lies well within the do-
main of convergence of the function P N (z). This indicates that this ghost pole will 
also be present in the “full theory”, as it can be explicitly checked using the propa-
gator from the untruncated function P (z).

Fig. 5. Residues of the Lee-Wick propagator at the fake (blue dots) and real (black 
dots) ghost degrees of freedom, as function of the truncation order. While the 
residue for the real ghost present in the “full theory” is negative and stays negative, 
the residue of the fake degree of freedom quickly approaches zero as the truncation 
order is increased.

convergence of the logarithm and does not approach the bound-
ary of its domain of convergence for increasing values of N . This 
is in fact the ghost appearing in the “full theory”, and for this rea-
son the corresponding residue is expected to stay negative as N is 
increased. This is indeed the case, as shown in Fig. 5: while the 
residue of the fictitious tachyonic ghost approaches zero for large 
N , the residue of the ghost present in the “full theory” quickly sta-
bilizes to a constant negative value. These results indicate that it 
might be possible to determine the nature of the ghosts appearing 
in truncations of the effective action, by studying their residues 
as functions of the truncation order N . In particular, this might 
have important implications for the case of gravity, to understand 
whether the ghost of Stelle theory is a true ghost or a truncation 
artifact.

4. Good propagators

Based on the requirements of unitarity, causality, and the pos-
sibility of performing an analytic Wick rotation connecting the Eu-
clidean and Lorentzian theories, a fully-dressed propagator should 
have:
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• No complex poles in the first and third quadrants of the phys-
ical sheet of the q0-complex plane

• No essential singularities at infinity
• Positive-definite spectral density

A propagator with these properties can arise from a consistent the-
ory which is valid to infinitely short distances. For a valid QFT 
of gravity based on asymptotic safety, these criteria have to be 
obeyed.

We next demonstrate by an explicit example that suitable func-
tions D(q2) exist which obey all criteria. A propagator satisfying all 
these requirements is2

iD(q2) = i

q2

(
1 + α

m2
th

q2 arctanh

[
− q2

m2
th

]
)

) , α < 0 (9)

where m2
th is a mass scale. The coupling α must be negative in 

order to avoid ghost or complex-conjugate poles. This fact can be 
easily seen from the form of the real part of the function P (z) =
z−1 D−1(z), with z = m−2

th q2. It reads

Re(P (z = x + iy)) =

1 + α

4

x

x2 + y2
log

(
(1 − x)2 + y2

(1 + x)2 + y2

)
(10)

+ α

2

y

x2 + y2 (arg(1 − x − iy) − arg(1 + x + iy)) .

If α is taken to be negative, then Re(P (z = x + iy)) ≥ 1 ∀(x, y) ∈ R2. 
This implies that for α < 0 the function P (z) can never be zero, i.e., 
D(q2) cannot have any pole beyond the massless one (cf. Fig. 6). 
On the other hand, if α > 0 there might be both ghost-like poles 
or complex-conjugate poles. In order to avoid ghosts and maintain 
unitarity, we thus require the coupling α to be negative.

The fact that for α < 0 the real part of P (z) can never be zero 
has an important implication: the are no additional stable (ghost) 
degrees of freedom and the two branch cuts are not associated to 
a (ghost) resonance as in [10,38], rather to multi-particle states, 
which are produced for |p2| > m2

th . In particular, the spectral den-
sity ρ(p2) = −π−1Im(D(q2 + iε)) is positive-definite for α < 0, as 
shown in Fig. 7.

In our example, the key to avoid stable/unstable, standard or 
tachyonic ghosts, is the presence of two symmetric branch cuts3

on the real axis, at |Re(z)| ≥ 1, i.e., for |q2| ≥ m2
th . The pole struc-

ture of the propagator (9) and the branch cuts in the q2- and 
the q0-complex-energy planes are shown in Fig. 8 for α = −0.4. 
For α < 0, the are no additional ghost-like degrees of freedom. In 
particular there are no poles in the first and third quadrants of 
the complex q0-plane. Moreover, since the function z−1arctanh(z)
vanishes asymptotically, i.e. as |z| → ∞, the full propagator D(q2)

defined above scales as 1/q2 in this limit. Accordingly, at variance 

2 The vanishing of the propagator at |x| = 1 and y = 0 may look somewhat 
strange, but poses no problem. We do not believe that this feature is essential for 
the existence of a good propagator. Once one realizes the essential features it seems 
likely that a large family of good propagators exist. We also note that an expansion 
of P (q2) in linear (or any other finite) order in q2 will produce the fake ghost poles 
discussed previously.

3 The presence of a branch cut at p2 < 0 is not a problem for unitarity nor for 
causality: the spectral density can still be positive-definite (as in our case, cf. Fig. 7), 
and the localized excitations of the multiparticle states at p2 < 0 propagate sub-
luminally (only the group velocity can be superluminal) [39]. The theory is thus 
causal in the sense of QFT, i.e., the commutators/anticommutators of operators at 
spacelike-separated points are zero [39]. The presence of these multiparticle states 
at p2 < 0 instead indicates that there might be instabilities, e.g., related to a spon-
taneous symmetry breaking [40].
5

Fig. 6. Real and imaginary parts of the function P (z) and of the inverse propagator 
D−1(z), with z = x + iε . The real part of P (z) = z−2 D−1(z) (purple line) is always 
positive for α < 0 (α = −0.2 in the figure), while the imaginary part of D−1(z)
(blue line) is non-zero only along the branch cuts. Accordingly the real part of the 
inverse propagator D−1(z) (magenta line) has only one pole at x = 0, corresponding 
to the massless graviton/photon pole. No additional ghost-like or complex conjugate 
poles are present.

Fig. 7. Spectral density ρ(z), with z = q2m−2
th of the propagator (9) for α = −0.4. 

The spectral density is positive definite, indicating that there are no negative-norm 
states in the theory. The peak at z = 0 corresponds to the stable massless pole 
at q2 = 0. For z > 1, i.e., for |p2| > m2

th , the spectral density is non-zero due to 
the branch cuts of the propagator (9), describing two disjoint sets of multiparticle 
states, m2

th being the threshold to open the correspondent scattering channels.

of the case of exponential form factors [41], in this case there 
are no essential singularities at infinity, neither in Lorentzian nor 
in Euclidean. There are thus no obstructions towards performing 
an analytic Wick rotation connecting the Euclidean and Lorentzian 
theories. Finally, the absence of complex-conjugate degrees of free-
dom and ghost-resonances with negative width (Merlin modes, 
[38]) implies that there cannot be any violation of causality, not 
even on microscopic scales.

5. Conclusions

In this letter we discussed aspects of non-perturbative unitarity 
in QFT, in relation with the truncation-method typically employed 
to solve the FRG equations. The motivation of this work comes 
from the attempt to quantize gravity within the framework of QFT: 
while there are strong indications that gravity could be asymptoti-
cally safe, not much is known about the unitarity of the theory.
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Fig. 8. Pole structure of the propagator (9) for α < 0. In the complex q2-plane (figure on the left panel), there are two branch cuts, but no additional poles beyond the 
massless one. The figure on the right panel shows the pole structure of the full propagator D(q2

0 − �q2 + iε) in the complex q0-plane, with ε > 0. For α < 0 there is no 
obstruction towards performing an analytic Wick rotation from Lorentzian to Euclidean and vice versa. The theory is thus causal and Wick-rotatable. Both figures have been 
produced using α = −0.4. In the second figure ε has been set to ε = 1 in order to make the effect of the Feynmann prescription on the branch cuts visible.
Solving the FRG equations allows one to investigate the renor-
malizability of field theories and to compute their effective action. 
The effective action, in turn, can be used to compute fully-dressed 
scattering amplitudes and to determine the complete spectrum of 
asymptotic states of the theory. On the one hand, the effective 
action provides an alternative and straightforward way to assess 
unitarity of QFTs, avoiding any perturbative expansions. On the 
other hand, solving the FRG equations exactly is still out of reach 
and approximations have to be employed. In practice, one has to 
resort to approximations or truncations, and the question arises 
what one can learn about unitarity from the graviton propagator 
obtained from a truncated expansion. We have formulated sim-
ple criteria for a “good propagator” in a consistent unitary theory. 
Many graviton propagators proposed in the literature violate at 
least one of those criteria. We therefore have provided a simple 
example for a good propagator, in order to demonstrate that there 
in principle is no obstruction to asymptotic safety of gravity from 
this side. The example shows that the analytic structure of a good 
propagator can be subtle. Knowing a consistent short distance the-
ory many of these “subtleties” could find a natural explanation. 
Without such knowledge, approximations easily lead to a graviton 
propagator that apparently violates unitarity. In fact, finite trun-
cations of the theory space naturally leads to the appearance of 
several poles in the fully-dressed propagator, and thus to an appar-
ent violation of unitarity. While it is clear that some of these poles 
could be a truncation artifact, it is an interesting question how 
to understand whether these poles would also appear in the full 
(untruncated) theory. Understanding this point represents a first 
important step towards understanding the nature of the spin-2 
ghost of Stelle gravity, which could indeed be a truncation arti-
fact rather than a feature of a QFT of gravity.

Using an artificially-truncated version of one-loop QED and Lee-
Wick QED as working examples, we discovered that the trunca-
tion dependence of the propagator differs substantially between 
ghosts appearing only within truncations of the effective action 
(fake ghosts) and ghosts which also appear in the full, untruncated 
theory. While for the latter the residue remains always negative, in 
the former the residue is negative but its absolute value decreases 
with the truncation order and vanishes once all operators allowed 
by symmetry are included in the effective action. These fake ghosts 
disappear from the spectrum of asymptotic states of the theory. 
Our results lead us to the conjecture that, even not knowing the 
6

form of the quantum effective action, it might be possible to deter-
mine the nature of an apparent ghost-pole by tracing the behavior 
of the corresponding residue as function of the truncation order: 
if its residue is negative and stays negative for any value of the 
truncation order, then the pole corresponds to a genuine degree of 
freedom of the model and indicates a lack of unitarity. If instead 
the residue decreases with the truncation order and tends to zero 
when a sufficiently large number of terms is included in the ac-
tion, it is likely that it corresponds to a fake ghost, i.e., a fictitious 
degree of freedom generated by the truncation of the theory space. 
It will be interesting to see if high order derivative expansion for 
quantum gravity can be used for an investigation in that direction.
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