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1. Introduction

Many systems in everyday life are macroscopic, such that we can describe them in terms of
coarse grained, averaged quantities. By contrast, quantum effects determine the properties of
objects with microscopic dimensions, such as electrons or photons. Mesoscopic physics takes
place in the intermediate region between macroscopic and microscopic scales, in systems with a
large number of quantum objects, as for example in nano-scale electronic devices. Here, quantum
properties and fluctuations play a crucial role, but the individual microscopic degrees of freedom
often cannot be individually traced due to the huge number of interacting constituents. In
the 1950s, E. Wigner also faced this problem [1–5] when trying to theoretically describe the
energy-level spacings of compound nuclei. In the absence of a coherent theoretical description –
despite the existence of numerous experimental data [6, 7] – he proposed the use of a completely
random Hamiltonian as a zero-information hypothesis for comparison with experiments [1–3].
The striking success of this description [7–12] paved the way for the application of random
matrix theory (RMT) – some of whose statistical predictions had been developed earlier [13–
16] – in numerous fields [7, 11, 12, 17]. Besides the aforementioned application to many-body
systems in nuclear physics [11, 18–21], RMT proved fruitful for describing quantum chaos [22, 23],
disordered mesoscopic systems [11], transport through nanowires [24, 25], in field theoretical
descriptions of interacting fermions [11, 26–29], and even for estimating correlations between
assets in the stock market [30–34].

Recently, it has also been proposed to apply RMT to neural networks [35–37], where the
situation is similarly complicated: Deep neural networks contain huge sets of parameters whose
fitting to correctly predict a training dataset is not easily traceable [37], and a cohesive theory
and deep understanding of the training process is elusive [37, 38]. Nevertheless, these networks
have an excellent generalization ability beyond the training dataset while also being able to
memorize large amounts of random data [39]. A further problem is obtaining clean training
datasets, since noise in the labels is often inevitable [40, 41].

Here, we consider RMT as a zero-information hypothesis to study the weight matrices of
deep neural networks, which store the parameters of the networks: Since these weights are
initialized as random matrices before training, they initially precisely follow the predictions as
random matrices. After training, we can then use deviations from the predictions to locate
the information stored in the weights during training. We show that the bulk of the weights
remains random after training, that the relevant information is encoded in a small portion of
the spectrum of the weight matrices, and that this information, for suitable training, is also
stored separately from the information about incorrect, noisy labels. This further allows us to
propose a filtering algorithm that can partially remove the influences of the noisy labels from
the already trained weights and thus increase the generalization accuracy of the networks.

Machine learning techniques, such as neural networks, have numerous applications [42–47]
from image and pattern recognition [44] and protein folding [48] to physics applications such as
quantum state tomography [49, 50] and localizing phase transitions [51–55]. Moreover, in recent
years, increasingly complex mesoscopic quantum systems have been proposed and also imple-
mented [56–60], which requires very sophisticated tuning. Automating this tuning is profitable
and in some cases even necessary [61–63], and machine learning approaches have proven to be
particularly fruitful and flexible for this purpose [60, 62–67]. Especially for the implementation
of large scale quantum computation [68–71], tuning of parameters and gates is required, and nu-
merous automations in quantum dot based qubits have been proposed [61–63, 65, 66, 72–78]. A
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popular foundation for scalable qubit architectures is based on Majorana zero modes (MZMs) in
topological superconductors [56, 59, 79–84], whose advantages lie in the topologically protected
encoding of quantum information in the strongly non-local states as well as their manipulation by
anyonic braiding [79–82, 85]. These MZMs have been proposed in semiconductor-superconductor
hybrid systems [79, 86–89], and many of their predicted signatures have also been found exper-
imentally: For example, zero-bias conductance peaks [90–93], the fractional Josephson effect
[94], and the suppression of the even-odd spacing difference between conductance resonances in
hybrid wires with Coulomb blockade [95]. For clean wires, it has been theoretically shown that
specifically chosen magnetic [96–99] and potential profiles [97] can make MZMs more robust,
and also the geometry of Josephson junctions has been optimized, with the aim of obtaining a
large topological gap [100]. Recently, however, it has turned out that the implementation is not
as simple as initially thought [101]: The main problem in these systems is the almost inevitable
presence of strong disorder [102–106], which can not only destroy the topological phase and thus
the MZMs [107] but can even mimic most of the previously mentioned signatures in the topo-
logically trivial regime entirely without requiring any MZMs [102, 104, 108–111]. As a result, a
large portion of samples currently have to be discarded in the fabrication of Majorana devices:
In a recent study conducted by the Microsoft Quantum group, it was found that no more than
20% of their elaborately manufactured and tested Majorana devices have a chance for “a high
probability [...] of a topological phase hosting Majorana zero modes” [106].

We here propose to bring an array of gates in proximity to a Majorana wire and optimize
the gate voltages using the CMA-ES machine learning algorithm to compensate for disorder
while making MZMs more robust. For this purpose, we need a suitable metric that achieves the
desired effects when it is maximized by the algorithm, which itself does not require any other
system-specific information. One major problem is that many signatures can be mimicked by
trivial Andreev bound states, which can be pinned at zero energy, so called pseudo-MZMs [111–
128], such that the optimization of metrics derived from these signatures does not favor MZMs.
A suitable signature should therefore be based on the non-locality of the MZMs, for which
transport through the Majorana wire in Coulomb blockade, referred to as electron teleportation
[129], is a suitable choice.

In a recent experiment, Whiticar et al. [130] considered the coherent transmission amplitude
through a Majorana wire in Coulomb blockade, which can be determined by embedding the
wire in one arm of an electron interferometer and measuring the oscillations of the current with
the magnetic flux through the interferometer loop [130]. Using an adapted scattering matrix
formalism and combining numerical and analytical calculations, we explain the experimentally
observed occurrence of a maximum of the coherent transmission amplitude as a function of
an external Zeeman field soon after entering the topological phase as a direct consequence
of the localization properties of the MZMs [131] – a signature that also allows distinguishing
MZMs from pseudo-MZMs [131, 132]. This makes the coherent transmission amplitude ideal
for optimization with the CMA-ES algorithm: We show that the machine learning algorithm
is capable of very efficiently improving topological signatures, making MZMs more stable, and
even learning disorder profiles and fully restoring MZMs that have been completely destroyed by
strong disorder by using the optimized gate voltages. Such optimization can therefore potentially
increase the yield in the production of Majorana devices significantly.

To implement large scale quantum computing, in addition to a scalable qubit architecture,
a deep understanding and detailed control of quantum entanglement are necessary [133, 134],
which we further study here in the context of one-dimensional interacting fermions. If one
prepares a quantum system in a pure state and performs an interaction quantum quench [135],
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that is, a sudden change in the interaction strength between the particles, the entanglement
entropy between two spatial regions of the system [136, 137] describes how information about the
quench propagates through the system: Immediately after the quench, this spatial entanglement
entropy increases linearly and saturates once the information has propagated through the whole
system, thereby playing the role of a thermal entropy with the help of which local observables
can be determined [138–141]. Instead of the well-understood spatial entanglement entropy,
we consider here entanglement in an alternative bipartition of the system into subgroups of
n particles and the remaining N − n particles [142–145]. This particle entanglement entropy
differs from the spatial entanglement entropy in that it is sensitive to particle statistics and
interactions to first order [146–157] and directly linked to the reduced n-particle density matrix
and the n-point correlation matrix [145]. The latter also opens ways to measure the particle
entanglement entropy in experiments [158–160]. Moreover, the equivalence of particle and spatial
entanglement entropy in the thermodynamic limit has been demonstrated for long times after
an interaction quench [161].

For accurate finite-size scaling to the thermodynamic limit, we perform large-scale, state-
of-the-art numerical computations of the one-particle entanglement entropy using both exact
diagonalization and approximative methods. This also allows us to make a connection to a
field theoretic bosonization calculation in the Luttinger liquid phase [162–164], where the one-
dimensional problem is made tractable by linearizing the dispersion around the Fermi level and
considering low-energy excitations due to density fluctuations against an average density back-
ground [163]. By comparing with the numerical results, we are able to determine an interaction
cutoff of the field theory such that the analytical results can make accurate predictions for weak
interactions, going far beyond a mere determination of universal scale coefficients.

In this chapter, we provide an introduction and outline of the topics covered in this disser-
tation, as well as a brief description of the publications that have resulted from the research
presented in the following chapters.

1.1 Random matrix theory

1.1.1 Applications of random matrix theory

The application of RMT is promising for systems with dynamics that are too complicated to be
traced, for instance because of disorder, chaotic behavior, or due to a complex, random initial
state. In many cases, it is then possible to derive a probability distribution that describes a
quantity of interest, such as a Hamiltonian, a scattering matrix, or a parameter matrix based
on symmetries or the shape of the initial state. Application of RMT for these distributions
allows us to make predictions for observables based on the universal properties of the underlying
symmetries. Systematic deviations from the RMT predictions, on the other hand, reveal system-
specific properties that are not random.

The first successes of RMT in physics were achieved in the description of the energy spectra
of complex nuclei and molecules [7, 11, 12]: In the 1950s, neutron scattering experiments en-
abled the measurement of energy spectra of composite nuclei with good resolution [6, 7], but a
theoretical description of the observed results was elusive due to the large number of interacting
constituents. Here, RMT brought the first breakthrough [1, 11] by describing the Hamiltonian
with a random matrix from the Gaussian orthogonal ensemble (GOE) - random matrices with
normally distributed entries that have the form of time-reversal invariant Hamiltonians. The
distributions of level spacing and level broadening determined from the statistics of the random
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Hamiltonian showed excellent agreement with the observed measurements [1, 11]. Later in the
1980s, improved experimental techniques enabled the creation of large data sets, so that the
description of the systems with the GOE could be statistically justified in retrospect [8, 11, 165].

Subsequently, RMT has been successfully applied in a variety of fields [11, 12, 166, 167]. It
gained great popularity in the description of quantum transport [167]: Here, in addition to
random Hamiltonians, random scattering matrices were also considered, from which universal
predictions about transport properties can be obtained [167]. For example, for scattering from
quantum dots, it was shown that the Hamiltonian for a disordered metal grain can be described
by the Wigner-Dyson statistic [167, 168], which allowed determining a random ensemble for the
scattering matrix [166]. These considerations have further been extended to wires with strong
disorder [166, 169, 170]. Here the applications range from descriptions of normal-superconductor
contacts and chaotic Josephson junctions [166], to the calculation of universal properties of dis-
ordered superconductors [11, 167]. In this context, RMT has even been applied to topological
superconductors with Majorana zero modes [167], for which generalized random matrix ensem-
bles for Hamiltonians and scattering matrices have been developed that also take into account
particle-hole symmetry [167]. Here it is possible to distinguish between symmetry classes and
even topological phases by comparison with predictions of RMT [167].

In addition, RMT has also been used to study the scaling of entanglement entropy at critical
points in quantum chains [171, 172], and there are numerous applications outside of physics,
e.g., for the description of financial markets [30, 32–34, 173], where RMT has been used in the
analysis of return statistics and in the optimization of portfolios and investment strategies. In
fact, there are so many other applications of RMT – both in physics [11, 12, 166, 167] and outside
[174–178] – that it is impossible within the scope of this thesis to provide a fully comprehensive
list. We explore another use case in detail in Ch. 3, where we use RMT for the analysis of neural
networks. We postpone the discussion of earlier applications of RMT in this field to Sec. 1.2.2,
as we first want to give a brief introduction to the main predictions of RMT and to neural
networks.

1.1.2 Gaussian orthogonal ensemble and Wishart matrices

Because the first applications of random matrix theory in physics were developed for the de-
scription of time-reversal invariant systems whose Hamiltonians are real symmetric matrices,
the so-called Gaussian Orthogonal Ensemble (GOE) is of particular importance [11]. A matrix
A, from the GOE universality class satisfies the following conditions [12]:

(i) The elements Aij are real.

(ii) The matrix is symmetric, Aij = Aji.

(iii) The diagonal elements Aii are normally distributed with mean 0 and variance 2σ2.

(iv) The off-diagonal entries Aij , i > j are normally distributed with mean 0 and variance σ2.

Therefore, the probability distribution of the GOE matrices is given by [11]

PGOE(A) ∝ exp
[
− 1

4σ2 tr(A2)
]
, (1.1)

and to generate a matrix from the GOE, one can first draw a random matrix B with i.i.d. normal
entries with mean zero and variance σ2 and construct the GOE matrix as A = (B +BT )/2.
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While numerous properties have been computed for matrices of the GOE [7, 11, 12], the
matrices that are used as weights in neural networks, which we study in Ch. 3, are in general
neither symmetric nor quadratic. However, for a rectangular n×m matrix (w.l.o.g. let n ≥ m)
with i.i.d. Gaussian entries of zero mean and standard deviation σ, we can consider the so-called
Wishart matrix X = W TW whose entries are symmetric,

Xij =
n∑

k=1
WkiWkj = Xji , (1.2)

have mean(Xij) = nσ2δij and variance var(Xij) = δij2σ4n+ (1 − δij)σ4n. In the limit n → ∞,
the central limit theorem thus ensures that the matrix X − 1nσ2 belongs to the GOE with
variance nσ4. It is therefore not surprising that many predictions of the GOE apply to Wishart
matrices as well. In particular, the eigenvalues λi of X coincide with the squares of the singular
values λi = ν2

i of W , which is why later we primarily consider the singular value decomposition
W = USV T . Here U and V are orthogonal matrices and S is the diagonal matrix of the
singular values. In fact, the limit n → ∞ is not strictly necessary to find agreement between
empirical spectra of random Wishart matrices and GOE predictions [179]. Below, we consider
examples for comparing Wishart matrices of different sizes with the GOE predictions and find
that n ∼ 300 already yields excellent correspondence.

In the following two sections, we sketch the derivation of RMT predictions, first those of
universal nature that depend only on the ensemble, and those with non-universal properties
that depend on the individual realizations, e.g., the chosen standard deviation of the matrix
entries.

1.1.3 Wigner surmise and level number variance
As a first universal signature, we consider the distribution of level spacings in the spectra of
random GOE matrices, i.e. the distribution of the differences of neighboring eigenvalues, |λi −
λi+1|. For many different types of matrices, complicated analytic derivations and results exist in
the literature [11, 180–182]. However, it turns out that the simple model proposed by E. Wigner
to describe the energy level spacings in composite nuclei [1] provides a surprisingly accurate and
robust approximation for GOE matrices of arbitrary size [182]. Here, Wigner’s derivation is
based on a simple two-level system [183]: consider the general 2 × 2 GOE matrix1

X =
(
x1 x3
x3 x2

)
, (1.3)

where the entries are drawn from a normal distribution with zero mean, variances of the diagonal
entries given by var(x1) = var(x2) = 2, and variance of the off-diagonal elements given by
var(x3) = 1. The corresponding probability density is therefore given by

P (x1, x2, x3) = 1
2(2π)3/2 e− 1

4 (x2
1+x2

2+2x2
3) . (1.4)

1For the derivation of the probability distribution of the level spacings, we follow an exercise problem from
the Leiden University available at https://www.lorentz.leidenuniv.nl/RMT/RMTproblems.pdf.
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We can diagonalize the real, symmetric matrix using the Bogoliubov transformation(
x1 x3
x3 x2

)
=
(

cosφ sinφ
− sinφ cosφ

)(
λ1 0
0 λ2

)(
cosφ − sinφ
sinφ cosφ

)
(1.5)

=
(
λ1 cos2 φ+ λ2 sin2 φ cosφ sinφ(λ2 − λ1)
cosφ sinφ(λ2 − λ1) λ2 cos2 φ+ λ1 sin2 φ

)
, (1.6)

where λ1 and λ2 (w.l.o.g. λ1 > λ2) are the eigenvalues. The Jacobian for this transformation is
given by

J(λ1, λ2, φ) =

∂λ1x1 ∂λ2x1 ∂φx1
∂λ1x2 ∂λ2x2 ∂φx2
∂λ1x3 ∂λ2x3 ∂φx3

 =

 cos2 φ sin2 φ 2 cosφ sinφ(λ2 − λ1)
sin2 φ cos2 φ −2 cosφ sinφ(λ2 − λ1)

− cosφ sinφ cosφ sinφ cos(2φ)(λ2 − λ1)


(1.7)

with determinant | det J(λ1, λ2, φ)| = λ1 − λ2. Fortunately, the determinant is already given by
the level spacings, and transforming the coordinates of the probability density from (x1, x2, x3)
to (λ1, λ2, φ) yields

P (λ1, λ2, φ) = P (x1, x2, x3)| det J | = λ1 − λ2
2(2π)3/2 e

− 1
4 (x2

1+x2
2+2x2

3) = λ1 − λ2
2(2π)3/2 e

− 1
4 (λ2

1+λ2
2) . (1.8)

To further determine the distribution of the level spacings, we first transform to the relative and
center of mass coordinates d = λ1 − λ2, r = (λ1 + λ2)/2 and find λ2

1 + λ2
2 = (4r2 + d2)/2, such

that the probability density is given by

P (r, d, φ) = d

2(2π)3/2 exp
[
−1

8(4r2 + d2)
]
. (1.9)

To obtain the probability density of the level spacing d alone, we integrate out the coordinates
r and φ:

P (d) =
∫ ∞

0
dr
∫ 2π

0
dφP (r, d, φ) = d

4e−d2/8 . (1.10)

Now, to get a truly universal property, we consider the distribution of the standardized level
spacings s, computed from the so-called unfolded spectrum, for which the mean level density
is normalized to unity. For the simple two-level system, this unfolding is trivial, since we only
need to divide by the mean level spacing

⟨d⟩ =
∫ ∞

0
dP (d)dd =

√
2π . (1.11)

The resulting distribution, PWS(s) = ⟨d⟩P (s⟨d⟩) [183],

PWS(s) = sπ

2 exp
[
−πs2

4

]
, (1.12)

is known as the Wigner surmise, whose validity – at least as an excellent approximation [182] –
can be shown numerically even for large matrices that are far from the simple two-level system.

As mentioned earlier, in order to apply RMT to the weight matrices of neural networks, we
need predictions for the singular values of non-symmetric matrices. Thus, the question about
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the distribution of the singular value distances of a general 2 × 2 matrix with i.i.d. normally
distributed random numbers arises. For such a matrix W , we consider the singular value de-
composition

W =
(
x1 x2
x3 x4

)
=
(

cosϕ − sinϕ
sinϕ cosϕ

)T (
ν1 0
0 ν2

)(
cos θ − sin θ
sin θ cos θ

)
, (1.13)

where the singular values ν1 > ν2 can always be chosen to be positive by parameterizing the
symmetric matrices through ϕ ∈ [0, 2π), θ ∈ [0, π). For this case, the corresponding probability
distribution of the matrix entries is given by

P (x1, x2, x3, x4) = 1
4π2 e

−(x2
1+x2

2+x2
3+x2

4)/2 , (1.14)

where we obtain the Jacobi determinant as | det J | = (ν1 − ν2)(ν1 + ν2) after a few algebraic
steps. Thus, we find the probability density of the singular values as

P (ν1, ν2, ϕ, θ) = (ν1 − ν2)(ν1 + ν2)
4π2 e−(ν2

1 +ν2
2 )/2 (1.15)

P (d, r, ϕ, θ) = 2dr
4π2 e−(d2+4r2)/4 , (1.16)

where d = ν1 −ν2, r = (ν1 +ν2)/2 are again relative coordinates. Integrating out the parameters
d, ϕ, and θ yields a similiar distribution as obtained before for the eigenvalue spacings of GOE
matrices:

P (d) = d

2 e−d2/4 , (1.17)

such that the distribution of the unfolded singular values s/⟨d⟩ = s/
√
π is again given by the

Wigner surmise:

PWS(s) = sπ

2 exp
[
−πs2

4

]
. (1.18)

In addition to the observation that the Wigner surmise is also good at describing large matri-
ces, the numerical considerations in Ch. 3 show that the level spacing statistic is also robust to
small changes in parts of the singular value spectrum – as long as the bulk of the spectrum is
equivalent to that of a random GOE matrix.

Another universal property based on the unfolded spectrum is the level number variance, i.e.
the variance Σ2 in the number of unfolded eigenvalues in intervals of length ℓ. Here, unfolding
refers to normalizing the mean level density to unity such that for a given spectrum of n singular
values νi described by the probability density P (ν), the unfolded spectrum is given by ξi =
n
∫ νi

−∞ P (x)dx [7, 11, 12, 19, 33, 182]. It has been shown [11, 21, 182] that for the singular values
of an i.i.d. Gaussian matrix with entries with zero mean and also for the eigenvalues of GOE
matrices, the level number variance grows logarithmically, i.e. Σ2(ℓ) ∝ ln(2πl) + const. .

These universal properties are independent of the realization of the matrices and are fully
determined by the underlying universality class, i.e. by the symmetry of the random matrix
ensemble2. While a GOE matrix has a logarithmically growing level number variance, for a

2In fact from Eq. (1.1) one can see that the weight function of the GOE is invariant under orthogonal
transformations A → Ã = UAU† with UU† = U†U = 1, where the cyclicity of the trace ensures that tr(An) =
tr(Ãn).
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Figure 1.1: Universal properties of random matrices. We show theory curves for the GOE
universality class (dashed, black) and empirical results for 512×512 matrices for unfolded singu-
lar values of a matrix with i.i.d. normal entries (approximately belonging to the GOE ensemble)
in blue and for an i.i.d. normal diagonal matrix in red. (a) The level spacing distribution P (s)
of unfolded singular values for the GOE matrix follows the Wigner surmise ∝ se−πs2/4, while
the diagonal matrix has a qualitatively different level spacing distribution. (b) The level number
variance Σ2(ℓ) of the GOE spectrum only grows logarithmically, while the diagonal matrix has
a linearly increasing level number variance of the unfolded singular values.

diagonal matrix with i.i.d. normal entries the growth of the level number variance is linear in
ℓ [33]. Similarly, while the unfolded eigenvalue spacings of a GOE matrix follows the Wigner
surmise, ∝ se−πs2/4, the diagonal random matrix has a qualitatively different level spacing
distribution. This is shown for realizations of random 512×512 matrices in Fig. 1.1. In Chapter
3, we therefore use the universal properties to decide whether the bulk of a random matrix is
consistent with a considered random matrix ensemble, where we compare the weight matrices
of neural networks before and after training the network.

To allow distinguishing different realizations within the same ensemble, e.g. matrices with
different variances of the entries, we will study some non-universal RMT predictions in the
following as well.

1.1.4 Marcenko-Pastur and Porter-Thomas distributions

The singular value decompositon of a real n×m matrix W is defined as W = USV T , where U
and V are orthogonal matrices, S is a diagonal matrix containing the singular values νi, and we
assume w.l.o.g. that n ≥ m. This decomposition exists for any real matrix and is also unique
if one chooses the νi to be non-negative. Then, the number of non-zero singular values defines
the rank of the matrix, and one says that W has full rank if this number is equal to m. For the
study of weight matrices of neural networks, the singular value decomposition is advantageous
as it decomposes the matrices into directions – the vectors in U and V – and scale factors – the
singular values – allowing us to (i) identify relevant directions, (ii) compress matrices, and (iii)
manipulate the spectrum, reconstruct the weight matrix, and use it in the network again.

Before training, the weight matrices are initialized with i.i.d. random numbers of zero mean
and variance σ2 such that their singular value spectra follow the Marcenko-Pastur distribution
[184]. In the following, we sketch the derivation of this distribution closely following Sengupta
et al. [185]. We will skip a few details during the derivation as the purpose of this section is
to give an overview of the requirements and the limits that need to be taken for the Marcenko-
Pastur law to be valid. Ultimately, we would like to obtain an expression for the probability
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density PMP(ν) of the singular values ν of W . It is convenient to first obtain the distribution
p(ω) = ∑m

j=1 δ(ω−ν2
j ) of the squared singular values ω = ν2, which coincide with the eigenvalues

of W TW , and then simply use that PMP(ν) = 2νp(ν2). If we think of W TW as the Hamiltonian
of a time-reversal invariant system, we can use some insights and methods we are used to from
physical systems. The first trick in the derivation is to consider the Green function (trace of the
resolvent operator)

G(ω + iη) = tr([ω + iη −W TW ]−1) (1.19)

which can be rewritten using the singular value decomposition of W , i.e. W TW = V S2V T with
S2 = diag(ν2

i ), and the cyclicity of the trace as

G(ω + iη) = tr(V [ω + iη − S2]−1V T ) = tr([ω + iη − S2]−1) =
m∑

j=1

1
ω + iη − ν2

i

. (1.20)

Here, η is just a regularization we will send to zero in a moment. The form of G on the right-hand
side allows to use the Dirac identity

lim
η→0+

1
ω + iη − ν2

i

= ∓iπδ(ω − ν2
i ) + P 1

ω − ν2
i

, (1.21)

which reveals the familiar connection of G with the density

p(ω) = lim
η→0+

−1
π

Im[G(ω + iη)] . (1.22)

One next considers the limit of large matrices n,m → ∞ while the ratio m/n ≤ 1 is kept
finite, and for the variance, we assume σ2 ∼ 1/n such that nσ2 ≡ σ̃2 also stays finite. Under
these conditions, Sengupta et al. argue that G is self-averaging when taking this limit, G(z) →
G(z) ≡ ⟨G(z)⟩, such that p(ω) → − limη→0+ Im[G(ω+iη)]/π can be computed from an ensemble
average. The next trick for obtaining an expression that can be evaluated in this average, is to
consider

∂z ln det[z −W TW ] = ∂z ln
m∏

j=1
(z − ν2

j ) =
m∑

k=1
(z − ν2

k)−1 = G(z) . (1.23)

For circumventing the logarithm, one further uses the replica trick

G(z) = ∂z⟨ln det[z −W TW ]⟩ = − lim
k→0

1
k
∂z⟨det[z −W TW ]−k − 1⟩

= − lim
k→0

1
k
∂z⟨det[z −W TW ]−k⟩ . (1.24)

At this point Sengupta et al. consider k replicas of a vector with m entries Y (α) = (yα,1, ..., yα,m)
and the auxiliary Gaussian integral

Zk(z) =
∫ [ k∏

α=1

m∏
a=1

dyαa

]
⟨exp

(
−m

2

k∑
α=1

Y (α)T (z −W TW )Y (α)
)

⟩ (1.25)

=
(2π
m

)mk/2
⟨[det(z −W TW )]−k/2⟩ (1.26)
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such that

G(z) = lim
k→0

−1
k

(2π
m

)mk/2
∂zZ2k(z) . (1.27)

The idea behind this trick is that the auxiliary quantity Zk(z) can be analytically computed in
the limit m,n → ∞, σ̃ < ∞, m/n < ∞ by explicitly evaluating the ensemble average and then
using a saddle point approximation for the remaining integral that becomes exact in this limit.
This evaluation requires extensive algebraic steps and one needs to exchange the limits k → 0
and m → ∞ which is explained in Ref. [185] (and also in [186]). We will therefore skip these
steps for the purpose of this introductory section and quote the result of the auxiliary integral
in the saddle point approximation [185]

Zk(z) = 1
2k2

(
m

2π

)−mk/2+k2

exp
[
−mk

(
ln(z − ˜σ2Q(z)) + m

n
ln(1 −R(z)) +Q(z)R(z)

)]
R(z) = σ̃2

z − σ̃2Q(z) (1.28)

Q(z) = n/m

1 −R(z) . (1.29)

Taking the partial derivative in Eq. (1.27), where we need to be careful that the derivative does
not act on G(z) and Q(z) like a total derivative would (see Eq. (1.24)), yields

G(z) = lim
k→0

2mk
2k2k2

(
m

2π

)(2k)2

e−2mk[ln(z− ˜σ2Q(z))+ m
n

ln(1−R(z))+Q(z)R(z)] 1
z − σ̃2Q(z)

= m

z − σ̃2Q(z) = m

σ̃2 R(z) . (1.30)

This implies that Q(z) = (n/m)/(1 − σ̃2G(z)/m) such that one obtains the implicit expression

G(z) = m

z − σ̃2 m/n
1−σ̃2G(z)/m

, (1.31)

which can be directly solved, resulting in

G(z) = m

2σ̃2z

[
z + σ̃2(1 − n/m) ±

√
[z − σ̃2(1 + n/m)]2 − 4σ̃4n/m

]
. (1.32)

The last step3 for computing p(ω) is to use z = ω + iη and compute the imaginary part of G:

p(ω) = − 1
π

lim
η→0+

Im[G(ω + iη)] (1.33)

= m

πσ̃22ω

√
ω2 − 2(1 + n/m)ωσ̃2 − 4σ̃4n/m+ (1 + n/m)σ̃4 . (1.34)

By introducing the boundary values at which the expression under the square root is non-
negative, ν± = σ̃2(1 ±

√
n/m), one can rewrite the expression in the usual Marcenko-Pastur

form [184]

p(w) = m

2πσ̃2ω

√
(ω − ν2

−)(ν2
+ − ω) . (1.35)

3Here the ± sign in the solution of G just results in an overall sign, ±p(ω), such that only the sign which
gives a positive probability density is relevant.
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As discussed at the beginning of the derivation, this allows us to directly write down the distri-
bution of the singular values ν as

PMP(ν) = 2νp(ν2) = m

πσ̃2ν

√
(ν2 − ν2

−)(ν2
+ − ν2) (1.36)

which is the final result of this derivation used in Ch. 3 to compare the singular value spectra
of weight matrices of neural networks before and after training.

For the n × m random matrix W of i.i.d. normal entries with n ≥ m, we showed that the
eigenvalues of the Wishart matrix X = W TW = V S2V T are distributed according to the
Marcenko-Pastur distribution. Here, the eigenvalues of X are the squared singular values of
W , and the eigenvectors correspond to the right singular vectors V . The entries Vik of these
eigenvectors are distributed according to the Porter-Thomas distribution [187], i.e. a normal
distribution with mean zero and variance 1/m. To show this, we consider the probability density
of the matrix W , which is given by

P (W ) ∝
∏
ij

e− 1
2σ2 W 2

ij = e− 1
2σ2 tr(W T W ) , (1.37)

such that it is invariant under rotations. If R is an orthogonal m×m matrix, then the cyclicity
of the trace tr(RW TRTRWRT ) = tr(W TW ) ensures that W and WR are equally distributed.
Therefore, the singular value decompositions W = USV T , WR = USV TR imply that also V T

and V TR follow the same distribution. As the singular vectors V (k) in V = (V (1), ...,V (m)) are
normalized, i.e. ∑m

j=1 |V (k)
j |2 = 1, the singular vector entries are therefore uniformly distributed

on the m-sphere of unit radius. As it was shown in Ref. [11], the probability density of a
coordinate xi of a vector uniformly distributed on the m-sphere is given by

P (xi) = N
(
1 − x2

i

)(m−3)/2
. (1.38)

This can be found by first noting that uniform distribution on the m-sphere means that the
angles in hyperspherical coordinates are uniformly distributed, which allows us to explicitly write
down the expression for the probability density of the angles, P (φ1, ..., φm−1)dφ1 · · · dφm−1 ∝
dφ1 · · · dφm−1. Using the Jacobi determinant for the transformation between hyperspherical and
Euclidean coordinates and the inverse transformation to Euclidean coordinates x1, ..., xm allows
us to get an expression for P (x2, ..., xm) (where one coordinate x1 is fixed by the constraint
r = 1) and integrating out all coordinates except for xi, one arrives at Eq. (1.38).

From Eq. (1.38), we obtain the mean and variance of xi as

mean(xi) =
∫ 1

−1
dxi P (xi)xi = 0 (1.39)

var(xi) =
∫ 1

−1
dxi P (xi)x2

i = 1/m . (1.40)

To keep the variance finite in the limit m → ∞, we rescale ξi = xi
√
m and find [11]

lim
m→∞

P (xi) = N lim
m→∞

(
1 − ξ2

i /m
)(m−3)/2

∝ lim
m→∞

(
1 − ξ2

i /m
)m/2

∝ e−ξ2
i /2 = e−mx2

i /2 , (1.41)

which is the Porter-Thomas distribution – a normal distribution with mean zero and standard
deviation 1/

√
m.
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As the derivations of the Marcenko-Pastur and Porter-Thomas law required rotational invari-
ance of the distribution of the matrices and to take the limit n,m → ∞, with fixed m/n < 1,
we expect them to be applicable to both large matrices with i.i.d. normal entries and large ma-
trices with i.i.d. uniformly distributed entries. The latter is of particular relevance here, since
the default initialization for weight matrices in the popular neural network python package
tensorflow [188], is the so-called Glorot uniform distribution [189]. For the Glorot uniform
initialization, the entries of the random n × m matrix are drawn uniformly from the interval
I = [−

√
6/(n+m),

√
6/(n+m)], i.e. the probability density is given by

PGu(x) =
{

2−1(6/(m+ n))−1/2 for x ∈ I

0 else
(1.42)

with the first and second moment

mean(x) =
∫

I
dxxPGu(x) = 0 (1.43)

var(x) =
∫

I
dxx2PGu(x) = 2

m+ n
. (1.44)

Therefore, the Glorot distribution is also translationally invariant and has a variance ∼ 1/n in
the limit for n,m → ∞.

To get an intuition for how large n and m need to be to describe random Glorot uniform
matrices using the Wigner surmise, Porter-Thomas distribution, Marcenko-Pastur distribution,
and logarithmic level number variance, we consider square matrices of sizes n = 80, 300, 512
in Fig. 1.2. It becomes apparent that even n = 80 is sufficient to see good visual agreement
with the Marcenko-Pastur and Porter-Thomas distribution (panels a and b). Here deviations
from the Wigner surmise and logarithmic grow of the level number variance is due to the fact
that unfolding the spectrum is very inaccurate for small matrices. For matrix dimensions of
n,m ≳ 300, we find excellent agreement with all the predictions of RMT described before. We
therefore conclude that we can apply these predictions for weight matrices of neural networks,
which typically have dimensions of several hundred to several thousand entries per row.

1.2 Neural networks and the CMA-ES machine learning algorithm
In this thesis, we focus on two different types of machine learning algorithms – neural networks
and the Covariance Matrix Adaptation Evolution Strategy algorithm (CMA-ES). Both have in
common that they train parameters based on data shown to them over several iterations to
subsequently solve a problem. Here, neural networks consist of layers of neurons connected
by weights. When the network is presented with a data example, it activates the neurons in
the first layer, and the weights determine how this information is propagated through to the
output layer, whose activations are then the answer of the network to the problem. To train
the network, one needs a large dataset of examples and the desired output for each example
– the labels of the training dataset. Initially, the weights are chosen randomly, and during
training, one presents the network the training examples and adjusts the weights such that the
predictions match the labels. The hope is that the trained network then generalizes, i.e. that it
makes correct predictions for completely new examples.

The CMA-ES algorithm, on the other hand, aims to find the minimum of any function of
many variables. To do this, it does not need to know the function itself, but the algorithm
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Figure 1.2: Comparison of some results of random matrix theory for i.i.d. Glorot uniform matrices
of different sizes (blue) and theory curves (dashed, black): (a) Histogram of the singular values
and Marcenko-Pastur distribution; (b) Histogram of the entries of all singular vectors and Porter-
Thomas distribution; (c) Histogram of spacings of unfolded singular values and Wigner surmise with
the corresponding cummulative distributions shown in the insets; and (d) level number variance
of unfolded singular values obtained via Gaussian broadening and the GOE logarithm law, ∝
ln(2πl) + const.. Here, Gaussian broadening refers to estimating the probability density from the
vector of singular values as a sum of Gaussian functions centered around each singular value with
width determined by the local level spacing (for details see Sec. 3.2.2). We find excellent agreement
with the RMT predictions already for matrices with n ∼ 300.

suggests a set of points – a population – in each iteration, on which one evaluates the function
and provides the function values back to the algorithm. Using the best candidates from the
population, the algorithm then learns directions and regions in the function’s input space to
suggest better points for the next population.

In the following, we give a brief overview of how the algorithms work, problems to which they
have been successfully applied, and how we are going to use them in the upcoming chapters.

1.2.1 Neural networks

In the following, we focus on neural networks for image classification that are trained using
supervised learning. The idea is that we can give the network an image as input, and it will
tell us as output what is shown in the image. To achieve this, the network is trained on a
dataset containing many images and corresponding labels, so that the desired output of the
network matches the labels. A popular dataset is CIFAR-10 [190], which consists of a total of
60000 colored images of size 32 × 32 × 3 from ten different classes (airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, truck). Of this dataset, we use N = 50000 images x(k) and
their corresponding labels y(k) as the training dataset, and the remaining 10000 images are only
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Figure 1.3: Example of a fully connected neural network with a single hidden layer. The
network consists of an input layer with 3072 neurons (circles) that accepts images of size 32×32
with three color channels, an output layer of 10 neurons, each representing a class of the CIFAR-
10 dataset, and the hidden layer with 1024 neurons. Every neuron in layer l is connected with
each neuron in the previous layer l − 1 by weights W (l) and each layer (except for the input
layer) has an associated bias vector b(l). For hidden layers we consider ReLu activations, and
we use softmax as the output activation function. An image is flattened and then activates the
input layer according to its pixel color values. Then these activations are propagated through
the network, where the index of the neuron with the highest output activation defines the class
predicted by the network.

shown to the network as a test dataset after training is fully completed to evaluate how well
the network can generalize to new images. Thus, if the network learns an underlying rule in
the training dataset, for example how to distinguish a horse from a deer, it is expected to be
able to transfer this knowledge to the test dataset. On the other hand, if the network has only
remembered the pixel values of the training images to distinguish them, this so-called overfitting
prevents the network from generalizing to new, unseen images.

A simple feedforward network, such as shown for the case of three layers in Fig. 1.3, consists
of a series of layers l containing nl neurons whose activations can be described by a vector
a(l) ∈ Rnl . Each layer after the input layer also has an nl × nl−1 weight matrix W (l) and an
nl × 1 bias vector b(l), which contain the trainable parameters of the network. In addition, one
assigns an activation function f (l) : Rnl → Rnl to each layer l > 1, which allows the propagation
of information to be strongly non-linear. One then chooses the input layer l = 0 and the output
layer l = L specifically for the problem at hand, so that we use the 3072 pixel values of a
CIFAR-10 image directly as activations of the input layer, and the output layer indicates which
of the ten classes the image belongs to. The layers in between are called hidden layers and can
in principle be chosen arbitrarily – independent of the problem. If we now flatten a 32 × 32 × 3
input image into a vector x of length 3072, we can pass this to the network by activating the
first layer with the pixel values

a(0) = x . (1.45)
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By using the parameters of the network, these activations are then propagated through the
network so that the activations in layer l are given by

a(l)(x) = f (l)
(
W (l)a(l−1)(x) + b(l)

)
. (1.46)

In this way, activations are passed from layer to layer until they finally activate the output layer
a(L)(x). If we assign a class of the CIFAR-10 dataset to each of the ten output neurons and
choose the labels so that they consist of vectors that have a 1 at the position of the class of the
image and zeros in all other entries, we can define the prediction of the network for the class of
the input image as the position of the neuron with the largest activation in the output layer.

At this point, of course, it is far from obvious how to choose the numerous parameters W (l) and
b(l) so that the network makes correct predictions. Therefore, one first selects the parameters
randomly, for example by filling the weight matrices with i.i.d. normal random numbers and
setting the bias vectors to zero. This, of course, makes the network before training perform
no better than directly guessing the predictions randomly. So the question is how to align the
parameters with the training data set such that the network can make accurate predictions.
This is where training comes into play: First, we define a measure for the error that the network
makes in the prediction of the training data, the so-called loss function, here exemplified by the
mean squared error

ℓ(x,y;W , b) = 1
2

10∑
i=1

∣∣∣a(L)
i (x) − yi

∣∣∣2 . (1.47)

During training, one shows the network (sequentially or in batches) the images of the training
dataset and minimizes the loss function using gradient descent (for details see Sec. 3.1.2) by
adjusting weights and biases in each iteration according to the direction of the gradient −∇W ℓ
and −∇bℓ, respectively. After training, one can use the test dataset to verify that the network
has also learned the underlying rule to correctly predict the classes of the unknown images.

An archetype of such networks – the perceptron consisting of only a single output neuron and
the input layer – was considered as early as 1958 with the goal of providing a highly simplified
model for a neuron in the brain [191, 192]. Then in the 1960s, the first feedforward networks
with multiple layers appeared [193–197] and again about ten years later training with gradient
descent and backpropagation became popular [42, 198–200] as it is still used today. However,
in this early period of neural networks, successes were limited and research had stalled by
the 1990s: For one, a lack of large data sets and computer resources limited the training of
sizable networks, but conceptual misunderstandings also prevailed which could not be resolved
until later [42]. On the one hand, it was believed that training with gradient descent must
necessarily get stuck in local minima [42]. On the other hand, one still expected the classical
bias-variance tradeoff [201], and thus assumed that a large number of parameters would have
to lead to extreme overfitting, which would prevent the networks from generalizing. Similar to
the fit of polynomials to a set of points, it was assumed that considering too small orders would
not allow the polynomial to capture all the features of the data, on the other hand, using an
order as large as the number of points may perfectly capture all the points, but also fits the
noise such that generalization to new points is not possible. It was not until after the turn
of the millennium that the field of Deep Learning experienced a renaissance, where with the
availability of larger datasets and computational resources, surprising successes were achieved in
image [42, 202] and speech recognition [42, 203] - areas where traditional algorithms have always
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struggled. Surprisingly, successful networks tend to have many more parameters than necessary
to remember the training dataset [190, 204–214]. Now, instead of the classical bias-variance
tradeoff, the networks were found to exhibit a double descent behavior of the generalization
error with the number of parameters [215–217], i.e., the networks have the best performance
when they are highly overparameterized.

In recent years, neural networks have become increasingly popular and have achieved tremen-
dous success in many fields [42–47]: For example, modern networks surpass human abilities in
image recognition [44], in board games such as chess [218] and Go [45], and even in complex real
time strategy games such as Star Craft II [219]. They have even enabled significant progress
in solving extremely hard problems such as protein folding [48]. Neural networks today have
applications in many areas of everyday life, and yet there is no comprehensive theoretical un-
derstanding of their learning dynamics and how information is encoded in the weights [37, 38].
Most recently, some successes have been made in understanding overparameterized networks in
the limit of infinitely wide layers using statistical analysis: Infinitely wide networks have been
modeled with Gaussian processes [220–223] and insights into the dynamics for training with
gradient flow [222–226] has been studied.

Another problem is obtaining accurate datasets for training. Although there is an abundance
of data, it is extremely time and resource consuming to generate correct labels for the datasets,
making mislabeled examples almost inevitable in large datasets [227]. Unfortunately, this label
noise significantly reduces the generalization ability of the networks [40], so it is desirable to
localize the noise in the networks, to make the networks more robust to mislabeling, or even
filter out the memorized noise from the learned weights.

1.2.2 Applications of random matrix theory to neural networks
In Sec. 1.1.1, we mentioned several examples of successful applications of RMT in a variety of
different fields. One use case we have omitted so far is the application of RMT to describe
neural networks. The large number of parameters of deep neural networks (DNNs) with non-
linear activation functions, makes it impossible to track the evolution of these parameters during
training [190, 204–214]. Especially in the case of pattern and image recognition tasks, the
problem is further complicated by the fact that the training data contains a lot of information
that is irrelevant for the underlying rule that the network is supposed to learn in order to
generalize to unseen data. On the other hand, neural networks are amazingly successful [42–
48, 228], and many trained networks and promising architectures are available – so data is
abundant. Thus, the situation is remarkably similar to that of nuclear physics in the 1950s,
where RMT had already been proven to be a fruitful tool.

To make progress with a statistical analysis of networks, the generalization performance of
single layer networks in the limit of an infinitely wide layer has been studied, where the asymp-
totic generalization error can be minimized by choosing weights based on a dataset by using
RMT [35, 36]. Another approach is based on understanding the generalization dynamics in
linear networks [229], i.e., the dynamics are made tractable by refraining from using nonlinear
activation functions. This statistical analysis is based on a teacher-student setup instead of
using an empirical training dataset. Here, the teacher is the network that generates the training
data, and the goal is to choose the weights of the student network, which may have different
dimensions than the teacher, so that it approximates the teacher as well as possible. These
applications of RMT have in common that the weights are optimally chosen based on a statis-
tical analysis rather than being trained on an empirical training dataset as is relevant for most
modern applications.
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Figure 1.4: Example for a random matrix theory analysis of the weight matrix of a typical
fully connected neural network (for details see Ch. 3). (a) Probability density of singular values
obtained with Gaussian broadening (window size 15) for the trained weight (blue) and the for the
random weight before training (red) together with the Marcenko-Pastur theory curve (black).
After training one observes a Marcenko-Pastur bulk and a heavy tail with some large singular
values. (b) Averaged p-values of Kolmogorov-Smirnov test of the singular vector entries against
a Porter-Thomas distribution. One observes a significant drop of the p-values for singular vec-
tors corresponding to large singular values which indicates deviations from the Porter-Thomas
distribution for the entries of these vectors. (c) Level spacing distribution of unfolded singular
values together with the Wigner surmise (main panel) and corresponding cumulative distri-
butions (inset) showing excellent agreement. (d) Level number variance of unfolded singular
values for the trained weight (blue) and random initial weight (red) together with the log-law,
Σ2(l) ∝ ln(2πl) + const. (black). We again find excellent agreement with the universal RMT
prediction. (e) Effect on the training accuracy of setting a percentage of the singular values
(starting from the smallest ones) to zero in networks trained with various amounts of label noise
(0% blue, 20% green, 100% brown). It becomes apparent that most of the singular values are
not relevant for the accuracy, the largest singular values contain the information learned during
training, and intermediate singular values and corresponding vectors are important in the case of
training with label noise. (f) Example for the level repulsion of singular values, i.e. the upwards
shift of singular values of a low rank matrix W0 (red) due to an i.i.d. normal distributed dense
bulk Wnoise with µ = 0 and σ = 0.02 (blue).

However, RMT has also been successfully applied to networks trained with backpropagation.
For example, one application [230] is based on the observation that learning can be significantly
sped up by a special initialization of weights so that the Jacobian between input and output has
singular values tightly localized around one [231]. Here, RMT is used to find initializations that
have Jacobians with such spectra [230]. Further analysis [232, 233] is based on the complicated
loss surface, i.e., the weight dependence of the prediction error, which is accessible via the
Hessian matrix of the loss function. It turns out that the spectra of the Hessian matrix for
networks trained on real data agree with universal GOE predictions [232–234].

Furthermore, the evolution of the spectra of the weight matrices during training has been
studied with RMT [235]: It turns out that the bulk of a typical spectrum of a weight matrix can
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be described with the Marcenko-Pastur distribution. Martin et al. also report a heavy tailed self
regularization, i.e. successfully trained modern DNNs had a spectral density with a powerlaw tail,
as known from spectra of heavy-tailed random matrices [236, 237]. On the other hand, a clear
separation between bulk and large singular values is observed for smaller, old networks. Based
on these findings, Martin et al. [238] use spectral norms of the weights, as well as fit results for
the exponents of the powerlaw tails to predict the generalization abilities of pre-trained networks.

In Chapter 3, we use RMT as a zero-information hypothesis to study the weights of trained
neural networks. In Fig. 1.4, we show an example of such an analysis for the weight matrix of
a feedforward network trained on the CIFAR-10 dataset (for more details see Ch. 3). We find
excellent agreement between the universal RMT predictions (level spacing statistics: panel c,
level number variance: panel d) and the trained weight matrix (blue), indicating that the bulk
of the weights remains random during training. The non-universal predictions (singular value
distribution: panel a; eigenvector entry distribution: panel b) show excellent agreement for the
parts of the spectrum with small singular values and deviations for large singular values. This
suggests that the learned information is stored in the largest singular values and corresponding
vectors only. To validate this hypothesis, we set parts of the singular values to zero, reconstruct
the weights, which then have lower rank, and evaluate the resulting network on the training data
set (panel e). We repeat this analysis also for networks trained with a noisy training set, where
we shuffled a certain percentage of the labels. It becomes apparent that indeed small singular
values contain no information and large singular values and corresponding vectors encode the
underlying rule of the training dataset. Interestingly, the intermediate singular values seem to
store the memorized noisy labels. Hence, there are two factors that negatively influence the
ability of the network to generalize when training with label noise: (i) the network additionally
has to memorize the noise and (ii) under the assumption that the rule can be encoded in a low
rank matrix, level repulsion with the random bulk causes an upwards shift of the few singular
values encoding the rule (panel f). To mitigate these effects, we propose a filtering algorithm in
Ch. 3: Assuming an additive noise term, we can revert this shift and by setting the majority of
the singular values to zero, we can remove parts of the memorized noise. We will find that this
can indeed significantly improve the generalization performance of networks trained with label
noise.

1.2.3 The CMA-ES machine learning algorithm
Before proceeding with an introduction to topological superconductor nanowires, we would
like to introduce another machine learning algorithm that we will use in the context of such
wires with strong disorder. The Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithm [239–248] is a population-based sampling algorithm for finding minima of non-
continuous, non-monotonic functions f(x) : Rn → R. In each iteration t, the algorithm generates
a population, i.e., a set of candidates for the minimum, by randomly drawing from a multivariate
normal distribution with covariance (σ(t))2C(t) and mean mt. Subsequently, these candidates
are evaluated with the function, and the algorithm then determines a new covariance matrix and
mean for the next population from the best candidates that yield the smallest function values.
In doing so, the algorithm learns the region of the minimum by first expanding the search region
to have a good chance of capturing points near the minimum, and then contracting the search
region around the minimum (see Fig. 1.5). This mode of operation is commonly called a black-
box optimizer – not because the optimization process is hidden, but because the algorithm does
not need any information about the function other than the function values for the candidates.
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Figure 1.5: Example application of the CMA-ES algorithm for finding the minimum of a
non-monotonic, noisy function f(x, y) : R2 → R. The ellipses show the search region encoded
in the covariance matrix C(t) and the step size σ(t) in which most points of current population
(black crosses) are located. The white numbers in the upper left-hand corners of the panels
indicate the step t, and the gray dotted line indicates the path of the mean values during the
steps. Initially the search region extends to explore a large region of the input space, and then
it contracts arround the region of the minimum. We choose an initial point (5, 5), an initial step
size 1.5, and a population size of 15.

Thus, the function is like a black box for the optimizer. This makes the CMA-ES machine
learning algorithm particularly powerful for optimizing high-dimensional, non-monotonic, and
non-continuous problems, and also, for example, for optimizing metrics in experiments where
the functional dependence between input and output may be so complicated that it actually
looks like a black box to the user.

Since the first proposal in 1995 by Hansen and Ostermaier [239], the algorithm has been
steadily developed [240–248] and has since found numerous applications to minimizing high-
dimensional problems [246, 249–252]. In the following, we summarize the algorithm [241, 253]
for optimizing the function f : RN → R (for a more detailed description of the steps of the
algorithm, see Appendix A.5): The CMA-ES algorithm is first initialized with a starting step
size σ(0), the starting correlation matrix C(0) = 1, and a gate configuration V (0)

g . In each iteration
t, a population of npop candidate configurations V (t)

g,1 , ..., V (t)
g,npop is drawn from a multivariate

normal distribution with mean V (t)
g and covariance matrix (σ(t))2C(t). Then, the function is

evaluated for each candidate in the population and based on the ñ candidates with the smallest
function values, the parameters for the next population are adjusted. Here, the new mean
V

(t+1)
g is determined as a weighted average of the ñ best candidates. Both the step size σ(t+1)

and the correlation matrix C(t+1) are indirectly adjusted by first updating so-called evolution
paths s(t)

C and s(t)
σ using weighted averages involving the path from the privious step and the

difference of the means δs(t+1) = (V (t+1)
g − V (t)

g )/σ(t). Then, the covariance matrix is updated
as a weighted average including s(t+1)

C [s(t+1)
C ]T and the step size is updated as a function of

∥s(t+1)
σ ∥ (for details see Appendix A.5). It turns out that separating σ(t) and C(t) improves both

robustness and speed of convergence of the algorithm by adjusting them on different time scales
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[243]. During optimization, the search region from which the population is drawn (determined
by V (t)

g and (σ(t))2C(t)) initially expands to find the region of the optimum, even if it is not
in the starting region. Subsequently, the search region then contracts around the optimum.
Convergence is achieved when either the difference of best function values |A(t)

best −A
(t+1)
best | or of

the best candidates ∥V (t)
g − V (t+1)

g ∥ is repeatedly smaller than a tolerance value.
Conveniently, a mature Python implementation of the CMA-ES algorithm exists in the pycma

[254] package, which we use in Sec. 2.5 to optimize topological superconductor wires with strong
disorder, allowing us to stabilize Majorana zero modes and compensate for disorder effects. Here,
a special requirement for an optimization algorithm is that it can also optimize non-continuous
functions caused by the disorder and that the number of necessary function evaluations, i.e.
measurements in an experiment, is kept as small as possible, e.g. by avoiding many measurement
points for approximating gradients.

1.3 One-dimensional Majorana wires

In recent years, Majorana zero modes (MZMs) have received much attention as potential building
blocks for qubits in a quantum computer because of their unique properties [56, 59, 79–84].
One characteristic that makes them particularly suitable for this purpose is their topological
protection, i.e. that they are robust against small local perturbations: MZMs are strongly non-
local zero-energy states that occur, for example, at the edges of topological superconductors
[86, 255] and are therefore separated from higher energy levels by the superconducting gap
[79, 255]. Moreover, MZMs – when moved around each other – exhibit interesting braiding
statistics that enable protocols for partially protected operations on Majorana qubits [79, 256].
Particularly, scalable array structures of Majorana nanowires provide promising architectures for
realizing quantum computers with many qubits [79, 83], but currently there are still numerous
problems with their realization [102–106]. In the following, we start with a brief introduction
into the properties of MZMs and their occurrence in topological superconductors. Furthermore,
we describe the problems currently encountered in realizing MZMs in experiments and motivate
possible solutions, which we discuss in detail later in Ch. 2. As the last part of this introductory
section, we summarize some basic ideas to motivate how MZMs might be used as qubits in the
future.

1.3.1 Majorana zero modes in topological superconductor nanowires
In 1928, P. Dirac formulated the Dirac equation

i∂tψ(x, t) = [−iα · ∇ +mβ]ψ(x, t) (1.48)

to describe relativistic fermions [255, 257, 258], where ψ is a spinor with four components, such
that in Dirac’s representation the first two describe spin-↑ and spin-↓ electrons, and the other two
components describe solutions with negative energy [259]. Here we use units in which ℏ = c = 1.
Choosing the 4 × 4 matrices αi and β such that {αi , αj} = 2δij , {αi , β} = 0, and β2 = 1, the
solutions of the Dirac equation also fulfill the Klein-Gordon equation, which is derived from the
relativistic energy-momentum relation by the typical substitution p → −i∇ and E → i∂t [260].
It will become relevant later that with Dirac’s choice of matrices,

αi =
(

0 σi

σi 0

)
β =

(
1 0
0 −1

)
, (1.49)
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by complex conjugation of the Dirac equation it is found that the complex conjugate wave-
functions ψ∗ satisfies a different equation than ψ. The main criticism, however, which was
raised against Dirac’s theory was that the equation implies an infinite number of solutions with
negative energy: If this was the case, a system could just keep lowering its energy by emitting
photons [259, 261]. Dirac solved this problem by assuming that all negative states are filled by
an electron and that removing an electron with energy −ε from this Dirac sea costs an energy
ε to create a hole with positive energy ε, equal mass me but opposite charge −e [259, 261]. If
ψ is a solution of the Dirac equation, then the solution of the corresponding antiparticle with
opposite charge (the positron) is given by the charge conjugate spinor Cψ∗ [260, p. 503]. For
Cψ∗ to actually be a solution, C must satisfy the following conditions: Cβ∗C−1 = −β and
C(βαi)∗C−1 = −βαi. In the representation chosen by Dirac, Eq. (1.49), this is satisfied by the
choice C = iβα2, since the real matrices βα1, βα3, and β anticommute with C and the imagi-
nary matrix βα2 commutes with C [260, p. 503]. Thus, the positron solution to the associated
electron solution ψ(x, t) is given by iβα2ψ

∗(x, t) [260, p. 504]. After initial skepticism about
Dirac’s solution to the problem of negative energy states [259, 261], C. D. Anderson was able to
demonstrate the existence of positrons in 1933 when he observed cosmic rays creating positively
charged particles with the mass of an electron in a cloud chamber [262]. Subsequently, the Dirac
equation was accepted as the standard description for relativistic electrons [260, p. 500].

Motivated by the success story surrounding the prediction and discovery of the positron, in
1937 E. Majorana considered the Dirac equation with a focus on real solutions, which cannot
be found with Dirac’s choice of the matrices αi and β [263]. However, if one chooses a different
representation of the matrix algebra [255, 263]

α1 =
(

0 σ1
σ1 0

)
, α2 =

(
0 σ3
σ3 0

)
, α3 =

(
1 0
0 −1

)
, β =

(
0 σ2
σ2 0

)
, (1.50)

then this choice also satisfies the necessary conditions {αi , αj} = 2δij , {αi , β} = 0, and β2 = 1.
In this representation, complex conjugation of the Dirac equation yields

−i∂tψ
∗(x, t) = [iα · ∇ −mβ]ψ∗(x, t) , (1.51)

since all terms pick up a minus sign [255]. Now if ψ is a solution of the Dirac equation, then ψ∗ is
also a solution and since the charge conjugation conditions Cβ∗C−1 = −β, C(βαi)∗C−1 = −βαi

are directly satisfied for C = 1, ψ∗ describes the antiparticle to ψ [255]. This also opens the
possibility for real solutions ψ = ψ∗ and thus for charge neutral particles which are their own
antiparticle [263] – the so-called Majorana fermions [255]. Thus, in second quantization notation,
such elementary particles are described by creation and annihilation operators that satisfy the
Majorana condition

γ = γ† . (1.52)

To this day, however, there is no conclusive evidence for the existence of Majorana fermions
as elementary particles [255], so here we instead consider quasiparticles, i.e., emergent collective
excitations in condensed matter systems. To satisfy the Majorana condition, it is promising
to consider superconductors [264], since there, due to particle-hole symmetry, the annihilation
operator for a quasiparticle with energy E is equal to the creation operator for a particle with
energy −E, i.e. γ†

E = γ−E . Therefore, a neutral quasiparticle with zero energy could satisfy
the Majorana condition as an equal superposition of hole and electron. Unfortunately, however,
this does not work for a conventional s-wave superconductor, where Cooper pairs are formed
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from electrons with opposite spin, and therefore γ = uc↑ + v∗c†
↓ cannot be equal to γ† for any

choice of u and v. Thus, one needs a more exotic superconductor, for example a spinless p-
wave superconductor with the quasiparticle annihilation operator γ = uc + v∗c†, for which the
Majorana condition for an equivalent superposition of hole and electron, u = v, could be satisfied
[265]. Indeed, Majorana modes have been predicted in numerous systems: Among others, as
quasiparticle excitations of the ν = 5/2 quantum Hall state [266, 267], at the edges of two-
dimensional p-wave superconductors [86, 268], in vortex cores of spinless px+ipy superconductors
[256, 267, 269–272], in trapped cold atom systems [255, 273–276], in coupled quantum dots
[277, 278], and for a chain of magnetic addatoms on an s-wave superconductor [279–282]. In
the following, we will focus on Majorana modes in low-dimensional topological superconductors,
since there are promising protocols for their application as qubits in a quantum computer [79,
283] (see also Sec. 1.3.2 below).

A toy model of such a topological p-wave superconductor on a lattice with N lattice sites is
the Kitaev chain [86] with Hamiltonian

H =
N−1∑
j=1

[
−tc†

j+1cj + ∆c†
jc

†
j+1 + h.c.

]
−

N∑
j=1

µc†
jcj , (1.53)

where cj (c†
j) annihilates (creates) an electron at lattice site j, −t is the energy for nearest

neighbor hopping, µ is the chemical potential, and ∆ describes the superconducting excitation
gap for p-wave pairing. We first introduce two auxiliary operators [86]

γ2j−1 = c†
j + cj (1.54)

γ2j = i
(
c†

j − cj

)
(1.55)

for each lattice site j satisfying the Majorana condition γ†
l = γl and obeying the anti-commutation

relations {γm , γl} = 2δlm thus squaring to one, γ2
l = 1. A fermion is then described by the

combination of two such Majorana operators, cj = (γ2j−1 + iγ2j)/2. We note, however, that we
can always define these operators, in particular even when there are no Majorana quasiparticles
in the system, since the operators in general do not create an eigenstate of the Hamiltonian.
For the purposes of this section, we consider only two different examples of parameters [cf. 86]
showing two distinct topological phases, and postpone a more detailed discussion to Sec. 2.2.1
after we have introduced the necessary methods for the topological classification of such systems.
For the first example, the topologically trivial case t = 0 = ∆, µ < 0, the Hamiltonian in the
Majorana operators reduces to

Htriv = − i
2

N∑
j=1

µγ2j−1γ2j + const. , (1.56)

such that the Majorana operators belonging to the same lattice site are coupled (Fig. 1.6a). In
contrast, in the more interesting topological case t = δ > 0, µ = 0, one finds the Hamiltonian

Htop = i t
N−1∑
j=1

γ2jγ2j+1 , (1.57)

which now couples Majorana operators from adjacent lattice sites (Fig. 1.6b). However, since
the wire has two ends at j = 1 and j = N , this leads to the Majorana operators γ1 and γ2N
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Figure 1.6: Special examples for the Kitaev chain [86] in the (a) topologically trivial regime
for t = 0 = ∆, µ < 0 and (b) topological regime for t = ∆ > 0, µ = 0. Each ellipse
represents a lattice site j, the dots are Majorana operators, and the lines represent couplings in
the Hamiltonain. In the topological case (b), there are two uncoupled Majorana operators (red)
that can form a hightly non-local Majorana zero mode.

remaining uncoupled and hence they do not appear in the Hamiltonian. This then allows the
definition of a strongly non-local fermion quasiparticle operator [86]

a0 = 1
2 (γ1 + iγ2N ) , (1.58)

which has contributions from the two Majorana operators at the wire ends and does not appear
in the Hamiltonian, thus describing a zero-energy excitation. We discuss later in Sec. 2.2.1 that
the Kitaev chain can be derived as a lattice approximation of a continuum p-wave superconduc-
tor. It turns out that the presence of Majorana excitations is linked to the topological phase,
which exists for an extended parameter range. In fact, to change between topological phases,
the excitation gap must be closed so that the Majorana modes exist as non-local zero-energy
excitations at the boundaries between different topological domains. Thus, the wave function
for a Majorana mode in a continuous topological superconducting wire is localized at the wire
ends and decays exponentially into the wire. However, the Majorana states described here in
the context of condensed matter – apart from the fact that their operators satisfy the Majorana
condition – have nothing in common with the fermions predicted by E. Majorana, since they are
not elementary particles with a dispersion, but bound states. Therefore, to distinguish between
them, one uses the term Majorana zero modes (MZMs) instead of Majorana fermions [255].

As mentioned earlier, a conventional s-wave superconductor is not sufficient to realize a topo-
logically nontrivial phase and MZMs, and it turns out that intrinsic p-wave superconductors are
hard to find, making realization of MZMs in such systems unrealistic at the moment [255, 284–
287]. To circumvent this problem, hybrid systems have been proposed that are effectively p-wave
superconductors under certain conditions [87–89]. For this purpose, a conventional s-wave super-
conductor such as aluminum is placed on top of a semiconductor with strong spin-orbit coupling,
for example, InAs [87–89]. Here, the proximity effect [288–292] induces superconductivity in the
semiconductor, where the spin-orbit coupling rotates the spin directions at the Fermi level for
certain choice of parameters such that effective p-wave pairing is induced. The third ingredient
is a strong Zeeman field, which ensures that effectively only one spin component exists at the
Fermi level. This makes it possible to engineer an effective spin-polarized p-wave superconductor
that realizes topological superconductivity and thus MZMs for sufficiently large magnetic field.
We call such hybrid wires Majorana wires or Rashba wires in the following, since the considered
spin-orbit coupling is of the Rashba type.
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Figure 1.7: Moving and braiding Majorana zero modes (red) in topological superconductor
wires by using arrays of gates (green) to adiabatically tune regions of the wire between topological
(blue) and trivial phase (green) as described by Alicea et al. (a) By slowly increasing the gate
voltage from one end towards the middle of the wire, a MZM can be moved with the edge of
the topological region. By tuning the center region of the wire into the trivial regime, two new
MZMs at the new edges of the two topological regions can be created. By slowly lowering the
potential again, the MZMs can also be fused again. (b) Braiding operation to exchange the
MZMs from both ends by using a T-junction. Figure adapted from [79].

1.3.2 Majorana zero modes for quantum computation

Since a pair of Majorana operators γ1, γ2 leads to a zero energy state c12 = (γ1 − iγ2)/2, it
creates a degenerate ground state in which information can be encoded, e.g. one can assign
the value 0 to the qubit if the level is empty, |0⟩, and 1 if the level is occupied, c†

12|0⟩ = |1⟩.
The non-local character of the MZMs, as well as their energy in the middle of the excitation
gap, makes them topologically protected, i.e. weak, local perturbations cannot affect the state,
which protects it from decoherence. Since fermion parity is preserved in the superconductor, i.e.
the condensate contains an even number of electrons, it is necessary to consider four Majorana
operators as one qubit [293].

In addition to topological protection and the degenerate ground state, another property of
Majoranas makes them particularly interesting as building blocks for qubits – their exotic braid-
ing statistics. Here, braiding refers to moving Majoranas around each other, where the exchange
of γi and γj can be described by the operator [255, 256]

Bij = e−πγiγj/4 = 1√
2

(1 − γiγj) (1.59)

for which Bijγi = γjBij and Bijγj = −γiBij . We again use that, as for all Majorana operators,
they square to one, γ2

n = 1, and they anti-commute among each other, {γi , γj} = 2δij . A twofold
exchange, B2

ij = −γiγj , brings the Majoranas back to the initial position, and if we consider four
Majorana operators γ1, γ2, γ3, and γ4, it turns out that the braiding statistic is non-Abelian,
since the order of the exchange matters. For example for braiding γ1 around γ2 and γ2 around
γ3, one finds γ1γ3 = B2

12B
2
23 ̸= B2

23B
2
12 = γ3γ1. It is also interesting to note that moving

Majorana γ2 around Majorana γ3 and then braiding γ1 around γ2 yields the same operator
as if γ1 had been moved around γ3. For these reasons, braiding can be used to implement a
topologically protected NOT gate as described by Sato et al. [255]: Choosing the representation
such that the fermion operators for the four Majoranas are given by c†

12 = (γ1 + iγ2)/2 and
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c†
34 = (γ3 + iγ4)/2, braiding Majorana γ2 around Majorana γ3, as described by B2

23, transforms
the fermion operators according to: B2

23c12 = c†
12B

2
23 and B2

23c34 = −c†
34B

2
23, thus turning a

qubit from the |0⟩ to the |1⟩ state and vice versa.
Although one can formally construct a description of the exotic non-Abelian braiding statistics,

the question arises how to move these bound states in the quasi-one-dimensional systems in the
first place. For this purpose, Alicea et al. [79] describe a protocol for performing braiding
operations in Majorana wires: Since MZMs occur at the boundaries between topological and
trivial domains, one can bring an array of gates into proximity with the wire and adjust which
regions of the wire are in the topological phase by applying gate voltages. By adiabatically
adjusting the voltages, i.e. slow adjustment such that the system cannot leave the ground state,
the boundaries of the topological region and hence the Majoranas can be shifted (Fig. 1.7a). If
one slowly creates a trivial region in the middle of the topological region, new MZMs can be
created and if one reverses this process, it is also possible to merge Majoranas (Fig. 1.7a). By
implementing a T-junction, Alicea et al. [79] also show a protocol for exchanging two Majoranas,
which can also be extended to a full braiding process by repeating the procedure a second time
with the same orientation [79]. The advantage of this implementation with Majorana wires is
not only that the Majoranas can be manipulated easily and precisely using gates, but that these
structures can also be extended for larger systems consisting of many qubits [79, 83, 84].

Although the exotic braiding statistics allow for a topologically protected implementation
of most of the operations needed for a complete quantum computing protocol, there are a few
operations (for example special phase gates and direct evaluation of the eigenvalue of a product of
four Majorana operators) for which no topologically protected implementations are known [294–
297]. Therefore, topological operations must be supplemented by conventional implementations
that may induce decoherence [295].

1.3.3 Challenges for realization and detection of Majorana zero modes
Not long after the proposal of the Majorana wire, the construction of such hybrid systems could
be realized in the laboratory [90]. This raises the question of how to experimentally demonstrate
that MZMs are indeed present in a given wire. The first signatures that could be experimentally
detected are based on the zero-energy nature of Majorana modes: If one connects a Majorana
wire at one end to a lead and measures the conductance through the wire between the lead
and the superconductor as a function of an applied bias voltage (Fig. 1.8a), one expects in
the trivial case (red) that the conductance is zero for a small bias voltage and increases only
when the voltage reaches the magnitude of the excitation gap, i.e., when the incoming electrons
have enough energy to tunnel through the quasiparticle states above the excitation gap. In
contrast, in the topological case (blue) with MZMs, there is a state at zero energy through
which tunneling can occur even without bias voltage. A signature for MZMs is therefore a
zero-bias conductance peak in the middle of the excitation gap, which theoretically has a height
of 2e2/h [89, 298]. While the appearance of the zero-bias conductance peak at the expected
transition to the topological phase could actually be observed, its full height was not, which has
been explained by disorder and imperfect couplings to the lead [90–93].

Another signature can be observed when the superconductor is not grounded and the wire
is placed between two weakly coupled leads (Fig. 1.8b) so that it is in the Coulomb blockade
regime, i.e. due to repulsion with the N0 electrons in the wire, an additional charge energy Ec is
necessary to bring another electron into the wire. If a gate is brought into proximity of the wire,
the energy of the electrons in the wire can be lowered by eVgN0 by applying a gate voltage Vg.
Whenever the contribution of the charging energy cancels the energy due to the gate, such that
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Figure 1.8: Signatures of Majorana zero modes based on the zero energy property (blue) and
for comparison topologically trivial counterparts in the absence of a zero energy state (red):
(a) When measuring the conductance through a grounded wire with Majorana zero modes as a
function of the source-drain voltage VSD, a zero bias conductance peak is found. (b) Measuring
the conductance through the wire in Coulomb-blockade as a function of the external gate voltage,
one observes a vanishing even-odd conductance resonance spacing difference if Majorana zero
modes are present. The upper panels depict a sketch of the system with leads (gray) and
Majorana wire consisting of semiconductor (blue) and superconductor (orange). If the wire is
in the toplogical phase, Majorana zero modes (red ellipses) are present at both ends of the wire.
For the wire in Coulomb blockade in panel (b), additionally a gate (green) is placed in proximity
of the wire.

it is energetically equivalent whether there are N0 or N0 + 1 electrons in the wire, one observes
a conductance resonance. If the voltage is increased beyond the resonance, N0 + 1 electrons
are henceforth in the ground state of the wire. However, the condensate of the superconductor
consists of Cooper pairs, i.e., it always has an even number of electrons, which means that in
case of an odd number of electrons in the wire, the lowest level E0 must also be occupied in the
ground state. This results in the conductance resonances having a spacing Ec ± E0, where the
positive sign applies to an even number of particles, and the negative sign is valid for an odd
number of particles. Thus, in the trivial case where E0 corresponds to the size of the excitation
gap, there are significant differences between the spacings of the conductance resonances for
even and odd particle number parity (red). This even-odd spacing difference vanishes in the
topological case with MZMs (blue) where E0 = 0, which has also been observed experimentally
[95, 130].

The problem with these signatures is that they occur whenever a zero energy state exists
in the excitation gap, regardless of whether it is a topological MZM, or just a trivial Andreev
bound state (ABS). These trivial ABS can also be pinned at zero energy for extended parameter
ranges [111–128, 299] and occur, for example, when the boundary potential between wire and
leads slowly decays into the wire [112]. Thus, these energy-based signatures cannot provide
experimental evidence for the presence of MZMs, but can only rule them out. It is therefore
desirable to consider signatures that are instead based on the non-locality of MZMs and are thus
harder to be mimicked by trivial states [129, 132, 300, 301].

Currently, another major problem – if not the main problem – is the occurrence of disorder
in the hybrid systems [102–105]. Here, strong disorder can not only destroy the topological
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phase and the excitation gap [107], but it can also induce trivial zero modes and ABSs in the
wire [102, 104, 108–111], giving the appearance of a topological phase in the trivial region. The
extent of this problem is also evident from a recent study by the Microsoft Quantum group
[106]: By using a sophisticated protocol of multi-terminal measurements to determine whether
a topological phase exists in the device with high probability [302], no topological phase can
be detected in most of the elaborately fabricated hybrid wires. Theoretical simulations of 50
disorder profiles have shown that only in ten cases the existence of a topological phase can be
demonstrated4 [106]. This means that disorder alone causes about 80% of the fabricated wires to
be unusable. This makes it seem hopeless to fabricate entire arrays of wires to enable quantum
computing on a large scale, unless a way is found to control the disorder and increase the yield
during fabrication. In addition, they observe large variations in the location of the topological
phase and the size of the excitation gap, such that a method for stabilizing MZMs would be
beneficial.

1.3.4 Amplitude of coherent transmission
To address the issues described in the previous section, we here consider the amplitude of co-
herent transmission through a Majorana wire, a metric that probes the non-locality of MZMs,
is able to distinguish MZMs from trivial ABSs, and whose maximization can be used to coun-
teract disorder effects. For this purpose, we consider the electron interferometer setup shown
in Fig. 1.9a, where a Majorana hybrid wire is embedded in one arm of the interferometer, the
reference arm contains a normal wire, and a flux Φ is applied through the interferometer loop.
It is found that the current through the interferometer in first order of interference is given by
[303]

I = e2

h

∑
σσ′

|TLR
σσ′ |2 = e2

h

{∑
σσ′

|Tσσ′ |2 + 2|T ref |2 + Iintf

}
(1.60)

Iintf = 2e2

h
|T ref | |T↑↑ + T↓↓| cos(∆φ+ β) . (1.61)

One can therefore determine the coherent transmission amplitude A = |T↑↑ + T↓↓| from the
amplitude of the current oscillations when the flux Φ is varied. Here |Tσ|2 is the probability
that a particle with spin σ tunnels through the Majorana wire. We assume that the wire is
in the Coulomb blockade regime with a large charging energy Ec, such that it contains a fixed
number of electrons in the ground state and additional electrons cannot enter away from a charge
degeneracy point due to energetic reasons. This charging energy is indirectly proportional to
the wire length L, i.e. Ec ∼ 1/L. Away from the charge degeneracy points, transport is only
possible via cotunneling processes, where an electron enters the wire only in a virtual state and
then quickly leaves again – compatible with the energy-time uncertainty. The probability of an
electron tunneling from the lower interferometer arm into the left end of the wire then depends
on the weight of the wave function at the left end of the wire yL, and analogously for the right
end yR. Thus, for tunneling through a dominant level with wave function φ, the transmission
amplitude is approximately given by A ∼ |φ(yL)φ(yR)|/Ec [129] and Ec ∼ 1/L as described
above. Hence, when tunneling through an extended trivial level φtriv(yR/L) ∼ 1/

√
L, we expect

a small transmission amplitude that is independent of the wire length. On the other hand, if the
transmission occurs through a topological Majorana level exponentially localized at both wire
ends, i.e. φtop ∝ χL + χR with χL(y) ∼ e−y/ξ/

√
ξ and χR(y) ∼ χL(L − y), the transmission

4It may be present but only when computing the Pfaffian topological invariant (see also Sec. 2.1).
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Figure 1.9: Example results of our study of Majorana wires (for details see Ch. 2). (a) Inter-
ferometer setup containing the Majorana wire (semiconductor: blue, superconductor: orange,
array of gates: green) in one arm (adapted from [131]). (b) Magnetic field dependence of the
amplitude of coherent transmission through the interferometer. One observes a maximum of
the transmission amplitude soon after entering the topological phase by tuning the Zeeman field
Ez above Ez,top. (c) Full probability function |Ψ0|2 = |u0|2 + |v0|2 (lower panel, blue), hole
contribution |v0|2 (red), and electron contribution |u0|2 (green) of the lowest energy Bogoliubov
eigenstate in a Majorana wire with strong disorder (upper panel, average disorder over the re-
gions of the individual gates shown in red). The disorder completely destroyed the Majorana
modes (|v0| ≠ |u0|) such that the transmission amplitude has a very small value of 1.71 · 10−5.
(d) By using optimized gates V opt

g (upper panel) determined by maximizing the transmission
amplitude with the CMA-ES machine learning algorithm the Majorana zero modes are fully
restored (|u0| = |v0|) and their localization at the wire ends is improved even compared to a
clean wire. Optimization of only 20 gates yields full restoration of the Majorana modes and an
improvement of the amplitude of two orders of magnitude. In the upper panel, we show the
difference ∆V opt

g of the optimized gate voltage V opt
g and the gate voltage obtained for optimizing

in case of a clean wire. This difference shows how the machine learning algorithm learns the
disorder profile where the negative averaged disorder over the gates is shown in red, in very good
agreement with ∆V opt

g .

amplitude is proportional to the wire length Atop ∼ L/ξ. Here, ξ is the coherence length of the
MZMs, which determines the strength of localization and hence the transmission amplitude for
transport through the Majorana level, and which is independent of the length of the wire. In
Fig. 1.9b, the transmission amplitude is shown as a function of the external Zeeman field. If one
starts with a small Zeeman field Ez so that the hybrid wire is initially in the trivial phase, one
observes a small amplitude. If one then increases Ez, the transition to the topological regime
takes place (vertical line), leading to the formation of the MZMs, for which the correlation length
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can be extracted. Shortly after entering the topological phase, the correlation length becomes
very short, and it then increases proportionally to the Zeeman field deeper in the topological
phase [131]. The resulting maximum of the transmission amplitude as a function of the Zeeman
field soon after entering the topological phase has recently been observed in an experiment by
Whiticar et al. [130]. Following our reasoning, we also expect the height of this maximum to
depend linearly on the wire length L.

For the same setup, Drukier et al. [304] studied the phase of the complex transmission Tσσ

based on which they proposed another signature of MZMs: For transport through a trivial
level, the phase is expected to jump by a value of π when the gate voltage Vg is changed from
one conductance resonances to the next one – a so-called phase laps occurs. The authors of
Ref. [304] were able to show theoretically that these jumps are forbidden by the properties of
Majorana wave functions, and therefore phase lapses do not occur for transport through MZMs.
Unfortunately, the absence of phase lapses is not limited to the topological regime [304, 305].
In the recent experiment by Whiticar et al. also some results for phase differences between
resonances are shown, but they conclude that the results for the transmission phase in the
Coulomb valleys are “not currently understood” [130]. The transmission phase is apparently
more difficult to measure, and it is assumed that it might also be sensitive to the influence of
higher levels.

We argued that the magnitude of the transmission amplitude depends strongly on the non-
local character of the MZMs such that by maximizing the transmission amplitude also the
desired features of the MZMs are improved. We exploit this by placing an array of gates under
the Majorana wire (Fig. 1.9a, green) and optimizing the voltages on the gates using the CMA-ES
machine learning algorithm to maximize the transmission amplitude [303]. Indeed, if we perform
this optimization in a wire with strong disorder that destroyed the MZMs and the topological
phase (Fig. 1.9c), we find that the optimized gate voltages are able to reliably restore the MZMs
and cancel the disorder (Fig. 1.9d). Such optimization could significantly contribute to solving
the problem of the poor yield in the fabrication of Majorana devices and thus be a step towards
the realization of quantum computers with Majorana qubits.

1.4 Entanglement entropy in one dimensional fermion chains
In recent years, studies of entropy in quantum systems have gained much attention for quantum
information processing [306, 307]. In classical systems, entropy measures the lack of information
needed to infer the microstate of a system from a given macrostate [307]. In quantum systems,
however, entropy can result from entanglement even if the microstate is completely known [307].
For instance, if we consider a quantum system in a pure state |ψ⟩, such that its density matrix is
given by ρ = |ψ⟩⟨ψ|, and partition it into two regions A and B, we can calculate the entanglement
entropy between the subregions from the reduced density matrix for region A, using the von
Neumann entropy

S1 = −Tr[ρA ln ρA] . (1.62)

Here, the reduced density matrix is obtained by tracing out region B: ρA = TrBρ. In Fig. 1.10
this is shown for two different situations: For the case where there are no correlations between
region A and B (panel a), such that we can write the full state as the product of the states of
the regions, |ψ⟩ = |ψ⟩A ⊗ |ψ⟩B, the reduced density matrix describes a pure state resulting in
an entropy that is zero. On the other hand, if there are correlations between the subsystems
(panel b), tracing out region B yields a mixed state that has nonzero entropy [306]. Since this
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Figure 1.10: Entanglement entropy under a spatial bipartition of the system, a lattice on a
ring, in subregions A and B. In the left panel arrows indicate correlations, in the center panel
the system is devided into the subregions, and in the right panel, region A is traced out. In
(a), there are no correlations between sites from different regions, such that the full state |ψ⟩
is a product of pure states from the subregions |ψ⟩ = |ψ⟩A ⊗ |ψ⟩B. Hence, after tracing out
region B, the state in the remaining region is still a pure state with zero entropy. In case (b),
the subregions are entangled, such that a mixed state and positive entropy are obtained after
tracing out region B. A similar figure is shown in Ref. [306].

entropy is a measure of the correlations between subsystems, it determines how information
about a sudden change in the system propagates and how the system equilibrates once it has
been brought out of equilibrium [136–141, 308]. Being sensitive to correlations in the system, it
is also interesting as a signature for phase transitions [309] in many-particle systems.

Since interactions in quantum systems are typically quite short ranged, the spatial entangle-
ment entropy of the ground state usually scales with the size of the boundary of the subregion
rather than its volume, which is commonly referred to as an area law and has been studied in
numerous systems [307]. Instead of this well-studied spatial entanglement entropy, we focus in
the following on the less well understood particle entanglement entropy, for which subregions
are partitioned into subsets of particles rather than spatially.

1.4.1 Particle entanglement entropy
One problem for dividing a system into two partitions based on particles is that the fermions
considered here are indistinguishable, and we cannot simply assign labels to the particles in the
second quantization notation. It is however possible to consider the properly anti-symmetrized
wave function in first quantization and then to trace out the particle positions of one of the
partitions [143, 144, 153, 310–312]. If the N fermions are at positions (i1, i2, ..., iN ), the reduced
density matrix for partitioning into n particles in partition A and N − n particles B can be
obtained via [161]

ρ(i1...in),(j1,...,jn)
n =

∑
in+1,...,iN

Ψ∗
0(i1, ..., in, in+1, ..., iN )Ψ0(j1, , ...jn, in+1, ..., iN ) , (1.63)

where the wave function of the state |ψ⟩ is defined as Ψ0(i1, ..., iN ) = ⟨i1, ..., iN |Ψ0⟩. For a
one-dimensional lattice, we will see that the density matrix can alternatively be computed in
second quantized notation as an expectation value of field operators [145, 313]

ρ(i1...in),(j1,...,jn)
n = ⟨Ψ0|c†

i1
· · · c†

in
cj1 · · · cjn |Ψ0⟩/

(N
n

)
, (1.64)
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where c†
i (ci) creates (annihilates) a particle at site i. The particle entanglement entropy is then

calculated as S1(n) = −Tr[ρn ln ρn], and it differs substantially from its spatial counterpart:
Unlike spatial entanglement, the particle entanglement entropy is sensitive to interactions and
particle statistics [146–157]. For instance, it is zero for free bosons, but scales like S(n) =
ln
(N

n

)
for non-interacting fermions [152]. Moreover, as the spectrum of the correlation matrix

is invariant under unitary transformations, the density matrix is independent of the choice of
modes (e.g. real space, momentum, or energy). Like spatial entanglement entropy, particle
entanglement entropy is sensitive to many-body localization [314, 315] and telegraphs phase
transitions [309, 316]. However, doubts have been raised that the particle entanglement entropy
could actually be determined experimentally, since the particles are indistinguishable and thus
cannot be labeled, and that it might therefore be useless for quantum information processing
[317–319]. But, it has been shown that the entanglement of indistinguishable particles can be
mapped onto physically accessible modes [158], as well as that the connection to the correlation
function opens up possibilities for experimental measurement of particle entanglement [159, 160,
320].

In addition to obtaining the particle entanglement entropy from its spectrum, the n-RDM also
provides access to any n-particle observable. It might also be possible to expand the n-RDM
in more accessible reduced density matrices for lower n, similar to the classical case [321, 322].
Therefore, it is reasonable to focus on the 1-RDM as the first step of such an expansion in
Ch. 4. Furthermore, in the case n = 1, we can perform an analytic bosonization calculation and
compare with numerical results.

1.4.2 The J-V model

We focus in the following on N fermions on a one-dimensional lattice with L lattice sites, which
are described by the J-V Hamiltonian

H = −J
L∑

i=1
(c†

i+1ci + c†
ici+1) + V

L∑
i=1

nini+1 . (1.65)

Here J is the nearest-neighbor hopping parameter, V is the interaction energy for particles on
neighboring lattice sites, and the operators c†

i and ci create and annihilate a particle on lattice
site i, respectively. We consider the case of a periodic lattice and measure length in units of the
lattice constant. This J-V model is a generic integrable model for spinless fermions which can
be mapped to a spinful XXZ model and then solved using a Bethe ansatz [323–326]. This allows
us later to map the parameters J and V to those of a continuous Luttinger liquid model that can
be solved analytically. Thus, the J-V model is an ideal platform to study particle entanglement
entropy.

From mapping the J-V model onto an XXZ chain [323–325], one finds that phase transitions
occur at interactions V/J = ±2. For large negative interactions V/J < −2, it is advantageous
for the fermions to be on adjacent lattice sites, thus favoring clustering in the ground state
in this phase separated solid phase. On the contrary, in the charge density wave phase for
V/J > +2 it is energetically very unfavorable to have fermions on adjacent sites, such that an
empty site between two fermions is preferred. We are later particularly interested in the case
−2 < V/J < 2 in the so-called Luttinger liquid phase, where the weak interactions allow us to
perform an analytic bosonization field theory calculation.

First, we consider an example without interaction term (V = 0) for a lattice with L = 2N
lattice sites, odd number of particles N , and periodic boundary conditions, cL+i = ci. For this
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case, we express the Hamiltonian, Eq. (1.65), using the Fourier transform

cj = 1√
L

∑
k

eikjck (1.66)

ck = 1√
L

∑
j

e−ikjcj (1.67)

with k = 2πm/L, m ∈ [−N,N) yielding the diagonal form of the Hamiltonian

H = −2J
∑

k

cos(k)c†
kck . (1.68)

For odd N , the ground state is then given by |Ψ⟩ = ∏
|k|<kF

c†
k|0⟩ with Fermi momentum

kF = π(N − 1)/L. Thus, we find the momentum distribution

nk = ⟨c†
kck⟩ =

{
1 |k| < kF

0 otherwise
. (1.69)

This also allows to calculate the 1-RDM

ρij
1 = 1

N
⟨c†

kck⟩ = 1
NL

∑
kk′

e−ikieik′j⟨c†
kck′⟩ (1.70)

= 1
NL

∑
|m|<(N−1)/2

e−i2πm|i−j|/L (1.71)

= 1
NL

sin(πN |i− j|/L)
sin(π|i− j|/L) , (1.72)

for which we already know the eigenvalues from Eq. (1.69):

λm =
{

1/N for |m| ≤ (N − 1)/2
0 otherwise

, m ∈ [−N,N) . (1.73)

From this spectrum we can directly calculate the one-particle entanglement entropy, which is
given by

S1 = −
N∑

m=−N

λm lnλm = −N 1
N

ln
( 1
N

)
= ln(N) ≡ Sff . (1.74)

We will later start from this case of free fermions and consider an interaction quantum quench
[135], i.e. a sudden change of the interaction strength, 0 → V . In this case, the time evolution of
the particle entanglement entropy contains information about the thermalization of the system
after the quench [136–141, 308], where it could be shown that in the thermodynamic limit
asymptotically – for long times after the quench – spatial and particle entanglement entropy are
equivalent [308].

In Ch. 4 we compute the one-particle entanglement entropy numerically using exact diago-
nalization: For this purpose, a basis |φi⟩ of all possible occupations of the N fermions on the
L lattice sites is set up in which the Hamiltonian can be represented as a large matrix H with
entries Hij = ⟨φi|H|φj⟩. From this, the ground state can then be calculated by diagonalization
with the Lanczos algorithm. The reduced density matrix is then calculated from the ground
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state and its spectrum is determined to calculate the entanglement entropy. For example, for
the case of N = 2 fermions on L = 4 lattice sites5, a basis in occupation number representation
is given by {|0011⟩, |0101⟩, |0110⟩, |1001⟩, |1010⟩, |1100⟩}. The advantage of this approach is that
the results are exact since no approximations are needed and the full Hilbert space is considered.
However, this also poses a problem since the size of the Hilbert space grows exponentially as

(L
N

)
with the system size. Only by using efficient encoding of the basis and exploiting all symmetries
of the Hamiltonian, we are able to consider systems up to N = 19 particles on a supercomputer
with 1.5 TB of system memory. For the calculation of the time evolution after a quench, exact
diagonalization is possible for systems at half filling with up to N = 13 fermions. Therefore,
we later also perform approximate calculations which allows us to consider much larger systems
and hence enable accurate finite-size scaling to the thermodynamic limit L → ∞.

1.4.3 Luttinger liquid theory and bosonization
In the following, we introduce the basics for the bosonization calculation performed in Ch. 4,
closely following parts of Chapter 2 and 3 of Ref. [162] by S. Eggert. Bosonization allows a
model of interacting fermions with linear dispersion to be mapped to a bosonic model whose
Hamiltonian is then quadratic in the boson operators and can therefore be solved analytically,
unlike the original fourth-order fermionic model. The requirement for this to be a good approx-
imation is that the dynamics of the one-dimensional system are determined by small energy
excitations for which we can assume the dispersion of the fermions to be approximately linear
around the Fermi points. We therefore begin this introduction with the linearization of the
dispersion. This allows to express excitations in terms of small density fluctuations around an
average density background which are bosonic in nature, and can be expressed by operators with
bosonic commutation relations. After introducing these operators, we show how the Hamilto-
nian for interacting Fermions with an interaction similar to that of the J-V lattice model can
be expressed in the boson operators. As the last part of this section, we briefly discuss the
refermionization, i.e. the inverse transformation that allows to express fermion field operators
in terms of the boson operators, which will be necessary for the computations of correlation
functions in Ch. 4.

Linearization of the dispersion

As a first step we assume that there are only low energy excitations, such that we can limit the
considerations to momenta close to the Fermi points k ∈ [±kF − Λ,±kF + Λ], where ξkF

= 0

Figure 1.11: Linearization of the dispersion ξk around the Fermi points ±kF as an approxi-
mation for low energy excitations. Momenta ±, q for right (+) and left (−) movers are measured
relative to ±kF with cutoffs at q = ±Λ.

5We discuss this example of N = 2 fermions on L = 4 sites in detail later in Sec. 4.2.2.
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and Λ is a cutoff, for now assuming a generic non-interacting Hamiltonian for spinless fermions

H =
∑

k

ξkc
†
kck ≈

−kF +Λ∑
k=−kF −Λ

ξkc
†
kck +

kF +Λ∑
k=kF −Λ

ξkc
†
kck . (1.75)

Here expansion of the dispersion around the Fermi points to linear order (Fig. 1.11) yields

ξk = ξ±kF
+ (k ∓ kF ) ∂ξk

∂k

∣∣∣∣∣
±kF

+ O
(
(k − kF )2

)
, (1.76)

where the Fermi point −kF with a negative slope gives rise to so-called left movers and excitations
near +kF are denoted as right movers. The slope of this linear dispersion is given by the Fermi
velocity

±vF = ∂ξk

∂k

∣∣∣∣∣
±kF

. (1.77)

One then defines the fermion operators for left (α = −) and right (α = +) movers c̃α,q ≡ cαkF +q

where q is the momentum relative to the Fermi points. In these operators, the Hamiltonian,
Eq. (1.75), is given by

H ≈
Λ∑

q=−Λ
vF q

(
c̃†

+,q c̃+,q − c̃†
−,q c̃−,q

)
. (1.78)

Similarly, we expand the field operators

ψ(x) = 1√
L

∑
k

eikxck (1.79)

≈ 1√
L

∑
q

(
eikF xeiqxc̃+,q + e−ikF xeiqxc̃−,q

)
(1.80)

≡ eikF xψ+(x) + e−ikF xψ−(x) (1.81)

where the sums over q are again extended from −∞ to ∞ as we assume that there are no high
energy excitations such that states with |q| > Λ are not occupied anyway [162]. This also ensures
that the operators

ψα(x) = 1√
L

∑
q

eiqxc̃α,q (1.82)

fulfil the fermionic commutation relations {ψ†
α(x) , ψα′(y)} = δαα′δ(x−y) and {ψα(x) , ψα′(y)} =

0.

Bosonic operators

The concept behind bosonization is to describe an excited low energy state in terms of boson
operators. As explained in Sec. 2.2 of Ref. [162], an excited state can be constructed as follows:
Starting from the ground state, where all states with |k| < kF are occupied and the states above
kF are empty, denoted by | · · · 111111|0000000 · · ·⟩, we can construct an excited state by first
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adding the excess electrons – in case the final state has more electrons above kF then holes
below – and then by shifting the occupied states upwards. To understand what is meant by
this, we consider an example for the excited state | · · · 111110|0110010 · · ·⟩, which we can con-
struct from the ground state by first adding the two excess electrons | · · · 111111|0000000 · · ·⟩ →
| · · · 111111|1100000 · · ·⟩ and then shifting the highest electron by 4 places, and the next two elec-
trons by 2 places, | · · · 111111|1100000 · · ·⟩ → | · · · 111111|1000010 · · ·⟩ → | · · · 111110|0110010 · · ·⟩.
To shift a fermion from l to l+p, one can use the operator c†

l+pcl that consists of a pair of fermionic
operators. Hence, the trick is, to express the excited states in terms of these shifting operators,
which for the example above means the excited state | · · · 111110|0110010 · · ·⟩ is expressed as one
boson in state p = 4 and two bosons in state p = 2. In addition, the energy for adding the two
excess electron also has to be considered. This is of course a simplification meant to motivate
the idea for constructing the boson operators. In the following, we will formally introduce the
operators and show that the fermionic Hamiltonian can indeed be mapped onto the bosonic
problem.

Based on this idea, one considers shifting operators [162]

ρα,q =
∑
q′

c̃†
α,q′+q c̃α,q′

ρ†
α,q = ρα,−q ,

(1.83)

which are, however, not yet the boson operators we are looking for as they do not fulfill boson
commutation relations. One needs to be careful when computing the commutator between the
shifting operators

[ρα,q1 , ρα′,q2 ] = δα,α′
∑
q′

∑
q′′

(
δq′,q2+q′′ c̃†

α,q1+q′ c̃α,q′′ − δq′′,q1+q′ c̃†
α,q2+q′′ c̃α,q′

)
(1.84)

= δα,α′
∑
q′

(
c̃†

α,q′+q1
c̃α,q′−q2 − c̃†

α,q′+q2+q1
c̃α,q′

)
, (1.85)

because the q′ and q′′ sums are over infinitely many values such that they do not commute in
general. The problem is that after linearizing the dispersion, there are infinitely many occupied
states with negative energy. We can resolve this by using that there are only low energy excita-
tions and hence all states with q < −Λ are occupied, nq<−Λ = 1 [162]. Then clearly if q1 ̸= −q2
the sums are converging, and we can simply shift the sum for the second term q′ → q′ − q2 such
that the commutator vanishes. If q1 = −q2, we use nα,q = c̃†

α,q c̃α,q = 1 for q < −Λ to cancel the
divergence from the two terms. We can thus compute the commutator for q2 ≥ 0 as [162]

[ρα,q1 , ρα′,q2 ] = δα,α′δq1,−q2

∑
q′

(
nα,q′−q2 − nα,q′

)
(1.86)

= δα,α′δq1,−q2

∑
q′≥−Λ

(
nα,q′−q2 − nα,q′

)
(1.87)

= δα,α′δq1,−q2

 ∑
q′≥−Λ−q2

nα,q′ −
∑

q′≥−Λ
nα,q′

 (1.88)

= δα,α′δq1,−q2

∑
−Λ−q2≤q′≤−Λ

1 (1.89)

= δα,α′δq1,−q2
qL

2π , (1.90)
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where we used that q = 2πm/L, m ∈ Z. This allows to define the actual boson operators (for
q > 0) as

b†
α,q = αi

√
2π
qL
ρα,αq (1.91)

bα,q = −αi
√

2π
qL
ρα,−αq , (1.92)

which then fulfil the correct commutation relations [bα,q , bα′,q′ ] = 0, [bα,q , b
†
α′,q′ ] = δαα′δqq′ .

Here, the complex phase of the prefactor is to some extent arbitrary, but we will see later that
the definition chosen here is useful [162].

Hamiltonian expressed in boson operators

In order to express the Hamiltonian in terms of these operators, we consider the commutator of
the non-interacting Hamiltonian with the creation operator and find [162]:

[H , b†
α,q] = vF

∑
α′

∑
q′q′′

α′q′αi
√

2π
q′L

[
c̃†

α′,q′ c̃α′,q′ , c̃†
α,α(q′′+q)c̃α,q′′

]
(1.93)

= vF

∑
q′q′′

αi
√

2π
q′L

(
δq′,α(q′′+q)αq

′c̃†
α,q′ c̃α,αq′′ − δq′,αq′′αq′c̃†

α,α(q′′+q)c̃α,q′

)
(1.94)

= vF qb
†
α,q . (1.95)

This commutator together with [bα,q , b
†
α′,q′ ] = δαα′δqq′ defines the harmonic oscillator ladder

[162]. Therefore, the non-interacting Hamiltonian in the boson operators is given by [162]

H = vF

∑
q>0

q
(
b†

+,qb+,q + b†
−,qb−,q

)
+ πvF

L

(
N2

+ +N2
−

)
, (1.96)

where the first term directly follows from the commutation relations, in analogy to a har-
monic oscillator, and the last term is the zero point energy with the number operator for excess
fermions6

Nα =
∑
q>0

c̃†
α,q c̃α,q −

∑
q≤0

c̃α,q c̃
†
α,q . (1.97)

It is crucial that we can express the trivial diagonal Hamiltonian for free fermions in terms of
the new boson operators, but the true power of the bosonization transformation is revealed for
systems involving interactions. As an example, we consider the density-density interaction [162]

Hint = 1
2

∫
dx
∫

d∆x ψ†(x)ψ(x)U(∆x)ψ†(x+ ∆x)ψ(x+ ∆x) (1.98)

= 1
2L

∑
kk′q

c†
kck−qUqc

†
k′ck′+q (1.99)

6As in the simple example discussed before, this number of additional fermions that need to be added in the
first step before the particles can be shifted, is given by the difference of the number of fermions above the Fermi
level and the number of holes below. For the purpose of this section, we do not give a detailed derivation for this
term and refer the reader to section 2 of Ref. [162].
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with Uq =
∫

d∆x eiq∆xU(∆x). If we again only consider low energy excitations and, in addition,
only small momentum transfer such that the interaction never scatters left-movers into right-
movers or vise versa, we can write

∑
k

c†
kck±q ≈ ρ+,∓q + ρ−,∓q . (1.100)

For short range interactions, one often neglects the momentum dependence of the interaction
Uq for terms involving ρ operators with the same α, and denotes the interaction strength by g4.
Similarly, for terms with ρ operators from different α denoted as g2, which are both indepen-
dent of q [162]. The interaction Hamiltonian can then be expressed in the shifting operators,
Eq. (1.83), as

Hint ≈ 1
2L

∑
q

[
g4 (ρ+,qρ+,−q + ρ−,qρ−,−q) + g2 (ρ+,qρ−,−q + ρ−,qρ+,−q)

]
. (1.101)

Using the correspondence between density and boson operators,

ρα,αq =

−αi
√

|q|L/2π b†
α,|q| αq > 0

αi
√

|q|L/2π bα,|q| αq < 0
(1.102)

Nα = ρα,0 − ⟨ρα,0⟩ , (1.103)

the Hamiltonian for the density-density interactions can be finally written as [162]

Hint ≈ 1
2π
∑
q>0

[
qg2

(
b+,qb−,q + b†

+,qb
†
−,q

)
+ qg4

(
b†

+,qb+,q + b†
−,qb−,q

)]
(1.104)

+ g4
L

(
N2

+ +N2
−

)
+ 2g2

L
N+N− + const. (1.105)

The amazing aspect of this result is that we managed to map the Hamiltonian H +Hint, which
is of fourth order in the fermion operators, to a bosonic Hamiltonian, which is only quadratic
in the boson operators and can thus be diagonalized analytically. For this reason, bosonization
is a very powerful tool for solving one-dimensional, interacting systems, which we will make use
of in Ch. 4 to study a continuum approximation of the J-V model.

Refermionization

To evaluate correlation functions, which we use for the calculation of the RDM, we also need
an expression for the fermion field operators in terms of the boson operators. For this purpose,
one first defines bosonic field operators [162]

ϕα(x) = −
∑
q>0

√
2π
qL

e−qη/2
[
eiαqxbα,q + e−iαqxb†

α,q

]
. (1.106)
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To motivate this expression, we consider the inverse Fourier transform of the normal ordered
fermionic density operator for α-movers, Eq. (1.82),∫

dx eikx : ψ†
α(x)ψα(x) : = 1

L

∫
dx
∑
k′k′′

eikxe−ik′′x eik′x : c̃†
α,k′′cα,k′ : (1.107)

=
∑
k′

: c†
α,k+k′cα,k′ : (1.108)

=


−iα

√
|k|L
2π b†

α,|k| αk > 0
Nα αk = 0

iα
√

|k|L
2π bα,|k| αk < 0

. (1.109)

Here, normal ordering means subtracting its ground state expectation value from the operator to
remove possible divergencies (which can occur when removing the cutoff Λ as discussed earlier),
: f(x) : = f(x) − ⟨f(x)⟩. Using the inverse transform of Eq. (1.109), one finds [162]

: ψ†
α(x)ψα(x) : = 1

L

∑
q>0

√
qL

2π
(
αi bα,qeiαqx − iαb†

α,qe−iαqx
)

+ Nα

L
. (1.110)

Therefore, the spatial derivative of the boson field yields
−∂xϕα(x)

2π + Nα

L
=: ψ†

α(x)ψα(x) : , (1.111)

such that the free Hamiltonian can be conveniently written as

H = vF

∫
dx
∑

α

π

(−∂xϕα(x)
2π + Nα

L

)2
(1.112)

= vF

∑
q>0

q
(
b†

+,qb+,q + b†
−,qb−,q

)
+ πvF

L

(
N2

+ +N2
−

)
. (1.113)

We can then further use the boson fields to express the fermion field operators as an exponential
of ϕα [162]

ψα(x) = χα√
2πη ei(φ0,α+α 2πx

L
Nα)e−iαϕα(x) , (1.114)

where the first factor contains the so-called Klein factor χα that ensures fermionic commuta-
tion relations and for which χ†

αχα = 1, and the second factor contains the zero modes with
[φ0,α , Nα] = −δαα′i .

One can check (for details, see Appendix C.1) that this definition is indeed consistent, by
using ψα(x) from Eq. (1.114) and the expression for ψ†

α(x′)ψα(x′) = ρα(x′) from Eq. (1.110)7 to
show that ψα(x) indeed affects the density at position x′ = x according to [162]

[ψα(x) , ψ†
α(x′)ψα(x′)] = δ(x− x′)ψα(x) . (1.115)

One could further also check the validity of the normalization factor by checking the fermion
commutation relations between the ψα operators, which is shown in Ref. [162].

Equipped with the ability to bosonize a fermion Hamiltonian with density-density interactions,
to diagonalize it, and then also to compute correlation functions by refermionization, we are able
to analytically compute the 1-RDM for the J-V Model with weak interactions in the Luttinger
liquid phase in Ch. 4.

7Normal ordering does not affect the commutator, as a ground state expectation value commutes with any
operator.
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Figure 1.12: Interaction dependence of the one particle von Neumann entanglement entropy
S1 obtained numerically from the J-V model and from an effective low energy Luttinger liq-
uid calculation (dashed lines) with a fixed interaction cutoff. Here, Sff is the entropy for free
fermions. The main panel depicts the equilibrium ground state entropy with numerical data
from DMRG for a system of L = 102 lattice sites at half filling (crosses). The solid line repre-
sents finite size scaling of numerical data to the thermodynamic limit. The excellent agreement
with the finite size DMRG data shows that the system with N = 51 fermions is large enough to
describe the thermodynamic limit accurately in the whole LL phase. The inset depicts finite size
exact diagonalization results for N = 12 fermions on L = 24 sites after an interaction quantum
quench (circles) in the asymptotic steady state. The solid line shows the thermodynamic limit
of the numerical data obtained from finite size scaling the time averaged one particle entropy
(circles) after the interaction quench. The dashed line is the result of non-equilibrium bosoniza-
tion using the same value of the interaction cutoff as in the main panel. (Figure taken from
Ref. [327])

Comparison to J-V model

We will see later that to describe the very short-ranged interaction of the J-V model, we need
to introduce an interaction cutoff in the bosonization calculation [163, 327], which cannot be
determined by the analytical derivation. However, we can determine the cutoff by comparing
with numerical solutions. In Fig. 1.12 we show as an example some results for the von Neumann
one-particle entanglement entropy, S1 −Sff , as a function of the interaction strength V/J , where
Sff is the entropy for free fermions calculated earlier. In the main panel, the entropy for N = 51
particles on L = 102 lattice sites (crosses), obtained numerically by approximate methods, is
shown together with the finite-size scaled entropy for the thermodynamic limit (solid line). The
excellent agreement shows that we are able to numerically consider systems that are close to
the thermodynamic limit. The dashed line in the Luttinger liquid phase (between the black
vertical lines) is obtained by the analytical bosonization calculation with fixed cutoff and is in
excellent agreement with the numerical results for small interactions. In addition, the entropy
clearly indicates the phase transitions of the J-V model (vertical lines) by a change in slope.
Further, the inset shows the asymptotic entropy long after an interaction quantum quench
from free fermions to interactions V/J . The numerical results here are obtained using exact
diagonalization for N = 12 particles, and we find similar agreement with the analytical results
for small interactions.
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1.5 Structure of this thesis and publications
In Chapter 2, we study Majorana zero modes in topological superconductors. We start with an
introduction to topological superconductivity (Sec. 2.1), followed by a detailed introduction to
Majorana zero modes and their proposed realizations (Sec. 2.2). In Sec. 2.3, we describe the setup
and the scattering matrix formalism that is used for determining the transmission amplitude
through a Coulomb blockaded Majorana wire embedded into one arm of an Aharonov-Bohm
interferometer. We use this scattering matrix formalism in Sec. 2.4 to study the magnetic field
and wire length dependence of the coherent transmission amplitude, where we explain the occur-
rence of an amplitude maximum at the onset of the topological regime based on the localization
properties of the Majorana zero modes. We published the results of this section in Transmission
amplitude through a Coulomb blockaded Majorana wire, Matthias Thamm and Bernd Rosenow,
Phys. Rev. Research 3, 023221 (2021) [131]. Based on this, in Sec. 2.5, we use the transmission
amplitude as a metric for optimizing an array of gates using the CMA-ES machine learning
algorithm for Majorana wires with strong disorder. We show that the algorithm is capable of
learning disorder profiles, stabilizing Majorana zero modes, and even restoring Majorana modes
that were completely destroyed by disorder. The results of this section are contained in the
preprint Machine learning optimization of Majorana hybrid nanowires, Matthias Thamm and
Bernd Rosenow, arXiv:2208.02182 [303] (accepted for publication in Physical Review Letters).

In Chapter 3, we study deep neural networks with the help of random matrix theory. We start
with an introduction into neural network architectures and training in Sec. 3.1. In Sec. 3.2, we
use random matrix theory as a zero-information hypothesis to locate stored information in the
weights of deep neural networks, where we show that the weights after training are predominately
random, and that the information is encoded in the largest singular values and corresponding
vectors of the weight matrices only. These results are published in Random matrix analysis
of deep neural network weight matrices, Matthias Thamm, Max Staats, and Bernd Rosenow,
Phys. Rev. E 106, 054124 (2022) [328]. We extend the analysis in Sec. 3.3 to networks trained
with label noise, identify a separation between noise and information in the weights of suitably
trained networks, and propose a filtering algorithm to partially remove the influence of the noise
from the weights. These findings are published as the preprint Boundary between noise and
information applied to filtering neural network weight matrices, Max Staats, Matthias Thamm,
and Bernd Rosenow, arXiv:2206.03927 (2022) [329].

Chapter 4 discusses the particle entanglement entropy in one-dimensional chains of interacting
fermions and is structured as follows: We start with a short introduction and a discussion of
the Schmidt decomposition used for efficiently computing entanglement entropy in Sec. 4.1. We
then introduce the J-V model and discuss the phase diagram in Sec. 4.2. In the Luttinger liquid
phase, we perform a bosonization calculation to analytically determine the reduced one-particle
density matrix in Sec. 4.3. To make a connection to the lattice model, we perform large scale
numerical computations for which we describe the details in sections 4.4 (exact diagonalization)
and 4.5 (approximate DMRG). Finally, in Sec. 4.6, we compare the analytical field theory
calculation to the numerical results scaled to the thermodynamic limit. The results of this
chapter are published in One-particle entanglement for one dimensional spinless fermions after
an interaction quantum quench, Matthias Thamm, Harini Radhakrishnan, Hatem Barghathi,
Bernd Rosenow, and Adrian Del Maestro, Phys. Rev. B 106, 165116 (2022) [327].
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2. Majorana zero modes in topological
superconductors

2.1 Topological superconductors: BdG Hamiltonian, topological
invariants, and zero modes

By cooling a superconductor below the critical temperature, a phase transition to the super-
conducting phase occurs, in which electrons form Cooper pairs [330] by a weakly attractive
interaction. Since these pairs of electrons have an integer spin, they are no longer subject to
the Pauli principle and can thus, similar to Bose-Einstein condensation [331, 332], form a con-
densate in which they are in the same quantum mechanical state and can be described by a
common wave function. This ensures that scattering at local scattering centers is energetically
unfavorable and thus causes the vanishing of the electrical resistance [333]. For the excitation
of a quasi-particle it is necessary to break up a Cooper pair, for which the binding energy
∆ is needed, such that superconductors are characterized by an excitation gap [333]. Under
certain conditions, however, zero-energy excitations can be present in the middle of the gap,
which can be caused by disorder [108], multiband effects [109, 110], the condo effect [334], and
Andreev-bound states [112, 335] (see section 2.2.4). In addition, there are so-called topological
superconductors which, under certain conditions, host Majorana zero modes in the topologically
non-trivial phase. These are robust against external disturbances, since they are connected to
the presence of the topological phase, which exists over an extended parameter range.

Following the discussion by Sato et al. [255], we describe superconductivity starting from a
generic Hamiltonian, which contains an attractive pair interaction. Using a mean-field approx-
imation, we can draw conclusions about ground states and excited states. Furthermore, we
consider how trivial phases can be distinguished from topological phases and how they can be
formally classified.

We consider a general one-band effective Hamiltonian [255, 284, 336]

H =
∑
k

∑
σσ′

hσσ′(k)c†
kσckσ′ + 1

2
∑
kk′

∑
σ1σ2
σ3σ4

Vσ1σ2σ3σ4(k,k′)c†
−kσ1

c†
kσ2

ck′σ3c−k′σ4 ≡ H0 +Hint , (2.1)

where c†
kσ (ckσ) is the creation (annihilation) operator for an electron with momentum k and

spin σ, hσσ′(k) is the band Hamiltonian without the interaction1, and energy is measured rela-
tive to the chemical potential. Here, Vσ1σ2σ3σ4 is the pair interaction which causes the weakly
attractive interaction between electrons, and we focus on the case of pairing of electrons with
opposite momenta, so that the total momentum of the Cooper pair vanishes. Because of the
fermionic commutation relations {ckσ , ck′σ′} = 0 = {c†

kσ , c
†
k′σ′}, {c†

kσ , ck′σ′} = δkk′δσσ′ , the
pair interaction satisfies [255, 336]

Vσ1σ2σ3σ4(k,k′) = −Vσ2σ1σ3σ4(−k,k′) = −Vσ1σ2σ4σ3(k,−k′) = Vσ4σ3σ2σ1(k′,k) . (2.2)

We now assume that Cooper pairs are formed by electrons with (k, σ1) and (−k, σ2), so that
operators ckσ1c−kσ2 have a finite ground state expectation value [284]. To treat the Hamiltonian
in a mean-field approximation, we define operators (δc2)k,σ1σ2 = ckσ1c−kσ2 − ⟨ckσ1c−kσ2⟩ and

1The spin dependence can for example be caused by spin-orbit coupling.
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neglect quadratic fluctuations around this expectation value, i.e. terms O[(δc2)2]. Inserting the
operators into the interaction term of the Hamiltonian yields

Hint = 1
2
∑
kk′

∑
σ1σ2
σ3σ4

Vσ1σ2σ3σ4

[
(δc2)†

kσ2σ1
⟨ck′σ3c−k′σ4⟩ + (δc2)k′σ3σ4⟨c†

−kσ1
c†
kσ2

⟩

+ ⟨c†
−kσ1

c†
kσ2

⟩⟨ck′σ3c−k′σ4⟩
]

+ O[(δc2)2] . (2.3)

We reinsert the auxiliary operators in the linear terms and use Eq. (2.2) (for full calculation see
appendix App. A.1) to express the interaction Hamiltonian as

Hint = 1
2
∑
k

∑
σσ′

[
−
∑
k̃

∑
σ̃σ̃′

Vσ′σσ̃σ̃′(k, k̃)⟨ck̃σ̃c−k̃σ̃′⟩c†
kσc

†
−kσ′

−
∑
k̃

∑
σ̃σ̃′

Vσ′σσ̃σ̃′(k, k̃)⟨c†
−k̃σ̃′c

†
k̃σ̃

⟩c−kσ′ckσ

]
− const. + O[(δc2)2] . (2.4)

It will turn out to be helpful to define the pair potential [255, 336]

∆σσ′(k) = −
∑
k̃

∑
σ̃σ̃′

Vσ′σσ̃σ̃′(k, k̃)⟨ck̃σ̃c−k̃σ̃′⟩ , (2.5)

with ∆σσ′(k) = −∆σ′σ(−k) [255] such that the Hamiltonian in mean-field approximation is
given by

HMF =
∑
kσσ′

hσσ′(k)c†
kσckσ′ + 1

2
∑
kσσ′

[
∆σσ′(k)c†

kσc
†
−kσ′ + h.c.

]
. (2.6)

Here we neglected the quadratic terms O[(δc2)2] and the constant term. It is advantageous
to express this Hamiltonian in matrix form, for which we define the Nambu spinor Ψ†

k =(
c†
k↑, c

†
k↓, c−k↑, c−k↓

)
such that [255]

HMF = 1
2
∑
k

Ψ†
kHBdG(k)Ψk + 1

2
∑
kσ

hσσ(k) (2.7)

HBdG(k) =
(
h(k) ∆(k)

∆†(k) −hT (−k)

)
. (2.8)

Here every entry in HBdG(k) is itself a 2 × 2 matrix in the spins, i.e.

h(k) =
(
h↑↑(k) h↑↓(k)
h↓↑(k) h↓↓(k)

)
and ∆(k) =

(
∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

)
.

In this context, HBdG is referred to as the Bogoliubov-de Gennes Hamiltonian. Here, energies are
measured relative to the Fermi level. Considering the form of the Nambu-Spinor, one recognizes
that HBdG(k) contains a particle sector with momentum k and a hole sector with momentum
−k. Furthermore, the off-diagonal blocks contain the mean-field term ∆(k) (∆†(k)), which
describes creation (annihilation) of a Cooper pair. In addition, the form of the Hamiltonian
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shows that electrons and holes are not independent: When an electron is excited from the Fermi
sea, a hole is left behind. This fact is formally described by the particle-hole symmetry, with
the particle-hole operator [255]

P = τx ⊗ σ0K =
(

0 σ0
σ0 0

)
K with P2 = 1, (2.9)

where K is the operator for complex conjugation and τi (σi) are Pauli matrices in particle-hole
(spin) space. The operator for particle-hole conjugation transforms the Hamiltonian as

PHBdG(k)P−1 = KτxHBdG(k)τxK−1 = K(−HT
BdG(−k))K−1 = −HBdG(−k) . (2.10)

It follows that for each eigenstate ξE(k) of HBdG(k) with energy eigenvalue E, i.e. HBdG(k)ξE(k) =
EξE(k), there exists an eigenstate PξE(−k) = ξ−E(−k) with eigenvalue −E, i.e. HBdG(k)PξE(−k) =
−E−kPξE(−k). The particle-hole operator thus transforms between these eigenstates

PξE(−k) = ξ−E(−k) . (2.11)

The Hermitian 4 × 4 matrix HBdG(k) thus has eigenvalue-eigenvector pairs {(E1(k), ξE1(k)),
(E2(k), ξE2(k)) , (−E1(−k), ξ−E1(−k)) , (−E2(−k), ξ−E2(−k))}. To calculate the eigenstates and
energy eigenvalues of the Hamiltonian Eq. (2.8), we perform a Bogoliubov transformation
[337, 338], for which we define new operators Ψ̃†

k = ( a†
k1, a

†
k2, a−k,1, a−k,2 ) via the unitary

transformation

Ψk = (ξE1(k), ξE2(k), ξ−E1(−k), ξ−E2(−k)) Ψ̃†
k ≡ UkΨ̃†

k , (2.12)

where ξ±Ei(k) = (u±i,↑(k), u±i,(k), v±i,↑(−k), v±i,(−k))T is a vector with four components, and
U is a unitary 4 × 4 matrix. This definition already takes into account the restrictions of the
eigenvectors and eigenvalues, which result from the particle-hole symmetry. If we further use
the relation

ξ−Ei(−k) = PξEi(−k) =
(
v∗

i↑(k), v∗
i↓(k), u∗

i↑(−k), u∗
i↓(−k)

)T
, (2.13)

we obtain the transformation matrix

Uk =


u1↑(k) u2↑(k) v∗

1↑(k) v∗
2↑(k)

u1↓(k) u2↓(k) v∗
1↓(k) v∗

2↓(k)
v1↑(−k) v2↑(−k) u∗

1↑(−k) u∗
2↑(−k)

v1↓(−k) v2↓(−k) u∗
1↓(−k) u∗

2↓(−k)

 . (2.14)

For unitarity, i.e. U †
kUk = 1 = UkU

†
k, we need∑

σ

[u∗
iσ(k)ujσ(k) + v∗

iσ(±k)viσ(±k)] = δij ,∑
σ

[uiσ(k)vjσ(k) + viσ(−k)ujσ(−k)] = 0 ,∑
σ

[u∗
iσ(k)vjσ(−k) + v∗

iσ(k)uiσ(−k)] = 0 .

(2.15)
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We assume now that the matrix Uk is chosen such that it diagonalizes the Hamiltonian which
yields

H = 1
2
∑
k

Ψ̃†
kU

†
kHBdG(k)UkΨ̃k + 1

2
∑
kσ

hσσ(k) = 1
2
∑
k

Ψ̃†
kDkΨ̃k + 1

2
∑
kσ

hσσ(k) . (2.16)

By the above choice of the order of the eigenvectors in the transformation matrix, the diagonal
matrix has the form

Dk =


E1(k) 0 0 0

0 E2(k) 0 0
0 0 −E1(−k) 0
0 0 0 −E2(−k)

 . (2.17)

We assume without loss of generality that all Ei(k) ≥ 0 [255]. Using U , Eq. (2.14), we obtain
the new operators in which HMF is diagonal as

aki =
∑

σ

[
u∗

iσ(k)ckσ + v∗
iσ(−k)c†

−kσ

]
. (2.18)

Because of the unitarity requirement, Eq. (2.15), these operators also satisfy fermionic commu-
tator relations

{aki , ak′j} = 0 = {a†
ki , a

†
k′j} and {a†

ki , ak′j} = δkk′δij . (2.19)

The quasi-particle excitations with energy Ei(k), which are generated by a†
k,i, are called Bo-

goliubons. As one can see from the definition of a†
k,i, these are superpositions of electrons and

holes. In these new operators the Hamiltonian has the diagonal form

H = 1
2
∑
ki

Ei(k)a†
kiaki − 1

2
∑
ki

Ei(−k)a−kia
†
−ki + 1

2
∑
kσ

hσσ(k)

=
∑
ki

Ei(k)a†
kiaki − 1

2
∑
ki

Ei(k) + 1
2
∑
kσ

hσσ(k) , (2.20)

where we again assumed in the last step that for every momentum k in the sum the momentum
−k is also present.

We define the ground state |GS⟩ as the state which is annihilated by all operators aki, i.e.
which contains no quasi-particles

aki|GS⟩ = 0 . (2.21)

Since the pairing term in the mean-field Hamiltonian Eq. (2.6) does not commute with the
particle number operator N̂ = ∑

kσ c
†
kσckσ, states can have an indefinite particle number. For

the ground state the mean particle number can be calculated using the operators aki, Eq. (2.18),
and the relation Eq. (2.21) as

N = ⟨GS|N̂ |GS⟩ =
∑
kσ

⟨GS|c†
kσckσ|GS⟩

=
∑
kσij

⟨GS|
(
u∗

iσ(k)a†
ki + viσ(k)a−ki

) (
ujσ(k)akj + v∗

jσ(k)a†
−kj

)
|GS⟩

=
∑
kσi

|viσ(k)|2 . (2.22)
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Here, u are the particle-like components of the wave function, and the hole-like components are
given by v. On the other hand, since the Hamiltonian contains only pairs of fermion operators,
the number parity is uniquely defined. Here, the corresponding number parity operator is
defined as (−1)N̂ [86, 265], and we denote the parity of the ground state of the Hamiltonian H

as P [H] = ⟨GS|(−1)N̂ |GS⟩ for even and odd ground state number parity, respectively. Before
we discuss the importance of the ground state number parity further, we consider the energy of
the ground state of the mean field Hamiltonian, which is given by

E = ⟨GS|H|GS⟩ = −1
2
∑
ki

Ei(k) + 1
2
∑
kσ

hσσ(k) . (2.23)

From this we see that all states with negative energies are occupied, as one would expect from a
zero temperature ground state. Since the ground state is the state with the lowest energy, it is
uniquely determined as long as no zero energy states exist, i.e. |Ei(k)| > 0. However, if there is
a zero-energy level, Ej(q) = 0, another ground state with the same energy is given by a†

qj |GS⟩,
which has the opposite number parity than |GS⟩. In the case of n zero energy states there are
2n such ground states, which differ in the occupation numbers of the zero energy states. In this
case, one speaks of a 2n-fold degenerate ground state, which can for instance be exploited for
the construction of a qubit in the case n = 1. We will show in the following that such degenerate
ground states can occur in the non-trivial phase of topological superconductors. However, the
presence of the topological phase alone is not sufficient for the presence of such states. In
addition, one needs defects, such as a transition from positive to negative chemical potential, or
a system with a boundary, so that two topologically different areas come into contact. In this
case, zero modes located at these boundary regions appear. In the following, we will therefore
first consider how phases with different topology can be distinguished in the non-degenerate
case, i.e. for |Ei(k)| > 0, and in later sections we then add defects to create zero modes.

It turns out that quasi-non-interacting Hamiltonians with an excitation gap in the spectrum –
for example Eq. (2.8) – can be divided according to their symmetry properties into 10 different
Altland-Zirnbauer symmetry classes, for which systems have different types of topological invari-
ants, depending on the number of spatial dimension [339–342]. Topological invariants are specific
numbers defined for systems with periodic boundary conditions, which distinguish topological
states and cannot be influenced by external perturbations without breaking the underlying
symmetries or without closing the excitation gap. They therefore classify different topological
phases, which may also be related to physical properties such as the occurrence of zero modes
on defects. Such properties are then called topologically protected, and a phase which has such
properties is called topologically non-trivial. Since the topological invariant cannot be changed
without lifting the above assumptions, a phase transition between two topological phases is
associated with closing the excitation gap (or breaking a symmetry).

Three basic symmetries are crucial for the classification of Hamiltonians into the Altland-
Zirnbauer classes:

(i) Time reversal T = UT K with T = ±1 is an anti-unitary operator, which can be constructed
from a unitary transformation UT and complex conjugation K. One calls a Hamiltonian
H time reversal symmetric, if it commutes with T , i.e. [H , T ] = 0. For the case of a T -
symmetric BdG Hamiltonian Eq. (2.8), this is equivalent to T HBdG(k)T −1 = HBdG(−k).

(ii) The particle-hole operator P = UT K with P2 = ±1 is another anti-unitary operator, and
one says that H has P-symmetry if it anti-commutes with P, i.e. {H , P} = 0. We already
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Table 2.1: Altland-Zirnbauer [339–342] symmetry classes and topological invariants.

symmetry dimension d
class T P C 0 1 2 3
A 0 0 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z

AI +1 0 0 Z 0 0 0
BDI +1 +1 1 Z2 Z 0 0
D 0 +1 0 Z2 Z2 Z 0
DIII -1 +1 1 0 Z2 Z2 Z

AII -1 0 0 Z 0 Z2 Z2
CII -1 -1 1 0 Z 0 Z2
C 0 -1 0 0 0 Z 0
CI +1 -1 0 0 0 0 Z

considered P with P2 = 1 in the case of the BdG Hamiltonian in Eqs. (2.8) and (2.9),
where we found that particle-hole symmetry implies that PHBdG(k)P−1 = −HBdG(−k).

(iii) The chiral operator C is a unitary operator that anti-commutates with H in case of chiral
symmetry. If the Hamiltonian has P and T symmetry, it automatically has a C symmetry
with C = T P = UT UP . In the case of the BdG Hamiltonian, chiral symmetry is equivalent
to CHBdG(k)C−1 = −HBdG(k).

Table 2.1 depicts the classification into the Altland-Zirnbauer symmetry classes according to
symmetries and the value of the square of the symmetry operator. Here, an entry 0 means that
the symmetry is not present, and ±1 means that the symmetry is there, and the symmetry
operator squares to ±1. Of particular interest for the superconductors in the BdG formalism
considered so far are the classes that exhibit particle-hole symmetry with P2 = 1, i.e. BDI, D,
and DIII. The different classes can be characterized by various topological invariants, depending
on the spatial dimension d, where a zero indicates that only the trivial phase exists. For Z2,
there is a topological invariant, which can take two different values, e.g. ±1, such that two
topologically different phases exist. If one computes the topological Z2 invariant for a given
Hamiltonian, one can determine in which topological phase the system is in. However, a system
can also be in the same topological phase for all parameters (e.g. BCS s-wave superconductors)
or, depending on the parameters, a topological phase transition can occur at which the excitation
gap closes (e.g. spin-polarized p-wave superconductors [86]). In case of a Z topological invariant,
there are infinitely many topologically different phases. The invariant can be computed as a
winding number in one spatial dimesion (e.g. SSH model [343]).

For the moment, we restrict the discussion to the BdG Hamiltonian Eq. (2.8) for a system
in symmetry class D. As described above, the ground state (we assume for now that it is not
degenerate) has a defined number parity Q = P [H] = ⟨GS|(−1)N̂ |GS⟩ = ±1. For this case
Kitaev [86, 341, 344] showed that Q is also the topological invariant. Using the arguments of
Kitaev, we consider here how Q can be calculated for the BdG Hamiltonian Eq. (2.8) in class
D.

After the Hamiltonian H = diagk(HBdG(k)) is diagonalized by the unitary transformation
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U = diagk(Uk) which transforms the fermion operators ck → ak, the ground state |GS⟩ contains
zero quasi-particles. Therefore, the ground state is the vacuum for the ak operators, so that
the transformed Hamiltonian has even particle number parity P [U †HU ] = (−1)0 = +1 with
respect to the operators (ak, a†

k) = Uk(ck, c†
k) [86]. But if det(U) = +1, the transformation

preserves the number parity such that also P [H] = +1. On the other hand if det(U) = −1
then U reverses the parity and P [H] = −1 [86]. Here, the notation P [H] describes the parity
related to N̂ = ∑

k c
†
kck, while P [U †HU ] is the parity with respect to the quasi-particle number

operator ∑k a
†
kak. Thus, the particle number parity is given by2

Q = ⟨GS|(−1)N̂ |GS⟩ = sgn(det(U)) . (2.24)

Here one could omit the sgn, since we find below that det(U) = ±1 holds, but it will turn out
to be helpful in the calculation below. Since the determinant of a block diagonal matrix is given
by the product of the determinants of the blocks, we first obtain [86]

Q =
∏
k

sgn(det(Uk)) . (2.25)

From the discussion about particle-hole symmetry P we already know that for all momenta
k ̸= −k one finds P−1UkP = U−k, where P = UPK with P2 = 1 and UP = τx ⊗ σ0. Because of
det(UP) = 1 and properties of the determinant

sgn[det(U−k)] = sgn[det (UPU
∗
kUP)] = sgn[det(UP) det(U∗

k) det(UP)] = sgn[det(Uk)]−1 , (2.26)

which is why the factors for k and −k pairwise multiply together to +1. This reduces the
expression of the number parity to [86]

Q =
∏
k=−k

sgn(det(Uk)) , (2.27)

where k = −k has to be understood as an equivalence under the addition of reciprocal lattice
vectors. In the following we denote momenta satisfying k = −k by K. For the example of
a one-dimensional system with Brillouin zone (−π, π], these momenta are K = 0 and K = π.
In addtion, Eq. (2.26) ensures that detUK = ±1. To find an expression for Q in terms of the
Hamiltonian, we consider the diagonalized blocks corresponding to these momenta

U †
KHBdG(K)UK = DK =


E1(K) 0 0 0

0 E2(K) 0 0
0 0 −E1(K) 0
0 0 0 −E2(K)

 . (2.28)

Application of particle-hole symmetry using PUK = UKP and PHBdG(K)P = −HBdG(K)
yields

U †
KPHBdG(K)PUK = −U †

KHBdG(K)UK = PDKP (2.29)
⇒ −U †

KHBdG(K)PUK = PDK , (2.30)
−U †

KHBdG(K)UPU
∗
K = UPDK . (2.31)

2In fact, the determinant of a unitary matrix is a complex number with modulus 1 in general. However, we
argue in the following that the particle-hole symmetry ensures that det(U) = ±1 for a gapped Hamiltonian.
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In the last step we used that DK is real as HBdG(K) is Hermitian. We performed these
transformations in order to express Q as a Pfaffian [265]

Pf[A] = 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏

i=1
aσ(2i−1),σ(2i) (2.32)

of a skew-symmetric 2n × 2n matrix AT = −A, where S2n are permutations and sgn(σ) is the
sign of the permutation σ. The following properties [345] hold for skew-symmetric 2n × 2n
matrices A, B and λ ∈ C:

Pf[λA] = λnPf[A] , (2.33)
Pf[BABT ] = det(B)Pf[A] , (2.34)

(Pf[A])2 = det(A) . (2.35)

In our case the particle-hole symmetry guarantees that PHBdG(K)P = −HBdG(K) and
[HBdG(K)]† = HBdG(K) ⇒ UP [HBdG(K)]T = −HBdG(K)UP , so that the 4 × 4 matrix
HBdG(K)UP is skew-symmetric, i.e.

(HBdG(K)UP)T = UP [HBdG(K)]T = −HBdG(K)UP . (2.36)

If we now evaluate the Pfaffian of Eq. (2.31), using Eq. (2.34) and Eq. (2.33) with (−1)2 = 1 ,
we obtain

det(U †
K)Pf[HBdG(K)UP ] = Pf

[
U †
KHBdG(K)UPU

∗
K

]
(2.37)

= Pf[UPDK ] (2.38)

= Pf


0 0 −E1(K) 0
0 0 0 −E2(K)

E1(K) 0 0 0
0 E2(K) 0 0


= −(−E1(K))(−E2(K)) . (2.39)

Since Ei(K) > 0 and detU †
K = 1/detUK as U is unitary, we obtain the topological invariant

Q =
∏
K

sgn(det[UK ]) = −
∏
K

sgn(Pf[HBdG(K)UP ]) . (2.40)

Using Eq. (2.33) and −1 = i 2, we obtain the final expression [255, 265, 283]

Q =
∏
k=−k

sgn(Pf[iHBdG(k)UP ]) . (2.41)

We also see that a continuous change of the sign of Pf[iHBdG(K)UP ] can only occur if 0 =
(Pf[iHBdG(K)UP ])2 = det(HBdG(k)) = E2

1(K)E2
2(K) for any K, i.e. if the gap closes. For

Q = +1 the system is in the topologically trivial phase3 and for Q = −1 in the topological
phase, where the ground state has odd number parity.

So far we did not consider any other symmetry besides the particle-hole symmetry. As shown
in Tab. 2.1, an additional pseudo-time reversal symmetry T with T 2 = +1 brings the system

3In the trivial phase the ground state number parity is even as it is also the case for the vacuum.
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into the BDI symmetry class. In one dimension, a Hamiltonian in this case is associated with
a Z topological invariant, which can be calculated as a winding number. However, the Pfaffian
invariant P [H], Eq. (2.41), still describes the ground state number parity, and it can be shown
that this corresponds to the parity of the winding number [346, 347]. Since it will later become
apparent that only an odd winding number, i.e. P [H] = −1, is relevant for the occurrence of
Majorana zero modes [347, 348], we restrict ourselves to the calculation of Q using Eq. (2.41)
and do not elaborate further on the Z topological invariant.

As we saw, the topological invariant cannot change as long as the excitation gap is not closed.
If two systems with different topological invariants are brought into contact, the topological
invariant at the boundary changes. If both systems have an excitation gap, this apparent problem
is solved by the occurrence of a zero energy mode localized at the boundary [255, 349]. This
connection between the bulk property Q and the edge mode is called bulk-edge correspondence.
Furthermore, in a topological superconductor, particle-hole symmetry guarantees the relation
γ†

E = γ−E for the creators and annihilators of quasi-particles. At energy E = 0, this localized
zero mode thus satisfies the Majorana condition γ† = γ. The aim of this chapter is to describe
an experimentally realizable topological superconductor and to investigate the occurrence of
Majorana zero modes and their properties.

As shown above, the points k = −k in the Brillouin zone determine the topological invariant.
Because of the property ∆(k) = −∆T (−k), we find in particular

∆σσ(K) = −∆σσ(K) = 0 , (2.42)
∆↑↓(K) = −∆↓↑(K) . (2.43)

If we consider a free electron system described by h(k) = diag[ℏ2k2/(2m) − µ, ℏ2k2/(2m) − µ]
together with the pairing ∆(k), the possibility of entering the topological phase, i.e. closing
the gap, depends on the pair potential ∆(k). In general, the pair potential can be written as
[255, 284, 336]

∆(k) = iψ(k)σy + i (d(k) · σ)σy =
(

−dx(k) + idy(k) ψ(k) + dz(k)
−ψ(k) + dz(k) dx(k) + idy(k)

)
, (2.44)

where σ is the vector of the Pauli matrices. Here, the condition ∆(k) = −∆T (−k) yields

ψ(k) = ψ(−k) and d(k) = −d(−k) . (2.45)

Since the first term ∆singlet
σσ′ = iψ(k)[σy]σσ′ is antisymmetric under spin reversal, i.e.

∆singlet
σσ′ = −∆singlet

σ′σ , it is called spin-singlet pairing term. In contrast, the second term with
∆triplet

σσ′ (k) = id(k)[σσy]σσ′ = ∆triplet
σ′σ (k) is denoted as the triplet pairing term. In analogy

to atomic orbitals, singlet pairings are called s,d...-wave depending on angular momentum and
triplet pairings are called p,f,...-wave.

Many superconductrors have s-wave pairing symmetry, which corresponds to the case ∆(k) =
i∆σy with isotropic ψ(k) = ∆ ∈ R and d(k) = 0. For free electrons subject to such pairing, we
obtain the conventional BCS superconductor [350] with Hamiltonian

HBdG(k) =
(
h(k) ∆(k)

∆†(k) −hT (−k)

)
, h(k) =

(
ℏ2k2

2m − µ 0
0 ℏ2k2

2m − µ

)
, and ∆(k) =

(
0 ∆

−∆ 0

)
.

(2.46)
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Diagonalization yields the spectrum E(k) =
√
ξ2
k + ∆2 with ξk = ℏ2k2/(2m). The excitation

gap is minimal at the Fermi level and given by 2∆. Since [ℏ2k2/(2m)]2 ≥ 0, the gap can never
close for the s-wave case and one remains in the same topological phase independent of the
parameters. The topological invariant, Eq. (2.41), is given by

Q =
∏
k=−k

sgn (Pf[iHBdG(k)UP ]) =
∏
k=−k

sgn(ξ2
k + ∆2) = +1 . (2.47)

This means that a conventional s-wave superconductor is always topologically trivial.
In the following sections we also show examples of topologically non-trivial superconductors

with Q = −1. Among other things, we will see that the combination of an s-wave superconduc-
tors and spin-orbit coupling can mimic the physics of p-wave pairing and can thus give rise to
topological superconductivity.

2.2 Realization of Majorana zero modes

2.2.1 Spin-polarized p-wave superconductor and the Kitaev chain
As we have seen in the previous section, a conventional BCS s-wave superconductor is always
topologically trivial. There we have already shown that the spin dependence of the pair potential
∆↑↓(k) = −∆↓↑(−k) ensures that the excitation gap never closes. On the other hand, for
a p-wave superconductor ∆σσ(k) = −∆σσ(−k) holds, so that the gap can vanish at a point
k = −k. However, if we consider a one-dimensional superconductor with hσσ′(k) = ξkδσσ′ and
∆σσ′ = ik∆, the spin degeneracy is a problem: Even if we were able to achieve an odd ground
state number parity for ↑-electrons, the overall system including the ↓-electrons would have an
even ground state number parity. To circumvent this problem, we consider a spin-polarized
p-wave superconductor, and first show that it can acquire a topologically non-trivial state.
Afterwards we consider a contact between topologically different phases, first in a continuum
model with a domain wall and then in a lattice model for a one-dimensional wire with two ends,
where we will find localized Majorana modes. The simpler lattice model provides a good insight
into the formation of these zero modes and their basic properties. For the moment we ignore the
experimental feasibility of spin-polarized p-wave pairing. We will see later that we can make use
of all concepts of this section again when we look at realizable but more complicated systems.

To describe the spin-polarized superconductor, we start from Eq. (2.6) with hσσ′(k) = ξkδσ↑δσ′↑
and ∆σσ′(k) = −ik∆δσ↑δσ′↑, thus obtaining the Hamiltonian

H =
∑

k

ξkc
†
kck − 1

2
∑

k

∆(ikc†
kc

†
−k + ikckc−k) , (2.48)

with ξk = ℏ2k2/(2m) − µ, where we omitted the spin index. Again we introduce the Nambu
spinor ψ†

k = (c†
k, c−k) to obtain the BdG Hamiltonian [351]

H = 1
2
∑

k

ψ†
kHBdG(k)ψk + 1

2
∑

k

ξk

HBdG(k) =
(
ξk −ik∆

ik∆ −ξ−k

)
.

(2.49)

The eigenvalue spectrum of HBdG(k) is given by Ek = ±
√
ξ2

k + k2∆2, where we used that
ξk = ξ−k. Therefore, the excitation gap at k = 0 is given by 2|Ek=0| = 2|µ|, and it closes for
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µ = 0. Due to the absence of a spin degree of freedom, the Hamiltonian is only a 2 × 2 matrix,
so that the Pfaffian in Eq. (2.39) differs by a minus sign and therefore the topological invariant
is given by Eq. (2.40) with a positive sign for this case. Hence, for 2 × 2 systems Eq. (2.41) is
modified to

Q =
∏

k=−k

sgn (Pf[H2×2(k)UP ]) . (2.50)

Computing the topological invariant using particle-hole symmetry P = UPK = τxK yields

Q = sgn Pf[HBdG(k = 0)τx] = sgn Pf
[(

0 −µ
µ 0

)]
= −sgn(µ) . (2.51)

Thus the system is in the topological phase with Q = −1 for µ > 0 and in the trivial phase
for µ < 0. In addition, we see that for µ < 0 the vacuum limit µ → −∞ [283] can be taken
without closing the gap, i.e. the trivial phase is topologically equivalent to the vacuum. In fact,
the gap is also closing for ∆ = 0, so that for µ > 0 two topological phases with winding numbers
±1 [283] occur. As we discussed in the previous section, the reason for this is that the system
belongs to the higher symmetry class BDI. The associated pseudo-time reversal symmetry is
given by T = K with T 2 = +1. Here, T HBdG(k)T −1 = HBdG(−k) becomes apparent when the
Hamiltonian HBdG(k) = ξkτz + ∆kτy is expressed in terms of Pauli matrices τi. The parity of
the winding number is then given by the class D Pfaffian invariant [346, 347].

Having shown that the system is topologically non-trivial for µ > 0, we next consider the
contact of two topologically distinct regions. In position space the Hamiltonian Eq. (2.48) has
the form

H =
L∫

0

dx
[
ψ†(x)

(
−ℏ2∂2

x

2m − µ

)
ψ(x) − ∆

2 ψ
†(x)∂xψ

†(x) + ∆
2 ψ(x)∂xψ(x)

]
, (2.52)

where ψ†(x) (ψ(x)) creates (annihilates) an electron at position x. In order to create a transition
between the topological phase for µ > 0 and the trivial phase for µ < 0, we consider a domain
wall

µ(x) =
{

−µ for x < 0
+µ for x > 0

= µ sgn(x) , (2.53)

with µ > 0. According to our considerations in the last section, we expect a zero mode localized
at the interface for this case, which we obtain by solving the BdG equation(

−ℏ2/(2m) ∂2
x − µ(x) −∆∂x

∆∂x ℏ2/(2m) ∂2
x + µ(x)

)(
u0(x)
v0(x)

)
= 0 (2.54)

for E = 0. Here, the particle-hole symmetry P = τxK with PHBdG(x)P−1 = −HBdG(x)
implies that we can choose the solution so that P

(
u0(x), v0(x)

)T
= ±

(
u0(x), v0(x)

)T
, i.e.

u0(x) = ±v∗
0(x) (see also Appendix A.2). This yields a damped harmonic oscillator in x which

is given by

− ℏ2

2m u′′
0(x) − µ(x)u0(x) ∓ ∆u′

0
∗(x) = 0 , (2.55)

57



with solution (see Appendix A.2 for details)

(
u0(x)
v0(x)

)
=
(

1
1

)
Ñ

{
e−x/ξ [cos(Kx) + κ/K sin(Kx)] for x > 0
e−x/ξeκx for x < 0

(2.56)

in the underdamped case µ > m∆2/(2ℏ2). Here, K =
√

2mµ/ℏ2 − ξ−2, κ =
√

2mµ/ℏ2 + ξ−2

and ξ = ℏ2/(m∆). The correlation length can be written as the well known result ξ =
ℏvF /(∆kF ) [352] with vF = kF /m. There is only a normalizable solution for u0(x) = v0(x)
with normalization constant Ñ , and Fig. 2.1 depicts the wave functions in the two regions.

Figure 2.1: Zero-energy wave function (blue) for the domain wall zero mode in a one dimen-
sional spinless p-wave supercondcutor in the underdamped case Eq. (2.56). The wave function is
exponentially localized on the domain wall, with the dashed red line showing the decay ∝ e−x/ξ

in the topological region. The black line depicts the chemical potential that is given by a step
function with a jump at x = 0.

As shown in Appendix A.2, there is also a zero-energy solution in the overdamped case
µ < m∆2/(2ℏ2). Both solutions have in common that they decay in the topological region
proportionally to e−x/ξ, i.e. exponentially with correlation length ξ = ℏ2/(m∆). Therefore, they
are called localized zero modes. In addition, we can define the corresponding quasi-particle
operator

γ =
∫

dx
[
u0(x)ψ(x) + v0(x)ψ†(x)

]
=
∫

dx u0(x)
[
ψ(x) + ψ†(x)

]
, (2.57)

which in fact satisfies the Majorana condition γ† = γ, since u0(x) = v0(x).
As a second example, we revisit the spinless p-wave superconductor on a lattice of length L –

the Kitaev chain described in the introduction (Sec. 1.3.1). We show how the model is related to
the continuum p-wave superconductor and provide more details on its topopogical classification
that we motivated in the introduction. The simple lattice model allows us to get an intuition
for the occurrence of the Majorana modes, as discussed by Kitaev in Ref. [86]. To discretize
the Hamiltonian Eq. (2.52) on a lattice with a lattice constant a and N = L/a sites, we use
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∫ L
0 dx f(x) = ∑N

j=1
∫ aj

a(j−1) dx f(x) ≈
∑N

j=1 af(aj) and the Taylor expansion

ψ(aj + a) = ψ(aj) ± aψ′(aj) + a2

2 ψ
′′(aj) + ... (2.58)

ψ′′(aj) ≈ 1
a2 [ψ(aj + a) + ψ(aj − a) − 2ψ(aj)] (2.59)

ψ′(aj) ≈ 1
2a [ψ(aj + a) − ψ(aj − a)] . (2.60)

Furthermore we define fermion operators at the lattice sites via cj = a−1/2 ∫ aj
a(j−1) ψ(x)dx ≈

√
a(ψ(aj) + ψ(aj − a))/2 ≈

√
aψ(aj). Here all approximations are exact in the limit a → 0,

N → ∞, L = Na = const. and we obtain the discretized Hamiltonian

H = −t

N−1∑
j=1

c†
jcj+1 +

N∑
j=2

c†
jcj−1

+ (2t− µ)
N∑

j=1
c†

jcj

− 1
2∆̃

N−1∑
j=1

c†
jc

†
j+1 −

N∑
j=2

c†
jc

†
j−1

+ 1
2∆̃

N−1∑
j=1

cjcj+1 −
N∑

j=2
cjcj−1

 , (2.61)

with t = ℏ2/(2ma2) and ∆̃ = ∆/a. To bring the Hamiltonian to the form used by Kitaev [86],
we define µ̃ = −(2t − µ) and shift the sums so that they range from j = 1 to j = N − 1.
We also add a constant term µ̃/2, which does not change the topology described, since it does
not depend on the fermion operators. Thus, we obtain the Kitaev chain [86], discussed in the
introduction,

H =
N−1∑
j=1

[
−t
(
c†

jcj+1 + c†
j+1cj

)
− µ̃

(
c†

jcj + 1
N + 1c

†
NcN − 1

2
)
+∆̃c†

j+1c
†
j + ∆̃cjcj+1

]
. (2.62)

After the substitution, the chemical potential is now µ = µ̃ − 2t, but our previous calculations
were performed for the continuum, which corresponds to the limit value a → 0 with t → ∞. We
therefore look again at the topological invariant in the discrete case. Here, we assume periodic
boundary conditions for Eq. (2.62) for which we obtain the momentum space representation

H =
∑

k

[−2t cos(ka) − µ̃]c†
kck − 1

2
∑

k

2i ∆̃ sin(ka)(c†
kc

†
−k + ckc−k) + const. (2.63)

= 1
2
∑

k

ψ†
kHBdG(k)ψk + const. (2.64)

HBdG(k) =
(

−2t cos(ka) − µ̃ −2i ∆̃ sin(ka)
2i ∆̃ sin(ka) 2t cos(ka) + µ̃

)
, (2.65)

with Nambu basisψ†
k = (c†

k, c−k). This yields the spectrum Ek = ±
√

(2t cos(ka) + µ̃)2 + 4∆̃2 sin2(ka)
where the excitation gap closes at k = 0 for µ = −2t and at k = π/a for µ = 2t. The difference
to before is that there is now another point k = −k given by k = π/a in the Brillouin zone
(−π/a, π/a]. Thus we obtain the topological invariant

Q =
∏

k=−k

sgn Pf[HBdG(k)τx] =
∏

k=−k

sgn (−2t cos(ka) − µ̃) (2.66)

= sgn (−2t− µ̃) sgn (2t− µ̃) . (2.67)
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As t > 0, this means that the system is in the topological phase with Q = −1 for |µ̃| < 2t. On
the other hand, it is topologically trivial, i.e. Q = +1, for |µ̃| > 2t.

To better understand what makes the Q = −1 state special, we consider again the chain
with two ends and length L given by Eq. (2.62). As discussed before, Kitaev’s trick [86] is to
divide each fermion operator cj into two Majorana operators Eq. (1.54), γ2j−1 = c†

j + cj , and
Eq. (1.55), γ2j = i (c†

j − cj), with γ†
l = γl. The Majorana operators fulfill the commutator

relations {γm , γl} = 2δlm, and thus they are not fermion operators as γ2
l = 1. Instead of N

lattice sites there are now 2N Majorana sites, and the Majorana operators form the fermion
operators by the inverse transformation

cj = 1
2(γ2j−1 + iγ2j) (2.68)

c†
j = 1

2(γ2j−1 − iγ2j) . (2.69)

Fig. 2.2 shows such a lattice where ellipses represent lattice sites and dots depict Majorana sites.

...

Figure 2.2: Division of the fermion operators into Majorana operators. An ellipse corresponds
to one of the N lattice points and the dots represent the 2N Majorana sites.

We can always define these Majorana operators regardless of the topological phase, so they
do not automatically give rise to Majorana zero modes, as we will see in the following. To study
the qualitative differences between topological and trivial phase, we express the Hamiltonian
Eq. (2.62) using the Majorana operators and obtain

H = i
2

N−1∑
j=1

[
(∆̃ − t)γ2j−1γ2j + (∆̃ + t)γ2jγ2j+1

]
+ i

2

N∑
j=1

(−µ̃)γ2j−1γ2j . (2.70)

... ...

Figure 2.3: Illustration of the two special cases from the introduction. Ellipses represent
lattice sites, dots Majorana sites, and black lines are couplings of operators in the Hamiltonian.
In the trivial case (i) ∆̃ = t = 0, µ < 0 Majorana operators belonging to the same lattice site
are coupled in the Hamiltonian. In contrast, in the topological case (ii) with ∆̃ = t > 0, µ = 0,
Majorana operators of consecutive lattice sites are coupled. Thus, the two Majorana operators
at the ends of the wire remain uncoupled, i.e. they do not appear in the Hamiltonian and give
rise to a non-local zero mode.
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We next revisit the two special cases of parameters [86] from the introduction, which lie in
the different topological phases according to the topological invariant Q.

(i) In the special trivial case t = ∆̃ = 0, µ̃ < 0 with Q = +1 (as |µ̃| > 2t), the Hamiltonian
reduces to

H(i) = − i
2

N∑
j=1

µ̃γ2j−1γ2j + const. . (2.71)

As shown in Fig. 2.3(i), this on-site term describes an interaction between the Majoranas
γ2j−1 and γ2j , which belong to the same fermion cj . Therefore, the ground state, i.e. the
state without quasi-particles, is unique.

(ii) In the special topological case t = ∆̃ > 0, µ̃ = 0 with Q = −1 (as |µ̃| < 2t), we find the
Hamiltonian

H(ii) = i t
N−1∑
j=1

γ2jγ2j+1 . (2.72)

In this case, as shown in Fig. 2.3(ii), the Majoranas from adjacent lattice sites are coupled.
Importantly, the two Majoranas at the ends of the wire γ1 and γ2N remain uncoupled,
and thus they do not appear in the Hamiltonian. Therefore, by reconstructing the fermion
operators from the Majoranas [86]

aj = 1
2(γ2j + iγ2j+1) (2.73)

a0 = 1
2(γ1 + iγ2N ) (2.74)

for j = 1...N − 1, one obtains

H(ii) = 2t
N−1∑
j=1

(
a†

jaj − 1
2

)
+ 0a†

0a0 . (2.75)

The operator a0 describes a fermionic zero energy state, so that the states |0⟩ and a†
0|0⟩

have the same energy. Here, the ground state |0⟩ has even particle number parity and the
ground state a†

0|0⟩ odd parity. In addition, we see that a0 describes a highly non-local
state, since the fermion consists of the Majorana operators, which are localized at the two
distant ends of the wire. Most importantly, we see that the Majorana zero modes emerge
due to the interplay of the topological phase and the ends of the wire.

We have picked out two examples of parameters from the different topological phases, as they
illustrate the formation of the Majorana zero modes particularly well. In addition, in Sec. 2.2.2
we present an analytical solution for an effective spin-polarized p-wave superconducting wire
with two ends, consisting of an s-wave superconductor and a semiconductor with strong spin
orbit coupling.
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2.2.2 Majorana zero modes in Rashba wires
As we have seen in the last section, a spin-polarized p-wave superconductor may exhibit Ma-
jorana zero modes, which we are interested in. However, it is a problem to produce a suitable
superconductor [336]. While triplet, p-wave superfluidity in 3He has long been known to exist
[353–356], it is difficult to find an intrinsic p-wave superconductor at all [357]. A promis-
ing candidate for intrinsic p-wave pairing is Sr2Ru4 [285], but there are still doubts about this
[286, 287, 358]. Another approach is induced superconductivity in graphene systems [359]. How-
ever, it becomes apparent that the experimental realization of Majorana zero modes in intrinsic
p-wave superconductors is currently out of reach [286, 360]. Therefore, we pursue a different
approach here: We show that effective p-wave pairing can be achieved from the interplay of
spin-orbit coupling and s-wave pairing [87, 88, 361]. In addition, a magnetic Zeeman field can
be used to achieve that only one spin species is present at the Fermi level, so that the low-energy
physics effectively resembles a spin-polarized p-wave superconductor. Fortunately, the required
spin-orbit coupling occurs in semiconductor structures such as InAs and GaAs, which are ex-
perimentally accessible [95, 130, 362–364]. However, these structures are not superconductors
themselves, but superconductivity can be induced using the proximity effect [288–290, 292] by
bringing a conventional superconductor in contact with the semiconductor. In this section, we
consider a Hamiltonian for such a hybrid wire with spin-orbit coupling and Zeeman term as well
as an s-wave pairing term, and describe the pairing in a mean-field approximation similar to
Sec. 2.1.

Hamiltonian

We consider a one-dimensional Rashba wire with the momentum space Hamiltonian [87, 88]

H =
∑

k

ψ†
kH(k)ψk (2.76)

H(k) = τz ⊗ [ξkσ0 + ℏαRkσx] − τ0 ⊗ σzEz + τx ⊗ σ0∆ (2.77)

in the basis ψ†
k =

(
c†

k↑, c
†
k↓, c−k↓, c−k↑

)
. For reasons of convention, we have chosen a different basis

than before, which does not change the previous considerations. Here ξk = ℏ2k2/(2m∗) − µ, the
second term describes the Rashba spin-orbit coupling with strength αR, the third term contains
the Zeeman energy Ez due to a magnetic field Bz, and the last term is the s-wave mean-field
pairing with gap ∆ ∈ R. As we will see, it is important that the spin-orbit coupling direction
(here x) is orthogonal to the Zeeman field (here z). In our case the wire extends in the y-
direction, so that k ≡ ky. Diagonalizing the BdG Hamiltonian, Eq. (2.77), we find the energy
eigenvalues {E±(k),−E±(k)} with

E±(k) =
√
ξ2

k + ℏ2k2α2
R + E2

z + ∆2 ± 2
√
E2

z (∆2 + ξ2
k) + ℏ2k2α2

Rξ
2
k . (2.78)

In the normal-conducting case, ∆ = 0, the spectrum reduces to

E±(k,∆ = 0) = ξk ±
√
E2

z + ℏ2k2α2
R . (2.79)

The dispersion for ∆ = 0 is shown in Fig. 2.4 for Ez = 0 and Ez > 0. In the case of Ez = 0
the influence of the spin-orbit coupling on the dispersion can be observed. Here the parabolas
ℏ2k2/(2m∗) for the two spin directions are shifted to the side by a momentum l−1

so and downwards
by the energy Eso. If we further add a Zeeman field Ez, we observe that a gap of size 2Ez is
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Figure 2.4: Dispersion of the Rashba wire Hamiltonian for ∆ = 0, Eq. (2.79). The dotted
line depicts the case Ez = 0 and the solid line is for Ez > 0. The shift of the bands due to the
spin-orbit coupling term defines a charcateristic energy scale Eso and length scale lso. Adapted
from [305].

formed at k = 0. If the chemical potential µ lies within this gap, the energies at the Fermi
level are only twofold degenerate. We will find later that this is crucial for the occurrence of the
topological superconducting state.

The quantities

lso = ℏ
αRm∗ (2.80)

Eso = α2
Rm

∗

2 (2.81)

define a characteristic length and energy scale for the Rashba wire [365]. It is therefore useful
to measure lengths in units of lso and energies in Eso, by defining reduced quantities k̃ = klso,
∆̃ = ∆/Eso, Ẽz = Ez/Eso, and µ̃ = µ/Eso. In the reduced units, the Rashba wire Hamiltonian
is given by

H(k)
Eso

= τz ⊗
[
(k̃2 − µ̃)σ0 + 2k̃σx

]
− τ0 ⊗ σzẼz + τx ⊗ σ0∆̃ (2.82)

and the dispersion is

E±(k)
Eso

=

√
(k̃2 − µ̃)2 + 4k̃2 + Ẽ2

z + ∆̃2 ± 2
√
Ẽ2

z

(
∆̃2 + (k̃2 − µ̃)2

)
+ 4k̃2(k̃2 − µ̃)2 . (2.83)

In addition to the dispersion for ∆ = 0, we next study the influence of spin-orbit coupling on
the spin structure by calculating the expectation values of the spin operators

⟨Si⟩ = ℏ
2 ⟨σi⟩ . (2.84)

We compute the expectation values for the normal-conducting eigenstates v±, which we obtain
from the eigenvectors of the upper 2 × 2 block of H/Eso. For the eigenvalues E±(k)/Eso =
k̃2 − µ̃±

√
Ẽ2

z + 4k̃2, we find the corresponding eigenvectors (see Appendix A.3)

v+(k) = 1√
2

sgn(k)
√

1 + Ẽz√
Ẽ2

z +4k̃2√
1 − Ẽz√

Ẽ2
z +4k̃2

 and v−(k) = 1√
2

 −
√

1 − Ẽz√
Ẽ2

z +4k̃2

sgn(k)
√

1 + Ẽz√
Ẽ2

z +4k̃2

 . (2.85)
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Thus we obtain the spin expectation values ⟨Si⟩±(k) = ℏ/2vT
±(k)σiv±(k) as

⟨Sx⟩±(k) = ±ℏ
2

2k̃√
Ẽ2

z + 4k̃2
= ±ℏ

2
ℏαRk√

E2
z + α2

Rℏ2k2
(2.86)

⟨Sy⟩±(k) = 0 (2.87)

⟨Sz⟩±(k) = ∓ℏ
2

Ẽz√
Ẽ2

z + 4k̃2
= ∓ℏ

2
Ez√

E2
z + α2

Rℏ2k2
. (2.88)

In the limit αR → 0, i.e. without spin-orbit coupling, we find limαR→0⟨Sx⟩±(k) = 0 and
limαR→0⟨Sz⟩±(k) = ∓ℏ/2, so that the upper band contains the spin-↑ and the lower band the
spin-↓ states. By switching on spin-orbit coupling, the spins are rotated in x-direction depending
on k. In Fig. 2.5 we show the calculated spin structure as a function of momentum k for αR → 0
and with spin-orbit coupling αR > 0. As shown in Fig. 2.5(a), without spin orbit coupling, each
band can be assigned exactly one spin direction, and since we have chosen the Zeeman field in
the z-direction, these are the directions along the z-axis with ⟨Sz⟩ = ±ℏ/2. If we switch on
only spin-orbit coupling but no Zeeman field, as in Fig. 2.5(b), the spins are polarized in the
x-direction, i.e. ⟨Sx⟩ = ±ℏ/2, so that spin-orbit coupling effectively acts like a magnetic field in
x-direction. Furthermore, the effects of the combination of Zeeman field and spin-orbit coupling
on the spin structure are shown in Fig. 2.5(c) and (d) for Zeeman fields of different strengths.
One finds that for large Zeeman fields Ez > Eso in the region of the spectrum that is two-fold
degenerate (µ < |Ez|), the spin-↑ component dominates. In addition, the lower band has only
a single minimum if Ez is sufficiently large. If we now add an s-wave pairing term between
particles with momentum k and −k, the interplay of spin-orbit coupling and the Zeeman field
leads to a mixing between effective s-wave and p-wave pairing due to the spin rotation. We can
calculate this induced p-wave gap by applying the transformation for diagonalizing the electron
and hole sector of the Hamiltonian (as for ∆ = 0) to the total Hamiltonian with ∆ > 0. We
have already calculated the corresponding transformation matrix in Eq. (2.85) as

T (k) =


[v+(k)]1 [v−(k)]1 0 0
[v+(k)]2 [v−(k)]2 0 0

0 0 [v+(−k)]1 [v−(−k)]1
0 0 [v+(−k)]2 [v−(−k)]2

 , (2.89)

where the eigenvectors of the hole sector are constructed taking into account the structure of the
basis spinor (c†

k↑, c
†
k↓, c−k↓,−c−k↑) = (c†

k,+, c
†
k,−, c−k,−,−c−k,+)T †. Thus, we find the transformed

Hamiltonian

T (k)H(k)T †(k) =


E+(k) 0 ∆+−(k) ∆++(k)

0 E−(k) ∆−−(k) ∆−+(k)
∆†

+−(k) ∆†
−−(k) −E−(−k) 0

∆†
++(k) ∆†

−+(k) 0 −E+(−k)

 , (2.90)
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Figure 2.5: Spin structure in the bands of the Rashba wire eigenstates (a) for αR = 0 without
spin-orbit coupling with Ez > 0, (b) for αR > 0, i.e. with spin-orbit coupling but without
Zeeman term Ez = 0, (c) with spin-orbit coupling and small Zeeman term Ez = 0.5Eso, and (d)
with spin-orbit coupling and larger Zeeman field of Ez = 4.5Eso. Here, the solid lines are the
energy bands and the arrows are the spin vectors in the Sx-Sz-plane. The colors indicate the
rotation angle of the spins from the ↑-direction (angle 0, red) to the ↓ direction (180◦, blue).

with E±/Eso = k̃2 − µ̃±
√
Ẽ2

z + 4k̃2 and [366]

∆+−(k) = ∆ ([v−(k)]1[v−(−k)]1 − [v+(k)]1[v+(−k)]1)

= −∆Ẽz√
Ẽ2

z + 4k̃2
= ∆−+(k) (2.91)

∆++(k) = ∆ ([v−(k)]1[v−(−k)]2 + [v+(k)]1[v+(−k)]2)

= ∆2k̃√
Ẽ2

z + 4k̃2
= −∆−−(k) . (2.92)
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It becomes apparent that both effective p-wave interband pairing ∆++,∆−− and s-wave intra-
band pairing ∆+−,∆−+ occur. If we consider the topologically non-trivial case from Sec. 2.2.1,
i.e. where Ez and µ are chosen such that effectively only the lower band is occupied, only the
effective interband p-wave pairing ∆−−(k) is relevant and given by

∆p(k) = ∆2k̃√
Ẽ2

z + 4k̃2
= ∆ℏαRk√

E2
z + ℏ2α2

Rk
2
. (2.93)

As expected, this shows that the Rashba spin-orbit coupling yields effective triplet pairing for
a suitable choice of the parameters. In addition, the Zeeman field lifts the degeneracy at Fermi
level for suitable chemical potentials. However, we also see that the p-wave gap, ∆p ∼ E−1

z ,
vanishes in the limit Ez → ∞. It is therefore crucial that Ez is large enough such that effectively
only the lower band is occupied, but not so large that the induced triplet paring vanishes or
superconductivity in the parent superconductor is destroyed [82].

Gap and topological classification

After showing that the Rashba wire is effectively a spin-polarized p-wave superconductor for
an appropriate choice of Zeeman field and chemical potential, we next examine its topological
classification. For this we first consider the excitation gap for the case ∆ > 0, which we can
derive from the dispersion E±(k), Eq. (2.83), as the energy of the lower band at either the Fermi
level kF or at k = 0 depending on at which of these two points the energy is smaller. Here, the
Fermi momentum for the lower band can be obtained from the point E−(kF ) = 0 and is given
by

lsokF =
√
µ̃+ 2 +

√
4 + Ẽ2

z + 4µ̃ . (2.94)

Thus, the excitation gap is determined via

Egap = min
k

(E−(k)) ≈ min
{

|Ez −
√

∆2 + µ2|, E−(kF )
}

≈ min
{

|Ez −
√

∆2 + µ2|, |∆p(kF )|
}
, (2.95)

where the last approximate equality only holds if interband pairing is negligible.
Fig. 2.6(a) depicts the excitation gap as a function of the Zeeman field, where it becomes

apparent that the gap is closing at Ez =
√

∆2 + µ2. In order to show that the closing of the
gap is again associated with a topological phase transition and to calculate which topological
phase exists in which parameter region, we calculate the topological invariant in the following.
For this we first consider the symmetries of the Hamiltonian, Eq. (2.82):

(i) The Hamiltonian has pseudo time reversal symmetry T = τ0 ⊗ σzK with T 2 = +1, since
T H(k)T −1 = H(−k).

(ii) The Hamiltonian also has particle-hole symmetry P = τy ⊗ σyK with P2 = +1 and
PH(k)P−1 = −H(−k).

(iii) Because of the presence of P and T symmetry, we can also construct C = τy ⊗ σx, where
the chiral operator satisfies CH(k)C−1 = −H(k).
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Figure 2.6: (a) Excitation gap at k = 0 and at Fermi-level kF together with the p-wave gap
|∆p(kF )| for µ = 0.5Eso, ∆ = 2Eso. The energies E > min(E−) for which quasi-particle states
exist are marked in light blue [cf. 265]. Here min(E−) is obtained numerically from Eq. (2.83).
(b) Phase diagram of the Rashba wire in the chemical potential µ, Zeeman field Ez plane [cf.
84].

Thus, the Hamiltonian is in the BDI symmetry class, whose Z topological invariant can be
determined as a winding number. As discussed in Sec. 2.1, however, it is sufficient for us
to determine the Pfaffian invariant Eq. (2.41), which gives the parity of the winding number
[346, 347]. With P = τy ⊗ σyK = UPK, which yields UP = τy ⊗ σy, we find

Q =
∏

k=−k

sgn(Pf[iH(k)UP ]) (2.96)

= −
∏

k=−k

sgnPf


0 ∆̃ 2k̃ Ẽz + k̃2 + µ̃

−∆̃ 0 Ẽz + k̃2 − µ̃ −2k̃
2k̃ −Ẽz − k̃2 + µ̃ 0 −∆̃

−Ẽz + k̃2 − µ̃ −2k̃ ∆̃ 0

 (2.97)

= −
∏

k=−k

sgn(−∆̃2 + 4k̃2 + Ẽ2
z − (k̃2 − µ̃)2) (2.98)

= −sgn(Ẽ2
z − (∆̃2 + µ̃2)) =

{
+1 for E2

z < ∆2 + µ2

−1 for E2
z > ∆2 + µ2 . (2.99)

Thus, the system is in the topological phase for |Ez| >
√

∆2 + µ2 and in the trivial phase for
|Ez| <

√
∆2 + µ2, and the gap closes at |Ez| =

√
∆2 + µ2. The corresponding phase diagram is

shown in Fig. 2.6(b).

Majorana condition

For the case of the p-wave superconductor, we considered a domain wall as a boundary between
the topological and trivial phase in the previous section. There we found an analytical solution
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for the zero energy state, which is localized at the phase boundary. Due to the absence of
the spin degree of freedom, the Hamiltonian is only a 2 × 2 matrix. In addition, particle-
hole symmetry Pp = τxK and pseudo-time reversal symmetry Tp = K could be utilized to
simplify the calculation for the zero-energy state ψ0 = (u0, v0)T . It turned out to be helpful
that ψ0 = (u0, v0)T = Ppψ0 = (v∗

0, u
∗
0)T = Tpψ0 = (u∗

0, v
∗
0)T could be fulfilled simultaneously by

a real solution u0 = v0 ∈ R.
In the case of the Majorana wire, the situation is more complicated by the fact that we

have to consider the spin degrees of freedom. In addition, for a zero energy solution ψ0 =
(u↑, u↓, v↓,−v↑)T , application of the symmetry operator yields Pψ0 = (v∗

↑, v
∗
↓, u

∗
↓,−u∗

↑)T and
T ψ0 = (u∗

↑,−u∗
↓, v

∗
↓, v

∗
↑)T . However, here ψ0 = T ψ0 = Pψ0 ⇔ ψ0 = 0, which is why a state

cannot have eigenvalue +1 for both operators P and T at the same time. However, Pψ0 and
T ψ0 are also zero energy states because of PH(y)P−1 = −H(y) and T H(y)T −1 = H(y). If a
single zero energy state ψ0 exists, we can choose it so that T ψ0 = ψ0 and Pψ0 = iψ0. However,
we will later consider long wires with two ends, where two such solutions occur with energies
±ε ≈ 0. If exactly two such quasi zero energy states ψ(1)

0 and ψ(2)
0 exist, then (since T ψ0 lies in

the subspace to eigenvalue E ≈ 0 spanned by ψ(1)
0 and ψ(2)

0 ) one can always choose the state such
that T ψ(1)

0 = ψ
(1)
0 . Further, we can take ψ(2)

0 = Pψ(1)
0 , since Pψ(1)

0 also lies in the eigenspace of
E ≈ 0 and Pψε = ψ−ε. Hence, T ψ(1)

0 and Pψ(1)
0 form an orthonormal basis in the eigenspace

corresponding to the eigenvalue E ≈ 0.
It will be advantageous for transport calculations to separate the particle-hole redundant

eigenvectors [367], which is automatically the case for states with energy E ̸= 0, since PψE =
ψ−E and E ̸= −E in this case. For the Majorana zero modes with E = 0 we can achieve this
separation by selecting the two eigenmodes as described above. Then because of {T , P} = 0,
the eigenstates are chosen such that

T P
ψ

(1)
0 ψ

(1)
0 ψ

(2)
0

ψ
(2)
0 −ψ(2)

0 ψ
(1)
0

This choice also implies

ψ
(1)
0 =


u↑
u↓
v↓

−v↑

 =


u∗

↑
−u∗

↓
v∗

↓
v∗

↑

 = T ψ(1)
0 (2.100)

and therefore u↑, iu↓, v↓, iv↑ ∈ R.
We next consider a one-dimensional Rashba wire of length L with two ends at y = 0 and

y = L. The real space Hamiltonian in unitless parameters with confinement potential Ṽ (y) is
given by

H/Eso = τz ⊗
[
−σ0

(
∂2

ỹ + µ+ Ṽ (y)
)

− 2iσx∂ỹ

]
− Ẽzτ0 ⊗ σz + ∆̃τx ⊗ σ0 . (2.101)

Assuming that the wire is in the topological phase, i.e. Ez >
√

∆2 + µ, there are interfaces
between the trivial phase (outside the wire) and topological phase (inside the wire) at both
ends. We therefore expect two Majorana zero modes, each exponentially located at one end
of the wire. For a symmetric potential V (y) in the wire, the Hamiltonian Eq. (2.82) has the
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additional symmetry Π that reflects y → L− y and applies a complex conjugation [304], i.e.

Π = (y → L− y)K (2.102)
H(y) = ΠH(y)Π−1 . (2.103)

Then, in addition to T ψ(1)
0 = ψ

(1)
0 (for exactly two zero modes ψ(1)

0 , ψ(2)
0 ), we can also ensure

that

Πψ(1)
0 =


u↑(L− y)

−u↓(L− y)
v↓(L− y)

+v↑(L− y)

 = λψ
(1)
0 (2.104)

with λ = ±1. Because Π commutes with the particle-hole operator, [Π , P] = 0, this also implies
that

Πψ(2)
0 = ΠPψ(1)

0 = λψ
(2)
0 . (2.105)

Thus u↑, v↓ have equal parity under spatial inversion, while u↓ and v↑ have opposite parity.
Eq. (2.105) already shows that the chosen eigenvectors in the zero energy subspace are a super-
position of the localized Majorana zero modes. This is also evident because of uσ ̸= v∗

σ, since
we have chosen the ψ(i)

0 as eigenstates of T and not P. We can also construct eigenstates of P
using the following linear combinations of the zero energy states

ψ± = e∓iπ/4 ψ
(1)
0 ± iψ(2)

0√
2

= e∓iπ/4
√

2


u↑(y) ∓ iv↑(y)
u↓(y) ± iv↓(y)
v↓(y) ∓ iu↓(y)

−[v↑(y) ± iu↑(y)]

 . (2.106)

For these zero energy states, application of the symmetry operators yields

Pψ±(y) = ψ±(y) (2.107)
T ψ±(y) = ±iψ±(y) (2.108)
Πψ±(y) = λψ∓(y) (2.109)

with λ = ±1. The particle-hole invariance ensures that the Majorana condition between hole
and particle wavefunctions in ψ± is fulfilled. If ψ− is localized at the left end of the wire, i.e.
ψ− = χ(y) ∝ e−y/ξ, then ψ+ = λΠψ− ∝ χ(L − y) is the Majorana state localized at the right
edge. Thus, if two localized zero modes ψ± are present, Eq. (2.106) and the localization imply
that u↑(y) + iv↑(y) = 0 for all y that are not at the left end, and u↑(y) − iv↑(y) = 0 for any y
not located at the right edge – and analogously for the inverse spin. Therefore, as long as the
Majorana modes do not overlap, which is true if their localization length is much shorter than
the wire length, ξ ≪ L/2, the Majorana condition for localized zero modes can be written as

|uσ| = |vσ| . (2.110)

In the case of a short wire with overlap between the Majorana wave functions, the states move
slightly away from zero energy to E = ±ε (see Sec. 2.2.3). Then the above equations apply only
approximately, and it becomes exact in the limit L ≫ ξ.
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In the following, we choose the wavefunction u
(E)
σ and v

(E)
σ for all energies E ≥ 0, so that

HψE(y) = EψE(y) with ψE(y) = (u(E)
↑ , u

(E)
↓ , v

(E)
↓ ,−v(E)

↑ )T = T ψE(y) = ΠψE(y). As a result,
even for the zero energy case, they do not fulfill uσ = v∗

σ – often referred to the Majorana
condition. Instead, we have shown that |uσ| = |vσ| is the correct Majorana condition in this
representation. We will see later that this representation is useful for transport calculations
and if necessary one can still convert to the conventional Majorana representation by using
Eq. (2.106), such that Pψ± = ψ±. For a wire of finite length it turns out that in the presence
of a Zeeman field, Ez > 0, all states with energy E > 0 are non-degenerate4. Furthermore, for
all E ≥ 0, we choose

u
(E)
↑ , iu(E)

↓ , iv(E)
↑ , v

(E)
↓ ∈ R , (2.111)

and for any symmetrical potential the parities of the wave functions under spatial inversion are
related by [304]

parity(u(E)
↑ ) = parity(v(E)

↓ ) ̸= parity(u(E)
↓ ) = parity(v(E)

↑ ) . (2.112)

Analytic solution for a Majorana zero mode

By making use of the symmetries, it is also possible to obtain an analytical solution for the
Majorana states (cf. supplemental material of [368]; parts of the analytical solution presented
here have been published in [131]). To obtain the zero-energy solution, we consider the BdG
equation

Hψ = 0 . (2.113)

From ψ−, Eq. (2.106), it becomes apparent that the form of a Majorana solution is given by

ψ = (χ↑, χ↓, iχ↓, iχ↑)T . (2.114)

Using this vector in the BdG equation, one finds a system of four differential equations

−∂2
ỹχ↑ − µ̃χ↑ − Ẽzχ↑ − 2i∂ỹχ↓ + i ∆̃χ↓ = 0

−∂2
ỹχ↓ − µ̃χ↓ + Ẽzχ↓ − 2i∂ỹχ↑ + i ∆̃χ↑ = 0

i∂2
ỹχ↓ + i µ̃χ↓ − i Ẽzχ↓ − 2∂ỹχ↑ + ∆̃χ↑ = 0

i∂2
ỹχ↑ + i µ̃χ↑ + i Ẽzχ↑ − 2∂ỹχ↓ + ∆̃χ↓ = 0 .

(2.115)

Furthermore, Eq. (2.108) allows us to define the real quantities eiπ/4χ↑ = χ̂↑ ∈ R, ieiπ/4χ↓ =
χ̂↓ ∈ R, such that the BdG equations are reduced to the two real equations

−∂2
ỹ χ̂↑ − µ̃χ̂↑ − Ẽzχ̂↑ − 2∂ỹχ̂↓ + ∆̃χ̂↓ = 0

−∂2
ỹ χ̂↓ − µ̃χ̂↓ + Ẽzχ̂↓ + 2∂ỹχ̂↑ − ∆̃χ̂↑ = 0 .

(2.116)

For the zero-energy solution, which is located at the left edge, we make the ansatz [368](
χ̂↑
χ̂↓

)
= e−Aỹ

(
ϱ↑
ϱ↓

)
(2.117)

4 This may seem like a contradiction as n momentum space E(−k) = E(k) for periodic boundary conditions.
However, similarly to the difference between periodic and open boundary conditions for a particle in a box, in the
open case, k and −k describe the same state such there is in fact no degeneracy.
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with boundary conditions χ̂(y = 0) = 0. For a wire with two ends, this is only an approximate
solution, since the exponential function can only be approximately zero at the right end such
that there are corrections due to the overlap of the Majorana wave functions from both ends.
For a very long wire L ≫ ξeff this is a good approximation, which becomes exact in the limit
L → ∞. Using the ansatz in Eq. (2.116), we obtain(

−A2 − µ̃− Ẽz 2A+ ∆̃
−2A− ∆̃ −A2 − µ̃+ Ẽz

)(
ϱ↑
ϱ↓

)
= 0 . (2.118)

For a non-trivial solution, the determinant of the coefficient matrix must vanish, yielding the
following quartic equation in A

0 = (A2 + µ̃)2 − Ẽz
2 + (2A+ ∆̃)2 (2.119)

= A4 +A2(2µ̃+ 4) +A(4∆̃) + µ̃2 − Ẽz
2 + ∆̃2 , (2.120)

where for a localized Majorana wave function only solutions with Re(A) > 0 are relevant. This
quartic equation can be solved analytically, already being in the reduced formA4+αA2+βA+γ =
0 with

α = 2µ̃+ 4 (2.121)
β = 4∆̃ (2.122)

γ = µ̃2 − Ẽz
2 + ∆̃2 . (2.123)

This allows us to use the solution formula for reduced quartic equations [369] for which we define

P = −α2

12 − γ (2.124)

Q = − α3

108 + αγ

3 − β2

8 (2.125)

U =

−Q

2 +

√
Q2

4 + P 3

27

1/3

(2.126)

Y = −5
6α+ U − P

3U (2.127)

W =
√
α+ 2Y (2.128)

Z = β

2W . (2.129)

Then the solutions are given by

A1 = 1
2

[
W +

√
W 2 − 4(α+ Y + Z)

]
A2 = 1

2

[
W −

√
W 2 − 4(α+ Y + Z)

]
A3 = 1

2

[
−W +

√
W 2 − 4(α+ Y − Z)

]
A4 = 1

2

[
−W −

√
W 2 − 4(α+ Y − Z)

]
.

(2.130)
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Factoring Eq. (2.120) using the four roots, i.e. 0 = (A − A1)(A − A2)(A − A3)(A − A4), we
directly find that

0 = A1 +A2 +A3 +A4

µ̃2 − Ẽz
2 + ∆̃2 = A1A2A3A4 ,

(2.131)

and in the topological region, γ < 0, in addition W,Y,Z, α ∈ R and a Majorana solution exists
[368] with Re(A1),Re(A2),Re(A3) > 0 and Re(A4) < 0. We therefore need the coefficient of the
term corresponding to A4 to be zero in order to obtain a localized and normalizable solution in
the limit L → ∞. Then, for each Ai the system of equations Eq. (2.118) has to be solved. The
solution can be expressed as (

ϱ↑,i

ϱ↓,i

)
= Ni

(
2Ai + ∆̃

A2
i + µ̃+ Ẽz

)
, (2.132)

where Ni is a normalization constant. From Eq. (2.130) one finds in the topological regime that
A1 = A∗

2 and A3 ∈ R, and we therefore define

A1 = ξ̃−1
1 + i k̃eff (2.133)

A2 = ξ̃−1
1 − i k̃eff (2.134)

A3 = ξ̃−1
2 . (2.135)

Using ξ1 = ξ̃1lso, ξ2 = ξ̃2lso, and y = ỹlso, keff = k̃eff/lso ≈ kF /lso, the solution in the topological
range is given by [131]

χ̂L(y) = N
[
e−y/ξ2

(
2ξ̃−1

2 + ∆̃
ξ̃−2

2 + µ̃+ Ẽz

)

+ e−y/ξ1

{
aeikeffy

(
2(ξ̃−1

1 + i k̃eff) + ∆̃
(ξ̃−1

1 + i k̃eff)2 + µ̃+ Ẽz

)

+ be−ikeffy

(
2(ξ̃−1

1 − i k̃eff) + ∆̃
(ξ̃−1

1 − i k̃eff)2 + µ̃+ Ẽz

)}]
. (2.136)

Furthermore, from the boundary condition χ̂L(y = 0) = 0 we obtain [131]

a = b∗ = (i ξ̃2 + ξ̃1(−i + k̃eff ξ̃2))(−2 + 2(Ẽz + µ̃)ξ̃1ξ̃2 − ∆̃(ξ̃1 + ξ̃2) + i k̃eff ξ̃1(2 + ∆̃ξ̃2))
4k̃eff(1 + ξ̃1(∆̃ − (Ẽz − k̃2

eff + µ̃)ξ̃1))ξ̃2
2

.

(2.137)

Using χ↑ = e−iπ/4χ̂↑ and χ↓ = −ie−iπ/4χ̂↓ we have thus analytically found the zero-energy
solution at the left end, and the corresponding solution at the right end is given by

χR(y) = ΠχL(y) = χ∗
L(L− y) . (2.138)

As we can see from Eq. (2.136), there are two decay constants ξ1 and ξ2, where ξ1 is dominant
for large Zeeman fields and ξ2 dominates close to the phase transition. Using the relations for
the Ai, Eq. (2.131), we can express A3 in terms of A1 and A2, and using ξ1, we find

ξ2 = A−1
3 lso =

−1
ξ1

+

√√√√ 1
ξ2

1
− µ̃2 + ∆̃2 − Ẽ2

z

ξ−2
1 + k2

F

−1

. (2.139)
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Unfortunately, the analytical solution is very lengthy, which makes it difficult to learn something
about the Majorana wave functions from it. However, we have already considered the p-wave
superconductor and its similarity to the Rashba wire. The next step is therefore to derive ap-
proximations from the analytical solution by using the knowledge of the p-wave superconductor.

Approximations

To estimate the effective gap using the induced p-wave gap ∆p, it would be advantageous to
approximate the lengthy analytical expression for the localization lengths of the Majorana modes
ξ1 and ξ2 using the result in the p-wave limit. As we discussed in Sec. 2.2.1, the coherence length
of a superconductor is given by ξ = ℏvF /Eg [352], where Eg is the effective gap. In the case
considered here, E−(k)/Eso = k̃2 −µ−

√
Ẽ2

z + 4k̃2 and E−(kF ) = 0 so that we obtain the Fermi
momentum and Fermi velocity as [131]

keff lso ≈ k̃F =
(

2 + µ̃+
√
Ẽ2

z + 4 + 4µ̃
)1/2

, (2.140)

ℏvF

lsoEso
= ∂k̃E−
lsoEso

∣∣∣∣
k̃F

= 2k̃F − 4k̃F√
Ẽ2

z + 4k̃2
F

. (2.141)

Here we again used the reduced quantities k̃F = kF lso, Ẽz = Ez/Eso, µ̃ = µ/Eso. Thus, by using
Eq. (2.93) we obtain an approximation for the coherence length [131]

ξ1 ≈ ξ = ℏvF

∆p,ind
= 1

∆

( ℏ
αRm

√
E2

z + ℏ2α2
Rk

2
F − ℏαR

)
, (2.142)

ξ1
lso

≈ 1
∆̃

(√
Ẽ2

z + 4k̃2
F − 2

)
. (2.143)

However, for Zeeman fields close to the phase transition, the gap closing is dominated by an
s-wave type behavior Eg ∝ |Ez −

√
∆2 + µ2|. Using the approximation ξ1 ≈ ξ, we can also

approximate the s-wave correction length with Eq. (2.139) as [131]

ξ2 ≈ ξs ≡

−1
ξ

+

√√√√ 1
ξ2 − µ̃2 + ∆̃2 − Ẽ2

z

ξ−2 + k2
F

−1

∼ 1
Ez −

√
∆2 + µ2 . (2.144)

Here, the s-wave correlation length ξs diverges at the phase transition according to the energy
of the closing gap, Eg = |Ez −

√
∆2 + µ2|, consistent with ξs ∼ 1/Eg.

We depict these approximations together with the full result of the analytical solution for
the Majorana zero modes ξ1 and ξ2 in Fig. 2.7(b). Here, the dominant correlation length
ξeff = max{ξ, ξ2} first decreases at the beginning of the topological range and then increases
with Ez starting at about Ez ≈ 3.2Eso. In this range the p-wave correlation length ℏvF /∆p is
an excellent approximation of the analytical result. In the limit Ez/Eso → ∞, the localization
length is asymptotically proportional to Ez, such that the Rashba wire in the topological region
Ez ≫

√
∆2 + µ2 behaves approximately like a p-wave superconductor from the last section

with kF ∆ → ∆p and ξk → ℏ2k2/(2m∗) − µ −
√
E2

z + ℏ2α2
Rk

2. For Ez ≳
√

∆2 + µ2 at the
beginning of the topological region, however, the effective correlation length of the Majorana
mode is proportional to the inverse of the Zeeman field, ξeff ∼ E−1

z , and a description by the
spin-polarized p-wave superconductor is not justified. However, since the transition to ξeff ∼ Ez

73



Figure 2.7: Validity of the approximations in the analytical solution for the Majorana zero
mode: (a) The lowest two positive energy eigenvalues numerically computed for µ = 0.5Eso and
∆ = 2Eso as a function of the Zeeman field Ez (blue solid line). The approximate excitation
gap min{∆p, E−(k = 0)} is depicted in red. The numerical calculations were performed for a
very long wire L = 130 lso. (b) Analytically determined localization length ξ1 = Re(A1)−1lso
and ξ2 = Re(A3)−1lso of the Majorana wave functions as a function of the Zeeman field Ez for
µ = 0.5Eso, ∆ = 2Eso and a = 0.026 lso. In comparison, the approximations of the correlation
lengths from the p-wave solution Eq. (2.143) and the s-wave correlation length Eq. (2.144) are
shown (dashed lines), in excellent agreement with the analytical results.

occurs relatively shortly after entering the topological regime, one can often use the simple
solution of the p-wave superconductor when interpreting numerical results for the Majorana
state.

Comparison with numerical solution

For our later transport calculations we additionally need eigenstates with higher energies E >
0, which we have to determine numerically. For this purpose, we discretize the Hamiltonian
Eq. (2.82) on a lattice of N sites with lattice constant a = L/N . We again work in reduced
units ã = a/lso, µ̃ = µ/Eso, Ẽz = Ez/Eso, ∆̃ = ∆/Eso and proceed analogously to Eq. (2.58),
Eq. (2.59), and Eq. (2.60) of the previous section. Using the N × N matrices r and ℓ with
[r]ij = δi,j−1 and [ℓ]ij = δi,j+1, we can discretize the derivatives as ∂ỹ = (ℓ − r)/(2ã) and
∂2

ỹ = (r + ℓ− 21N )/ã2. Thus, we find the discretized Hamiltonian

H = Ψ†HΨ (2.145)

H/Eso = 1
ã2 [r + ℓ− 21N ] ⊗ τz ⊗ σ0 − µ̃1N ⊗ τz ⊗ σ0 − i

ã
[ℓ− r] ⊗ τz ⊗ σx

− Ẽz1N ⊗ τ0 ⊗ σz + ∆̃1n ⊗ τx ⊗ σ0 , (2.146)
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Figure 2.8: Eigenvalues and selected eigenstates of H/Eso for µ = 0.5Eso, ∆ = 2Eso and
a = 0.026 lso. (a) 20 lowest energy eigenvalues as a function of the Zeeman field Ez. The red
crosses mark the values for which the eigenvectors are shown in panel (b) and (c). At the
red, vertical line, Ez =

√
µ2 + ∆2, the system transitions form the trivial to the topological

phase by a closing of the bulk gap. After reopening of the gap for large fields, MZMs remain
in the middle of the excitation gap. (b) Example of an eigenfunction |ΨE |2 for Ez = 1Eso in
the trivial phase corresponding to the lowest positive eigenvalue E = 1.066Eso. The trivial
wave function is extended through the wire and vanishes at the ends due to the open boundary
conditions. (c) Example for MZMs |Ψ(1)

0 |2 in the topological phase for Ez = 8Eso with energy
E = 1.12 · 10−6Eso. The Majorana wave function is strongly localized at both wire ends.

where the basis spinor is given by

Ψ† =
(
ψ†(0), ψ†(a), ..., ψ†(ja), ..., ψ†(Na)

)
(2.147)

ψ†(ja) =
(
c†

j↑, c
†
j↓, cj↓,−cj↑

)
. (2.148)

To obtain the numerical solution we diagonalize the matrix H/Eso using Matlab.
In Fig. 2.8(a) we show the 20 energy eigenvalues with the smallest absolute values as a function

of the Zeeman energy Ez, numerically obtained for µ = 0.5Eso, ∆ = 2Eso, and a = 0.026 lso.
We observe that after the transition to the topological phase, two states with nearly zero energy
occur which lie in the middle of the excitation gap. In the trivial region these states are absent.
In addition, the wave functions of the lowest level in the trivial and topological regime are shown
in Fig. 2.8(b) and (c), respectively. It is apparent that the trivial wave function is extended over
the wire, while the zero energy solutions are exponentially localized at the ends. As described,
Ψ(1)

0 = (u0↑, u0↓, v0↓,−v0↑)T is a superposition of the two Majorana wave functions Ψ+ = χR

and Ψ− = χL, which we obtain from the numerical results Ψ(1)
0 using Eq. (2.106). We depict

these Majorana wave functions in Fig. 2.9(a) and (b). For comparison, the solid red line shows
the analytical solution for the Majorana wave functions according to Eq. (2.136) – in excellent
agreement with the numerical results. Instead of the complete analytical solution, in Fig. 2.9(b)
we plot only the exponentially decaying envelope ∝ e−(L−y)/ξeff with effective correlation length
ξeff = max{ξ, ξ2}. In order to also take into account the signs of the wave functions, we plot
u↑ = Re(u↑) and −iv↓ = Im(v↓) in Fig. 2.9(c), which are superpositions of the two Majorana
wave functions. We can see that u↑ and v↓ indeed have inverse parity under spatial inversion y →
L−y. This behavior under spatial inversion will become important later when we study electronic
transport, in which the couplings between leads and the Majorana wire are determined by the
values of the wave functions at the ends of the wire. In Fig. 2.7(a), we compare the estimator
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Figure 2.9: Majorana wave function in the topological phase for Ez = 4Eso, µ = 0.5Eso,
∆ = 2Eso, and a = 0.026 lso. (a) Left localized analytical solution for the Majorana wave func-
tion Eq. (2.136) (red solid line) together with the numerical solution (blue squares) calculated
from the solutions Ψ±ε for ε = 1.12 · 10−6Eso using Eq. (2.106). (b) Right localized numerical
solution (blue) together with N e−y/ξeff , where the localization length used for the envelope curve
depicted in red is determined from the analytical solution as ξeff = max{ξ, ξ2}. We find excellent
agreement between the numerical and analytical results. (c) Numerically calculated eigenfunc-
tions Re(u↑) and Im(v↑) using the representation of the Majorana wave function according to
Eq. (2.100), which demonstrates that the parity under spatial inversions is given by Eq. (2.112).

for the excitation gap from the p-wave superconductor Eg = min{|Ez −
√

∆2 + µ2|,∆p(kF )}
with the numerical energy eigenvalues Ei. For a long wire, we find excellent agreement between
Eg and E1, and in the topological region the Majorana solution has zero energy, E0 ≈ 0. In the
case of a shorter wire, which we will discuss in Sec. 2.2.3, oscillations of E1 around Eg and of
E0 around zero occur.

Differences to trivial phase

To better understand what distinguishes the topological phase from the trivial phase of the
Rashba wire, we consider linear combinations of the states with the lowest energies ±E1 [370]
in both trivial and topological regime

ψ
(E1)
± = e∓iπ/4ψE1 ± iψ−E1√

2
, (2.149)

such that action of the symmetry operators yields T ψ±E1 = ±ψE1 and Pψ±E1 = ψ∓E1 . As can
be seen from Eq. (2.106), these are the Majorana states in the case of E1 ≈ 0, however, if E1 > 0
they are no eigenstates of the Hamiltonian. In Fig. 2.10 we depict |ψ±|2 together with the spin
expectation value in the z-direction

⟨Sz⟩±/ℏ = ψ†
±(τz ⊗ σx)ψ± (2.150)

for the trivial and topological cases. As we can see in Fig. 2.10(a) and (c), in contrast to the
trivial phase, the overlap between ψ(E1)

+ and ψ(E1)
− disappears in the topological region. In fact,

it can be shown that the smaller the overlap between ψ
(E1)
+ and ψ

(E1)
− , the closer E1 is to zero

[370]. We will further discuss the implications of this observation in two different ways: (i) In
Sec. 2.2.3, we study Majorana zero modes in short wires where the Majorana wave functions

76



Figure 2.10: Wave function |ψ(E)
± |2, Eq. (2.149), and spin expectation value ⟨Sz⟩±, Eq. (2.150),

in the trivial phase for Ez = 5Eso, µ = 8Eso (a,b) and in the topological phase for Ez = 7Eso,
µ = 0.5Eso (c,d). In all cases, the numerical solutions are computed for ∆ = 2Eso, a = 0.026 lso,
and L = 32.5 lso. (a) Wave function |Ψ(E)

+ |2 for the lowest state with E = 0.906Eso in blue and
|ψ(E)

− |2 in red. The overlap of both wave functions is shown in orange. (b) Spin expectation
value ⟨Sz⟩+ in blue and ⟨Sz⟩− in red for the solutions ψ(E)

± from (a). (c) Wave functions for the
Majorana level with E ≈ 0, where |ψ(E)

+ |2 is shown in blue and |ψ(E)
− |2 in red. Here, the wave

functions ψ(E)
± are not eigenstates of the Hamiltonian if E > 0. (d) Spin expectation value ⟨Sz⟩+

in blue and ⟨Sz⟩− in red for the solutions ψ(E)
± from (c). Similar results are show in Ref. [370].

from both ends overlap in the middle of the wire, which leads to a finite energy E1 ≪ ∆p. (ii)
We artificially reduce the overlap in Sec. 2.2.4 by a smooth confinement potential in the trivial
phase to generate Andreev-bound states. These are trivial excitations, which also lie in the
excitation gap at energies E1 ≪ ∆p.

In addition, Fig. 2.10(b) and (d) depict the spin expectation value in z-direction for the
ψ

(E1)
± states. In the topological region (Fig. 2.10(d)) it becomes apparent that mainly spin-↑
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components are present, since the Majorana solutions are approximately spin polarized. In the
trivial region (Fig. 2.10(b)), however, both spin-↑ and ↓ components are present at the Fermi
level. It can also be observed that the overlap at the ends of the wire is mainly due to opposite
spin components.

2.2.3 Finite energy Majorana modes

So far we have only considered the case of very long wires, where the length L is much larger
than the localization length of the Majorana zero modes. We so far assumed that there is no
overlap between the localized MZMs from the two wire ends. For this case we found an analytical
zero-energy solution, Eq. (2.136), of the form

χL(y) = (χL↑(y), χL↓(y), iχL↓(y), iχL↑(y))T , (2.151)

which is localized at the left end, and from the Π symmetry we obtained

χR(y) =
(
χ∗

L↑(L− y), χ∗
L↓(L− y),−iχ ∗L↓ (L− y), iχ∗

L↑(L− y)
)T

, (2.152)

as the solution localized at the right end. Here we now consider wire lengths that are still larger
than the localization length, but not so large that the overlap is negligible. In this case the two
wave functions hybridize to eigenstates

ψ±E0(y) = e±iπ/4
√

2
(χL(y) ∓ iχR(y)) . (2.153)

These eigenstates then have energies ±E0, given by [368]

E0 =
∫

dy ψ†
E0

HψE0∫
dy ψ†

E0
ψE0

(2.154)

= 1
2

∫ L
0 dy

[
χ†

L(y)HχL(y) + χ†
R(y)HχR(y) − iχ†

L(y)HχR(y) + iχ†
R(y)HχL(y)

]
∫

dy ψ†
E0
ψE0

. (2.155)

Using the definitions from Eq. (2.106) of the last section, we see that PχL,R(y) = χL,R(y) and
ΨE0 = PΨ−E0 = (u↑, u↓, v↓,−v↑)T . If we use the symmetries P and Π of the wire Hamiltonian
together, we obtain the unitary symmetry PΠ = UP(y → L−y) with (PΠ)†HPΠ = −H. Acting
with this operator on the Majorana wave functions, we obtain PΠχL = χR and χ†

L(PΠ)† = χ†
R,

such that ∫
dyχ†

LHχL = −
∫

dyχ†
L(PΠ)†H(PΠ)χL . = −

∫
dyχ†

RHχR . (2.156)

Hence, the diagonal terms add to zero, and the energy is determined by the overlaps according
to

E0 = − i
2

∫
dy
[
χ†

LHχR − χ†
RHχL

]
. (2.157)
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Figure 2.11: Energy of the Majorana eigenstate |E0| as a function of (a) wire length L for
Ez = 6Eso, µ = 0.5Eso, (b) chemical potential µ for L ∈ {19.5, 26.0, 32.5} lso, Ez = 6Eso,
and (c) Zeeman energy Ez for L ∈ {19.5, 26.0, 32.5} lso, µ = 0.5Eso. Solid lines are analytical
results using Eq. (2.160) and the squares are determined numerically. Similar results are shown
in Ref. [368] and for the Kitaev chain in Ref. [373].

To calculate the energy we use the analytical solution Eq. (2.136), where the Majorana wave
functions truncated at the ends5 are given by

χ†
L = θ(L− y)eiπ/4 (χ̂L↑(y), i χ̂L↓(y), χ̂L↓(y),−i χ̂L↑(y)) (2.158)

χ†
R = θ(y)e−iπ/4 (χ̂L↑(L− y),−i χ̂L↓(L− y), χ̂L↓(L− y), i χ̂L↑(L− y)) . (2.159)

In this approximation, inside of the wire for 0 < y < L both χL and χR are zero energy solutions,
i.e. HχL = 0 = HχR (where θ(y) = 1 and θ(L− y) = 1), and due to the boundary conditions,
the wave functions vanish at the end they are computed for, i.e. χL(0) = 0 and χR(L) = 0.
Using that the derivative of the step function is a delta distribution, ∂yθ(y) = δ(y), there is only
a non-vanishing contribution to E0 when the term τzσ0∂

2
ỹ of the Hamiltonian acts on the step

function (see App. A.4 for a detailed calculation). This yields [368, 371, 372]

E0 = 2
(
χ̂′

L↑(0)χ̂L↑(L) − χ̂′
L↓(0)χ̂L↓(L)

)
= Re−L/ξ cos(keffL− δ) , (2.160)

where χ̂′
Lσ denotes the first derivative. The last equation is valid if the s-wave localization length

ξ2 and the p-wave localization length ξ fulfill e−L/ξ2 ≪ e−L/ξ, which is already the case shortly
after entering the topological region (see Fig. 2.7(b)). The exact analytical expressions for R and
δ are given in App. A.4; however, they are not important to understand the qualitative behavior.
The crucial point is that the energy of the Majorana state is exponentially suppressed by the wire
length and oscillates with cos(keffL) ≈ cos(kFL). In Fig. 2.11 we present the analytical solution
together with the numerical results. In addition to the wire length dependence in Fig. 2.11(a),
the analytical solution also provides the chemical potential dependence (Fig. 2.11(b)) and the
Zeeman field dependence (Fig. 2.11(c)) – all in excellent agreement with the numerical solution.
As expected, because the finite energy is exponentially suppressed by the wire length, for L ≫ ξ
there is effectively a zero mode.

5 As the wave functions were obtained analytically for a semi-infinite wire (or it was assumed that the
wave function decays fast enough to be zero at the opposite end), we here approximate the wave functions by
cutting them off at the opposite wire ends. The comparison with the numerics shows that this is an excellent
approximation for sufficiently long wires.
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Figure 2.12: Energy of the lowest energy level as a function of the chemical potential µ and
Zeeman energy Ez for a wire of length L = 32.5 lso. The dashed red line marks the boundary
between topological and trivial region. Panel (b) shows a zoom into the orange region marked
in (a). We use a different colormap scale in (b) such that finite Majorana energy oscillations
become visible.

The analytical wave function for the isolated Majorana states is independent of the wire length.
Therefore, µ and Ez influence the energy E0 indirectly via the correlation length ξ(µ,Ez). Here,
ξ depends only weakly on µ, which is why E0 increases only slightly with increasing µ (see
Fig. 2.11(b)). As we saw in the last section (Fig. 2.7), ξ has a strong Ez dependence and is
proportional to ξ ∝ Ez for large Zeeman fields, so that E0 also increases with Ez.

As we have seen, zero energy solutions for separated Majorana states are independent of wire
length, as the correlation length ξ does not depend on L. In the case of a finite overlap of
the Majorana states from both ends, the wave functions hybridize in the topological region to
eigenstates ∝ χL ± iχR with finite energy ∝ e−L/ξ. While in the topological region, the spin ↑
component is dominant, in the trivial region the contribution from the spin-↓ components have
a finite overlap and thus give rise to an energy on the order of the induced gap.

In Fig. 2.12 we depict the energy of the lowest eigenstate as a function of both chemical
potential µ and Zeeman energy Ez. In the topological region, we see the oscillations of finite
energy values around zero due to the finite wire length (see Fig. 2.12(b)). In the trivial range
the energy increases rapidly to the value of the induced gap ∆p ind, Eq. (2.93). Therefore, we
can distinguish the topological from the trivial region only by means of the energy of the lowest
level in this case. In the following section we introduce a smooth confinement potential, which
reduces the overlap in the trivial region and thus enables trivial quasi-zero energy states to exist
in the gap [112]. As a result, signatures based solely on the energy of the Majorana level cannot
provide clear evidence for Majorana zero modes. Therefore, in later chapters we will consider
signatures based on the localization property of Majorana zero modes and not their energy.
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Figure 2.13: (a) Confinement potential at the left end of the wire (blue) according to
Eq. (2.162). The solid line is the potential used in the Hamiltonian, which consists of the
two Gaussian peaks represented by dashed lines. (b) The lowest two energy levels in the triv-
ial region as a function of the width σ2 of the wide peak. For the numerical calculations
we use a confinement potential with V0 = 65Eso, σ1 = 0.1 lso, Es = 10Eso, Zeeman energy
Ez = 4.5Eso, chemical potential µ = 6Eso, induced superconductor gap ∆ = 2Eso, lattice
constant a = 0.026 lso, and wire length L = 39 lso.

2.2.4 Robust Andreev bound states

As we have seen in Sec. 2.2.2, the system is in the topological phase if – for a sufficiently large
Zeeman field – only the lower band is occupied (see Fig. 2.4), so that the Majorana excitations
are effectively spin polarized. On the other hand, in the trivial region both bands are occupied,
and effectively two p-wave superconductors with opposite spin are present. Each of these p-wave
superconductors contributes a Majorana mode at each end of the wire, differing in their Fermi
momentum, kF,− < kF,+. If we employ hard wall boundary conditions for the ends of the wire,
the step-like confinement potential has a Fourier expansion, which also contains components for
large momenta ∼ |kF,+ − kF,−|, thus coupling each of the Majorana modes at the same end.
This results in a large overlap (see Sec. 2.2.3) such that the lowest levels have energies close to
the induced p-wave gap, E1 ≈ E2 ≈ ∆p,ind. If, on the other hand, the confinement potential
is sufficiently smooth so that its Fourier expansion does not contain any contributions for such
momenta, then the Majorana modes of the different effective p-wave superconductors cannot
couple due to momentum conservation, and they remain at zero energy [111–128, 374–376]. A
finite energy near zero is then only due to the overlap of the Majorana zero modes of opposite
ends, i.e., of the same p-wave superconductor (analogous to Sec. 2.2.3). In addition, a potential
influences the two spin directions to different extents due to their different momenta kF,± as a
result of the Zeeman term, which means that the spin-↑ and spin-↓ Majorana wave functions at
the same end are also spatially shifted against each other. This reduces their overlap and thus
their energy even when they are coupled together. Thus, in the presence of a smooth boundary
potential we expect the occurrence of pairs of quasi-zero energy states in the trivial phase [112],
which are called Andreev zero modes or pseudo-Majorana states.
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To take the confinement potential V (y) into account, we consider the Hamiltonian

H = τz ⊗
[
−σ0(∂2

ỹ + µ̃− Ṽ (y)) − 2iσx∂ỹ

]
− Ẽzτ0 ⊗ σz + ∆̃τx ⊗ σ0 . (2.161)

For a transport experiment, one connects the ends of the wire with leads so that electrons
have to tunnel through the confinement potential to enter or leave the wire. Therefore, if we
choose a high and wide potential, the wire is barely coupled to the leads. To still have a finite
tunneling probability, we compose the confinement potential as a high narrow peak and a flat
wide Gaussian peak, such that it is given by

Ṽ (y) = (VL(y) + VL(L− y))/Eso (2.162)

with

VL(y) =
{
Vσ1,V0(y) for y < y1

Vσ2,V0(y + y2 − y1) for y < y1 ≤ y ≤ L
, (2.163)

where we use the abbreviations

Vσ,V0(y) ≡ V0e−y2/(2σ2) (2.164)

yj ≡
√

−2σ2
j ln Es

V0
. (2.165)

Here, the parameters of the potential are the standard deviation of the sharp Gaussian peak σ1,
the standard deviation of the wide Gaussian peak σ2, and Es is the height at which the narrow
peak transitions into the wide one (see Fig. 2.13(a)).

We choose V0 = 65Eso and σ1 = 0.1 lso for the narrow high potential, and to investigate the
influence of the broad peak on the energy eigenvalues of the Hamiltonian in the trivial phase,
we numerically calculate the first two levels E1, E2 as a function of σ2 for fixed Es = 10Eso (see
Fig. 2.13(b)). As expected, the first two Andreev bound states have almost vanishing energy
for sufficiently wide potentials. The required width depends on how deep the system is in the
trivial phase, as determined by µ and Ez. To better understand how robust these trivial pseudo-
Majorana zero modes are under variation of chemical potential and Zeeman energy, we calculate
the energy Emin of the first level as a function of Ez and µ numerically. To do this we consider
two different potentials for comparison

(a) a steep potential Eq. (2.162) with σ1 = σ2 = 0.1 lso, V0 = 65Eso, Es = V0,

(b) a smooth potential Eq. (2.162) with σ1 = 0.1 lso, σ2 = 6 lso, V0 = 65Eso, Es = 10Eso.

For the steep potential (a) (see Fig. 2.14(a)), we find energies similar to hard wall confinement
(see Fig. 2.12), i.e., immediately after entering the trivial phase (indicated by the red dotted
line), the energy increases to ∼ ∆p,ind. Therefore, the topological phase can here be identified by
the occurrence of the zero energy state. In contrast, if the potential is smooth (see Fig. 2.14(b)),
pseudo-Majorana zero modes occur for extended parameter ranges in the trivial phase. How far
these states extend into the trivial phase depends on the width of the confinement potential.
In experiments, both the confinement and the effective chemical potential are controlled by
electrostatic gating [130], such that a shallow confinement can often not be excluded, and the
sole presence of signatures based on the zero-energy character is not sufficient to show that the
system is in the topological phase.
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Figure 2.14: Energy of the lowest level as a function of chemical potential and Zeeman
energy (cf. Ref. [124]) for L = 39 lso and confinement potentials according to Eq. (2.162) with
(a) σ1 = σ2 = 0.1 lso, V0 = 65Eso, Es = V0, and (b) σ1 = 0.1 lso, σ2 = 6 lso, V0 = 65Eso,
Es = 10Eso. The dotted red lines mark the boundary between the topological and trivial
phases.

Figure 2.15: Lowest 20 energy eigenvalues of H/Eso, Eq. (2.161), for µ = 5Eso, ∆ = 2Eso, and
L = 32.5 lso using (a) the steep and (b) the shallow confinement potential. The dotted, vertical
lines are the boundaries between trivial case, pseudo Majorana bound states, and topoogical
Majorana bound states. Here, E2 is depicted with a dotted blue line and E1 with a solid, red
line.
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In Fig. 2.15 we show the lowest few energy levels as a function of the Zeeman energy. In the
case of the steep potential (a), we again find the same results as for the hard wall confinement
(compare Fig. 2.15(a) with Fig. 2.12). Here the system is in the topological region for Zeeman
energies Ez >

√
µ2 + ∆2 where the Majorana state is formed with zero energy, E1 ≈ 0, in

the gap, while the second level is on the order of the induced gap, E2 ≈ ∆p,ind. On the other
hand for the smooth confinement potential (b) there is, in addition to the topological domain
for Ez >

√
µ2 + E2

z (which is similar to case (a)), another region for smaller Zeeman fields
Ez ≲

√
µ2 + ∆2, in which the two pseudo Majorana zero modes with E1 ≈ E2 ≈ 0 are present.

If the Zeeman energy is sufficiently large, a transition to the topological phase occurs, just
like for hard wall confinement. We note that V (x) appears in the Hamiltonian with the same
Pauli matrices as the chemical potential, which together with the Zeeman field determines the
boundary for the topological phase. Therefore, it is not surprising that the topological phase
transition occurs slightly before Ez =

√
µ2 + E2

z , as can be seen from the fact that E2 increases
before the dotted vertical line in Fig. 2.15(b).

In order to better understand the influence of the confinement potential on the overlap of the
Majorana wave functions, we again depict the wave functions |ψ(Ei)

± |2, Eq. (2.149), and the spin
expectation values ⟨SEi

z ⟩, Eq. (2.150), for potentials (a) and (b) in Fig. 2.16.
We find in all cases that there are two contributions to the wave functions that oscillate with

different frequencies. This is not surprising in the trivial region, since the Fermi level intersects
both bands (see Fig. 2.4) at momenta kF,± with kF,− < kF,+. The slow oscillating component
with kF,+ is mainly spin-↓ polarized, while the fast oscillating kF,− component is predominantly
spin-↑ (in agreement with Fig. 2.5). For the steep potential (a), both components have a large
weight at the ends of the wire, where mainly opposite spin components have a large overlap (see
Fig. 2.16(a)). Therefore, the Andreev bound states in case (a) have finite energies E1 = 0.479Eso
and E2 = 0.494Eso, which are on the order of the induced gap. In contrast, the smooth potential
pushes the spin-↓ peaks away from the ends further into the wire (see Fig. 2.16(b)). This reduces
the overlap and causes the contributions at the wide peak to vanish due to the rapidly oscillating
tail of the spin-↑ component [cf. 370], i.e., no coupling between the components is possible, and
the energies E1 ≈ 1.41 · 10−3Eso, E2 = 7.45 · 10−3Eso are several orders of magnitude smaller.

2.2.5 Two-dimensional Majorana wires
There are promising experimental results [91, 93, 130] for realizing MZMs in hybrid devices of
two-dimensional electron gases (2DEGs) with spin orbit coupling in proximity to thin s-wave
superconductors, e.g. an Al superconductor placed on top off a InAs 2DEG. In this section, we
consider the case of such a two-dimensional strip of length Ly and width Lx, and study under
which conditions we obtain localized Majorana modes at the short ends and how they relate to
the one-dimensional description considered so far. For this we also reproduce some results found
by Potter et al. [366, 377], who showed that for a strip thinner than the Majorana localization
length Lx < ξeff , the approximation of a one-dimensional wire is justified. They argue that
for a wide wire with Lx ≫ ξeff , the Majorana states appear as edge states in the sample which
exponentially decay into the bulk with a characteristic length of ξeff . If, however, Lx is decreased
below this correlation length, the counter propagating edge states from the two sites overlap and
mix and what remains are the localized Majorana modes at the two short ends separated by the
distance Ly ≫ ξeff [377].

The two-dimensional case mainly differs from the previous one dimensional considerations
by three effects: i) the appearance of transversal subbands, ii) an additional component of the
Rashba spin-orbit coupling, and iii) the orbital effect due to the magnetic field. To separate
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Figure 2.16: Wave functions |ψ(Ei)
± |2, Eq. (2.149), and spin expectation values ⟨SEi

z ⟩
Eq. (2.150), in the trivial phase for the first two levels (i = 1, 2) using Ez = 8Eso, µ = 10Eso,
and (a) the steep confinement and (b) the shallow confinement. The overlap of the wave func-
tions is depicted in orange. Similar results are show in Ref. [370].
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the influence of these factors, we turn them on one by one and consider the band structure and
Majorana wave functions numerically.

Without the orbital effect of the magnetic field

We consider the Hamiltonian of a two-dimensional wire with induced s-wave superconductivity
[378]

H2d =
∫ Lx

0
dx
∫ Ly

0
dy ψ†(x, y)H2dψ(x, y) (2.166)

H2d = τz

[
− ℏ2

2m∗ (∂2
y + ∂2

x)σ0 − µσ0 − iℏαR(σx∂y − σy∂x)
]

− Ezτ0σz + ∆τxσ0 , (2.167)

where the basis spinor is again given by ψ† =
(
c†

↑, c
†
↓, c↓,−c↑

)
. We have used that the Rashba

term in two dimensions is given by −i (σ × ∇) · ez, where for simplicity we assume that the
spin-orbit coupling strength is the same in both directions. Here, the term iℏαRσy∂x breaks
the pseudo time reversal symmetry T symmetry, while the anti-unitary reflection Π and par-
ticle hole symmetry P remain intact. To determine numerical results, we also discretize the
two-dimensional Hamiltonian H2d on a lattice with lattice constant a = 0.026 lso in both di-
rections. The number of lattice sites for length Lx and width Ly is thus given as 4NyNx =
4LxLy/a

2. As a basis we choose Ψ† =
(
ψ†

x(y = a), ψ†
x(y = 2a), ..., ψ†

x(y = Nya)
)

with ψ†
x(y) =(

ψ†(x = a, y), ψ†(x = 2a, y), ..., ψ†(x = Nxa, y)
)

and ψ†(x, y) =
(
c†

↑(x, y), c†
↓(x, y), c↓(x, y),−c↑(x, y)

)
.

Thus, operators can be expressed as Kronecker products Oy ⊗ Ox ⊗ τ ⊗ σ, where Oy acts in
y-direction, Ox in x-direction, τ in the particle-hole basis, and σ in the spin basis. For example,
the operator c†

↓(x, y) then has position 4(x/a − 1) + 4Nx(y/a − 1) + 2 in the basis vector Ψ†.
For the discretization, we therefore express

∂x → 1
2a 1Ny ⊗ (ℓNx − rNx) (2.168)

∂y → 1
2a (ℓNy − rNy ) ⊗ 1Nx (2.169)

∂2
x → 1

a2 1Ny ⊗ (ℓNx + rNx − 21Nx) (2.170)

∂2
y → 1

a2 (ℓNy + rNy − 21Ny ) ⊗ 1Nx , (2.171)

analogous to the one-dimensional case. Here we define the N ×N matrices [1N ]ij = δij , [ℓN ]ij =
δi,j+1, and [rN ]ij = δi,j−1. In addition, we again use Eso = m∗α2

R/2 and lso = ℏ/(m∗αR) to
separate parameters from their units, i.e. µ̃ = µ/Eso, Ẽz = Ez/Eso, ∆̃ = ∆/Eso, ã = a/lso.
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Figure 2.17: (a) The lowest ten energy eigenvalues of H2d without the i∂xτzσy term for
Ez = 7Eso, µ = 0, a = 0.026 lso, ∆ = 2Eso, Ly = 32.5 lso, Lx = 1.56 lso. The red dashed lines
mark the bottoms of the transverse bands at energies E(x)

n,± = (nπ/(Lx/lso))2 ±
√
E2

z − ∆2, and
Nx is the number of occupied transverse bands [366]. (b) Dispersion E±(kx, ky) projected in
the (E, ky) plane, assuming Ly → ∞ and Lx < ξeff , such that kx,nx = πnx/L is quantized and
ky is continuous. Here Nx is the number of occupied bands when the chemical potential µ lies
in the corresponding region. If µ lies in the orange highlighted regions, the number of occupied
bands is odd and Majorana zero modes are present. The centers of these regions are given by
Enx = ℏ2k2

x,nx
/(2m).

Thus, we obtain the discretized Hamiltonian as

H2d = Ψ†H2dΨ , (2.172)
H2d

Eso
= − 1

ã2
[
1Ny ⊗ (rNx + ℓNx − 21Nx) + (rNy + ℓNy − 21Ny ) ⊗ 1Nx

]
⊗ τz ⊗ σ0

− µ̃
[
1Ny ⊗ 1Nx

]
⊗ τz ⊗ σ0

+ i
ã

[
1Ny ⊗ (ℓNx − rNx)

]
⊗ τz ⊗ σy

− i
ã

[
(ℓNy − rNy ) ⊗ 1Nx

]
⊗ τz ⊗ σx

− Ẽz
[
1Ny ⊗ 1Nx

]
⊗ τ0 ⊗ σz

+ ∆̃
[
1Ny ⊗ 1Nx

]
⊗ τx ⊗ σ0 . (2.173)

First, suppose the spin orbit coupling term iℏαRσy∂x was absent. In this case we would have
a Rashba wire in the y-direction and a free electron gas in an infinitely high potential well in the
x-direction. The momentum in the x-direction is thus quantized to kx,nx = πnx/Lx with integer
nx. This results in transverse bands with nx nodes, energies Enx = (πlso/(Lx + a))2Eson

2
x, and

topological regions with Majorana zero modes for

Enx −
√
E2

z − ∆2 < µ <
√
E2

z − ∆2 + Enx . (2.174)
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Figure 2.18: The lowest ten energy levels of the full Hamiltonian H2d for Ez = 7Eso, ∆ =
2Eso, Ly = 32.5 lso, for (a) a thin wire Lx = 1.56 lso < ξeff [cf. 377] and (b) a wide wire with
Lx = 3.90 lso ≳ ξeff as a function of the chemical potential µ, as well as for (c) the thin wire
Lx = 1.56 lso < ξeff as a function of both the chemical potential µ and the Zeeman energy Ez.
Similar results are shown in Ref. [377].
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Figure 2.19: Wave function |ψ|2 of the lowest energy level for Ez = 7Eso, ∆ = 2Eso, Lx =
1.56 lso < ξeff , and Ly = 32.5 lso ≫ ξeff . In panel (a) for Nx = 1 occupied subbands at µ = 0,
and panel (b) for Nx = 5 occupied subbands at µ = 32(πlso/(Lx + a))2Eso.
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The original topological region is thus shifted by an offset of E1/Eso = (πlso/(Lx +a))2 from the
origin and additional Majorana zero modes occur around µ = Enx for nx ∈ N. This is shown in
Fig. 2.17(a), where we depict the ten lowest energy levels as a function of the chemical potential.
These energy levels are obtained numerically for a Hamiltonian Eq. (2.173) without the iσy∂x

spin-orbit coupling term. As parameters we choose a = 0.026 lso, Ez = 4.5Eso, ∆ = 2Eso,
Ly = 32.5 lso, Ly = 1.56 lso < ξeff , and indicate a quasi-zero energy Majorana state by a solid
red line. The red dotted vertical lines mark the positions En ±

√
E2

z − ∆2 where the gap closes,
and Nx is the number of transverse bands crossed by the Fermi level for ∆ = 0 [377]. This is
sketched in Fig. 2.17(b) where we show the dispersion with several transverse subbands (kx)
for a wire infinitely extended in y-direction as a function of the longitudinal momentum ky.
We note that for the parameters we have chosen, the lower bands for each kx also have only
a single minimum (cf. Fig. 2.5(d)). As expected, a Majorana zero energy state occurs only if
the number of crossed bands Nx is odd, and for an even number Nx there are two low energy
states with nearly degenerate energy that is significantly larger than zero. If we now consider
larger widths Lx, the transverse subbands Enx move closer together. If a band E−,kx,n+1 then
falls below E+,kx,n at ky = 0, the areas with odd Nx become smaller.

Now that we have discussed the principles in the simple case without spin-orbit coupling in
y-direction, we consider the full Hamiltonian. We will find that the numerical results can still
be qualitatively explained with the simple picture with a single spin-orbit coupling term −iσx∂y

and refer to Refs. [366, 377] for a more detailed discussion. In Fig. 2.18(a) and (b) we again show
the ten lowest energy eigenvalues of the full Hamiltonian as a function of the chemical potential
µ. Here we choose Ez = 7Eso, ∆ = 2Eso, a = 0.026 lso, and Ly = 32.5 lso ≫ ξeff . In Fig. 2.18(a)
the width of the wire is given by Lx = 1.56 lso < ξeff . We find the same pattern of repeating
topological regions near Enx/Eso = (πlso/(Lx + a))2n2

x. However, the bands are slightly shifted
due to the extra spin-orbit coupling term. Again, for the regions with Majorana zero modes
an odd number Nx of transverse subbands is occupied. In addition, we show the energy of the
lowest state as a function of µ and Ez in Fig. 2.18(c). In the yellow regions this energy is of
the order of the induced gap, Emin ≈ ∆, and we indicate regions with Majorana zero modes
with Emin ≈ 0 in red. For small Zeeman energies Ez ≲ 2Eso, the wire is always trivial. When
increasing the Zeeman field, the topological regions are initailly parabolic and resemble copies
of the one-dimensional phase diagram for the different subbands. However, for large Zeeman
fields, Ez ≳ 6Eso, successive subbands cross each other such that the topological regions (red)
are distorted, and their size can even decrease. In Fig. 2.18(b) we consider a wide wire with
Lx = 3.9 lso ≳ ξeff . As described above, in this case the topological regions are reduced due
to subband crossing. In addition, the simplified model of the potential well in the x-direction
breaks down for Lx > ξeff . As a consequence, the topological zero energy region for higher
chemical potentials can even disappear entirely.

We further consider the Majorana wave functions: In the quasi one-dimensional case Lx < ξeff ,
the wave functions are localized at the short edges, as shown in Fig. 2.19(a) for Lx = 1.56Eso,
Ly = 32.5 lso, Ez = 7Eso, µ = 0, ∆ = 2Eso. This is the zero energy state with Nx = 1 close
to E1/Eso = (πlso/(Lx + a))2 − 1/2. We observe a single node in the transverse direction with
high weight, exponentially localized with localization length ξeff > Lx at each end of the wire.
In Fig. 2.19(b), we show the topological phase with Nx = 5 for µ ≈ (πlso/(Lx + a))232Eso,
where the Majorana wave function has ⌊Nx/2⌋ + 1 = 3 nodes in the transverse direction and is
exponentially localized at the short edges.

Fig. 2.20 depicts the first occurring zero energy state (µ is tuned to the topological phase)
for Ez = 7Eso,∆ = 2Eso, Ly = 32.5 lso, and different widths Lx of the wire. For this set of
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Figure 2.20: Wave function |ψ|2 of the zero energy states for different widths Lx and Ez =
7Eso, ∆ = 2Eso, Ly = 32.5 lso, and µ = π2l2so/(Lx +a)2Eso, so that Nx = 1 subband is occupied.
We choose Lx as {0.78, 1.30, 1.82, 2.60, 3.90, 7.80, 19.50} lso, and the localization length of the
MZMs is roughly ξeff ≈ 3.52 lso according to the analytic solution for the one-dimensional wire.
Similar results are shown in Ref. [377].

parameters, the analytical solution for the one-dimensional wire Eq. (2.133) yields a localization
length of ξeff ≈ 3.52 lso, and it can be clearly seen that for Lx < ξeff there are two Majoranas at
the short ends of the wire, while for Lx ≫ ξeff the zero-energy wave functions are localized along
the edges of the true two-dimensional region. For the former quasi-one-dimensional case, we
also compare the one-dimensional analytical solution ψ1d(y) with the two-dimensional solution
Nψ2d(x = Lx/2, y), where the factor N accounts for the fact that the two-dimensional solution
is normalized on a larger region. Fig. 2.21 shows the magnitude of these wave functions for
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Figure 2.21: Comparison of the analytical solution of the one-dimensional wave function
N |ψ(y)|2 with the cross-section of the two-dimensional wave function |ψ2d(x = Lx/2, y)|2. Here
N is a rescaling factor, since |ψ2d|2 is normalized on the domain (0, Lx) × (0, Ly). For both
solutions Ly = 32.5 lso, Ez = 7Eso, and ∆ = 2Eso. For the numerical two-dimensional solution,
we consider a thin wire with Lx = 1.56 lso < ξeff . For the two-dimensional case, a chemical
potential of µ2d = [( πlso

Lx+a)2 − 1
2 ]Eso corresponds to the case µ1d = 0 of the one-dimensional,

analytical solution because of the shift due to the transverse confinement.

Ez = 7Eso, ∆ = 2Eso, Ly = 32.5 lso, and a chemical potential of µ1d = 0 for the one-dimensional
solution, which corresponds to µ2d = (πlso/(Lx + a))2 − 1/2 in the two-dimensional case with
Lx = 1.56 lso. We find excellent correspondence between the one-dimensional solution and
the cross-section of the two-dimensional solution by a suitable choice of the constant pre-factor.
Hence, the one-dimensional solution provides an excellent estimate of the first topological regime
of the more realistic two-dimensional wire.

The orbital effect of the magnetic field

Up to this point, we have considered only the influence of the magnetic field on the electron spin
via the Zeeman effect, which contributes the term HZ = −1

2gµBB · σ τ0 to the Hamiltonian
[379]. Here µB is the Bohr magneton, g the Landé factor (we use g = −14.9 for InAs [380, 381]),
and we consider a magnetic field B = −Bzez orthogonal to the plane of the two-dimensional
hybrid system such that HZ = 1

2gµBBzσz τ0 ≡ −Ezτ0σz. Furthermore, the magnetic field also
affects the trajectory (classically described by the Lorentz force), and the phase of the wave
function of an electron with charge −e, which we account for using the minimal substitution
p → −iℏ∇ + eAτz in the Hamiltonian [379], where A is the vector potential with B = ∇ ×A
and the Pauli matrix τz allows describing particles and holes in a single expression [382]. In the
presence of the magnetic field, we thus obtain the Hamiltonian

H2d =
∫ Lx

0
dx
∫ Ly

0
dy ψ†(x, y)

{
τz

[ 1
2m∗ (−iℏ∇ + eAτz)2 σ0 − µσ0αR (σ × (−iℏ∇ + eAτz)) · ez

]

− Ezτ0σz + ∆τxσ0

}
ψ(x, y) , (2.175)
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where the basis is given by ψ†(x, y) =
(
ψ†

↑(x, y), ψ†
↓(x, y), ψ↓(x, y), −ψ↑(x, y)

)
. Due to the

orbital effect where A(x, y) depends on the position in the wire, direct discretization according
to the rules of the previous section no longer leads to a physically correct Hamiltonian. This has
the two main reasons that i) A is also mixed with the derivatives ∂i and thus with the hopping
elements, but these are in general not symmetric if one defines A naively on the lattice points,
resulting in a non-Hermitian Hamiltonian, and ii) in addition, the wave function has to pick up
a phase factor eiπϕ/ϕ0 with ϕ0 = h/2e if an electron encircles a surface penetrated by a flux ϕ
[383], which cannot be guaranteed by naive discretization. To circumvent these problems, we
resort to a trick and first define new fermion field operators [383, 384]

ψ̃(r) = e
i e
ℏ τz

∫ r

R
A(r̃) · dr̃ψ(r) , (2.176)

where R is some reference point on the lattice. Here, the phase factor is chosen such that the
gradient cancels the vector potential6

e
i e
ℏ τz

∫ r

R
A(r̃) · dr̃(−iℏ∇ + eAτz)e− i e

ℏ τz

∫ r

R
A(r̃) · dr̃ = −iℏ∇ . (2.177)

When using Eq. (2.176) in the Hamiltonian Eq. (2.175) only the superconducting pairing term
is special, as it contains two creation and two annihilation operators, respectively. We therefore
define

∆(r)τxσ0 ≡ ∆e− i e
ℏ τz

∫ r

R
A(r̃) · dr̃e− i e

ℏ τz

∫ r

R
A(r̃) · dr̃τxσ0 (2.178)

which is fortunately a pure on-site term and thus does not cause any problems in the discretiza-
tion. Using these relations, the Hamiltonian becomes

H2d =
∫ Lx

0
dx
∫ Ly

0
dy ψ̃†(x, y)

{
τz

[
−ℏ2

2m∗ ∇2σ0 − µσ0 − iℏαR (σ × ∇) · ez

]

− Ezτ0σz + ∆(x, y)τxσ0

}
ψ̃(x, y) , (2.179)

which is the same form we found in the case without orbital effect, and is discretized on the
square lattice with lattice constant a by using

∂2
i ψ̃(r) → 1

a2

[
ψ̃(r + aei) + ψ̃(r − aei) − 2ψ̃(r)

]
(2.180)

∂iψ̃(r) → 1
2a
[
ψ̃(r + aei) − ψ̃(r − aei)

]
. (2.181)

Only after performing these approximations in the Hamiltonian, we change back to the original
operators using

ψ̃†
σ(r + aei)ψ̃σ′(r) = e− i e

ℏ τz

∫ r+aei
r

A(r̃) · dr̃ψ†
σ(r + aei)ψσ′(r) (2.182)

ψ̃†
σ(r)ψ̃σ′(r) = ψ†

σ(r)ψσ′(r) (2.183)
ψ̃†(r)∆(r)τxσ0ψ̃(r) = ψ†(r)∆τxσ0ψ(r) . (2.184)

6This result is only valid if the integral is path independent. We can still use it for discretizing the Hamiltonian,
since we only consider nearest neighbor terms for which the path between the two sites is unique on the lattice.
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Thus, the discretized Hamiltonian contains the same on-site terms as for the case without the
orbital effect, and also the hoppings are only adjusted by a spatially dependent Peierls phase
[384, 385], i.e., a hopping tr1,r2 between lattice sites r1 and r2 acquires a phase

φ(r1, r2) = − e

ℏ
τz

∫ r2

r1
A(r̃) · dr̃ (2.185)

tr1,r2 → tr1,r2eiφ(r1,r2) = tr1,r2 [τ0 cos (φ(r1, r2)) − i τz sin (φ(r1, r2))] . (2.186)

Here, the relation
∫ r2
r1
A(r̃) · dr̃ = −

∫ r1
r2
A(r̃) · dr̃ ensures that hoppings are symmetric such that

the Hamiltonian is Hermitian, and when hopping along a closed loop C that is the boundary of
a surface F (C) penetrated by a flux ϕ, Stokes theorem

∫
C A(r) · dr =

∫
F (C)[∇×A(r)] · d2r = ϕ

makes sure that the correct phase is picked up.
Having discussed how to incorporate a vector potential into the discretized Hamiltonian,

the next step is to derive a suitable expression of the vector potential for the magnetic field
orthogonal to the wire plane. As we have already seen, the gauge freedom A → A+∇χ does not
change the magnetic field B = ∇×A = ∇× (A+∇χ), but transforms the operators via a phase
factor ψ → ψe− i e

ℏ χ. Therefore, the Hamiltonian is invariant under the gauge transformation,
and the pairing term is transformed according to ∆eiθ(r) → ∆ei (θ(r)− 2e

ℏ χ), such that the vector
potential A and the phase of the superconducting order parameter θ are not independent. To
obtain a physically correct choice for A and θ corresponding to the magnetic field B = −Bzez,
the following conditions have to be satisfied [386]:

i) The vector potential needs to describe the magnetic field B = ∇ ×A.

ii) The energy ∝
∫

d2r j2 of the supercurrent

j = ℏϱS

m∗

(
∇θ + e

ℏ
A

)
(2.187)

needs to be minimized [265, 386, 387], where ϱS is the density of Cooper pairs.

iii) The supercurrent needs to be conserved ∇ · j = 0.

For an infinitely long Majorana wire in the x-y plane {(x, y) ∈ R2 | 0 ≤ x ≤ Lx} this can be
achieved by choosing [381, 386]

A(x, y) = −Bzxey (2.188)
θ(x, y) = 0 , (2.189)

which clearly satisfies i). With this choice, the vector potential on the symmetry axis vanishes,
i.e. A(x = 0, y) = 0, and therefore

∫
dxx2 is minimal over the wire, and in addition A is

independent of the coordinate y extending to infinity in the wire. Thus, this vector potential
also meets the requirement ii), and iii) is trivially satisfied in the infinite system as ey is parallel
to the infinite wire direction and ∇ · (xey) = 0. In the case of a one-dimensional wire along the
y axis, j is zero everywhere in the wire by using Eq. (2.188) and Eq. (2.189) which explains why
we can choose a real superconducting order parameter and why the orbital effect is not visible
in the one-dimensional case.

As there cannot be any MZMs in the infinite wire due to the lack of short ends, we consider
a finite wire with length Ly ≫ Lx next, i.e. {(x, y) ∈ R2 | 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly}.
Unfortunately, as the supercurrent is zero outside the wire, the choice Eq. (2.188) and Eq. (2.189)
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Figure 2.22: Supercurrent j, Eq. (2.187), and current density |j|2 at the left end of a two-
dimensional wire in an orthogonal magnetic field using the gauge Eq. (2.190) for the vector
potential A, and the superconducting phase θ(x, y) = 0. (adapted from [303]).

does not conserve the current in the finite wire. In principle one would have to perform resource
intensive self-consistent numerical computations to determine θ and A such that conditions i)-
iii) are met [381, 386], which would currently not be computationally feasible with the resources
available to us. Instead, we use an approximation for the vector potential that reproduces the
infinite wire case in the bulk and makes it smoothly vanish over a distance λ at the ends [303]

A = −a(y)Bzxey + a′(y)
2 Bz(x2 − (Lx/2)2)ex , (2.190)

a(y) =


f0,λ(y) 0 ≤ y < λ

1 λ ≤ y ≤ Ly − λ

1 − fLy−λ,Ly (y) Ly − λ < y ≤ Ly

, (2.191)

fy1,y2(y) = h(y − y1)
h(y − y1) + h(y2 − y) (2.192)

h(y) =
{

exp(−λ/y) y > 0
0 y ≤ 0

, (2.193)

where we choose λ = Lx/2 ≪ ξeff ≪ Ly. Together with θ(x, y) = 0 this ensures that the current
smoothly vanishes at the short wire ends such that ∇ · j is satisfied everywhere in the wire.
The resulting smooth current j is depicted in Fig. 2.22.

As the last part of this section, we use the derived rules for the two-dimensional system to
numerically compute the energy levels and compare locations of topological regions for the case
with and without the orbital effect of the magnetic field. In Fig. 2.23 we show the dispersions
for length Lx = 13 lso, and Landé factor g = −14.9. The topological regions are clearly visible
by the vanishing of the lowest energy level (a and b) accompanied by closing of the gap at the
phase transitions, apparent from the energy of the second level in panel (c). For small Ez, the
position of the topological phases remains unchanged even when taking into account the orbital
effect, but for larger Zeeman fields the topological regions are bent towards larger chemical
potentials [382]. Starting at a point in the topological phase and increasing the Zeeman field
Ez can therefore bring the system back into the trivial phase, which cannot be understood from
the one dimensional model. In the presence of the orbital effect, it also becomes apparent that
zero-energy crossings occur more frequently outside the topological phases, which means that it
is no longer possible to localize the phases on the basis of the energy of the lowest level alone.
The closing of the gap in the bulk at the topological phase transitions can be used for this
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Figure 2.23: Energy of the lowest energy eigenvalues of the Hamiltonian as a function of the
chemical potential µ and the Zeeman energy Ez for a thin wire with width Ly = 0.39 lso, length
Lx = 13 lso, superconducing gap ∆ = 2Eso, and a Landé factor of g = −14.9. (a) Energy of the
first level without taking into account the orbital effect. The other panels depict results for the
(b) first and (c) second level taking into account the orbital effect. The bottom panels show a
zoom into the region of the first topological phase. Similar results are shown in [382].

purpose, which is still clearly visible from the energy of the second level in panel (c).
Fig. 2.24 further depicts MZM wave functions for the cases of (a) N = 1, (b) N = 3, and (c)

N = 5 occupied subbands at the Fermi level, which behave very similarly to the case without
orbital effect discussed in the previous section. They can be identified to originate from the n-th
topological phase based on the n nodes of the wave function.

In summary, we conclude that the orbital effect complicates the phase diagram, but the rough
location of the topological domains is preserved [382] and for a thin wire with Lx < ξeff , the
first topological regime can be approximated by the one-dimensional model for Zeeman energies
close to the phase transition [366].

So far, we have demonstrated that the presence of a zero energy state is not a proof of the
topological phase. However, we have further seen that the wave functions of the Andreev zero
modes are also located at the ends of the wire. Thus, not only is it impossible to detect the
presence of Majorana zero modes by energy-based signatures such as zero-bias peaks, but local
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Figure 2.24: Majorana wave functions |ψ(x, y)|2 of the lowest level form different topological
phases (as shown in Fig. 2.23b) for Ez = 7Eso, Lx = 13 lso, Ly = 0.39 lso, g = −14.9, and
∆ = 2Eso. (a) In the first topological phase with N = 1 subbands at the Fermi level for
µ = 67Eso, (b) in the second topological phase, N = 3, for µ = 250Eso, and (c) for the third
one, N = 5, with µ = 530Eso.

measurements cannot distinguish Majorana zero modes from pseudo-Majorana zero modes. This
is a major problem for the experimental verification of Majorana zero modes [111–128, 376]. To
be able to detect them successfully, we later consider a setup to measure coherent transport
through the Majorana modes, to take advantage of the fact that the Majorana level is clearly
separated from the next higher level by the induced gap, while the pseudo-Majorana zero modes
appear in pairs, and their contributions can potentially destructively interfere with each other
[132]. Furthermore, to exclude other processes such as Andreev reflections and tunneling of
Cooper pairs, it will be advantageous to consider a non-grounded wire in the Coulomb blockade
regime. Such a coherent transport experiment through a Rashba wire in Coulomb blockade
was first theoretically described by Fu in 2008 [291]. However, this description is limited to the
Majorana states only, and does not consider higher levels or Andreev zero modes.

After we have explored the properties of the Rashba hybrid wire in detail in this chapter,
our goal is to develop a theoretical description of a coherent transport experiment in Coulomb
blockade. We start in the next chapter by introducing a scattering matrix formalism that allows
us to consider transmission phases and amplitudes for transport through e.g. a Rashba wire.

2.3 Scattering matrix formalism for coherent transport in
Coulomb-blockade

In this section we describe the scattering matrix formalism used to compute coherent transport
through Majorana wires. In order to study a signature based on the non-locality of MZMs
that also allows distinguishing MZMs from Andreev zero modes and from other zero modes
induced by disorder [131, 132], we consider Majorana wires embedded into one arm of an electron
interferometer. By measuring interference with electrons through the reference arm one can
extract the coherent transmission amplitude [130], which allows us in Sec. 2.4 to explain results
of a recent experiment [130] and to propose a unique signature for MZMs by studying wires of
different lengths [131]. Furthermore, in Sec. 2.5, we consider optimizing voltages of an array of
gates, in proximity to a Majorana wire, using the CMA-ES machine learning algorithm, with
the transmission amplitude as a metric for maximization [303].
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Figure 2.25: Using the Aharonov-Bohm effect for building an electron interferometer. (a) We
consider points A and B connected by paths γu and γd. Inside the loop formed by both paths
there is a flux Φ due to a cylinder with a magnetic field B inside that cannot escape the cylinder.
Even though there is no field on the paths, electrons traveling from A to B along different paths
acquire a phase difference ∆φ = −eΦ/ℏ [17, 388]. (b) Electron interferometer with two leads L
and R, empty upper reference arm, lower arm with Majorana wire, and additional coupling to
reservoirs to avoid the phase rigidity effect [390].

We begin here with a description of the Aharonov-Bohm interferometer [17, 388] and how the
transmission amplitude can be experimentally determined in such a setup in Sec. 2.3.1. We then
consider one of the most important ingredients for our considerations in Sec. 2.3.2, the Coulomb
blockade, which makes it energetically unfavorable for additional electrons to enter the wire,
allowing transport through the Majorana wire to be understood as co-tunneling through effective
one-particle levels and enabling teleportation through MZMs [129]. In the following subsections,
we provide details on the finite temperature scattering matrix formalism (Sec. 2.3.3), for which
we use models with both effective and microscopic couplings (Sec. 2.3.4). In the last section,
Sec. 2.3.5, we describe how to obtain the parameters for the scattering matrix formula using
the open source python package KWANT [389], which simplifies studying systems with complex
geometries as discretized tight-binding models, but does not support Coulomb blockade.

2.3.1 Aharonov-Bohm interferometer setup

As we have already discussed in Sec. 2.2.5, apart from the Zeeman effect, a magnetic field B
enters the Schrödinger equation by the minimal substitution p → p+eA, where e is the electron
charge, p is the kinetic momentum operator, and A is the vector potential with B = ∇ ×A.
We have seen that this results in a path dependent geometric phase [383]

φ(γ) = −e
ℏ

∫
γ

dr · A , (2.194)

which is collected by the wave function as the electron moves along the path γ.
We now consider two points A and B connected by two different paths γu and γd, between

which an impenetrable cylinder containing a magnetic field B is placed (Fig. 2.25a) [17]. As
the field cannot escape the cylinder, there is no field on the paths, i.e. 0 = B(γu) = B(γd),
however the closed path C = γu − γd encloses a flux Φ =

∫
cylinder d2r · B due to the magnetic
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field inside the cylinder. This results in a phase difference collected on the two paths between
A and B given by

∆φ = φ(γu) − φ(γd) = −e
ℏ

∫
C

dr · A (2.195)

= −e
ℏ

∫
F (C)

d2r · (∇ ×A) (2.196)

= − e

ℏ
Φ , (2.197)

where we used Stokes theorem to express the integral over the path C as an integral over the
surface F (C) with boundary C. The occurrence of the phase difference – even though there is
no magnetic field present on the paths of the electrons – is called the Aharonov-Bohm effect
[17, 388], which can be exploited to build electron interferometers.

We consider in the following the setup of an Aharonov-Bohm interferometer shown in Fig. 2.25b,
where the upper reference arm contains only a normal wire, and a short Majorana wire is em-
bedded into the lower arm. This allows the transmission amplitude and transmission phase of
coherent transport through the Majorana wire to be determined by measuring the oscillations of
the current through the interferometer between A and B as a function of the flux Φ, as we will
show below. Here, the Majorana wire is effectively treated as a quantum dot, where we deter-
mine the couplings of the dot to the leads and the energy levels of the dot from the eigenstates
and energy eigenvalues of the full Majorana wire Hamiltonian (see also Sec. 2.3.3).

As depicted in Fig. 2.25b, it is also crucial to open the interferometer by coupling it to
additional reservoirs to circumvent the phase-regularity effect [390]: In a closed interferometer
preserving the particle number, the Onsager relation G(Φ) = G(−Φ) [391, 392] holds for the
flux dependence of the conductance, which does not allow for a nontrivial transmission phase
β, since a term like cos(ϕ+ β) can only satisfy the Onsager relation for β = 0, π. Opening the
interferometer has another advantage: while in a closed interferometer it is likely that an electron
entering at lead L will go around the loop several times before leaving the interferometer at lead
R, in an open interferometer it is unlikely that coherent electrons from L that can interfere
at R have not taken direct routes via the reference arm or the arm with the dot, since at
each opening there is a probability of leaving the interferometer [393–395]. As a result, the
transmission amplitude TRL can be approximated by the double slit limit [393]

TRL = T1ei∆φ + T2 , (2.198)

where T1 (T2) is the transmission amplitude through the upper (lower) arm, and where we can
attach the total phase difference ∆φ from the Aharonov-Bohm effect to one of the amplitudes.

For our setup, the situation is slightly more complicated because spin is not a good quantum
number due to spin-orbit coupling in the Majorana wire, and thus the transmission matrix
through the dot

T dot =
(
T↑↑ T↑↓
T↓↑ T↓↓

)
, (2.199)

also contains non-diagonal entries. We assume that the reference arm is diagonal in the spins,
so that

T ref =
(
T ref 0

0 T ref

)
, (2.200)
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where T ref ∈ R. Thus, the transmission amplitude through the interferometer is given by

TLR
σσ′ = Tσσ′ + ei∆φ δσσ′T ref , (2.201)

and using the Landauer formula [396], the current through the interferometer is obtained as

I = e2

h

∑
σσ′

|TLR
σσ′ |2 = e2

h

{∑
σσ′

|Tσσ′ |2 + 2|T ref |2 + 2
∑

σ

Re
[
ei∆φTσσT

ref
]}

. (2.202)

The current consists of the direct terms through the dot ∑σσ′ |Tσσ′ |2 and the reference arm
2|T ref |2, and the interference current

Iintf ≡ 2e2

h

∑
σ

Re
[
ei∆φTσσT

ref
]

(2.203)

= e2

h
|T ref |

[
ei∆φ(T↑↑ + T↓↓) + e−i∆φ(T↑↑ + T↓↓)∗

]
, (2.204)

which oscillates as a function of the Aharonov-Bohm flux ϕ. Using T↑↑ + T↓↓ = |T↑↑ + T↓↓| eiβ,
where β denotes the phase of the complex number T↑↑ + T↓↓, we find

Iintf = 2e2

h
|T ref | |T↑↑ + T↓↓| cos(∆φ+ β) . (2.205)

Here we denote |T↑↑ +T↓↓| as the amplitude of coherent transmission, or transmission amplitude
for short, and β as the transmission phase. In an experiment, the transmission amplitude can
be obtained from the amplitude of the current oscillations ∆I [130, 132] as

∆I ≡ max
∆φ

I − min
∆φ

I = 4e2

h
|T ref | |T↑↑ + T↓↓| (2.206)

|T↑↑ + T↓↓| = h

4e2
∆I

|T ref |
. (2.207)

By measuring an oscillation period of the current fluctuations Iint(∆φ) and then observing
the phase shift when varying other parameters of the dot, changes in β can also be obtained
[304, 390].

Later, we consider finite temperatures and thermally average the current over occupations of
the dot. Performing the average in Eq. (2.202), we find [303]

⟨Iintf⟩ = e2

ℏ
|T ref |

[
ei∆φ⟨T↑↑ + T↓↓⟩ + e−i∆φ⟨(T↑↑ + T↓↓)∗⟩

]
(2.208)

≡ 2e2

ℏ
|T ref | |⟨T↑↑ + T↓↓⟩| cos (∆φ+ γ) , (2.209)

where we defined ⟨T↑↑ + T↓↓⟩ = |⟨T↑↑ + T↓↓⟩|eiγ . We thus denote A = |⟨T↑↑ + T↓↓⟩| as the (finite
temperature) transmission amplitude and γ as the transmission phase. This thermal average
can be understood as dephasing due to averaging the current over a finite measurement time.
It is crucial that the magnitude is only taken after averaging the amplitude ⟨T↑↑ + T↓↓⟩ in the
definition of A.
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Figure 2.26: Setups for Coulomb-blockade in quantum dots. (a) A quantum dot containing N0
electrons with energy levels ϵi and charging energy Ech in proximity to a gate with voltage Vg and
weakly coupled to two leads L and R. (b) Majorana wire hybrid wire made of a semiconductor
with strong spin orbit coupling (blue) and an s-wave superconductor (orange) in proximity to
a gate Vg. The wire is separated from the two leads L, R by pinch-off gates Vb which create a
steep confinement potential Vconf .

2.3.2 Coulomb-blockade
In this section, we study Coulomb blockade which is caused by the repulsion of electrons when
they are confined to a small region, e.g. a quantum dot, that couples only weakly to the envi-
ronment [397, 398]. If a gate is placed in proximity to the dot, the energy of the electrons can
be lowered so that, depending on the gate voltage, a fixed number of particles N0 in the dot
is energetically optimal. To then bring another electron to the island, or remove one, requires
a charging energy. If one couples the region very weakly to two leads and applies a voltage
between the leads, no electrons can tunnel sequentially as long as the voltage difference is less
than the charging energy, which is why it is called Coulomb blockade. We use that due to
the charging energy, tunneling of multiple particles at once can be effectively excluded and the
remaining transport can be described by so-called cotunneling, which takes place via effective
single-particle levels. We will see that this transport is enhanced by MZMs especially by their
(non-local) localization properties.

However, before considering the more complicated situation of a Majorana wire with super-
conductivity, we study a quantum dot with energy levels εi with N0 electrons (Fig. 2.26a) first.
We assume that the level broadening in the dot is much smaller than the level spacing, i.e., that
the dot only couples weakly to the outside world. Then we approximate the repulsion of each
of the N electrons with the N − 1 other electrons by an energy contribution EcN(N − 1)/2
[399–402], where the charging energy per pair Ec is inversely proportional to the volume of the
dot. Therefore, in the case of a one-dimensional dot of length L, it is proportional to the inverse
of the wire length, Ec ∝ 1/L, which we will use later for Majorana wires. In addition, a gate
in proximity to the dot so that the energy for each electron is lowered by the gate voltage Vg,
giving rise to a contribution −eVgN . This results in the charging energy

Ech(N,Vg) = Ec

2 N(N − 1) − eVgN . (2.210)

The particle number of the ground state in the dot that minimizes Ech thus depends on the
gate voltage. In Fig. 2.27a we plot Ech as a function of Vg for various N , where we first consider
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Figure 2.27: Dependence of the charging energy on the gate voltage Vg and particle number
N in the dot. (a) Charging energy Eq. (2.210) as a function of Vg for several particle numbers
N . A thicker line indicates a larger number of particles. The ground state particle number
N0 minimizes the charging energy (colored lines) and increases by one at the degeneracy points
where Ech(N0) = Ech(N0 + 1) given by eVg = EcN0. (b) Distance of the charging energy ∆Ech
between optimal particle number N0 and N0 ± 1 (blue for an additional particle and green for
one electron less).

the metallic limit in which only the charging energy and not the single particle levels are taken
into account. Initially, for small voltages eVg < Ec, N0 = 1 gives the smallest charging energy,
then increasing Vg, N0 increases by one after each intersection of Ech(N0, Vg) with the energy
for the subsequent particle number Ech(N0 + 1, Vg) given by

Ech(N,Vg) = Ech(N + 1, Vg) ⇒ eVg = EcN . (2.211)

In case of the quantum dot, we also need to consider the energy levels εi, so that the total
energy for N0 electrons occupying the first N0 levels is given by [397, 399]

E(N0, Vg) =
N0∑
i=1

εi + Ec

2 N0(N0 − 1) − eVgN0 . (2.212)

Here, the degeneracy points of energies for N and N + 1 particles, E(N,Vg) = E(N + 1, Vg), are
given by eVg = εN0+1 +EcN . This means that for the transition N0 → N0 + 1, we additionally
need to account for occupying level εN0+1, such that the N0 that minimizes the energy can be
expressed by the self-consistency expression as a function of Vg [305]

N0 ≈
⌈eVg − εN0+1

Ec

⌉
, (2.213)

where ⌈ . ⌉ denotes the ceiling function.
In Fig. 2.27b, we show the energy difference between the charging energy for N0 and for

N0 ± 1 electrons, yielding the typical Coulomb diamonds often found in the literature [398, 401,
402]. For our later considerations, we are particularly interested in gate voltages in the middle
between the degeneracy points eVg ∼ Ec(N0 +1/2), where the charging energy difference to both

101



transitions becomes the largest, and thus a well-defined particle number exists for sufficiently
large Ec. In this case, the charging energy forbids sequential tunneling, and the dominant
transport mechanism from lead L to R via the dot is elastic cotunneling [397, 398, 403, 404],
which can be described by effective one-particle levels εeff,i. For an associated electron-like
process, the electron arriving from lead L occupies an empty level εeff,i>N0 before an electron
leaves the dot to R, so that there are N0 + 1 electrons in the dot for a very short time t ∼ ℏ/Ec

only. The seemingly missing energy Ec for this short time can be explained by fluctuations
allowed by the Heisenberg uncertainty principle. The analogous hole-like process involves an
occupied level εeff,i ̸=N0 . To obtain the effective energy levels for cotunneling as a combination
of dot levels εm and charging energy Ech(N0, Vg), we consider the dot Hamiltonian

Hdot =
∑
m

εm + Ec

2
∑
l ̸=m

nl − eVg

nm , (2.214)

where nl = d†
l dl is the particle number operator for level εl. We perform a Hartree approxima-

tion, i.e., we define fluctuations around the mean δnl = nl − ⟨nl⟩ and neglect fluctuations to
second order, O(δn2), which gives the Hamiltonian

Hdot =
∑
m

εm + Ec

∑
l ̸=m

⟨nl⟩ − eVg

nm + O(δn2) + const. (2.215)

This yields the effective energy levels as [405]

εeff,m =
{
εm + EcN0 − eVg ,m > N0

εm + Ec(N0 − 1) − eVg ,m ≤ N0 ,
(2.216)

These levels can be used to describe both electron-like and hole-like processes [398]. If the gate
voltage Vg is chosen such that εeff,N0+1 vanishes, an electron can jump from the Fermi level in
the lead to the dot without additional energy, and sequential tunneling is possible, resulting in a
conductance resonance after which the optimal particle number increases by one if eVg is further
increased. If Vg is tuned sufficiently far away from the resonances, where in Coulomb blockade
cotunneling is the dominant transport mechanism, a much smaller conductance is observed. We
will address the calculation of this conductance in the next sections, but before that we discuss
what influence superconductivity in the dot has on the effective levels and couplings.

For this purpose, we consider a short Majorana wire (Fig. 2.26b), which is separated from the
leads by pinch-off gates that generate a steep confinement potential, so that we can describe
the wire as a quantum dot. Diagonalizing the Hamiltonian of the Majorana wire Eq. (2.146),
we obtain energy eigenvalues ±Ei and eigenstates (ui,vi) with particle-like wave functions ui

and hole-like wave functions vi. Here, particle-hole symmetry ensures that for every Ei > 0
with (ui,vi), there also exists an eigenstate with negative energy −Ei and (v∗

i ,u
∗
i ). The wave

functions are important because their value at the lead-wire interfaces yα, α = L,R, determine
the couplings λeff,i,σ,α of the lead α and the dot level i [304] (detail later in Sec. 2.3.3). For an
unoccupied Bogoliubov level Ei, the electron-like effective levels and couplings are then given as

εe
eff,m = Ei + EcN0 − eVg (2.217)

λe
eff,m,σ,α = ui,σ(yα) , (2.218)
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Figure 2.28: Spacing of conductance resonances depending on the lowest energy level E0 in
the superconductor. Here, So ≈ Ec −2E0 is the spacing between conductance resonances for odd
particle numbers and Se ≈ Ec + 2E0 for an even number of electrons. As the particle number
N0 increases by one after each resonance, the spacing alternates between So and Se (red). In
the case of MZMs where E0 ≈ 0, this spacing difference vanishes (blue), which is a signature for
any zero energy mode in the middle of the superconducting gap. In the case where the charging
energy is smaller than E0 (black), adding an electron to obtain odd N0 costs more energy than
adding two electrons (a Cooper pair) to the condensate and keeping an even particle number,
such that the spacing becomes 2Ec. Vanishing of the even-odd splitting in Majorana wires is
demonstrated in Ref. [95], where they show a similar figure.

and for a hole-like process

εh
eff,m = −Ei + Ec(N0 − 1) − eVg (2.219)

λh
eff,m,σ,α = vi,σ(yα) . (2.220)

However, Cooper pairs in the superconductor consist of pairs of electrons, which leaves an
unpaired electron in the case of an odd particle number N0, which has to occupy the lowest
Bogoliubov level E1 for the ground state at zero temperature [129, 304]. Therefore, in the case
of an odd particle number, the additional energy E1 is necessary, which also leads to a signature
for MZMs: The distance between conductance resonances for an even particle number N0 it is
given by Se ∝ Ec + 2E1, whereas for odd particle number So ∝ Ec − 2E1 [95, 406, 407]. On the
one hand, in a trivial superconductor with proximity gap ∆prox, the spacings clearly alternate
with length differences 4∆prox (blue curve Fig. 2.28). The vanishing of these even-odd spacings
differences, on the other hand, shows that the energy of the first level is zero, E1 = 0, which is
therefore a signature for MZMs [95] (red line in Fig. 2.28), but also for any other zero-energy
excitation in the middle of the superconductor gap. For the case where the charging energy is
smaller than the gap, Ec < ∆prox, the ground states with odd particle numbers are completely
skipped, since it is energetically more favorable to directly add two electrons as a Cooper pair
into the dot which costs an energy of 2Ec, than to add a single electron that occupies the first
level and in addition requires the energy Ec (black line in Fig. 2.28).

For the case where a Bogoliubov level i is occupied, such as for the ground state of odd N0,
we find in Sec. 2.3.3 that the associated effective energies are modified by Ei → −Ei and for the
couplings ui,σ → v∗

i,σ, which is consistent with the previous descriptions. However, there is a
problem with the BdG description of the superconductor: the Hamiltonian of the Majorana wire
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Eq. (2.146) does not describe a fixed electron number N0, but is a grand-canonical description
with chemical potential µ. To obtain a good approximation for a wire with N0 electrons [408],
we choose the chemical potential µ self-consistently, so that

⟨N̂⟩ =
∑

i

|vi(µ)|2 = Nw , (2.221)

i.e., the average particle number in the wire is given by Nw. We distinguish N0, the number of
electrons in the dot consisting of wire and superconductor, from the average number of particles
Nw in the wire. Here, we model only the Majorana wire with superconductivity induced by
the proximity effect [291, 409, 410], since its energy level and eigenstates are relevant to the
scattering matrix description because the induced gap is much smaller than the s-wave gap in
the superconductor. However, most of the charge of an electron tunneling into the dot lives in
the superconductor [304], where we assume that ⟨N̂⟩ in the wire effectively changes only by 1/20
when an electron tunnels into the dot [304]. As a result, the self-consistently chosen chemical
potential µ also only weakly changes when N0 → N0 + 1, Nw → Nw + 1/20.

Because MZMs give rise to a highly non-local Bogoliubov wave function exponentially localized
at both ends of the wire, the chance of electrons entering the dot at the wire ends is greatly
enhanced [129–132, 304]. This gives a relatively large chance of a cotunneling process to take
place, where one electron enters the left MZM and one electron exits the dot from the right
MZM, such that a charge e is transmitted from lead L to lead R, giving rise to an increased
conductance. Due to the localization, the weight of the wave function in the middle of the wire
is zero, yet cotunneling allows for transport through the dot which is why this is sometimes
called electron teleportation in the literature [129].

2.3.3 Scattering matrix approach at finite temperatures
In this section, we discuss the scattering matrix formalism used to compute the amplitude of
coherent transmission |⟨T↑↑ +T↓↓⟩| through a Majorana wire in Coulomb-blockade, where |Tσσ|2
is the probability of an electron with spin σ to tunnel from the left to the right lead. As
discussed in Sec. 2.3.2, this transmission amplitude is experimentally accessible [130, 411] from
measuring current oscillations through an Aharonov-Bohm interferometer [17]. We published a
more condensed version of the following description of the modified scattering matrix formalism
that allows us to include Coulomb-blockade for large charging energies in Ref. [131].

In the following, we assume that the Majorana wire is tuned to the middle between conduc-
tance resonances by an adjacent gate with voltage Vg,mid [131, 304]. In this case, the number of
electrons N0 in the ground state of the dot is well-defined, and we again assume that this results
in an average particle number Nw = N0/20 in the wire, which we ensure in our calculations
by self-consistently determining the chemical potential in the wire [304]. If the charging energy
Ec for adding an electron to the dot is much larger than the level broadening due to coupling
to the two leads, elastic cotunneling is the dominant transport mechanism [398], and adding or
removing more than one electron from the dot is energetically very unfavorable. It is therefore
a good approximation to truncate the Hilbert space to only including states with N0 and N0 ±1
electrons in the dot and to consider cotunneling through effective single particle energy levels.

The scattering matrix formalism also makes it possible to consider finite temperatures by
allowing the dot to be in a thermally excited state when the tunneling process takes place. For
describing the elastic coherent transport, we assume that the dot has the same final and initial
state with occupation numbers {ni} of the Bogoliubov levels El with excitation energy E({ni}) =∑

l nlEl. The scattering matrix S, whose entries contain the complex transmission amplitudes
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⟨T↑↑⟩ = S13, and ⟨T↓↓⟩ = S24, is then determined by a modified Mahaux-Weidenmüller formula
[131, 304, 394]

S = 1 − 2πi
〈
W

1
ε−Heff + iπW †W

W †
〉

(2.222)

with the thermal average

⟨O⟩ = 1
Z

∑
{ni}

e−βE({ni})O({ni}) . (2.223)

Here, the Boltzmann weights depend on the excitation energy and the inverse temperature
β = (kBT )−1, and the thermal average is normalized by Z = ∑

{ni} exp [−βE({ni})]. We
perform the thermal average over the entries of the scattering matrix and hence Tσσ, since this
correctly describes the oscillation amplitude of the total current through the interferometer when
thermally averaging the current as we found in Eq. (2.209). Here, ε is the energy of incoming
electrons from the leads, Heff is the diagonal matrix of effective energy levels, and W is the
coupling matrix containing the effective hole-like and electron-like dot-lead couplings for spin σ
and lead α [131], i.e.

Heff =

diag
[
ε

(h)
eff,j(N0, {ni})

]
j=1..jmax

0

0 diag
[
ε

(e)
eff,j(N0, {ni})

]
j=1..jmax

 , (2.224)

(W )ασ√
ϱF

=
(
λ

(h)
eff,α1σ(N0, {ni}), . . . , λ(h)

eff,αjmaxσ(N0, {ni}), λ(e)
eff,α1σ(N0, {ni}), . . . , λ(e)

eff,αjmaxσ(N0, {ni})
)
.

(2.225)

Here, ϱF is the density of states at the Fermi level of the leads, and we include a number of
jmax levels in the calculation of S, where contributions of levels get smaller for higher levels with
larger energies. In addition, we will find later that contributions of higher levels cancel each
other.

In the following, we discuss the details of the scattering matrix formalism and derive expres-
sions for effective levels and couplings.

Truncation of the Hilbert space

The strong Coulomb-blockade fixes the particle number N0 in the ground state of the dot and
repels additional electrons. Therefore, simultaneous tunneling processes of multiple electrons or
holes, and thus also tunneling of Cooper pairs and Andreev processes, are suppressed [131, 304].
To describe an elastic cotunneling process, we start from an initial dot state |N0, {ni}⟩ with
N0 particles, which reside in the condensate or occupy Bogoliubov levels as described by the
occupation numbers {ni}. An electron-like tunneling process then happens via an intermediate
dot state |N0 + 1, {ñi}⟩, where an electron hops into the dot and then an electron quickly leaves
the dot towards the right lead to produce the final dot state |N0, {ni}⟩. For a hole-like process,
the intermediate state has the form |N0 − 1, {ñi}⟩, where the dot has N0 − 1 electrons.

Hence, strong Coulomb-blockade allows us to truncate the Hilbert space to only these states
when describing scattering processes.
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Hamiltonian

We consider the Hamiltonian [131, 304, 305]

H = Hdot +Htun +Hlead , (2.226)

where Hdot is the dot Hamiltonian, Hlead the Hamiltonian for the leads, and Htun describes
tunneling between dot and leads. In the following, we describe the individual contributions to
H in detail. We start with the dot Hamiltonian

Hdot = Hw +Hch , (2.227)

where Hw is the Majorana wire Hamiltonian and Hch the charging contribution due to Coulomb-
blockade. In the Nambu basis ψ†(y) =

(
ψ†

↑(y), ψ†
↓(y), ψ↓(y),−ψ↑(y)

)
, we model the one-

dimensional proximitized nanowire as

Hw = 1
2

∫
dyψ†(y)Hwψ(y) (2.228)

= 1
2

∫
dyψ†(y)

{
τz

[
σ0

−ℏ2

2m∗∂
2
y − σ0µ− iℏαRσx∂y

]
− Ezτ0σz + ∆τxσ0

}
ψ(y) , (2.229)

where ∆ is the proximity s-wave gap after integrating out the superconductor (here approxi-
mated by a real constant), Ez is the Zeeman energy due to the orthogonal magnetic field, µ is
the chemical potential, and −iℏαRσx∂y describes the strong Rashba spin orbit coupling. We
discretize this Hamiltonian on a grid of N sites with spacing a = 0.026 lso and then diagonalize
the resulting matrix

Hw

Ψi(1)
...

Ψi(N)

 = Ei

Ψi(1)
...

Ψi(N)

 , (2.230)

where Ei are the energy eigenvalues, and wave functions are given by Ψi(y) = (ui(y),vi(y))T .
This diagonalization gives rise to new Bogoliubov operators [305]

βn =
∑

σ

∫
dy
[
u∗

nσ(y)ψσ(y)eiϕ/2 + v∗
nσ(y)ψ†

σ(y)e−iϕ/2
]
, (2.231)

where the particle-hole symmetry of Hw ensures that for each βn with En > 0, (un,vn) there
exists a state −En, (v∗

n,u
∗
n) corresponding to β†

n. We use particle-hole symmetry to express the
original fermion creation and annihilation operators as

ψσ(y) =
∑

n

unσ(y)βne−iϕ/2 =
∑

n
En>0

[
unσ(y)βn + v∗

nσ(y)β†
n

]
e−iϕ/2 (2.232)

ψ†
σ(y) =

∑
n

vnσ(y)βneiϕ/2 =
∑

n
En>0

[
vnσ(y)βn + u∗

nσ(y)β†
n

]
eiϕ/2 . (2.233)

Then using {βn, β
†
n′} = δnn′ , the diagonal wire Hamiltonian is given by

Hw = 1
2
∑

n

Enβ
†
nβn =

∑
n

En>0

Enβ
†
nβn + const . (2.234)
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Eq. (2.232) and Eq. (2.233) directly follow from using the diagonalization Eq. (2.231), except for
the non-trivial terms e±iϕ/2 involving the condensate phase operator ϕ, conjugate to the particle
number operator [412, p. 52 ff.]. This helps to overcome the problem that, on the one hand,
we would like to describe single particle transport through the dot with defined particle number
in Coulomb-blockade, but on the other hand, the convenient BdG formalism does not describe
fixed particle numbers [333, 412]. This is resolved by formally separating particle number N0
and quasi-particle occupations {ni}, considering states |N0, {ni}⟩ and using the following rules

i) We choose the chemical potential of the wire to fix the average particle number in the dot
to N0 [408].

ii) The operator βj (β†
j ) empties (occupies) the Bogoliubov level j but leaves the particle

number unchanged

β†
j |N0, {nj = 0, ...}⟩ = |N0, {nj = 1, ...}⟩ (2.235)

β†
j |N0, {nj = 1, ...}⟩ = 0 . (2.236)

iii) The operators e±iϕ/2 increases/lowers the particle number by one

e±iϕ/2|N0, {ni}⟩ = |N0 ± 1, {ni}⟩ . (2.237)

The second contribution to the dot Hamiltonian is the charging energy expressed with the
particle number operator d†

jdj of dot level j as [131, 305]

Hch =
∑

j

−eVg + Ec

2
∑
i ̸=j

d†
idi

 d†
jdj , (2.238)

with voltage Vg of a gate in proximity to the dot, and charging energy Ec due to the repulsion of
two electrons. As discussed in Sec. 2.3.2, we treat this Hamiltonian in a mean field approximation
which yields a charging energy for N0 electrons in the dot given by [398, 402]

Ech(N0, Vg) = Ec

2 N0(N0 − 1) − eVgN0 . (2.239)

For simplicity, we assume that the leads are normal-conducting and without spin-orbit cou-
pling such that particle and hole sector are independent, and spin is a good quantum number.
Thus, the lead Hamiltonian is given by

Hlead =
∫

dy c†(y)
{
τzσ0

[
− ℏ2

2m∗∂
2
y − Vlead

]
− Ezτ0σz

}
c(y) , (2.240)

where Vlead = 100Eso is chosen such that both spin species are present near the Fermi level of
the lead, and c†

σ(y) creates an electron with spin σ at position y in the lead.
The weak coupling between dot and leads (α = R,L) is described by a tunneling Hamiltonian

Htun. We first discuss an effective coupling [304]

Htun =
∑
jσα

tjασc
†
σ(yα)dj + h.c. , (2.241)

where c†
σ(yα) creates an electron at the dot-lead interface yα in lead α, dj (d†

j) is the destruction
(creation) operator of dot level j. Here, the effective dot-lead couplings tjασ are approximated
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as the overlap between an incoming wave Ψασ(y) from lead α that decays exponentially in the
tunneling barrier and the dot eigenfunction φj(y) in the normal-conducting state ∆ = 0 [131],
i.e.

tjασ = t0

∫
dyΨασ(y)φj(y) . (2.242)

In this effective description, t0 is a real number that is chosen such that the coupling is sufficiently
weak to justify Coulomb-blockade, and we assume that Ψασ(y) ∝ e−y/λ with λ = 0.26 lso is just
a generic incoming wave that decays together with φi within a tunnel barrier between lead and
dot (not necessarily modelled in this simple picture). We will later also consider simulations with
two different microscopic models, where both dot and leads are treated more carefully by (a)
using a Hamiltonian that contains leads, dot, and tunneling barrier allowing us to obtain the lead
wave functions and explicitly computing the wave function overlap in the barrier (Sec. 2.3.4),
and in the second model by (b) integrating out translationally invariant leads and using the
resulting self energies in the scattering approach (Sec. 2.3.5). We find that the effective model
captures the most important ingredients to understand transport in the topological phase.

For obtaining the effective scattering energy levels and coupling, it will be advantageous to
express the tunneling Hamiltonian in terms of the BdG operators, Eq. (2.231). For this, we
use eigenfunctions φj of Hw for the normal-conducting case, ∆ = 0, to express the annihilation
operator in dot level j as [304]

dj =
∑

σ

∫
dy φ∗

jσ(y)ψσ(y) . (2.243)

Using the expressions of the fermion operators in terms of BdG operators Eqs. (2.233) and
(2.232), one finds the tunneling Hamiltonian [131, 304, 305]

Htun =
∑
jασ

c†
σ(yα)e−iϕ/2

[
λu

jασ(µ)βj(µ) + λv
jασ(µ)β†

j (µ)
]

+ h.c. (2.244)

with couplings

λu
jασ(µ) =

∫
dy

∑
mσ′

tmασφ
∗
mσ′(y)unσ′(y;µ) (2.245)

λv
jασ(µ) =

∫
dy

∑
mσ′

tmασφ
∗
mσ′(y)v∗

nσ′(y;µ) . (2.246)

Using the definition of tmασ, Eq. (2.242), and the orthonormality of the basis φi these couplings
can be expressed as

λu
jασ(µ) = t0

∫
dyΨασ(y)unσ(y;µ) ≈ t0unσ(yα;µ)

λv
jασ(µ) = t0

∫
dyΨασ(y)v∗

nσ(y;µ) ≈ t0v
∗
nσ(yα;µ) .

(2.247)

Here, yα is the position of the dot-lead interface for lead α, e.g. for a wire of length L with
y ∈ [0, L] this is yL = 0, yR = L. Hence, for the effective model, Eq. (2.247) shows that
the couplings are proportional to the values of the hole v∗

nσ(y;µ) and electron unσ(y;µ) wave
functions at the ends of the wire.
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Effective energy levels and coupling matrix elements

We next describe how the effective couplings W and effective energy levels Heff can be obtained
from matrix elements of the Hamiltonian Eq. (2.226). Before the tunneling process takes place,
we assume the system to be in an initial state with one particle of energy ε and spin σ in lead α,
the Fermi sea |0⟩ᾱ in the other lead ᾱ, and the dot with N0 electrons with occupation numbers
of the Bogoliubov levels given by {ni}, i.e.

|ψi(N0)⟩ = |(ε, σ)⟩α|0⟩ᾱ|N0, {ni}⟩ . (2.248)

The energy of this state relative to the energy of the incoming particle is then given by

Ei(N0) − ε = ⟨ψi(N0)|H|ψi(N0)⟩ − ε =
∑

j

njEj + Ech(N0, Vg) . (2.249)

After the elastic tunneling process, a particle is transferred to the other lead ᾱ and the dot is
again in the initial state such that the energy is conserved

|ψf (N0)⟩ = |0⟩α|(ε, σ′)⟩ᾱ|N0, {ni}⟩ (2.250)
Ef (N0) = Ei(N0) . (2.251)

This transfer from lead α to ᾱ by elastic cotunneling can be described via an intermediate,
temporary state [305, 398]

|ψtmp(N0 ± 1)⟩ = |0⟩α|0⟩ᾱ|N0 ± 1, {ñi}⟩ (2.252)
Etmp(N0 ± 1) =

∑
j

ñjEj + Ech(N0 ± 1, Vg) , (2.253)

where the electron or hole resides on the dot for a very short time allowed by the Heisenberg
uncertainty. As most of the charge in the dot lives in the superconductor, not the wire, we
can use the approximation µ(N0) ≈ µ(N0 ± 1) in the wire Hamiltonian, such that we only self-
consistently determine the chemical potential of the wire to reflect the particle number in the
intermediate state, thus, reducing the number of self-consistent computations that require the
full eigenstates of the wire Hamiltonian in each step.

From the form of the tunneling Hamiltonian Htun, Eq. (2.246), it becomes apparent that an
electron can enter the dot either by occupying an empty (nj = 0) level β†

j eiϕ/2 or by emptying an
occupied (nj = 1) level βjeiϕ/2 and forming a Cooper pair. In addition, in the BdG formalism
an electron (e) with energy ε tunneling from α = L to α = R corresponds to a hole (h) with
−ε from R to L, and in the normal-conducting leads, electron and hole blocks are completely
independent. Therefore, the effective electron and hole energy levels are defined via [131, 305]

ε
(e)
eff = Etmp(N0 + 1) − Ei(N0) (2.254)

ε
(h)
eff = Ei(N0) − Etmp(N0 − 1) , (2.255)

and the corresponding couplings are given by matrix elements

λ
(e)
eff = ⟨ψi(N0)|Htun|ψtmp(N0 + 1)⟩ (2.256)

λ
(h)
eff = ⟨ψtmp(N0 − 1)|Htun|ψi(N0)⟩ = ⟨ψi(N0)|Htun|ψtmp(N0 − 1)⟩∗ . (2.257)

To also keep track of spin σ, lead α, and BdG level j (with E ≥ 0), we list the possible tunneling
processes within the truncated Hilbert space in the following:
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i) An electron-like process (N0 → N0 + 1) through an empty level j, where nj = 0, results in
intermediate occupations {ñi} = {ñi ̸=j = ni, ñj = 1}, such that

ε
(e)
eff,j(µ) =

∑
i

ñiEi(µ) + Ech(N0 + 1, Vg) −
[∑

i

niEi(µ) + Ech(N0, Vg)
]

= Ej(µ) + EcN0 − eVg for nj = 0 (2.258)

λ
(e)
eff,j,σ,α(µ) = ⟨(e, ε, σ)|α⟨0|ᾱ⟨N0, {ni}|

{ ∑
lσ′α′

c†
σ′(yα′)e−iϕ/2

[
λu

lα′σ′(µ)βl(µ)

+ λv
lα′σ′(µ)β†

l (µ)
]

+ h.c.
}

|N0 + 1, {ñi}⟩|0⟩ᾱ|0⟩α

= λu
jασ for nj = 0 . (2.259)

Here, (e, ε, σ) indicates a particle of spin σ and energy ε in the electron-sector e of the lead
Hamiltonian.

ii) An electron-like process (N0 → N0 + 1) through an occupied level j, where nj = 1, results
in intermediate occupations {ñi} = {ñi ̸=j = ni, ñj = 0}, such that

ε
(e)
eff,j(µ) = −Ej(µ) + EcN0 − eVg for nj = 1 (2.260)

λ
(e)
eff,j,σ,α(µ) = λv

jασ for nj = 1 . (2.261)

iii) A hole-like process (N0 → N0 − 1) through an empty level j, where nj = 0, results in
intermediate occupations {ñi} = {ñi ̸=j = ni, ñj = 1}, such that

ε
(h)
eff,j(µ) =

∑
i

δni,1Ei(µ) + Ech(N0, Vg) −
[∑

i

δñi,1Ei(µ) + Ech(N0 − 1, Vg)
]

= −Ej(µ) + Ec(N0 − 1) − eVg for nj = 0 (2.262)

λ
(h)
eff,j,σ,α(µ) = ⟨(h, ε, σ)|α⟨0|ᾱ⟨N0, {ni}|

{ ∑
lσ′α′

cσ′(yα′)eiϕ/2
[
λu∗

lα′σ′(µ)β†
l (µ)

+ λv∗
lα′σ′(µ)βl(µ)

]
+ h.c.

}
|N0 − 1, {ñi}⟩|0⟩ᾱ|0⟩∗

α

= λv
jασ for nj = 0 . (2.263)

Here, cσ(yα) creates a hole in the hole-sector of lead α.

iv) A hole-like process (N0 → N0 − 1) through an occupied level j, where nj = 1, results in
intermediate occupations {ñi} = {ñi ̸=j = ni, ñj = 0}, such that

ε
(e)
eff,j(µ) = Ej(µ) + Ec(N0 − 1) − eVg for nj = 1 (2.264)

λ
(e)
eff,j,σ,α(µ) = λu

jασ for nj = 1 . (2.265)

Using these effective energy levels and couplings together with the appropriate chemical poten-
tials µ in Eq. (2.222), we can compute the scattering matrix S and, hence, the amplitude of
coherent transmission |⟨T↑↑ + T↓↓⟩|.
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Figure 2.29: Electron and hole character of the energy ordered eigenstates i of a Majorana
wire in the topological regime. We individually integrate the probability for the electron sector∫

dy |u(y)|2 (blue crosses) and hole sector
∫

dy |v(y)|2 (orange crosses) for the first 150 eigenstates
of a Majorana wire Hamiltonian, Eq. (2.161), for a wire of length L = 32.5 lso. We choose
Ez = 6Eso, µ = 0.5Eso, ∆ = 2Eso, and a steep confinement potential Eq. (2.162) with σ1 =
σ2 = 0.1 lso and V0 = 65Eso. Eigenstates corresponding to smaller energies, have mixed electron-
hole character, while for large energies, the states have only a u component, i.e. they are not
occupied.

Self-consistent chemical potential

We describe the wire in the BdG formalism, Eq. (2.229), and self-consistently determine the
chemical potential such that the average particle number in the wire

⟨N̂(µ)⟩ =
∫

dy
∑

σ

⟨N0, {nj}|ψ†
σ(y)ψσ(y)|N0, {nj}⟩ (2.266)

=
∫

dy
∑

j
Ej>0

[
nj |ujσ(y, µ)|2 + (1 − nj) |vjσ(y, µ)|2

]
(2.267)

is given by Nw ≃ N0/20, where we used Eq. (2.232), and N0 is the particle number in the dot
consisting of wire and superconductor [304]. This yields a good approximation for a fixed particle
number description of the superconducting wire, even for small N0 [408]. For a MZM, where
|u|2 = |v|2, the average particle number does not depend on the occupation of the Majorana
level, and also for other low energy states, the difference

∫
dy
(
|ui|2 − |vi|2

)
is much smaller

than one (see Fig. 2.29). As the self-consistency calculations are resource intensive, we therefore
only determine µ self-consistently for the ground state and then and use the same µ as an
approximation for all higher excitations in the thermal average (details below). In Fig. 2.30,
we show self-consistently determined chemical potentials in a Majorana wire as a function of
the external Zeeman field such that the total particle number in the dot is fixed to N0 = 700
(Nw = 35). Panel (a) depicts the chemical potentials for a ground state with N0 electrons,
intermediate states of N0 ± 1 electrons, and the excited state N0 − 1, {n2 = 1, ni ̸=2 = 0},
which shows that the differences are minor. This is because most of the charge lives in the
superconductor such that the wire’s chemical potential is almost unchanged for N0 → N0 + 1,
i.e. µ(N0) ≈ µ(N0 ± 1). This allows us to only use the chemical potential of the intermediate
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state when computing effective energy levels and couplings.
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Figure 2.30: Self-consistently determined chemical potential to fix the particle number in
the dot to N0 = 20 · 35 ≡ 20Nw as a function of the applied Zeeman field Ez. (a) Chemical
potential for even particle number N0 in the dot with only empty Bogoliubov levels (solid
red). For comparison, we also show the self-consistent chemical potential for N0 ± 1 where the
additional electron resides in the first level (solid yellow and solid blue lines), and for N0 − 1
with occupied second level (dashed green). All shown chemical potentials are close to each
other (see zoom into marked region in the inset). (b) Fermi momentum kF lso = (2 + µ/Eso +√

(Ez/Eso)2 + 4 + 4µ/Eso)1/2 as a function of the Zeeman field using the self-consistent chemical
potential for N0 electrons and empty levels. The dotted vertical line shows the Zeeman energy
at which the transition to the topological regime occurs. Shortly after this transition, fixing N0
also kF becomes constant as a function of Ez. (c) Lowest energy level of the wire Hamiltonian as
a function of both Zeeman field Ez and chemical potential µ. The red line is the self-consistent
chemical potential for N0 = 20 · 35 electrons. After entering the topological phase, this chemical
potential stays orthogonal to the finite size oscillations of the Majorana energy such that E1
stays approximately constant.

From Fig. 2.30(b) it also becomes apparent that fixing the particle number while changing the
external field fixes the Fermi momentum kF in the Majorana wire, Eq. (2.140), in the topological
regime (for Ez >

√
∆2 − µ2 indicated by the vertical line). In addition, µ follows the energy

of the first Bogoliubov level parallel to the finite size oscillations (Fig. 2.30(c)) such that E1 is
approximately constant as a function of the Zeeman field in the topological regime. Therefore,
the finite size oscillations of the Majorana energy described in Sec. 2.2.3 are not visible. This
may also allow for obtaining an approximation for µ(N0) from the energy of the first level only,
which would be much easier than obtaining the full set of eigenstates.

Excited dot states in the thermal average

We allow the dot to be in excited states {ni} with N0 electrons when the elastic co-tunneling pro-
cess occurs and perform a thermal average when computing the scattering matrix in Eq. (2.222).
Because the condensate is made of Cooper pairs, it can only hold an even number of electrons.
Therefore, the number parity of N0 determines the number parity of the allowed occupation
numbers, i.e. ∑i ni mod 2 = N0 mod 2. Hence, for even N0, in the ground state, all electrons
are in the condensate, {ni = 0}, and for odd N0 one electron has to occupy the first level,
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Figure 2.31: Microscopic model for the dot-lead couplings. (a) The confinement potential
Eq. (2.270) separating the leads from the dot, where the load-dot interface is marked by a
vertical, black line. We consider normal-conducting leads of length Llead = 130 lso without spin-
orbit coupling, and a wire of length L. The potential in the leads is lowered by Vlead = 100Eso
such that both spin species are present at the Fermi level. (b) Sketch of a wave function at
the Fermi level, localized in the left lead (red) and auxiliary potential used to obtain the wave
function (blue). (c) Majorana wave function in the wire (red) and auxiliary potential (blue).

{ni>1 = 0, n1 = 1}. The excitation energy for occupation numbers {nj} is then given by

Eex(N0 ∈ 2N, {nj}) =
∑

j

njEj (2.268)

Eex(N0 ∈ 2N+ 1, {nj}) = −E1 +
∑

j

njEj , (2.269)

such that the corresponding Boltzmann weight for the initial state with N0 electrons and occu-
pation numbers {nj} in the thermal average is exp (−βEex(N0, {nj})) with inverse temperature
β = (kBT )−1. For small temperatures (we later use β = 18Eso) the Boltzmann factors make
states involving higher levels negligible such that we do not include excited states with any
nj>10 = 1 and only consider initial states with up to four occupied levels, i.e. ∑j nj ≤ 4.

Before we show numerical results for transport through Majorana wires obtained with the
scattering matrix formalism, we discuss the microscopic models for the dot-lead couplings and
explain their relations to the simpler model discussed in this section.

2.3.4 Microscopic model for dot-lead couplings

So far, we considered dot lead couplings that were defined as overlaps of an exponentially
decaying phenomenological lead wave function and the dot eigenfunctions inside the tunneling
barrier. In this section, we extend this idea by microscopically modeling parts of the lead of
length Llead and the transition region between lead and dot with a confinement potential (see
Fig. 2.31) of Gaussian shape Vσi,V0(y) = V0 exp[−y2/(2σ2

i )] defined as [131]

V (y) =


Vσ1,V0+Vlead(y − Llead) − Vlead y ≤ Llead

Vσ1,V0(y − Llead) Llead < y < y1

Vσ2,V0(y − y1 + y2 − Llead) y ≥ y1

(2.270)

yj =
√

2σ2
j ln(V0/Es) . (2.271)
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Figure 2.32: Dot-lead couplings in the microscopic model for a Majorana wire of length
L = 45.5 lso, Zeeman field dependent gap ∆(Ez) = ∆(0)

√
1 − (Ez/Ez,c)2, with critical Zeeman

energy Ez,c = 10Eso, ∆(4.5Eso) = 2Eso, and self-consistent chemical potential to fix the average
particle number. (a) For a steep confinement σ1 = σ2 = 0.1 lso, Es = 10Eso, and wire particle
number Nw = 47L/(39 lso) and (b) for a smooth confinement with σ1 = 0.1 lso, σ2 = 6 lso,
Es = 10Eso, and Nw = 53L/(39 lso) (adapted from [131]).

We lower the potential in the lead by Vlead = 100Eso, to ensure that both spin species are preset
at the Fermi level in the leads. The confinement potential initially decays with width σ1 and
transitions smoothly into a decay with width σ2 at (y2, Es) [131]. This allows us to consider
both steep confinements, e.g. for σ1 = σ2 = 0.1 lso, and shallow confinements, e.g. σ1 = 0.1Eso,
σ2 = 6 lso, Es = 10Eso, which yields ABS in the trivial phase (see Sec. 2.2.4).

The main improvement of the microscopic model in comparison to the simpler model of the
previous section is that the spin dependence for tunneling through the barrier in presence of
a Zeeman field can be taken into account. To obtain the couplings, we first discretize the
Hamiltonian H consisting of lead and dot sectors, as well as a standard hopping −Eso(lso/a)2σ0
at the lead dot interface between both sectors, and compute couplings as overlaps [131]

λu
iασ = ⟨Φu

ασ|H|Ψi⟩
λv

iασ = ⟨Φv
ασ|H|Ψi⟩ .

(2.272)

Here Ψi is the i-th BdG level in the wire, the wave function in the normal-conducting leads with-
out spin-orbit coupling have the form Φu

ασ = (φ(εF ,σ)
α↑ , φ

(εF ,σ)
α↓ , 0, 0) and Φv

ασ = (0, 0, φ(εF ,σ)∗
α↓ ,−φ(εF ,σ)∗

α↑ )
where the wave function closest to the Fermi level localized in lead α with spin σ is given by
(φ(εF ,σ)

α↑ , φ
(εF ,σ)
α↓ ) [131]. To numerically compute the wave function localized in one region, we

continue the confinement potential at height V0 in the remaining regions (Fig. 2.31b and c) [131],
which is justified if the considered wave functions decay fully in the potential barrier.

Due to the direction of the Zeeman field that prefers the spin-↑ direction, tunneling of ↓-
electrons through the barrier is also greatly suppressed [124]. In Fig. 2.32, we show the product
of couplings |λu

1Lσλ
u∗
1Rσ|, which determines the dominant electron-like term in the scattering

matrix, for spin-↑ (blue) and spin-↓ (red) electrons as a function of the external Zeeman field.
In both cases steep confinement (panel a) and smooth confinement (panel b), we see that for a
large enough Zeeman field Ez ≳ 2Eso, coupling of ↑-electrons is stronger – even more than an
order of magnitude in the topological phase (between the dashed vertical lines).

For the more paradigmatic model of the couplings from the previous section, where this
difference in the couplings of different spin is not reflected in the effective lead wave function
Eq. (2.242), we will therefore approximate |⟨T↑↑ + T↓↓⟩| ≈ |⟨T↑↑⟩|. We then use the microscopic
model to validate the results of the easier model.
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2.3.5 Extracting Weidenmüller formula parameters from KWANT

For the second microscopic model, we use the python package KWANT [389], which allows us to
define the system via hoppings and on-site terms, to connect translationally invariant leads to the
system, to extract system quantities from the model (Fig. 2.33), and even to compute transport
properties like scattering matrices. Unfortunately, KWANT does not support Coulomb-blockade.
We can still use it to set up the Hamiltonian Hw, integrate out leads, extract the corresponding
self-energies ∑α, and compute propagating modes of the leads φα at the dot-lead interfaces. In
the absence of Coulomb-blockade, the block of the scattering matrix for transmission from left
to right lead can be obtained via [413]

TLR = iφ†
RΓRG

r
wΓLφL , (2.273)

with Γα = i (Σα − Σ†
α), Σ = ΣL + ΣR and propagator

Gr
w = [ε1− Hw − Σ]−1 . (2.274)

This is a numerical algorithm called wave function matching [413] used in KWANT for computing
the scattering matrix [389] and can be brought into the form of a Weidenmüller formula [414].
In order to introduce Coulomb-blockade in the truncated Hilbert space picture, we first extract
the wire Hamiltonian matrix Hw using KWANT and diagonalize it which yields the eigenstates
Uw and the energy eigenvalues Ei. Inserting representations of the identity 1 = U †

wUw = UwU
†
w

into Eq. (2.273), we find the Weidenmüller formula

TLR = ⟨iφ†
RΓRUwU

†
wG

r
wUwU

†
wΓLφL⟩ (2.275)

=
〈
iWR

1
ε1− diag(Ei) − U †

wΣUw

W †
L

〉
, (2.276)

where the dot-lead couplings are W † = (WL,WR)† with

W †
L = U †

wΓLφL (2.277)
WR = φ†

RΓRUw . (2.278)

Figure 2.33: Schematic of a two-dimensional Majorana wire and leads modeled with KWANT
[389]. Translationally invariant leads (red) and system, i.e. the Majorana wire (blue), are sepa-
rated by a confinement potential induced by pinch-off gates (green). The python package KWANT
allows us to define the setup in terms of onsite energies and hoppings, and computes lead self
energies Σα, Γα, propagating lead modes ϕα, and the wire Hamiltonian matrix Hw from which
we extract eigenstates Uw and energy eigenvalues Ei (taken from the supplement of the publica-
tion [303]).
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This is the same as the expression inside the thermal average in Eq. (2.222) by replacing
U †

wΣUw → −i
2 W

†W = U †
wi Im(Σ)Uw. This can be done, as the missing real part Re(Σ) has

the form of a potential at the dot-lead interfaces (the only positions where Σ is non-zero) in
Eq. (2.274) and can therefore be absorbed into the confinement potential due to the pinch-off
gates. In order to add Coulomb-blockade to the Weidenmüller formula, we know from the pre-
vious section (Eqs. (2.258)-(2.265)) how to adjust the energy levels and where we need to swap
electron-like uj and hole-like wave functions vj to determine the couplings. For the chemical
potential in the wire, we use µ(N0) self-consistently determined to have N0 electrons in the dot.
As we argued before (Sec. 2.3), this is a good approximation as µ(N0) ≈ µ(N0 ± 1).

As the self-energies Σα and hence Γα are only non-zero at the dot-lead interfaces y = yα, the
couplings φ†

αΓαUw are proportional to the wire wave functions evaluated at yα which provides
a justification for the choice in the more paradigmatic model Eq. (2.242). The advantage of
using KWANT is that it correctly covers the band structure in the semi-infinite, translationally
invariant leads and accurately treats dot-lead couplings via self-energies after integrating out the
leads. In addition, KWANT simplifies defining two-dimensional systems even with more complex
geometries by only requiring a boolean shape function that takes a position in space and returns
whether this position is in the system, a function which returns onsite energies for each given
position, and a function that takes two positions and returns the hopping energy between the
points in space. Based on this information, KWANT can set up the grid, attach leads, and return
the wire Hamiltonian and the dot-lead interfaces automatically.

In the following, we will first use the paradigmatic model (Sec. 2.3.3) and the first microscopic
model (Sec. 2.3.4) to describe the Zeeman field and length dependence of the transmission
amplitude in Sec. 2.4, and later the KWANT model to perform machine learning optimizations
for Majorana wires in the presence of disorder in Sec. 2.5.
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2.4 Coherent transmission amplitude through a Coulomb-blockaded
nanowire

Major parts of this section closely follow the publication: Matthias Thamm and Bernd Rosenow,
Transmission amplitude through a Coulomb blockaded Majorana wire, Physical Review Research
3, 023221 (2021) [131].

In this section, we study the amplitude of coherent transmission from which one can derive
signatures for the presence of MZMs that are based on the non-locality of the Majorana wave
functions and therefore hard to mimic by disorder or trivial zero modes such as ABSs. Such a
signature has been studied in a recent experiment by Whiticar et al. [130], where they consider
coherent transport through an interferometer with a Majorana wire embedded into one of the
arms as a function of an external magnetic field. They find that for small Zeeman fields,
the amplitude of coherent transmission is small, for larger fields – which they attribute to
the topological regime – an amplitude maximum is observed, and after superconductivity is
destroyed by a large field, the amplitude is small again. We use the scattering matrix formalism
of Sec. 2.3 to study this transmission amplitude, i.e, the oscillation amplitude of the current as
a function of the flux through an Aharonov-Bohm interferometer where the Majorana wire is
in the Coulomb-blockade regime (Fig. 2.34). In this setup, we know from the discussion of the
Weidenmüller formula for the scattering matrix Eq. (2.222) that the contribution of tunneling
though a single dominant level of the Majorana wire with wave function φ(y) to the transmission
amplitude is roughly given by

T ∼ φ(yL)φ(yR)
Ec

, (2.279)

where Ec is the large charging energy, and yα is the positions of the dot-lead interface with lead
α. Hence, for a MZM, where the wave function is exponentially localized at both ends with a
correlation length ξ, the weight of the wave function at the wire ends scales like φ(yα) ∼ 1/

√
ξ

and thus the transmission amplitude is approximately

TMZM ∼ (ECξ)−1 . (2.280)

In constrast, for tunneling though a single extended state with φ(yα) ∼ 1/
√
L, the transmission

amplitude scales as

Ttriv ∼ (EcL)−1 . (2.281)

Eq. (2.279) implies that the transmission amplitude is large for well localized MZMs and small
in the case of a trivial state. In addition, the occurrence of the maximum at the onset of
the topological phase can already be qualitatively understood in this simple picture: When
increasing the Zeeman field to bring the system into the topological phase, ξ is divergent at
the topological phase transition such that the amplitude is small. Then MZMs become sharply
localized resulting in a large transmission amplitude, and when further increasing the Zeeman
field, the size of the effective p-wave gap ∆ind,p decreases such the MZMs become less localized
(ξ ∝ ℏvF /∆ind,p), and the transmission amplitude decreases again.

In addition, the charging energy Ec ∝ L−1 decreases with the system size L such that the
amplitude for transport through MZMs is approximately linear in the wire length TMZM ∝ L,
while it is independent of L for the trivial extended state Ttriv ∼ 1. Hence, in addition to
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Figure 2.34: Schematic sketch of the Majorana interferometer setup. The lower arm contains
the quantum dot consisting of a one dimensional Rashba wire (blue), superconductor (orange),
and gate (green). The upper arm of the interferometer is the reference arm which only contains
a wire. By varying a flux Φ, the transmission amplitude of electrons tunneling through the
dot as a function of the gate voltage can be observed [304]. When the wire is tuned to the
topological regime by an external Zeeman field, Majorana zero modes (red) are present at the
ends. A reservoir is needed to avoid the phase rigidity effect [390].

the magnetic field dependence, the wire length dependence of the transmission amplitude also
provides a signature for MZMs based on the non-locality.

Furthermore, it is also interesting to study the coherent transmission amplitude at finite
temperatures, where a ground state degeneracy due to a pair of zero energy ABSs yields two
contributions with equal magnitude but opposite sign to the thermal average [132], which in-
dicates that the transmission amplitude is able to distinguish MZMs from ABSs. To confirm
these qualitative statements, we combine numerical and analytical results in the following.

2.4.1 Magnetic field and wire length dependence of the transmission amplitude

We first study the Zeeman field dependence of the transmission amplitude using the effec-
tive model for the dot-lead couplings of Sec. 2.3.3. We begin with a Majorana wire of length
L = 32.5 lso with a Zeeman field independent proximity s-wave gap ∆ to understand how
the effective p-wave gap influences the transmission amplitude. In the one-dimensional case,
by increasing the strength of the Zeeman field, the system transitions into the topological
regime and remains topological for all higher Zeeman fields. However, the effective p-wave
gap, ∆ind,p ∼ E−1

z , decreases with the Zeeman energy such that the localization of the MZMs
and hence the transmission amplitude is expected to decrease the deeper the system is in the
topological phase.

In a next step, we then allow the magnetic field to destroy the induced s-wave proximity gap
∆(Ez) such that the system becomes trivial again for fields above a critical field strength. This
more realistic situation allows for a comparison to be made with the experiment by Whiticar et
al. [130].

We then further study the wire length dependence of the transmission amplitude where, ac-
cording to the discussion above, we expect the transmission amplitude due to tunneling through
MZMs to increase proportionally to the wire length.

Magnetic field independent induced gap

We study the transmission amplitude |⟨T↑↑(Vg,mid)⟩| as a function of Zeeman energy Ez, com-
puted at a gate voltage Vg,mid in the middle between the two conductance resonances for a fixed
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Figure 2.35: Transmission amplitude |⟨T↑↑(Vg,mid)⟩| (blue y-axis) for transmission through the
lowest effective level only (dotted, red), and jmax = 200 effective levels (solid, blue), together
with the lowest BdG energy (black y-axis, solid black line) of the wire Hamiltonian as a function
of the magnetic field. Here, Vg,mid is the center between amplitude resonances corresponding to
a particle number Nw = 35. The dashed gray line shows the decay of the amplitude according to
Eq. (2.284), where the constant factor is obtained from a fit. We use ∆ = 2Eso and L = 32.5 lso.

particle number Nw = (L/lso)(14/13), such that the particle density is the same for all wire
lengths.

We first consider a magnetic field independent proximity gap ∆ = 2Eso. By increasing Ez,
the transition to the topological phase takes place, in which an eigenstate close to zero energy is
formed, separated from the second level by the topological gap (see Fig. 2.35). The transmission
amplitude strongly increases when entering the topological phase at Ez,top, reaches a peak value,
and then decreases. In the topological regime the tunneling matrix element for a Majorana wave
function is ∝ 1/

√
ξ, where the correlation length

ξ = ℏvF

∆p,ind
(2.282)

with vF = ℏkF (1/m∗ − α2
R(E2

z + ℏ2α2
Rk

2
F )−1/2) is determined by the induced effective p-wave

gap at the Fermi points in the hybrid wire [86, 87, 366]

∆p,ind = ℏkFαR∆√
E2

z + α2
Rℏ2k2

F

. (2.283)

With this, we obtain the Zeeman field dependence of the transmission amplitude as

|T↑↑| ∼ m∗αR∆
ℏ

1√
E2

z + α2
Rℏ2k2

F − α2
Rm

∗
, (2.284)

proportional to the inverse field strength for large Ez (dashed gray line in Fig. 2.35, in very
good agreement with the numerical result taking a single level into account). When comparing
the result for transmission through jmax = 200 levels (solid blue line) with that for a single
level (Fig. 2.35, dotted red line) it becomes apparent that the amplitude at the beginning of
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Figure 2.36: Transmission amplitude |⟨T↑↑(Vg,mid)⟩| for jmax = 200 effective levels as a function
of the magnetic field. Here, Vg,mid is the center between amplitude resonances corresponding to
a particle number Nw = 35. We use a wire length of L = 32.5 lso and a field dependent induced
gap, Eq. (2.285), where ∆(4.5Eso) = 2Eso and Ez,c = 10Eso (solid, blue). The dashed gray line
shows the decay of the amplitude according to Eq. (2.286), where the constant factor is obtained
from a fit.

the topological range is mostly determined by the lowest level, i.e. the MZMs. For very large
Zeeman energy, the Majorana modes are split more strongly, and there is a small correction
due to taking into account many higher levels. In the trivial regime for Ez < Ez,top however,
where the spacing between the lowest energy Bogoliubons is small, many levels contribute to
the transmission amplitude, and interfere destructively.

Magnetic field dependent induced gap

For a thin superconductor subject to a parallel field, we describe the suppression of the induced
s-wave superconducting gap by the magnetic field via [412]

∆(Ez) = ∆(0)

1 −
(
Ez

Ez,c

)2
1/2

, (2.285)

where Ez,c is the critical Zeeman energy at which superconductivity is destroyed. Entering
the topological region at Ez,top is again accompanied by an increase in transmission amplitude
(see Fig. 2.36). Further, within the topological regime, the proximity gap ∆ is reduced, and
the correlation length ξ ∝ 1/|∆p,ind| increases, i.e. the Majorana wave function delocalizes.
Therefore, the amplitude drops to the normal-conducting value over a relatively narrow range
of magnetic field values. Using Eq. (2.285) in Eq. (2.283), we find an amplitude dependence

|T↑↑| ∼ m∗αR∆(0)
ℏ

√
1 − (Ez/Ez,c)2√

E2
z + α2

Rℏ2k2
F − α2

Rm
∗
. (2.286)

This dependence is depicted by the dashed gray line and fits well in the region where the ampli-
tude decays to the normal-conducting value (see Fig. 2.36). For Ez > Ez,c, the wire is normal-
conducting, and the amplitude is approximately constant. These results for the amplitude are
in agreement with the recent experiment [130].
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Figure 2.37: Transmission amplitude |⟨T↑↑(Vg,mid)⟩| as a function of the magnetic field for dif-
ferent wire lengths L = 13 lso, 19.5 lso, 26 lso, 32.5 lso, 39 lso, 45.5 lso, 52 lso, 58.5 lso and 65 lso. Here,
Vg,mid is the center between amplitude resonances for a particle number Nw = 35L/(32.5 lso).
We assume a Zeeman field dependent gap parameter Eq. (2.285) with ∆(4.5Eso) = 2Eso and
a critical field Ez,c = 10Eso. The inset shows the value at the maximum of the amplitude in
the topological region (black circles) and the value of the amplitude in the normal-conducting
region (blue circles) as a function of the wire length L.

Wire length dependence

The non-locality of MZMs is expected to have a profound consequence when considering wires
of varying lengths. In the inset of Fig. 2.37, the value of the amplitudes at the maximum and
in the normal-conducting region are depicted as a function of the wire length L. From our
scattering matrix analysis, using a charging energy that is proportional to the inverse of the
wire length, we find that the transmission amplitude is indeed proportional to the wire length
in the topological region, while it is independent of the wire length in the normal-conducting
range (see Fig. 2.37).

2.4.2 Disorder in the wire

The proposed experiment for establishing the wire length dependence of the transmission ampli-
tude in the presence or absence of MZMs requires the comparison of different wires. Since these
wires may differ from each other in terms of their detailed composition, we study how robust our
results for the transmission amplitude are in the presence of on-site disorder. We use a Gaussian
disorder distribution with zero mean and standard deviation σdis. Disorder is strong when the
elastic scattering rate ℏ/τ from the impurities is on the order of the induced effective gap ∆p,ind
in the wire [415–422]. We define a critical disorder strength σc such that the effect of disorder
on the amplitude is negligible for σdis ≪ σc. For σdis ≈ σc disorder has noticeable effects on the
amplitude and for σdis ≫ σc pair breaking sets in and destroys the superconducting properties
and the amplitude vanishes. Using Fermi’s golden rule, we estimate the elastic scattering rate
for the case of a scatterer at each lattice site as

ℏ/τ
Eso

=
(
σdis
Eso

)2 a

lso

1
kF lso

. (2.287)
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Figure 2.38: Transmission amplitude |⟨T↑↑(Vg,mid)⟩| as a function of the magnetic field for
various strengths of the on-site disorder. We use a wire length of L = 32.5 lso, and compute
the amplitude between resonances corresponding to particle number Nw = 35. The gray dashed
line is for reference without disorder. The colored lines (from top to bottom) are numerically
computed for Gaussian disorder with standard deviation σdis = 0.1Eso ≪ σc, σdis = 1Eso,
σdis = 5Eso, σdis = 10Eso ∼ σc, and σdis = 20Eso.

The induced gap at the Fermi momentum kF lso = (2 +µ/Eso +
[
(Ez/Eso)2 + 4 + 4µ/Eso

]1/2)1/2

is given by
∆p,ind
Eso

= 2 ∆
Eso

kF lso√
(Ez/Eso)2 + 4(kF lso)2 . (2.288)

We define σc such that ℏ/τ = ∆p,ind for σdis = σc, i.e.

σc
Eso

=
√

2 lso
a

∆
Eso

kF lso

[(Ez/Eso)2 + 4(kF lso)2]1/4 . (2.289)

Numerical results of the amplitude for various disorder strengths are depicted in Fig. 2.38. When
the disorder strength is smaller but of the order of σc, the transmission amplitude is reduced
at its maximum. This reduction is however much smaller that the peak height such that the
proposed experiment is robust against disorder σdis < σc. When using a disorder strength close
to or larger than σc, the amplitude is significantly reduced.

2.4.3 Microscopic model and Andreev zero modes
With the effective model for the couplings considered so far, we are limited to the transmission
amplitude of spin-↑ particles, which give the dominant contribution in the presence of a Zee-
man field [124] (see also Fig. 2.32). To overcome this limitation, we study transport with the
microscopic model for the dot-lead couplings as described in Sec. 2.3.4. For this, we explicitly
model parts of the leads in addition to the wire which are separated by a confinement potential,
Eq. (2.270), with Gaussian shape, height V0, initial decrease with standard deviation σ1, and
final width σ2 after the potential has decreased to height Es. We then obtain the couplings
from matrix elements of the tunneling Hamiltonian between states localized in lead α and in
the dot, Eq. (2.272). This does not only allow us to compute the full transmission amplitude
|⟨T↑↑ + T↓↓⟩| but also to consider transport through topologically trivial ABSs for a shallow
confinement potential with σ2 ≫ σ1 as discussed in Sec. 2.2.4.
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Figure 2.39: (a) Barrier potential used to compute the lead-wire couplings in the microscopic
model. The leads of length Llead are normal-conducting and without spin-orbit coupling. At
position y1 and energy Es the narrow Gaussian peak transitions continuously into the wide peak
in the case of the smooth potential. The height of the peak is given by V0 = 65Eso. (b) Numerical
results for the amplitude |⟨T↑↑(Vg,mid) + T↓↓(Vg,mid)⟩| with microscopic couplings as a function
of the Zeeman field using a steep confinement potential and ground state particle number Nw =
47L/(39 lso). We consider wires of length L = 32.5 lso, 39 lso, 45.5 lso, 52 lso, and 58.5 lso. The
results are in excellent agreement with Fig. 2.37 where we used the more paradigmatic model
for the couplings.

We distinguish two types of barrier potentials (i) a single narrow Gaussian peak and (ii) a nar-
row Gaussian peak together with a potential decaying smoothly into the wire (see Fig. 2.39(a)).
Parameters for (i) the steep potential are given by σ1 = σ2 = 0.1 lso, Es = V0 and V0 = 65Eso,
and for (ii) the smooth confinement has σ1 = 0.1 lso, σ2 = 6 lso, Es = 10Eso and V0 = 65Eso. In
case (i) there are zero-energy states only in the topological region, which are the MZMs (see inset
of Fig. 2.39(b)). In case (ii), the Fourier decomposition of the smooth potential does not contain
large momenta, so that in the trivial region each of the two bands contributes a pair of MZMs,
which however are not coupled among each other by the potential [112, 113, 124]. Therefore,
in addition to the MZMs in the topological region, two quasi-degenerate, quasi-zero energy An-
dreev bound states (also called pseudo-MZMs) occur in the trivial region for 5Eso < Ez < 7.6Eso
(see inset of Fig. 2.39(b)). Since they are nearly degenerate, there are two ground states with
equal Boltzmann weight in the thermal average. For even N0 the degenerate ground states for
E1 = E2 = 0 are states where either all N0 electrons are in the condensate or N0−2 electrons form
the condensate and both pseudo-MZMs occupied. In the case of odd N0 there are N0−1 electrons
in the condensate and either the first or the second pseudo-Majorana level is occupied. In both
cases the thermally averaged amplitude is proportional to ∑2

j=1(λu
L,j,↑λ

u∗
R,j,↑ + λv

L,j,↑λ
v∗
R,j,↑) ≈ 0.

The anti-unitary reflection symmetry Π̃φj(y) = Kφj(L − y) (where φj are eigenfunctions of
Hwire) ensures that both terms are real and sgn(λu

L,j,↑λ
u∗
R,j,↑) = −sgn(λv

L,j,↑λ
v∗
R,j,↑) [304]. Due

to the Majorana condition for zero energy states |ujσ| = |vjσ|, the terms cancel each other.
Hence, the ground state degeneracy gives rise to a vanishing amplitude upon thermal averaging
[132]: Forming a Cooper pair or occupying the two zero-energy pseudo-MZMs requires the same
energy, but yields contributions with opposite signs and equal magnitude to the transmission
amplitude.

In fact, the reflection symmetry is sufficient but not necessary for the relation ujσ(yL)u∗
jσ(yR) =

−v∗
jσ(yL)vjσ(yR). It can for example also be understood in a situation where the two ABS are
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Figure 2.40: (a) Numerical results for the transmission amplitude |⟨T↑↑(Vg,mid)+T↓↓(Vg,mid)⟩|
using tunnel couplings obtained for the smooth barrier potential as a function of the Zee-
man energy. (b) Conductance through the wire without an interferometer in the case of
a smooth potential for Nw = 53L/(39 lso). A comparison with (a) shows that the inter-
ferometer is crucial to distinguish MZMs from pseudo-MZMs. We consider wires of length
L = 32.5 lso, 39 lso, 45.5 lso, 52 lso, and 58.5 lso. We use a Zeeman field dependent induced gap
Eq. (2.285) with a critical field Ez,c = 10Eso and a particle number Nw = 53L/(39 lso). The
insets depict the lowest two energy eigenvalues of the wire Hamiltonian for L = 45.5 lso.

eigenstates of the same spin operator, which for convenience we choose as the z-direction, such
that only one spin component of the wave function is nonzero (allowing us to suppress the
spin index in the following). For any Bogoliubon localized at both ends yL, yR of the wire, the
quasiparticle operator is expressed in terms of the fermion operators ψ(y), ψ†(y) as

β =
∫
dy
[
u(y)ψ(y) + v(y)ψ†(y)

]
≈ u(yL)ψ(yL) + u(yR)ψ(yR) + v(yL)ψ†(yL) + v(yR)ψ†(yR).

(2.290)

The anti-commutation relation 0 = {β, β} then ensures that

u(yL)v(yL) = −u(yR)v(yR) , (2.291)

and multiplying the equation with the complex conjugate of the left-hand side yields

|u(yL)|2|v(yL)|2 = −u∗(yL)u(yR)v(yR)v∗(yL) . (2.292)

As the left-hand side is real, we can parametrize

u∗(yL)u(yR) = +|u(yL)u∗(yR)| e−iα (2.293)
v∗(yL)v(yR) = −|v∗(yL)v(yR)| eiα . (2.294)

Then the relation for zero-energy states |u(y)| = |v(y)| implies that indeed ujσ(yL)u∗
jσ(yR) =

−v∗
jσ(yL)vjσ(yR).
For a wire of finite length, the pseudo Majorana modes do not lie exactly at zero energy and

a finite amplitude is observed. This is the case for the smallest wire length in Fig. 2.40(a). Here
the terms in the termal average with (0, 0) and (1, 1) occupation have Boltzmann weigth 1 and
e−β(E1+E2) such that the amplitude is still suppressed by a factor (1−e−β(E1+E2)). As long as the
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two levels are nearly degenerate and nearly at zero energy, the amplitude is well below the ∆ = 0
value and no pronounced maximum is formed. In addition, the amplitude is not proportional
to L in the pseudo-MZM regime.

In comparison with the more paradigmatic model considered before, we find that for a steep
potential (i), all qualitative features of the amplitude remain unchanged (Fig. 2.39(b)). Impor-
tantly, the suppression of the transmission amplitude in the trivial regime occurs even when
pseudo-MZMs are present (see Fig. 2.40(b)).

2.4.4 Comparison with direct conductance measurement

In this section, we compare signatures from the interferometer setup (Fig. 2.34), with an easier to
implement direct conductance measurement through the dot, without interferometer. In the cal-
culation of the transmission amplitude through the dot (interferometer case) or the transmission
probability (direct conductance), the main difference is how the thermal average is performed.
For the calculation of the amplitude of conductance oscillations through the interferometer, the
thermal average is performed over the complex transmission amplitude (see Eq. (2.222)), so
that the transmission phase contributes to such an average. In the case of a direct conductance
measurement, the squared absolute value of the transmission amplitude is averaged, and the
phase information does not contribute. Fig. 2.40(b) depicts the direct conductance through the
dot for a smooth confinement potential, analogous to Fig. 2.40(a). For MZMs we also find a
maximum at the beginning of the topological region, whose height scales with the wire length.
The crucial difference is that the conductance is not suppressed for pseudo-MZMs and thus this
maximum is not a unique signature for the presence of MZMs.

2.4.5 Comparison to approximate analytical solution and connection to experiment

In a recent experiment by Whiticar et al. [130], the transmission amplitude through a Coulomb
blockaded Majorana wire was measured as a function of the Zeeman field. The experimental
transmission amplitude shows a rapid growth upon entering the topological regime, followed by
a pronounced maximum. Here, we discuss in detail how these features are explained by the
localization properties of MZMs, which determine the transmission amplitude in the topological
regime.

In the case of sufficiently long wires, in which the Majorana wave functions of opposite wire
ends have negligible overlap, an analytical solution for the MZM wave functions can be found
(see Sec. 2.2.2). Moreover, since the transmission amplitude in the topological region is deter-
mined almost exclusively by transport through MZMs, the transmission amplitude can directly
be obtained from the Majorana wave functions. For large Zeeman fields, deep in the topo-
logical regime, the spatial decay of MZMs is characterized by the p-wave localization length
ξ = ℏvF /∆p,ind, Eq. (2.282). However, from the full analytic solution it becomes apparent that
there is a second localization length

ξs =
(

−ξ−1 +
√
ξ−2 − µ2 + ∆2 − E2

z

(ξ−2 + k2
F )E2

so

)−1

∝ 1
Ez −

√
∆2 + µ2 , (2.295)

which describes the localization properties of MZMs for Zeeman fields Ez ≳ Ez,top close to the
topological phase transition. We can approximate the envelope of the Majorana wave function
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Figure 2.41: Transmission amplitude |⟨T↑↑(Vg,mid)⟩| for jmax = 200 effective levels (solid,
blue) as a function of the magnetic field with parameters as in Fig. 2.36. The dashed gray lines
depict the ξs approximation at the beginning of the topological regime and the ξ approximation
in the region where superconductivity is destroyed by the magnetic field. The dotted red line
depicts the approximation Eq. (2.297), where both correlation lengths are taken into account.
The maximum of the transmission amplitude arises due to the interplay of both terms. We use
the same proportionality constant for all three approximations obtained by a fit.

by a sum of two exponentially decaying terms (for details see Sec. 2.2.2)

χL,↑ ≈ 1√
ξ + ξs

(
e−y/ξ + e−y/ξs

)
. (2.296)

The corresponding Majorana wave function at the right end is then given by χR,↑(y) ∝ χL,↑(L−
y). This yields for the transmission amplitude

|T↑↑(Vg,mid)| ∝ 1
ξ + ξs

. (2.297)

A comparison shows that the approximated transmission amplitude (dotted, red line in
Fig. 2.41) is in very good agreement with the numerical results for transmission through 200
levels (solid, blue line in Fig. 2.41). Thus, the competition of the two correlation lengths ξ and
ξs explains the occurrence of the maximum in the transmission amplitude.

In addition, in Fig. 2.41, we compare the numerically obtained transmission amplitude to
approximations taking into account the larger of the two localization lengths: The behavior of
the transmission amplitude at the beginning of the topological region can be understood by the
localization length ξs alone, i.e. |T↑↑| ∝ 1/ξs (dashed gray line in the beginning of the topological
regime). On the other hand, the behavior near the transition into the normal-conducting region,
is due to the p-wave localization length ξ, i.e. |T↑↑| ∝ 1/ξ (dashed gray line at the end of the
topological regime). The maximum occurs where the magnitude of the localization lengths is
roughly comparable.

The picture described above allows to explain the magnetic field dependence of the transmis-
sion amplitude found by Whiticar et al. [130]. In the experiment, the transmission amplitude
depends only weakly on the magnetic field in the region of small Zeeman fields, as predicted
for the trivial phase. Above a device-specific value of the magnetic field, a rapid increase of the
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transmission amplitude is observed, which can be explained by the magnetic field dependence
of 1/ξs at the beginning of the topological phase. Due to the divergence of ξs at the phase
transition Ez = Ez,top, the transmission amplitude increases linearly |T↑↑| ∝ Ez − Ez,top in the
topological regime. For larger Zeeman fields, a well-defined maximum of the amplitude arises in
the experiment, which can be understood in terms of the concurrence of both correlation lengths
ξ and ξs. When superconductivity is destroyed by the magnetic field, Whiticar et al. observe
a rapid decline of the transmission amplitude. This decrease can be explained in our model by
the divergence of the coherence length ξ due to the vanishing of the induced p-wave gap when
approaching the critical magnetic field.

Since the amplitude of coherent transmission does not exhibit a maximum in the case of
pseudo-MZMs, we believe that it is very likely that genuine topological MZMs were observed in
the experiment. This is further supported by the observation that together with the appearance
of the maximum also the even-odd splitting of the conductance resonances is suppressed. While
the behavior of the transmission amplitude in the topological regime can be understood with
our one-dimensional model, it is currently not possible to explain the large ratio between the
value of the transmission amplitude at the maximum and the value in the normal-conducting
regime for Device 2 measured by Whiticar et al. This could be because the amplitude in the
experiment is not corrected for the influence of the transmission through the reference arm.
On the other hand, it might be necessary to include the influence of orbital effects and several
transverse subbands in the theoretical calculations for quantitative agreement between theory
and experiment.

2.4.6 Conclusion
In this section, we studied the Zeeman field and wire length dependence of the amplitude of
coherent transmission through Majorana wires in the Coulomb-blockade regime. We showed
that the transmission amplitude has a maximum as a function of the Zeeman field at the be-
ginning of the topological regime in agreement with a recent experiment [130]. This maximum
is due to tunneling through MZMs: its height increases linearly with the wire length, and its
occurrence can be understood from the concurrence between two correlation lengths present in
the topological phase. These correlation lengths were found from the analytical MZM solution
in agreement with the numerical simulations. In addition, we showed that Zeeman field and
wire length dependence provide unique signatures for MZMs that allow us to distinguish them
from trivial ABSs at finite temperatures [411].

Furthermore, we showed that these results are stable in presence of small disorder in the
wire. In the following section, we consider strong disorder that is able to destroy MZMs and the
topological phase.
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2.5 Using machine learning to cancel disorder effects

Major parts of this section closely follow the publication: Matthias Thamm and Bernd Rosenow,
Machine learning optimization of Majorana hybrid nanowires, arXiv preprint arXiv:2208.02182
(accepted for publication in Phyical Review Letters) [303].

In recent years, increasingly complex quantum systems have been proposed, and their imple-
mentation has become tangible [56–60]. Usually, such systems require very complicated tuning
of many parameters in order to function as intended [58, 64, 76, 423]. This can even become
so complex that there is no way around automating this tuning [61–63], and machine learn-
ing algorithms in particular have proven to be exceptionally flexible and robust for this purpose
[60, 62–67]. Here, we consider the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[242, 243, 246, 424] machine learning algorithm for adjusting the gate voltages of an array of
gates in proximity to a strongly disorderd Majorana wire. As discussed in the previous section,
due to the presence of a topological gap, MZMs are quite stable against disorder. However,
for the experimental realization of hybrid wires, different materials need to be contacted which
makes it challenging, if not impossible, to keep disorder weak in such systems [102–105]. By
inducing ABSs or other zero modes in the superconducting gap, strong disorder can mimic many
signatures of MZMs in the trivial phase [102, 104, 108–111] or destroy the gap altogether [107].
This is why disorder still poses a major challenge in experiments [102–105]. In a recent study
[106] implementing the so-called topological gap protocol [302] which is based on multi-terminal
measurements, it was shown that due to disorder in 80% of Majorana devices no topological
phase can be found.

We present a case study of automatic tuning of a gate array in proximity to a strongly disor-
dered Majorana wire using the CMA-ES [242, 243] algorithm. CMA-ES is a machine learning
algorithm that does not need system specific information to operate, and is widely applicable
for high dimensional optimization problems [246, 249–252]. Crucially, a good metric allows
improving desirable system properties during optimization. For example, signatures of MZMs
can be mimicked by topologically trivial Andreev bound states (ABSs) [111–128, 376], which
one would like to avoid. We therefore use the amplitude of coherent transmission [129–132]
through a Coulomb-blocked Majorana wire as a metric, which has been measured by placing the
wire in an arm of an electron interferometer [130], and which allows distinguishing MZMs from
ABSs [131, 132]. We find that already 100 to some 1000 amplitude measurements are sufficient
to tune the gate array, such that (i) both the localization of the MZMs and the transmission
amplitude are significantly improved, and (ii) strong potential disorder is compensated. Exper-
imental implementation of such automation could open the route to robust MZMs, for which
scalable braiding protocols have been proposed [79, 293, 425] that are already based on gate ar-
rays. Furthermore, we discuss important theoretical considerations on the implementation and
performance of CMA-ES optimization, potentially relevant for many systems and situations.

2.5.1 Setup and CMA-ES algorithm

Fig. 2.42 depicts a schematic illustration of the CMA-ES [242, 243] algorithm. After being
initialized by specifying an initial step size σ(0) = 0.1Eso, covariance matrix C(0) = 1, evolution
paths s(0)

C = 0 and s(0)
σ = 0, initial configuration V (0)

g = 0, and seed for the random generator,
in each iteration t a generation of npop candidate solutions is drawn from a multivariate normal
distribution N [V (t)

g , (σ(t))2C(t)]. These candidates then have to be evaluated using the metric,
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Figure 2.42: Schematic diagram of the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) algorithm [242, 243] that we use to learn an optimal gate array configuration that
maximizes the amplitude of coherent transmission A through a Majorana wire. Initially, one
sets a step size σ(0), a covariance matrix C(0), and a starting gate configuration V (0)

g . In each
iteration t, npop gate voltage configurations are drawn from a multivariate normal distribution
with mean V (t)

g and covariance C(t). As a metric, we use the transmission amplitude for coherent
transport through a Majorana hybrid wire consisting of a semiconductor (blue) with Rashba
spin-orbit coupling and an s-wave superconductor (orange), placed in proximity to an array of
gates (green) that allows tuning of a potential profile along the wire. By inserting the hybrid
wire into one arm of an Aharonov-Bohm interferometer, the transmission amplitude can be
measured [130–132, 304] and based on the magnitude of the amplitude Ai for the proposed gate
voltage configurations V (t)

g,i , the parameters for the next iteration are adjusted. The new mean
value V (t+1)

g is determined from the ñ best candidates and step size σ(t+1) and covariance C(t+1)

are updated based on the previous iterations. The goal of this machine learning algorithm is to
contract the search region in which the randomly drawn values lie around the location of the
optimum of the metric with subsequent iterations.

i.e. a measurement of the system with the suggested gate voltage configurations has to be
performed, and the resulting values are passed back to the CMA-ES algorithm. Based on the ñ
best candidates and the evolution of C(t) and V (t)

g , new parameters for drawing the subsequent
generation are then determined (for details see Sec. 1.2.3 and App. A.5). If the optimization is
successful, the search area in which the most candidates lie contracts around the optimum of
the metric.

For the numerical computations, we use the Python implementation pycma [424] to optimize
Fourier components ak, bk of an array of Ng gates of identical size with gate voltages

Ṽj = b0
2 +

⌊(Ng−1)/2⌋∑
k=1

ak sin
(

2π
Ng

kj

)
+

⌊Ng/2⌋∑
k=1

bk cos
(

2π
Ng

kj

)
. (2.298)

Optimization of Fourier components is more robust than directly optimizing the voltages: since a
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Fourier component affects all voltages, the algorithm is not distracted by first lowering the gates
at the ends which would slightly improve the amplitude, but corresponds to a local optimum
only. In the following, we set the average gate voltage b0 = 0, and consider the case of non-zero
average gate voltage later.

To obtain the spatial potential profile Vg(y) in the system, we assume that the wire is located
a distance zsys away from the gate surface and then approximate

Vg(y) = F−1

e−|q|zsysF

Ng∑
j=1

Ṽjχj(y)

 , (2.299)

where F and F−1 are Fourier transform and inverse Fourier transform in the variables y and q,
respectively, and χj(y) is the characteristic function of gate j, i.e., χj(y) is 1 if y lies in gate j
and 0 otherwise. For small zsys, this produces a smooth potential profile that is approximately
Ṽj over gate j.

To enhance desired features of a system during the optimization, the choice of an appropriate
metric is crucial (see discussion later). We consider here as a case study the optimization of
the coherent transmission amplitude A = |⟨T↑↑ + T↓↓⟩| through a Majorana wire in Coulomb
blockade, which can be measured by embedding the wire in the arm of an electron interferometer
(panel titled “metric” in Fig. 2.42) and determining the amplitude of the current oscillations
when changing the flux through the interferometer loop [130]. We first consider a strictly one-
dimension model for the hybrid wire, and generalize to a more realistic two-dimensional model
later. The Majorana wire consisting of a semiconductor with Rashba spin-orbit coupling αR and
a superconductor with s-wave gap ∆ is described in Nambu basis

(
d†

↑(y), d†
↓(y), d↓(y),−d↑(y)

)
using the Hamiltonian

Hwire = τz

[
−

ℏ2∂2
y

2m∗ σ0 − µσ0 − iℏαRσx∂y + δdis(y)σ0 + Vg(y)σ0 + Vconf(y)σ0

]
− Ezτ0σz + ∆τxσ0 , (2.300)

with disorder potential δdis, confinement potential Vconf , gate potential Vg (see Eq. (2.299)),
and Pauli matrices σi and τi acting in spin and particle-hole space, respectively. Rashba spin-
orbit coupling defines a characteristic energy scale Eso = α2

Rm
∗/2 = 0.05meV and length scale

lso = ℏ/(αRm
∗) = 0.19µm of the system, where ℏαR = 0.2 eVÅ and m∗ = 0.02me are realistic

values for InAs [84, 90]. Throughout this paper, we consider wires of length L = 13 lso on a grid
with spacing a = 0.026 lso. For the one dimensional wire, we use a chemical potential µ = 1Eso,
a Zeeman energy Ez = 6Eso, and proximity s-wave gap ∆ = 2Eso, such that the system
in the absence of disorder and gate voltages is in the topological regime, where exponentially
localized near zero energy states, the MZMs, are present at the ends of the wire enhancing
the transmission amplitude [129]. We consider an electron temperature of T = 183 mK when
performing the thermal average.

We describe disorder in the wire by first drawing random numbers δ with standard deviation
σdis from a normal distribution and then allowing correlations with correlation length λdis by
damping high Fourier modes

δdis(y) = F−1
[
e−|q|λdisF [δ(y)]

]
. (2.301)

Here the case λdis = 0 corresponds to onsite disorder.
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Figure 2.43: Reference results where all gate voltages are set to zero. Wave function |Ψ0|2 of
the lowest level (blue), and corresponding hole wave function |v0|2 (orange) and electron wave
function |u0|2 (green) for the case (a) without disorder, (b) with disorder strength σdis = 50Eso
and a coherence length λdis = 0.052 lso. (c) Energies of the lowest ten Bogoliubov levels for the
case without disorder (blue crosses) and with disorder (red circles). (d) Disorder potential along
the wire (blue) and average of the disorder over each gate (dashed, red). In the presence of the
strong disorder, the transmission amplitude is diminished, the topological gap is destroyed, and
there is no Majorana zero mode present.

To separate wire and leads, we consider steep tunnel barriers Vconf of shape Vσ,V0(y) =
V0 exp[−y2/(2σ2)] with σ = 0.1 lso and V0 = 65Eso given by

Vconf(y) = Vσ,V0(y − x0) + Vσ,V0(y − L+ x0) (2.302)

x0 =
√

2σ
√

ln
(

2 V0 + Vlead
V0 + 2Vlead

)
, (2.303)

such that the maxima are located close to the ends of the wire at x0 and L − x0 where x0 is
chosen such that the potential has decayed to V0/2 at the ends of the wire. Here, the confinement
potential is created by separate gates that are not included in the optimization. The outermost
gates used for optimization, start at a distance 0.3 lso from the ends of the wire.

For simplicity, we assume that leads are normal conducting and without spin orbit coupling.
We treat Coulomb blockade in the Majorana wire using a mean-field approximation such that
adding an electron to the system of N0 electrons costs an additional charging energy Ec. We
consider a large charging energy Ec = 8Eso which allows to truncate the Hilbert space and only
consider co-tunneling processes via effective energy levels εeff,i containing both charging energy
and single particle energy levels. Furthermore, we consider the system to be tuned to the center
between the conductance resonances for a fixed particle number N0 in the Majorana wire.
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Figure 2.44: Convergence speed of the CMA-ES algorithm for optimizing the transmission
amplitude A in presence of disorder using 20 gates. We consider runs of the CMA-ES algorithm
with population sizes (a) npop = 12 and (b) npop = 80. In both cases, we consider a “hard”
problem (green) with onsite disorder, and an “easier” problem with short range disorder corre-
lations λdis = 0.052 lso. The panels depict the rate of convergence A(i)/Amax as a function of
the number of function evaluations i (number of amplitude measurements) where Amax is the
value to which the amplitude converges. We find that for a hard problem, it can be advanta-
geous to use a large population size while for an easier problem a small population size yields
convergences after a small number of function evaluations. In the case of onsite disorder we find
convergence after a few thousand function evaluations while the algorithm often requires less
than 1000 evaluations for reasonable convergence if there are correlations present in the disorder
potential.

For numerically computing the amplitude of coherent transmission A = |⟨T↑↑ + T↓↓⟩|, we
use the microscopic model described in Sec. 2.3.5 based on the python package KWANT [389].
As described in Eq. (2.276), the transmission amplitude in the middle between conductance
resonances is obtained from

T =
〈
iφ†

RΓRUw
1

ε− diag(εeff) − U †
wΣUw

U †
wΓLφL

〉
, (2.304)

with eigenvectors Uw of the wire Hamiltonian Eq. (2.300), we can determine the transmission
amplitude A = |T↑↑ + T↓↓| in the middle between conductance resonances. Here, ε is the energy
of incoming electrons in the lead, and to conveniently obtain the tight-binding Hamiltonian,
self-energies Σα, Γα = i(Σα − Σ†

α), Σ = ∑
α Σα, and propagating modes φα of lead α, we use

KWANT [389].
For transport through MZMs with wave function χσ,α(y) exponentially localized at the wire

ends yα, the transmission amplitude is approximately |T↑↑| ∼ |χσ,L(yL)χ∗
σ,R(yR)|/(Ec/2) and

can thus be enhanced by increasing the localization of the Majorana wave functions. A finite
temperature can be considered by computing the scattering matrix for different thermally excited
states and averaging the transmission amplitude A = |⟨T↑↑ +T↓↓⟩|. Denoting the energies of the
ABSs by ϵ1, ϵ2, the contribution of trivial ABSs to A is suppressed by a factor 1−exp[−β(ϵ1+ϵ2)],
as there is destructive interference between the transmission through states with empty and
occupied ABSs, respectively (for more details see also Sec. 2.4.3 and Refs. [131, 132]). When
setting kBT = 0.3Eso, we find that local optima of A due to ABSs are reliably ignored, and we
did not encounter false positives in our optimization runs. For the optimizations, we consider
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Figure 2.45: Optimization of transmission via tuning of 20 gates for a one-dimensional wire in
the topological regime with npop = 80. Wave function |Ψ0|2 of the Majorana level (blue), and the
corresponding hole and electron wave functions |v0|2 (orange), |u0|2 (green) for (a) no disorder
in the wire and (b) disorder strength σdis = 50Eso and a correlation length λdis = 0.052 lso.
The insets depict the energies of the lowest five Bogoliubov levels. Optimized gate potentials in
the absence of disorder are shown in (c), and in (d) the difference between optimized potential
obtained with and without disorder is shown. The dashed, red line shows the negative average
−V avg

dis of the disorder potential over the gates, indicating that the algorithm has learned the
shape of the disorder potential. The Majorana zero mode, topological gap, and transmission
amplitude are restored by the optimized gates (compare Fig. 2.43 for reference). We find that
the optimal gate voltage on top of wave function engineering also tries to reduce the disorder
by approximately canceling the average disorder over the gates.

transport through the first 10 levels (see also Sec. 2.5.6) and verify the final results by taking
into account 50 levels for the plots. We use the pycma [424] python implementation of the
CMA-ES [242, 243] algorithm, with an initial configuration V (0)

g = 0, the starting step size
σ(0) = 0.1Eso, population sizes of 80 or 4 + 3 ln(ngates), and a seed of the pseudo random
number generator of 12345678, if not specified otherwise. As algorithm termination conditions,
we use topfun = 10−15, tolfunhist = 10−8, and tolx = 10−5Eso. We note, however, that the
potentials do not change significantly anymore much earlier to meeting these conditions, such
that one can stop the optimization earlier in an experimental situation.

In the absence of disorder and with zero voltage at all gates, the lowest level of the wire is
approximately at zero energy in the middle of the topological gap (blue crosses in Fig. 2.43c) and
the associated wave function Ψ0 = (u0,v0) is localized at the wire ends and satisfies the Majorana
condition |u0(y)| = |v0(y)| (Fig. 2.43a). However, if one adds strong disorder (Fig. 2.43d) with
σdis = 50Eso and correlation length λdis = 0.052 lso, both topological gap (red circles, Fig. 2.43c)
and MZMs (Fig. 2.43b) are destroyed. As a result, the associated transmission amplitude is two
orders of magnitude smaller compared to the clean wire.
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Figure 2.46: Optimized transmission amplitude as a function of the number of equally sized
gates along the wire. For all calculations, we use disorder with strength σdis = 50Eso and various
correlation lengths λdis = 0.52 lso (blue squares), 0.052 lso (green diamonds), 0 (brown crosses),
where zero means on site disorder. Red crosses indicate the wave function engineering result
obtained for optimization without any disorder in the wire. We show averages over 10 seeds for
each disorder strength and average over 10 seeds of the CMA-ES algorithm for wave function
engineering. The black dashed line shows the reference value obtained without optimization and
without disorder. We observe that a smaller correlation length of the disorder requires more
gates to compensate disorder effects, but already 20 gates are sufficient to obtain results similar
to wave function engineering.

2.5.2 Optimization results for one dimensional wires

To understand the convergence behavior and the influence of the population size npop on the
CMA-ES algorithm, we consider two scenarios: (i) a finite correlation length λdis = 0.052 lso
and (ii) onsite disorder, and optimize 20 gates with population sizes npop = 12 and npop = 80.
In the easier case (i) already the smaller population size is sufficient to achieve fast convergence
after less than 1000 function evaluations (brown line Fig. 2.44a), whereas for npop = 80 about
five times as many evaluations are necessary (brown line Fig. 2.44b). In contrast, we find
that the more difficult problem (ii) converges poorly in the case of small population sizes, but
converges almost as fast as the correlated disorder case for npop = 80. Thus, if the primary time
effort is to perform a function evaluation, we recommend deviating from the standard value
npop = 4 + 3 ln(Ng − 1) [254] for the case of a small disorder correlation length.

We consider two different types of optimizations in the following: (i) wave function engineering,
i.e., optimization in the absence of disorder to determine what shape a potential should have to
improve the localization of the MZMs, and (ii) optimization with disorder in the wire. Comparing
the resulting potentials for both cases allows to separately understand the effect of disorder on
the optimization. We show results for npop = 80 here, but have verified all results with Ng < 100
for npop = 4 + 3 ln(Ng − 1) as well. In the case of wave function engineering for 20 gates, we
find that the transmission amplitude is enhanced by a factor of about 1.6 due to the improved
localization of the MZMs (Fig. 2.45a) while keeping a sizable topological gap (inset). To achieve
this, the optimization lowered potentials of the outermost gates to draw more weight of the wave
functions to the wire ends (Fig. 2.45c).
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Figure 2.47: Optimization results for (a) Ng = 10 gates, (b) 50 gates, and (c) 100 gates.
In all plots, the same disorder potential with strength σdis = 50Eso and correlation length
λdis = 0.052 lso is chosen. The left panels show the wave function |Ψ0|2 of the lowest level (blue),
and corresponding hole wave function |v0|2 (orange) and electron wave function |u0|2 (green).
The insets depict the energies of the lowest Bogoliubov levels. The right panels show CMA-ES
optimization results for the gate potentials that maximize the transmission amplitude subtracted
the corresponding gate potential obtained for wave function engineering without disorder (blue).
The negative averages −V avg

dis of the disorder potentials over the gates are shown by the dashed
red lines. We observe an increasing amplitude with an increasing number of gates. While 10
gates are not sufficient to cancel the disorder effects, for 40 gates, the negative average disorder
is in good agreement with the optimized gate potential. For 100 gates, adjustments can be made
on such small scale that the optimized gate voltages can deviate from the average disorder and
still cancel disorder effects.

In case (ii) with disorder (compare with Fig. 2.43b), the optimization almost completely
restores the MZMs and the topological gap, increasing the amplitude by two orders of mag-
nitude (Fig. 2.45b). The optimized potential compensates the average disorder (dashed red
line Fig. 2.45d), in addition to the zero disorder optimal values (Fig. 2.45c). We emphasize
again that the CMA-ES algorithm has no knowledge about the system, but only suggests gate
configurations based on corresponding transmission amplitudes.

We next consider how reliable the optimization is for different disorder correlation lengths,
how many gates are necessary, and how strong the dependence on the seed of the CMA-ES
random number generator is. For this, we consider 15 different values for the number of gates,
from Ng = 4 to Ng = 200, and three types of disorder, onsite (λdis = 0), λdis = 0.052 lso
and λdis = 0.52 lso, as well as wave function engineering without disorder. We consider ten
different disorder realizations and average the resulting amplitudes, while in the absence of
disorder we average over ten different seeds. We find that for at least 20 gates all disorder
profiles can be compensated reliably (see Fig. 2.46). For too few gates Ng ≤ 10, disorder with
very small correlation length cannot be removed anymore. For many gates, Ng ≈ 100, the
amplitude saturates, having increased by one order of magnitude as compared to Ng = 20,
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Figure 2.48: Optimized gate voltage potentials for various numbers of gates Ng, (a) for wave
function engineering without disorder in the wire, and (b) in the presence of disorder with
strength σdis = 50Eso and correlation length λdis = 0.052 lso.

but with the drawback that up to 105 function evaluations are needed. We observe a sweet
spot 20 ≤ Ng ≤ 50, where the number of necessary function evaluations is acceptable and still
significant improvements of the amplitude and complete compensation of disorder are possible.

With standard electron beam lithography and Al gates isolated by native oxide it is currently
possible to construct such gate arrays of 20 to 50 gates in proximity to Majorana wires of length
L = 13 lso ≈ 2.6µm [426, 427] considered here.

In Fig. 2.47, we show the resulting optimized wave functions of the first level (top panel)
and corresponding optimized gate voltages relative to the voltages for wave function engineering
(bottom panel) for σdis = 50Eso, λdis = 0.052 lso, and different numbers of gates (a) Ng = 10, (b)
Ng = 40, and (c) Ng = 100. It becomes apparent that a larger number of gates helps to localize
the MZMs; however, for Ng = 100 the potential can change on very short scales such that even if
it strongly deviates from the average disorder over the gates it still cancels the effective disorder
effects. For Ng = 10 there are not enough gates to fully counter the disorder, and for Ng = 40
the MZMs can be fully restored by a potential that, in addition to wave function engineering,
follows the negative average disorder over the gates (dashed, red lines).

In addition, in Fig. 2.48, we show the gate potentials for various numbers of gates Ng optimized
without disorder (panel a) and in the presence of disorder (panel b) separately. In the wave
function engineering case, the potential is approximately symmetric, it is small in the middle
of the wire, and it is large towards the ends, where the MZMs are present. At the ends there
are oscillations in the optimized potential, such that the gates closest to the ends are lowered
to attract weight of the MZM wave functions and thus increase the dot-lead couplings to the
Majorana level. For a larger number of gates, the size of individual gates is smaller such that a
finer optimization of the MZM region is possible resulting in a stronger localization and hence a
larger transmission amplitude. When disorder is present, the potential additionally cancels the
disorder and is therefore not symmetric anymore. In addition, the features observed for wave
function engineering are still visible.
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Figure 2.49: Optimization with normally distributed noise of zero mean and standard de-
viation 10−4 in the amplitude. Panel (a) shows the amplitude of coherent transmission as a
function of the number of metric evaluations during the optimization of the noisy amplitude
(blue) and for reference in the case without noise (brown). The right panels show the Majo-
rana wave functions (top panels, blue: |Ψ0|2, orange: |v0|2, green: |u0|2), energy levels (insets),
potentials of confinement and gates V = Vconf + Vg (center panel), and random potential δdis
(lower panel) for (b) the disordered wire before optimization and (c) the system optimized with
noise in the amplitude. Shortly after 1000 function evaluations, the CMA-ES optimizer escapes
the noisy region and restores the MZMs that were destroyed by disorder.

2.5.3 Optimization with noisy signal
Because the CMA-ES algorithm is not gradient based, the optimization can even escape a noisy
region. Here, we consider again the disordered wire of Fig. 2.43, where the amplitude without
optimized gates is reduced to 1.7·10−5 due to disorder. We assume that the current measurement
is noisy by adding a random number (normally distributed with mean 0 and standard deviation
10−4) to each amplitude before handing it to back the optimizer. In Fig. 2.49, we show the
amplitude during optimization as a function of the number of function evaluations for the noisy
case (blue) and for reference without noise in the amplitude (brown). As the noise is roughly
an order of magnitude larger than the initial amplitude, the signal is completely hidden in the
noise. However, after about 1000 function evaluations the algorithm escapes the noisy region,
and is still able to cancel the disorder and to restore the MZMs (right panel). Based on these
observations, we estimate that the noise can be about an order of magnitude larger than the
signal in the presence of strong disorder, but the noise should be at least an order of magnitude
smaller than the signal from MZMs.

2.5.4 Optimization of average voltage
So far, we considered the case of zero average gate voltage, b0 = 0, to be able to compare initial
to optimized configurations at the same position in the phase diagram (−b0/2 directly affects the
effective chemical potential) to demonstrate that the algorithm is capable of canceling disorder
effects. Here, we start initially in the trivial phase with Ez = 6Eso, µ = 8Eso, and ∆ = 2Eso
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topological trivial

Figure 2.50: Optimization including the zero-order Fourier component b0 for a wire starting
in the trivial phase. The left panel depicts the first six energy levels as a function of the chemical
potential in a clean wire where the red marker indicates the location of the initial system in
the trivial phase. The right panel shows the wave functions for (a) the reference case without
disorder, (b) optimized gate voltages in a clean wire, (c) the disordered wire (σdis = 50Eso and
λdis = 0.052 lso) with zero voltage on all gates, and (d) the optimized, disordered wire. The
lower panels depict the voltages V = Vg + Vconf of the gates and the confinement potential.

topological trivial

ABSs

Figure 2.51: Optimization including the zero-order Fourier component b0 for a wire starting
in the trivial phase with ABSs. The left panel depicts the first six energy levels as a function
of the chemical potential where the red marker indicates the location of the initial system in
the trivial phase. The right panel shows the wave functions for (a) the reference case without
disorder, (b) optimized gate voltages in a clean wire, (c) the disordered wire (σdis = 50Eso and
λdis = 0.052 lso) with zero voltage on all gates, and (d) the optimized, disordered wire. The
lower panels depict the voltages V = Vg + Vconf of the gates and the confinement potential.

(Fig. 2.50 left panel). We find (right panel) that the algorithm is capable to tune the wire into
the topological phase by adjusting b0 (panel b), and even to additionally cancel strong disorder
at the same time (panel d). In Fig. 2.51, we show a similar optimization for a wire with smooth
confinement [112, 131], such that there are ABSs in the initial configuration without disorder.
We find that the optimization is also capable to overcome the ABSs, while tuning the wire into
the topological phase.
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Figure 2.52: Results for direct conductance optimization in a one dimensional wire in presence
of disorder. The direct conductance cannot distinguish between MZMs and ABSs. We use 20
gates of equal size along the wire. (a) Wave function |Ψi|2 of the lowest level i = 0 (blue) and
the second level i = 1 (red). (b) Energies of the lowest ten Bogoliubov levels. (c) CMA-ES
optimization result that maximizes the direct conductance. (d) Disorder potential for σdis =
50Eso and λdis = 0.052 lso. With the optimized gates, we observe two near zero energy ABSs
and no MZMs.

2.5.5 Choice of the metric

A particular importance for automatic optimization lies in the choice of an appropriate metric
that reinforces the desired features. One has to be careful that the metric does not depend
excessively on unwanted features. Therefore, in the case of the Majorana wire, our choice
falls on the coherent transmission amplitude, since it distinguishes ABS from MZMs [131, 132],
benefits from enhanced localization of MZMs, and therefore makes MZMs more robust in the
optimization. Nevertheless, one must be careful with the choice of parameters. For example,
if the temperature is too small, the thermal average no longer sufficiently penalizes ABSs with
small finite energy, causing these solutions to steer the CMA-ES algorithm away from Majorana
solutions. Furthermore, optimization in Fourier components is very useful, since by choosing
b0 = 0 the mean gate potential over the wire vanishes allowing us to compare improvements
from the optimization at the same position in the phase diagram. These particular decisions
in the choice of the metric can have a decisive influence on the speed of convergence and the
success of the optimization. CMA-ES optimization can therefore also be used as a tool to reveal
weaknesses and potential alternative explanations for a signature of a desired feature in complex
realistic setups.

For the case of a Majorana wire, one might be tempted to choose other metrics that are
easier to obtain in an experiment by not requiring the interferometer setup. In the following, we
discuss the drawbacks of three other potential metrics and additionally provide corresponding
optimization results in Majorana wires with strong disorder:

First, we consider the direct conductance through the wire without an interferometer, which
is easier to measure experimentally, but has the disadvantage of not being able to distinguish
between ABSs and MZMs. This manifests itself in the optimization by yielding a pair of trivial
near-zero energy levels (Fig. 2.52b), the ABSs, both of which are localized at the wire ends
(Fig. 2.52a).

Another potential metric is the topological gap |ε1 − ε0|, which, however, does not depend
on the localization of the MZMs, nor does it rely on the presence of MZMs and the topological
phase either. An optimization shows large |ε1 − ε0| (Fig. 2.53b), but the associated lowest level
is not a Majorana state (Fig. 2.53a). In addition, ε0 = 1.9 · 10−8Eso is also strongly reduced,
which also shows that minimizing ε0 does not favor MZMs and can even be realized with ABSs.

Furthermore, we mentioned problems related to suboptimal parameters. For the thermal av-
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Figure 2.53: Results for gap optimization in a one dimensional wire in presence of disorder.
We define the gap as the difference between the first two energy eigenvalues. We use 20 gates
of equal size along the wire. (a) Wave function |Ψ0|2 of the lowest level and corresponding
hole and electron wave functions |v0|2 (orange) and |u0|2 (green). (b) Energies of the lowest
ten Bogoliubov levels. (c) CMA-ES optimization result that maximizes the gap. (d) Disorder
potential for σdis = 50Eso and λdis = 0.052 lso. With the optimized gates, we observe an
increased gap, however despite the lowest level being close to zero energy it is in fact not a
Majorana level as |u0| ≠ |v0|.

Figure 2.54: Results for transmission amplitude optimization in a one dimensional wire in
presence of disorder but at very low temperature β = 18E−1

so . At very small temperatures
an ABSs with low but finite energy has very different weight than a zero energy ABSs in the
thermal average, such that the amplitude does not cancel when there are two ABSs with slightly
split energy. We use 20 gates of equal size along the wire. (a) Wave function |Ψi|2 of the lowest
level i = 0 (blue) and the second level i = 1 (red). (b) Energies of the lowest ten Bogoliubov
levels. (c) CMA-ES optimization result that maximizes the gap. (d) Disorder potential for
σdis = 50Eso and λdis = 0.052 lso. With the optimized gates, we observe a diminished gap and
a pair of ABSs near zero energy which are split by a small energy difference.

erage to reliably penalize ABSs, the temperature should be sufficiently high, and at the same
time, of course, the temperature must be below the critical temperature for preserving super-
conductivity. If one chooses a too small temperature, for example T = 34 mK, the optimization
favors ABSs with energy slightly larger than zero (Fig. 2.54) and also the gap above the ABS
levels can be strongly reduced.

2.5.6 Number of levels included in the scattering calculation

In the optimization, we include jmax = 10 effective levels when computing the scattering matrix,
Eq. (2.276), Eq. (2.224), and Eq. (2.225). In the absence of disorder and if all gates are tuned
to zero voltage, we found in Sec. 2.4 that the transmission amplitude is fully determined by the
contribution of the MZMs in the topological regime, as contributions from consecutive higher
levels have alternating signs and thus cancel each other. For the same reason, in the trivial
regime, only a few levels are sufficient to obtain the transmission amplitude. As the amplitude
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Figure 2.55: Dependence of the transmission amplitude A = |⟨T↑↑ + T↓↓⟩| on the number of
effective levels jmax considered in the scattering matrix calculation. We show the transmission
amplitudes for reference with strong disorder (green), for reference without disorder (blue), and
for optimized gates in presence of disorder (orange). The dashed, vertical lines show the values
of the transmission amplitude for taking all levels into account. Because contributions from
consecutive higher levels cancel each other, we plot amplitudes only for even level numbers jmax.
Numerical results are shown for Ng = 40 gates and disorder σdis = 50Eso, λdis = 0.052 lso which
is also considered in Fig. 2.46, Fig. 2.47 and Fig. 2.48. It becomes apparent that the amplitude
only weakly depends on jmax and that reference and optimized amplitudes are clearly separated
for any jmax > 4.

cancellations are due to symmetries of the BdG wave functions, it is a priori not clear that they
have to carry over to the case of strong disorder or to non-trivial choices of the gate voltages.

In Fig. 2.55, we compute transmission amplitudes |⟨T↑↑ +T↓↓⟩| in the middle between conduc-
tance resonances as a function of the number of effective levels jmax. We consider the reference
case without disorder (blue) and compare to the case with strong disorder (green) and with
optimized gates for countering disorder (orange). This comparison shows that the cancellations
of contributions from higher levels are present in all cases such that only a few jmax ∼ 10 levels
are sufficient to accurately approximate the transmission amplitude when all levels are taken
into account (dashed, black lines). In addition, only including few effective levels with small
single particle energies E < Ec is consistent with the truncation of the Hilbert space described
in Sec. 2.3.3 for treating Coulomb-blockade.

In order to rule out that the optimization makes use of the cancellation effects between higher
levels by fine-tuning contributions from levels jmax and jmax + 1 such that level jmax gives a
large contribution that would be cancelled by level jmax + 1, we evaluate the final amplitudes
after optimization taking 50 levels into account. This way, we can be sure that the optimization
results are really due to optimizing the dot-lead couplings of MZMs and not due to flaws in the
truncation. When using the CMA-ES algorithm it is important to be careful with such details,
as it has no information about the system and can exploit all weaknesses of a model to find a
maximum.
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Figure 2.56: Optimization of 20 gates along a two-dimensional wire in the topological regime.
Wave function |Ψ0|2 of the lowest level for (a) disorder with σdis = 150Eso and λdis = 0.052 lso
where all gates are set to zero for reference and (b) optimized gates in presence of disorder. (c)
CMA-ES optimization result for the gate potential that maximizes the transmission amplitude.
(d) Energies of the lowest ten Bogoliubov levels for the reference case with disorder (red circles)
and for the optimized gate potential (blue crosses). Similarly to the one dimensional case, the
Majorana zero modes, topological gap, and transmission amplitude are restored by the optimized
gates.

2.5.7 Optimization for two-dimensional wires
To consider further effects in realistic Majorana wires, we also study a two-dimensional wire
with length Ly = 13 lso and width Lx = 0.39 lso. The full 2d Hamiltonian is given by

H2d
wire = τz

[
− ℏ2

2m∗ (∂2
x + ∂2

y)σ0 − µσ0 − iℏαR(σx∂y − σy∂x) + δdis(x, y)σ0

+ Vg(x, y)σ0 + Vconf(y)σ0

]
+ µBgBz

2 τ0σz + ∆τxσ0 , (2.305)

with Lande factor g = −14.9 [381], and we take into account the orbital effect of the magnetic
field by adding a Peierls phase e−ie/ℏ

∫ r2
r1
A·dr to the hoppings from site r1 to site r2. We choose

the gauge for vector potential and superconducting phase as described in Sec. 2.2.5 to include
the orbital effect of the magnetic field.

We first choose a chemical potential µ = 63Eso and Zeeman energy Ez = 6Eso such that
the wire in the absence of disorder and gates is in the topological regime with one occupied
subband. In the presence of strong disorder, the MZMs are destroyed (Fig. 2.56a) and the gap
collapses (red circles in Fig. 2.56d), but again optimization with only 20 gates along the wire can
restore the MZMs (Fig. 2.56b) as well as the gap (blue crosses in Fig. 2.56d), similarly to the one
dimensional case. For reference, we further show the amplitude in the absence of disorder and
zero gate voltage on all gates in Fig. 2.57a, as well as the result for wave function engineering
in Fig. 2.57b.

Gate optimization can also be fruitful for higher subbands, as we show in Fig. 2.58 where we
consider the second topological phase for µ = 144.5Eso, Ez = 6Eso, ∆ = 2Eso. However, in
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Figure 2.57: Results for optimization of a two-dimensional wire. We use 20 gates of equal
size along the wire. We show the wave function |Ψ0|2 of the lowest level for (a) the reference
case without disorder and with zero gate voltage on all gates, and (b) optimized gates without
disorder (wave function engineering). (c) CMA-ES optimization result for the gate potential
that maximizes the transmission amplitude. (d) Energies of the lowest five Bogoliubov levels
for the reference case (red circles) and for the optimized gate potential (blue crosses).

the presence of levels from different subbands near the Fermi level, many subtleties arise that
can distract the CMA-ES optimization, such that we regularly observe that the optimization
does not restore MZMs in presence of disorder. Here, different subbands have very different
coupling strengths to the leads, e.g. MZMs might have smaller couplings than states from other
subbands [428]. In order to mitigate this problem, we move the superconductor and the first
and last gate a distance 1.04 lso away from the ends of the wire and add on-site disorder with
strength δdis = 100Eso to the superconductor-free region [428]. Using the modified setup, we
find MZMs, which in the reference case without bulk disorder (Fig. 2.58a) couple about one order
of magnitude stronger to the leads then other low energy levels. When adding bulk disorder
(Fig. 2.58b), they are destroyed and low energy levels couple with similar strength to the leads.
After optimization (Fig. 2.58c), the MZMs are restored with a coupling about twice as strong
as other low energy levels. Even with these modifications, in presence of higher subbands at the
Fermi level, the occurrence of Andreev bound states and other strongly coupling non-topological
low energy states cannot reliably be excluded making the optimization overall more fragile. On
the other hand, this also shows that CMA-ES optimization helps with identifying weaknesses in
setups, such that it can also be used as a tool to test ways to stabilize desired features in the
system.

2.5.8 Conclusion

We studied machine learning optimization of a gate array using the CMA-ES algorithm. Using
the coherent transmission amplitude through a Coulomb blockaded Majorana wire as metric, we
find: (i) optimization in absence of disorder improves localization of MZMs significantly and (ii)
optimization even restores MZMs fully in the case of strong disorder that otherwise destroys the
topological phase. We discussed the importance of the choice of an appropriate metric, showed
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Figure 2.58: Results for optimization of a two-dimensional wire in the second topological
phase. Gates and superconductor are moved a distance 1.04 lso away from the wire ends and
onsite disorder with strength 100Eso is added in the normal-conducting region to improve cou-
pling of MZMs to the leads. We use 20 gates of equal size along the wire with µ = 244.5Eso,
Ez = 6Eso, and ∆ = 2Eso. We show the wave function |Ψ0|2 of the lowest level for (a) the
reference case without disorder and with zero gate voltage on all gates, (b) with bulk disorder
(λdis = 0.052 lso, δdis = 90Eso) before gate voltage optimization, and (c) with optimized gate
voltages in the presence of disorder. Panel (d) depicts the CMA-ES optimization result for
the gate potential that maximizes the transmission amplitude. Panel (e) shows the energies of
the lowest five Bogoliubov levels for the reference case (red circles) and for the optimized gate
potential (blue crosses).

that the number of necessary function evaluations would be experimentally feasible, and that
a moderate number of gates is sufficient for restoration of MZMs in the presence of disorder.
While tuning scalable topological qubits remains a major challenge due to the required number
of individually tunable gates, we argue that automated tuning of individual wires and smaller
systems can en- able proof-of-principle experiments and advance the un- derstanding of disorder
effects, with the ultimate goal of scalability in improved materials with lower disorder.
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3. Random matrix theory of deep neural
network weight matrices

Neural networks have been applied very successfully in a large variety of different fields [42–
44, 44–48, 228]. However, the understanding of many aspects of their learning behavior remains
incomplete. Because modern neural networks are often highly overparameterized [190, 204–214],
they are also capable of memorizing large amounts of random noise, but at the same time they
are able to learn rules from a dataset and generalize to new data [39, 429]. Recently, some insight
was gained into networks in the highly overparametrized limit: from ultrawide networks it was
found that learning is biased towards simple functions [47, 430–432], which might allow them
to learn an underlying rule first, instead of directly overfitting to the data. The huge number
of parameters and the complexity of modern networks makes it impossible to microscopically
track the learning behavior of individual weights [238, 429]. Therefore, random matrix theory
(RMT) has been used to study neural networks by considering predictions of the bulk behavior
of the weight matrices instead of the individual components [35, 36, 433]. In Ref. [37] it has
been shown that the bulk of singular value spectra follows a Marcenko-Pastur distribution [184]
– the RMT prediction for random matrices – and that large singular values have heavy tailed
distributions whose decay constant allows us to draw conclusions about the training state and
generalization performance of the networks [238].

In this chapter, we study how information and noise are stored in the weights of neural net-
works by using RMT as a zero information hypothesis: because weights of neural networks are
initialized randomly, they perfectly agree with RMT predictions before training. During train-
ing the networks are presented with a training dataset, and the weights are adjusted such that
the network correctly classifies the images of this dataset. After training, we therefore attribute
deviations from RMT predictions to learned information. We study a variety of different net-
works and network architectures as described in Sec. 3.1. In Sec. 3.2, we analyze these networks
using RMT and find that the weights of trained networks are predominately random with only
low rank parts containing the learned information. We then study in Sec. 3.3 how noise in the
training dataset is stored in the weights, where we find that for adequate training, information
and noise are separated in the spectra of the weights. Based on this, we introduce an algorithm
[329] to remove effects of the noise from the trained weights, which can significantly improve the
generalization performance.

Parts of the results presented in Sec. 3.1 and 3.2 have been published in Ref. [328] and
Ref. [329], and were obtained in close collaboration with Max Staats, who also included parts
of the results in his Master’s thesis [186].

3.1 Neural networks

In this section, we describe the neural networks we are going to study in this chapter. We first
introduce the network architectures, datasets, how data is processed by the networks, and the
training algorithm. In addition, we provide details on the hyperparameters used for training in
Sec. 3.1.2. For the comparison between random and trained weights, we consider singular value
decomposition of the weight matrices which we explain in detail in Sec. 3.1.3.
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Figure 3.1: Architecture of an MLP1024 [102, 128] fully connected network for training on
the CIFAR-10 dataset. The network consists of an input layer with 3072 neurons (circles)
that accepts images of size 32 × 32 with 3 color channels, an output layer of 10 neurons, each
representing a class of the CIFAR-10 dataset, and three hidden layers with 1024, 512, and 512
neurons, respectively. Every neuron in layer l is connected with each neuron in the previous
layer l − 1 by weights W (l), and each layer (except for the input layer) has an associated bias
vector b(l). For hidden layers we consider ReLu activations, and we use softmax as the output
activation function. An image is flattened, and then activates the input layer according to its
pixel color values. Then these activations are propagated through the network to the output
layer according to Eq. (3.2), where the index of the neuron with the highest output activation
defines the class predicted by the network. Before training, weights are initialized randomly
(from a Glorot-uniform [189] distribution), and biases are set to zero. During training, the
network is presented the training subset of the CIFAR-10 data set, and weights and biases are
adjusted such that the network predictions match the labels. On the right-hand side, we show
one example image from each of the ten classes and the corresponding label.

3.1.1 Network architectures and performance for image classification

To cover a large variety of networks for image classification, we consider both networks we train
ourselves and large pre-trained networks that are available via the torch [434] and tensorflow
[188] python packages. For the former, we train the networks on the CIFAR-10 [190] dataset
which consists of 60000 images {xk} of shape 32×32×3 (with 3 color channels) from ten different
classes Ck ∈ {0, 1, ..., 9} with the corresponding labels {yk}. The label of image k is a vector of
length ten with a 1 at the position of the class Ck and zeros in all other entries, [yk]j = δj,Ck

.
We split the dataset into three subsets: i) a training set of 50000 images that is presented to
the network during training, ii) a validation set of 2000 images that is not directly shown to the
network during training but which is used to optimize hyperparameters, and iii) a test dataset
of 8000 images that is only shown to the fully trained and finished network to estimate its
generalization abilities to new, unseen data. It is important to never optimize hyperparameters
on the test set. Otherwise, the accuracy obtained would not be a measure for the generalization
performance.
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Fully connected networks

A type of networks that we train are fully connected feedforward networks that consist of an
input layer, three hidden layers (fc1, fc2, fc3), and an output layer as depicted in Fig. 3.1.
Each layer consists of ni neurons whose activations are real numbers denoted as a(l) ∈ Rnl . In
addition, the hidden layers and the output layer have a weight matrix W (l) ∈ Mnl×nl−1 , a bias
vector b(l), and an activation function f (l) : Rnl → Rnl . As discussed in the introduction, an
image from the CIFAR-10 dataset with size 32 × 32 × 3 that is presented to the network is first
flattened to a single vector xk with 3072 entries that activates the neurons in the input layer,
i.e., the activations of the input layer are set to the pixel color values of the image

a(0)(xk) = xk . (3.1)

Then these input activations are propagated through the network such that the activations of
layer l are given by

a(l)(xk) = f (l)
(
W (l)a(l−1)(xk) + b(l)

)
. (3.2)

The prediction of the network is then obtained from the activations of the output layer aL: the
predicted class Ĉ(k) is given by the position of the maximum activation in aL,

Ĉk = argmax
(
a(L)(xk)

)
. (3.3)

Initially the weights W (l) are randomly drawn from a Glorot-uniform distribution [189], and
biases b(l) are initialized with zeros. During training the network is shown the image-label pairs
of the training dataset, and the weights and biases are adjusted such that the network predictions
agree with the labels (see Sec. 3.1.2).

We consider fully connected networks with layer sizes nMLP1024 = [3072, 1024, 512, 512, 10]
denoted as MLP1024 and networks with nMLP512 = [3072, 512, 512, 512, 10] that we call MLP512.
As activation functions, we choose ReLU for the hidden layers,

f (l)(z) =
∑

j

max(zj , 0)ej , for 1 ≤ l ≤ 3 (3.4)

and softmax for the output layer

f (L)(z) =
∑

j

exp(zj)∑
k exp(zk) ej . (3.5)

Convolutional neural networks

Besides fully connected layers, we also consider networks with another type of trainable layer,
called a convolutional layer. The weights of a convolutional layer with ni filters of dimensions
d1 × d2 × cl−1 are 4D tensors Wl ∈ M(d1×d2×cl−1)×nl

that act on a 3D tensor of neurons with
shape (n×m) × cl−1 to produce ni feature maps, i.e. the activations of the convolutional layer,
by performing a convolution. For this convolution, the filter – which is typically much smaller
than the size of the neurons of the previous layer (d1 < n, d2 < m) – is moved over the neurons

147



0  airplane 

1  auto

2  bird

3  cat

4  deer

5  dog

6  frog

7  horse

8  ship

9  truck

outfc1conv. 1 conv. 2 fc2

input

layer

hidden layers
0 1 2 3 4 5 6 7 8 9

softmax

CIFAR-10

classes

in
p

u
t 

im
a

g
e

32×32×3 5×5×3x300

300 300 150
150

5

5

5

5
3

300

5×5×300x150

32×32

3

a
rg

m
a

x

600

fl
a

tt
e

n

3
×

3
 M

a
xP

o
o

lin
g

R
e

sp
o

n
se

N
o

rm

3
×

3
 M

a
xP

o
o

lin
g

R
e

sp
o

n
se

N
o

rm

...

...

...
...

...
...

R
e
L
U

R
e
L
U

R
e
L
U

R
e
L
U

R
e
L
U

L2

192

10

...

384

...

...

...

...

...

...

...

...

Figure 3.2: Architecture of a miniAlexNet [102, 128] convolutional neural network for training
on the CIFAR-10 dataset. The network consists of an input layer with shape 32 × 32 × 3, an
output layer of 10 neurons, one for each class, and hidden layers. These are two convolutional
layers each followed by a 3 × 3 max-pooling layer, a response normalization layer, and two fully
connected layers with 384 and 192 neurons, respectively. Here, the weights of the convolutional
layers are 4D tensors. In the first convolutional layer (conv. 1), there are 150 filters each of shape
5 × 5 × 3 that act on the three color channels by sliding them over the input layer to produce
300 feature maps as the activations of the layer. On each of these feature maps, 3 × 3 regions
are contracted to a single that has the activation of the neuron with the largest activation in
this region, and then activations are normalized between neighboring neurons (local response
normalization with radius 5, bias 1, α = 1, and β = 0.5 [128]). To move activations to the next
convolutional layer (conv. 2), 150 filters of shape 5 × 5 × 300 are applied to the feature maps
yielding 150 new feature maps which are again reduced by pooling and normalized by local
response-normalization. All 600 activations of the second convolutional layer are then flattened
and processed through the remaining dense layers as described for the fully connected network.
We use ReLu activations for the hidden layers, softmax for the output layer, and we train the
first dense layer using L2 regularization.

of layer l − 1, and the activations of the neurons of the convolutional layer l are given by the
inner product of the filter with the region of neurons it acts on [435]:

a
(l)
i,j,r =

d1∑
i1=1

d2∑
i2=1

cl−1∑
k=1

W
(l)
i1,i2,ra

(l−1)
i+i1,j+i2,k , (3.6)

with integer indices 0 ≤ r ≤ ni, 0 ≤ i ≤ n − d1, and 0 ≤ j ≤ m − d2. In practice, to cover
all neurons of layer l − 1 evenly, one pads the previous layer with a stripe of neurons with
zero-activations of width d1/2 on top and bottom, and d2/2 on the sides before performing the
convolution.

The main advantages of a convolutional layer are that (i) information can be stored with a
significantly smaller number of weight entries compared to fully connected layers and (ii) filters
can learn features – like shapes and edges – such that the activations on the feature maps
are large where the corresponding feature is located in the image (or in the neurons of the
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previous hidden layer). Convolutional layers may therefore also be trained to locate objects
in images [436], and convolutional networks are often superior to fully connected networks for
image classification [44].

For the convolutional neural networks (CNNs) we consider here, each convolutional layer is
directly followed by a max-pooling layer [437, 438] of size 3 × 3 which subdivides each feature
map into patches of size 3 × 3 and replaces the 9 neurons in each patch by a single one whose
activation is that of the largest activation in the patch. This is a coarse graining step to
reduce the number of neurons that need to be processed by the next layer. To avoid diverging
activations for unbound activation functions like ReLu, we additionally perform a local-response
normalization after each max-pooling operation. For this the surrounding activations of each
neuron are multiplied with a short ranged function that decreases with the distance to the center
neuron, the resulting products are summed up, and the activation of the neuron in the center is
then divided by this sum.

The CNN architecture we consider in the following is denoted as miniAlexNet (see Fig. 3.2)
and was suggested by Zhang et al. [39]. Here, the activations of the input layer are directly
given by the 32 × 32 × 3 pixel values of an input image from the CIFAR-10 dataset. The input
layer is followed by two sets of layers containing a convolutional layer, a 3 × 3 max-pooling
layer, and a local response normalization layer (radius 5, bias 1, α = 1, β = 0.5 [39]) each. The
first convolutional layer (conv. 1) contains 300 filters of shapes 5 × 5 × 3, and for the second
convolutional layer, we consider 150 filters of shape 5 × 5 × 300. After this, all 600 neurons of
the 150 feature maps are flattened and connected to a dense layer with 384 neurons, followed by
another fully connected hidden layer with 192 neurons that is further connected to the output
layer of size 10. The predictions of the network are obtained from the output layer in the same
way as for the MLP networks. We again use ReLU as activations for the hidden layers and
softmax for the output layer.

Large pre-trained networks

The advantage of the self-trained networks, discussed so far, is that we have full control of the
training process and can also adjust the training set, e.g. by replacing portions of the labels by
wrong data to see how the networks react to this label noise. However, training of large modern
networks can require huge amounts of computing resources and time [44] which is why we also
consider large networks that were already trained on supercomputers available via torch [434]
and tensorflow [188]. We here focus on alexnet [44] and vgg19 [213] trained on the much
larger imagenet [439] dataset that contains about 3.2 million labeled images from 1000 classes.
Both networks are convolutional neural networks with exceptional performance on the imagenet
dataset (see also Tab. 3.1 below).

3.1.2 Details on preprocessing and training

Preprocessing

Preparing the data before training can be crucial for the learning performance [440]. To make
the images more comparable, we standardize any image x that is handed to the network by

ξ = x− µ

σ
, (3.7)

where µ is the mean and σ the standard deviation of the pixel values in image x. The same
preprocessing also needs to be applied to validation and test data, when training networks with
preprocessed images.

149



Training with gradient descent

So far, we described the architecture of the networks, how the networks predict the class of an
image, and how the parameters, i.e., the weights and biases are initialized. During training,
the network is presented the N standardized images {ξk} and labels {yk} of the training set in
batches of size nb = 32, and the aim is to adjust the weights and biases such that the predictions
Ĉk, Eq. (3.3), agree with the labels Ck = argmax(yk). This agreement is measured with a loss
function ℓ for which we choose the cross-entropy cost [435]

ℓ(xk;W , b) = − 1
nb

nb∑
k=1

yk · ln
(
a(L)(xk)

)
= − 1

nb

nb∑
k=1

ln
(
a

(L)
Ck

(xk)
)
. (3.8)

Here, a(l)
j denotes the j-th entry of the activations a(l) of layer l. Because we use softmax as the

output activation function, the entries of aL form a probability distribution with ∑j a
(L)
j = 1.

Therefore, if the prediction a(L)(xk) matches the label yk, i.e. a(L)
j (xk) = δj,Ck

, the contribution
for image k to the loss is zero. In the case where the network gives 0 probability for the given
class, i.e. a(L)

Ck
(xk) = 0, the loss diverges to ∞. If the probability for the correct class is in between

0 and 1, there is a positive contribution from image k to the loss. Therefore, minimizing the
loss aligns the predictions of the network for the images of the training dataset with the labels.

To minimize the loss, we use mini-batch gradient descent, i.e, the training dataset is split into
batches of size 32, the batches are shown to the network, and for each batch a gradient update

W
(l)
ij −→ W

(l)
ij − η

∂ℓ

∂W
(l)
ij

b
(l)
i −→ b

(l)
i − η

∂ℓ

∂b
(l)
i

(3.9)

with learning rate η is performed. In general, computing many gradients can be computationally
expensive; however, we can use an efficient algorithm called backpropagation [441] to compute
the updates. Backpropagation is based on the chain rule for differentiation: using the pre-
activations z(l) = W (l)a(l−1) + b(l) with a(l) = f (l)(z(l)), the partial derivatives of the loss with
respect to the weights can be written as

∂ℓ

∂W
(l)
ij

=
∑
i1,i2

∂z
(L)
i2

∂W
(l)
ij

∂a
(L)
i1

∂z
(L)
i2

∂ℓ

∂a
(L)
i1

(3.10)

=
∑

i1,i2,...,i2(L−l)+1

∂z
(l)
i2(L−l)+1

∂W
(l)
ij

∂a
(l)
i2(L−l)

∂z
(l)
i2(L−l)+1

· · ·
∂z

(L−1)
i4

∂a
(L−2)
i5

∂a
(L−1)
i3

∂z
(L−1)
i4

∂z
(L)
i2

∂a
(L−1)
i3

∂a
(L)
i1

∂z
(L)
i2

∂ℓ

∂a
(L)
i1

, (3.11)

where

∂z
(l)
i2(L−l)+1

∂W
(l)
ij

= δi,i2(L−l)+1a
(l−1)
j , (3.12)

∂z
(m)
i

∂a
(m−1)
j

= W
(m)
ij , (3.13)

∂a
(m)
i

∂z
(m)
j

=
∂
[
f (m)(z(m))

]
i

∂z
(m)
j

≡ F
′ (m)
ij . (3.14)
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For ReLU activations, the last expression simplifies to F
′ (m)
ij = θ(z(m)

i )δij , and for the more com-
plicated softmax activation, one obtains the non-diagonal expression F

′ (L)
ij = δij [f (L)(z(L))]i(1−

[f (L)(z(L))]j) + (1 − δij)[f (L)(z(L))]i[f (L)(z(L))]j . It is convenient to introduce vectors δ(l) [435]
as

δ
(l)
j ≡ ∂ℓ

∂z
(l)
j

=
∑
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∂a
(l)
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· · ·
∂z

(L−1)
i4

∂a
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i5
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i3

∂z
(L−1)
i4

∂z
(L)
i2

∂a
(L−1)
i3

∂a
(L)
i1

∂z
(L)
i2

∂ℓ

∂a
(L)
i1

=
∑

i1,i2,...,i2(L−l)

F
′ (l)
i2(L−l)jW

(l+1)
i2(L−l)−1,i2(L−l)

F
′ (l+1)
i2(L−l)−1i2(L−l)

· · ·W (L)
i2,i3

F
′ (L)
i1i2

∂ℓ

∂a
(L)
i1

,

such that
∂ℓ

∂W
(l)
ij

= a
(l−1)
j δ

(l)
i = [δ(l)(a(l−1))T ]ij . (3.15)

Hence, for obtaining the gradient updates of all weights only two passes through the network
are necessary, one usual forward pass of the mini-batch to obtain all z(m) and a(m), and the
δ(m) are obtained from a single backward pass

δ
(L)
i =

∑
j

F
′ (L)
ji

∂ℓ

∂a
(L)
j

(3.16)

δ
(l)
i =

∑
jn

F
′ (l)
ni W

(l+1)
jn δ

(l+1)
j . (3.17)

To summarize, the four equations of backpropagation are given by [435]

δ(L) = [F ′ (L)]T ∇a(L)ℓ (3.18)

δ(l) = [F ′ (l)]T
(
[W (l+1)]Tδ(l+1)

)
(3.19)

∇W (l)ℓ = δ(l)[a(l−1)]T (3.20)
∇b(l)ℓ = δ(l) . (3.21)

In the case of ReLU activations in layer l, where F ′ is a diagonal matrix, one may use an element
wise (Hadamard) product with the diagonal entries of F ′ instead of matrix multiplication.

To minimize the loss, one gradient update according to Eq. (3.9) is performed for each mini-
batch of the training data. One says that one epoch has passed after all images in the training
dataset are shown to the network once.

L2 regularization

Sometimes it can be useful to force the weight entries of a layer to have small magnitudes, which
can also help to prevent diverging activations for unbound activation functions and in some
cases even to reduce overfitting [435]. This is achieved by adding a regularization term to the
loss function that penalizes large weights [188]

ℓL2(xk;W , b) = ℓ(xk;W , b) +
∑

l

λ(l)∑
ij

|W (l)
ij |2 , (3.22)

where the hyperparameter λ(l) is called the L2 regularization strength that can be individually
set for each layer. By default, we do not use L2 regularization, i.e. λ(l) = 0.
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Gradient descent with momentum

So far, we described the standard gradient descent algorithm where updates of the weight (biases)
are along the opposite direction of the gradient of the loss function with respect to the weights
−∇W ℓ (biases −∇bℓ) rescaled by the learning rate η. As this gradient update only includes
information at the current step, it can easily be slowed down or even get stuck in a small local
minimum on the way to a better local (or even global) optimum of the loss landscape. One
way to retain information about the previous steps is to apply the gradient updates to velocities
(denoted by w for weights, v for biases) which are initially set to zero and then adjusting in each
step according to

w
(l)
ij −→ µw

(l)
ij − η

∂ℓ

∂W
(l)
ij

(3.23)

v
(l)
i −→ µv

(l)
i − η

∂ℓ

∂b
(l)
i

. (3.24)

Here, 0 ≤ µ ≤ 1 is the so-called momentum hyperparameter. We then use the velocities to
update weights and biases according to [435]

W
(l)
ij −→ W

(l)
ij + w

(l)
ij (3.25)

b
(l)
i −→ b

(l)
i + v

(l)
i . (3.26)

Hence, the case µ = 0 corresponds to standard gradient descent, and the closer µ is to +1, the
more the update step is influenced by the previous one. Training with momentum can help to
overcome small local minima and often speeds up convergence [435].

Training parameters and learning rate schedule

For training our networks on the CIFAR-10 dataset, we use mini-batch stochastic gradient
descent with a mini-batch size of nb = 32 and momentum µ = 0.95. We train without regu-
larization, except of the first dense layer in miniAlexNet, where we use L2 regularization with
strength λ = 10−4. In Sec. 3.2 and most of Sec. 3.3, we train networks for 100 epochs using the
following learning rate schedule: we start with an initial learning rate η0 = 0.005 at t = 0 and
reduce the learning rate at each update step t using a decay rate 0 ≤ r ≤ 1 [188]

ηt = η0 · rt/t0 , (3.27)

where we choose r = 0.95 and t0 = 50000/32. Here, t0 is the number of update steps per
epoch. This means, every epoch, the learning rate is reduced by a factor 0.95. The idea behind
using a variable learning rate is that initially a large learning rate allows the network to make
large steps in the direction of the minimum and to escape smaller local minima, and towards
the end of training, a small learning rate helps to get close to an optimal minimum without
overshooting too much. In Sec. 3.3, we additionally train some MLP1024 networks with an
overfitting schedule that keeps training for much longer than needed to achieve 100% training
accuracy. For this schedule, we train for 500 epochs with a stepwise learning rate initially set to
η0 = 0.001 and reduced by a factor of 0.7 every 50 epochs.

The code for training the networks and for reproducing the results of the publication Ref. [328]
is open source and has been made available online as a Zenodo archive [442].

152



Table 3.1: Performance of trained neural networks. For MLP architectures, we trained 10
networks with different seeds for the initialization. We report mean generalization accuracy and
error of the mean. We use d to indicate a dense layer, c for a convolutional layer, p for max
pooling, f for flattening, and r for response normalization layer (with a depth radius of 5, a bias
of 1, α = 1, and β = 0.5). We measured accuracies marked with ∗ on the imagenet validation
dataset. Accuracies for the pre-trained torch models are from the torch documentation [434]
where they were obtained for the imagenet test dataset.

network dataset noise train acc test acc

MLP512 {d 3072, d 512, d 512, d 512, d 10} CIFAR-10 0% 100% (55.70 ± 0.11)%
MLP1024 {d 3072, d 1024, d 512, d 512, d 10} CIFAR-10 0% 100% (56.99 ± 0.11)%

10% 100% (52.10 ± 0.12)%
20% 100% (48.26 ± 0.13)%
30% 100% (44.55 ± 0.15)%
40% 100% (40.57 ± 0.11)%
50% 100% (36.69 ± 0.11)%
60% 100% (32.46 ± 0.23)%
70% 100% (27.85 ± 0.15)%
80% 100% (23.13 ± 0.19)%

100% 100% 10.3%
MLP1024 {d 3072, d 1024, d 512, d 512, d 10}
overfitting schedule

CIFAR-10 0% 100% (55.99 ± 0.11)%
10% 100% (51.72 ± 0.10)%
20% 100% (47.77 ± 0.11)%
30% 100% (43.60 ± 0.13)%
40% 100% (38.84 ± 0.15)%
50% 100% (34.04 ± 0.14)%
60% 100% (29.01 ± 0.08)%
70% 100% (23.94 ± 0.08)%
80% 100% (19.06 ± 0.09)%

miniAlexNet {c 300 5 × 5, p 3 × 3, r, c 150 5 × 5, p
3 × 3, r, f, d 384, d 192, d 10} [128]

CIFAR-10 0% 100% 78.5%
20% 100% 66.4%
40% 100% 49.8%

100% 100% 10.2%
alexnet [44] (torch) imagenet 0% 56.5%
alexnet [44] (Matlab) 0% 57.1%∗

vgg19 [213] (tensorflow) imagenet 0% 71.8%∗

vgg19 [213] (torch) 0% 72.4%

Label noise

To study how noise is stored in neural networks in comparison to information about an underly-
ing rule, we train several networks in Sec. 3.3 with label noise. For this, we assign random labels
to a certain fraction of the training data such that the network has to overfit and memorize these
images to still achieve 100% training accuracy. We observe that both MLP and miniAlexNet
networks are capable of perfectly learning the training data even in the case of 100% label noise,
in agreement with results by Zhang et al. [39]. Even when training with small amounts of la-
bel noise, the generalization performance is significantly worse than for training with a smaller
dataset where the noisy image-label pairs are removed. This suggests that noise also negatively
influences the trained weights, an effect we try to revert by noise filtering in Sec. 3.3.
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Performance of neural networks

In Tab. 3.1, we show the training and generalization accuracies for networks trained as described
above. For MLP networks, we average the accuracies for ten different realizations of the initial
weights by using different seeds for the pseudo random number generator for initialization, and
additionally provide the error of the mean. For the large, pre-trained networks accuracies are
measured on the much larger imagenet dataset. We see that the convolutional miniAlexNet
networks generalize significantly better than fully connected networks of the MLP architecture.
In addition, label noise significantly reduces the performance for both architectures.

3.1.3 Singular value decomposition of weights

In the following, we study the singular values and vectors of neural network weight matrices:
any real matrix W (l) ∈ Mnl×nl−1 with n = min(nl, nl−1) can be decomposed into two orthogonal
matrices U (l) ∈ Onl×nl

, V (l) ∈ Onl−1×nl−1 , and a diagonal matrix Σ(l) ∈ Dnl×nl−1 with

Σ(l)
ij =

{
δijνi for i ≤ n

0 else
(3.28)

such that

W (l) = U (l)Σ(l)V (l) T . (3.29)

Here, νi are the singular values that we can always choose as real, non-negative numbers, νi ≥ 0.
In the case nl ≤ nl−1, the positive semi-definite matrix W (l)W (l) T has eigenvalues ν2

i and
eigenvectors U (l) as

W (l)W (l) T = U (l)Σ(l)V (l) TV (l)Σ(l)U (l) T = U (l)[Σ(l)]2U (l) T , (3.30)

such that we focus on the left singular values U (l) in this case. In the opposite case, where
nl > nl−1, W (l) TW (l) has eigenvalues ν2

i and eigenvectors V (l), such that for nl > nl−1 we focus
on the right singular vectors. With this choice, we make sure that there are no parts of the
singular vectors that cannot contribute to the weight W (l) due to the zero entries in Σ(l). One
further defines the rank of the weight W (l) as the number of non-zero singular values and says
that W (l) has full rank if this number agrees with n = min(nl, nl+1).

Because the weights of fully connected layers are already nl × nl−1 matrices, we can straight
forwardly compute the singular values and vectors as described above. The situation is different
for convolutional layers, where weights are 4D tensors W (l) ∈ M(d1×d2×cl−1)×nl

such that we first
need to reshape the weights before we can compute a singular value decomposition [443]. Other
methods for computing a singular value decomposition are discussed by Sedghi et al. [444]. Here,
we choose reshaping as this (i) results in a matrix that is large enough to perform a statistical
analysis on the singular values and vectors, and (ii) can easily be inverted which allows us to
modify the singular values, reconstruct the weights, and reinsert them into the network. There
are many ways to reshape a 4D tensor into a 2D matrix, however, we like to keep weight entries
that are close to each other in the tensor also close in the matrix [328]. As the extension of the
filter d1, d2 is usually much smaller than the number of feature maps nl, we first flatten along d1
and d2 and then along the smaller dimension of cl−1 and nl. This allows us to keep the larger
dimension max(cl−1, nl) separately.

154



For the miniAlexNet architecture, we hence reshape the first convolutional layer l = 0:
Md1×d2×3×n0 → M(d1d2·3)×n0 according to

W̃
(0)
i1+i2d1+i3d1d2,i4

= W
(0)
i1,i2,i3,i4

, (3.31)

and the second convolutional layer l = 3: Md1×d2×300×n3 → M(d1d2n3)×300 according to

W̃
(3)
i1+i2d1+i4d1d2,i3

= W
(3)
i1,i2,i3,i4

. (3.32)

155



3.2 Random matrix theory as a zero-information hypothesis

Parts of this section closely follow the publication: Matthias Thamm1, Max Staats1, and Bernd
Rosenow, Random matrix analysis of deep neural network weight matrices, Physical Review E
106, 054124 (2022) [328].

In this section, we study weights of trained neural networks using predictions from random
matrix theory (RMT). Because neural network weights are randomly initialized, they perfectly
match RMT predictions before training, and after training, we attribute deviations from RMT
predictions as indication of learned information. Following this zero-information hypothesis
ansatz, we compare RMT predictions with empirical results for trained deep neural networks
to locate stored information in the singular value decomposition of their weights: From the
excellent agreement of the level spacing distribution and the level number variance of unfolded
singular value spectra with RMT, we conclude that the bulk of the spectra is random. In
addition to these universal predictions, we also directly compare singular values to the Marcenko-
Pastur distribution and singular vector entries to the Porter-Thomas distribution, which shows
that there are some large singular values and corresponding vectors that deviate from RMT
predictions which we attribute to stored information in this part of the spectrum [37, 328].

We further study networks trained in different learning regimes. We find that the univer-
sal properties remain unchanged, indicating that the bulk of the spectrum is random in all
cases. However, the non-universal RMT predictions allow for distinguishing lazy learning, where
weights barely change during training, from rich learning for which training significantly updates
the weights. We find the best generalization performance in between the lazy and rich learning
regimes.

It has been suggested that the singular value spectra are heavy tailed, often with a power-law
decay [37, 238]. We perform a careful analysis of the tails of singular value spectra for large
pre-trained networks, however, we do not find power-laws in most of the cases.

3.2.1 Interpretation of Kolmogorov-Smirnov tests
It can be quite subtle to decide whether a sample of data points is from a given distribution
– a problem we need to solve for comparing empirical results from trained weight matrices
to RMT predictions, which are usually formulated in terms of the distribution of the random
variables. The approach we choose here is to perform Kolmogorov-Smirnov tests, which measure
the deviations of the empirical cumulative distribution function (cdf) distributed according to
the test distribution and the probability p – the so-called p-value – for obtaining at least as much
deviation when drawing randomly from the test distribution. For samples actually following the
test distribution, the p-value is uniformly distributed in [0, 1], and if samples from the unknown
distribution tend to have small p-values, it is an indication that they are not from the test
distribution. Of course for a single sample, a large p-value does not mean that the sample has to
be from the distribution, and a small p-value does not tell with certainty that it is not from the
test distribution. One therefore considers a confidence interval such that for p ≤ 0.05 we can be
95% sure that the sample is not from the distribution and therefore reject the null hypothesis.

1equal author contribution
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Computation of Kolmogorov-Smirnov test statistics

We describe in the following how the test statistics that determine the p-value can be obtained
given a sample ξ of length N to be tested for a distribution with cdf C(x). In the case where we
do not know a closed expression for this cumulative test distribution but where we can generate
samples from the distribution, for example because they are computed from random matrices,
we can approximate C(x) using Monte-Carlo sampling:

i) Generate a number of M (for example 50000) data points Xk that follow the
test distribution.

ii) Rank order the samples such that Xik
≤ Xik+1 .

iii) Approximate the cumulative distribution with

C(X) =
∑

Xk≤X

1
M

, (3.33)

such that C(Xk) = ik/M .

With the expression for the cumulative test distribution C(x), we can then use the following
algorithm to compute the Kolmogorov-Smirnov test statistics [445]:

i) Draw a sample X(i) of size N from the test distribution, i.e. the hypothesis
distribution of the Kolmogorov-Smirnov test.

ii) Get the empirical cdf for this sample i as

Ĉ(i)(X) =
∑

X
(i)
k

≤X

1
N

. (3.34)

iii) Compute the Kolmogorov-Smirnov distance for the sample

D
(i)
KS = max |Ĉ(i)(X(i)) − C(X(i))| . (3.35)

iv) Repeat steps a-c about M = 50000 times to get a vector of Kolmogorov-Smirnov
distances DKS.

v) Compute the cumulative distribution of the Kolmogorov-Smirnov distance when
drawing from the test distribution

C̄KS(D) =
∑

DKS<D

1
M

. (3.36)

vi) Define the p-value as

p(D) = 1 − C̄KS(D) , (3.37)

i.e. the probability to get a Kolmogorov-Smirnov distance at least as large as D
when drawing from the test distribution.
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Performing the Kolmogorov-Smirnov test

With the Kolmogorov-Smirnov statistics, we can compute the p-value for a sample ξ of length
N and decide whether we accept or reject the null hypothesis that the sample is from the test
distribution C(X):

i) Compute the empirical cdf of the sample Ĉξ(X) = ∑
ξ<X 1/N .

ii) Compute the Kolmogorov-Smirnov distance for the sample Dξ = max |Ĉξ(ξ) −
C(ξ)|.

iii) Compute the p-value for the sample using the Kolmogorov-Smirnov statistics,
p = 1 − C̄KS(Dξ).

iv) If p ≤ 0.05 reject the hypothesis, i.e., ξ is likely not from the test distribution;
else accept the null hypothesis.

In the following, we will use Kolmogorov-Smirnov tests to compare level spacings of unfolded
singular values to the Wigner surmise, singular vector entries to the Porter-Thomas distribution,
and to test tails of singular value spectra for power-laws.

3.2.2 Universal level spacing statistics and level number variance

We first consider universal properties of random matrices that are independent of the particular
realization such that no additional fit parameters are necessary. To obtain such a universal
property, we compute the n = min(nl, nl−1) singular values νi of a matrix W (l) ∈ Mnl,nl−1 , and
then normalize the mean density of the singular values to unity, yielding the unfolded singular
values ξi [7, 11, 12, 19, 182]. For this unfolding, we first need to estimate the probability density
of the singular values P (ν) which can be achieved by a technique called Gaussian broadening
[182, 446]: We approximate P (ν) as a sum of Gaussian functions each centered around one of
the singular values νk with width depending on the density of singular values around νk, given
by σk = (νk+a − νk−a)/2,

P (ν) ≈ 1
n

n∑
k=1

1√
2πσ2

k

exp
(

−(ν − νk)2

2σ2
k

)
. (3.38)

Here, a is called the broadening window size, and we use a = 15 in the following [30]. From the
estimate for the probability density, we obtain the cumulative distribution

F (ν) = n

∫ ν

−∞
P (x) dx , (3.39)

which then defines the unfolded spectrum as

ξi = F (νi) . (3.40)

As discussed in the introduction, a universal property obtained from the unfolded and sorted
spectrum, ξi+1 > ξi, is the distribution of level spacings

si = ξi+1 − ξi , (3.41)
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Figure 3.3: Nearest neighbor spacing distributions of unfolded singular values of weight ma-
trices for (a) MLP1024, (b) miniAlexNet, (c) alexnet, and (d) vgg19. The main panels depict
the probability density histograms and the insets show the cumulative distribution functions. In
addition, we depict the Wigner surmise theory prediction Eq. (3.42) for random matrices with
dashed, black lines. Except for the first convolutional layer of miniAlexNet which has only 75
singular values, we find excellent visual agreement with the RMT predictions in all classes. This
is further supported by Kolmogorov-Smirnov tests which cannot reject the null hypothesis as
shown in Tab. 3.2.

which for real, random matrices from the GOE universality class is well described by the Wigner
surmise [1, 7, 11, 12, 19, 182]

PWS(s) = πs

2 exp
(

−π

4 s
2
)
. (3.42)

A more general form is given by the Brody distribution [11, 12, 19]

PBr(s) = B(1 + β)sβ exp(−Bs1+β) with B = {Γ([β + 2]/[β + 1])}1+β , (3.43)

which reduces to the Wigner surmise in the limit β → 1. In Fig. 3.3, we show the level spacing
distribution for trained weights of several layers from various networks of different architecture
(blue histograms), and the corresponding empirical cdfs (insets, blue) together with the RMT
prediction, i.e. the Wigner surmise (black). We find excellent visual agreement with the RMT
predictions in all cases, except for the first convolutional layer in miniAlexNet (upper panel in
b) where the spectrum consists of only 75 values. This visual agreement is also confirmed by
Kolmogorov-Smirnov tests for the Wigner surmise and fits to the Brody distribution, where p ≥
0.05 and β ∼ 1 (see Tab. 3.2). To obtain the values of β and the errors, we use bootstrap sampling
from the spectra [447–449], fit the Brody distribution to each sample, and then calculate β as the
mean of the fit results and the error of the mean from the standard deviations. Here, bootstrap
sampling means drawing n values form the νi with equal probability and with repetition. We
conclude that the bulk of the singular value spectra of trained weights – even for large, modern
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Table 3.2: Kolmogorov-Smirnov test results of the distribution of unfolded singular value
spacings of the weight matrices against the Brody distribution with β = 1. Rejection of the
null hypothesis is based on the α = 0.05 significance level. The p-value indicates how likely it
is to obtain a distribution with at least as much cumulative density function deviation as the
one tested for drawing random numbers from a Brody distribution with β = 1. In addition,
we show the results of a fit of a Brody distribution with free parameter β to the cumulative
density function of the computed level spacings. The error was determined by a bootstrap
sampling method. We find excellent agreement with the Wigner surmise for a variety of network
architectures. (Parts of the results have been published in [328].)

network ks-test p-value Brody β from fit
layer 1 layer 2 layer 3 layer 1 layer 2 layer 3

MLP512 (hidden layers) 0.347 0.401 0.812 0.79 ± 0.09 1.01 ± 0.10 1.04 ± 0.12
MLP1024 (hidden layers) 0.799 0.812 0.792 0.94 ± 0.07 0.91 ± 0.11 1.03 ± 0.10
miniAlexNet (conv. 1, conv. 2, fc1) 0.025 0.859 0.743 0.16 ± 0.21 0.85 ± 0.14 0.95 ± 0.16
alexnet (dense layers) – pytorch 0.670 0.229 0.160 0.96 ± 0.04 0.95 ± 0.04 0.83 ± 0.07
vgg19 (dense layers) – tensorflow 0.376 0.221 0.969 0.95 ± 0.04 0.92 ± 0.04 0.97 ± 0.08
vgg19 (dense layers) – pytorch 0.376 0.652 0.557 0.97 ± 0.04 0.95 ± 0.04 0.92 ± 0.07

networks – follows the RMT predictions. In addition, we consider a second universal property
that probes the long-range correlations between singular values – the level number variance
[7, 11, 12, 182]

Σ2(l) = ⟨(Nξ(l) − l)2⟩ξ , (3.44)

i.e. the variance in the number of unfolded singular values Nξ in intervals of length l. This
quantity is more sensitive to details of the singular value distribution than the level spacings
that only probe the spectrum locally. To compute the level number variance form the unfolded
spectrum, for each l, we repeatedly draw values ξ0 ∈ [min ξi + l/2,max ξi − l/2] and count the
number Nξ0 of singular values in the interval [ξ0 − l/2, ξ0 + l/2]. We update the running-variance
for each drawn value ξ0 and stop only after the variance has converged [450].

For random matrices from the GOE, for large l, the level number variance is given by [7, 11,
12, 182]

Σ2
GOE(l) ≈ 2

π2

[
ln(2πl) + γ + 1 − π2

8

]
, (3.45)

where γ is the Euler-Mascheroni constant. It was shown that this is also a good approximation
in the case of GOE matrices for smaller l [182], but the level number variance also depends on
the window size a used for broadening [33]. For the empirical weights, we do not consider level
number variances for l ≫ a, as the unfolding protocol breaks down if the window size a is much
larger than the averaging window l [328]. However, the important information is whether Σ2(L)
initially grows linearly – as for random matrices – or faster, e.g. exponentially for the case of an
uncorrelated, diagonal random matrix.

For all the networks considered here, we find that the level-number variance for trained weights
grows only logarithmically (blue lines in Fig. 3.4), and in particular there are only small dif-
ferences to the initialized, random weights (red lines) [328]. These results for the universal
properties suggest that the weights are predominately random.

160



0.0
0.5
1.0

Σ2
fcΣ1

(a) MLP1024
convΣ1

(b) miniAlexNet
fcΣ1

(c) alexnet
fcΣ1

(d) vgg19

0.0
0.5
1.0

Σ2

fcΣ2 convΣ2 fcΣ2 fcΣ2

0 10
l

0.0
0.5
1.0

Σ2

fcΣ3

0 10
l

fcΣ1

0 10
l

fcΣ3

0 10
l

fcΣ3

Figure 3.4: Level number variance of unfolded singular values of the weights for (a) MLP1024,
(b) miniAlexNet, (c) alexnet, and (d) vgg19. Red curves show the results for initialized, random
weights, and blue lines depict level number variances for fully trained weights. The dashed,
black lines depict the theory prediction, Eq. (3.45), for the GOE. Except for the first convolu-
tional layer of miniAlexNet which has only 75 singular values, the level number variance grows
logarithmically in all cases – even after training. Particularly for large networks in (c) and (d),
where the statistics are most reliable, deviations from the RMT prediction are small [328].

3.2.3 Singular values and vectors: Marcenko-Pastur and Porter-Thomas
distribution

A comparison of trained weights with universal RMT predictions indicates randomness in the
bulk of the weights. To study how the networks can nevertheless achieve good generalization
accuracies, we now focus on non-universal properties to locate the parts of the weights that
contain the relevant information about the underlying rule in the training data. For this purpose,
we first consider the singular value spectra ν of the weight matrices, which in the case of a random
weight W ∈ Mm,n (with n < m) of i.i.d. normal distributed entries with standard deviation σ
is given by the Marcenko-Pastur distribution [184, 185, 451, 451]

PMP(ν) =


n/m
πσ̃2ν

√
(ν2

+ − ν2)(ν2 − ν2
−) ν ∈ [ν−, ν+]

0 else
(3.46)

with ν± = σ̃(1 ±
√
n/m) and σ̃ =

√
mσ (see also Sec. 1.1.4). In Fig. 3.5, we show the sin-

gular value spectra obtained with Gaussian broadening with window size a = 15 according to
Eq. (3.38). For initialized, random weights (red), we find excellent agreement with the Marcenko-
Pastur prediction (black, dashed) in all cases. Even after training (blue) significant parts of the
spectrum remain Marcenko-Pastur like, and in addition there are larger singular values that
form a heavy tail as reported in Refs. [37, 238] (for a detailed analysis of the tail distribution,
see Sec. 3.2.5). In the case where weights are trained with L2 regularization (panels c, d, and
fc1 in panel b), the Marcenko-Pastur curve is slightly shifted towards smaller values during
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Figure 3.5: Distribution of the singular values ν of the weight matrices of (a) the fully con-
nected three hidden layer network MLP1024, (b) the convolutional neural network miniAlexNet,
(c) the pre-trained pytorch [434] model of alexnet, and (d) the pytorch model of vgg19. We
show results for the dense, fully connected layers (fc) and in the case of miniAlexNet also for the
two convolutional layers (conv). The spectral distributions are calculated by broadening with a
window size of a = 15 singular values [30, 328]. The red curves show the distribution directly
after random Glorot initialization, and the blue lines depict the result after fully training the
networks. The dashed, black lines are fits to the Marcenko-Pastur distribution, Eq. (3.46). After
random initialization, the spectra agree well with the RMT predictions, and even after train-
ing the bulk of the singular values still follows a two-parameter Marcenko-Pastur distribution.
While for layers trained without L2 regularization, the range of Marcenko-Pastur distributed
singular values before and after training are comparable, when training with L2 regularization
(c, d, and fc1 in b) singular values of the bulk are additionally shifted towards smaller values.

training. We fit a two-parameter adjusted Marcenko-Pastur distribution (black, dashed) for the
trained spectra by fixing ν− as the smallest singular value and leaving ν+ and the pre-factor in
Eq. (3.46) as fit parameters to account for the fact that some weight moved into the tail such
that the total weight in the bulk is less than one. When training without L2 regularization, it
becomes apparent that the Marcenko-Pastur region [ν−, ν+] remains unchanged and only some
large singular values develop without significantly influencing the random bulk. In all cases,
most of the singular values remain within the Marcenko-Pastur region as found from the fits.

In addition, we consider the entries of singular vectors of length n which for random vectors
would follow a Porter-Thomas distribution, i.e. a Gaussian with zero mean and a standard
deviation of 1/

√
m fixed by the normalization of the vectors (see also Sec. 1.1.4). For a weight

matrix W ∈ Mm,n with m > n, we consider the right singular vectors V , i.e. the eigenvectors
of W TW , and if m < n, we focus on the left singular values U , the eigenvectors of WW T . This
ensures that the considered matrix WW T or W TW has full rank.

To test the entries of singular vectors for a Porter-Thomas distribution, we order the vec-
tors such that the corresponding singular values are rank ordered, νi+1 > νi, and then perform
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Figure 3.6: Randomness of eigenvector entries as a function of the singular value position in
the spectrum. For this, we show p-values of Kolmogorov-Smirnov tests of the singular vector
entries against a Porter-Thomas distribution which is the prediction for random matrices. On
the x axis, we plot the positions according to the rank ordered singular values, such that 0
corresponds to the smallest and 1 to the largest singular value of each weight matrix. The
resulting p-values are averaged over neighboring singular values with a window size of 15 [328].
We show results for random matrices (red) and trained weights (blue) for (a) MLP1024, (b)
miniAlexNet, (c) alexnet, and (d) vgg19. For the random vectors that perfectly follow the RMT
prediction, the p-values are uniformly distributed in [0, 1] such that the average p-value is 0.5.
We find that p-values corresponding to large singular values are reduced compared to the values
in the bulk. Additionally, for some layers, there are reduced p-values for vectors corresponding
to very small singular values.

Kolmogorov-Smirnov tests for the entries of each singular vector yielding a p-value, p(νi), cor-
responding to every singular value νi. We then average the p-values for surrounding singular
values with a window size of a = 15:

p̄(νi) = 1
2a

a∑
j=1

[p(νi−j) + p(νi+j)] . (3.47)

If the entries of a vector are indeed from a Porter-Thomas distribution, the p-value is uniformly
distributed in [0, 1] such that the mean value p̄ is close to 0.5, in excellent agreement with the
results for initialized, random weights (red lines in Fig. 3.6). For trained weights (blue), we find
that p-values in the bulk form a plateau above 0.5 and in the tail, a clear decrease from the
plateau is visible. We show later that the increased p-values on the plateaus, compared to the
random case, can occur when a low rank matrix W0 is added to a random matrix Wrandom and
the p-values of the singular vectors of W = W0 +Wrandom are considered. In some cases, we also
observe significantly reduced average p-values for singular vectors corresponding to very small
singular values, a phenomenon we will later also observe in the rich learning regime in Sec. 3.2.4.

We would like to emphasize that using the correct Kolmogorov-Smirnov statistics is crucial
to obtain average p-values of 0.5 for singular vectors of random matrices. Here it is important
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Figure 3.7: Comparison between Kolmogorov-Smirnov test statistics for i.i.d. random vectors
of length 512 (green) and for normalized Porter-Thomas vectors (blue). (a) Probability density
function of the cdf deviations obtained with Monte-Carlo sampling as described in Sec. (3.2.1).
(b) Cumulative distribution functions for the pdfs shown in (a). It becomes apparent that
normalizing the vectors significantly changes the Kolmogorov-Smirnov test statistics even though
it leaves the cumulative distribution of the vector entries CPT unchanged. (Figure taken from
Ref. [329].)

that sampling for computing the statistics as described in Sec. 3.2.1 takes into account the
normalization of the singular vectors. If the samples are only drawn from the Porter-Thomas
distribution but not normalized in the same way as the singular vectors, there are significant
deviations in the p-values (see Fig. 3.7).

As we discussed before, the interpretation of Kolmogorov-Smirnov tests can be tricky and a
large p-value alone does not mean that the sample has to be from the test distribution. We
therefore additionally consider the inverse participation ratio (IPR) of the entries of a singular
vector v,

IPR(v) =
n∑

i=1
|vi|4 . (3.48)

This IPR gives some insight into the localization of the vector entries and is approximately given
by the inverse of the number of relevant components in v: for example if a single entry is 1 and
all other entries are 0, the IPR is 1. In the other extreme case where all entries are 1/

√
n, the

IPR is 1/n. We therefore interpret a small IPR that occurs together with a large p-value as
indication of random noise, and a large IPR together with a reduced p-value indicates stored
information. In Fig. 3.8, we show the IPRs for the same layers and networks as in Fig. 3.6.
The IPR for initialized random weights (red) is consistent with this interpretation and also for
trained weights (blue) the IPR is in agreement with the p-values, such that regions with vectors
that are more localized (higher IPR) also come with smaller average p-values and large p-values
appear together with small IPRs and for random matrices.

Hence, using the RMT predictions as a zero-information hypothesis indicates that the weights
consist of a random bulk and information about the rule is stored in the largest singular values
and corresponding vectors only.
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Figure 3.8: Inverse participation ratios (IPRs) of the singular vectors for random weights
(red) and trained weights (blue) in (a) MLP1024, (b) miniAlexNet, (c) alexnet, and (d) vgg19.
Singular vectors corresponding to large singular values have higher IPRs, i.e. they are more
localized, in agreement to the smaller p-values in Fig. 3.6. For some layers, additionally singular
vectors for small singular values have large IPRs, however, the bulk agrees with the random
control for most of the weights.

3.2.4 Random matrix analysis in different learning regimes
This subsection closely follows the publication: Matthias Thamm, Max Staats, and Bernd
Rosenow, Random matrix analysis of deep neural network weight matrices, Physical Review
E 106, 054124 (2022) [328].

It was shown [128, 224, 452–455] that neural networks can achieve good generalization accu-
racies even when their weights change only by very small amounts during training. The opposite
to this lazy learning is denoted as rich learning, where the final weights W after training devi-
ate significantly from the initial ones W0. Based on this, a criterion for estimating the learning
regime was proposed by Chizat et al. [456]: For a neural network fW that maps an input x to
an output, and an accuracy function A(fW , {x}, {y}), where {x} is a dataset with labels {y},
one computes the network’s linearization around the initial weights W0

f̃W (x) = fW0(x) + (W −W0) · ∇W fW |W0(x) . (3.49)

In the lazy learning regime, where W ≈ W0, linearization is a good approximation such that
the accuracies are barely different, i.e.

A(fW , {x}, {y}) ≈ A(f̃W , {x}, {y}) . (3.50)

On the contrary, in the rich learning regime, one expects significant deviations such that

A(fW , {x}, {y}) ≫ A(f̃W , {x}, {y}) . (3.51)
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Figure 3.9: Comparison of training and test accuracies for full MLP512 networks and lin-
earized networks around the initial weights of several layers (first layer: brown, second layer:
blue, third layer: green, output layer: orange) as a function of the laziness hyperparameter α.
Crosses show the ratio between linearized and full network accuracy and lines are a guide to the
eye. The black crosses indicate accuracy ratios for typical training with α = 1.

This criterion has the advantage that it can also be studied on a layer-wise basis by linearizing
around a single weight matrix only, and as accuracies are in the range [0, 1], it gives a scale
for laziness comparable between different network architectures. A disadvantage is that it re-
quires to compute the linearization which can be resource intensive for large networks. For
obtaining f̃W , we use the autodiff implementation in the jax python package together with
the neural_tangents package [457]. We train several MLP512 networks, where laziness is
controlled by introducing a hyperparameter α that modifies the output activations via [456]

aL = softmax (α(WLaL−1 + bL)) (3.52)

and the cost function as

l(W , b) = − 1
Nα2

N∑
k=1

y(k) · ln(a(k)
out) . (3.53)

Here, a large α > 1 scales down the gradient updates and therefore encourages lazy learning,
while small α < 1 steers training towards the rich learning regime [456].

In the following, we focus on the MLP512 architecture, for which we show the ratio between
accuracies of linearized and full networks as a function of the laziness α in Fig. 3.9. It becomes
apparent that layers closer to the input tend more towards the rich learning regime (smaller
ratios closer to 0), while layers closer to the output are more lazy (ratios closer to 1). The
weights of the output layer, which only have rank 10, are always in the lazy training regime. For
our training parameters, we find that controlling the laziness works best for the second hidden
layer. We therefore focus on this layer in the following; however, the imbalance in the learning
regime between the layers could be lifted by using different learning rates per layer.

Fig. 3.10 depicts the training accuracy (left panel) and the test accuracy (right panel) as
a function of the laziness parameter α. As expected, the networks are in the rich regime for
α < 1, where the full networks (blue crosses) perform significantly better than the linearized
networks (green circles), while we observe lazy learning for α > 1. The network with α = 1
(black symbols), lies about in the middle between the two regimes, where we also find the best
test accuracy. We therefore denote α = 1 as typical learning.

A comparison between the RMT analysis in the three regimes, rich α = 0.5 (top panel),
typical α = 1 (middle panel), and lazy α = 5 (bottom panel) in Fig. 3.11 reveals:
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Figure 3.10: Comparison of training and test accuracies for full MLP512 networks (blue
crosses) and linearized networks (green circles) around the initial weights of the second layer
as a function of the laziness hyperparameter α. The black symbols indicate accuracies for
α = 1 – similar to the networks trained in the previous sections. For small α < 1 accuracies of
linearized and full networks deviate significantly which indicates rich learning, while for large
α > 1 performance differences are small, indicating lazy learning.

(i) For all networks, the bulks of the spectra are random such that the universal properties,
i.e. level spacings (panel b) and level number variance (panel c) agree with RMT predic-
tions. By comparing the level number variance curves for networks trained with various α
(not shown), we confirm that the level number variances in panel c display typical devia-
tions from the RMT prediction such that there is no trend of slower growth for networks
with larger α.

(ii) The rich network has more large singular values compared to the typical one, while the lazy
network has almost an unchanged Marchenko-Pastur spectrum (panel a). It is therefore
surprising that it still achieves a respectable test accuracy of 50.4%, compared to 52.7%
for the rich network and 55.2% for the typical network.

(iii) The p-values for Kolmogorov-Smirnov tests of the eigenvector entries against a Porter-
Thomas distribution (panel d) are small only for large singular values in the typical case.
In the rich case, we observe small p-values also for singular vectors corresponding to the
smallest singular values, and for the lazy network all p-values fluctuate only slightly around
0.5 as expected for random weights.

These findings indicate that networks trained in the lazy regime do not deviate from RMT
predictions after training, in striking contrast to rich and typical networks. Thus, an analysis
of singular value spectra and singular vector entry distributions can be used to estimate the
learning regime of a network on the level of the individual weights, without the need for a
potential resource intensive linearization of the networks.

The almost perfect agreement with RMT predictions in the lazy regime raises the question
whether the information that allows the network to still generalize quite well is encoded in parts
of the spectrum that follow bulk statistics. If this was the case, it would seem impossible to
locate this information by means of an RMT analysis. However, we argue in the following that
this is in fact not the case for the networks considered here. However, the RMT analysis in the
lazy regime faces two major obstacles that make it difficult to detect the information hidden
by the dominant random bulk: (i) an individual layer in the lazy network might carry very
little information, as it is for example the case for the second hidden layer of the lazy MLP512

167



0.0

0.5

pd
f

ric
h 
α

=
0.

5

(a)

0.0
0.2
0.4
0.6

P(
s)

(b)

0.0

0.5

1.0

Σ2

(c)

0.0

0.5

p-
va

lu
e

(d)

0.0

0.5

pd
f

ty
pi

ca
l α

=
1

0.0
0.2
0.4
0.6

P(
s)

0.0

0.5

1.0

Σ2

0.0

0.5

p-
va

lu
e

0.0 2.5 5.0
ν

0.0

0.5

pd
f

laz
y 
α

=
5

0.0 2.5
s

0.0
0.2
0.4
0.6

P(
s)

0 10
ν

0.0

0.5

1.0

Σ2
0 1

ν position
0.0

0.5

p-
va

lu
e

0 1 2
s

0

1

cd
f

0 1 2
s

0

1

cd
f

0 1 2
s

0

1
cd

f

Figure 3.11: Random matrix theory analysis of second layer weights of MLP512 networks
trained in different learning regimes: rich learning (α = 0.5, top panel), typical learning (α = 1,
middle panel), and lazy learning (α = 5, bottom panel). We show (a) the spectra for trained
(blue) and randomly initialized networks (red) together with fits of modified Marcenko-Pastur
laws (dashed, black), (b) unfolded level spacing distributions (main panel, blue, window size 15)
and corresponding cumulative distributions (insets) together with the Wigner surmise (dashed,
black), (c) unfolded level number variance (trained: blue, initialized: red), and (d) p-values for a
comparison of singular vector entries to a Porter-Thomas distribution. While trained networks
in all cases follow universal RMT predictions (b and c), indicating a random bulk, lazy networks
can be distinguished from typical and rich networks by the spectral distributions in (a) and
p-values in (d).

network shown in Fig. 3.11, where by replacing the final weight with the initial one for this layer,
the generalization accuracy of the network only drops from 50.4% to 42.3%. It is therefore not
surprising that no extended region in the spectrum containing information is found by the RMT
analysis. (ii) In the lazy case, the difference δW = W −W0 between initial weight W0 and the
final weight after training W is small, i.e. ∥δW∥/∥W0∥ ≪ 1. In this case, the sensitivity of RMT
is not sufficient to detect signatures of δW in W : For instance, the crossover from the Gaussian
unitary ensemble to Poisson statistics has been studied in Ref. [458], and it turns out that δW
would need to be much larger than in our case in order to have a noticeable effect compared to
the bulk statistics from W0.

As a solution, we suggest analyzing the statistical properties of the difference matrix δW
instead of the full weight matrix. Such an analysis indeed indicates that δW consists of a
random bulk and a low-rank contribution that encodes relevant information: In the lazy learning
regime the trained weights W (l) remain close to the initial random matrices W (l)

0 such that the
random bulk dominates any RMT analysis of W (l), and therefore masks small local deviations
from the bulk statistics. We thus consider the deviations from the initial weights δW (l) =
W (l) −W

(l)
0 , which again have random bulk statistics. Their unfolded spectra follow the Wigner

surmise (Fig. 3.12a), and one finds a logarithmic increase of the level number variance (panel
c). In contrast to the full weight matrix, the difference matrix has a qualitatively different
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Figure 3.12: Random matrix theory analysis for the difference δW (l) = W (l) −W
(l)
0 between

the trained weights W (l) and the initial weights W (l)
0 for the lazy MLP512 network trained with

α = 5. We show results for the first hidden layer (brown), second hidden layer (blue), and
third hidden layer (green). Panel (a) depicts the singular value spectra obtained via Gaussian
broadening, (b) the level spacing statistics of the unfolded singular value spectra, and (c) the
level number variance of the unfolded spectra. Panel (d) shows the averaged p-values for a
comparison between singular vector entries and the Porter-Thomas distribution with window
size a = 15. The spectrum of δW (l) agrees well with the Wigner surmise and a logarithmically
growing level number variance. However, the p-values in panel (d) indicate that again large
parts of the spectrum of δW (l) are random and that information is stored in the largest singular
values and corresponding vectors of δW (l). In addition, the singular value spectrum is not of
Marchenko-Pastur type.

distribution function of the singular values (panel a), and the p-values (panel d) are consistent
with information being stored in parts of the spectrum corresponding to large singular values,
similar to what we found for networks in the typical learning regime.

3.2.5 Tails of weight spectra: Hill estimators and power-law fits

Recently, it has been suggested that the tails of the singular value spectra follow heavy tailed
distributions [37, 238], and tail exponents based on power-law fits have been reported [37, 238].
Here, we study the distribution of large singular values using a combination of Hill estimators
[459–466] that allow us to visually distinguish power-laws from other heavy tail distributions
and power-law fits for which we additionally compute p-values using Kolmogorov-Smirnov tests.

The Hill estimator is obtained by averaging the inverse local slopes of the log-log cumulative
distribution and is therefore constant in the case of a power-law p(x) ∝ x−α. To obtain the Hill
estimator, we first rank order the n singular values νk such that νik

≤ νik+1 and compute the
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Figure 3.13: Analysis of the cumulative distribution of DNN singular values in the tail region.
Hill estimators of the weight matrix spectra for (a) the second layer weight of MLP1024, (b)
the second convolutional layer of the CNN miniAlexNet, (c) the second fully connected layer of
alexnet, and (d) the third fully connected layer of vgg19. The Hill estimators are obtained using
Eq. (3.56) with a window size a = 20. The insets depict the corresponding log-log cumulative
distributions (blue). In addition, we show results of a power law fit p(x) ∝ x−α (solid gray or
red) and a truncated power law fit p(x) ∝ x−αe−λx (dashed gray or green) to the tails, where
a power law tail corresponds to a flat Hill estimator at −(α − 1) starting from νmin. We show
rejected fits in gray and accepted fits colored, based on p-values [445] for the power laws and
log-likelihood ratio tests versus truncated power laws (see also Table 3.3). In (b) we cannot
reject a power law, however the log-likelihood ratio test tends more towards a truncated power
law, but is not statistically reliable (R = 1.02 and p2 = 0.363). (Adapted from Ref. [328].)

cumulative distribution of the squared singular values λi = ν2
i as

C(λik
) = ik

n
. (3.54)

From this, we get the local inverse slopes

ζk =
− ln[λik+1/λik

]
ln[C(λik+1)/C(λik

)] (3.55)

that we average over the a surrounding eigenvalues 1
a

∑a/2
j=−a/2 λik+j

to obtain the Hill estimator

h(λk) =

1
a

a/2∑
j=−a/2

ζk+j

−1

. (3.56)

In Fig. 3.13, we depict Hill estimators (blue lines in main panels) for various networks. For
the dense layers in MLP1024, alexnet, and vgg19 (a, c, d) shown here, the Hill estimators have
no extended flat regions that interpolate to 1/λ → 0. For the third layer of the pytorch vgg19
model (panel d), we find a short flat region followed by a further decay of the Hill estimator
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towards 1/λ → 0. Hence, we do not find visual evidence for a power-law in the dense layers based
on the Hill plots, even though the log-log cdf can look reasonably linear (blue lines in the insets).
For the second convolutional layer of miniAlexNet (panel b), there is a longer approximately
flat region that persists up to small values of 1/λ, which indicates the presence of a power-law.

To substantiate these findings, we perform power-law fits, p(λ) ∝ (λ/λmin)−α, to the tails
using the powerlaw python package [467] to obtain the start of the tail region λmin and the
power-law exponent α. A successful fit however does not mean that there is actually a power-
law present in the spectrum, and as the Hill estimators suggest that the tails are not power-law
distributed in most cases, we additionally perform Kolmogorov-Smirnov tests to obtain p-values
for the confidence of the fits. For computing the Kolmogorov-Smirnov statistics for the fits, we
use the method described by Clauset et al. [445]:

i) We start with a power-law fit to the n eigenvalues to obtain λmin and α. We
denote the number of eigenvalues larger than λmin as ntail.

ii) Each sample λ(i) for the Kolmogorov-Smirnov statistics is drawn according to
a) We draw n random numbers r(i) uniformly distributed in [0,1) and

denote the number of random numbers in r(i) that satisfy r
(i)
k ≤

ntai/n as n̂(i)
tail.

b) We draw n̂
(i)
tail random numbers from the power-law distribution with

λmin and α from step (i) and bootstrap the remaining n−n̂(i)
tail values

from the bulk of the original eigenvalues for which λ < λmin to
construct a sample λ(i).

c) We then fit a new power-law to this sample λ(i) to obtain fit param-
eters λ(i)

min and α(i).
d) The relevant Kolmogorov-Smirnov distance is then computed be-

tween the empirical cdf of sample λ(i) and the cdf of the power-law
with λ

(i)
min and α(i).

This ensures that variations in the fit are also reflected in the Kolmogorov-Smirnov statistics
which is crucial for a reliable p-value. Unfortunately, computing the p-values is resource in-
tensive because it requires a power-law fit for each sample and for an accuracy of the p-value
of 10−2, about 2500 samples need to be considered [445]. However, obtaining the samples is
embarrassingly parallel, i.e., we can obtain the 2500 samples completely independently of each
other. This allows us to obtain p-values at least for the weights considered in Fig. 3.13.

But even in the case where a power-law fit is not rejected based on a p-value of p > 0.05,
there could still be another heavy-tailed distribution that provides a better fit. As suggested in
Ref. [37], we also consider truncated power laws (TPL) in the cases where a power-law is not
rejected:

To decide which distribution provides a better fit, we perform log-likelihood ratio tests between
a truncated power law pTPL(x) ∝ x−αe−λx and a power law pPL(x) ∝ x−α. The log-likelihood
ratio for n data points in the tail xi is defined as [445]

R = 1√
2nσ

ln
n∏

i=1

pTPL(xi)
pPL(xi)

, (3.57)

where σ is the empirical standard deviation of the difference ln pTPL(xi) − ln pPL(xi). A positive
sign of R thus indicates that a truncated power law is a better fit, and a negative sign indicates
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a better fit for a power law. The p2 value is then defined as the probability to obtain a ratio with
magnitude of at least |R| from a distribution p(R) centered at zero with standard deviation σ,
i.e., the probability that the sign is only due to fluctuations. Therefore, small p2 < 0.05 indicate
a reliable sign of R, while large p2 indicate an unreliable sign from fluctuations and hence an
inconclusive test.

In Fig. 3.13, we also show the results of power-law fits with solid horizontal lines and the
exponent from a truncated power-law fit using dashed lines. We color the lines in gray in cases
where we reject the distribution and in red (green) if we cannot reject the power-law (truncated
power-law).

Table 3.3: Power law fit results and log-likelihood ratio tests between truncated power law
and power law for the dense layers of alexnet, vgg19, and the weights considered in Fig. 3.13.
Here, d denotes a dense layer and c a convolutional layer. We reject the power law if p < 0.05 or
in the case where the two-distribution test favors a truncated power law (positive R, p2 < 0.05)
[445]. (Adapted from Ref. [328].)

network layer PL fit 2-distr. 2-distr. PL fit PL fit reject
p R p2 α xmin PL

MLP1024 d2 0.0019 2.50 0.000 2.51 3.389 yes
miniAlexNet c2 0.9628 1.02 0.363 2.14 0.852 no

alexnet
d1 0.0004 1.55 0.359 2.29 0.418 yes
d2 0.0004 1.25 0.211 2.25 0.480 yes
d3 0.9990 -0.003 0.999 3.02 2.046 no

vgg19
d1 0.0011 2.01 0.142 2.27 0.275 yes
d2 0.0007 1.98 0.055 2.19 0.291 yes
d3 0.0590 2.26 0.001 2.07 0.690 yes

In Tab. 3.3, we report the p-values together with fit results for a power-law and log-likelihood
tests against a truncated power-law. As already suggested by the Hill plot, the p-values indicate
a power-law for the second convolutional layer in miniAlexnet (panel b in Fig. 3.13). For the
third dense layer in vgg19 (panel d in Fig. 3.13), a power-law is not rejected as p > 0.05;
however, a truncated power-law provides a better fit. For the second hidden layer of MLP1024
(panel a) and the second dense layer of alexnet (panel c), we directly reject power-laws based
on the p-values. In addition, we consider all dense layers of the pytorch models for the large
pre-trained networks alexnet and vgg19 (Tab. 3.3). For the third layer, we find agreement
with Martin et al. [37] where a power-law for alexnet and a truncated power-law for vgg19 was
reported. However, for the other dense layers, which were also reported as power-laws [37], our
analysis clearly rejects the power-law fits with p-values much smaller than 0.05.

In summary, we find no evidence that the singular values of DNN weight matrices are generally
described by a power law tail distributions, and argue that the exponent resulting from a power
law fit to the singular value probability density function can only be viewed as a heuristic tool
to characterize different spectra, but not as a genuine property of the tail of the distribution of
singular values. In addition, given the absence of power law tails in most of the singular value
distributions studied here, it is unclear whether weight matrices of fully trained DNNs indeed
belong to an ensemble of heavy tailed random matrices as suggested in Ref. [238].
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3.3 Boundary between noise and information applied to filtering
neural network weight matrices

Parts of this section closely follow the preprint Max Staats2, Matthias Thamm2, and Bernd
Rosenow, Boundary between noise and information applied to filtering neural network weight
matrices, arXiv preprint arXiv:2206.03927 [329].

The excellent agreement with RMT predictions suggests that the weights of deep neural
networks are predominately random [328]. In addition to the random bulk, a few large singular
values and vectors deviate from RMT, which we interpret as an indication for stored information.
This also suggests that there is capacity left for the networks to learn random noise in the
training data, which has also been reported in Ref. [39]. Inspired by these findings, we train
neural networks in the presence of label noise, i.e., we shuffle a portion of the labels in the
training data such that the network has to memorize these image label pairs to achieve full
training accuracy. We then use RMT to locate how this noise is encoded in the weights, and
find that there is a boundary between noise and information in the spectra which we also confirm
by setting singular values to zero and monitoring the generalization accuracy. We then propose
a filtering algorithm to reduce the influence of the noise in two ways:

(i) We set singular values to zero starting from the smallest one up to the boundary between
noise and information to remove the noise from the spectrum.

(ii) Due to level repulsion with the noisy bulk, the singular values in the tail are larger than
for an ideal low rank weight without noise. We revert this by shifting back large singular
values.

We find that filtering can significantly improve the generalization performance for networks
trained with label noise. For networks trained with severe overfitting, i.e. for much longer
than required to obtain 100% training accuracy, the boundary between noise and information
is blurred such that no improvements can be achieved anymore.

3.3.1 Boundary between noise and information in weight spectra
When training with label noise, we observe that the networks still achieve 100% training accu-
racy, even in the case of 100% label noise where all labels are drawn randomly. However, the
generalization performance is significantly deteriorated – proportional to the amount of label
noise (Tab. 3.1). To locate where information about the memorized noisy image-label pairs
is stored in the weights, we again consider the singular value spectra obtained with Gaussian
broadening and the averaged p-values of Kolmogorov-Smirnov tests comparing the singular vec-
tor entries to the Porter-Thomas distribution using the methods of Sec. 3.2. In Fig. 3.14, we
show the results for the second hidden layer of MLP1024 networks trained with 0% noise (blue),
40% noise (green), and 100% (brown), and a random control (red) where we consider the ini-
tialized weights without training (for other layers and miniAlexNet, see Appendix B.1). In the
presence of label noise, we observe slightly more intermediate and large singular values in the
spectra of MLP1024 networks (lower panel in Fig. 3.14), while the small singular values still
follow a Marcenko-Pastur like distribution even in the case of 100% label noise. In addition,
the averaged p-values for vectors with singular values in the Marcenko-Pastur region are within
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Figure 3.14: Analysis of singular values ν and vectors V of the first hidden layer weight
matrix for the MLP1024 network trained with various amounts of label noise: 0% (blue), 40%
(green), and 100% (brown). For reference, we show results for randomly initialized weights in
red. The upper panel shows the randomness of singular vectors via the p-value of Kolmogorov-
Smirnov tests against a Thomas-Porter distribution, averaged over neighboring singular values
with a window size of 15; the light red stripe describes the 2σ region around the mean for
random vectors. The lower panel depicts the corresponding singular value spectra obtained via
Gaussian broadening with a window size of 15 (solid lines). The dashed line shows the fit of a
Marchenko-Pastur distribution to the spectrum for 0% label noise. (Taken from Ref. [329].)

or even above the 2σ interval (light red) of the random control (red) regardless of the amount
of label noise, and they begin to decline approximately at the same singular value, ν ≈ 2. For
larger amounts of label noise, the p-values reach the lower bound of the 2σ region at slightly
larger singular values; however, the size of the fluctuations in the p-values is comparable with
the differences between the curves.

In comparison to the random control, where p-values fluctuate around 0.5, for trained networks
the p-values in the random bulk are significantly increased, i.e., they often lie above the 2σ region
of the random control. We argue that this is due to the presence of the few non-random singular
vectors that store the information. These vectors force the random singular vectors to have a
narrower distribution around the most likely part of the Porter-Thomas distribution (normal
distribution with zero mean) due to the constraint of orthogonality with the deviating singular
vectors with large singular values.

For example, using the same test statistics as described in Sec. 3.2.1, such that random
normalized vectors from the Porter-Thomas distribution have on average a p-value of 0.5, the
subset of vectors with zero mean have an average p-value of 0.74. We show in Fig. 3.15(a) that
the mean values of singular vector entries for small singular values of the weight matrices (0%
label noise blue, 40% green, 100% brown) are indeed smaller than the expected values (2σ range
in light red stripe) for fully random matrices (red) while the means are much larger for large
singular values which store the information.

The increase of p-values can also be shown for a simple model, adding a low-rank matrix δW
to a fully random matrix W that would have singular vectors with p-values of 0.5 on average.
For this we draw a random 1024 × 512 matrix W with Gaussian distributed i.i.d. entries with
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Figure 3.15: (a) Mean values of the singular vectors for the first hidden layer weights of the
trained MLP1024 DNNs as a function of the corresponding singular values ν. The red line
shows the means for singular vectors of a random Porter-Thomas matrix and the corresponding
2σ region of expected means for such matrices is shows by the transparent red stripe. We
observe much smaller means for singular vectors of trained weights in the case of small singular
values and significantly larger means for the vectors corresponding to large singular values. (b)
Kolmogorov-Smirnov p-values for a random 1024 × 512 Porter-Thomas matrix W (red) with 2σ
region for such matrices in light red, and for the sum W + δW (blue), where δW is a matrix of
rank ten with entries from a normal distribution with the same standard deviation and mean
−0.01 similar to mean values observed for vectors corresponding to the largest singular values
in (a). The p-values are averaged over neighboring singular values with a window size of 15.
(Taken from Ref. [329].)

mean zero and variance 1/512, and first show in Fig. 3.15(b) that the p-values fluctuate around
0.5 (red), with most values withing the 2σ region (light red region). We then draw a second
1024 × 512 matrix with i.i.d. Gaussian distributed entries with mean −0.01 and variance 1/512,
compute the singular value decomposition, and reconstruct the matrix only keeping the largest
10 singular values, yielding a rank ten matrix δW . We then analyze the p-values of the singular
vectors of W + δW . We find that the p-values are increased (blue line), with mean 0.71, hich
shows that in the presence of a few singular vectors with a distribution different from the random
bulk, we expect the p-values in the bulk to be increased due to the enforced orthogonality to
the singular vectors with a finite mean.

We demonstrated that the results are consistent with the idea that large singular values
encode the rule while intermediate singular values store the memorized noise. We further test
this hypothesis by setting singular values to zero, starting from the smallest one, and measuring
the impact on training and test accuracy. For this, we compute the singular value decomposition
W = UΣV T of a weight W with singular values Σij = δijνi, set the smallest r values of the rank
ordered νi in Σij to zero (we assume νi+1 ≤ νi), i.e.

Σ̃ij =
{
δijνi for i ≤ r

0 else
, (3.58)

and then put the reconstructed weights W̃ = U Σ̃V T back into the network. In Fig. 3.16, we show
the training accuracy as a function of the amount of removed singular values for various layers of
MLP1024 (panel a) and miniAlexNet networks (panel b) trained without label noise (blue), with
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Figure 3.16: Boundary between information and noise demonstrated by setting a given per-
centage of the singular values to zero. (a) Training accuracy for the MLP1024 network trained
with various amounts of label noise (0% blue, 20% green, and 100% brown). (b) Training accu-
racy for removing singular values from the convolutional network miniAlexNet trained with 0%
label noise (blue), 20% (green), and 100% label noise (brown). In all cases, relevant information
is stored in the largest singular values and corresponding vectors only. In presence of label noise
larger parts of the spectrum are needed to store the noise.

20% label noise (green), and with 100% label noise (brown). We indeed find in all cases that the
majority of singular values can be set to zero without any impact on the training accuracy for
networks trained without label noise, which demonstrates that these singular values and vectors
contain only noise. In addition, we find that more singular values are relevant when training
with larger amounts of label noise. This is particularly pronounced in the second convolutional
layer of miniAlexNet where the training accuracy drops significantly when removing more than
30% of singular values, compared to a threshold of 90% for clean training data. Here, the
convolutional layers seem to encode almost all the memorized training data in the case of 100%
label noise, as the first dense layer shows barely any difference to the pristine case when setting
singular values to zero.

When considering the test accuracy in Fig. 3.17, it becomes apparent that generalization is
due solely to the largest singular values and corresponding vectors even in the case of the large
pre-trained networks alexnet (panel d, orange) and vgg19 (panel d, blue). These results suggest
that the largest singular values and corresponding vectors encode the underlying rule necessary
for generalization, intermediate singular values store memorized image-label pairs when training
with label noise, and the bulk of small singular values and corresponding vectors is random noise
neither relevant for training nor test accuracy.

We next consider how the generalization performance of networks trained with label noise
depends on the removal of singular values. In Fig. 3.18, we consider (a) the hidden layer in
MLP1024 networks and (b) the second convolutional layer in miniAlexNet trained with 20%
label noise (upper panel) and 40% label noise (lower panel). For the regular training schedule
we find that (i) removing small singular values has again no impact on the test accuracy, (ii)
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Figure 3.17: Test accuracies for setting a given percentage of the singular values in networks
trained without label noise to zero for (a) the hidden layers of an MLP512 network, (b) the
hidden layers of an MLP1024 network, (c) the convolutional layers and the first dense layer in
miniAlexNet, and (d) the first dense layers in the large pre-trained networks vgg19 (blue) and
alexnet (orange). We find that most of the singular values and corresponding vectors do not
contribute to the generalization performance of the networks.

setting intermediate singular values to zero even improves the generalization accuracy, and (iii)
when removing the largest singular values, the test accuracy sharply drops. Interestingly, the
final drop occurs approximately at the same position as for the corresponding test accuracy in
the case of 0% noise (Fig. 3.17, blue lines in panel b and c) and the increase is observed when
removing singular values in the intermediate region that is relevant for the training accuracy
when training with label noise (Fig. 3.16, green). We argue that this indicates the presence
of a boundary between information about the rule, stored in the largest singular values and
corresponding vectors, and the noise learned to memorize image-label pairs of noisy training
data, encodes in the intermediate singular values.

In addition, we train the MLP1024 networks with a learning schedule that promotes overfit-
ting, i.e., we train with a slower learning rate decay for much longer than required to achieve
100% training accuracy (more details in Sec. 3.1.2). This causes an earlier drop of the gen-
eralization accuracy (Fig. 3.18, red) without prior improvements. We attribute this behavior
to a blurring of the boundary between noise and information, i.e. when training for too long,
intermediate singular values that memorize the noise mix with the region of large values that
encode the rule.

3.3.2 Filtering of neural network weight matrices

We argued that when training networks with label noise, more intermediate singular values
are required for achieving full training accuracy, and that there is a separation between these
singular values and the largest ones that encode the underlying rule in case a suitable training
schedule is chosen. Based on these findings, we propose a filtering algorithm to reduce the
influence of the noise by

i) setting singular values corresponding to the noise to zero.

ii) reverting the shift of large singular values due to level repulsion with the random bulk.

We already discussed in the previous section that removing the intermediate singular values
can improve the generalization accuracy. In addition, the presence of a random bulk of smaller
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Figure 3.18: Dependence of the test accuracy on the removal of singular values from (a)
the second hidden layer weights of MLP1024 networks and (b) the second convolutional layer
in miniAlexNet, trained in the presence of label noise (upper panel: 20%, lower panel: 40%).
Setting singular values to zero (blue), we observe significant generalization performance im-
provements. For training with overfitting (red in a), no improvement is observed, indicating
that information and noise are mixed in the spectrum. (Adapted from Ref. [329].)

singular values leads to an upward shift of large singular values, which has been discussed for
linear networks in Ref. [229] and which is also empirically known from econophysics [30, 31, 468,
469]. We here consider a model for which the weight W ∈ Mni,ni+1 consists of a low rank term
W0 that encodes the relevant information about the rule and a full rank random matrix Wnoise
that describes the bulk:

W = W0 +Wrandom . (3.59)

The shift of singular values was explicitly computed [229, 470] in the limit where the matrix
dimensions tend to infinity nl, nl−1 → ∞ while the aspect ratio A = nl/nl−1 ≤ 1 is fixed. For
i.i.d. random entries of Wnoise with standard deviation σ, the unperturbed singular values ν0 of
W0 can be obtained from the singular values ν of the full weight W = W0 +Wnoise by

ν0/σ = 1√
2

[
(ν/σ)2 −A− 1 +

√(
(ν/σ)2 −A− 1

)2
− 4q

]1/2

. (3.60)

Here, we obtain σ from fitting a Marcenko-Pastur distribution PMP(ν), Eq. (3.46), to the singular
values νi of W using the following algorithm:

i) As the spectrum contains the large singular values, the Marcenko-Pastur dis-
tributed part of the spectrum is not normalized, and the end of the Marcenko-
Pastur region ν+ is not known a priori. We therefore first broaden the spectrum
using Gaussian broadening [182, 446], Eq. (3.38), with a window size a = 15,
and then fit an adjusted two-parameter Marcenko-Pastur distribution where we
fix ν− = min(νi) and use ν+ and the height as independent fit parameters. This
yields an estimate for the bounds of the Marcenko-Pastur region ν− and ν+.
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Figure 3.19: Shifting of singular values: histogram of singular values for the first hidden layer
weight matrix of the MLP1024 network (blue) trained with 40% label noise and Marcenko-
Pastur fit (solid, black) with boundaries of the MP region (dashed black lines). The dashed red
lines show the locations of shifted singular values according to Eq. (3.60), and the inset zooms
into the tail region. (Taken from Ref. [329].)

ii) We then fit a proper Marcenko-Pastur fit, Eq. (3.46), with single fit parameter
σ to the normalized histogram of the νi between ν− and ν+.

The shifting formula can be applied for singular values above the Marcenko-Pastur region νi >
ν+, and we keep the other values unchanged. An example for this shifting in the second hidden
layer of an MLP1024 network trained with 40% label noise is shown in Fig. 3.19. Here, large
singular values are shifted by a comparably small amount while smaller singular values are
strongly shifted such that many values close to ν+ are pushed into the Marcenko-Pastur region
(marked by the dashed, vertical lines).

In Fig. 3.20, we apply filtering to MLP1024 and miniAlexNet networks trained with label
noise (upper panels: 20%, lower panels: 40%). We find that shifting singular values in addition
to removing (green) gives a further significant improvement compared to only removing singular
values (blue). Here, we first set singular values from the Marcenko-Pastur region to zero, before
removing shifted values even for values that are shifted into the Marcenko-Pastur region.

To systematically study the improvements due to noise filtering, we train many MLP1024
networks on the CIFAR-10 dataset for various amounts of label noise each with different seeds
of the random number generator for initialization. We consider networks trained with 9 different
amounts of label noise from 0% to 80%, and ten different seeds for each amount of noise. For
noise filtering of a full network, we use the following algorithm:

i) Start with the last hidden layer l = L− 1.

ii) Compute the singular value decomposition W (l) = U (l)diag(ν(l)
i )[V (l)]T .

iii) Rank-order the singular values and corresponding vectors such that ν(l)
i ≤ ν

(l)
i+1.

iv) Perform a Marcenko-Pastur fit to obtain the Marcenko-Pastur region ν
(l)
± and

the width σ(l).
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Figure 3.20: Dependence of the test accuracy on the removal and shifting of singular values
from (a) the second hidden layer weights of MLP1024 networks and (b) the second convolutional
layer in miniAlexNet, trained in the presence of label noise (upper panel: 20%, lower panel:
40%). For setting singular values to zero (blue) and when additionally shifting them according
to Eq. (3.60) (green), we observe a significant improvement in performance. For training with
overfitting (red in a) no improvement is observed, indicating that information and noise are
mixed in the spectrum. (Adapted from Ref. [329].)

v) Shift the singular values above the Marcenko-Pastur region, ν(l)
i > ν

(l)
+ , according

to Eq. (3.60) but keeping the rank in the spectrum

ν̃
(l)
i =

ν
(l)
i for ν(l)

i ≤ ν
(l)
+

ν0(ν(l)
i ) for ν(l)

i > ν
(l)
+

. (3.61)

vi) Set singular values ν̃(l)
i to zero starting from index i = 1, reconstruct the weights

W̃ (l) = U (l)diag(ν̃(l)
i )V (l) T , and measure the accuracy on a validation set. In

case there is no improvement from shifting, we take the unshifted values for this
layer.

vii) Determine the amount of removed singular values for which the best validation
accuracy is obtained, yielding the optimal singular values ν̄i, and replace the
original weight of the network by W̄ (l) = U (l)diag (ν̄i) [V (l)]T .

viii) Proceed with the previous layer l → l − 1 from step ii) until one arrives at the
input layer.

We apply the algorithm to all 90 networks, using a validation set of 2000 images from CIFAR-
10, and compute the accuracy improvement on the test set of the remaining 8000 CIFAR-10
images. The average improvements over the different initial realizations for each amount of the
noise together with the error of the mean are depicted in Fig. 3.21. For the regular learning
schedule (blue and green), we find significant improvements of up to 6% already by only removing
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Figure 3.21: Average improvement of the test accuracy when removing singular values (blue,
red) from all layers and when additionally shifting singular values (green) of the first two layers
in MLP1024 networks, with results for both the standard learning rate schedule (blue crosses,
green diamonds) and an overfitting schedule (red squares). We observe that the average im-
provements increase with increasing amount of label noise, with an enhanced improvement for
additionally shifting singular values. There are no improvements for networks trained with over-
fitting. (Taken from Ref. [329].)

singular values (blue), i.e. by skipping step iv) in the filtering algorithm. When additionally
shifting singular values in the first and second hidden layer (green), i.e. performing all steps
of the algorithm, we find additional improvements such that already for 20% label noise, an
average improvement of the generalization accuracy of about 1% is achieved.

We additionally train another 90 MLP1024 networks using the learning rate schedule that
promotes severe overfitting (red squares). In this case, no improvements are found which we
again attribute to mixing between the parts of the spectrum that memorizes noisy data and the
region that encodes the underlying rule.

In principle the way how label noise is implemented can affect the generalization accuracy
in two ways: (i) there is overall less valuable information about the rule in the dataset when
replacing a portion of the labels by random labels, and (ii) the network may get distracted by the
wrong labels. To test how strong the former effect is, we consider a smaller control training set,
for each training set with label noise, by removing all noisy image-label pairs. The performance
on the control dataset defines an upper bound to the test accuracy that the network can learn
when trained with the corresponding noisy set. In Fig. 3.22, we show average generalization
accuracies of MLP1024 networks trained on the control set (brown circles), reference accuracies
for training on datasets with label noise without noise filtering (black squares), and for using
our noise filtering algorithm (green diamonds). It becomes apparent that label noise severely
reduces the generalization performance, while just training with fewer data has relatively little
influence on the test accuracy. Even though we observe significant improvements by using noisy
filtering, they cannot fully make up for the reduction of the generalization performance due to
label noise.

In the proposed algorithm, we do not optimize the amount of singular values that are shifted,
but instead we determine ν+ and σ from Marcenko-Pastur fits and shift the values larger than ν+.
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Figure 3.22: Average test accuracy as a function of the label noise for MLP1024 networks
trained with the typical learning schedule. For each noise, we trained ten networks initialized
using different seeds for the pseudo random number generator. We show mean accuracies and
error of the mean without filtering (black squares), and for removing singular values from all
layers and shifting singular values of the first two layers (green diamonds). For comparison, we
also show accuracies for networks where we removed a percentage of images and labels from the
training data set instead of assigning random labels (brown circles). For a fair comparison, we
removed exactly those image-label pairs for which random labels are drawn in the corresponding
network trained with label noise. It becomes apparent that label noise significantly reduced the
training accuracy by perturbing learning of the underlying rule, and while weight filtering can
significantly improve the generalization performance, it cannot make up for the influence of the
noise.

To estimate to what extent these values optimize the accuracy improvements, we measure the
generalization performance for a MLP1024 network trained with 40% label noise as a function of
both σ and the portion of removed singular values. For the data presented in Fig. 3.23, we split
the CIFAR-10 test dataset into 5 batches of 2000 images to simulate different validation data sets
and average the accuracy improvements over all 5 batches. We find that optimal improvements
on all batches are found for filtering parameters that lie in the same region but do not agree
perfectly (black circles). For the first two hidden layers, where our filtering algorithm decides
to shift singular values, the parameters from the Marcenko-Pastur fits (intersection point of the
dashed lines) are within the region of the best improvements. For the third hidden layer, the
fit results do not yield an improvement such that our algorithm skips shifting singular values in
this layer. However, allowing for different σ reveals an optimum close to the boundary value

σmax =
{
νmax(1 −

√
A) for A < 1

νmax/2 for A = 1
, (3.62)

for which only the largest singular value νmax is shifted.

3.4 Conclusions
We studied weights of trained neural networks using RMT as a zero information hypothesis
and demonstrated that large parts of the weights remain random during training. In particular,
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Figure 3.23: Accuracy improvements as a function of both the ratio of removed singular
values and the value of σ used for shifting singular values for (a) the first hidden layer, (b)
the second hidden layer, and (c) the third hidden layer of MLP1024 networks trained with
40% label noise. We split the 10 000 CIFAR-10 test images into 5 batches of 2000 images each
and averaged accuracies obtained on these batches. The black circles show the location of the
maximal improvement for each of these batches, and the red crosses mark the maximum of the
averaged accuracy. The dashed, horizontal lines show the value of σ obtained from a Marcenko-
Pastur fit to the spectrum, and the dashed, vertical lines show the percentage of singular values
within the Marcenko-Pastur region. In the first two hidden layers, the optimal improvement is
obtained for parameters close to the ones obtained from the Marcenko-Pastur fit. In the third
hidden layer, a Marcenko-Pastur fit does not find a σ that yields an improvement, and the
optimum lies close to σmax where only a few of the largest singular values are shifted and most
of the singular values are set to zero.

the agreement of the level spacing distribution of singular values with the Wigner surmise and
logarithmic growth of the level number variance reveals that the singular value spectra of trained
weights are predominately random. In addition, a comparison of singular vectors with the Porter-
Thomas distribution shows that singular vectors are random as well, with exceptions only for
the vectors corresponding to large singular values. This is also supported by directly comparing
Marcenko-Pastur distributions to the spectra, indicating that relevant information is located in
the tail of the spectra and the corresponding singular vectors. Furthermore, comparing to RMT
predictions is also fruitful for distinguishing between the learning regimes.

By training networks with label noise, systematically setting singular values to zero, and
measuring training, and generalization performance, we find that (i) the bulk of small singular
values is random and carries no information, (ii) intermediate singular values can be important
for the training accuracy by memorizing noise, and (iii) large singular values carry the relevant
information about the underlying rule that allows the networks to generalize. If networks are
trained in a suitable way, we observe a separation between regions (ii) and (iii), and when training
for too long after reaching 100% training accuracy, severe overfitting sets in and the boundary
gets blurred. In the former case, we proposed an algorithm for filtering weight matrices to
mitigate the influence of the noise by (a) setting singular values to zero to remove the parts of the
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spectrum that do not carry relevant information and (b) by reverting the level repulsion between
the random bulk of small singular values and the large relevant values. We find significant
improvements when applying the filtering algorithm to networks training with label noise.

So far, for reverting the level repulsion, we focused on a simple model for the weights trained
with label noise, by considering a random bulk Wrandom added to a low rank weight W0, encoding
the rule. In the future it would be interesting to study the level repulsion more rigorously to
aim for a better shifting method to potentially bring the generalization performance of the
networks trained with label noise even closer to the values for networks trained with pristine
data. Furthermore, it may be interesting to study filtering techniques that also operate on the
directions of singular vectors.

Setting small singular values to zero and reducing the size of large singular values is in fact not
too dissimilar from what L2 regularization tries to achieve during training. It might therefore
also be interesting to consider implementing some filtering methods already during training. For
instance, one could think about a training algorithm that early in training – after the relevant
directions are sorted out, and the largest singular values separated from the bulk – systematically
shifts small singular values to zero such that training can focus on the relevant directions without
the problem of level repulsion.
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4. Entanglement entropy in one dimensional
quantum chains of interacting fermions

Parts of this chapter closely follow the publication: Matthias Thamm, Harini Radhakrishnan,
Hatem Barghathi, Bernd Rosenow, and Adrian Del Maestro, One-particle entanglement for one
dimensional spinless fermions after an interaction quantum quench, Physical Review B 106,
165116 (2022) [327].

In this chapter, we consider one dimensional systems of spinless, interacting fermions. In partic-
ular, we assume that the system is in some pure state |Ψ⟩ such that the density matrix is given
by ρ = |Ψ⟩⟨Ψ|. We then split the system into two subregions A and B and study entanglement
between the subspaces by tracing out region B, yielding the reduced density matrix ρA = TrBρ
that can be used to obtain the von Neumann entanglement entropy

S1 = −Tr [ρA ln ρA] . (4.1)

An alternative measure for the entanglement entropy is the Rényi entropy of power α ∈ N

Sα = 1
1 − α

ln Tr [ρα
A] , (4.2)

which for α → 1 reduces to the von Neumann entropy, and for α ≥ 2 does not require computa-
tion of the logarithm of a matrix. As discussed in the introduction, there are different ways to
divide the one-dimensional system with N fermions into two partitions:

(i) a spatial bipartition, where A is a connected region of length ℓ and the remaining system
has length L− ℓ.

(ii) a particle bipartition by fixing n particles and tracing out the position of the remaining
N − n particles.

To study the role of entanglement between the bipartitions, we consider free fermions for times
t < 0 and at t = 0 we suddenly switch on interactions – a so-called interaction quantum quench.
Initially after the quench, the spatial entanglement entropy increases linearly until the system
equilibrates, leading to a saturation of the entanglement entropy. Here, spatial entanglement
entropy takes the role of a thermodynamic entropy after thermalization [471, 472] and the initial
increase describes the spread of information through the system after the quench.

For most parts of this chapter, we consider particle entanglement entropy which initially grows
much faster after a quench [308]. It has been shown [308] that in the thermodynamic limit,
spatial and particle entanglement entropy are equivalent asymptotically after the quench. In
addition, particle entanglement is encoded in the spectrum of the n-body reduced density matrix
which gives access to all n-body observables. Here, particle entanglement provides information
about quantum correlations between indistinguishable particles. In the following, we mainly
focus on the one-body reduced density matrix and one-particle entanglement entropy in a one-
dimensional lattice of interacting, spinless fermions with nearest neighbor hopping and short
range interactions – the J-V model. In the case of small interactions – the Luttinger liquid
phase where low energy excitations are described by density fluctuations on top of an average
density background – we obtain the one-body density from an analytic bosonization calculation.
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However, to account for the short range nature of the interactions in the J-V model, we need to
introduce an interaction cutoff ε that cannot be fixed from the Luttinger liquid calculation alone.
We therefore perform large scale numerical computations using exact diagonalization (ED) for
large systems up to N = 19 fermions on L = 38 sites. We consider even larger systems up to
L = 102 sites at half filling using density matrix renormalization group calculations (DMRG),
which is an approximate method that we control and stabilize using ED results and analytical
considerations about the ground state. Being able to consider large systems allows reliable finite
size scaling to the thermodynamic limit and to determine the interaction cutoff of the Luttinger
liquid model from the numerical results.

In summary, we (i) provide a definite picture of the one-body reduced density matrix and
entanglement in a one-dimensional integrable model both in equilibrium and after a quantum
quench, and (ii) make a fruitful connection between state-of-the-art numerical techniques and
an analytical bosonization calculation, which allows the field theory approach to make accurate
predictions even beyond universal scaling relations [327].

This chapter is structured as follows: In Sec. 4.2, we introduce the J-V model, which describes
a one-dimensional lattice of interacting fermions, its phase diagram, and an instructive example
calculation for two fermions on four sites – the smallest non-trivial system that illustrates how
entanglement entropy is computed in practice. In Sec. 4.3, we perform the Luttinger liquid
bosonization calculation in equilibrium and after a quantum quench, followed by a detailed
description of the methods and tricks used for numerical computation with ED (Sec. 4.4) and
DMRG (Sec. 4.5). Finally, in Sec. 4.6, we compare numerical results with analytical Luttinger
liquid results to unambiguously determine the interaction cutoff of the bosonization calculation.

The results of this chapter have been obtained during my research stay with the Del Maestro
group at the University of Tennessee in Knoxville (UTK). The bosonization calculation was
performed in close collaboration with Harini Radhakrishnan (UTK), and large parts of the ED
code have already been written by Adrian Del Maestro and Hatem Barghathi (UTK) for a
previous project [473]. We added improvements to the ED code for this project to allow for
larger system sizes and wrote new code for the DMRG calculation [474] based on ITensor.jl
[475].

4.1 Schmidt decomposition

In this section, we describe a technique to efficiently compute the entanglement entropy based on
a singular value decomposition for a given bipartition of the system. For a general partitioning
into A and B, we can write the state |Ψ⟩ as

|Ψ⟩ =
∑
ab

Cab|θa⟩A ⊗ |χb⟩B , (4.3)

where |θa⟩A is a basis in A and the |χb⟩B form a basis in partition B. We perform a singular
value decomposition of the coefficient matrix C such that we can write

Cab =
∑

k

UakλkV
†

kb (4.4)

|Ψ⟩ =
∑
abk

UakλkV
†

kb|θa⟩A ⊗ |χb⟩B . (4.5)
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By defining new basis states

|Θk⟩A =
∑

a

Uak|θa⟩A (4.6)

|Xk⟩B =
∑

b

V †
kb|χb⟩B , (4.7)

we can write the state in the Schmidt decomposed representation using a single sum

|Ψ⟩ =
∑

k

λk|Θk⟩A ⊗ |Xk⟩B . (4.8)

Due to the properties of the singular value decomposition, U and V are unitary matrices such
that |Θk⟩A and |Xk⟩B both form a basis in their respective subspace and can therefore be used
to compute the trace for the reduced density matrix

ρA = TrB [|Ψ⟩⟨Ψ|] =
∑

kk′k′′

λk′λ∗
k′′⟨Xk|Xk′⟩B|Θk′⟩A⟨Θk′′ |A⟨Xk′′ |Xk⟩B

=
∑

k

|λk|2|Θk⟩A⟨Θk|A (4.9)

ρB = TrA [|Ψ⟩⟨Ψ|] =
∑

k

|λk|2|Xk⟩B⟨Xk|B . (4.10)

Once, the Schmidt decomposition has been performed, the von Neumann and Rényi entropies
can be directly computed as

S1 = −
∑

k

|λk|2 ln
(
|λk|2

)
(4.11)

Sα = 1
1 − α

ln
(∑

k

|λk|2α

)
. (4.12)

It is therefore sufficient to construct the matrix C and compute its singular values λk to obtain
the entropies without explicitly performing the partial trace.

4.2 The J-V model
We study a system of N spinless fermions on a one-dimensional lattice with L sites at half-filling
L = 2N described by the J-V Hamiltonian

H = −J
L∑

i=1
(c†

i+1ci + c†
ici+1) + V

L∑
i=1

nini+1 . (4.13)

Here J is the hopping amplitude, V is the nearest neighbor interaction, c†
i creates a fermion at

site i, and ni = c†
ici is the occupation number operator for site i. In the case of even number of

particles N we use anti-periodic boundary conditions and for odd N we use periodic boundary
conditions, which ensures that the ground state is always non-degenerate. We can express
states using an occupation number basis

|n1, n2, ..., nL⟩ =
∏

i
ni=1

c†
i |0⟩ , (4.14)
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where |0⟩ is the empty lattice, and we use the convention that creation operators c†
i are rank

ordered according to the site index i in the product above, such that operators with smaller i
act before those with larger site index.

In the following, we first consider the phase diagram of the J-V model, and then discuss
the simple example for N = 2 fermions on L = 4 lattice sites, where we apply the important
concepts that are generalized to large systems for the numerical computations later.

4.2.1 Phases from mapping onto a spinful XXZ-chain

To understand the phase diagram of the J-V model, it is advantageous to start from a spin-1/2,
one-dimensional XXZ model [476, Eq. (6.2)] on a lattice of L sites

HXXZ =
∑

i

Jxy

(
Sx

i+1S
x
i + Sy

i+1S
y
i

)
+ Jz

∑
i

Sz
i+1S

z
i , (4.15)

where the spin operators Sk = σk/2 can be represented by Pauli matrices and have the commu-
tation relations [476]

[Sk , Sk′ ] = iεkk′k′′Sk′′
. (4.16)

This model can be solved using a Bethe ansatz [323, 324, 476, 477], and it is well known that
the system has phase transitions at Jz/Jxy = ±1 [476]. For Jz/Jxy < −1 the ground state is
ferromagnetic with aligned spins, and for Jz/Jxy > 1 the system is an anti-ferromagnet which
prefers alternating spins. We consider S±

j = Sx
j ± iSy

j and the Wigner transformation [476]

S+
j −→ (−1)jc†

jeiπ
∑j−1

k=1 nk (4.17)

S−
j −→ (−1)je−iπ

∑j−1
k=1 nkcj (4.18)

Sz
j −→ nj − 1

2 , (4.19)

which ensures the correct commutation relations [476]. Using that

Sx
i+1S

x
i + Sy

i+1S
y
i = 1

2
(
S+

i+1S
−
i + S−

i+1S
+
i

)
(4.20)

S+
j+1S

−
j −→ −c†

j+1eiπnjcj = −c†
j+1cj (4.21)

S−
j+1S

+
j −→ −cj+1e−iπnjc†

j = cj+1c
†
j = −c†

jcj+1 , (4.22)

the transformed Hamiltonian becomes

HXXZ −→ −Jxy

2
∑

i

(
c†

j+1cj + c†
jcj+1

)
+ Jz

∑
i

nj+1nj + Jz (L/4 −N) , (4.23)

where a fixed particle number N in the transformed model corresponds to fixed magnetization
of the XXZ model. By using the replacement [476]

Jxy

2 −→ J (4.24)

Jz −→ V (4.25)
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Figure 4.1: Phases of the J-V model. For small interactions, |V/J | ≤ 2, the system is in the
Luttinger liquid phase (LL), where V/J = 0 corresponds to free fermions (ff). At V/J = 2,
there is a first order phase transition into the charge density wave phase where the ground state
favors separation between the fermions. At V/J = −2 there is a second order phase transition to
the phase separated solid phase, where the ground state prefers clustering the fermions together.

one can therefore map the XXZ model onto the J-V model

HXXZ −→ HJV + V (L/4 −N) . (4.26)

Here, the constraint of half-filling of the lattice, L = 2N , maps onto a magnetization of zero in
the XXZ model. For V/J > 0, in the absence of a magnetic field in the XXZ model (as it is the
case in Eq. 4.15), the average of the spin operator Sz vanishes in the ground state, i.e. ⟨Sz⟩ = 0,
and the ground state has zero magnetization [145]. The situation is more complicated for
negative interactions V/J < 0 and especially the limit of infinite negative interactions where
the unrestricted XXZ model has a ferromagnetic ground state with maximal magnetization.
However, it has recently been shown in Ref. [325], that the phase boundaries are not altered by
restriction to zero magnetization (half-filling) and the ground state in the clustered solid phase
favors clustering of spins of the same direction with an equal number of ↑ and ↓ spins.

We therefore conclude that the J-V model has phase transitions at
Jz

Jxy
= ±1 −→ V

J
= ±2 , (4.27)

such that the J-V system can be in one of three phases (Fig. 4.1):

(i) For V/J < −2 the system is a phase separated solid, where the strong attractive interac-
tions favor clustering of fermions such that the ground state for V/J → −∞ becomes

|ΨV/J→−∞⟩ = 1√
L

L∑
n=1

Tn|11 · · · 1100 · · · 0⟩ , (4.28)

where |11 · · · 1100 · · · 0⟩ is the state for which the first N sites are occupied by a fermion
and the remaining N sites are empty. Here, T is the translation operator that shifts each
fermion one site to the right, e.g. T |011001⟩ = |101100⟩.
For the limit V/J → −∞ at half filling L = 2N , the first row of the one-body reduced
density matrix

ρij
1 = 1

N
⟨ΨV/J→−∞|c†

icj |ΨV/J→−∞⟩ (4.29)

is given by

ρ1,k
1 = 1

NL


N for k = 1
2 for k = N + 1
0 else

. (4.30)
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Due to the translational symmetry (see also Sec. 4.4.1), the one-body reduced density
matrix can be diagonalized by a Fourier transform which yields the spectrum

λn =
L∑

k=1
ρ1,k

1 cos [qn(k − 1)] (4.31)

= 1
2N

[
1 + 2

N
cos(qnN)

]
(4.32)

= 1
2N + O(N−2) . (4.33)

From this, one finds the entropy in the thermodynamic limit as

S1(V/J → −∞) − ln(N) = −
L∑

k=1
λk ln(λk) − ln(N) = ln(2) (4.34)

Sα(V/J → −∞) − ln(N) = 1
1 − α

ln
(

L∑
k=1

λα
k

)
− ln(N) = ln(2) . (4.35)

(ii) For the other strongly interacting case V/J > 2, the system is in the charge density wave
phase where strong repulsion results in a ground state with maximal separations between
the fermions. For a lattice at half filling, the ground state in the limit V/J → ∞ becomes

|ΨV/J→+∞⟩ = 1√
2

(|10101 · · ·⟩ + |01010 · · ·⟩) . (4.36)

In this limit, the one-body reduced density matrix is diagonal ρij
1 = δij/(2N), such that

the eigenvalues are given by λn = 1/(2N). Therefore, the entropy is again given by
S1(V/J → ∞) − ln(N) = ln(2) and Sα(V/J → ∞) − ln(N) = ln(2).

(iii) In the intermediate region, −2 < V/J < 2, the system is in the Tomonaga-Luttinger liquid
(LL) phase, where the relatively weak interactions allow the description with an effective
low-energy theory.

These phases are also visible from the one-particle von Neumann entanglement entropy S1:
In Fig. 4.2, we show S1 − Sff for N = 51 particles obtained numerically from the one-body
reduced density matrix, where Sff = ln(N) is the entropy for free fermions. At the second order
transition V/J = 2 (dotted, vertical line), the slope changes and the entropy asymptotically
approaches the theory value ln(2). At the first order phase transition V/J = −2 (solid, vertical
line), the entropy rapidly approaches the theory value found for an infinite lattice, ln(2) [145]
(dotted, horizontal line). Here, reaching an entropy of ln(2) is related to a flat spectrum of the
one-body reduced density matrix (1-RDM). For V/J < −2, the diagonal elements of the 1-RDM
scale like ∼ N−1 while the off diagonal elements are of the order ∼ N−2 such that the spectrum
rapidly flattens when N becomes large – as it is the case for N = 51 in Fig. 4.2.

In Fig. 4.3, we additionally show the one-particle entanglement entropy for various N as a
function of the interaction V/J close to the phase transition to the clustered solid phase obtained
with exact diagonalization (N < 20) and DMRG (N >= 20) (details in the following sections).
From the upper left panel it becomes apparent how the value of the entropy for infinite negative
interaction strength is approached: For even N , where cos(qnN) = 0 in Eq. (4.32), the entropy
for V/J → −∞ is given by ln(2) + ln(N), while for odd N , where cos(qnN) = (−1)n, there is
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Figure 4.2: Interaction dependence of the one-particle von Neumann entanglement entropy
S1 obtained numerically from the J-V model. Here, Sff is the entropy for free fermions. The
equilibrium ground state entropy is obtained numerically from DMRG for a system of L = 102
lattice sites at half filling (crosses). The solid line represents finite size scaling of numerical data
to the thermodynamic limit. The excellent agreement with the finite size DMRG data shows
that the system with N = 51 fermions is large enough to describe the thermodynamic limit
accurately in the whole LL phase.

a finite size correction O(N−2) (see App. C.2). The lower left panel shows that the increase
after the phase transition becomes steeper with larger system sizes such that at N = 51, the
finite step size in V/J values makes it look like a discrete jump, which in reality will always be
a smooth but very steep increase as long as the system size in finite. The drastic increase is also
a special property of the von Neumann entropy: The right panel shows the Rényi entropy for a
large order α = 10, where we find a much smoother increase even for the system with N = 51
fermions.

4.2.2 A simple example: two fermions on four sites

For the case of N = 2 fermions on a lattice with L = 4 sites and anti-periodic boundary
condition, i.e. c5 = −c1, we can compute the entanglement entropy analytically (for a similar
calculation with N = 3, see Ref. [308]). We therefore use this simple example to motivate
and introduce the important concepts that are used in the following sections to perform the
numerical computations for larger systems.

Naive basis

To obtain the ground state of the Hamiltonian, we diagonalize the matrix Hij = ⟨ϕi|H|ϕj⟩ of
the J-V model in the basis |ϕi⟩ with the

(L
N

)
= 6 elements

{|0011⟩, |0101⟩, |0110⟩, |1001⟩, |1010⟩, |1100⟩} . (4.37)

We rank order the basis states according to the integer that is obtained when reading the
occupation numbers as bits in a binary representation, i.e. 0011 = 3, 0101 = 5, 0110 = 6,
1001 = 9, 1010 = 10, 1100 = 12. We also use the convention that the basis states are created by
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Figure 4.3: Interaction dependence of one particle von Neumann entanglement entropy S1 (left
panel) and the Rényi entropy S10 obtained numerically from the J-V model. Here, Sff = ln(N)
is the entropy for free fermions. The equilibrium ground state entropy is obtained numerically
from ED for N < 20 and with DMRG for systems with N > 20 fermions at half filling. The
black, vertical line marks the phase transition at V/J = −2 and the dashed, horizontal line
shows the theory prediction ln(2) for V/J → −∞ in the thermodynamic limit. Upper panels
show the difference of the entropy to this asymptotic value. For comparison, the dark blue
crosses show the entropy for L = 102 lattice sites that is shown in Fig. 4.2. It becomes apparent
that the transition is smooth for all considered finite systems and becomes steeper for larger
systems and smaller Rényi power α.

acting with creation operators, starting with the smallest site index first on the empty lattice
|0⟩:

|1001⟩ = c†
4c

†
1|0⟩ = −c†

1c
†
4|0⟩ (4.38)

|0110⟩ = c†
3c

†
2|0⟩ . (4.39)

Thus, the J-V Hamiltonian for N = 2, L = 4 has the matrix representation

H =



V (t) −J 0 0 −J 0
−J 0 −J −J 0 −J
0 −J V (t) 0 −J 0
0 −J 0 V (t) −J 0

−J 0 −J −J 0 −J
0 −J 0 0 −J V (t)


. (4.40)

Diagonalizing the Hamiltonian, one finds the eigenstates and energy eigenvalues

λ0 = 1
2
(
V −

√
32J2 + V 2

)
u0 = 1√

4 + 2ζ2
−

(1, ζ−, 1, 1, ζ−, 1)

λ1 = 0 u1 = 1√
2

(0,−1, 0, 0, 1, 0)

λ2 = V u2 = 1√
2

(−1, 0, 0, 0, 0, 1)
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λ3 = V u3 = 1√
2

(−1, 0, 0, 1, 0, 0)

λ4 = V u4 = 1√
2

(−1, 0, 1, 0, 0, 0)

λ5 = 1
2
(
V +

√
32J2 + V 2

)
u5 = 1√

4 + 2ζ2
+

(1, ζ+, 1, 1, ζ+, 1) , (4.41)

where we used the abbreviation

ζ±(V/J) = V ∓
√

32J2 + V 2

4J . (4.42)

Here, we find the ground state with energy λ0 as

|Ψ0(V/J)⟩ = 1√
4 + 2ζ2

−(V/J)

[
|0011⟩ + ζ−(V/J)|0101⟩ + |0110⟩

+ |1001⟩ + ζ−(V/J)|1010⟩ + |1100⟩
]
. (4.43)

For the special case of free fermions V/J = 0, the coefficient ζ− becomes ζ−(0) =
√

2.

Translational symmetry cycles

As the number of basis states is given by
(L

N

)
, this calculation very quickly becomes computation-

ally infeasible as N,L increase. However, using translational symmetry T of the Hamiltonian,
i.e. [T , H] = 0, one can block diagonalize H and focus only on a single block to obtain the ground
state. Here, the unitary operator T moves all particles one place to the right, Tni = ni+1T where
ni = c†

ici is the particle number operator at site i. Using anti-periodic (periodic) boundary con-
ditions for odd (even) number of fermions N , ensures that the states pick up no negative signs
when a fermion hops long the boundary, i.e. Tc†

L = c†
1eiπN̂T . When applying the translation

operator to the six basis states,

|φ1,1⟩ ≡ |0011⟩ |φ2,1⟩ ≡ |0101⟩
T |φ1,1⟩ = |1001⟩ ≡ |φ1,2⟩ T |φ2,1⟩ = |1010⟩ ≡ |φ2,2⟩
T 2|φ1,1⟩ = |1100⟩ ≡ |φ1,3⟩ T 2|φ2,1⟩ = |φ2,1⟩ (4.44)
T 3|φ1,1⟩ = |0110⟩ ≡ |φ1,4⟩
T 4|φ1,1⟩ = |φ1,1⟩ ,

one observes that there are two translational cycles with length M1 = 4 and M2 = 2 that are not
mixed among each other by T . Within these cycles, the unitary operator T satisfies TMν = 1
such that |φν,Mν+1⟩ = |φν,1⟩. We can therefore define new basis states

|γν,q⟩ = 1√
Mν

Mν∑
m=1

ei 2πq
Mν

(m−1)|φν,m⟩ = 1√
Mν

Mν∑
m=1

ei 2πq
Mν

(m−1)Tm−1|φν,1⟩ , (4.45)

which are eigenstates of T with

T |γν,q⟩ = e−i 2πq
Mν |γν,q⟩ . (4.46)
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Acting with H on these states and using that ∑Mµ

m=1 e−i 2πq
Mν

(m−1) = Mνδq,0 and ⟨φν,q|φν′,q′⟩ =
δqq′δνν′ , we find

H|γ1,q⟩ = −2
√

2Jδq,0|γ2,q=0⟩ + V |γ1,q⟩ (4.47)
H|γ2,q⟩ = −2

√
2Jδq,0|γ1,q=0⟩ . (4.48)

We therefore directly found the three eigenstates |γ1,q=1⟩, |γ1,q=2⟩, |γ1,q=3⟩ with eigenvalue V , one
eigenstate |γ2,q=1⟩ with eigenvalue 0, and the Hamiltonian in the basis {|γ2,0⟩, |γ1,0⟩, |γ2,1⟩, |γ1,1⟩, |γ1,2⟩, |γ1,3⟩},
sorted by the value of q, takes the block diagonal form

H =



0 −2
√

2J 0 0 0 0
−2

√
2J V 0 0 0 0

0 0 0 0 0 0
0 0 0 V 0 0
0 0 0 0 V 0
0 0 0 0 0 V


. (4.49)

Importantly, if we are only interested in the ground state, we only need to construct and diag-
onalize the q = 0 block, which has the size ncycles × ncycles, where ncycles is the number of cycles
– about a factor of L smaller than the size of the Hilbert space. From this, we again recover the
ground state

|Ψ0⟩ = 1√
1 + ζ2

−(V/J)/2

[
ζ−(V/J)√

2
|γ2,0⟩ + |γ1,0⟩

]
. (4.50)

Entanglement entropy under spatial bipartition

We next split the system into two spatial regions A and B of length ℓ = 2 and compute the
entanglement entropy between the two regions. We assume region A contains sites 1 and 2 and
region B the remaining sites 3 and 4, such that we can write the basis states as tensor products
between the basis states of the subregions

|n1n2n3n4⟩ = |n1n2⟩A ⊗ |n3n4⟩B . (4.51)

A basis in the subregions is given by

|θm⟩A ∈ {|00⟩A, |01⟩A, |10⟩A, |11⟩A}
|χm⟩B ∈ {|00⟩B, |01⟩B, |10⟩B, |11⟩B} .

(4.52)

For the ground state (Eq. (4.43))

|Ψ0⟩ = 1√
4 + 2ζ2

−

[
|00⟩A|11⟩B + ζ−|01⟩A|01⟩B + |01⟩A|10⟩B

+ |10⟩A|01⟩B + ζ−|10⟩A|10⟩B + |11⟩A|00⟩B

]
, (4.53)
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the full density matrix is given by ρ = |Ψ0⟩⟨Ψ0|. We obtain the reduced density matrix of
subregion B by tracing out region A:

ρB = TrAρ =
4∑

m=1
⟨θm|A ρ|θm⟩A (4.54)

= (|00⟩B, |11⟩B, |01⟩B, |10⟩B) 1
4 + 2ζ2

−


1 0 0 0
0 1 0 0
0 0 ζ2

− + 1 2ζ−
0 0 2ζ− ζ2

− + 1




⟨00|B
⟨11|B
⟨01|B
⟨10|B

 . (4.55)

Clearly, ρA has the same matrix representation and TrB(ρA) = TrA(ρB) = 1. For computing
the von Neumann entanglement entropy, we need the logarithm of this matrix, which can be
obtained by diagonalizing it. As the one-body reduced density matrix is already block diagonal,
we only need to diagonalize the 2 × 2 block yielding

U = 1√
2

(
−1 1
1 1

)
, D = 1

2(2 + ζ2
−)

(
(ζ− − 1)2 0

0 (ζ− + 1)2

)
(4.56)

such that

ln ρB = U ln(D)U † =


− ln(4 + 2ζ2

−) 0 0 0
0 − ln(4 + 2ζ2

−) 0 0
0 0 ln

∣∣∣∣ ζ2
−−1

4+2ζ2
−

∣∣∣∣ ln
∣∣∣ ζ−+1

ζ−−1

∣∣∣
0 0 ln

∣∣∣ ζ−+1
ζ−−1

∣∣∣ ln
∣∣∣∣ ζ2

−−1
4+2ζ2

−

∣∣∣∣

 . (4.57)

Thus, the von Neumann entanglement entropy is given by

S(ℓ = 2) = −Tr(ρB ln ρB) = −1
4 + 2ζ2

−

{
4ζ− ln

∣∣∣∣ζ− + 1
ζ− − 1

∣∣∣∣+ 2(1 + ζ2
−) ln

∣∣∣∣∣ ζ− − 1
4 + 2ζ2

−

∣∣∣∣∣− 2 ln
[
4 + 2ζ2

−

]}
.

(4.58)

As an alternative approach for computing the entanglement entropy, we consider the Schmidt
decomposition of the ground state (Sec. 4.1):

|Ψ0⟩ =
∑
ab

Cab|θa⟩A|χb⟩B (4.59)

C = 1√
4 + 2ζ2

−


1 0 0 0
0 1 0 0
0 0 ζ− 1
0 0 1 ζ−

 . (4.60)

Because C is symmetric here, we can directly diagonalize the matrix, and find

U =


1 0 0 0
0 1 0 0
0 0 −1/

√
2 1/

√
2

0 0 1/
√

2 1/
√

2

 , D = 1√
4 + 2ζ2

−


1 0 0 0
0 1 0 0
0 0 ζ− − 1 0
0 0 0 ζ− + 1

 . (4.61)
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Hence, using the new basis

(|Θ1⟩A, |Θ2⟩A, |Θ3⟩A, |Θ4⟩A)T =
(

|00⟩A, |11⟩A,
|10⟩A − |01⟩A√

2
,
|10⟩A + |01⟩A√

2

)T

(4.62)

diagonalizes the reduced density matrix

ρB = 1
4 + 2ζ2

−

[
|Θ1⟩A⟨Θ1|A + |Θ2⟩A⟨Θ2|A + (ζ− − 1)2|Θ3⟩A⟨Θ3|A + (ζ− + 1)2|Θ4⟩A⟨Θ4|A

]
.

(4.63)

From the matrix D, we can directly read off the von Neumann entropy

S1(ℓ = 2) = −1
4 + 2ζ2

−

[
2 ln 1

4 + 2ζ2
−

+ (ζ− − 1)2 ln (ζ− − 1)2

4 + 2ζ2
−

+ (ζ− + 1)2 ln (ζ− + 1)2

4 + 2ζ2
−

]
, (4.64)

and the Rényi entropies

Sα(ℓ = 2) = 1
1 − α

ln
[

1
(4 + 2ζ2

−)2

(
2α + (ζ− − 1)2α + (ζ− + 1)2α

)]
. (4.65)

After rearranging terms, one indeed finds that Eq. (4.64) is equivalent to Eq. (4.58) found before.
It becomes apparent that using the Schmidt decomposition makes computing the entanglement
entropy much easier.

Entanglement entropy under particle bipartition

Instead of a spatial bipartition, we next consider a particle bipartition by fixing n = 1 particles
and tracing out the second one. To define the particle bipartition [308], we need to artificially
distinguish individual fermions and therefore write the basis states in anti-symmetrized first
quantization notation, where subscripts indicate the particle label, e.g. |1010⟩ = (|110120⟩ −
|120110⟩)/

√
2. We introduce a new notation |i1i2⟩ where i1 and i2 are the positions of the first

and second fermion, respectively. We use a sign convention (−1)Np where Np is the number of
nearest neighbor permutations required to rank order the positions i1, ..in. In this notation, we
do not explicitly write down minus signs, except when computing matrix elements, e.g. |1010⟩ =
(|13⟩ + |31⟩)/

√
2. Therefore, the ground state, Eq. (4.43), can be written as

|Ψ0⟩ = 1√
4 + 2ζ2

−

1√
2

[
(|34⟩ + |43⟩) + ζ− (|24⟩ + |42⟩) + (|23⟩ + |32⟩) + (|14⟩ + |41⟩)

+ ζ− (|13⟩ + |31⟩) + (|12⟩ + |21⟩)
]
. (4.66)

We could obtain the reduced density matrix from Ψ0(j1, j2) = ⟨j1, j2|Ψ0⟩ by tracing out the
second particle position

ρi1,j1
A =

4∑
i2=1

Ψ∗
0(i1, i2)Ψ0(j1, i2) . (4.67)

However, it is easier to consider the Schmidt decomposition for which we define the bases in A
and B as

|θa⟩A ∈ {|1⟩A, |2⟩A, |3⟩A, |4⟩A}
|χb⟩B ∈ {|1⟩B, |2⟩B, |3⟩B, |4⟩B}

(4.68)
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such that the ground state can be written as

|Ψ0⟩ =
∑
ab

Cab|θa⟩A|χb⟩B (4.69)

C = 1√
4 + 2ζ2

−

1√
2


0 −1 −ζ− −1
1 0 −1 −ζ−
ζ− 1 0 −1
1 ζ− 1 0

 . (4.70)

Here, we reinserted the signs when constructing the coefficient matrix C. Computing the singular
value decomposition C = UΣV T , we obtain the diagonal form of the reduced density matrix (see
Sec. 4.1) with eigenvalues diag(Σ2) = 1

2(4+2ζ2
−)

(
(
√

2 − ζ−)2, (
√

2 − ζ−)2, (
√

2 + ζ−)2, (
√

2 + ζ−)2
)
.

We can therefore directly write down the von Neumann one particle entanglement entropy

S1(n = 1) = −1
4 + 2ζ2

−

[
(
√

2 − ζ−)2 ln
(

(
√

2 − ζ−)2

2(4 + 2ζ2
−)

)
+ (

√
2 + ζ−)2 ln

(
(
√

2 + ζ−)2

2(4 + 2ζ2
−)

)]
(4.71)

and the Rényi entropy of order α

Sα(n = 1) = 1
1 − α

ln
[

2
2α(4 + 2ζ2

−)α

(
(
√

2 − ζ−)2α + (
√

2 + ζ−)2α
)]

. (4.72)

Particle entanglement entropy from the correlation matrix

There is yet another way to compute the one-body reduced density matrix ρA(n = 1) for N
fermions that is based on the correlation function

Cij = ⟨Ψ0|c†
icj |Ψ0⟩ (4.73)

ρA(n = 1) = 1
N

C . (4.74)

For the ground state Eq. (4.43), this yields

ρA(n = 1) = 1
2(4 + 2ζ2

−)


2 + ζ2

− 2ζ− 0 −2ζ−
2ζ− 2 + ζ2

− 2ζ− 0
0 2ζ− 2 + ζ2

− 2ζ−
−2ζ− 0 2ζ− 2 + ζ2

−

 . (4.75)

Due to the translational symmetry, it is even sufficient to only compute the first row, and
diagonalization reduces to a Fourier transform. Determining the correct signs, however, is a
non-trivial problem. For a fermion operator ci or c†

i acting on the state |n1n2n3n3⟩, the sign can
be obtained from the number of occupied sites before site i

sgn(ci, |n1n2n3n4⟩) = (−1)
∑

k<i
nk . (4.76)

The sign of a term in Cij is therefore given by (−1)
∑

k<i
(1−δkj)nk(−1)

∑
k<j

nk . The eigenvalues
of ρA(n = 1), Eq. (4.75), are given by

1
2(4 + 2ζ2

−)
(
(
√

2 − ζ−)2, (
√

2 − ζ−)2, (
√

2 + ζ−)2, (
√

2 + ζ−)2
)
, (4.77)
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Figure 4.4: Entanglement entropy for the simple example of N = 2 fermions on L = 4 lattice
sites (blue). (a) Ground state von Neumann entropies, Eqs. (4.71) and (4.64), under particle
bipartition with n = 1 (upper panel) and under spatial bipartition with ℓ = 2 (lower panel). (b)
Waiting time t dependence of the growth of entanglement entropy after a quantum quench from
free fermions to V/J = 1.0, Eqs. (4.94) and (4.89). For particle entanglement, we subtract the
entropy for free fermions Sff = ln(N). We note that finite size effects dominate for such a small
system. For comparison, we show the numerical results obtained with exact diagonalization for
N = 10, L = 20, n = 1, ℓ = 10 in red.

as obtained before, such that we find the same entanglement entropy Eq. (4.71) and Eq. (4.72).
In Fig. 4.4a, we show the von Neumann entanglement entropy for N = 2 fermions on L = 4

sites as a function of the interaction strength V/J . For the one-particle entanglement entropy,
we additionally subtract the entropy for free fermions Sff = S1(n = 1, V/J = 0) = ln(N). At the
phase transitions V/J = ±2 (vertical black lines), we observe qualitative changes in the slopes
of the entropy (blue). However, a comparison with numerical results for a larger system (red)
shows, that some qualitative features are not visible due to finite size effects in the small system.

Time evolutions after an interaction quantum quench

We next consider an interaction quantum quench, i.e., we start from N = 2 free fermions on
L = 4 lattice sites in the ground state |Ψ0(0)⟩ and at time t = 0, we suddenly switch on
interactions with strength V/J such that V (t)/J = θ(t)V/J . For t < 0 the ground state with
energy −2

√
2J is given by

|Ψ(t ≤ 0;V/J = 0)⟩ = 1
2
√

2

(
|0011⟩ +

√
2|0101⟩ + |0110⟩ + |1001⟩ +

√
2|1010⟩ + |1100⟩

)
,

(4.78)

according to Eq. (4.43) where V/J → 0 corresponds to ζ− →
√

2. After the quench, t > 0, we
compute the time evolution of |Ψ0(t)⟩ using the full eigensystem |Ψα⟩, Eα, Eq. (4.41), of the
post quench Hamiltonian as

|Ψ(t)⟩ =
∑

α

e−iEαt⟨Ψα|Ψ0(0)⟩ |Ψα⟩ . (4.79)
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For this, we need the full eigenstates |Ψα⟩ – at least of the q = 0 block of the Hamiltonian as
|Ψ0(0)⟩ is still orthogonal to the post quench q > 0 block for all V/J . We find the overlaps

⟨Ψi|Ψ0(0)⟩ = 0 for 1 ≤ i ≤ 4 (4.80)

⟨Ψ0|Ψ0(0)⟩ = 1
2
√

2
1√

4 + 2ζ2
−

(4 + 2
√

2ζ−) (4.81)

⟨Ψ5|Ψ0(0)⟩ = 1
2
√

2
1√

4 + 2ζ2
+

(4 + 2
√

2ζ+) (4.82)

and energy eigenvalues E0 = (V −
√

32J2 + V 2)/2, E5 = (V +
√

32J2 + V 2)/2. Hence, the time
evolution of the initial ground state at waiting time t after the quench is given by

|Ψ(t)⟩ = [ξ−(t) + ξ+(t)]
(
|0011⟩ + |0110⟩ + |1001⟩ + |1100⟩

)
+ [ζ−ξ−(t) + ζ+ξ+(t)]

(
|0101⟩ + |1010⟩

)
, (4.83)

where we defined the abbreviations

ξ±(t) = 1
2
√

2
e−i t(V ±

√
32J2+V 2)/2 4 + 2

√
2ζ±

4 + 2ζ2
±

(4.84)

ζ± = V ∓
√

32J2 + V 2

4J . (4.85)

Waiting time dependence of spatial entanglement entropy

Equipped with the time evolution of the state after the quench, we can compute the waiting time
dependence of the spatial entanglement entropy by first constructing the Schmidt decomposition
(with basis Eq. (4.52))

|Ψ(t)⟩ =
∑
ab

Cab|θa⟩A|χb⟩B (4.86)

C =


0 ξ− + ξ+ 0 0

ξ− + ξ+ 0 0 0
0 0 ζ−ξ− + ζ+ξ+ ξ− + ξ+
0 0 ξ− + ξ+ ζ−ξ− + ζ+ξ+

 . (4.87)

The magnitudes of squared singular values of the coefficient matrix are given by

diagΣ2 =
(
|ξ−(ζ− − 1) + ξ+(ζ+ − 1)|2 , |ξ+ + ξ−|2 , |ξ+ + ξ−|2 , |ξ−(ζ− + 1) + ξ+(ζ+ + 1)|2

)
,

(4.88)
such that we find the entropies

S1(t; ℓ = 2) = −
[
4 |ξ+ + ξ−|2 ln |ξ+ + ξ−|

+ 2 |ξ−(ζ− − 1) + ξ+(ζ+ − 1)|2 ln |ξ−(ζ− − 1) + ξ+(ζ+ − 1)|

+ 2 |ξ−(ζ− + 1) + ξ+(ζ+ + 1)|2 ln |ξ−(ζ− + 1) + ξ+(ζ+ + 1)|
]
, (4.89)

Sα(t, ℓ = 2) = 1
1 − α

ln
[
2 |ξ+ + ξ−|2α

+ |ξ−(ζ− − 1) + ξ+(ζ+ − 1)|2α

+ |ξ−(ζ− + 1) + ξ+(ζ+ + 1)|2α
]
. (4.90)
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Waiting time dependence of particle entanglement entropy

For the particle bipartition, the Schmidt decomposition takes the form (basis: Eq. (4.68))

|Ψ(t)⟩ =
∑
ab

Cab|θa⟩A|χb⟩B (4.91)

C =


0 −(ξ+ + ξ−) −(ζ−ξ− + ζ+ξ+) −(ξ+ + ξ−)

ξ+ + ξ− 0 −(ξ+ + ξ−) −(ζ−ξ− + ζ+ξ+)
ζ−ξ− + ζ+ξ+ ξ+ + ξ− 0 −(ξ+ + ξ−)
ξ+ + ξ− ζ−ξ− + ζ+ξ+ ξ+ + ξ− 0

 . (4.92)

The coefficient matrix has singular values with squared magnitudes given by

diagΣ2 = 1
2

( ∣∣∣ξ−(ζ− −
√

2) + ξ+(ζ+ −
√

2)
∣∣∣2 , ∣∣∣ξ−(ζ− −

√
2) + ξ+(ζ+ −

√
2)
∣∣∣2 ,

∣∣∣ξ−(ζ− +
√

2) + ξ+(ζ+ +
√

2)
∣∣∣2 , ∣∣∣ξ−(ζ− +

√
2) + ξ+(ζ+ +

√
2)
∣∣∣2) , (4.93)

such that the one-particle entanglement entropy is

S1(t;n = 1) = −
[ ∣∣∣ξ−(ζ− −

√
2) + ξ+(ζ+ −

√
2)
∣∣∣2 ln

(1
2
∣∣∣ξ−(ζ− −

√
2) + ξ+(ζ+ −

√
2)
∣∣∣2)

+
∣∣∣ξ−(ζ− +

√
2) + ξ+(ζ+ +

√
2)
∣∣∣2 ln

(1
2
∣∣∣ξ−(ζ− +

√
2) + ξ+(ζ+ +

√
2)
∣∣∣2)] (4.94)

Sα(t;n = 1) = 1
1 − α

ln
[

1
2α−1

∣∣∣ξ−(ζ− −
√

2) + ξ+(ζ+ −
√

2)
∣∣∣2α

+ 1
2α−1

∣∣∣ξ−(ζ− +
√

2) + ξ+(ζ+ +
√

2)
∣∣∣2α
]

(4.95)

In Fig. 4.4b, we show the waiting time dependence of the increase in spatial (Eq. (4.94)) and
particle entanglement entropy (Eq. (4.89)) after the quench.

Unfortunately, finite size effects dominate for such small systems such that many important
features are not visible in the results for N = 2. We therefore additionally plot exact diago-
nalization results for a much larger system with N = 10 particles on L = 20 lattice sites (red).
From this it becomes apparent that the initial increase for the spatial entanglement entropy is
much slower, ∝ t, compared to the particle entanglement [308]. Nevertheless, the calculations
shown in this section can be straightforwardly expanded to larger systems and therefore allows
getting insight into the methods implemented in the code [474] that is used for the numerical
simulations.

4.3 Mapping onto an effective low-energy Luttinger liquid model
This section closely follows the publication: Matthias Thamm, Harini Radhakrishnan, Hatem
Barghathi, Bernd Rosenow, and Adrian Del Maestro, One-particle entanglement for one dimen-
sional spinless fermions after an interaction quantum quench, Physical Review B 106, 165116
(2022) [327].
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4.3.1 One-particle entanglement entropy in the equilibrium case

We start with deriving an analytical result for the one body reduced density matrix (1-RDM)
ρ1(x, 0) for the corresponding LL model of length L. Here, we measure lengths in units of
the lattice constant. From the LL 1-RDM, we compute the one-particle entanglement entropy,
and then compare with numerical results obtained for the J-V model. In this phase with
intermediate interaction strength, observables are dominated by low energy excitations in the
form of density fluctuations around a static average density background. Such fluctuations of
the density are bosonic in nature, which allows us to describe the low energy physics with an
effective Hamiltonian [163] in bosonization notation after linearizing the dispersion around the
Fermi points

H =
∑
q ̸=0

[ω0(q) +m(q)] b†
qbq + 1

2
∑
q ̸=0

g2(q)
(
bqb−q + b†

qb
†
−q

)
, (4.96)

where b†
q (bq) are bosonic creation (annihilation) operators with [bq, b

†
q′ ] = δq,q′ , ω0(q) = vF |q|.

We work in units where ℏ = 1 and measure lengths in units of the lattice constant. The
sum is taken over discrete momenta qn = n2π/L with n ∈ Z \ {0}. The nearest neighbor
coupling in the lattice model has a finite interaction range, which we take into account by
assuming that g2(q) and m(q) vanish for momenta qε ≫ 1 larger than an interaction cutoff ε
(for the detailed implementation of the cutoff procedure see Eq. (4.118)). For small |q|, the
parameters have a linear q dependence, m(q) = g4|q|, g2(q) = g2|q|, where g2 and g4 can be
related to the parameters of the J-V model as discussed below. As ω0(q) is the dispersion for
free fermions, the terms g2 and g4 are zero in this case. By comparing the final bosonization
results with numerical simulations of the J-V chain the interaction cutoff can be unambiguously
determined. The Hamiltonian Eq. (4.96) is quadratic in the boson operators and can therefore
be solved analytically. In order to compute the one body density matrix, we use refermionization
to express the fermionic field operators ψα(x) in terms of bosonic fields as

ψα(x) = χα√
2πηe

i (φ0,α+α 2πx
L

Nα)e−iαϕα(x) (4.97)

ϕα(x) = −
∑
q>0

√
2π
qL
e−qη/2

[
eiαqxbαq + e−iαqxb†

αq

]
, (4.98)

where α = (−)1 indicates right (left) moving fermions, χα = eαi π
2 N−α are Klein factors with

χ†
αχα = 1, η is a short distance cutoff measured in units of the lattice spacing (not to be confused

with the interaction cutoff ε), and ϕα(x) are Hermitian operators [162, 326]. Here, Nα is the
particle number operator, and φ0,α, Nα are zero mode operators satisfying the commutation
relation [Nα, φ0,α] = i . The one-body density matrix can be obtained from the one point
correlation functions for left and right movers in terms of the fermion operators Eq. (4.97) via

ρ1(x, 0) = 1
N

[
e−ikF xC+(x, 0) + eikF xC−(x, 0)

]
(4.99)

Cα(x, 0) = ⟨ψ†
α(x)ψα(0)⟩ (4.100)

with Fermi momentum kF = πN/L. To relate the results for the effective LL model to numerical
results of the J-V model at half filling, we use Bethe ansatz results obtained via a mapping to
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the spin-1/2 XXZ chain [326]

K ≡
√
vF + g4 + g2
vF + g4 − g2

= π

2 cos−1
(

−V
2J

) (4.101)

v

J
= 1

1 − (2K)−1 sin
[
π(1 − (2K)−1)

]
, (4.102)

where K is the LL interaction parameter, and v|q| is the dispersion relation for low energy
excitations. We use the above expressions for v and K in the diagonalized version of the LL
Hamiltonian Eq. (4.96) to parametrize the interaction strength and velocity.

The Hamiltonian Eq. (4.96) can be diagonalized using a Bogoliubov transformation

aq = cosh(θq)bq + sinh(θq)b†
−q

a†
−q = sinh(θq)bq + cosh(θq)b†

−q ,
(4.103)

in contrast to simply diagonalizing the Hamiltonian in a basis (b†
q, b−q) (as one would do for a

fermionic BCS Hamiltonian), since this would not preserve the bosonic commutation relations
[478, 479]. The choice of coefficients in Eq. (4.103) guarantees bosonic commutation relations
[aq, a

†
q′ ] = δq,q′ , [aq, aq′ ] = 0, [a†

q, a
†
q′ ] = 0, and one finds that

∑
q

f(|q|)
a†

qaq

cosh2(θq) + sinh2(θq)

=
∑

q

f(|q|)b†
qbq + f(|q|) sinh(θq) cosh(θq)

sinh2(θq) + cosh2(θq)

(
bqb−q + b†

qb
†
−q

)
. (4.104)

Choosing f(|q|) = ω0(q) +m(q) and tanh(2θq) = g2(q)/f(|q|), which in the limit q → 0 is given
by g2/(vF + g4), the Hamiltonian becomes diagonal

H =
∑

q

ω(q)a†
qaq (4.105)

ω(q) =
√

(ω0(q) +m(q))2 − g2(q)2 ≡ v|q| . (4.106)

This allows us to evaluate the ground state expectation values

⟨a†
qaq′⟩ = δqq′fb(q) = δqq′ − ⟨aqa

†
q′⟩ (4.107)

⟨aqaq′⟩ = 0 = ⟨a†
qa

†
q′⟩ . (4.108)

where fb(q) is the Bose-Einstein distribution function with energies ω(q).
Using Eq. (4.97) in Eq. (4.99) together with the Baker-Hausdorff formula eAeB = eA+Be[A,B]/2,

the one point correlation function becomes

Cα(x, 0) = 1
2πηe

α πx
L

[Nα,φ0,α]e
1
2 [ϕα(x),ϕα(0)]⟨eiα(ϕα(x)−ϕα(0))⟩ . (4.109)

Here, we use the boson cumulant formula ⟨eiα(ϕα(x)−ϕα(0))⟩ = e− 1
2 ⟨(ϕα(x)−ϕα(0))2⟩, which is valid in

equilibrium for a quadratic Hamiltonian, for any linear combination of bosons ∑nAnbn +Bnb
†
n.

In addition,
1
2[ϕα(x), ϕα(0)] = 1

2
∑
q>0

2π
qL

[
e−qi (−iη−αx) − e−iq(−iη+αx)

]
. (4.110)
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Due to the regularization η, we can perform the q sum, where we use that for any complex
number z with Im[z] > 0 holds [162]

∑
q>0

2π
qL
e−iqz = − ln

[
1 − e−i 2π

L
z
]

= − ln
[
2ie−i π

L
z sin

(
π

L
z

)]
. (4.111)

One needs to be careful when using logarithm laws with complex numbers, as we need to stay
on the main branch of the logarithm: ln(z) = ln(|z|) + i arg(z). With this in mind, we find for
Eq. (4.110)

1
2[ϕα(x), ϕα(0)] = 1

2
{

− ln
[
2ie−i π

L
(−αx−iη)sin

(
π

L
(αx+ iη)

)]
+ ln

[
−2iei π

L
(−αx+iη)sin

(
π

L
(αx− iη)

)]}
(4.112)

= −1
2 ln

∣∣∣∣∣sin
(

π
L (αx+ iη)

)
sin
(

π
L (αx− iη)

) ∣∣∣∣∣− i arg
[
sin
(
π

L
(αx+ iη)

)]
− i π2 − i π

L
αx .

(4.113)

In the limit η/x → 0, the arg term is 0 for αx > 0 and ±π if αx < 0 such that

lim
η/x→0

e
1
2 [ϕα(x),ϕα(0)] = −sgn(αx)ie−i π

L
αx . (4.114)

In order to evaluate the expectation value in Eq. (4.109) by using the boson cumulant formula,
we need the expectation values ⟨ϕα(x)ϕα(x′)⟩. To compute them by utilizing the expectation
values Eq. (4.107), we insert the inverse of the transformation Eq. (4.103) into the expression
for ϕα(x), Eq. (4.98), such that

ϕα(x) = −
∑
q>0

√
2π
qL
e−qη/2

[
eiαqx

(
cosh(θq)aq − sinh(θq)a†

−q

)
+ e−iαqx

(
cosh(θq)a†

q − sinh(θq)a−q

) ]
. (4.115)

Using the expectation values of pairs for aq operators with ⟨a†
qaq′⟩ = δqq′fb(q), we find

⟨ϕα(x)ϕα(x′)⟩ =
∑
q>0

2π
qL
e−qη

{
eiα(x−x′)

[
(1 − fb(q)) cosh2(θq) + fb(q) sinh2(θq)

]
+ e−iα(x−x′)

[
fb(q) cosh2(θq) + (1 − fb(q)) sinh2(θq)

] }
. (4.116)

At zero temperature, the Bose-Einstein distribution becomes fb(q > 0) = 0, such that we find
for the exponent appearing in the correlation function

−1
2⟨(ϕα(x) − ϕα(0))2⟩ = 1

2
∑
q>0

2π
qL
e−qη

(
cosh2(θq) + sinh2(θq) − 1 + 1

)
×
[
−2 + eiαqx + e−iαqx

]
. (4.117)

Here, we added a zero (−1 + 1) to separate the free term Eq. (4.111) from the interaction term
of the correlation function. Including the −1 in the interaction term ensures that it vanishes in
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the non-interacting case where θq → 0. We now precisely define the interaction cutoff ε by using
it to describe the q dependence of the interaction term as [163]

cosh2(θq) + sinh2(θq) − 1 ≈ K +K−1 − 2
2 e−ε|q| ≡ γ2

eqe
−ε|q| , (4.118)

where now K = limq→0 e
2θq and γeq are independent of q. While ε appears to be a free parameter

of the model, we will show later that for not too strong interactions, a fixed value can be chosen
such that the analytic calculation reproduces numerical results from exact diagonalization and
DMRG for a range of interaction strengths. In addition, ε regularizes the interaction part of the
correlation function and therefore allows us to take the limit ηq → 0 when keeping εq finite.

At zero temperature, we use Eq. (4.111) to perform the q sums in Eq. (4.117), and find

F 0
α(x; η) ≡ −1

2⟨(ϕα(x) − ϕα(0))2⟩0 (4.119)

= 1
2
∑
q>0

2π
qL
e−iq(−iη)

[
−2 + eiαqx + e−iαqx

]
(4.120)

= ln
[
−2ie− π

L
η sin

(
π

L
iη
)]

− 1
2 ln

[
2ie−i π

L
(αx−iη)sin

(
π

L
(αx− iη)

)]
− 1

2 ln
[
2ie−i π

L
(αx+iη)sin

(
π

L
(αx+ iη)

)]
, (4.121)

such that the interaction term can be obtained from the free one by multiplying with a factor
γ2

eq while changing the regularization to include the interaction cutoff, i.e. η → η + ε,

− 1
2
[
⟨(ϕα(x) − ϕα(0))2⟩ − ⟨(ϕα(x) − ϕα(0))2⟩0

]
= γ2

eqF
0
α(x; η + ε) . (4.122)

We use this and the translational invariance of the expectation value, i.e. ⟨ϕα(x)ϕα(x′)⟩ =
⟨ϕα(x − x′)ϕα(0)⟩, to obtain the expectation value that appears in the one point correlation
function

e− 1
2 ⟨(ϕα(x)−ϕα(0))2⟩ =

−i sin
(

π
L iη

)∣∣sin ( π
L (αx+ iη)

)∣∣
[

i sin
(

π
L i (η + ε)

)
|sin

(
π
L (αx+ i (η + ε))

)
|

]γ2
eq

. (4.123)

Using Eq. (4.114) and Eq. (4.123) in the expression for the correlation function Eq. (4.109),
taking the limit η/x, η/L → 0, where sin(πiη/L)/η → πi/L, i sin(i b) = −| sin(i b)|, and√

sin(b+ i c) sin(−b+ i c) = i | sin(b+ i c)|, we find

Cα(x, 0) = iπ
2πL

sgn(αx)∣∣sin ( π
L(αx)

)∣∣
∣∣∣∣∣ sin

(
π
L iε

)
sin
(

π
L (αx+ iε)

) ∣∣∣∣∣
γ2

eq

(4.124)

= αi
2 sin(πx/L)

∣∣∣∣∣ sin(πiε/L)
sin
(

π
L (x+ iε)

) ∣∣∣∣∣
γ2

eq

. (4.125)

Using that α = −1 for left movers and α = +1 for right movers, we obtain the full one body
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density matrix Eq. (4.99) [163]

ρ1(x, 0) = ρ0
1(x, 0)

∣∣∣∣∣ sin(πiε/L)
sin
(

π
L (x+ iε)

) ∣∣∣∣∣
γ2

eq

(4.126)

ρ0
1(x, 0) = 1

N

sin(kFx)
L sin(πx/L) . (4.127)

Here, Eq. (4.127) is equivalent to the exact one body density matrix for non-interacting lattice
fermions [327].

Because x is a relative coordinate, and we are interested in the short distance behavior that
dominates the Fourier transform and the entropy, we consider the limit of large L with x/L ≪ 1
and neglect terms of order O(x/L). For the leading term L sin(πx/L) → πx we then arrive at
the following expression for the one body density matrix:

ρ1(x, 0) = sin(kFx)
Nπx

(
ε2

x2 + ε2

)γ2
eq/2

+ O
(
x

L

)
, (4.128)

which is normalized such that Lρ1(0, 0) = 1 where kF = πN/L. Because the particle number
N appears explicitly in the normalization, we cannot directly take the thermodynamic limit.
Therefore, we first compute the entropy density, and only then take the thermodynamic limit
1/N → 0. To diagonalize ρ1(x, 0), we compute the Fourier transform which yields

ρ1(q) =
∫ ∞

−∞
dx ρ1(x, 0)e−iqx

=
Γ[1

2(−1 + γ2
eq)]

√
π

2πNΓ(γ2
eq/2) [f1(q̃) + f1(−q̃)]

−
2Γ(−γ2

eq) sin(πγ2
eq/2)

2πN [f2(q̃) + f2(−q̃)] (4.129)

where q̃ = εq, k̃F = εkF , L/(2π)
∫
dq ρ1(q) = 1, and

f1(q̃) = (k̃F + q̃) 1F2

[{1
2

}
,

{
3
2 ,

3 − γ2
eq

2

}
,
1
4(k̃F + q̃)2

]

f2(q̃) = (k̃F + q̃)|k̃F + q̃|γ2
eq−1

1F2

[{
γ2

eq
2

}
,

{
1 + γ2

eq
2 ,

2 + γ2
eq

2

}
,
1
4(k̃F + q̃)2

]
.

Here, pFq are the generalized hypergeometric functions. From the Fourier transformed one
body density matrix ρ1(q) we obtain the fermionic distribution function as Nρ1(q), which in
the absence of interactions γeq = 0 reduces to a step function θ(|q| − kF ), and in presence of
interactions decays like a power law (see Fig. 4.5).

Using that the 1-RDM is diagonal in Fourier space, we can directly compute the one-particle
Rényi entanglement entropy

Sα = 1
1 − α

ln
(
N

2kF

∫
dq ρ1(q)α

)
(4.130)

S1 = − N

2kF

∫
dq ρ1(q) ln ρ1(q) , (4.131)
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Figure 4.5: Distribution function Nρ1(q), Eq. (4.129), obtained from the x/L ≪ 1 limit of
the one body reduced density matrix in the Luttinger liquid model for a fixed interaction cutoff
ε = 0.84 and various interaction strengths V/J . Without interactions, γeq = 0, the distribution
function is a step function up at the Fermi momenta kF = ±π/2.

where α = 1 is the von Neumann entropy, and the factor N/(2kF ) = (2π/L)−1 originates from
turning the sums into integrals in the limit of large L. When comparing to numerical results,
we additionally subtract the entropy for free fermions Sff .

In the absence of interactions, γeq = 0, the one-body density is given by ϱ0
1(x, 0) in Eq. (4.127).

Performing the Fourier transform, we recover the expected zero temperature distribution func-
tion

Nϱ0
1(q) = θ(|q| − kF ) . (4.132)

Using this expression in Eq. (4.131), one finds the free fermion von Neumann entropy [311, 480–
485]

Sff = − N

2kF

∫ kF

−kF

dq
1
N

ln 1
N

= ln(N) . (4.133)

The same one-particle entanglement entropy is obtained for any other Rényi power α > 1 [483],
which can be seen from Eq. (4.130)

Sα,ff = 1
1 − α

ln
(
N

2kF

∫ kF

−kF

dq
1
Nα

)

= 1
1 − α

ln 1
Nα−1

= ln(N) = Sff . (4.134)

4.3.2 Time evolution of the one-body density matrix after a quantum quench
We next consider free fermions for times t < 0 and suddenly turn on the V/J interaction at
t = 0, so that the J-V Hamiltonian for this quench is given by

H = −J
L∑

i=1
(c†

i+1ci + c†
ici+1) + V (t)

L∑
i=1

nini+1 , (4.135)

206



with V (t) = θ(t)V . This allows us to study the growth and spread of entanglement entropy
after the quench by considering the difference Sα − ln(N), in which the entropy of free fermions
is subtracted. We again start by computing the one body density

ρ1(x, 0; t) = 1
N

[
e−ikF xC+(x, 0; t) + eikF xC−(x, 0; t)

]
(4.136)

Cα(x, 0; t) = ⟨ψ†
α(x, t)ψα(0, t)⟩ (4.137)

for the quench in the LL model

H =
∑

q

[ω0(q) +m(q, t)] b†
q(t)bq(t) + 1

2
∑

q

g2(q, t)
(
bq(t)b−q(t) + b†

q(t)b†
−q(t)

)
, (4.138)

where in this case g2(q, t) = θ(t)g2(q) = θ(t)g2|q|, m(q, t) = θ(t)g4|q|, and again, ω0(q) = vF |q|.
Analogous to the equilibrium case, we can diagonalize the Hamiltonian for any fixed time t > 0
using the same Bogoliubov transformation Eq. (4.103) with tanh(2θq) = g2(q)/(ω0(q) + g4(q)),
but now the operators aq(t) are time dependent. For t > 0 this yields the diagonal Hamiltonian

H =
∑

q

v|q|a†
q(t) aq(t) (4.139)

v =
√

(vF + g4)2 − g2
2 . (4.140)

Since the Hamiltonian for t > 0 is diagonal in the aq operators, we can use the trivial time
evolution

aq(t) = e−iv|q|taq . (4.141)

Substituting this time evolution into the inverse of the transformation Eq. (4.103), we obtain
the time evolution of the bq operators as [163]

bq(t) = wq(t) bq + uq(t) b†
−q (4.142)

wq(t) = cos(v|q|t) − i sin(v|q|t) cosh(2θq)
uq(t) = −i sin(v|q|t) sinh(2θq) .

(4.143)

A very important conceptual difference to the equilibrium case is that the Hamiltonian is not
diagonal in the aq operators for t → 0−, and therefore we cannot easily write down expectation
values of the aq operators. However, since H is diagonal in the bq operators for t → 0−, we can
use bq(t = 0) ≡ bq and

⟨b†
qbq′⟩ = fb(q)δq,q′

⟨bqbq′⟩ = 0 = ⟨b†
qb

†
q′⟩ .

(4.144)

This together with the more complicated time evolution of the bq operators Eq. (4.142) gives rise
to a different exponent γ ≥ γeq as we show in the following. Up to Eq. (4.114) the calculation
for the correlation function is analogous to the equilibrium case such that

Cα(x, t) = eα i πx
L

2πη e
1
2 [ϕα(x,t),ϕα(0,t)]e− 1

2 ⟨(ϕα(x,t)−ϕα(0,t))2⟩ . (4.145)
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The exponential e 1
2 [ϕα(x,t),ϕα(0,t)] is unchanged by the time dependence and is still given by

Eq. (4.114). In order to evaluate ⟨ϕα(x, t)ϕα(0, t)⟩, we use the time evolution of the bq operators
from Eq. (4.142) in the definition of the bosonic fields

ϕ(x, t) = −
∑
q>0

√
2π
qL
e− qη

2 [eiαqx(wq(t)bα,q + uq(t)b†
α,−q)

+e−iαqx(w∗
q(t)b†

α,q + u∗
q(t)bα,−q)] . (4.146)

Analogous to the equilibrium case, we use ⟨b†
qbq⟩ = fb(q), to obtain

⟨ϕ(x, t)ϕ(x′, t)⟩ = −
∑
q>0

2π
qL
e−qη

{
eiαq(x−x′)

[
(1 − fb(q))|wq(t)|2 + fb(q)|uq(t)|2

]
+ e−iαq(x−x′)

[
(1 − fb(q))|uq(t)|2 + fb(q)|wq(t)|2

] }
. (4.147)

We again consider the zero temperature case with fb(q > 0) = 0. This allows us to rewrite the
desired exponential term from Eq. (4.145) as follows

−1
2⟨(ϕα(x, t) − ϕα(0, t))2⟩ =

∑
q>0

2π
qL
e−qη

(
|wq(t)|2 + |uq(t)|2

) [
−1 + 1

2e
iαqx + 1

2e
−iαqx

]
.

(4.148)

Using |wq(t)|2 + |uq(t)|2 = cosh2 (2θq) − cos (2v|q|t) sinh2 (2θq), the above becomes

−1
2⟨(ϕα(x, t) − ϕα(0, t))2⟩ =

∑
q>0

2π
qL
e−qη

(
2 sin2 (v|q|t) sinh2 (2θq) + 1

)
×
[
−1 + 1

2e
iαqx + 1

2e
−iαqx

]
. (4.149)

We define the momentum dependence of interaction parameter in the quench case as

sinh2(2θq) ≈
(
K −K−1

2

)2

e−ε|q| ≡ γ2 e−ε|q| . (4.150)

The free term ⟨(ϕα(x, t) − ϕα(0, t))2⟩0 is equivalent to that in Eq. (4.121). To compute the
interaction term, we need to compute the q-sum, where we can use Eq. (4.111) such that

exp

κ∑
q>0

2π
L
e−iqz(x) sin2 (v|q|t)

 =
[sin

(
π
L (z(x) − 2v|q|t)

)
sin
(

π
L (z + 2v|q|t)

)
]κ/4

sin
(

π
Lz(x)

)κ/2 . (4.151)

The interaction term is then found to be

e− 1
2 [⟨(ϕα(x,t)−ϕα(0,t))2⟩−⟨(ϕα(x,t)−ϕα(0,t))2⟩0] (4.152)

=
∣∣∣∣∣ sin

(
π
L (i (η + ϵ))

)
sin
(

π
L (αx+ i (η + ϵ))

) ∣∣∣∣∣
γ2

×
∣∣∣∣∣sin

(
π
L (αx+ 2vt+ i (η + ϵ))

)
sin
(

π
L (2vt+ i (η + ϵ))

) ∣∣∣∣∣
γ2/2

×
∣∣∣∣∣sin

(
π
L (αx− 2vt+ i (η + ϵ))

)
sin
(

π
L (−2vt+ i (η + ϵ))

) ∣∣∣∣∣
γ2/2

. (4.153)
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Figure 4.6: Thermodynamic limit growth of the 1-particle von Neumann entanglement entropy
as a function of the interaction strength V/J after the quantum quench at t = 0 obtained from
the Luttinger liquid steady state limit (red, dashed line) in Eq. (4.157). Blue circles show the
result of finite size scaling of the plateau values shown in the inset. The inset depicts the first
plateau of the entanglement entropy obtained by numerical integration from the time dependent
one body density matrix in Eq. (4.154) for several system sizes L = 2N . We observe that the
plateau size increases linearly with L while the region where the entropy increases to the plateau
and the timescale where it drops from the plateau is independent of the system length. In the
thermodynamic limit, the average of the entropy and the plateau values agree with each other.
The main panel demonstrates that the plateau value of the entropy coincides with the entropy
obtained from the steady state result for the 1-RDM in the thermodynamic limit.

Inserting the above and Eq. (4.113) into Eq. (4.145), and taking the limit η/L → 0, yields the
correlation function for α-movers. Adding together the right and left movers as in Eq. (4.126)
gives the final expression [163]

ρ(x, t) = ρ0
1(x, 0)

∣∣∣∣ sin(πiε/L)
sin(π(x+ iε)/L)

∣∣∣∣γ2 ∣∣∣∣∣sin
(

π
L(x− 2vt+ i ϵ)

)
sin
(

π
L(x+ 2vt+ i ϵ)

)
sin
(

π
L(−2vt+ i ϵ)

)
sin
(

π
L(2vt+ i ϵ)

) ∣∣∣∣∣
γ2/2

.

(4.154)

4.3.3 Steady state after quench

The 1-RDM consists of the free part ρ0
1(x, 0) Eq. (4.127), the interaction factor with exponent

γ2 ̸= γ2
eq, and a time dependent oscillatory term with exponent γ2/2. To obtain the one-particle

entanglement entropy with Eq. (4.130), we need to numerically compute the Fourier transform
of Eq. (4.154). However, we can already extract information about the time dependence from
the real space correlation function. We find that the entropy obtained from the LL correlation
function is strictly periodic with period ∆t = L/(2v) and plateaus centered around tn,plateau =
L/(2v)(n + 1/2), n ∈ N0 (see inset of Fig. 4.6) corresponding to times when all sine functions
turn into cosine functions in Eq. (4.154). Because the size of the plateaus is proportional to L
and the timescale for increase and decrease from the plateaus is independent of L (inset Fig. 4.6),
the average converges to the plateau value in the thermodynamic limit. We compute the plateau
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values for many system lengths by numerically Fourier transforming Eq. (4.154), evaluating the
entanglement entropy at t0,plateau, and performing finite size scaling to show the thermodynamic
limit averaged entropies with blue circles in Fig. 4.6.

The steady state estimate of the entropy can also be analyzed by generalizing the scaling form

Sα(N,V/J) = ln(N) +Aα(V/J) + O(N−λ) , (4.155)

to include the post-quench waiting time:

Aα(V/J, t) = lim
N→∞

Sα(N,V/J, t) − ln(N) . (4.156)

Its steady state value can be obtained from the 1-RDM in the x/L ≪ 1 limit (dashed, red line
in Fig. 4.6) obtained from Eq. (4.154)

ρt→∞(x) = sin(kFx)
Nπx

(
ε2

x2 + ε2

)γ2/2

+ O
(
x

L

)
, (4.157)

similar to the equilibrium case Eq. (4.126) and Eq. (4.128) with γeq replaced by γ.

4.4 Numerical computations with exact diagonalization

To study how well the low energy field theory approach describes the J-V model in Eq. (4.13) in
the LL phase and to fix the interaction cutoff, we perform a series of numerical calculations on
finite sized systems. The software needed to reproduce all results is open source and has been
made available online [474].

We first utilize exact diagonalization (ED), where we construct all
(2N

N

)
basis states for a

lattice with L = 2N sites and N fermions to determine the corresponding matrix elements of
Eq. (4.13) and construct the Hamiltonian as a sparse matrix. We then use the Lanczos algorithm
[486] to determine the ground state |Ψ0⟩, from which the full density matrix can be determined
as ρ = |Ψ0⟩⟨Ψ0|. The reduced one-body density matrix is obtained by fixing one coordinate
in the anti-symmetrized many particle wave function Ψ0(i1, ..., iN ) = ⟨i1, ..., iN |Ψ0⟩ and tracing
out the other N − 1 particle positions [161]

ρi1,j1
1 =

∑
i2,...,iN

Ψ∗
0(i1, i2, ..., iN )Ψ0(j1, i2, ..., iN ) . (4.158)

From the reduced density matrix, one can then obtain the von Neumann and Rényi entropies
according to Eq. (4.1), S1 = −Tr [ρA ln ρA], and Eq. (4.2), Sα = 1

1−α ln Tr [ρα
A], respectively.

For the time evolution after the quench, we first obtain the ground state in the pre-quench case
t < 0 for free fermions |Ψ0(0)⟩ and then evolve the state using unitary time evolution

|Ψ(t)⟩ = e−i tH |Ψ0(0)⟩ =
∑

α

e−iEαt⟨Ψα|Ψ0(0)⟩|Ψα⟩ , (4.159)

where |Ψα⟩ and Eα are the full set of eigenstates and eigenvalues of the post-quench Hamiltonian,
respectively. From the density matrix |Ψ(t)⟩⟨Ψ(t)|, we can then first obtain the reduced density
matrix and then the entanglement entropy as before.

The advantage of ED is that by constructing a full basis of the Hilbert space, we obtain exact
results without any approximations and can thus also use ED to benchmark other approximate
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methods. Here, we would like to consider systems as large as possible; however, unfortunately
the number of basis states is proportional to

(L
N

)
and thus grows incredibly fast with the size of

the system at half-filling L = 2N . A naive implementation as described so far would only allow
us to obtain one particle entanglement entropies for the ground state of systems up to N = 12
fermions on L = 24 lattice sites within any reasonable time (on the order of weeks) and 1 TB
of system memory. However, we can use a series of tricks to reduce the computational resource
requirements that ultimately allows us to consider the one-particle entanglement entropy for the
ground state of up to N = 19 fermions on L = 38 lattice sites and even the time evolution after
an interaction quench for up to L = 26 sites using ED. In the following, we describe the most
important technical aspects: On a periodic lattice at half-filling, we (i) use three symmetries to
reduce the size of the matrix from which we obtain the ground state by about a factor 1/(4L), (ii)
efficiently implement the basis as an integer fermion basis, and (iii) for obtaining the spectrum
of the 1-RDM, construct the Schmidt decomposition to find the singular values of the 1-RDM.

4.4.1 Symmetries

Translational symmetry

The most important symmetry is the translational symmetry T which commutes with the
Hamiltonian of the J-V model Eq. (4.13), i.e. [T , H] = 0, due to the (anti-) periodic bound-
ary conditions. Here, the unitary operator T moves each fermion one site to the right, e.g.
T |01100101⟩ = |10110010⟩. For any occupation number basis state |ϕj⟩ at half-filling, the re-
sulting state T |ϕj⟩ is another state that is also in the set of basis states. Applying T multiple
times to |ϕj⟩, the states T k|ϕj⟩ for k = 0, 1, ...,Mν − 1 with 2 ≤ Mµ ≤ L define a symmetry
cycle ν of Mν elements. This allows us to group the whole basis into translation symmetry
cycles |φν,m⟩ (m = 1, ...Mν), where we denote the state |φν,1⟩ as the leader of cycle ν, and
|φν,m+1⟩ = T |φν,m⟩ with |φν,Mν+1⟩ = T |φν,1⟩. Due to the construction, the cycles cannot be
mixed among each other by application of T , and for each cycle ν of Mν basis states, we can
define a number of Mν new orthonormal basis states as linear combinations

|γν,q⟩ = 1√
Mν

Mν∑
m=1

ei2πq(m−1)/MνTm−1|φν,1⟩ with q = 1, 2, ...,Mν . (4.160)

These states are eigenstates of T with T |γν,q⟩ = e−i2πq/Mν |γν,q⟩. As H and T commute, the
Hamiltonian cannot mix between |γν,q⟩ with different q such that it becomes block diagonal in
the representation of the basis {|γν,q⟩} sorted by the value of q. The main advantage comes from
the fact that the ground state lies in the q = 0 block [487] and that the eigenstates of blocks
with different q are orthogonal to each other. We therefore only need to construct and store this
single block of the Hamiltonian with q = 0. The ground state is then obtained from the q = 0
block stored in a sparse matrix format using the Lanczos algorithm, and for the time evolution
after the quench, it is sufficient to find all eigenstates |Ψα,q=0⟩ and eigenvalues Eα,q=0 of the
dense q = 0 block of the Hamiltonian (as ⟨Ψ0(0)|Ψα,q>0⟩ = 0). This therefore reduces the size
of the problem by about a factor of 1/L, as L is the typical size of a cycle.

Particle-hole symmetry

At half filling, the particle-hole operator P , which flips all occupation numbers P |101001⟩ =
|010110⟩ is another symmetry of the Hamiltonian which also commutes with the translation
operator, [T, P ] = 0. Because P 2 = 1, the particle-hole operator has eigenvalues nP = ±1. If
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ket binary representation of Int64 integer
2345664 63 62 61 60 59 1

Figure 4.7: Sketch of the occupation number representation of basis states as integers. The
state b = 10 (|1010⟩) is an example for a basis state for N = 2 fermions on L = 4 sites. We treat
the occupation numbers for each site as the bits of the binary representation of an integer. This
allows effective operations on these integers – much faster than acting on arrays of occupation
numbers.

P |γν̃,q⟩ lies in a different cycle than |γν̃,q⟩, we can use P to further subdivide the q = 0 block by
using the projection (1 ± P )/

√
2 onto its eigenstates

|θν̃,q,nP =±1⟩ = 1√
2

(|γν̃,q⟩ ± P |γν̃,q⟩) . (4.161)

Reflection symmetry

The third symmetry we exploit is spatial inversion R, which reflects the occupation numbers
about a site, e.g. R|011011⟩ = |110110⟩, and commutes with the Hamiltonian [R,H] = 0.
However, in general, R does not commute with T , but fortunately in the q = 0 block translation
and spatial inversion do commute. Since R2 = 1, the eigenvalues are also given by nR = ±1
and the corresponding projection operator is given by (1 ± R)/

√
2. If R maps either |γν,q⟩ or

|θν̃,q,nP ⟩ into another cycle, projecting onto eigenstates of R further subdivides the q = 0 block
of the Hamiltonian in analogy to Eq. (4.161).

We therefore only need to construct the q = 0, nR = +1, nP = +1 block of the Hamiltonian
which is a major reduction in memory and time complexity for obtaining the ground state.

4.4.2 Integer fermion basis

A straightforward way of implementing a state in the occupation number basis, is to store the
occupation numbers in an array n of length L. However, to more efficiently store and operate
on the basis states, we implement them as 64-bit integers such that the binary representation
of the integer has the occupation numbers as bits, e.g. |1010⟩ → 10102 = 10 (Fig. 4.7). In cases,
where we need more than 64 lattice sites, we can even use 128-bit integers to allow for a total
of up to 128 sites. One direct advantage of the integer basis is that rank ordering the integers
provides a natural order for the basis states such that a state can be looked up in the set of
basis states by searching in a sorted list which only scales logarithmically with the length of the
list and is thus very efficient.

In the following, we discuss the efficient application of operators on the integer basis states
for which we use several logical bit operations: (i) right bitshift, b≫ i, that shifts every bit
of b by i places to the right, filling up the leftmost bits with zeros and losing information about
the first i bits, e.g. 0...0101 ≫ 1 = 0...0010, (ii) left bitshift, b ≪ i, shifting i places to the
left, e.g. 0...00101 ≪ 1 = 0..01010, (iii) logical and operations, &, e.g. 1010 & 1001 = 1000, (iv)
local or operations, |, e.g. 1010 | 1001 = 1011, and the not operation ∼, e.g. ∼1010 = 0101.
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Figure 4.8: Example of translation by one site using bitshift operations. We show application
of T on the state b = 5 (|0101⟩) – an example of a state from the N = 2, L = 4 basis.

Creation and annihilation operators

We can represent an operator c†
i or ci as an integer with a 1 at position i and zeros in all other

bits, i.e. ci → 1 ≪ i. However, this integer only stores the position of the site the operator acts
on, not the fermion character. To act on a basis state |ϕ⟩ → b, we first need to check if site i is
empty, that is (1 ≪ i) & b is zero. If this is the case, action of ci destroys the state, and if it is
not the case, then c†

i destroys the state. For the case that this check is successfully passed, and
the state is not destroyed, the result of applying the operator is obtained via

c†
i |ϕ⟩ → (−1)

∑i−1
j=1 bj (1 ≪ i) | b (4.162)

ci|ϕ⟩ → (−1)
∑i−1

j=1 bj ∼[(1 ≪ i) | (∼b)] . (4.163)

Here, the sign (−1)
∑i−1

j=1 accounts for the minus signs when moving the operator across the
creation operators that build up the state, |ϕ⟩ = |n1, n2, ..., nL⟩ = ∏

i
ni=1

c†
i |0⟩, where we sort

the creation operators according to their site index i, e.g. c†
2|0101⟩ = c†

2(c†
1c

†
3|0⟩) = −c†

1c
†
2c

†
3|0⟩ =

−|0111⟩.
This can be straightforwardly extended to action of more operators of the same kind which

allows for efficient computations of matrix elements of the type ⟨ϕi|c†
i1

· · · c†
in
cj1 · · · cjn |ϕj⟩ with

just two integers from integer bases with n occupied bits on L sites.

Translation operator

The translation operator shifts every fermion one site to the right which can be achieved by a
bitshift, b ≫ 1. However, due to the boundary condition, we need to keep information about
the first bit, b & 1, which needs to be moved to position L via a shift ≪ L − 1. We can then
combine the right shifted integer with the former first bit at position L by using an or operation.
An example of this process is shown in Fig. 4.8, and the full operation is given by

T |ϕ⟩ → (b≫ 1) | ((b& 1) ≪ L− 1) . (4.164)
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Figure 4.9: Example of particle-hole operation on an integer fermion basis state. We show
application of P on the state b = 5 (|0101⟩) – an example state from the N = 2, L = 4 basis.

An efficient implementation of the translation operator T even allows us to only store the
translation cycle leaders of the basis and generate the other elements of the cycle on demand by
action of T , thus saving about a factor 1/L of system memory for the basis.

Particle-hole operator

To act on a state with the particle-hole operator P , we need to flip all occupation numbers,
which is achieved by a not operation, ∼b. However, this also flips the bits other than the first
L ones. To remove these bits outside the lattice, we shift 64 − L bits to the left and again to
the right, thus truncating the 64 − L last bits. An example is shown in Fig. 4.9, and the full
operation is given by

P |ϕ⟩ → [(∼b) ≪ (64 − L)] ≫ (64 − L) . (4.165)

Reflection operator

The reflection operator can be implemented using a bitreverse that inverts the order of all
64 bits. We then only need to move the last L bits back to the first L sites by a bitshift of 64−L
sites. An example is shown in Fig. 4.10 and the full operation is given by

R|ϕ⟩ → bitreverse(b) ≫ (64 − L) . (4.166)

Computational resource requirements

The full basis for N fermions on L = 2N lattice sites contains
(2N

N

)
elements such that the

memory needed to store the integer basis is given by
(2N

N

) 8
(1024)3 GB. For example for N = 19,

this is about 263 GB for storing the basis alone, and for N = 20 fermions, the size already
exceeds 1 TB. Using the integer fermion basis and only saving the cycle leaders allows us to
push the full exact diagonalization computations of the one-particle entanglement entropy to a
maximum of N = 19 fermions for 1.5 TB of system memory (which also needs to accommodate
the q = 0 block of the Hamiltonian, the ground state, and the Schmidt decomposition).
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Figure 4.10: Example of reflection operation on an integer fermion basis state. We show
application of R on the state b = 5 (|0101⟩) – an example state from the N = 2, L = 4 basis.

4.4.3 Structure matrix
Parts of this subsection closely follow the publication: Harini Radhakrishnan, Matthias Thamm,
Hatem Barghathi, Bernd Rosenow, and Adrian Del Maestro, A Scaling Function for the Particle
Entanglement Entropy of Fermions, preprint arXiv:2302.09093 [488].

For efficiently computing the n-particle entanglement entropy, we construct the coefficient
matrix C used for the Schmidt decomposition, i.e. we write a state |Ψ⟩ in terms of the basis
states |θa⟩A and |χb⟩B in the partitions A and B according to

|Ψ⟩ =
∑
ab

Cab|θa⟩A ⊗ |χb⟩B . (4.167)

The first trick is to constrict the sub-bases states in terms of translational cycles µ (ν), i.e.
|θµ,i⟩ (|χν,j⟩), where i = 1 corresponds to the cycle leader, and T |θµ,i⟩A = |θµ,i+1⟩A. Due to the
translational symmetry, it is sufficient to only consider the |θµ,i⟩A and the cycle leaders in the B
partition, |χν,1⟩B, as the other contributions are redundant by application of T . The challenge
is then to decompose the full basis states into the Kronecker product of the sub-bases with the
correct signs and to extract the coefficients from the state |Ψ⟩. For this, we precompute the so-
called structure matrix A ∈ Mnc,A×nc,B×L, where nc,A (nc,B) is the number of symmetry cycles
in partition A (B). We define the magnitude |Aµνi| as the index of the symmetry cycle of the
state |θµ,i⟩A ⊗ |χν,1⟩B in the full basis |γ|Aµ,ν,i|,k⟩, which is also the index for the corresponding
coefficient in |Ψ⟩. The sign of Aµνi is defined as the sign of the state |θµ,i⟩A ⊗ |χν,1⟩B in the
anti-symmetrized first quantization basis. In the integer fermion basis language, the integers
representing the state of the full basis is obtained from the integers bA

µ , bB
ν of the sub-bases via

|θµ,i⟩A ⊗ |χν,1⟩B → T i−1bA
ν | bB

ν , (4.168)

and the sign has two contributions:

(i) T i−1bA
ν may contribute a minus sign due to the boundary conditions if n is even and a

fermion is moved across the boundary by T i−1 (as the corresponding creation operator has
to be moved to the first position through the n− 1 other creation operators).

(ii) When combining T i−1bA
ν with bB

ν , we order the creation operators to obtain the state in
the integer basis and the corresponding contribution to the sign, e.g.

|0001⟩A ⊗ |1000⟩B → c†
1c

†
4|0⟩ −→ |120011⟩ (4.169)

|1000⟩A ⊗ |0001⟩B → c†
4c

†
1|0⟩ = −c†

1c
†
4|0⟩ −→ −|110012⟩ . (4.170)
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Here, the subscript labels the particles. Writing the states in the fermion position basis
|θµ,i⟩A → |i1, ..., in⟩ and |χµ,1⟩B → |j1, ..., jn⟩ (for example |0110⟩ → |2, 3⟩), the sign is
negative (positive) if (i1, ..., in, j1, ..., jn) is an odd (even) permutation of (1, 2, ..., 2n). The
permutation is odd if it needs an odd number of nearest neighbor permutations to sort the
list (i1, ..., in, j1, ..., jn).

With this information at hand, we can directly construct the coefficient matrix C by combining
the coefficients from the state |Ψ⟩ state – according to the magnitude of the entry in the structure
matrix – with the corresponding phase – according to the sign of the entry in the structure
matrix. In addition, exploiting translational symmetry, the matrix C can be diagonalized using
a Fourier transform to efficiently obtaining the spectrum |λi|2 and thus the particle entanglement
entropy.

4.5 Numerical computations with DMRG and ITensors.jl

As discussed in the previous section, the major disadvantage of exact diagonalization is the ex-
ponential size of the Hilbert space that severely limits the size of systems that can be considered
– even with 1.5 TB of memory. However, for accurate finite size scaling to the thermodynamic
limit, it is crucial to consider systems as large as possible. For this reason, we describe approx-
imate methods in this section which allow for the truncation of the Hilbert space to a much
smaller subspace of relevant states.

In order to study systems with L ≥ 40 and thus improve finite size scaling to the thermody-
namic limit, we use the implementation of the density matrix renormalization group algorithm
(DMRG) in the ITensors.jl software package [475] for the Julia programming language. As
an approximate method, DMRG does not need to explore the entire Hilbert space and therefore
requires fewer resources, but at the price of inaccuracies with magnitudes that are difficult to
estimate a priori. We therefore also use ED as a benchmark to estimate the reliability of DMRG
results, where a direct naive DMRG application to the J-V model with periodic boundary con-
ditions leads to significant errors already for systems of size N > 17. We thus use a number of
checks and detailed knowledge of the physical system to stabilize the DMRG calculation as we
describe in the following.

After we computed the ground state |Ψ0⟩ using DMRG, we obtain the reduced one-body
density matrix from the correlation matrix [145]

ρi1,j1
1 = 1

N
⟨Ψ0|c†

i1
cj1 |Ψ0⟩ . (4.171)

From the eigenvalues ϵi of ρ1, we can then directly obtain the one-particle entanglement entropy

S1 = −
∑

i

ϵi ln ϵi (4.172)

Sα = 1
1 − α

ln
[∑

i

ϵαi

]
. (4.173)

In order to obtain the waiting time dependence of the particle entanglement entropy after an
interaction quench, we first use DMRG to find the ground state |Ψ0(0)⟩ for times t ≤ 0 for free
fermions, from which we compute the state |Ψ(t)⟩ at time t after the quench using unitary time
evolution

|Ψ(t)⟩ = e−iHt|Ψ0(0)⟩ . (4.174)
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In contrast to ED, we do not need to compute the full eigensystem of H to perform this evolution,
but rather can construct an approximation of the time evolution operator for a short time step
δt and apply it many times to estimate the time evolved state (see Sec. 4.5.2).

4.5.1 Advantages of tensor networks and stabilizing DMRG
For implementing the approximative numerics, we use the open source software package
ITensors.jl [475] for the Julia programming language. ITensors.jl provides an imple-
mentation of tensor networks [489] and has several advantages for our purposes here:

i) The package makes it easy to set up a lattice of L sites for fermions and automatically
handles particle number conservation and commutation relations of operators.

ii) The states are efficiently stored as matrix product states (MPSs) with efficient implementa-
tions of typical operations like inner products. Importantly, these states can be truncated
to only keep a relevant subspace of the Hilbert space, which saves significant amounts of
memory.

iii) Operators can be encoded as so-called matrix product operators (MPOs) that can very
efficiently be applied to MPSs where ITensors automatically handles the bookkeeping for
indices. In addition, there are efficient algorithms for computing matrix elements and even
for the correlation matrix ⟨Ψ|c†

icj |Ψ⟩ is already implemented. ITensors follows an easy-
to-read notation, e.g. to construct an MPO for the Hamiltonian, and add a term −tc†

jcj+1,
one can write

� �
H = AutoMPO()
H += -t, "Cdag", j, "C", j+1� �

and ITensors configures the MPO and handles fermionic commutation relations automat-
ically.

iv) ITensors comes with an implementation of the density matrix renormalization group
algorithm (DMRG) [490–492]. DMRG is a well established, variational algorithm for ap-
proximating the ground state of a Hamiltonian that avoids considering the full Hilbert
space by iterating over smaller subblocks of the system, iteratively improving the ground
state estimate while also truncating the MPS to the relevant directions [492]. A detailed
explanation of the DMRG algorithm and its implementation with MPS can be found in
Ref. [492]. Besides handing an initial state to the DMRG algorithm as a starting point,
the implementation in ITensors also allows us to define an orthonormal subspace to the
desired ground state where orthogonality is enforced in each iteration.

v) With ITensorGPU.jl there is also an additional package based on ITensors that allows
certain operations to be easily performed using massively parallel GPUs.

For example, to implement a lattice of L sites, the J-V Hamiltonian, and compute the ground
state using DMRG with ITensors one can simply write
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� �
using ITensors

# setup parameters
L = 20
N = 10
V = 1.0

# setup lattice, fermionic space, conserve particle numbers
sites = siteinds("Fermion",L; conserve_qns=true)

# any initial state with correct number of particles
state = Vector{String}([Bool(i <= N) ? "Occ" : "Emp" for i in 1:L])
shuffle!(state)
psi0 = MPS(sites, state)

# Hamiltonian as MPO
ampo = OpSum()
for j=1:L-1

ampo += -t,"Cdag",j,"C",j+1
ampo += -t,"Cdag",j+1,"C",j
ampo += V,"N",j+1,"N",j

end
factor = (L/2 % 2 == 0) ? -1 : 1
ampo += -t*factor,"Cdag",L,"C",1
ampo += -t*factor,"Cdag",1,"C",L
ampo += V,"N",1,"N",L
H = MPO(ampo,sites)

# DMRG parameters
sweeps = Sweeps(5)
maxdim!(sweeps,10,20,100,100,200)
cutoff!(sweeps,1e-10)
noise!(sweeps,1e-5,1e-8)

# get ground state from DMRG
energy, psi = dmrg(H,psi,sweeps;outputlevel=0)� �

However, there are problems that come with a naive implementation like this: (i) The Itensors
networks are less efficient for (anti-) periodic boundary conditions, as they prefer to perform
operations on lattice sites that are close together – an operation between the last and first sites
is therefore very inefficient [475], and (ii) it can be hard to make DMRG converge to the true
ground state, especially for large lattices without open boundary conditions. Here, already for
systems with N > 17 fermions, a naive application of DMRG starting from a random state
results in significant errors.

We thus stabilize DMRG with two tricks, described in the following:

Initial state

It is crucial to construct very good initial states, so that the algorithm starts as close as possible
to the ground state. For this purpose, we combine a state which is a superposition of ran-
dom states of the correct particle number, with a V/J dependent fraction of the corresponding
|ΨV/J→±∞⟩ state (Eqs. (4.28) and (4.36)).

Orthogonal subspace

The most important step for stabilizing convergence of DMRG to the ground state is to construct
an orthogonal subspace to the ground state and enforce orthogonality to a basis in this subspace
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during each sweep of DMRG. This feature has already been implemented in ITensors.jl
with the intent to obtain excited states. The consideration of symmetry cycles Eq. (4.160)
already reveals good candidates for orthogonal subspaces, because states with different q are
orthogonal to each other. Using all states from blocks q > 0 is overkill, slowing down the
DMRG algorithm and requiring huge amounts of memory, eliminating the advantages of the
approximative method. We therefore only consider a subspace in which DMRG is most likely to
converge if it misses the ground state. For V/J > 0 using the two states with maximal particle
separation |ψ>,ν⟩ = T ν(∏N

j=1 c
†
2j)|0⟩ this is:

|Ψ⊥,>⟩ = 1√
2

[|ψ>,0⟩ − |ψ>,1⟩] , (4.175)

and for negative interactions there are L states with full clustered fermions |ψ<,ν⟩ = T ν(∏N
j=1 c

†
j)|0⟩.

Their span is given by

|Ψ⊥,<,q⟩ = 1√
N

L−1∑
ν=0

cos
(2πνq

L

)
|ψ<,ν⟩ (4.176)

|Ψ⊥,<,q+N ⟩ = 1√
N

L−1∑
ν=0

sin
(2πνq

L

)
|ψ<,ν⟩ . (4.177)

4.5.2 Time evolution using GPUs
To efficiently perform time evolution of the initial state obtained with DMRG, we approximate
the time evolution operator e−iHδt for a time step δt by using a symmetrized second order
Trotter decomposition [493, 494]

e−iδt H ≈ e−iδt h1,2/2e−iδt h2,3/2 · · · e−iδt hL,1/2×
× e−iδt hL,1/2e−iδt hL−1,L/2 · · · e−iδt h1,2/2 + O(δt3) , (4.178)

where hi,i+1 = −J(c†
i+1ci + c†

ici+1) + V nini+1. To derive Eq. (4.178) the J-V Hamiltonian

H =
L∑

i=1
hi,i+1 =

∑
i even

hi,i+1 +
∑
i odd

hi,i+1 ≡ Heven +Hodd (4.179)

is split into the two internally commuting partsHeven and Hodd. The commutator [Heven, Hodd] is
neglected, which introduces an error O(δt3) in Eq. (4.178). To maintain accuracy, it is therefore
necessary to choose a short time step δt such that performing time evolution for a finite time
interval t can require a large number t/δt of time-consuming applications of the operator.

Application of a gate to an MPS can be significantly speeded up using GPUs, while con-
struction of the gates and moving MPS and gates onto the GPU memory are time-consuming
operations. Fortunately, we can construct the Trotter gates with time step δt once, move them to
the GPU, and successively apply them to the MPS that has to be moved to the GPU only once.
The time evolution using Trotter gates is therefore an ideal example for speeding up numerics
by several orders of magnitude using GPUs instead of CPUs. For the implementation – the
code including all necessary workarounds is open source and available online [474] – we use the
ITensorGPU.jl extension to ITensors for which we were able to fix two interconnected bugs
[495], which allows us to compute the waiting time dependence of the one-particle entanglement
entropy for lattices with up to L = 30 sites with N = 15 fermions. This would be completely
out of reach for ED calculations.
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4.5.3 Higher order particle entanglement entropies
This subsection closely follows the publication: Harini Radhakrishnan, Matthias Thamm, Hatem
Barghathi, Bernd Rosenow, and Adrian Del Maestro, A Scaling Function for the Particle En-
tanglement Entropy of Fermions, preprint arXiv:2302.09093 [488].

More generally, we can also compute the n-particle entanglement entropy from the n-RDM by
first obtaining the ground state from DMRG, potentially further computing the time evolution
after a quench, to obtain the state |Ψ⟩ for which the n-RDM is given by [145]

ρ(i1,...,in),(j1,...,jn)
n = ⟨Ψ|c†

i1
· · · c†

in
cj1 · · · cjn |Ψ⟩/

(N
n

)
. (4.180)

In general, this requires computing
(L

n

)
×
(L

n

)
matrix elements and constructing a large number

of MPOs, which is slow. However, we can utilize a few tricks to make computing the n-RDM
feasible:

(i) We map the operators c†
i1

· · · c†
in

and cj1 · · · cjn with i1 < i2 < ... < in and j1 < j2 < ... < jn

onto an integer basis, e.g. c†
1c

†
3c

†
4 → 001101 = 13. The advantages of the integer basis are

that we can efficiently construct it and order the elements according to the integers for
which locating an element in the ordered set of basis states scales only logarithmically with
the number of elements. We can still translate back to the i1, ..., in indices to construct
the operators in ITensors based on the site indices.

(ii) We use the anti-commutation relations between the fermion operators to get the matrix
elements for permutations of the c†

i1
· · · c†

in
and cj1 · · · cjn . The parity of the permutation

is then the sign of the corresponding matrix element of ρn, and the magnitude is the same
for the matrix elements for all the permutations. It is even sufficient to only construct the
upper triangle where i1 < i2 < ... < in, j1 < j2 < ... < jn and to normalize the singular
values such that ∑n |λn|2 = 1.

(iii) We use translational symmetry of |Ψ⟩, i.e.

ρ(i1,...,in),(j1,...,jn)
n = (−1)δin,L+δjn,Lρ(i1+1,...,in+1),(j1+1,...,jn+1)

n (4.181)

to further reduce the number of matrix elements we need to compute. Here, it is advanta-
geous that we can both efficiently apply the translation operator to the fermion basis states
(Sec. 4.4.2) and locate the resulting state in the basis with logarithmic time complexity.

These tricks allow us to compute the two-particle entanglement entropy for systems up to L = 80
lattice sites, the three-particle entanglement entropy for up to L = 48, and even the four-particle
entanglement entropy for up to L = 32 sites.

4.5.4 Benchmarking DMRG with exact diagonalization
As DMRG is approximate, and the accuracy can be hard to estimate and control [492, 496], it
is a priori not clear that the truncation error is small and that the true ground state is found.
We therefore use ED as a benchmark to validate DMRG results and to estimate the size of the
deviations. For this, we compute entropies with both DMRG and ED for some large systems
that are still feasible with ED. We find excellent agreement when using the methods described
above to stabilize DMRG. For example, Fig. 4.11 shows ED and DMRG results for the waiting
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Figure 4.11: Comparison between ED and DMRG results for the waiting time dependence
of the one-particle entanglement entropy S1 after a quantum quench from free fermions to
V/J = −0.9. We consider N = 12 fermions on L = 24 sites. The upper panel depicts the
entropy S1 obtained with ED (red line) and DMRG (blue crosses), and the lower panel shows
the relative error of the DMRG approximation compared to the exact ED result. We find
excellent agreement between DMRG and ED with a relative error well below 0.01% even for
large waiting times after the quench.

time dependence of the one-particle entanglement entropy in a system of N = 12 fermions on
L = 24 lattice sites after an interaction quench from free fermions to V/J = −0.9 (upper panel).
The DMRG results are obtained with a Trotter evolution with time step δt = 0.01. Even for
late times t ≈ 100, the relative errors (lower panel) of the DMRG results are well below 0.01 %.

4.6 Numerical results and comparison to analytical bosonization
results

Major parts of this section closely follow the publication: Matthias Thamm, Harini Radhakr-
ishnan, Hatem Barghathi, Bernd Rosenow, and Adrian Del Maestro, One-particle entanglement
for one dimensional spinless fermions after an interaction quantum quench, Physical Review B
106, 165116 (2022) [327].

4.6.1 Equilibrium case

Fig. 4.12 shows the one-particle entanglement entropy (crosses) calculated with DMRG for
N = 51 for a large range of interaction strengths spanning all phases in the J-V model. For
V/J = −2, the first order phase transition is clearly visible and Sα −Sff remains stable, reaching
the theoretical value ln(2) [145] for large negative V/J . For free fermions, where V/J = 0 in
the LL phase, the one-particle entanglement entropy vanishes as expected [145]. Additionally,
at the second-order phase transition into the charge density wave phase near V/J = 2, a change
in the slope of the entropy is visible, which then slowly approaches the theoretical value ln(2)
[145].

For comparison with field theory, we first estimate the thermodynamic limit N → ∞ by finite
size scaling of the numerical results for the one-particle entanglement entropy, with a general
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Figure 4.12: One-particle Rényi entanglement entropy Sα for different values of the Rényi in-
dex α as a function of the interaction strength V/J where Sff is the one-particle entropy for free
fermions. The crosses are obtained using DMRG for N = 51 on a lattice of L = 102 sites. Solid
lines depict extrapolation to the thermodynamic limit from ED and DMRG data, and dashed
horizontal lines show theory predictions for |V/J | → ∞. Phase transitions in the J-V model are
marked with vertical lines at V/J = ±2.

scaling form introduced by Haque et al. [145] and confirmed in subsequent works [152, 153]:

Sα(N,V/J) = ln(N) +Aα(V/J) + O(N−λ) , (4.182)

with λ > 0. In subsequent figures, we will focus on the behavior of the constant correction
Aα(V/J) to the leading order logarithmic scaling.

For reliable finite size scaling, we calculate Sα −Sff for systems with N = 2, 3, . . . , 19 fermions
using ED and fermion numbers between N = 17 and N = 51 using DMRG and then extrapolate
linearly to 1/N → 0 (white filled circles in Fig. 4.13). We find very good 1/N scaling and
excellent agreement between exact ED (colored circles in Fig. 4.13) and approximate DMRG
(crosses in Fig. 4.13) everywhere in the LL phase.

We perform this finite size scaling for all calculated interaction strengths V/J and plot the
constant contribution to the one-particle entanglement entropies (Aα, circles) as a function of
V/J in Fig. 4.14 along with the numerically integrated Luttinger liquid result from Eq. (4.129)
and Eq. (4.130) (dashed lines) for a fixed interaction cutoff ε = 0.84 determined via fitting. We
find excellent agreement between LL theory with this fixed cutoff and numerical results for the
J-V model for small to moderate interaction strengths −0.5 < V/J < 1.5. Close to the phase
transitions and especially for large negative interaction strengths V/J → −2, where γeq → ∞,
significant deviations from the low energy LL theory are apparent.

To systematically study for which interactions the J-V model can be accurately described by
the LL model, we fit the bosonization prediction for each interaction strength individually to
the finite size scaled data for the von Neumann entropy A1(V/J) as defined in Eq. (4.182), to
determine an effective interaction cutoff εfit(V/J) (red circles in the main panel of Fig. 4.15).
We find an extended region with ε = 0.84 (dashed, black line) for small negative and positive
interactions V/J where the cutoff has minimal dependence on the interaction strength. With
the obtained effective cutoff, we can fit the LL model at every point in the LL phase to the J-V
model with excellent agreement as shown in the inset of Fig. 4.15 where we plot the one-particle
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Figure 4.13: Finite size scaling of the equilibrium one-particle von Neumann entanglement
entropy S1 for various interaction strengths V/J where the free fermion contribution Sff has
been subtracted. Results obtained with DMRG (crosses) and ED (circles) are shown together
along with a linear extrapolation to the thermodynamic limit 1/N → 0. ED provides access to
lattices at half filling with up to N = 19 fermions and using DMRG lattices with more than
N = 51 fermions can be studied.

entanglement entropies from numerics and for the effective interaction cutoff εfit. An interaction
dependent cutoff for large interactions is also a consequence of approximating the q dependence
of the exponent γeq by the cutoff e−ε|q| in field theory calculations (see Eq. (4.118)) in order to
make the q sums analytically tractable.

4.6.2 Interaction quantum quench

We indeed observe the recurrence time ∆t = L/(2v) (Fig. 4.16 and Fig. 4.17a) predicted by
the LL theory, which indicates that after the quench, density waves propagate with velocity
v, (see Eq. (4.140)) through the lattice of length L, where the maximal distance between two
points is L/2 due to the periodic boundary conditions. We show the waiting time dependence
of the von Neumann entropy for several lattice sizes (solid lines) in Fig. 4.17a together with the
steady state values (empty circles) obtained by averaging the entropy S1 − ln(N) for times after
the initial increase. Here, the entanglement entropy has plateaus with length proportional to
L and regions, independent of the system size, where the entropy decreases and then increases
to the next plateau. Convergence to the steady state can thus be understood from a running
average (Fig. 4.17b), and in the thermodynamic limit, where the plateau size is infinite, the
system reaches the steady state with entanglement entropy obtained by finite size scaling the
entropy averages from the finite systems. Even for these relatively small systems, the fast
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Figure 4.14: Interaction strength V/J dependence of the constant contribution to the one-
particle Rényi entanglement entropies extrapolated to the thermodynamic limit Aα for Rényi in-
dices α = 1, 2, and 5 together with the prediction from bosonization for a fixed interaction cutoff
ε = 0.84. We find very good agreement between the Luttinger liquid prediction and the numer-
ical results for the J-V model in region V/J ∈ [−0.5, 1.5].
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Figure 4.15: Effective interaction cutoff εfit as a function of the interaction strength V/J (red
circles) obtained by fitting the Luttinger liquid prediction for the one-particle von Neumann
entanglement entropy for each interaction strength individually to the numerical data of the
J-V model. We find an extended flat region of the effective cutoff ε = 0.84 (dashed, black line)
that is nearly independent of interaction strength. The inset depicts numerical results for the
Rényi entropies with α = 1 (red circles), α = 2 (yellow circles), and α = 5 (blue circles) together
with the field theory prediction using the fitted interaction dependent cutoff εfit.

decrease between consecutive steady state averages shows fast convergence to the thermodynamic
limit. Such advantageous finite size scaling properties of the particle entanglement entropy were
recently reported [161]. To estimate errors in the steady state averages, we use a blocking
method [497] by consecutively averaging neighboring values in the time series and computing
the error of the mean in each averaging step until it reaches a plateau. To further include errors
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waiting time 2vt/L after the quantum quench computed via exact diagonalization for a final
interaction strength V/J = −0.5. We show a quarter of the spectrum with 0 < q < kF for a
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Figure 4.17: (a) One-particle von Neumann entanglement entropy as a function of the rescaled
waiting time 2vt/L after the quantum quench at t = 0 for systems with L = 2N sites at an
interaction strength of V/J = −0.5. (b) Running average of the entropy in (a). We observe a
steep increase of the entropy on a very short timescale after the quench and then recurrences with
length N where the entropies oscillate around a constant steady state value (empty circles). The
fast decrease in the distance between the steady state values with N suggests fast convergence
to the thermodynamic limit. As the plateau length is proportional to the system length L and
the length of the regions between the plateaus are independent of L, finite size scaling of the
average will converge to the plateau height in the thermodynamic limit.

due to the finite time step and the endpoint of the time series, we additionally divide the time
series into the individual Nb recurrence blocks with entropy averages Mi and add the error of
the means mean(Mi)/

√
Nb, as well as the difference between the mean of the entropy time series
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Figure 4.18: Finite size scaling of the steady state one-particle von Neumann entanglement
entropy S1(t → ∞) for various values of the post quench interaction strength V/J obtained with
ED (filled circles) and with DMRG (filled crosses). We estimate the thermodynamic limit values
of the entropy (empty circles) using linear extrapolation to 1/N → 0.

and the average of the Mi to the blocking error.
We compute the one-particle entanglement entropy for different interaction strengths V/J to

again linearly extrapolate to the thermodynamic limit, 1/N → 0 (Fig. 4.18). In the case of small
interactions, we can perform the time evolution on V100 GPUs for systems with up to L = 30
lattice sites, however, the ground states obtained with DMRG require more memory for larger in-
teractions γ2

eq to perform calculations to the same accuracy. While for intermediate interactions,
V/J ≥ 1.3 and −0.9 ≤ V/J < 0, we achieve results up to L = 28 sites, the calculation exceeds
GPU memory available to us for L ≥ 28 in the case of very strong interactions V/J ≤ −1.3.
Nonetheless, these additional points of the one-particle entanglement entropy obtained with the
GPU accelerated tDMRG allow for relative improvements of the thermodynamic limit extrap-
olation from finite size scaling by up to 1.2 % compared to using ED data alone. We find that
even for these relatively small systems, linear extrapolation accurately describes the data in the
whole Luttinger liquid phase. For all parameters where we compute one-particle entanglement
entropies for both ED (circles) and DMRG (crosses), we find excellent agreement.

Performing the finite size scaling for all computed interaction strengths V/J , we obtain the
interaction dependence of the steady state one-particle entanglement entropy in the thermo-
dynamic limit (circles in Fig. 4.19) which we plot together with the entropy obtained from
numerically computing the Fourier transform and numerically integrating the analytical steady
state result from bosonization in Eq. (4.157) (dashed line, Fig. 4.19) for a fixed interaction cutoff
ε = 0.84 determined in the ground state. We observe very similar agreement between results
for the LL model and numerical results for the J-V model as in the equilibrium case Fig. 4.14

226



−2 −1 0 1 2
V/J

0.0

0.1

0.2

0.3

A
α

(t
→
∞

)

Figure 4.19: One-particle entanglement entropies extrapolated from the numerical steady
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V/J (circles) for Rényi indices α = 1 (red), α = 2 (yellow), α = 3 (green), and α = 5 (blue).
Dashed lines depict the corresponding theory predictions from the steady states after the quench
in the Luttinger liquid model using a fixed interaction cutoff ε = 0.84 obtained from ground state
calculations. Similar to the equilibrium case, we find good agreement between LL prediction
and numerical data for moderate interaction strengths.
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Figure 4.20: Interaction dependence of the effective cutoff εfit (blue pentagons) obtained by
fitting the steady state of the Luttinger liquid model at each interaction strength V/J individu-
ally to the numerical data of the von Neumann entanglement entropy. For comparison, we show
again the effective cutoff obtained from the ground state case (red circles) and find very good
agreement with a quasi-plateau in the region 0 < V/J < 1. The inset depicts numerical data
for Rényi entropies with α = 1 (red circles), α = 2 (yellow circles), and α = 5 (blue circles)
together with the fitted field theory steady state predictions for the effective cutoff εfit.

when using the same cutoff.
We again fit an effective interaction cutoff (blue pentagons in Fig. 4.20) at each interaction

strength V/J separately to match the LL solution to the von Neumann entropy from the J-V
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model (red circles in the inset of Fig. 4.20). We find very good agreement with the interaction
cutoff determined for the equilibrium ground state case (red circles in the main panel of Fig. 4.20)
which suggests that the parameter ε of the LL calculation can be fixed by numerical analysis
of the J-V model in the region −0.5 < J/V < 1.5, where the low energy LL approximation is
most accurate resulting in ε = 0.84.

4.7 Conclusions
In this chapter, we presented a comprehensive study of the one-body reduced density matrix
and the corresponding one-particle entanglement entropy for the J-V model of one-dimensional
interacting fermions. We considered two cases: (i) the equilibrium case for the ground state
of the J-V model at finite interaction strength and (ii) the waiting time dependence after
an interaction quantum quench from free fermions to finite interactions. For both cases, we
performed large scale numerical computations using exact diagonalization, where exploiting
translational, particle-hole, and reflection symmetry allowed us to consider systems up to L = 38
lattice sites for case (i) and L = 13 sites for case (ii) at half filling. Using appropriate initial states
and an orthogonal subspace to the ground state based on analytical considerations, we were
further able to stabilize DMRG results for the system with (anti-)periodic boundary conditions
for lattices with up to L = 102 sites in the ground state. By using time dependent DMRG
on massively parallelized GPUs, we even performed the time evolution for up to L = 30 lattice
sites. Being able to obtain reliable numerical results for such large systems, allowed us to perform
accurate finite size scaling to the thermodynamic limit.

Within the Luttinger liquid phase, we complemented the numerical results by a bosonization
calculation, where an interaction cutoff is introduced to account for the short range interactions
of the J-V model. In the thermodynamic limit L → ∞, we compared numerical and analytical
results which allowed us to self-consistently determine the interaction cutoff. Using this cutoff,
we find excellent agreement between bosonization and numerical results for small interaction
strengths even for the steady state after the quench, such that the Luttinger liquid bosoniza-
tion calculation provide quantitatively accurate results far beyond the computation of scaling
exponents.

In addition, the methods and the implementation of the numerical computations open up new
avenues for future research: It might be interesting to study the bosonization calculation for the
two-particle entanglement entropy. Further, the numerical implementations also give access to
higher order n-particle entanglement entropy for large systems, such that scaling of the entropy
with n and N can be studied. Ultimately, it would be interesting to expand the entanglement
entropy in terms of higher order reduced density matrices which would involve the one-particle
entanglement entropy as a starting point [327].
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5. Summary

We would like to use this final section to summarize the main results: In this dissertation,
we approached the study of mesoscopic systems from very different directions, using several
methods: Random matrix theory allowed us to gain insight into the weight matrices of deep
neural networks:

(i) By comparing the spectra of neural network weight matrices to universal RMT predic-
tions, we found excellent agreement of the level spacing distribution of unfolded singular
values with the Wigner surmise, and we showed that the level number variance grows
only logarithmically as predicted for random matrices. This is supported by a careful
analysis using Kolmogorov-Smirnov tests for several self-trained networks and even for
large pre-trained networks – covering different network architectures. We compared the
Marcenko-Pastur distribution to the singular value spectra and the Porter-Thomas distri-
bution to the singular vector entries which revealed that small and intermediate singular
values and corresponding vectors follow the RMT predictions, and for large values they
deviate.

(ii) When performing the same analysis for networks trained in various learning regimes, we
found that the universal predictions are unchanged while comparing the spectra and eigen-
vectors with the Marcenko-Pastur and Porter-Thomas distributions respectively allows us
to distinguish the learning regimes without knowledge of the initial weights.

(iii) By training additional networks with label noise and systematically setting singular val-
ues to zero, starting from the smallest ones – reducing the rank of the matrices – and
monitoring the training and generalization accuracy shows that: small singular values and
corresponding vectors have no importance to the network’s performance at all, intermedi-
ate values can be important for the training accuracy in presence of label noise by encoding
memorized labels, and large singular values and vectors store the information about the
underlying rule.

(iv) Based on the observation of a random bulk and a few large singular values encoding the
rule which are stored separated from the memorized noise, we proposed a noise filtering
algorithm that both removes the singular values encoding only noise and reverts the level
repulsion of the large singular values due to the random bulk by down shifting the large
singular values. We find significant improvements of the generalization performance for
networks trained with label noise when using the filtering technique. These improvements
vanish if the network is trained with a schedule that promotes severe overfitting such that
the boundary between information and noise in the spectra is blurred.

By using a scattering matrix formalism adapted to include the effects of superconductivity, finite
temperature, and Coulomb blockade, we studied the coherent transmission amplitude through
a semiconductor-superconductor hybrid nano-wire hosting Majorana zero modes embedded into
an arm of an electron interferometer:

(i) By combining an analytical and numerical analysis of one-dimensional Majorana wires, we
were able to explain the occurrence of an amplitude maximum as a function of the Zeeman
field at the onset of the topological phase that had recently been measured experimentally
[130]. When entering the topological phase, there is a concurrence between two correlation
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lengths for the localization of the Majorana zero modes that is first dominated by an s-
wave correlation length that diverges at the phase transition and transitions at the region
of the maximum into a p-wave correlation length, which is dominant for large fields where
it asymptotically increases proportionally to the Zeeman field.

(ii) As the transmission amplitude is determined by the weight of the Majorana wave functions
at the wire ends – where they are localized with localization length independent of the wire
length – and the inverse of the charging energy which is proportional to the inverse wire
length, the transmission amplitude maximum increases linearly with the wire length in the
presence of Majorana zero modes. For an extended, trivial level, the wave functions’ weight
decreases linearly with the wire length such that the transmission amplitude is independent
of wire length.

(iii) We showed that higher levels have little influence on the transmission amplitude in the
presence of Majorana zero modes, and that the transmission amplitude at finite tempera-
tures is even able to distinguish Majorana zero modes from trivial pseudo-Majorana modes.
In the latter case, a pair of pseudo-Majorana levels can mimic the magnetic field depen-
dence of the direct conductance through the wire; however, for the coherent transmission
amplitude measured with the interferometer setup, there are two contributions with equal
magnitude but opposite signs that interfere destructively.

(iv) Even though these results are robust to small amounts of disorder, the topological phase
– and with it the Majorana modes – can be destroyed by strong disorder that is prevalent
in the hybrid wires in experiments.

By placing an array of gates in proximity to the nano-wire, we made a fruitful connection to the
field of Machine Learning by using the CMA-ES algorithm to tune the gate voltages in order to
maximize the amplitude of coherent transmission in the wire:

(i) We find that optimization in the absence of disorder significantly improves the localization
of the Majorana zero modes.

(ii) The algorithm is capable of learning disorder profiles and even to restore Majorana modes
that were fully destroyed by strong disorder by using a feasible number of about 20 gates.

(iii) The underlying CMA-ES machine learning algorithm is system agnostic such that it can
be applied to a large variety of scenarios. We discuss convergence of the algorithm, the
challenges when choosing a metric for optimization, and the choice of realistic parameters
which will be useful for applying the method to any system in an experiment

Last but not least, by combining large scale exact diagonalization, approximate DMRG, and
an analytical field theoretic bosonization calculation, we were able to study the one-particle
entanglement entropy in one-dimensional systems of interacting fermions:

(i) We provide a detailed study of the one-particle entanglement entropy in the one-dimensional
J-V model both in the ground state and after an interaction quantum quench.

(ii) Utilizing the symmetries of the system and state-of-the art numerical methods, we are
able to compute the ground state one-particle entanglement entropy on a periodic lattice
with exact diagonalization for up to N = 19 fermions on N = 38 lattice sites and even up
to N = 51 fermions on L = 102 lattice sites using DMRG. For the time evolution after
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the quench, we were able to consider up to N = 13 fermions on L = 26 sites with exact
diagonalization and by using massively parallel GPUs, we pushed the time evolution with
the DMRG code to up to N = 15 fermions on L = 30 sites for small interactions.

(iii) By pushing the boundaries of the numerical exact diagonalization and density matrix
renormalization group computations, we are able to accurately scale to the thermodynamic
limit where we made contact to the analytic, field theory model. This allowed us to fix
an interaction cutoff required in the continuum bosonization calculation to account for
the short range interaction of the lattice model, such that the bosonization result provides
accurate predictions for the one-body reduced density matrix in the Luttinger liquid phase.

(iv) We provide the code for exact diagonalization in the ground state, exact diagonalization
after the quench, as well as the DMRG code for the equilibrium case and the GPU assisted
DMRG code for the time evolution after the quench as open source software [474].

Besides the direct results, the tools created for obtaining them open the way for several future
research directions: The filtering technique for mitigating noise in weight matrices of neural
networks may be further extended to more realistic models for how noise enters the weight
matrices, and the methods for locating information in the weights might allow novel training
algorithms to be designed which may ultimately improve training performance and speed and
thus save resources already during training. The code developed for the numerical studies
of the particle entanglement entropy is capable of computing more than just the one-particle
entanglement entropy. It might therefore be possible to extract scaling relations of the particle
entanglement with the system and partition size, and to facilitate a deeper understanding of
particle entanglement and its applications. Tuning an array of gates using Machine Learning
to stabilize features of a system and to counteract disorder has potentially many applications
in all kind of nano-scale electronic devices. As disorder is currently a major limiting factor for
realizing qubits based on Majorana zero modes, Machine Learning approaches – similar to the
one we have shown here – might even help along the way to harvesting the full potential of
topological quantum computing.
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A.1 Mean field approximation for the superconductor Hamiltonian

We start from the Hamiltonian Eq. (2.1) [255, 284, 336]

Hint = 1
2
∑
kk′

∑
σ1σ2
σ3σ4

Vσ1σ2σ3σ4(k,k′)c†
−kσ1

c†
kσ2

ck′σ3c−k′σ4 , (A.1)

and perform a mean field approximation by introducing operators

δkσ1σ2 = ckσ1c−kσ2 − ⟨ckσ1c−kσ2⟩ , (A.2)
δ†
kσ1σ2

= c†
−kσ2

c†
kσ1

− ⟨c†
−kσ2

c†
kσ1

⟩ . (A.3)

We neglect powers of second order or higher in these operators. Because of the fermionic com-
mutator relations {ckσ , ck′σ′} = 0 = {c†

kσ , c
†
k′σ′}, {c†

kσ , ck′σ′} = δkk′δσσ′ , the pair interaction
fulfills [255, 336]

Vσ1σ2σ3σ4(k,k′) = −Vσ2σ1σ3σ4(−k,k′) = −Vσ1σ2σ4σ3(k,−k′) = Vσ4σ3σ2σ1(k′,k) . (A.4)

We use the new operators in the Hamiltonian, which yields

Hint = 1
2
∑
kk′

∑
σ1σ2
σ3σ4

Vσ1σ2σ3σ4(k,k′)
(
δ†
kσ2σ1

+ ⟨c†
−kσ1

c†
kσ2

⟩
) (
δk′σ3σ4 + ⟨ck′σ3c−k′σ4⟩

)
. (A.5)

= 1
2
∑
kk′

∑
σ1σ2
σ3σ4

Vσ1σ2σ3σ4

[
δ†
kσ2σ1

⟨ck′σ3c−k′σ4⟩ + δk′σ3σ4⟨c†
−kσ1

c†
kσ2

⟩

+ ⟨c†
−kσ1

c†
kσ2

⟩⟨ck′σ3c−k′σ4⟩
]

+ O(δ2) . (A.6)

Using Eq. (A.2) and Eq. (A.3), we reinsert the linear terms such that

Hint = 1
2
∑
kk′

∑
σ1σ2
σ3σ4

Vσ1σ2σ3σ4(k,k′)
[
c†

−kσ1
c†
kσ2

⟨ck′σ3c−k′σ4⟩ − ⟨c†
−kσ1

c†
kσ2

⟩⟨ck′σ3c−k′σ4⟩

+ ck′σ3c−k′σ4⟨c†
−kσ1

c†
kσ2

⟩ − ⟨ck′σ3c−k′σ4⟩⟨c†
−kσ1

c†
kσ2

⟩

+ ⟨c†
−kσ1

c†
kσ2

⟩⟨ck′σ3c−k′σ4⟩
]

(A.7)

= 1
2
∑
kk′

∑
σσ′

[∑
k̃

∑
σ̃σ̃′

Vσσ′σ̃σ̃′(k, k̃)⟨ck̃σ̃c−k̃σ̃′⟩c†
−kσc

†
kσ′

+
∑
k̃

∑
σ̃σ̃′

Vσ̃σ̃′σσ′(k̃,k)⟨c†
−k̃σ̃

c†
k̃σ̃′⟩ckσc−kσ′

]
− const.+ O(δ2) . (A.8)
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In the first term, we change k → −k which leaves the sums unchanged and use Vσσ′σ̃σ̃′(−k, k̃) =
−Vσ′σσ̃σ̃′(k, k̃). In the second term, we change k̃ → −k̃ which leaves the sums unchanged and
use that Vσ̃σ̃′σσ′(−k̃,k) = −Vσ′σσ̃σ̃′(k, k̃). Additionally, we commute the operators in the second
term both in the expectation value and outside, which yields two minus signs. Therefore, the
Hamiltonian is given by

Hint = 1
2
∑
kk′

∑
σσ′

[
−
∑
k̃

∑
σ̃σ̃′

Vσ′σσ̃σ̃′(k, k̃)⟨ck̃σ̃c−k̃σ̃′⟩c†
kσc

†
−kσ′

−
∑
k̃

∑
σ̃σ̃′

Vσ′σσ̃σ̃′(k, k̃)⟨c†
−k̃σ̃′c

†
k̃σ̃

⟩c−kσ′ckσ

]
− const.+ O(δ2) . (A.9)

We define the pair potential [255, 336]

∆σσ′(k) = −
∑
k̃

∑
σ̃σ̃′

Vσ′σσ̃σ̃′(k, k̃)⟨ck̃σ̃c−k̃σ̃′⟩ , (A.10)

∆†
σσ′(k) = −

∑
k̃

∑
σ̃σ̃′

Vσ′σσ̃σ̃′(k, k̃)⟨c†
−k̃σ̃′c

†
k̃σ̃

⟩ , (A.11)

with ∆σσ′(k) = −∆σ′σ(−k) such that the Hamiltonian can be written as

H =
∑
kσσ′

hσσ′(k)c†
kσckσ′ + 1

2
∑
kσσ′

[
∆σσ′(k)c†

kσc
†
−kσ′ + ∆†

σσ′(k)c−kσ′ckσ

]
− const.+ O(δ2) .

(A.12)

A.2 Zero energy solutions at a domain wall in a spin-polarized one
dimensional p-wave superconductor

For a one dimensional spin polarized p-wave superconductor with a domain wall µ(x) = µ sgn(x),
we found that the BdG equation in Sec. 2.2.1 is given by Eq. (2.54)(

−ℏ2/(2m) ∂2
x − µ(x) −∆∂x

∆∂x ℏ2/(2m) ∂2
x + µ(x)

)(
u0(x)
v0(x)

)
= 0 . (A.13)

This is

− ℏ2

2mu′′
0(x) − µ(x)u0(x) − ∆v′

0(x) = 0 (A.14)

ℏ2

2mv′′
0(x) + µ(x)v0(x) + ∆u′

0(x) = 0 . (A.15)

Moreover, the wave function and its first derivative are continuous. We therefore calculate
the solution for x > 0 and x < 0 separately and then use the continuity for joining them at
x = 0. In addition, the particle-hole operator P = τxK with P2 = 1 transforms the Hamil-
tonian as PHBdG(x)P−1 = −HT

BdG(x) where the basis is given by ψ†(x) = (ψ†(x), ψ(x)) and
∂T

x = −∂x, ∂∗
x = ∂x. From this we find that for every eigenstate ξE(x) with eigenvalue E,

i.e. HBdG(x)ξE(x) = EξE(x), there exists an eigenstate PξE(x) with PHBdG(x)P−1PξE(x) =
EPξE(x) = −HBdG(x)PξE(x) = EPξE(x). Thus, PξE(x) has the eigenvalue −E. If a single
zero energy solution exists, this implies that PξE(x) = ξE(x). Assuming there are two E = 0
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solutions with PξE=0 ̸= ξE=0, we can construct the solutions ξ̃± = (PξE=0 ± ξE=0)/
√

2, which
satisfy P ξ̃+ = ξ̃+ and P ξ̃− = −ξ̃−. In the case of our zero energy solution (u0(x), v0(x))T , this
means P(u0(x), v0(x))T = (v∗

0(x), u∗
0(x))T . We therefore look for solutions with u0(x) = ±v∗

0(x).
Thus, both BdG equations are equivalent and given by

− ℏ2

2mu′′
0(x) − µ(x)u0(x) ∓ ∆(u′

0)∗(x) = 0 . (A.16)

This is a damped harmonic oscillator in x. To obtain a solution for all x, we write µ(x), while
keeping in mind that it is a constant for both x > 0 and x < 0. We use the ansatz u0(x) = eAx

and get

0 = − ℏ2

2mA2 − µ(x) ∓ ∆A (A.17)

⇒ A = (∓1)m∆
ℏ2 ±2

√
m2∆2

ℏ4 − 2mµ(x)
ℏ2 , (A.18)

where ∓1 corresponds to u0 = ∓v0 and ±2 to the two solutions for A. Here, the system can be
overdamped for µ < m∆/(2ℏ2) and underdamped if µ > m∆2/(2ℏ2). This yields the solutions

u0(x > 0) = e∓|x|/ξ

(
C1 exp

[√
ξ−2 − 2mµ

ℏ2 |x|
]

+ C2 exp
[
−
√
ξ−2 − 2mµ

ℏ2 |x|
])

(A.19)

u0(x < 0) = e±|x|/ξ

(
C3 exp

[
−
√
ξ−2 + 2mµ

ℏ2 |x|
]

+ C4 exp
[√

ξ−2 + 2mµ
ℏ2 |x|

])
(A.20)

with ξ = ℏ2/(m∆), where the signs ± correspond to u0(x) = ±v∗
0(x).

a) Overdamped case µ < m∆/(2ℏ2)

In this case, requiring normalizability restricts possible solutions to

u0(x > 0) = v0(x > 0) = e−x/ξ

(
C1 exp

[√
ξ−2 − 2mµ

ℏ2 x

]
+ C2 exp

[
−
√
ξ−2 − 2mµ

ℏ2 x

])
(A.21)

u0(x < 0) =

−v0(x < 0) = e+x/ξC3 exp
[√

ξ−2 + 2mµ/ℏ2x
]

case i) or
+v0(x < 0) = e−x/ξC3 exp

[√
ξ−2 + 2mµ/ℏ2x

]
case ii) .

(A.22)

The continuity condition for u0(x = 0) and v0(x = 0) yields in case i) that C1 + C2 = C3
and C1 + C2 = −C3 with the solution C3 = 0 and C1 = −C2. But in this case, continuity
for u′

0(x = 0) then requires C1 = 0 such that case i) is not a solution. In case ii), continuity
of u0(x = 0) and v0(x = 0) yields

C1 + C2 = C3 (A.23)

and from the first derivatives, we obtain(
−1
ξ

+
√
ξ−2 − 2mµ

ℏ2

)
C1 +

(
−1
ξ

−
√
ξ−2 − 2mµ

ℏ2

)
C2 =

(
−1
ξ

+
√
ξ−2 + 2mµ

ℏ2

)
(C1 + C2) .

(A.24)
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This yields

C2 = C1
−ℏ2

2mµ

ξ−2 −

√
ξ−4 − 4m2µ2

ℏ2

 (A.25)

C3 = C1

1 − −ℏ2

2mµ

ξ−2 −

√
ξ−4 − 4m2µ2

ℏ2

 . (A.26)

Thus, we find the zero energy, E = 0, solution in the overdamped case µ < m∆2/(2ℏ2) as(
u0(x)
v0(x)

)
=
(

1
1

)
Ñ

e−x/ξ
[
eκ−x − ℏ2/(2mµ)

(
ξ−2 −

√
ξ−4 − 4m2µ2/ℏ2

)
e−κ−x

]
for x > 0[

1 − ℏ2/(2mµ)
(
ξ−2 −

√
ξ−4 − 4m2µ2/ℏ2

)]
e−x/ξeκ+x for x < 0

,

(A.27)

with κ± =
√
ξ−2 ± 2mµ/ℏ2 and ξ = ℏ2/(m∆). Here, Ñ is a normalization constant. We

depict this solution in Fig. A1.

Figure A1: Zero energy wave function (blue) for the domain wall zero mode in a one dimen-
sional spinless p-wave superconductor in the overdamped case Eq. (A.27). The black line is the
chemical potential. The wave function is exponentially localized on the domain wall.

b) Underdamped case µ > m∆/(2ℏ2)

In this case we define abbreviations

K =
√

2mµ
ℏ2 − ξ−2 and κ =

√
ξ−2 + 2mµ

ℏ2 (A.28)

and obtain the general solutions

u0(x > 0) = v0(x > 0) = e−x/ξ (C1 cos(Kx) + C2 sin(Kx)) (A.29)

u0(x < 0) =
{

−v0(x < 0) = e+x/ξC3eκx case i) or
+v0(x < 0) = e−x/ξC3eκx case ii)

. (A.30)
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The continuity conditions for u0(x) and v0(x) at x = 0 yields in case i) C1 = C3 = −C3 = 0
and for u′

0(x) then C2 = 0 such that this is not a solution. For case ii) continuity of u0(x)
yields

C1 = C3 (A.31)

and for u′
0(x) we find −ξ−1C1 +KC2 = (−ξ−1 + κ)C3

⇒ C2 = κ

K
C1 . (A.32)

Thus, we get the E = 0 solution in the underdamped case µ > m∆2/(2ℏ2) as(
u0(x)
v0(x)

)
=
(

1
1

)
Ñ

{
e−x/ξ [cos(Kx) + κ/K sin(Kx)] for x > 0
e−x/ξeκx for x < 0

, (A.33)

with ξ = ℏ2/(m∆), K =
√

2mµ/(ℏ2) − ξ−2 and κ =
√
ξ−2 + 2mµ/(ℏ2). Here, Ñ is a

normalization constant. The wave function is plotted in main text Fig. 2.1.

A.3 Eigenstates of the normal-conducting Rashba wire
Here we calculate the eigenvectors of the Rashba wire Hamiltonian for ∆ = 0 and show how
they can be transformed into the form used in the main text Eq. (2.85). From the Hamiltonian

H =
(
k̃2 − µ̃− Ẽz 2k̃

2k̃ k̃2 − µ̃+ Ẽz

)
(A.34)

we obtain the eigenvalues

E± = k̃2 − µ̃±
√
Ẽ2

z + 4k̃2 . (A.35)

The eigenvector equation for eigenvalues E±, i.e.

0 =

−Ẽz ∓
√
Ẽ2

z + 4k̃2 2k̃
2k̃ Ẽz ∓

√
Ẽ2

z + 4k̃2

(u↑
u↓

)
, (A.36)

yields the relations for the components of the eigenvectors as

u↓ =
Ẽz ±

√
Ẽ2

z + 4k̃2

2k̃
u↑ . (A.37)

Thus, for Ẽz > 0 we find the eigenvectors

u+ = N

 1
|Ẽz+

√
Ẽ2

z +4k̃2|
2k̃

 (A.38)

u− = N

 −2k̃

|Ẽz−
√

Ẽ2
z +4k̃2|

1

 . (A.39)
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For convenience, we define the abbreviation x = Ẽz/(2|k̃|) such that the eigenvectors are given
by

u+ = 1√
1 + (x+

√
x2 + 1)−2

(
sgn(k)|x+

√
x2 + 1|−1

1

)
(A.40)

u− = −1√
1 + (x−

√
x2 + 1)2

(
1

−sgn(k)|x−
√
x2 + 1|

)
. (A.41)

To transform them to the form in the main text, we consider

1√
1 + (x±

√
x2 + 1)2

=
√

1
1 + x2 ± 2x

√
x2 + 1 + x2 + 1

(A.42)

= 1√
2

√
1

1 + x2 ± x
√
x2 + 1

(A.43)

= 1√
2

√
1 + x2 ± x

√
x2 + 1 − x2 ∓ x

√
x2 + 1

1 + x2 ± x
√
x2 + 1

(A.44)

= 1√
2

√
1 − x2 ± x

√
x2 + 1

1 + x2 ± x
√
x2 + 1

(A.45)

= 1√
2

√
1 − x√

x2 + 1
x2 ± x

√
x2 + 1√

x2 + 1 ± x
(A.46)

= 1√
2

√
1 ∓ x√

x2 + 1
(A.47)

1√
1 + (x±

√
x2 + 1)−2

=

√√√√ (x±
√
x2 + 1)2

(x±
√
x2 + 1)2 + 1

(A.48)

=
√

2x2 ± 2x
√
x2 + 1 + 1

2 + 2x2 ± 2x
√
x2 + 1

(A.49)

= 1√
2

√
2x2 ± 2x

√
x2 + 1 + 1 + x2 ± x

√
x2 + 1 − x2 ∓ x

√
x2 + 1

1 + x2 ± x
√
x2 + 1

(A.50)

= 1√
2

√
1 + x2 ± x

√
x2 + 1

1 + x2 ± x
√
x2 + 1

(A.51)

= 1√
2

√
1 ± x√

x2 + 1
x±

√
x2 + 1√

1 + x2 ± x
(A.52)

= 1√
2

√
1 ± x√

x2 + 1
. (A.53)
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Using these relations in the eigenvectors Eqs. (A.40) and (A.41) yields

u+ = 1√
2

sgn(k)
√

1 − x/
√
x2 + 1√

1 + x/
√
x2 + 1

 (A.54)

u− = 1√
2

 −
√

1 + x/
√
x2 + 1

sgn(k)
√

1 − x/
√
x2 + 1

 . (A.55)

By resubstitution of x = Ez/(2|k|), we obtain the eigenvectors Eq. (2.85).

A.4 Finite Majorana energy
Here we calculate the energy of the Majorana level for a finite Rashba wire of length L based
on the analytical solution Eq. (2.136). As we discussed in the main text, the Majorana wave
functions from both ends hybridize to

ψ±E0(y) = e±iπ/4
√

2
(χL(y) ∓ iχR(y)) , (A.56)

where we cut the wave functions at the opposite ends using a step function. The energy is then
calculated by [368]

E0 =
∫

dy ψ†
E0

HψE0∫
dy ψ†

E0
ψE0

(A.57)

= 1
2

∫ L
0 dy

[
χ†

L(y)HχL(y) + χ†
R(y)HχR(y) − iχ†

L(y)HχR(y) + iχ†
R(y)HχL(y)

]
∫

dy ψ†
E0
ψE0

. (A.58)

By using the unitary PΠ symmetry, we show in the main text, that the direct terms vanish and
the expression reduces to

E0 = − i
2

∫
dy
[
χ†

LHχR − χ†
RHχL

]
∫

dy ψ†
E0
ψE0

. (A.59)

To evaluate this expression, we use that the analytical solution Eq. (2.136), truncated at the
opposite ends are given by

χ†
L = θ(L− y)eiπ/4(χ̂L↑(y), i χ̂L↓(y), χ̂L↓(y),−i χ̂L↑(y)

)
(A.60)

χ†
R = θ(y)e−iπ/4(χ̂L↑(L− y),−i χ̂L↓(L− y), χ̂L↓(L− y), i χ̂L↑(L− y)

)
. (A.61)

Here the χ̂ are all real functions. We use these to first compute the normalization where the
Majorana wave functions themselves are already normalized∫

dy ψ†
E0
ψE0 = 1

2

∫
dy
[
χ†

LχL + χ†
RχR − iχ†

LχR + iχ†
RχL

]
(A.62)

= 1 + i
2

∫
dy

[
χ†

RχL − χ†
LχR

]
. (A.63)
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From Eq. (A.60) and Eq. (A.61) we find that the second term vanishes and∫
dy ψ†

E0
ψE0 = 1 . (A.64)

Therefore, the energy is given by

E0 = − i
2

∫
dy
[
χ†

LHχR − χ†
RHχL

]
. (A.65)

Using the explicit form of the Majorana wave functions yields

E0 = 1
2

∫
dy
[
θ(L− y) (χ̂L↑(y), i χ̂L↓(y), χ̂L↓(y),−i χ̂L↑(y)) ×


−∂2

ỹ − µ̃− Ẽz −2i∂ỹ ∆̃ 0
−2i∂ỹ −∂2

ỹ − µ̃+ Ẽz 0 ∆̃
∆̃ 0 ∂2

ỹ + µ̃− Ẽz 2i∂ỹ

0 ∆̃ 2i∂ỹ ∂2
ỹ + µ̃+ Ẽz

 θ(y)


χ̂L↑(L− y)
i χ̂L↓(L− y)
χ̂L↓(L− y)

−i χ̂L↑(L− y)


+ θ(y) (χ̂L↑(L− y),−i χ̂L↓(L− y), χ̂L↓(L− y), i χ̂L↑(L− y)) ×

−∂2
ỹ − µ̃− Ẽz −2i∂ỹ ∆̃ 0
−2i∂ỹ −∂2

ỹ − µ̃+ Ẽz 0 ∆̃
∆̃ 0 ∂2

ỹ + µ̃− Ẽz 2i∂ỹ

0 ∆̃ 2i∂ỹ ∂2
ỹ + µ̃+ Ẽz

 θ(L− y)


χ̂L↑(y)

−i χ̂L↓(y)
χ̂L↓(y)
i χ̂L↑(y)


]
.

(A.66)

Using that Hχ̂L) = 0, χL(0) = 0, ∂yθ(y) = δ(y), and
∫

dy(−∂2
yθ(y))f(y) = f ′(0),

∫
dy(−∂2

yθ(L−
y))f(y) = −f ′(L), we find

E0 = 1
2

∫ L

0
dy
[

(χ̂L↑(y), i χ̂L↓(y), χ̂L↓(y),−i χ̂L↑(y))


−∂2

yθ(y) 0 0 0
0 −∂2

yθ(y) 0 0
0 0 ∂2

yθ(y) 0
0 0 0 ∂2

yθ(y)




χ̂L↑(L− y)
i χ̂L↓(L− y)
χ̂L↓(L− y)

−i χ̂L↑(L− y)



+ (χ̂L↑(L− y),−i χ̂L↓(L− y), χ̂L↓(L− y), i χ̂L↑(L− y))


−∂2

yθ(y) 0 0 0
0 −∂2

yθ(y) 0 0
0 0 ∂2

yθ(y) 0
0 0 0 ∂2

yθ(y)




χ̂L↑(y)
−i χ̂L↓(y)
χ̂L↓(y)
i χ̂L↑(y)


]

= 2
(
χ̂′

L↑(0)χ̂L↑(L) − χ̂′
L↓(0)χ̂L↓(L)

)
. (A.67)

Using the analytic expressions Eq. (2.136) in the topological case where ξ > ξ2 with e−L/ξ2 ≪
e−L/ξ, and the abbreviation A = ξ + ikeff , the energy is given by

E0 = 2N 2e−L/ξ

{
Re
[
−4A2a− 2∆̃Aa− ξ−1

2 (2ξ−1
2 + ∆̃)

]
Re
[
4eikeffLAa+ 2eikeffL∆̃a

]

− Re
[
−2A3a− 2(µ̃+ Ẽz)Aa− ξ−1

2 (ξ−2
2 + µ̃+ Ẽz)

]
Re
[
2eikeffLA2a+ 2eikeffL(µ̃+ Ẽz)a

]}
.

(A.68)
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Using further that Re(eikeffLB) = cos(keffL)Re(B) − sin(keffL)Im(B)

E0 = 2N 2e−L/ξ cos(keffL)
{

Re
[
−4A2a− 2∆̃Aa− ξ−1

2 (2ξ−1
2 + ∆̃)

]
Re
[
4Aa+ 2∆̃a

]

− Re
[
−2A3a− 2(µ̃+ Ẽz)Aa− ξ−1

2 (ξ−2
2 + µ̃+ Ẽz)

]
Re
[
2A2a+ 2(µ̃+ Ẽz)a

]}
(A.69)

− 2N 2e−L/ξ sin(keffL)
{

Re
[
−4A2a− 2∆̃Aa− ξ−1

2 (2ξ−1
2 + ∆̃)

]
Im
[
4Aa+ 2∆̃a

]

− Re
[
−2A3a− 2(µ̃+ Ẽz)Aa− ξ−1

2 (ξ−2
2 + µ̃+ Ẽz)

]
Im
[
2A2a+ 2(µ̃+ Ẽz)a

]}
(A.70)

= Re−L/ξ cos(keffL− δ) . (A.71)

This is the expression given in main text Eq. (2.160). Here, R and δ are given by

R =
√
c2

cos + c2
sin (A.72)

and

δ = arctan
(
csin
ccos

)
, (A.73)

with

ccos = 2N 2
{

Re
[
−4A2a− 2∆̃Aa− ξ−1

2 (2ξ−1
2 + ∆̃)

]
Re
[
4Aa+ 2∆̃a

]

− Re
[
−2A3a− 2(µ̃+ Ẽz)Aa− ξ−1

2 (ξ−2
2 + µ̃+ Ẽz)

]
Re
[
2A2a+ 2(µ̃+ Ẽz)a

]}
(A.74)

csin = −2N 2
{

Re
[
−4A2a− 2∆̃Aa− ξ−1

2 (2ξ−1
2 + ∆̃)

]
Im
[
4Aa+ 2∆̃a

]

− Re
[
−2A3a− 2(µ̃+ Ẽz)Aa− ξ−1

2 (ξ−2
2 + µ̃+ Ẽz)

]
Im
[
2A2a+ 2(µ̃+ Ẽz)a

]}
.

(A.75)

A.5 CMA-ES algorithm
In this appendix, we summarize the CMA-ES algorithm closely following the described by
Hansen et al. in Ref. [241] and Ref. [253] for optimizing the function f : RN → R:

1 Parameters
Get starting point m0 ∈ RN .
Get initial step size σ0 ∈ R.
Get population size npop ∈ N.
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2 Initialization
Set initial center of the search region m(0) = m0.
Set initial step size σ(0) = σ0.
Set initial covariance matrix as identity C(0) = 1.
Set initial evolution path for the correlation matrix s(0)

C = 0.
Set initial evolution path for the step size s(0)

σ = 0.
Set selection size ñ = ⌊npop/2⌋ (number of best candidates considered for updates).
Set weights w̃j = ln[(npop + 1)/(2j)] and w+

i = w̃i/
∑ñ

j=1 w̃j > 0.
Set effective number of included best metric values ñeff = [∑ñ

i=1 w̃i]2/
∑ñ

i=1 w̃
2
i .

Set friction parameters cσ = (ñeff+2)/(N+ñeff+5), dσ = 1+cσ+2 max[0,
√

(ñeff − 1)/(N + 1)−
1], and cC = (4 + ñeff/N)/(N + 4 + 2ñeff/N).
Set weights for the active CMA-ES step w−

i = min
{

1 + c1/cµ, 1 + ñ−
eff/(ñeff + 2), (1 − c1 − cµ)/Ncµ

}
×|w̃i+ñ|/

∑ñ
j=1 |w̃j+ñ|, with c1 = 2/((N + 1.3)2 + ñeff), cµ = min[1 − c1, 2(ñeff − 2 +

1/ñeff)/((N + 2)2 + ñeff)], and ñ−
eff = [∑ñ

i=1 w̃i+ñ]2/∑ñ
i=1 w̃

2
i+ñ.

Set χ̂ =
√
N(1 − 1/(4N) + 1/(21N2)).

Set step counter t = 1.

3 Optimizer loop

(i) Draw npop candidate vectors xi form a multivariate normal distribution
N
(
m(t), (σ(t))2C(t)

)
. This is achieved by using the eigendecomposition C(t) =

UD2UT of the symmetric positive semidefinite correlation matrix C(t), drawing vec-
tors zi from N (0,1) with i.i.d. normal entries with zero mean and unit variance, and
computing

xi = m(t) + σ(t)UDzi . (A.76)

(ii) Get function values fi = f(xi) for each candidate and rank order xi such that
fi ≤ fi+1. This is the only information about the function f that the optimizer
requires. Store also the current best solution (xbest, fbest) or update it, if this gener-
ation produced a function value smaller than any value observed up to this iteration.

(iii) Update the mean value according to the ñ best solutions as a weighted average:

m(t+1) =
ñ∑

i=1
w+

i xi . (A.77)

(iv) Compute difference vectors

δs
(t+1)
i = (xi −m(t))/σ(t) (A.78)

δs(t+1) = (m(t+1) −m(t))/σ(t) . (A.79)

(v) Update the evolution path for the step size and from it the step size:

s(t+1)
σ = (1 − cσ)s(t)

σ +
√
cσ(2 − cσ)ñeff [C(t)]−1/2δs(t+1) (A.80)

σ(t+1) = σ(t) exp
[
cσ

dσ

(
∥s(t+1)

σ ∥
χ̂

− 1
)]

. (A.81)
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The update of the evolution path is chosen such that the scaling with the square root
of the eigenvalues D of C is removed, and only the rotation is kept [241]. Here, χ̂ is
an estimator for the expectation values of the norm of s(t)

σ [241].
(vi) Update the evolution path of the correlation matrix and the correlation matrix using

the previous one and the update path

s
(t+1)
C = (1 − cC)s(t)

C + h(s(t+1)
σ )

√
cC(2 − cC)ñeff δs(t+1) (A.82)

C(t+1) = C(t) + c1s
(t+1)
C [s(t+1)

C ]T + cµ

ñ∑
i

(
w+

i − w−
i

N

∥C− 1
2xi∥2

)
δs

(t+1)
i [δs(t+1)

i ]T ,

(A.83)

where h(s(t+1)
σ ) is one if ∥s(t+1)

σ ∥/χ̂ < (1.4 + 2)
√

1 − (1 − cσ)2(t+1)/(N + 1) and zero
otherwise to avoid that the search space shrinks too fast [253]. The evolution path is
updated in the direction of the change of the mean value, keeping some momentum
from the last updates by including parts of the previous s.

(vii) Update t → t + 1 and loop until convergence. The convergence condition can for
example be based on the length of the path updates, the step size, or on the change
in the best candidates for the function value compared to the previous iteration.

4 Result
Return the smallest function value fbest and corresponding point xbest.

Here, the evolution paths s(t)
C and s

(t)
σ are adjusted in each iteration, which are then used

to update the covariance matrix C and step size σ indirectly, retaining information from the
previous iteration. This concept is similar to gradient descent with momentum as applied to
training neural networks.
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B.1 Spectra and singular vectors for more networks
We show additional results for singular value spectra and Kolmogorov-Smirnov tests of singular
vector entries against a Porter-Thomas distribution for networks trained with label noise in
Fig. B1. We find results similar to those of Sec. 3.3. Averaged p-values for singular vectors
corresponding to large singular values are reduced compared to the values in the bulk.

Figure B1: Analysis of singular values ν and vectors V of (a) the first and third hidden layer
weight of MLP1024 networks, and (b) the convolutional layers of miniAlexNet networks trained
with various amounts of label noise: 0% (blue), 40% (green), and 100% (brown). For reference,
we show results for randomly initialized weights in red. The upper panels show the random-
ness of singular vectors via the p-value of Kolmogorov-Smirnov tests against a Porter-Thomas
distribution, averaged over neighboring singular values with a window size of 31. The light red
stripe describes the 2σ region around the mean for random vectors. The lower panel depicts the
corresponding singular value spectra obtained via Gaussian broadening with a window size of
31 singular values (solid lines). The dashed line shows the fit of a Marcenko-Pastur distribution
to the spectrum for 0% label noise.
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C.1 Consistency check of the refermionized field operator

By using ψα(x) from Eq. (1.114) and the expression for ψ†
α(x′)ψα(x′) = ρα(x′) from Eq. (1.110),

we show that ψα(x) indeed affects the density at position x′ = x according to [162]

[ψα(x) , ψ†
α(x′)ψα(x′)] = δ(x− x′)ψα(x) . (C.84)

Using the commutator relation [eA , B] = eA[A , B] that is valid if [[A , B] , A] = 0 [162], together
with [ϕα(x) , bα,q] = +

√
2π/(qL) e−iαqx, [ϕα(x) , b†

α,q] = −
√

2π/(qL) eiαqx, and
ei (φ0,q+α2πxNα/L) = eiφ0,qeiα2πxNα/Le−iαπx/L, one finds

[ψα(x) , ρα(x′)] = χα√
2πη eiα 2πx

L
Nαe−i απx

L
1
L

{∑
q>0

√
qL

2π

(
iαeiαqx′eiφ0,α [e−iαϕα(x) , bα,q]

− iαe−iαqx′eiφ0,α [e−iαϕα(x) , b†
α,q]
)

+ e−iαϕα(x)[eiφ0,α , Nα]
}

(C.85)

= ψα(x) 1
L

{∑
q>0

√
qL

2π

(
iαeiαqx′ [−iαϕα(x) , bα,q]

− iαe−iαqx′ [−iαϕα(x) , b†
α,q]
)

+ [iφ0,α , Nα]
}

(C.86)

= ψα(x) 1
L

{∑
q>0

(
eiαq(x′−x) + e−iαq(x′−x)

)
+ 1

}
(C.87)

= ψα(x) 1
L

∑
q

eiαq(x−x′) (C.88)

= ψα(x)δ(α(x− x′)) (C.89)
= ψα(x)δ(x− x′) . (C.90)

This shows the importance of the φ0,α zero mode, which contributes the q = 0 term to the
Fourier representation of the Dirac delta distribution.

C.2 Finite size corrections of the entropy in the clustered solid limit

For the clustered solid limit V/J → −∞ in a system with N particles on L = 2N lattice sites,
we found the eigenvalues of the 1-RDM in Eq. (4.32) as

λn = 1
2N

[
1 + 2

N
cos(qnN)

]
(C.91)
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where due to the (anti-)periodic boundary conditions for (even) odd number of fermions N , the
momenta in the Fourier transform are given by

qn =
{2πn

L for odd N
2πn
L + π

L for even N
. (C.92)

Therefore, we find

λn =


1

2N

[
1 + (−1)n 2

N

]
for odd N

1
2N for even N

. (C.93)

For even particle number, the entropy reaches the thermodynamic limit value Sα(V/J → −∞) =
ln(2) + ln(N) even for finite lattices, while for odd N , there is a finite size correction

S1(V/J → −∞) − ln(N) = ln(2) − 1
2 ln

[
1 − 4

N2

]
− 1
N

ln
[1 + 2/N

1 − 2/N

]
(C.94)

= ln(2) − 2/N2 + O(N−4) (C.95)

Sα(V/J → −∞) − ln(N) = ln(2) + 1
1 − α

ln
[(1 + 2/N)α + (1 − 2/N)α

2

]
(C.96)

= ln(2) − 2α/N2 + O(N−4) . (C.97)

282



Bibliographische Beschreibung

Thamm, Matthias
Mesoscopic physics of quantum systems and neural networks
Universität Leipzig, Dissertation
284 S., 497 Lit., 113 Abb.

Abstract

We study three different kinds of mesoscopic systems – in the intermediate region between
macroscopic and microscopic scales consisting of many interacting constituents:

We consider particle entanglement in one-dimensional chains of interacting fermions. By em-
ploying a field theoretical bosonization calculation, we obtain the one-particle entanglement
entropy in the ground state and its time evolution after an interaction quantum quench which
causes relaxation towards non-equilibrium steady states. By pushing the boundaries of the nu-
merical exact diagonalization and density matrix renormalization group computations, we are
able to accurately scale to the thermodynamic limit where we make contact to the analytic
field theory model. This allows to fix an interaction cutoff required in the continuum bosoniza-
tion calculation to account for the short range interaction of the lattice model, such that the
bosonization result provides accurate predictions for the one-body reduced density matrix in the
Luttinger liquid phase.

Establishing a better understanding of how to control entanglement in mesoscopic systems is
also crucial for building qubits for a quantum computer. We further study a popular scalable
qubit architecture that is based on Majorana zero modes in topological superconductors. The two
major challenges with realizing Majorana qubits currently lie in trivial pseudo-Majorana states
that mimic signatures of the topological bound states and in strong disorder in the proposed
topological hybrid systems that destroys the topological phase. We study coherent transport
through interferometers with a Majorana wire embedded into one arm. By combining analytical
and numerical considerations, we explain the occurrence of an amplitude maximum as a function
of the Zeeman field at the onset of the topological phase – a signature unique to MZMs – which
has recently been measured experimentally [Whiticar et al., Nature Communications, 11(1):3212,
2020]. By placing an array of gates in proximity to the nanowire, we made a fruitful connection
to the field of Machine Learning by using the CMA-ES algorithm to tune the gate voltages in
order to maximize the amplitude of coherent transmission. We find that the algorithm is capable
of learning disorder profiles and even to restore Majorana modes that were fully destroyed by
strong disorder by optimizing a feasible number of gates.

Deep neural networks are another popular machine learning approach which not only has many
direct applications to physical systems but which also behaves similarly to physical mesoscopic
systems. In order to comprehend the effects of the complex dynamics from the training, we
employ Random Matrix Theory (RMT) as a zero-information hypothesis: before training, the
weights are randomly initialized and therefore are perfectly described by RMT. After training,
we attribute deviations from these predictions to learned information in the weight matrices.
Conducting a careful numerical analysis, we verify that the spectra of weight matrices consists
of a random bulk and a few important large singular values and corresponding vectors that carry
almost all learned information. By further adding label noise to the training data, we find that
more singular values in intermediate parts of the spectrum contribute by fitting the randomly
labeled images. Based on these observations, we propose a noise filtering algorithm that both
removes the singular values storing the noise and reverts the level repulsion of the large singular
values due to the random bulk.
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