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Abstract: Superdense coding promises increased classical
capacity and communication security but this advantage
may be undermined by noise in the quantum channel. We
present a numerical study of how forward error correc-
tion (FEC) applied to the encoded classicalmessage can be
used tomitigate against quantum channel noise. By study-
ing the bit error rate under di�erent FEC codes, we identify
the unique role that burst errors play in superdense cod-
ing, and we show how these can be mitigated against by
interleaving the FEC codewords prior to transmission. We
conclude that classical FEC with interleaving is a useful
method to improve the performance in near-term demon-
strations of superdense coding.

1 Introduction
Entanglement is a versatile resource that enables many
new methods of communication including teleportation,
quantum secret sharing, and superdense coding [1, 2]. Su-
perdense coding (SDC), in particular, enables a sender Al-
ice to transmit a two-bitmessage to a receiver Bob by send-
ing only onemember of a shared bipartite entangled quan-
tum state [3]. This is twice the classical capacity expected
from direct transmission of a single unentangled qubit. In
addition to increased capacity, correlations within the en-
tangled state provide the added bene�t that an eavesdrop-
per cannot recover the message by simply intercepting the
single transmitted particle. These unique features of SDC
have been demonstrated by several di�erent experiments
and shown to provide both greater channel capacity and
security relative to direct communication techniques [4–
8].
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A limitation on SDC performance in realistic settings
is the presence of channel noise, which corrupts the trans-
mitted state. Channel noise reduces the rate that informa-
tion is reliably transmitted and has the potential to com-
pletely undermine the expected bene�ts from SDC [9]. Pre-
viously, Shadman et al. have investigated the classical ca-
pacity for SDC when transmitting in the presence of de-
polarizing noise [10–12]. Their results quanti�ed the de-
crease in capacity for single-sided and double-sided trans-
missions, inwhichnoise acts onone andbothparticles, re-
spectively. Notably, Shadmanet al. founda crossover point
in the depolarizing noise model for which double-sided
noise does no better than direct quantum transmission.
This cross-over point represents the condition for which
the classical SDC capacity was smaller than when using
direct quantum transmission.

The presence of noise in experimental realizations of
SDC raises the question as to how this type of communi-
cation can bene�t from the use of error correction tech-
niques. Both quantum and classical error correction codes
could in principle o�er protection to the transmission of
information. Quantum error-correction (QEC) codes use
ancillary qubits to construct a higher-dimensional code
space that can detect errors in the logical code words
[13]. There have been several experimental demonstra-
tions that show the bene�ts of QEC for protecting against
sources of channel noise, including demonstration using
optically encoded qubits [14, 15]. However, the require-
ment of using additional ancilla is at oddswith experimen-
tal limitations on the number of simultaneously generated
photon states, whichmake it di�cult to prepare codeword
states for existing QEC codes.

Classical forward error correction (FEC) o�ers an alter-
native to QEC that is more easily realized by existing quan-
tum communication technology. In this setting, FEC codes
rely on classical ancilla to redundantly encode the state of
an input bit string. When used in conjunction with SDC,
the resulting classical codewords are encoded into quan-
tum states and transmitted across a noisy quantum chan-
nel. These received states are detected and then decoded
into classical strings representing the originalmessage.An
immediate advantageof this approach is that it doesnot re-
quire additional entanglement in quantum resources. The
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use of FEC codes also does not require changes to exist-
ing quantumhardware for implementation, but rather can
integrate with the software systems that manage existing
hardware [16].

However, the noisy quantum channels that lead to er-
rors in the received codewords are not always equivalent
to well-studied classical channels, and the performance of
an FEC code for SDC depends on the details of the quan-
tum channel. Indeed, this point has been emphasized in
recentwork byBoyd et al. who found that binary codes are
limited in the capacity that is achievable [17]. This limita-
tion was traced back to the distinction between quantum
states as soft symbols and the measured bits as hard sym-
bols. Boyd et al. have shown that non-binary classical er-
ror correction codes can o�er better performance andmay
be viewed though the lens of a d-arymemory-less classical
model for entanglement-assisted communication [17].

In this paper, we investigate the performance of sev-
eral binary FEC codes for mitigating errors from super-
dense coding over noisy quantum channels. In particular,
we calculate the bit-error rate (BER) for �nite-length mes-
sages over a Pauli channel using numerical simulations
of the transmission. We calculate the decoded BER for the
repetition,Hamming, andGolay FEC codes in the presence
of depolarizing noise. We then investigate the use of data
interleaving tomitigate against the structure of these Pauli
operator errors.We present results fromnumerical simula-
tions of these di�erent system designs and we identify the
relative performance under the Pauli noise model.

The remainder of the paper is organized as follows.
In Sec. 2, we review the superdense coding protocol and
present a model for noisy transmission. In Sec. 3, we in-
troduce notation for FEC codes and provide an example
of how FEC coding a�ects the bit-error rate. In Sec. 4,
we present numerical simulation results for FEC encoded
SDC, and in Sec. 5 we analyze the impact of interleaving
for protecting entangledpair states fromsomePauli errors.
Our conclusions are then presented in Sec. 6.

2 Noisy Superdense Coding
The superdense coding (SDC) protocol begins by assuming
that users Alice and Bob share a pair of qubits prepared
in a known entangled state. We will consider this state to
belong to one of the four Bell states,

|Φ(±)
AB〉 = 1√

2
(|0A , 0B〉 ± |1A , 1B〉)

|Ψ (±)
AB〉 = 1√

2
(|0A , 1B〉 ± |1A , 0B〉)

(1)

where 0 and 1 denote the eigenstates of the Pauli Z oper-
ator and A and B label the di�erent subsystems [18]. For
concreteness, let the shared initial state be Φ(+) and the
corresponding initial density matrix be de�ned as ρ(+). Al-
ice uses this �ducial state to transmit a two-bit message b
to Bob by encoding the binary coe�cients b0 and b1 of the
message into the state. The message is encoded by apply-
ing the unitary operator

OA(b) = OA(b0, b1) = Xb0
A Z

b1
A (2)

to subsystem A. Each of the four possible operators maps
the initial state uniquely into one of the maximally entan-
gled Bell states and we will use the shorthand notation
ρb = OA(b)ρ(+)

ABOA(b)† to denote the state encoding the
message b.

After encoding the message, Alice transmits subsys-
tem A to Bob, who performs a projective measurement in
the Bell basis to identify the state prepared by Alice [19].
The complete set of Bell-state measurements may be mod-
eled by the set of projection operators Π(b) = ρb, where
b = {0, 1, 2, 3} uniquely labels the measurement out-
come. The probability of measuring Bell state b′ given the
encoded value b is given as

Prob(b′|b) = Tr[Πb′ρb]. (3)

For the noiseless protocol, Prob(b′|b) = δb′ ,b, and Bob
may translate the detected state to recover the two-bitmes-
sage according to map generated by Eq. (2). Thus, in the
absence of noise, each two-bit message is faithfully trans-
mitted using a pure state and the capacity of each channel
use is two bits.

The idealized SDC protocol neglects several sources of
noise that may be encountered in a realistic implementa-
tion. First, the preparation of the initial state shared by Al-
ice and Bob may deviate from the protocol speci�cation.
In particular, it may be represented by a nonmaximally-
entangled mixture of bipartite states. This deviation from
the protocol may be due to environmental induced deco-
herence of the initially pure state or to noisy preparation
of the entangled pair. Second, Alice’s encoding operations
may be faulty from imprecise application of the Pauli op-
erators X, Z, and XZ. This also leads to less than maxi-
mally entangled Bell states with the e�ect that the result-
ing measurement statistics will not be perfectly correlated
with the input message. Third, the transmission of sub-
system A from Alice to Bob may encounter channel noise
that introduces errors in the amplitude and phase of the
state. Additional possible errors include loss, whereby the
transmitted particle is not received by Bob, and leakage,
in which the particle is perturbed into a state not detected
by Bob’s measurement apparatus.
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We will consider a model of noisy SDC given by the
one-sided Pauli channel

E(ρb) =
3∑
j=0

pjOA(j)ρbOA(j)† (4)

with p0 ∈ [0, 1] and p1,2,3 ∈ [0, 1/3] constrained by∑
j pj = 1 and the operator OA(j) de�ned in Eq. (2). The

quantumchannelE serves as an e�ectivemodel to account
for a variety of noise sources including transmissionnoise,
state preparation noise, and detection errors. Equation (4)
also has the property that it maps every Bell-state to amix-
ture of Bell states and, consequently, this is a covariant
channel with respect to the Pauli basis de�ned by Eq. (2).
We will limit subsequent analysis to the case p0 = 1 − p
and p1 = p2 = p3 = p/3 for p ∈ [0, 1], which is known as
the depolarizing noise limit for noise parameter p [18].

While the probability to receive the incorrect quantum
state is 1 − p0, the probability to receive the incorrect clas-
sical message is slightly less. This is because the message
encoded in a received Bell state will have either one, two,
or no bits corrupted. Given the output state of the channel
in Eq. (4), the probability that Bob observes the message
b′ when Alice sent the message b is formally

ProbSDC(b′|b) = Tr[Πb′E(ρb)] (5)

For the depolarizing channel, the corresponding transi-
tion probabilities are given as

ProbSDC(b′|b) =


1 − p b′0b′1 = b0b1
p
3 b′0b′1 = b̄0b1
p
3 b′0b′1 = b0b̄1
p
3 b′0b′1 = b̄0b̄1

(6)

with b̄j the binary conjugate of bj. The bit error rate (BER)
measures the ratio of incorrect bits to the number of bits
transmitted. For the one-sided SDC depolarizing channel,
the frequencywithwhich the binarymessage is incorrectly
decoded is given by

BERSDC = 2p
3 (7)

As a point of comparison, consider the case that Alice
and Bob use direct quantum transmission instead of en-
tanglement for communication. Alice then uses the noisy
quantum channel twice to transmit a single qubit correctly
with probability p. However, the action of the Pauli Z op-
erator changes only the phase of the qubit and, therefore,
does not lead to an incorrect bit. The corresponding tran-
sition probabilities for Bob to successfully recover both of

Alice’s bits are

ProbDirect(b′0b′1|b0b1) =



(1 − 2p
3 )2 b′0b′1 = b0b1

2p
3 (1 − 2p

3 ) b′0b′1 = b̄0b1

(1 − 2p
3 ) 2p

3 b′0b′1 = b0b̄1(
2p
3

)2
b′0b′1 = b̄0b̄1

(8)

In this case, the BER also evaluates to

BERDirect = 2p
3 (9)

Although the BER for SDC and direct transmission are
the same in the case of a depolarizing channel, the classi-
cal channel capacities are not. In particular, the classical
capacity for SDC in the presence of depolarizing noise has
been given previously as [9]

CSDC(p) = 2 + (1 − p) log (1 − p) + p log p3 (10)

while the corresponding capacity for a single use of direct
transmission is

CDirect(p) = 1 + (1 − p) log (1 − p) + p log p, (11)

which is less than half of the former.
Finally, it is useful to compare the capacity for super-

dense coding with that of a 4-ary classical communica-
tion system. Both communication methods are capable of
transmitting 4 distinct symbols, although SDC leverages
the non-local correlations between Alice and Bob for this
purpose. Bennett et al. have previously shown that the ca-
pacity for both systems is the same under the symmetric
channel [9].

3 SDC with Forward Error
Correction

Forward error correction (FEC) codes increase the relia-
bility of transmission over a noisy channel by encoding
the message such that a transmission contains redundant
information. The receiver may detect a transmission er-
ror and correct it without the involvement of the sender,
making forward error correction codes useful on simplex
(i.e., one-way) communication channels. For a SDC chan-
nel, these codes are applied to the classical message be-
fore being encoded to quantum symbols. In addition, the
measured classical symbols by Bob are then decoded ac-
cording to the FEC code. An FEC code with distance d can
detect up to (d −1) errors in the received message and cor-
rect any message with

⌊
(d − 1)/2

⌋
errors or less.
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Formally, we will represent an [n, k, d] code by the n-
by-k generatormatrixG, which transforms an input binary
vector b into a codeword c, i.e.,

c = Gb (12)

encodes k input bits into an n-bit codeword c. These n bits
will then be transmitted pairwise using the SDC protocol.
If n is odd, we concatenate two consecutive codewords for
transmission of a 2n-bit message. Alternatively, the code-
word may also be padded with an extra bit. In either case,
consecutive bit pairs are mapped into the Bell states ac-
cording to Eq. (2). Applying FEC to the original classical
message increases the size of the transmitted information
by a factor n/k, the inverse of the code rate. An input mes-
sage b of size 2k is encoded by FEC as the codeword vector
c of size 2n and then transmitted by the ensemble of states

ρc =
n−1∏
i=0
OA(c2i , c2i+1)ρ0OA(c2i , c2i+1)† (13)

where ci is the i-th bit as de�ned by Eq. (12).
Detection of n quantum states sent byAlice leaves Bob

with the receivedmessaged = c+e, where e represents the
error imparted by the noisy channel. Forward error correc-
tion codes will permit decoding of the error provided its
weight (Hammingdistance) iswithin theboundpreviously
mentioned. If so, then the error can be decoded using the
parity matrix H for the [n, k, d] code, which satis�es

b′ = Hd. (14)

Whenever Hd ≠ 0, an error has occurred. However, the
error can be identi�ed only if the weight is less than the
distance of the code. Thus, the probability for a given bit
pair to be correctly decoded is given by the number ofways
in which a correctable error may be received by Bob.

For example, an FEC codewith distance d = 3 corrects
up to a single error in the received codeword. From Eq. (6),
the corresponding probability that the original message is
correctly received following error correction under the de-
polarizing channel is the bit error rate (BER)

BERSDC = (1 − p)n + 2p
3 (1 − p)(n−1), (15)

which measures the number of incorrectly decoded code-
words. The BER is useful for assessing the impact of the
FEC as it measures errors remaining after error correc-
tion. It also permits errors to be isolated to the individ-
ual codewords that contain them. We have tested the per-
formance of SDC when using several di�erent FEC codes
to protect against depolarizing noise. We will present nu-
merical results of these studies in the next section but

Table 1: Properties of FEC codes tested

Coding Distance Rate
No FEC 0 1

Repetition [n = {3, 5, 7}, k = 1] n
2

k
n

Hamming [n = 7, k = 4] 1 4
7

Golay [n = 24, k = 12] 3 1
2

we �rst provide an example using the Hamming [7, 4, 3]
code. Consider the explicit example that Alice sends Bob
the 4-bit message b = {1, 0, 0, 1} using the Hamming [7,
4] code. The FEC encoder using the Hamming [7, 4] en-
coding prepares the codeword c = {0, 0, 1, 1, 0, 0, 1, 0},
where we have appended an extra 0 tomake the codeword
even. These 8 bits are then sent to the quantum encoder,
which translates the eachpair into aBell-state symbol, i.e.,
Φ(+), Ψ (−),Φ(+), and Ψ (+).

During transmission, each of these states will experi-
ence noise according to the probabilistic model given by
Eq. (4). The e�ect of the noise depends on both the state
and the error operator. For example, an X error will trans-
form Ψ (+) to Φ(+) and Bob’s measurement results will be
mapped to the bit pair (0, 0) according to Eq. (2). This bi-
nary error can be corrected however using the Hamming
code. Assuming no other errors during the transmission
of four consecutive Bell states, the complete message that
Bob receives in this example is {0, 0, 1, 1, 0, 0, 0, 0}. Fol-
lowingdecoding of the receivedmessage, the originalmes-
sage is recovered as {1, 0, 0, 1} and the resulting BER is
0. The FEC succeeds in this example because the single
binary error resulting from corruption of the transmitted
quantum codeword is correctable when using the Ham-
ming code. Similarly, any other weight-one binary error in
the message can be corrected following measurement of
the complete encoded message. However, weight-two and
higher binary errors cannot be corrected by the Hamming
code. Moreover, these errors may bemistakenly character-
ized as weight-one errors and the resulting attempt to cor-
rect the message will corrupt it further. It is notable that
the binary errors in the received message trace back to the
quantum noise operations that act on the transmitted Bell
state.

4 Numerical Simulations of Noisy
SDC Transmission

Numerical simulations of the noisy SDC transmission
model presented in Sec. 2 were used to investigate the in-
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Figure 1: (top) Alice’s qitkat application implements FEC and SDC
encoding steps before pushing data to the middleware layer to
transmit the speci�ed Bell states. (bottom) Similarly, Bob’s applica-
tion gets measurement results from the receiver middleware layer
and performs the SDC and FEC decoding operations.

�uence of FEC codes on BER. We use the QITAKT frame-
work for software-de�ned quantum communication sys-
tems that has been presented previously [16]. Brie�y, the
QITKAT library is an extension of the GNU Radio real-
time signal processing framework that adds primitives for
quantum information applications. The GNURadio frame-
work provides a run-time manager and a large variety of
conventional communication methods that can be easily
integrated into a graphical work �ow and deployed to in-
teract with hardware components [20]. We leverage the
GNU Radio framework using the QITKAT library to con-
struct quantum communication applications that can be
either deployed directly to hardware or simulated using
numerical methods [21]. In the present study, we use nu-
merical simulation methods to investigate the behavior
FEC codes under the Pauli noise model.

Example QITKAT applications are shown for Alice and
Bob in Fig. 1. These applications represent pre-processing
steps that prepare messages to be sent to the communi-
cation middleware layer. For Alice’s application, an input
�le source feeds a stream of bits to the FEC code block
(the repetition code is shown in the example). The out-
put from the FEC encoder passes through the SDC encoder,
which converts each pair of consecutive bits to a transmis-
sion symbol that is then sent to the quantum transmitter.
The quantum transmitter consists of both hardware that
prepares and measures the entangled quantum states as
well as middleware that manages these processes. In our
case studies, we have replaced hardware instances with a
numerical simulator that interprets the middleware con-
trol signals and prepares a numerical representation of
the quantum state [16]. The simulator uses a model of the
quantum channel to generate a representation of themea-
surement results that is observed by Bob’s receiver. The re-
ceivermiddleware interprets themeasurement results and
performs decoding of the transmission. As shown in Fig. 1,
the decoding steps mirror the encoding performed by Al-
ice.

We use a numerical simulator that takes advantage of
the algebraic structure of both the Bell states and the Pauli
channel for noisy transmission. In particular, we model
Bob’s detectors as projective measurements in the Bell ba-
sis as given by Eq. (5). These measurements are there-
fore equivalent to sampling of the Pauli channel. We then
use a Monte Carlo method to sample the simulated trans-
mission and chose a speci�c outcome for each measure-
ment. The sampling is biased according to the error rates
{px , py , pz}with random instances drawnusing apseudo-
random number generator. For the symmetric depolariz-
ing noise, we consider the noise parameter p within the
range [0, 0.1] as suggested by recent experimental results
[22].

We calculate the BER after simulated transmission by
performing a comparison between the decoded bit stream
and the original input message. We use a nominal input
of approximately 1 million bits, where slight adjustments
are made to accommodate the number of bits required per
classical FEC symbol. The baseline case of SDC transmis-
sion through the depolarizing noise channel with no FEC
coding is shown in Fig. 2 alongside the case of direct quan-
tum transmission. As expected fromour earlier results, the
rate at which errors occur is the the same for both proto-
cols.

Figure 2: BER average versus noise parameter p for non-FEC en-
coded transmissions through a depolarizing channel. Points cor-
respond to single-sided superdense coding (SDC) and direct trans-
missions of single qubits.
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In comparison, simulation results for the average of
FEC encoded transmissions are presented in Fig. 3. These
curves show distinct behavior for the three types of FEC
codes considered in Table 1, which all perform better than
the unencoded transmission schemes. The Golay code,
which can correct up to weight-3 errors, performs the best
when transmitting by SDC. However, there is a crossover
with the direction transmission scheme using a repetition
code. TheHamming code produces a similar curve for both
SDC and direct transmission. Scatter in the plots for small
values of p are due to the increases in BER variance that
arise from �nite sampling.

Figure 3: BER averages versus noise parameter p for FEC-encoded,
non-interleaved transmission with either SDC or direct transmis-
sion. Curves correspond to Hamming [7,4], Golay [24,12], and repe-
tition [3,1] codes.

In Fig. 3, the behavior of the SDC and direct communi-
cation schemes are notably di�erent even though they are
both subject to the same noisy channel parameters. The
reason for this di�erence traces back to the e�ect of the
Pauli noise operators on the Bell states. In particular, the
transmission of FEC codewords under depolarizing noise
is susceptible to binary errors with weight greater than 1.
For the single-sided Pauli noise mode, these errors arise
when a transmitted Bell-state symbol is mapped into its
exact opposite in terms of the 4-ary encoding. Moreover,
these Pauli error operators yield correlated bit errors with
respect to the subsequent decoding. However, many FEC
codes work best with an independent random error model

and the presence of correlated errors can undermine per-
formance. This under performance results in a higher BER
than arises for direct transmission, which cannot incur
such correlated errors.

5 Interleaving
In classical communication, data interleaving is fre-
quently used to mitigate against correlated errors, also
known as burst errors. Prior to transmission, binary ele-
ments of codewords output from the FEC encoder are in-
terleaved with respect to transmission order while the re-
ceived symbols are deinterleaved in the reverse order. Al-
though burst errors still occur during transmission, any
correlated errors are e�ectively dispersed across the mul-
tiple, interleaved codewords.

As an example of interleaving, consider a two-bit
input message {b0, b1} protected by a repetition [3,
1] code. Encoding generates the binary string c =
{b0, b0, b0, b1, b1, b1} which maps to the joint quantum
state

ρc = ρ(b0 ,b0) ⊗ ρ(b0 ,b1) ⊗ ρ(b1 ,b1) (16)

The simulation of transmission of this sequence using SDC
through the depolarizing channel samples all 64 possible
combinations of Pauli noise operators. After detection and
decoding, the resulting BER is

BER[3,1] = 1
3p + 7

18p
2 + 2

27p
3 (17)

which has a leading order term that is linear in the noise
parameter p.

We contrast this non-interleaved result with a trans-
mission scheme in which the output of the encoder is in-
terleaved. In the current example, we will consider an in-
terleavingpattern that alternates between the�rst and sec-
ond codewords, i.e., we prepare the interleaved binary se-
quence c′ = {b0, b1, b0, b1, b0, b1}, which ismapped into
the joint quantum state

ρc′ = ρ(b0 ,b1) ⊗ ρ(b0 ,b1) ⊗ ρ(b0 ,b1) (18)

Although the noisy channel operator is the same, the prob-
ability for a burst error is greatly decreased by the inter-
leaving and the overall BER is

BERinterleaved[3,1] = 4
3p

2 − 16
27p

3 (19)

In particular, the leading order term is now quadratic in
the noise parameter p, which is an improvement over the
non-interleaved results. Comparative plots of the BER for
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Figure 4: BER average versus noise parameter p for repetition en-
coded transmission with and without interleaving. The non-FEC
encoded transmission is plotted for comparison.

interleaved and non-interleaved cases are shown in Fig. 5.

We also present results for the BER obtained using in-
terleaving for the Hamming and Golay codes in Fig. 5.

6 Conclusion
We have presented a numerical study of how classical for-
ward error correction techniques can be used with super-
dense coding. We have calculated the bit error rates for
one-sided SDC using a Pauli channel model. Our simu-
lations show the relative change in the BER when using
Hamming, Golay, and repetition codes for both direct and
superdense coding transmissions with respect to channel
noise. These results are explained in terms of the varying
distance of the FEC codes as well as the correlated noise
that arises within the context of superdense coding. We
have studied how to mitigate the in�uence of the corre-
lated errors by using interleaving, in which reordering of
the transmitted data is found to improve the ability of the
code to protect against noise. This is shown to be due to the
combined e�ects of Pauli errors on FEC codewords and the
decoding method.

Our results for the BER con�rm the behavior expected
for the entangled channel in thepresence of isotropic Pauli
noise, i.e., depolarizing noise. The e�ective bit-error rate is

Figure 5: BER average versus noise parameter p for FEC-encoded,
interleaved SDC transmission. Points correspond to FEC using Ham-
ming [7,4], Golay [24,12], and repetition [3,1] codes.

found to be 2p/3 with p the channel error rate. However,
the e�ectiveness of the error correction depends subtly on
the speci�c encoding and interleaving method used dur-
ing transmission. For example, when X errors on a trans-
mitted entangled state lead to single-bit errors then Z er-
rors will yield weight-two errors on the classical message.
The relative signi�cance of these errors depends not only
on the distance of the FEC code but also the position of the
errors in the codeword. We have shown that interleaving
is e�ective for mitigating against those higher-weight er-
rors that would otherwise lead to uncorrectable states of
the code.

Our use of classical FEC was motivated by a need to
improve the reliability of quantum communication. While
future QEC codes are likely to o�er more error correction
bene�ts, they will also require higher dimensional entan-
gled quantum resources. Current limitations on quantum
state preparation represent a bottleneck for using QEC to
improve the quality of service in quantum communication
systems. We have shown that FEC codes with proper in-
terleaving o�ers an e�ective method that may be imme-
diately employed with existing quantum communication
hardware. We expect follow-on studies of other FEC codes
will prove especially interesting for quantum communica-
tion systems, including polar codes for e�ciency and era-
sure codes for additional noise models.

More generally, future applications for FEC in quan-
tum communication include superdense coding as well
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as quantum key distribution, especially in the context
of multi-user communication networks that may require
codes specialized to di�erent channel modes [23]. The FEC
methodsmay also be useful for improving the detection of
unmodulated states in tamper-indicating quantum seals
[24]. However, we must expect that QEC codes will ulti-
mately be necessary for any full-scale quantum network-
ing environment. Protocols that do not communicate clas-
sical information should perform better with QEC than
with FEC, since only QEC can be used to correct errors
in the quantum state itself. This includes applications in
multi-user quantum communication protocols that tele-
port quantum information [25–27] or swap entanglement
between communication channels [28]. A promising ap-
proach to recon�guring networks between FEC and QEC
encoding methods is to exploit programmable nodes [29],
in which the error correction scheme is determined by an
external application based on channel diagnostics.
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