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Do the Kontsevich tetrahedral flows preserve or

destroy the space of Poisson bi-vectors ?

Anass Bouisaghouane and Arthemy V Kiselev

Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen,
P.O.Box 407, 9700 AK Groningen, The Netherlands

E-mail: A.V.Kiselev@rug.nl

Abstract.

From the paper “Formality Conjecture” (Ascona 1996):

I am aware of only one such a class, it corresponds to simplest good graph, the complete graph
with 4 vertices (and 6 edges). This class gives a remarkable vector field on the space of bi-vector
fields on R

d. The evolution with respect to the time t is described by the following non-linear
partial differential equation: . . ., where α =

∑

i,j
αij∂/∂xi ∧ ∂/∂xj is a bi-vector field on R

d.
It follows from general properties of cohomology that 1) this evolution preserves the class

of (real-analytic) Poisson structures, . . .
In fact, I cheated a little bit. In the formula for the vector field on the space of bivector

fields which one get from the tetrahedron graph, an additional term is present. . . . It is possible
to prove formally that if α is a Poisson bracket, i.e. if [α, α] = 0 ∈ T 2(Rd), then the

additional term shown above vanishes.

By using twelve Poisson structures with high-degree polynomial coefficients as explicit counter-
examples, we show that both the above claims are false: neither does the first flow preserve the
property of bi-vectors to be Poisson nor does the second flow vanish identically at Poisson bi-
vectors. The counterexamples at hand suggest a correction to the formula for the “exotic” flow
on the space of Poisson bi-vectors; in fact, this flow is encoded by the balanced sum involving
both the Kontsevich tetrahedral graphs (that give rise to the flows mentioned above). We reveal
that it is only the balance 1 : 6 for which the flow does preserve the space of Poisson bi-vectors.

Introduction. The Kontsevich graph complex is the language of deformation quantisation on
finite-dimensional Poisson manifolds [1, 2]. We consider the class of oriented graphs on two sinks
and k > 1 internal vertices (of which, each is the tail of two edges and carries a copy of the
Poisson bi-vector P). Encoding bi-differential operators, such graphs determine the flows on the
space of bi-vectors on a Poisson manifold at hand. The two flows with k = 4 internal vertices in
the graphs are provided by the two tetrahedra [1], see Fig. 1 on the next page. By producing 12
counterexamples, we prove that the claim [1, 2] of preservation of the Poisson property is false as
stated. Simultaneously, we reveal that the flow which is determined by the second graph is not
always vanishing by virtue of the skew-symmetry and Jacobi identity for Poisson bi-vectors P.

This paper is structured as follows. First we recall the correspondence between graphs
and polydifferential operators [3, 4] and we indicate the mechanism for such an operator to
vanish, cf. [5, 6]. In section 2 we recall three constructions of Poisson brackets with polynomial
coefficients of arbitrarily high degree (see [7, 8, 9]). In Tables 1–4 on pp. 7–8 we then summarise
the properties of all structures from our 12 counterexamples to the claim [1] that
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(i) the flow Ṗ = Γ1(P) which the first graph in Fig. 1 encodes on the space of bi-vectors P
would preserve their property to be Poisson (in fact, it does not), and that

(ii) the flow Ṗ = Γ2(P) would always be trivial whenever the bi-vector P is Poisson (in fact,
this is not true).

In particular, the twelfth counterexample pertains to the infinite-dimensional jet-space geometry
of variational Poisson structures [11]. (Quoted from [12], the Hamiltonian differential operator
for that variational Poisson bi-vector P is processed by using the techniques from [13, 14, 15]).

Finally, we examine at which balance the linear combination of the Kontsevich tetrahedral
flows preserves the space of Poisson structures on finite-dimensional manifolds. We argue that
the ratio 1 : 6 does the job; this claim has been proved in [6].

1. The graphs and operators

Let us formalise a way to encode polydifferential operators using oriented graphs. Consider the
space Rn with Cartesian coordinates x = (x1, . . ., xn), here 2 6 n <∞; for typographical reasons
we use the lower indices to enumerate the variables, so that x21 = (x1)

2, etc. By definition, the

decorated edge •
i
−→ • denotes at once the derivation ∂/∂xi ≡ ∂i (that acts on the content

of the arrowhead vertex) and the summation
∑n

i=1 (over the index i in the object which is

contained in the arrowtail vertex). For example, the graph •
i
←− Pij(x)

j
−−→ • encodes the

bi-differential operator
∑n

i=1(·)
←−
∂i P

ij(x)
−→
∂j (·). If its coefficients Pij are antisymmetric, then the

graph •
i
←− •

j
−−→ • encodes the bi-vector P = Pij ∂i ∧ ∂j , where ∂i ∧ ∂j =

1
2(∂i ⊗ ∂j − ∂j ⊗ ∂i).

It then specifies the Poisson bracket {·, ·}P if the n(n−1)
2 -tuple of coefficients solves the system

of equations

(Pij)
←−
∂ℓ · P

ℓk + (Pjk)
←−
∂ℓ · P

ℓi + (Pki)
←−
∂ℓ · P

ℓj = 0, (1)

hence the bracket •
i
←−
L
Pij j
−−→
R
• satisfies the Jacobi identity. Clearly, Pij(x) = {xi, xj}P .

From now on, let us consider only the oriented graphs whose vertices are either sinks, with
no issued edges, or tails for an ordered pair of arrows, each decorated with its own index (see
Fig. 1). Allowing the only exception in footnote 1, we shall always assume that there are neither
tadpoles, nor double oriented edges, nor two-edge loops.

We also postulate that every vertex which is not a sink carries a copy of a given Poisson bi-
vector P = Pij(x) ∂i ∧ ∂j ; the ordering of decorated out-going edges coincides with the ordering
“first ≺ second” of the indexes in the coefficients of P.

✁
✁

✁
✁✁☛✚
✚
✚
✚✚❃
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✁
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✚
✚

✚
✚✚❂
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❈
❈
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❈❈❲

❄
❄

PPPPq

✆
✆
✆
✆

✗

Γ2 =

k′

ℓ

m′

j
ℓ′

k
m

i

Figure 1. These tetraheral graphs encode flows (2a) and (2b), respectively. Each oriented edge
carries a summation index that runs from 1 to the dimension of the Poisson manifold at hand.
For each internal vertex (where a copy of the Poisson bi-vector P is stored), the pair of out-going
edges is ordered, L ≺ R: the left edge (L) carries the first index and the other edge (R) carries
the second index in the bi-vector coefficients. (In retrospect, the ordering and labelling of the
indexed oriented edges can be guessed from formulas (2) on p. 3.)
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Example 1. Under all these assumptions, the two tetrahedra which are portrayed in Fig. 1 are,
up to a symmetry, the only admissible graphs with k = 4 internal vertices, 2k = 6 + 2 edges,
and two sinks. The first graph in Fig. 1 encodes the bi-vector

Γ1(P) =

n
∑

i,j=1

( n
∑

k,ℓ,m,k′,ℓ′,m′=1

∂3Pij

∂xk∂xℓ∂xm

∂Pkk′

∂xℓ′

∂Pℓℓ′

∂xm′

∂Pmm′

∂xk′

)

∂

∂xi
∧

∂

∂xj
. (2a)

Likewise, the second graph in Fig. 1 yields the bi-vector

Γ2(P) =
n
∑

i,m=1

( n
∑

j,k,ℓ,k′,ℓ′,m′=1

∂2Pij

∂xk∂xℓ

∂2Pkm

∂xk′∂xℓ′

∂Pk′ℓ

∂xm′

∂Pm′ℓ′

∂xj

)

∂

∂xi
∧

∂

∂xm
. (2b)

In this paper we examine

(i) whether the respective flows d
dε(P) = Γα(P) at α = 1, 2 preserve or, in fact, destroy the

property of bi-vectors P(ε) to be Poisson, provided that the Cauchy datum P
∣

∣

ε=0
is such;

(ii) we also inspect whether the second flow is (actually, it is not) vanishing identically at all ε,
provided that the Cauchy datum is a Poisson bi-vector.

Remark 1. Whenever the bi-vector P in every internal vertex of a non-empty graph Γ is Poisson,
the bi-differential operator which is encoded by Γ can vanish identically. First, this occurs due to
the skew-symmetry of coefficients of the bi-vector.1 Second, the operators encoded using graphs
(with a copy of the Poisson bi-vector P at every internal vertex) can vanish by virtue of the
Jacobi identity, see (1), or its differential consequences. This mechanism has been illustrated
in [5]; making a part of our present argument (see [6]), it is a key to the proof of the fact that
the balanced flow d

dε(P) = Γ1(P) + 6Γ2(P) does preserve the property of bi-vectors P(ε) to be

(infinitesimally) Poisson whenever the Cauchy datum P
∣

∣

ε=0
is such.

So, each of the two claims (i–ii) is false if it does not hold for at least one Poisson structure
(itself already known to have skew-symmetric coefficients and turn the left-hand side of the
Jacobi identity into zero for any triple of arguments of the Jacobiator). To examine both claims,
we need a store of Poisson structures such that the coefficients Pij(x) are not mapped to zero by
the third or second order derivatives in (2a) and (2b), respectively. For that, a regular generator
of Poisson structures with polynomial coefficients of arbitrarily high degree would suffice.

2. The generators

Let us recall three regular ways to generate the Poisson brackets or modify a given one, thus
obtaining a new such structure. These generators will be used in section 3 to produce the
counterexamples to both claims from [1].

1 For example, consider this oriented graph with ordered pairs of indexed edges
(i ≺ j, k ≺ ℓ, m ≺ n, p ≺ q). We claim that due to the antisymmetry of P which
is contained in each of the four internal vertices, the operator (which this graph
encodes) vanishes identically. Indeed, it equals minus itself:

∂m∂n(P
pq)∂p(P

km)∂q(P
ℓn)∂k∂ℓ(P

ij) ∂i ∧ ∂j

= −∂m∂n(P
qp)∂p(P

km)∂q(P
ℓn)∂k∂ℓ(P

ij) ∂i ∧ ∂j

= −∂n∂m(Ppq)∂q(P
ℓn)∂p(P

km)∂ℓ∂k(P
ij) ∂i ∧ ∂j = 0.

To establish the second equality, we interchanged the labelling of indices (p ⇄ q,
k ⇄ ℓ, and m ⇄ n) and we recalled that the partial derivatives commute.

❆
❆
❆
❆❆❯

i

✁
✁

✁
✁✁☛

j

❆
❆
❆
❆❆❯

k

✁
✁

✁
✁✁☛

l

❆
❆

❆
❆❆❑

m

✁
✁
✁
✁✁✕

n

❄

p

❄

q
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2.1. The determinant construction

This generator of Poisson bi-vectors is described in [7], cf. [16] and references therein. The
construction goes as follows. Let x1, . . ., xn be the Cartesian coordinates on Rn>3. Let ~g = (g1,
. . ., gn−2) be a fixed tuple of smooth functions in these variables. For any a, b ∈ C∞(Rn), put

{a, b}~g = det
(

J(g1, . . . , gn−2, a, b)
)

where J(·, . . . , ·) is the Jacobian matrix. Clearly, the bracket {·, ·}~g is bi-linear and skew-
symmetric. Moreover, it is readily seen to be a derivation in each of its arguments: {a, b · c}~g =
{a, b}~g · c + b · {a, c}~g . For the validity mechanism of the Jacobi identity for this particular
instance of the Nambu bracket we refer to [16] again (see also [17]).

Example 2 (see entry 3 in Table 2 on p. 7). Fix the functions g1 = x32x
2
3x4 and g2 = x1x

4
3x4, and

insert them in the determinant generator of Poisson bi-vectors. We thus obtain the bi-vector P0,

Pij
0 =













0 −2x1x
3
2x

5
3x4 −3x1x

2
2x

6
3x4 12x1x

2
2x

5
3x

2
4

2x1x
3
2x

5
3x4 0 −x32x

6
3x4 2x32x

5
3x

2
4

3x1x
2
2x

6
3x4 x32x

6
3x4 0 −3x22x

6
3x

2
4

−12x1x
2
2x

5
3x

2
4 −2x32x

5
3x

2
4 3x22x

6
3x

2
4 0













.

By construction, the above matrix is skew-symmetric. The validity of Jacobi identity (1) is
straightforward: indexed by i, j, k, all the components [[P,P ]]ijk of the tri-vector vanish.2 This
Poisson bi-vector P is used in section 3 in the list of counterexamples to the claims under study.

2.2. Pre-multiplication in the 3-dimensional case

Let x, y, z be the Cartesian coordinates on the vector space R3. For every bi-vector P = Pij ∂i∧
∂j, introduce the differential one-form P = P1 dx+P2 dy+P3 dz by setting P := −P dx∧dy∧dz,
so that P1 = −P23, P2 = P13, and P3 = −P12. It is readily seen [8] that the original Jacobi
identity for the bi-vector P now reads3 dP ∧ P = 0 for the respective one-form P. But let us
note that the pre-multiplication P 7→ f · P of the form P by a smooth function f preserves this
reading of the Jacobi identity: d(fP) ∧ (fP) = f ·

[

df ∧ P ∧ P + f · dP ∧ P
]

= f2 · dP ∧ P = 0.
This shows that the bi-vector fP which the form fP yields on R3 is also Poisson.

This pre-multiplication trick provides the examples of Poisson structures of arbitrarily high
polynomial degree coefficients (in a manifestly non-symplectic three-dimensional set-up).4

2.3. The Vanhaecke construction

In [9], Vanhaecke created another construction of high polynomial degree Poisson bi-vectors.
Let u be a monic degree d polynomial in λ and v be a polynomial of degree d− 1 in λ:

u(λ) = λd + u1λ
d−1 + . . .+ ud−1λ+ ud, v(λ) = v1λ

d−1 + . . .+ vd−1λ+ vd.

2 Indeed, there are four tuples of distinct values of the indices i, j, and k up to permutations; we let
1 6 i < j < k 6 n = 4 so that the check runs over the set of triples {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}.
For example, [[P ,P ]]123 = 6x1x

5

2x
11

3 x2

4 − 6x1x
5

2x
11

3 x2

4 − 6x1x
5

2x
11

3 x2

4 + 6x1x
5

2x
11

3 x2

4 − 18x1x
5

2x
11

3 x2

4 + 18x1x
5

2x
11

3 x2

4 +

12x1x
5

2x
11

3 x2

4 − 6x1x
5

2x
11

3 x2

4 − 6x1x
5

2x
11

3 x2

4 = 0. Therefore, [[P ,P ]] =
∑

16i<j<k64

[[P ,P ]]ijk(x) ∂i ∧ ∂j ∧ ∂k = 0.

3 The exterior differential dP is equal to dP = (∂xP
13 + ∂yP

23) dx∧dy+(−∂xP
12 + ∂zP

23) dx∧dz+(−∂yP
11 −

∂zP
13) dy ∧ dz. The wedge product is dP∧P =

(

∂xP
31 P12 + ∂yP

23 P21 + ∂xP
12 P13 + ∂zP

23 P31 + ∂yP
12 P23 +

∂zP
31 P32

)

dx ∧ dy ∧ dz = (−[[P ,P]] dx ∧ dy ∧ dz) dx ∧ dy ∧ dz.
4 In dimension three, this pre-multiplication procedure also provides the examples of Poisson bi-vectors at which
the second flow (2b) does not vanish identically.
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Consider the space k2d (e.g., set k := R) with Cartesian coordinates u1, . . ., un, v1, . . ., vd. To
define the Poisson bracket, fix a bivariate polynomial φ(·, ·) and for all 1 6 i, j 6 d set

{ui, uj} = {vi, vj} = 0, {ui, vj} = coeff. of λj in φ
(

λ, v(λ)
)

·

[

u(λ)

λd−i+1

]

+

mod u(λ), (3)

where we denote by [. . .]+ the argument’s polynomial part and where the remainder modulo the
degree d polynomial u(λ) is obtained using the Euclidean division algorithm.

Let us emphasise that these Poisson bi-vector are defined on the even-dimensional spaces.
Indeed, the coefficients of Poisson bracket (3) are arranged in the block matrix

(

0 U
−U 0

)

, where

the components of the matrix U are U ij = {ui, vj}.

2.4. The Hamiltonian differential operators on jet spaces

The variational Poisson brackets {·, ·}P for functionals of sections of affine bundles generali-
se the notion of Poisson brackets {·, ·}P for functions on finite-dimensional Poisson manifolds
(Nn, {·, ·}P ). Namely, let us consider the space J∞(π) of infinite jets of sections for a given
bundle π over a manifold Mn of positive dimension m. The variational Poisson brackets {·, ·}P
on J∞(π) are then specified by using the Hamiltonian differential operators (which we shall
denote by A and the order of which is typically positive).5 The formalism of variational

Poisson bi-vectors P = 1
2〈ξ ·

~A(ξ)〉 and the variational Schouten bracket [[·, ·]] is standard
(see [11, 19]). The geometry of iterated variations is revealed in [13]; the correspondence between
the Kontsevich graphs and local variational polydifferential operators is explained in [14].

Example 3. To inspect whether either of the two claims (which we quote from [1] on the title
page) would hold in the variational set-up, it is enough to consider a Hamiltionian differential
operator with (differential-)polynomial coefficients of degree > 3. Let us take the Hamiltonian
operator6 A = u2◦d/dx◦u2 for the Harry Dym equation (see [12]); here u is the fibre coordinate
in the trivial bundle π : R×R→ R and x is the base variable. This operator is obviously skew-
adjoint, whence the variational Poisson bracket {·, ·}P is skew-symmetric. The Jacobi identity
for {·, ·}P is also easy to check: the variational master-equation [[P ,P ]] ∼= 0 does hold for the

variational bi-vector P = 1
2 〈ξ ·

~A(ξ)〉.

3. The counterexamples

We now examine the properties of both tetrahedral flows (2) whenever each of them is evaluated
at a given Poisson bi-vector. (Examples of such bi-vectors are produced by using the techniques
from section 2.) To motivate the composition of Tables 1–4 and clarify the meaning of their
content, let us consider an example: namely, we first take the Poisson bi-vector which was
obtained in section 2.1 (see p. 4).

Example 4 (continued). Rewriting the Poisson bi-vector P0 ∈ Γ
(
∧2 TN4

)

in terms of the

parity-odd variables ξ, we obtain that under the isomorphism Γ
(
∧

• TNn
)

≃ C∞(ΠT ∗Nn) the

bi-vector Pij
0 (x) ∂i ∧ ∂j becomes 1

2P
ij
0 (x) ξiξj; we have that P0 =

−2x1x
3
2x

5
3x4ξ1ξ2−3x1x

2
2x

6
3x4ξ1ξ3+12x1x

2
2x

5
3x

2
4ξ1ξ4−x32x

6
3x4ξ2ξ3+2x32x

5
3x

2
4ξ2ξ4−3x22x

6
3x

2
4ξ3ξ4.

5 In fact, the Poisson geometry of finite-dimensional affine manifolds (Nn, {·, ·}P ) is a zero differential order
sub-theory in the variational Poisson geometry of infinite jet spaces J∞(π). Indeed, let the fibres in the bundle π
be Nn and proclaim that only constant sections are allowed.
6 More examples of variational Poisson structures, which are relevant for our present purpose, can be found in [20]
or, e.g., in [21] (see also the references contained therein).
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Now, we calculate the right-hand sides P1 := Γ1(P0) and P2 := Γ2(P0) of tetrahedral flows (2).
The coefficient matrix of the bi-vector P1 is

Pij
1 =













0 −24480x1x
9
2x

20
3 x44 −51840x1x

8
2x

21
3 x44 12960x1x

8
2x

20
3 x54

24480x1x
9
2x

20
3 x44 0 −15480x92x

21
3 x44 2448x92x

20
3 x54

51840x1x
8
2x

21
3 x44 15480x92x

21
3 x44 0 −18144x82x

21
3 x54

−12960x1x
8
2x

20
3 x54 −2448x92x

20
3 x54 18144x82x

21
3 x54 0













.

In a similar way, the polydifferential operator Γ2 (encoded by the second tetrahedral graph in
Fig. 1) yields the matrix

Pij
2 =













16920x21x
8
2x

20
3 x44 −12060x1x

9
2x

20
3 x44 −16380x1x

8
2x

21
3 x44 42840x1x

8
2x

20
3 x54

2700x1x
9
2x

20
3 x44 −7200x102 x203 x44 4680x92x

21
3 x44 −252x92x

20
3 x54

−13140x1x
8
2x

21
3 x44 5040x92x

21
3 x44 −12060x82x

22
3 x44 13716x82x

21
3 x54

−80280x1x
8
2x

20
3 x54 −18036x92x

20
3 x54 21708x82x

21
3 x54 −58104x82x

20
3 x64













.

Notice that this coefficient matrix is not yet antisymmetric, but its symmetric counterpart
is skipped out in the construction of the bi-vector P2 and its transcription by using the
anticommuting variables ξ. Therefore, we antisymmetrise the above matrix at once, the output
to be used in what follows. We obtain that the bi-vector is

P2 = −7380x1x
9
2x

20
3 x44ξ1ξ2 − 1620x1x

8
2x

21
3 x44ξ1ξ3 + 61560x1x

8
2x

20
3 x54ξ1ξ4

− 180x92x
21
3 x44ξ2ξ3 + 8892x92x

20
3 x54ξ2ξ4 − 3996x82x

21
3 x54ξ3ξ4.

We now see that for the Poisson bi-vector P0 from Example 2 on p. 4, the bi-vector P2 does

not vanish, thereby disavowing the second claim from [1].
To check the compatibility of the original Poisson bi-vector P0 with the newly obtained

bi-vector P1, we calculate their Schouten bracket:

[[P0,P1]] = 46008x1x
11
2 x263 x54ξ1ξ2ξ3 + 852768x1x

11
2 x253 x64ξ1ξ2ξ4

+ 1246752x1x
10
2 x263 x64ξ1ξ3ξ4 + 340200x112 x263 x64ξ2ξ3ξ4 6= 0.

The above expression is not identically zero. Therefore, the leading term P1 in the

deformation P0 7→ P(ε) = P0 + εP1 + ō(ε) destroys the property of bi-vector P(ε)
to be Poisson at ε 6= 0 on all of R4.

The same compatibility test for P0 and its second flow (2b) yields that

[[P0,P2]] = −7668 x1x
11
2 x263 x54ξ1ξ2ξ3 − 142128 x1x

11
2 x253 x64ξ1ξ2ξ4

− 207792 x1x
10
2 x263 x64ξ1ξ3ξ4 − 56700 x112 x263 x64ξ2ξ3ξ4.

Again, this expression does not vanish identically on all of the Poisson manifold
(

R4, {·, ·}P0

)

.
We conclude that neither of two flows (2) preserve the property of bi-vector P(ε) to stay
(infinitesimally) Poisson at ε 6= 0 for this example of Poisson bi-vector.7

7 Let us also inspect whether the Jacobi identity holds for any of the bi-vectors P1 and P2. For P1 we have that
the left-hand side of the Jacobi identity is equal to

[[P1,P1]] = −2963589120 ·
(

x1x
17

2 x41

3 x8

4ξ1ξ2ξ3 + 5x1x
17

2 x40

3 x9

4ξ1ξ2ξ4 − 2 x1x
16

2 x41

3 x9

4ξ1ξ3ξ4
)

,

which does not vanish. For P2 the left-hand side of the Jacobi identity equals

[[P2,P2]] = −262517760 ·
(

x1x
17

2 x41

3 x8

4ξ1ξ2ξ3 + 5x1x
17

2 x40

3 x9

4ξ1ξ2ξ4 − 2x1x
16

2 x41

3 x9

4ξ1ξ3ξ4
)

.

This expression also does not vanish, so that neither P1 nor P2 are Poisson bi-vectors.
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Remark 2. In the above example, the Schouten brackets [[P0,P1]] and [[P0,P2]] are determined
by the same polynomials in the variables x and ξ: we see that [[P0,P1]] = −6 · [[P0,P2]].
This implies that for this example of Poisson bi-vector P0, the leading term Q := P1 + 6P2
does (infinitesimally) preserve the property of P(ε) to be Poisson in the course of deformation
P0 7→ P0 + εQ+ ō(ε).

Moreover, it is readily seen that the ratio 1 : 6 is the only way to balance the two flows, (2a)
vs (2b), such that their nontrivial linear combination Q is compatible with the Poisson bi-
vector P0 from Example 2.8

Remark 3. In Example 4 the linear combination Q = P1 + 6P2 6= 0 of two flows (2) is not
identically equal to zero. (For other examples this may happen incidentally.) The leading term Q
in the infinitesimal deformation P0 7→ P0 + εQ+ ō(ε) is trivial in the Poisson cohomology with
respect to ∂P0

, i. e. Q = [[P0,X]] for some vector X on the four-dimensional space.9 Hence this
Q is trivially compatible with the Poisson bi-vector P0: namely, [[P0,Q]] ≡ 0, see p. 8 below.

In the three tables below we summarise the results about the flows P1 and P2, which we
evaluate at the examples of Poisson bi-vectors P0. Special attention is paid to the leading
deformation term Q = P1 + 6P2 in each case: we inspect whether this bi-vector incidentally
vanishes and whether it is (indeed, always) compatible with the original Poisson structure P0.

Table 1. The Poisson bi-vectors P0 are generated using the determinant method from section 2.1
(the dimension is equal to 3, so we specify the fixed argument g1); that generator is combined
with the pre-multiplication (f ·) as explained in section 2.2.

� dim Argument & pre-factor [[P0,P1]] P2
?
= 0 [[P0,P2]] Q

?
= 0 [[P0,Q]]

= 0 ? = 0 ? = 0 ?

1. 3 [x51x
3
2x

4
3 + x21x

5
3 + x1x

5
2x3] ✗ ✗ ✗ ✗ ✓

x31 + x22
2. 3 [x1x2 + x1x3 + x2x3] ✗ ✗ ✗ ✗ ✓

x21 + x2

For both examples in Table 1 we have that neither does P1 preserve the property of P0 +
εP1 + ō(ε) to be (infinitesimally) Poisson nor does P2 vanish identically — which is in contrast
with both the claims from [1].

Table 2. In dimensions higher than 3, we generate the Poisson bi-vectors P0 by using the
determinant method from section 2.1: the auxiliary arguments g1, . . ., gn−2 are specified.

� dim Arguments [[P0,P1]] P2
?
= 0 [[P0,P2]] Q

?
= 0 [[P0,Q]]

= 0 ? = 0 ? = 0 ?

3. 4 [x32x
2
3x4, x1x

4
3x4] ✗ ✗ ✗ ✗ ✓

4. 4 [x21x
3
2x

4
3x

5
4, x1x2x3x4] ✗ ✗ ✗ ✓ ✓

5. 4 [x22x
2
3x

2
4, x

2
1x

2
3x

2
4] ✗ ✗ ✗ ✓ ✓

6. 5 [x32x
2
3x4, x1x

4
3x4, x

3
3x

2
4x

4
5] ✗ ✗ ✗ ✗ ✓

8 The balance 1 : 4

3
was considered in [22, §5.2] for the linear combination of flows (2a) and (2b), respectively.

9 In all the two-dimensional Poisson geometries, the first flow P1 is always cohomologically trivial, i.e. it is of the
form P1 = [[P0,X]] for some one-vector X, see [1].
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In Table 2 we again have that neither is the property to be (infinitesimally) Poisson preserved
for P0 + εP1 + ō(ε) nor is the bi-vector P2 vanishing identically.

Table 3. The results for the Vanhaecke method from section 2.3: we here specify the bivariate
polynomials φ.

� dim φ(x, y) [[P0,P1]]
?
= 0 P2

?
= 0 [[P0,P2]]

?
= 0 Q

?
= 0 [[P0,Q]]

?
= 0

7. 4 [x2y2] ✗ ✗ ✗ ✗ ✓

8. 4 [x2y] ✗ ✗ ✗ ✗ ✓

9. 4 [x3y2] ✗ ✗ ✗ ✗ ✓

10. 4 [x3y3] ✗ ✗ ✗ ✗ ✓

11. 6 [x2y2] ✗ ✗ ✗ ✗ ✓

The entries in Table 3 report on the use of the generator from section 2.3: experimentally
established, the properties of these Poisson bi-vectors do not match both the claims from [1].

Table 4. The results for the infinite-dimensional case.

� dim Operator [[P0,P1]]
?
∼= 0 P2

?
∼= 0

12. ∞ u2 ◦ d/dx ◦ u2 ✗ ✓

The variational bi-vector P1 = 1
2〈ξ ·

~A1(ξ)〉, which we construct from the variational

Poisson bi-vector P0 = 1
2〈ξ · u

2 ~d/dx(u2 ξ)〉 by using the geometric technique from [13] (see
also [14]), is determined by the (skew-adjoint part of the) first-order differential operator
A1 = 192

(

9u8uxuxx−u9uxxx
)

d/dx in total derivatives. Again (see Table 4), the two variational
bi-vectors are not compatible: we check that [[P0,P1]] ≇ 0 under the variational Schouten
bracket. Remarkably, the variational bi-vector P2 is specified by the second-order total dif-
ferential operator whose skew-adjoint component vanishes, whence the respective variational
bi-vector is equal to zero (modulo exact terms within its horizontal cohomology class [11]).

Conclusion

The linear combination Q = P1 + 6P2 of the Kontsevich tetrahedral flows preserves the space
of Poisson bi-vectors P0 under the infinitesimal deformations P0 7→ P0 + εQ + ō(ε). This
is manifestly true for all the examples of Poisson bi-vectors on finite-dimensional (vector or
affine) spaces Rn which we have considered so far. We conjectured that the leading deformation
term Q = Q(P0) always has this property, that is, the bi-vector Q marks a ∂P0

-cohomology

class for every Poisson bi-vector P0 on a finite-dimensional affine manifold. (Recall that
such class can be ∂P0

-trivial; moreover, the bi-vector Q can vanish identically — yet the above
examples confirm the existence of Poisson geometries where neither of the two options is realised.)

Let us conclude that every claim of an object’s vanishing by virtue of the skew-symmetry
and Jacobi identity for a given Poisson bi-vector, which that object depends on by construction,
must be accompanied with an explicit description of that factorisation mechanism (e.g., see [5])
or at least, with a proof of that mechanism’s existence. Apart from the trivial case (here,
Q = 0 so that [[P0,Q]] ≡ 0), such factorisation through the master-equation [[P0,P0]] = 0 can be
immediate: here, we have that [[P0,Q]] = [[P0, [[P0,X]]]] =

1
2 [[[[P0,P0]],X]] =

(

1
2 [[·,X]]

) (

[[P0,P0]]
)

for all ∂P0
-exact infinitesimal deformations Q = ∂P0

(X) of the Poisson bi-vectors P0. Elaborated
in [5], the Poisson cohomology estimate mechanism of the vanishing [[P0,Q]]

.
= 0 via [[P0,P0]] = 0
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works – for the nontrivial cocycles Q /∈ im∂P0
in the ∂P0

-cohomology – due to much more refined
principles. That vanishing mechanism is applied to the factorisation problem at hand in the
paper [6] (joint with R.Buring), where we prove the above conjecture.
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Appendix A. The mechanism of vanishing for [[P,Q1:6(P)]] = 0: an example

We wish to recognize the differential consequences of the Jacobi identity in the compatibility
equation [[P,Q1:6(P)]] = 0, to understand why it holds. By a straightforward calculation
we learn that [[P,Q1:6(P)]] = 0 for all Poisson bi-vectors on R3. But as soon as the
differential consequences of the Jacobi identity are recognized, they can be translated into
graphs. Independent of dimension, the language of graphs then answers the question which
we started out with. This answer is found in [6].

Let us now illustrate a more analytic approach to the factorization problem for [[P,Q1:6]] = 0
via [[P,P ]] = 0 (see [6, App. D] for details). The compatibility equation is a vanishing expression,
which is impossible to factorize through the Jacobi identity, which itself is also zero. To make
both visible, we perturb a given Poisson bi-vector P using P̃ = P + ǫ · ∆ for a bi-vector ∆, in
such a way that P̃ is no longer Poisson, thereby [[P̃ , P̃ ]] 6= 0. The goal is to perturb the bi-vector
P such that the left-hand side [[P̃ , Q̃1:6]] becomes non-zero as well. Now the Jacobi identity’s
non-zero differential consequences becomes recognizable in the non-zero expression [[P̃ , Q̃1:6]].

Example 5. Consider the Poisson bi-vector obtained on R3 from the determinant construction
using two functions g(z) and f(x) as argument and pre-multiplication factor, respectively. Let
the perturbation ∆ be given component-wise by ∆12 = f1(y, z), ∆

13 = f2(y, z) and ∆23 = 0.
The perturbed bi-vector then equals

P̃ =





0 f · dg/dz 0
−f · dg/dz 0 0

0 0 0



+ ǫ ·





0 f1 f2
−f1 0 0
−f2 0 0



 .

The left-hand sides of the Jacobi identity and of the compatibility condition are evaluated to

[[P̃ , P̃ ]]123 = ǫf2 ·
df

dx

dg

dz
+ ō(ǫ), [[P̃ , Q̃]]123 = −ǫ ·

∂3f2
∂y3

(

df

dx

)4(dg

dz

)4

+ ō(ǫ).

There is only one way to recognize a differential consequence of the Jacobiator inside [[P̃ , Q̃1:6]]
123.

Namely, the Jacobi identity contains a product of f2 and derivatives of f and g. The same is
true for its non-zero differential consequences. Let us extract this product from [[P̃ , Q̃1:6]]

123.
The only differential consequences of f2, df/dx, and dg/dy in [[P,Q1:6]]

123 are ∂3f2/∂y
3, df/dx

and dg/dz, respectively. This hints that we have the differential consequence [[P,P ]]123yyy. To

understand what its coefficient is, we note that the remaining co-factors in [[P̃ , Q̃1:6]]
123 form

(P12
x )3. We conclude that the left-hand side of the compatibility equation factorizes through the

Jacobi identity as follows

[[P,Q1:6]]
123 = P12

x P
12
x P

12
x [[P,P]]123yyy + · · · .
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Looking at this expression, we construct a list of graphs that can encode it. Such a list fully
formed, it is subtracted from [[P,Q1:6]] and resolved with respect to the coefficients of every
proposed graph. We keep subtracting the already found graphs from any non-zero perturbations
of [[P,Q1:6]] in the future, once the coefficients are known. The example under study gave us
the tripod graph, which is the first entry in [6, Eq. (6)]. Proceeding in the same way, we also
recognized the ’elephant’ graph, which is the sixth entry in that solution (cf. [6, Remarks 10–11]).
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