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Abstract—Algorithms for processing data in short-time batches
are critical for both online and offline processing of streamed
and large data respectively due to the quadratic relation be-
tween signal length and computational cost of convolution-based
processing schemes. Whilst quantum analogs to some digital
signal processing algorithms have been discovered, including
the quantum Fourier transform (QFT), there has been no
development of short-time processing techniques in the quantum
domain. In this manuscript, we introduce the short-time QFT
(STQFT) processing technique to bridge this gap in research.
We develop a novel overlap-add reconstruction technique in
the quantum domain using a permutation gate to combine
subsequent windows. With this in mind, we discuss convolution
under our novel STQFT processing scheme. We demonstrate
filtering in the quantum Fourier domain with a filter stored
in a quantum register as well as in a block encoded unitary
gate. Throughout the paper, we elaborate upon implementation
details such as applying DC offsets to input signals, skipping
input data frames whenever necessary, the use of overlap-save as
a reconstruction technique and mitigating time-varying scaling
due to normalization of the windowed input data and filters.

Index Terms—quantum signal processing, convolution, quan-
tum Fourier transform, short-time Fourier transform, sub-band
processing, overlap-add

I. INTRODUCTION

Digital signal processing (DSP) using the short-time Fourier
transform (STFT) [1] is vital for real-time applications and for
offline processing of large data in smaller, more manageable
chunks, as it is often infeasible to process the entire signal
at once due to time or resource constraints [2] [3]. Short-
time processing is well established within the classical do-
main, where it transforms O(n2) operations into O(nlog(n))
for convolution-based algorithms [4]. The STFT involves
windowing a subset of data to be processed, transforming
the windowed data into the Fourier domain, processing the
signal, applying an inverse Fourier transform to the processed
data and then reconstructing the output signal if synthesis is
required. Signal reconstruction is typically done using overlap-
add (OLA) or overlap-save [5].

The STFT is the basis for more advanced analysis and
processing techniques that extend the STFT. This includes
the use of a modified discrete Fourier transform (DFT) [6]
as well as banding and transforming the values of the STFT
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output, e.g. mel-frequency cepstrum coefficients [7]. More-
over, processing signals in the sub-bands of the STFT can
often lead to more performant algorithms [8] in addition to an
overall reduction in compute complexity if processing involves
operations that scale quickly as the length increases such as
convolution. These benefits are crucial to many applications
including machine listening [7], [9], audio & video coding
[10]–[12] and echo management [8], [13] for example.

Recent advances in quantum signal processing (QSP) have
resulted in quantum counterparts to traditional DSP algo-
rithms. Of particular significance is the quantum Fourier trans-
form (QFT) [14]–[16] which is the counterpart to the discrete
Fourier transform (DFT). Thus, it is of interest to investigate
the short-time QFT (STQFT) to determine if such a processing
paradigm can exist in the quantum domain and what the practi-
cal implementation issues are. In this manuscript, we introduce
signal processing using the STQFT, present multiple methods
for implementing filters in the quantum Fourier domain (QFD),
develop a quantum overlap-add (QOLA) algorithm based on
a permutation matrix and discuss practical implementation
details. We also note how the overlap-save method is trivially
applied to STQFT processing.

II. WINDOWING SIGNALS IN THE QUANTUM DOMAIN

The classical algorithm for performing signal reconstruction
involves batching of the input signal into smaller manageable
window frames. There are a set of standard windowing func-
tions each with unique characteristics suitable for particular
instances [17]. A common window function is the box-
car/rectangular window. It generates a subset of the long input
signal of the corresponding window length. For the quantum
reconstruction algorithm we perform windowing in similar
manner. There have been few studies into windowing in the
quantum domain [18]–[20]. Quantum windowing delineates
from classical windowing as quantum encoding schemes re-
quire Euclidean normalization of the windowed signals [21].
After normalization we encode the windowed signal onto the
qubits.

Quantum computing offers various forms of data encoding
schemes, such as basis encoding and phase encoding [21]
[22]. In this manuscript, we employ amplitude encoding
[21] where the individual discrete sample values are em-
bedded directly onto the namesake complex amplitudes of
the qubit vector data types. This is an efficient scheme, asIC
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N qubits can accommodate 2N data samples, and it has
been used to construct windowed quantum states [18]. We
thus, are dealing with 2N dimensional Hilbert space. While
encoding, we propose that the windowed signal is padded
out beforehand to accommodate for the expected expansion
due to the convolution in the subsequent processing. The
number of qubits is the closest power of 2 over the quantity
wl + fl − 1 where wl is the window length and fl is the filter
length. The quantum state initialised with this is of the form
|ψwindow⟩ =

∑
i∈(0,1)N ai |i⟩, where each ai is a normalized

windowed signal sample scalar. In practice, the measurement
of this state will reveal the probabilities of each amplitude i.e
a2i , and hence for processing negative amplitudes, a DC offset
is applied to the input signal before encoding data. Another
resolution would be to modify our algorithm to work with
other encoding schemes that build upon amplitude encoding
such as Flexible Representation of Quantum Audio (FRQA)
[23]. Furthermore, an all-zero windowed signal cannot be
encoded with this scheme and hence its essential to track such
states without quantum processing them and instead account
for them in the final reconstructed signal as part of classical
post-processing.

III. FILTERING IN THE SHORT-TIME QUANTUM FOURIER
DOMAIN

A. Filter as a quantum register

Our first approach for convolution in the quantum domain is
with the filter vector of arbitrary length being encoded within a
separate quantum register in similar fashion to the amplitude
encoding in the case of the windowed signal. The filter is
padded to the same length that the windowed input data was.
Once both registers are properly initialized we perform a quan-
tum Fourier transform on both registers separately. With this
operation the data is transformed to the Fourier domain which
is a crucial part for the application of the convolution theorem
[5]. To perform elementwise multiplication required for convo-
lution in the quantum Fourier domain we apply repeated con-
trolled pauli X-gate (C-NOT) operations between respective
qubits of the two quantum registers [24] [25]. The two registers
have the quantum states |ψwindow⟩ =

∑
i∈(0,1)N ai |i⟩ and

|ψfilter⟩ =
∑

i∈(0,1)N bi |i⟩. After the application of succes-
sive controlled Pauli X-gates (C-NOT) on respective qubits
we would have |ψproduct⟩ = 1√∑

|aibi|2
∑

i∈(0,1)N aibi |i⟩.
This is inherently a probabilistic operation with the required
elementwise product being observed on the first register when
the second register is postselected for |00...0⟩ state. With this
postselection put in place the required state will be observed
with a probability of P =

∑
|aibi|2. Subsequently, the first

register is subjected to an inverse quantum Fourier transform to
obtain the quantum convolution output state. We used the IBM
open-source Python framework Qiskit SDK [26] to implement
this scheme and found that it matches the classical DSP
convolution output within the tolerance of machine precision.
The general circuit construction of this scheme is shown in
Figure 1.

|0⟩

Window QFT

•
IQFT|0⟩ ...

...
|0⟩ •

|0⟩

Filter QFT|0⟩ ...
...

|0⟩
Fig. 1. Quantum convolution circuit with filter as a register circuit

This convolved quantum state can be matched to the clas-
sical convolution output by rescalling the classical read out
of the quantum circuit with the normalization factors and the
probability factors accrued during the operations. Filter as a
quantum register approach would require O(2N ) iterations to
produce reliable results with further iterations to map out all
the amplitudes of the quantum state. Existing work relates
quantum amplitude amplification with the filter as a register
scheme to produce more efficient run counts [24].

B. Filter as a block encoded matrix

A novel approach to perform same aforementioned elemen-
twise multiplication is to use unitary operations in place of a
separate quantum register. To carry out this operation, we need
to be able to embed the filter vector as a diagonal matrix. Any
other configurations are likely prone to introducing errors into
the convolution output. The challenge with this approach is
that such a diagonal matrix would not be of unitary nature. A
resolution for this is to instead embed the filter vector as the
diagonal block matrix within a much larger unitary matrix.

Block encoding [27] is one such scheme for embedding a
properly scaled non-unitary matrix Ai,j ∈ C onto a unitary
matrix UBlock :

UBlock =

[
Ai,j ∗
∗ ∗

]
(1)

Here ∗ denotes the arbitrary blocks we have no interest in. The
action of this block encoded matrix on a general quantum state
with ancilla qubits of the form |ψ⟩ = |0⟩ |α⟩ is as follows:

UBlock |ψ⟩ =
[
Ai,j ∗
∗ ∗

] [
α
0

]
=

[
Ai,jα
∗

]
= |0⟩ (Ai,j |α⟩) + |1⟩ |∗⟩

(2)

We propose the use of a matrix access oracle based block
encoding scheme [27] [28]. The general structure of such a
scheme as a quantum circuit is shown in Figure 2. UA and UB

are oracles responsible for encoding the matrix elements of our
diagonal matrix Ai,j and ensure iteration over all combinations
of the indices i, j respectively. A bottleneck in this scheme is
that an efficient quantum gate decomposition for UA and UB

may not always be found.
The oracles’ UA and UB operation on a quantum state is

defined as follows:



UA |0⟩anc |i⟩ |j⟩ = |Ai,j⟩anc |i⟩ |j⟩ ,
UB |i⟩ |j⟩ = |j⟩ |i⟩ .

(3)

where |Ai,j⟩anc ≡ Ai,j |0⟩anc +
√
1− |Ai,j |2 |1⟩anc.

We use a more efficient scheme built on top of the oracle
access approach known as the Fast Approximate BLock En-
codings (FABLE) [27]. FABLE uses a combination of single
Ry rotation ad controlled pauli X-gates (C-NOT) to construct
the circuits for the oracles. The general circuit for these
constructions is shown in Figure 2.

|0anc⟩

UA|i⟩ / H⊗n

UB

H⊗n

|j⟩ /

Fig. 2. Oracle access block encoding circuit

Before we can encode our diagonal A matrix we must
transform the diagonal elements to the frequency domain. This
is performed by finding the QFT coefficients of the filter with
a separate circuit before passing these to the matrix A. As
before we pad the length of the diagonal with zeros to account
for the anticipated expansion to length n ≥ wl + fl − 1 due
to the convolution in the subsequent steps. We now have a
n× n filter block within the unitary matrix. This will operate
on log2n primary qubits and additional ancilla qubits.

UBlock =





a1,1 0 0 . . . 0 0

0
. . . 0 . . . 0 0

0 0 afl,fl
. . .

...
...

...
...

. . . 0 0 0

0 0 . . . 0
. . . 0

0 0 . . . 0 0 0


∗

∗ ∗


This block encode gate decomposition is applied to the

Fourier transformed windowed signal encoded state. Ancilla
qubits are introduced to accommodate the large operational
Hilbert space of the UBlock unitary operator. Finally, an
inverse quantum Fourier transform is performed on this state
to obtain the convolution output for the windowed signal. For
our experiments we used the open-source Python framework
Pennylane SDK [29] to generate the FABLE matrices and their
gate decompositions. These gate decompositions were then
used within a local quantum simulator to perform windowed
quantum convolutions and found it matches the traditional
DSP convolution output within the tolerance of machine
precision. The general structure of the circuit is shown in
Figure 3.

|0⟩ / Window QFT

UBlock

IQFT

|0⟩
...

...
...

|0⟩
Fig. 3. Quantum convolution circuit with filter as a block matrix

IV. QUANTUM OVERLAP-ADD

Classical reconstruction of a processed windowed signal is
widely performed using either overlap-add or overlap-save.
To the best of the authors’ knowledge, a quantum version of
these sub-routines has not been developed. In this section we
propose a reconstruction algorithm in the form of a quantum
overlap-add (QOLA) circuit.

For QOLA, we collect the classical readouts of windowed
quantum convolution outputs. In general, these would be of
identical lengths. After rescaling to account for the normal-
ization factors and probability terms, these are zero padded
to the closest 2N length if required. A pair of consecutive
window convolution outputs |ϕa⟩ and |ϕb⟩ each of length r
are amplitude encoded together into a log2(2r) qubit register
to create the state |ϕQOLA⟩ = |0⟩ |ϕa⟩ + |1⟩ |ϕb⟩ with an
additional euclidean norm.

As was the case with the windowed quantum state ini-
tialization, an all-zero pair of windowed convolution outputs
cannot be processed with this scheme and must be relegated
to the classical post-processing wherein we insert all-zero
frames between reconstructed output frames. A controlled
NOT operation is performed between an ancilla qubit and the
1st qubit in |ϕQOLA⟩ to give new decomposition terms |ϕ′

a⟩
and |ϕ′

b⟩. This gives the state:

|0⟩ |ϕQOLA⟩ = |0⟩ |0⟩ |ϕa⟩+ |1⟩ |1⟩ |ϕb⟩
= |0⟩ |ϕ

′

a⟩+ |1⟩ |ϕ
′

b⟩
= |0⟩ ⊗ [ϕ1, ϕ2, ...ϕr, 0, 0, ..., 0]

+ |1⟩ ⊗ [0, 0, ..., 0, ϕr+1, ϕr+2, ...ϕ2r]

(4)

An arbitrary ancilla qubit controlled permutation matrix
(C − UPERM ) reorganizes the coefficients in |ϕb⟩ to the
desired overlap ratio configuration. We define a 2r × 2r
permuation matrix for l overlapping elements:

UPERM =

Ir−l×r−l 0r−l×l 0r−l×r

0r×r−l 0r×l Ir×r

0l×r−l Il×l 0l×r


2r×2r

(5)

UPERM is then converted into the controlled permutation
gate (C − UPERM ).

C−UPERM−−−−−−−→|0⟩ ⊗ [ϕ1, ϕ2, ...ϕr, 0, 0, ..., 0]

+ |1⟩ ⊗ [0, 0, ..., 0, ϕr+1, ϕr+2, ...ϕ2r, 0, 0, ..., 0]
(6)



A Hadamard operation on the ancilla qubit initiates the
addition operation. A postselection of |0⟩ on the ancilla qubit
implies a quantum overlap-add state on the first register. On
the other hand |1⟩ on the ancilla qubit implies a difference
state on the first register.

Hadamard−−−−−−−→ 1√
2
|0⟩ ⊗ [|ϕ

′

a⟩+ |ϕ
′

b⟩]

+
1√
2
|1⟩ ⊗ [|ϕ

′

a⟩ − |ϕ
′

b⟩]

=
1√
2
|0⟩ ⊗ |SUM⟩

+
1√
2
|1⟩ ⊗ |DIFFERENCE⟩

(7)

Both these measurements occur with probabilities of
1
2 ||SUM⟩|2 and 1

2 ||DIFFERENCE⟩|2 respectively . The
classical readouts are rescaled with these probability and the
normalization factors and then we obtain the required output.

In general, each windowed convolution output undergoes
overlap-add twice, one with the preceding windowed convo-
lution output and one with the succeeding one. We replicated
these results with Qiskit and found it matches the traditional
OLA within the tolerance of machine precision. The (3+1)
qubit circuit for this operation is shown in Figure 4.

|0⟩

Encode

•

UPERM|0⟩
|0⟩

|0anc⟩ • H

Fig. 4. Quantum overlap-add circuit for (3+1) qubits

V. DISCUSSION

The oracle access based block encoding scheme was found
more adept at generating efficient block encodings for the
particular filter matrices we are interested in. Investigations
into the linear combination of unitaries (LCU) based block
encoding schemes didn’t yield favorable results for our re-
quirements. It is worth noting that the standard oracle access
scheme we demonstrated does not scale efficiently in terms
of processing time or circuit depth w.r.t the filter length. We
observed that it was better to generate these block encodings
for standard filters beforehand. We then call these encodings
in, when we perform real-time processing. FABLE does offer
more optimal block encodings in the case of certain classes of
sparse and/or structured block matrices. However, our required
filter matrices did not fit into these classes. In the same
vein, it is worth investigating if the structure of the required
filter matrices can be exploited to generate efficient block
encodings. Furthermore, instead of processing the filter array
with a QFT circuit separately, we can directly block encode the
filter as such and use techniques from QSP [30] and quantum
singular value transform (QSVT) [31] to transform the filter
block to the Fourier domain. This is likely to incur penalties
in the form of additional ancilla qubits.

The QOLA method accepts inputs as classical data and
performs re-encoding of the windowed convolution outputs.
It is possible to design QOLA circuits to accept windowed
quantum convolution states as input and generate reconstructed
frames. However, given that each of the windowed quantum
convolution outputs have different norms means that the
reconstructed frames would come out scaled unevenly. One
workaround is to introduce an arbitrary scalar factor multiplier
quantum circuit as a buffer between these two sub-routines,
however it is not clear if this can be done without introducing
new norm scales along the way. If this can be achieved, either
a pair of convolution circuits can be used simultaneously or
a single convolution circuit can be used to generate at least
two set of output states for each window frame. In later case
these states can then be temporarily stored in quantum memory
elements such as QRAM [32] before passing it to the QOLA
circuit. This is likely to cause latency issues when deployed to
a real-time processing environment. It is tantamount that this
sub-routine is optimized to handle these anticipated latency
issues.

Overlap-save is yet another popular signal reconstruction
scheme widely used in DSP. We do not need to design a
separate quantum circuit in order to adapt this scheme to the
quantum data domain. It uses windowed circular convolution
outputs instead of linear convolution outputs and a snipping of
the output data. A simple end-to-end stacking of these frames
constitutes an overlap-save reconstructed signal. This entails
that there is no zero padding to 2N over wl + fl − 1 in the
case of quantum convolution. We replace the non-overlapping
windows from our scheme with overlapping windows, where
filter length determines the overlap ratio. The convolved output
wraps around in the final windowed quantum convolution
state. Classical read-outs are obtained and these are then
processed exactly as in traditional DSP.

VI. CONCLUSION

In this manuscript, we introduced a novel algorithm for
processing signals within the short-time quantum Fourier
domain. Quantum filtering sub-routines were designed with
two different approaches: one where the filter was encoded
as a quantum register and the other where it was encoded as
a block encoded unitary gate. The convolved windowed sig-
nal output frames obtained from these quantum convolutions
were then reconstructed with the novel quantum overlap-add
technique we proposed. We discussed the current bottlenecks
in our approach with the critical one being the classical
intermediates between the windowed convolution sub-routine
and the quantum overlap-add subroutine. These and several
other avenues for improvement to our current scheme were
discussed. We foresee STQFT processing to have applications
in real-time signal processing such as live streaming and in
efficient processing of large data in the near future.
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