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Abstract. This contribution is based on the plenary presentation at the 14'" International
Conference on Heavy Ion Accelerator Technology (HIAT-2018) in Lanzhou, China.

Heavy-ion storage rings offer unparalleled opportunities for precision experiments in the
realm of nuclear structure, atomic physics and astrophysics. A brief somewhat biased review
of the presently ongoing research programs is given as well as the future projects are outlined.
The limited space does not allow for detailed description of individual experiments, which shall
— to some extent — be compensated by extended bibliography.

1. Introduction

Atomic nuclei are many-body systems which are composed of two types of quantum mechanical
particles protons and neutrons. The strong, weak and electromagnetic fundamental interactions
are in play in the nuclei, which makes them extremely complex systems to describe. However,
the nuclei are “natural laboratories” themselves, by studying which one learns about underlaying
fundamental interactions. The latter determines our world to be as it is and is thus the very
reason for us to study them as good as we can.

Nuclear physics is more than 100 years old and is still one of the rapidly developing fields
of research. This development is made possible by the progress in accelerator concepts and
detector technologies, as were discussed e.g. at this conference. Today, scientists have created
in laboratory about 3000 nuclides [1]. However, about 7000 nuclides are expected to exist with
majority of yet unknown nuclei belonging to neutron-rich systems [2]. The path of the rapid-
neutron capture process of element synthesis in cosmos is expected to be in this region [3-5].
There, the nuclear structure at large proton to neutron asymmetries is expected to change
dramatically [6]. For instance, the nuclear shells in light neutron-rich nuclei are at different
neutron numbers than the magic numbers established at stability 7-9].

New-generation accelerator facilities aim at reaching further into the unknown nuclear
territory. However, the yet unknown nuclei have extremely small production cross sections
and short lifetimes [10]. Sophisticated experimental techniques are needed to be able to produce
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and handle them, especially if their precision studies are aimed for. Here, heavy-ion storage
rings coupled to radioactive ion beam facilities offer unique capabilities [11].

2. Existing heavy-ion storage rings

If focusing on the radioactive-ion beam facilities, there are presently three operational heavy-ion
storage rings [12]. These are the Experimental Storage Ring (ESR) at GSI [13], the experimental
Cooler-Storage Ring (CSRe) at IMP [14], and the Rare RI Ring (R3) Facility at RIKEN [15].

Historically the first, the ESR at GSI is in operation with radioactive beams since 1992 [16,17].
There, the exotic nuclei are produced at the Fragment Separator FRS [1§] through fragmentation
or in-flight fission of primary beams accelerated by the heavy-ion synchrotron SIS18. The
exotic nuclei are produced at high energies such that they emerge the production target as
highly charged ions (HCI) [19-22]. The FRS can either be used as a pure magnetic rigidity
(Bp) analyser efficiently transmitting all produced nuclides within its Bp acceptance or, if a
specially shaped degrader is employed, a pure mono-isotopic beam can be prepared by means of
Bp— AFE — Bp separation method, where AFE stands for the energy loss in the degrader material.
Also a direct, bypassing the FRS, injection into the ESR of primary and intense secondary beams
is possible [23].

The ESR is a versatile machine offering numerous and flexible beam manipulation options.
The ESR can store ions in a broad range of energies from about 3 A MeV to about 420 A MeV,
corresponding to the maximum Bp(ESR) = 10 Tm. The average rest gas pressure of the ring
is about 107! — 10=!! mbar. Such ultra-high vacuum environment sets strict constraints on
experimental equipment that can be brought inside the vacuum.

Indispensable for experiments is the ability of cooling the secondary beams. The latter is
especially important for radioactive beams which inevitably have a large momentum spread
due to nuclear reaction process. Electron [24] and stochastic [25] cooling systems are routinely
available. Whereas the former cooling method is operational in the entire energy range of the
ESR, the latter is fixed to a specific ion velocities of 400 A MeV. First laser cooling experiments
were successfully performed [26}/27]. Although the combination of stochastic pre-cooling and
electron cooling has proven that hot ion beam can be cooled within about a second, this time is
much too long for short-living rare ions [28,29]. In the latter case, the isochronous ion-optical
mode allows for (in first order) compensation of different particle momenta by orbit lengths in
the ring [30L[31]. This mode operates at the transition energy of the ring, .

A special attention is given to the ability to efficiently decelerate stored beams to low-energies.
At present, the slowing down from the maximum to the lowest energy takes about a minute which
limits the range of exotic nuclides that can be decelerated. A dedicated low-energy storage
ring CRYRING has been installed behind the ESR [32]. It is being commissioned now. First
experiments are planned for 2019. Worth noting is the HITRAP setup aiming at further slowing
down and then trapping in a Penning trap HCIs extracted from the ESR [33}34].

The CSRe at IMP was taken into operation in 2007 [35,36]. Secondary radioactive beams are
produced by projectile fragmentation of primary beams accelerated by the synchrotron CSRm.
They are analysed by the fragment separator RIBLL2 and injected into the CSRe. Highly
charged stable ions are produced in the same way with the only difference that thick production
targets can be replaced by thin stripper foils. The CSRe is routinely operated in isochronous
mode. Electron and stochastic cooling systems have been taken in operation. Also the laser
cooling of stored ions was demonstrated [37]. There are plans for establishing beam deceleration.

At RIKEN, the R3 ring is coupled to the presently most powerful radioactive ion beam
facility, BigRIPS. The main accelerator at RIKEN is a superconducting cyclotron which is
dramatically different from the facilities at GSI and IMP. Different to pulsed synchrotron beams,
the cyclotron provides quasi-DC beam. Therefore a specific, single-particle injection scheme has
been developed [38,39]. Magnetic rigidities and energy deposition in special detectors along the
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BigRIPS provide particle identification (PID) for each secondary ion. A trigger signal can be
sent from the middle-focal plane of BigRIPS to the R3 injection kicker which arrives earlier than
the particle itself. If the PID satisfies the set conditions, the injection kicker is activated and the
corresponding particle is injected. The speciality of the ring is that it consists of dipole magnets
only. Such lattice is very well-suited for isochronous ion-optical operation mode. The very first
experiments at the R3 have been successfully accomplished just during the time of the writing
of this work [40].

3. Experimental installations

Precision experiments require versatile experimental installations. They undergo steady
development to meet the increasing requirements of experiments. Some examples are listed
below. The availability of setups in specific rings is indicated in the brackets.

e Internal gas-jet target is a supersonic jet of gas molecules crossing the vacuum pipe of the
ring [41-43]. It enables reaction studies of stored beams with a windowless ultra-thin target.
The combination of beam cooling and thin target allows for reaching very high energy and
angular resolution in experiments. There are ports at several angles with view on the
interaction region offering for optical and/or X-ray detection. (CSRe, ESR). We note, that
at CRYRING a novel sophisticated detector system for nuclear and atomic reaction studies
with the internal gas-jet is being constructed [44].

e Various detectors can be placed either in special vacuum pockets (scintillators, gas-filled
multiwire chambers, silicon, diamond, etc.) [45-47] or directly into vacuum. (CSRe, ESR,
CRYRING, R3)

e Laser beams can be merged with the stored ion beams along straight sections of the ring in
both — co- and counter-propagating — directions [48]. (CSRe, ESR, CRYRING)

e Time-of-flight (ToF) detector is equipped with an extremely thin, a few pg/cm?, carbon
foil [49-53]. Secondary electrons emitted from the foil due to passing ions provide accurate
timing signals which are used to determine particle revolution frequencies. (CSRe, ESR,

R3)

e Schottky detectors are non-destructive monitors which are able to provide information on
the frequencies and intensities of all particles stored in the ring [31]. The sensitivity of these
detectors has been continuously improved over the last decade [54}58]. Present Schottky
detectors allow for measurement of frequencies of single stored particles within merely a
few ten ms. The dynamic range of Schottky detectors is such that single particles as well
as beams with mA-intensities can be measured simultaneously. (CSRe, ESR, R3)

4. Precision experiments
Some examples of ongoing research are given below [59].

e Heavy-ion storage rings offer the possibility to store HCIs in a specific high atomic charge
state for an extended period of time. This capability enables measurements of weak decays
of HCIs [60-63]. Numerous experiments have been performed at the ESR and since recently
also at the CSRe for investigations of continuum S-decay [64-67]. Of special interest are
the two-body beta decays. These are the orbital electron capture (EC) [68] and bound-
state B -decay (53, ) [69,70]. Concerning the studies of EC decays the reader is referred to
Refs. [71-86]. The bound-state f~-decay was experimentally discovered in the ESR [87].
So far B, -decay of fully-ionised '63Dy%+, 187TRe™F 205Hg80+ and 206207TI81+ have been
measured [87-92]. The next goal is the measurement of the 3, -decay of 2% T1%!* [93], which
is needed for Solar neutrino and s-process physics [94-98]. The corresponding experimental
proposal is approved at GSI.
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e Storage-ring mass spectrometry [31,99] is a very successful approach for measuring nuclear
masses of short-lived nuclides. There are two approaches to perform such measurements.
The Schottky mass spectrometry (SMS) is based on the electron cooling of the particles
and Schottky detectors providing their revolution frequencies. Several hundred masses
were obtained with this method [100-113|. The second method, the isochronous mass
spectrometry (IMS), is based on the isochronous ion-optical setting of the ring. The cooling
is then not required and the masses of nuclides with half-lives as short as a few ten us
can be addressed. TOF detectors are typically used for fast determination of revolution
times. At CSRe the system of double TOF detectors allows in addition for an in-ring
velocity measurement of each ion [114-118]. The IMS is pursued at all three storage ring
facilities [12] and many highlight results have been achieved |119-139]. Both techniques are
broad-band [140] and allow for addressing masses of many nuclei simultaneously. With the
development of very sensitive and fast Schottky detectors, they are being considered in the
IMS [67].

e The high resolving power of storage ring mass spectrometry and especially the sensitivity
to single ions allow for the search of very rarely produced long-lived isomeric states. Due
to long half-lives and tiny production rates such states are very difficult to address with
conventional gamma spectroscopy |141,142]. Several isomeric states were discovered in the
past experiments as well as their decay properties as HCIs were studied [64,|143-152]. The
region of interest of the future investigations are the neutron-rich nuclei around "**Hf where
isomers with exceptional properties are predicted to exist. Also proposed is the search for
the exotic bound electron-positron decay [153].

e Light-ion induced direct reactions, like elastic and inelastic scattering, transfer, charge-
exchange, or knock-out reactions, are powerful tools for obtaining nuclear structure
information [154H157]. Owing to the thin windowless targets and the beam cooling, high
resolution measurements, even for very slow target-like recoil particles, can be achieved.
Scattering of *Ni beam on the Hy has been studied in the ESR proving the feasibility
of such experiments [158-162]. Also the 2°Ne(p,d)'"Ne* reaction was investigated at the
ESR [163] which is the first step towards the measurement of the a-decay width of the
4.033 MeV state in 1?Ne. The latter is needed to conclude on the rate of the O(a,v)!°Ne
reaction in X-ray bursts. One shall emphasise the complex detection systems developed for
such reaction studies [164].

e Storage rings offer the possibility to address capture reactions on unstable ion beams.
The proof-of-principle experiments addressing proton capture reactions relevant for the
astrophysical p-process were performed in the ESR with decelerated °Ru [165,/166] and
124Xe [167] beams. For these studies double-sided silicon strip detectors (DSSSD) were
brought directly into the vacuum of the ring. In the future also («,~) and (p,n) reactions
will be addressed. Still, the major goal is to perform these reaction studies on radioactive
beams [168].

e The well-known in atomic physics dielectronic recombination (DR) process can be employed
to measure isotope shifts (IS) and hyperfine splittings of radioisotopes as well as lifetimes
of long-lived nuclear isomeric states [169,[170]. The highlights are the measured in the ESR
DR resonances on exotic 237U+ and #*Pa®" [23/[171]. The latter isotope is a striking case
since it has a low-energy isomeric level at 73.92 + x keV with a half-life of 1.17 min. The
signatures of both, the isomeric and ground, states could be seen. One of the future goals
is to address 2 Th which has the isomeric state with lowest known excitation energy [172].
If successful, this can pave the way to the separation of the isomer for further fundamental
research studies. This goal is pursued at the CSRe and the ESR.

Apart from nuclear physics experiments, examples of which are given above, there is a broad
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range of experiments in realm of atomic physics, astrophysics as well as fundamental symmetries.
For some examples of recent experimental results the reader is referred to Refs. [173-188].

5. Future FAIR and HIAF facilities

The great success and the variety of the running research programs at the existing facilities
is the motivation that heavy-ion storage rings are a central part of the future new-generation
radioactive-ion beam facilities FAIR in Germany [189,[190] and HIAF in China [191].

At FAIR, the present scope of the GSI storage rings will be extended by the collector ring CR
and the high-energy storage ring HESR [192]. The CR is a dedicated machine for isochronous
mass spectrometry [193-195]. Here the double-TOF system and a system of Schottky detectors
shall enable direct mass and lifetime measurements of short-lived nuclides [196,197]. The HESR
will be used for accumulation and half-life measurement of long-lived radionuclides in high atomic
charge states [196]. Furthermore, the HESR will offer cooled beams of HCIs accelerated to the
maximal Bp = 50 Tm [198], which is a new energy regime for precision experiments in atomic
physics [199-205]. These experiments are being prepared by the SPARC [206] and ILIMA [196]
collaborations.

At HIAF, a novel concept of two storage rings coupled together for reaction studies of two
co-propagating beams has been proposed [207]. The interest in the latter are the fundamental
studies of critical and supercritical electromagnetic fields. Furthermore, each of the two storage
rings can be run independently. Mass and lifetime measurements of short-lived nuclei are among
the main physics cases.

6. Low energies

Experiments with stored HCIs at low energies have undoubtedly huge discovery potential. For
instance, capture reactions can be addressed directly in the Gamow window of the corresponding
astrophysical process [32/168,208]. Also for studying nuclear direct reactions, induced fission, etc.
the ideal energy range is around 10 A MeV [209,210]. Furthermore, low energies open possibilities
for the search and detailed investigations of exotic decay modes [211], like for instance nuclear
excitation by electron capture/transition (NEEC/T) [212-214] and many more. Coupling of a
storage ring with a source of slow neutrons is probably the only realistic approach for direct
measuring of neutron-indiced reactions [215-218]. Needless to say that high precision atomic
physics experiments profit from low Doppler shifts. This rich physics program is the reason for
installing the CRYRING at GSI. Unfortunately the slow deceleration process does not allow
for experiments with nuclides living shorter than about a minute. Therefore, to enable these
experiments there are several low-energy storage ring project that are initiated worldwide:

e A very detail concept for a storage ring at ISOLDE has been prepared [208]. A dedicated
design of the ring fitting into the limited available space is ongoing [219].

e The new storage ring complex DERICA to be constructed at JINR in Russia has been
proposed [220]. A low-energy storage ring is one of the central facilities [221].

e There is a proposal to transfer a low-energy storage ring TSR from Heidelberg to IMP in
Lanzhou and to couple it to the existing CSRm facility. If realised this project could be the
first in time and thus in the forefront of this research field. Furthermore, it would facilitate
the optimisation of future low-energy facilities like for instance envisioned at HIAF.

7. Conclusion

In this contribution we provided a concise review of the experimental programs at the heavy-ion
storage rings. The potential of the running research is still extremely large and it will enormously
be extended by the future facilities. Whereas the higher energy regime will be covered at FAIR
and to some extend also at HIAF, the present quest is to approach stored and cooled beams
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of short-lived nuclides at low-energies. Here, an exciting multidisciplinary physics program has
been worked in details and awaits its realisation.
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