

Measurement $^{232}\text{Th}(\text{n}, \gamma)$ reaction cross-section at $E_{\text{n}}=17.28 \text{ MeV}$

Sadhana Mukerji¹, H. Naik², S.V. Suryanarayana³, B. S. Shivashankar⁴, V.K. Mulik⁵, B.K. Nayak³, A. Saxena³, S.C. Sharma³, P.V. Bhagwat³, S. Ganesan¹, A. Goswami² and P.D. Krishnai¹

¹Reactor Physics Design Division, ²Radiochemistry Division, ³Nuclear Physics Division BARC, Mumbai-40085,

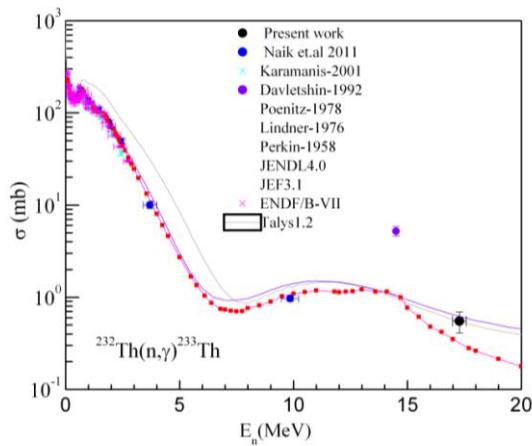
⁴Dept. of Statistics, Manipal University, Manipal, ⁵Dept. of Physics, University of Pune-411 007,

E-mail: mukerjis@barc.gov.in

Studies on $^{232}\text{Th}(\text{n}, \gamma)$ and (n, xn) reaction cross-sections besides fission products yields at higher energy neutrons are important from the point of ADS [1] and AHWR [2]. This is because ^{232}Th - ^{233}U fuel in connection with ADS is one of the possibilities for power generation besides transmutation of long-lived fission products and incineration of long-lived minor actinides. The ^{232}Th - ^{233}U fuel in ADS [1] and AHWR [2] has an advantage over the present reactors based on uranium fuel from the point of thousand times less radio toxic wastes production and the higher percentage of availability of ^{232}Th in the earth crust compared to ^{238}U . In the thorium-uranium fuel cycle, the fissile nucleus ^{233}U is generated by two successive β -decays after a neutron capture by the fertile nucleus ^{232}Th . In ADS high energy (GeV) proton from accelerator strikes a heavy element like Pb and Bi yielding large number of neutrons by spallation reaction. The spallation target becomes a source of neutrons, which drives fission chain in a sub-critical core. Thus it is important to measure the $^{232}\text{Th}(\text{n}, \gamma)$ and (n, xn) reaction cross-sections besides yields of fission products at higher neutron energy. In view of this in the present work we have determined the $^{232}\text{Th}(\text{n}, \gamma)$ reaction cross-section at average neutron energy of 17.28 MeV for the first time using activation and off-line γ -ray spectrometric technique.

The experiment was carried out at TIFR-BARC Pelletron facility at the 6 meter height main line [3]. About 0.3228 g of natural Th metal foil of area 1.0 cm^2 doubly wrapped with 0.025 mm thick Al foil was irradiated for 6 hours at 17.28 MeV quasi mono energetic neutrons by using $^7\text{Li}(\text{n}, \text{p})$ reaction of 20 MeV proton beam. The proton current during irradiation was 300 nA. After 3 hours of cooling, the irradiated sample along with Al wrapper was mounted on Perspex plate. The fission products (e.g. ^{97}Zr)

from $^{232}\text{Th}(\text{n}, \text{f})$ reaction and ^{233}Pa ($T_{1/2}=26.975 \text{ d}$) from $^{232}\text{Th}(\text{n}, \gamma)$ reaction followed by β -decay were analyzed by γ -ray spectrometry using pre-calibrated HPGe detector, coupled with PC based 4K MCA. The resolution of the detector system during counting was 2 keV at 1332 keV γ -line of ^{60}Co . The dead time of the detector system during counting was always kept less than 5% by placing the sample at a suitable distance to avoid pileup effects. The γ -ray counting of the sample was done in live time mode and was followed as a function of time.


The net photo-peak areas of different γ -rays of nuclides of interest were calculated by subtracting the linear Compton background from their gross peak areas. The 743.4 keV γ -rays activities (A_i) of the fission products ^{97}Zr is related to the neutron flux (Φ) by standard decay equation [3].

$$A_i = N\sigma\Phi a \epsilon Y (1-e^{-\lambda t}) e^{-\lambda T} (1-e^{-\lambda \Delta T})/\lambda \quad (1)$$

where N is the number of target atom, σ is the $^{232}\text{Th}(\text{n}, \text{f})$ fission cross-section [4] and Y is the yield of the fission products [5]. 't', T and ΔT are irradiation, cooling and counting time respectively. 'a' is the abundance of γ -ray energy for the fission product of interest [6]. 'e' is efficiency of the γ -ray in the detector system, which was obtained by using standard ^{152}Eu source.

The neutron flux was calculated from eq (1) by using γ -ray activities (A_i) of ^{97}Zr and other terms from respective refs. [4-6]. The neutron flux at average neutron energy of 17.28 MeV was obtained to be $1.006 \times 10^7 \text{ n cm}^{-2} \text{ s}^{-1}$. Then the $^{232}\text{Th}(\text{n}, \gamma)$ cross-section was calculated from the 311.9 keV γ -rays activities (A_i) of the reaction product ^{233}Pa using eq (1) and found to be $1.569 \pm 0.141 \text{ mb}$. The neutron energy from $^7\text{Li}(\text{p}, \text{n})$ reaction for proton energy of 20 MeV is not mono-energetic but have tailing part. So the

contribution of 1.019 mb to $^{232}\text{Th}(n, \gamma)$ cross-section due to the tail part of the neutron spectrum [7] from 3.2 MeV to 14.6 MeV was corrected using evaluated data from ENDF/B-VII [8]. Thus the experimentally determined actual $^{232}\text{Th}(n, \gamma)$ cross-section is 0.550 ± 0.141 mb. The experimental $^{232}\text{Th}(n, \gamma)$ cross-section is shown in Fig.1 along with literature data [3,4] at lower energy. In Fig. 1 the experimentally determined $^{232}\text{Th}(n, \gamma)$ cross-sections were also compared with the evaluated data of ENDF/B-VII [8], JENDL-4.0 [9] and JEFF-3.1 [10]. The experimental data is in good agreement with the evaluated data from JENDL-4.0. However, the evaluated data from ENDF/B-VII is on the lower side and JEFF-3.1 data is on the higher side of the experimental data. In view of this the $^{232}\text{Th}(n, \gamma)$ reaction cross-sections were also calculated theoretically using the TALYS 1.2 computer code [11] and was found to be in good agreement with the experimental data, which shows the correctness of the present approach. The data on $^{232}\text{Th}(n, \gamma)$ reaction cross-section is thus important from the point of view of testing models of calculation as well as to test the evaluation procedure. Besides these, experimental data on $^{232}\text{Th}(n, \gamma)$ are useful for the design of ADS and AHWR.

Fig. 1. Plot of the $^{232}\text{Th}(n, \gamma)$ reaction cross-sections as a function of neutron energies.

Acknowledgement

The authors would like to express their sincere thanks to the staff of the BARC-TIFR Pelletron facility, for their co-operation during experiment. One of the author (Sadhana Mukharji) thankful to B. Krishnamohan, Rajeev Sharma, Sudeepo Samonta and Sachin Chacharra for their co-operation.

References

- [1] C. Rubbia et al. "Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier," CERN/AT/95-44 (ET) 1995.
- [2] R.K. Sinha and A. Kakodkar, "Design and Development of AHWR – The Indian Thorium Fueled Innovative reactor," *Nucl. Eng. Des.*, **236**, 7-8, 683 (2006).
- [3] H. Niak et al. *Eur. Phys. J. A* **47**, 51 (2011).
- [4] Experimental Nuclear Reaction Data EXFOR: available on the internet at <http://www-nds.indcentre.org.in/exfor>
- [5] L.E. Glendenin, *Phys. Rev. C* **22**, 152 (1980)
- [6] E. Browne and R. B. Firestone, Table of Radioactive Isotopes, ed. V.S.Shirley(1986); R. B. Firestone, L. P. Ekstrom, Table of Radioactive Isotopes, 2004.
- [7] S.G. Mashnik et al. 7Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV, *Los Alamos National Laboratory, Los Alamos, NM 87545, USA* (February 8,2008).
- [8] Evaluated Nuclear Reaction libraries ENDF: available on the internet at <http://www-nds.indcentre.org.in/endf>
- [9] K. Shibata et al., "JENDL – 4.0; A New Library for Nucl. Sci. and Engineering," *J. Nucl. Sci. Tech.*, **48**(1), 1, (2011).
- [10] A. J. Koning, et al., "The JEFF evaluated Data project," Proceeding of the International Conference on Nuclear Data for Science and Technology, Nice, 2007.
- [11] A.J. Koning et al. Proc. International Conf. Nucl. Data for science and Tech.ND 2004, AIP Vol-769 (ed.R.C.Haightand et al.) P 115