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ABSTRACT 

The infrared properties of scattering matrix elements in 

Quantum Chromodynamics are studied from the point of view of 

finding a systematization of perturbation theory that goes beyond 

the actual order-by-order results. An integro-differential 

equation for the matrix elements of Quantum Chromodynamics is 

derived. It is shown (using the ghost-free gauges and an assumption that 

seems reasonable in those gauges) that all the infrared singularities 

arising in on mass-shell scattering amplitudes may be collected by a 

reorganization of the perturbation theory into the iteration of the sum 

of all insertions of a single gluon between the external states, 

where the coupling constant at the point of insertion is replaced by the 

effective coupling constant g(k2) where k is the momentum of the inserted 

gluon. It is also shown that colour-averaged cross-sections are finite in 

the infrared limit to all orders of perturbation theory in a fashion that 

resembles the low order results that have appeared in the literature. 
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CHAPTER I 

Quantum Chromodynamics is the most promising field theory of the 

strong interactions known at present. It describes the interaction 

between quarks mediated by non-Abelian gauge fields called gluons. 

Just as Quantum Electrodynamics (QED) has provided a complete 

description of the interaction of photons and electrons to the 

precision obtained by experimentalists so far, it is the hope 

of many that Quantum Chromodynamics (QCD) will provide a complete 

description of the strong interactions. However, the large bulk 

of experimental strong interaction data deals solely with bound 

states of quarks and gluons and only indirectly, as a result of 

theoretical demands, has the inner structure of these bound states 

been probed. Thus QCD confronts theorists with two embarrassing 

problems: firstly, the inability to calculate properties of the 

bound states using the quarks and gluons as building blocks, and 

secondly, to explain why these fundamental fields are not physically 

observable. The quark model of Gell-Nann and Zweig(!) led to problems 

with the Pauli exclusion principle. Greenberg(Z) introduced the notion 

of quark parastatistics to give the hadrons their correct synnnetry 

properties, but did not point out that the para particles should be 

suppressed. Han and Nambu( 3) suggested that three types or colours of 

quark should exist. However, their quarks possessed integral electric 

charge and the colour gauge symmetry was broken. Within the Han-Nambu 

scheme, Nambu(J) actually formulated Quantum Chromodynamics. In 1971, 

the proposal that quarks should be confined was made clear(4! and the 

theory of QCD with confinement was established and refined over the 

next two years(S). QCD possesses an exact SU(3) colour symmetry which 
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has a corollary effect of requiring there to be three valence quarks 

in colour neutral baryons (those observed in nature). Thus. this 

feature of the phenomenologically successful quark model is a natural 

consequence of QCD. The ~0 + 2y decay rate supports the existence 

of three colours of each flavour of quark. The only dynamical 

feature of the model which has been tested to any extent is the 

asymptotic freedom property(G) which enables some predictions to 

be made regarding + -e e annihilation, ep and vp interactions. 

The consistency between theory and experiment and the beauty and 

simplicity of the theory, suggesting a unification of the strong, 

weak and electromagnetic interactions and possibly gravity 

are compelling reasons to look more closely at QCD. 

The term confinement used in conjunction with QCD means that 

all physical states of the theory are colour SU(3) singlet states; 

that is, quarks and gluons do not exist as free entities and 

furthermore, there are no thresholds for the excitation of coloured 

bound states of quarks and gluons. Thus if confinement is the correct 

behaviour of the strong interaction theory, the historical process 

of investigating nature at shorter and shorter distances (or alter­

nately at higher and higher energies) prompting the discovery of 

molecules, atoms, nuclei and nucleons (that is, protons and neutrons) 

has reached a logical endpoint as that process required the separation 

of the new entities into the experimental detector. This is not 

to say, of course, that further experiments at higher energies would 
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be useless, merely that strong interaction experiments will continue to 

be indirect, relying on probes such as electrons, neutrinos and 

protons to investigate such topics as the nature of the strong force 

and the behaviour of the flavour interaction at high energies. 

The term "infrared slavery" should be contrasted with confinement. 

Infrared slavery is a statement about the effective colour charge 

g( k2) in the infrared region specified by k2 
+ O. The renormalization 

group enables such a definition of effective charge to be made. In 

the deep Euclidean region k2 
+-oa , the QCD effective charge g(k2) + 0 

demonstrating the well-known "asymptotic freedom" property of QCD. As 

one moves away from the deep Euclidean region, the effective charge 

certainly increases in magnitude, but its behaviour in the infrared 

region is unknown as perturbation theory is inapplicable due to the 

large value of the coupling constant. The property of infrared slavery 

requires that g(k2) is singular in the limit k
2 

+ O. The exact 

connection between infrared slavery and confinement is unknown, but 

the consequences of these two hypotheses will be discussed in much more 

detail below. 

There are well-known examples of field theories which actually do 

possess the confinement property. Electrodynamics in one space and 

one time dimension and also in two space and one time dimension are 

examples. However the confinement mechanism in lower dimensional 

systems may be completely distinct from that which is supposed to 

operate in QCD in three space and one time dimension. 
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Several approaches to the study of the infrared problem in QCD 

have been attempted. These include the approach of WilsoJ7 ), who 

establishes the field theory on a discrete lattice and employs methods 

invented for use in statistical mechanics to search for phase transitions 

in the theory at some critical value of the coupling constant. Such 

phases might encompass the confined phase with colour singlet bound 

states as the only physical entities, a free QED-like phase with 

coloured gluons radiating in a fashion similar to the radiation of 

photons, or perhaps a dielectric phase with massive gluons which comes 

from some sort of dynamical Higgs mechanism, Of course, the hope is 

to show that the theory is confining for strong coupling values and 

does not possess a phase transition as the coupling constant tends to 
~I 

zero, that is, the renormalization group function s(g} does not 

possess a fixed point for non-zero values of the coupling constant. 

Using these methods, Wilson has demonstrated that for sufficiently 

large values of the coupling, both the lattice theories of QED and 

QCD have confining phases. 

Another approach deals with classical solutions of QCD such as 

ins tan tons d (S) d · . h . an merons an investigates t e quantum corrections 

around the classical solutions associated with the relativistic field 

theory. The vacuum state is then described as a dilute gas of 

soliton-antisoliton pairs; such vacua have been shown to be unstable, 

Instantons alone have been shown not to give confinement, at least in the 

dilute gas approximation(lO), however it is quite likely that considerations 

based upon perturbation theory may miss some important features of QCD. 

. 2 (9) related to the function ~(g) of Gell-Mann and Low (in the original 
renormalization group paper) by S(g) = $(g2)/g. 
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The last approach, and the most conventional, is based upon 

perturbation theory, although the results of such investigations 

may transcend the limitation of small coupling constant required 

for the convergence of the perturbation series. Quantum Electrodynamics, 

although not a confining theory (at least for small coupling), does 

provide a good analogy from which to work; it possesses charged 

fermions with the electric force mediated by massless vector particles, 

but as the gauge group U(l) is Abelian, the photons do not carry 

electric charge. The gluons in QCD do carry colour charge precisely 

because the gauge group of which they are manifestations is 

non-Abelian. Furthermore, low order perturbation theory calculations 

have shown a striking similaritJll) in the infrared behaviour of QED 

and QCD. Inspite of the greater topological complexity of the Feynman 

graphs in QCD, there are many almost miraculous cancellations leading 

to a situation similar to QED: the infrared singularities associated 

with an on mass-shell amplitude factor out from the amplitude leaving 

a piece completely free from infrared singularities, The form of the 

infrared singular factor is ~o the order calculated)equal to the 

exponential of the infrared singular piece of the one-loop correction 

to the Born term. 

This dissertation comprises a study of the differences in infrared 

behaviour between QCD and QED, and the ramifications of such differences. 

So far, two important differences have emerged. The first is that in QCD 

with massive quarks and massless gluons, the vertex and self-energy 
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contributions modify the one-loop correction mentioned above, 

1 ' 2 h b i • by g2 (k2) , h rep acing g, t e pertur at on expansion parameter, t e square 

of the effective charge,which receives· ,contributions only from those 

fields which are massless. This does not occur in QED since photons 

couple to each other only via electrons which are massive. The 

other difference between QED and QCD in the infrared region is that 

because gluons carry charge, virtual radiative corrections to 

processes involving external on-shell gluons include a separate 

infrared singular factor for each emitted gluon. This is distinct 

from QED where the exponential factor containing the infrared 

singularities is independent of the number of emitted photons. 

Although a definition of confinement has been established, the 

manner in which one considers the theory in order to prove the 

confinement property is not straightforward. A knowledge of $(g) 

or equivalently of the effective coupling constant in the infrared 

region (i.e. the infrared slavery question) although a significant 

step forward is not a proof or disproof. 

From a phenomenological point of view, confining potentials 

have been invented, such as bag models of hadrons(
12

~ string models(l3), 

and the quark-antiquark Schr8dinger potentials of the form 

V(r) = ar + br-l which have been successfully applied to modelling 

the spectra of the charmonium family of mesons(l4)_ All of these 

phenomenological attempts are in some sense approximations to QCD; 

for example, if QCD confines, then the gluons exchanged between 
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quarks and antiquarks probably form flux tubes, which, if the quark 

and antiquark are separated resemble elastic strings, the energy in 

the string being proportional to separation. Thus,once confinement 

is assumed QCD becomes a very plausible theory. 

A stringent requirement for confinement has been invented by 

K.Wilsorf15). If one considers the vacuum expectation value 

C = (exp[ ig 1 Aµdxµ 

L 

])0 = f[dA .. ]exp(-S(A))exp(igf Aµdxµ) 

L 
where S(A) is the action, and Lis a loop of spatial extent Rand 

temporal extent T, and for the non-Abelian gauge field A there 

is an ordering operation on the line integral. If £7,(C) varies 

as the area of the loop (i.e. RT) then the theory confines since 

the energy of two quarks separated by distance R, E (R) is linear 
q 

in R - the well-known confining potential. However such a 

calculation in three space and one time dimension has proved 

inordinately difficult except when the theory is defined on a 

lattice of points. It is hoped that the limit in which the lattice 

spacing tends to zero restores the full theory. 

If one follows the approach to the infrared problem suggested by 

QED, one also needs a signal or discriminant for the confinement 

property. To follow the QED approach it is easiest to assume an 

S-matrix to exist for processes involving external quarks and gluons. 

Then, as indicated by perturbation theory calculations and in analogy 

with QED, all QCD matrix elements (exclusive) vanish. The signal for 



-8-

confinement will be to show that the inclusive cross-sections, 

allowing for the emission of soft gluons accompanying the basic 

process under consideration are also zero. This is not the case in 

QED where infrared singularities arising from the phase space 

integrations exactly cancel the virtual infrared singularities. 

Actually, a proof of confinement should also disprove the existence 

of a coloured threshold for the production of bound states of quarks 

C and gluons not in the colour singlet representation of su
3

. However, 

for the purposes here, confinement shall refer only to the 

non-emergence of the elementary fields. 

The assumption of the existence of an S-matrix in QCD allows for 

a conventional definition of the quark mass - that is, the location 

of the branch point of the quark two-point function. In terms of 

the program set out (that is to test whether inclusive cross-sections 

vanish) such a definition of quark mass i~ quite consistent. However, 

if the theory does confine, then the quark 11masses" are no more than 

parameters of the theory describing the breaking of the flavour 

synnnetry. In this case, a definition of mass based on a sliding 

scale renormalization scheme would seem more appropriate. Thus the 

-1 inverse quark propagator SF (p) may be written 

s;l(p) = A(p2)p + B(p2) 

where at some point p2 
= J, 
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Thus we have defined a mass which is dependent on M, m(M). It should 

be noted that the Mused here is related to the renormalization group 

invariant mass µ : 

- 2 
M e 

2 -1/eg 
= 

However, such a definition of mass does not lend itself to a 

discussion of the infrared singularities which might arise in the 

Green's functions. 

As stated above, in terms of their perturbative infrared behaviour 

QED provides an excellent comparison with QCD. In order to make this 

comparison a detailed knowledge of the infrared behaviour in QED is 

necessary. For an example consider the scattering of an electron 

with momentum p from an external potential producing an outgoing 

electron with momentum p'. Infrared divergences arise when one 

considers virtual corrections to the basic process (see below) 

because boththe photon and the two electron propagators can approach 

their mass shells simultaneously. 

---
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The Feynman integral which contains this infrared divergence in the 

one loop graph is of the form 

4p.p' 
2 •• 2 2 

(k -2p.k)(k -2p'.k)k 
(I-1) 

Because of an intrinsic fear of infinities, various devices have been 

employed to regulate the infrared divergence. This may be done by 

introducing a small mass A for the photoJ
1

~ in which case 

or by changing the number of dimensions d of apace-time in a method 

(17) 
known as dimensional regularization in which case 

1 
B = -iir 

(I-3) 

whereµ is an arbitrary mass scale introduced in order to maintain the 

dimensionlessness of gin other than four dimensions. The correspondence 

m2 
between logarithmic singularities of the form R/11. - in the photon 

A2 

mass regulation method and poles of the form 2 in the 
d-4 

dimensional regularization scheme occurs in all infrared calculations 

<1a) 
(at least at the leading singularity level) . 

As shown by Yennie, Frautschi and Suurl1~ if the elastic scattering 

amplitude for electron scattering M(p,p') is represented by a sum 

over diagrams containing n virtual photons, 



-11-

(X) 

M(p,p') = 

the amplitudes M have the infrared structure n 

M = mo 0 

Ml = mo (aB) + m1 

M2 = mo 
(aB) 2 

+ ml (aB) + m2 2! 

n 

M = I m (aB)r 
n r=O n-r rT 

2 
where a=~ and the m are infrared finite and of order 

4,r n 

with respect to m0. Sunnning the series (eq. I-4) produces the 

result 
00 

M(p,p ') = exp (aB) 2 mn 

n=O 

(I-4) 

n a 

(I-5) 

This form has several features: firstly, it exhibits factorization 

of infrared singular and non-singular parts. Secondly, the elastic 

scattering cross-section vanishes because B -+-00 as either A+ 0 or 

d-4 + 0 (depending on the type of regulation). This is not, however 

a proof of confinement of massive QED in four dimensions! The vanishing 

elastic cross-section is a consequence of a problem that always arises 

in the definition of an S-matrix for a theory involving massless 

particles. Basically, it does not cost very much energy to emit a 

long wavelength photon along with the outgoing electron, An 
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experimenter who is trying to measure the differential cross-section 

possesses a detector which has but a finite energy resolution. He thus 

cannot distinguish between an electron and an electron with a little 

less energy, but in concert with any number of soft photons. Now, 

the amplitude for the scattering of an electron with the emission of 

n soft photons again factorizes, however the infrared singularity is 

precisely the same as the factor written in eq.(I-3) for the process 

with no accompanying soft photons. When the differential cross-

section dcr 
de: for the scattering of the electron with the emission 

of any number of undetected photons with energy e: (that is, the energy 

lost by the electron) is computed, infrared divergences arise from 

the integration over the photon phase space. Yennie, 

Frautschi and Suura found that these infrared divergences from soft 

photon emission also factorize and exponentiate: 

where 

dcr 
de: = 

~ doc 
exp [ 2a(B+B)] • de: 

is infrared convergent and :s 
photon mass regulation): 

is given by (using the 

(I-6) 

in the region of high energy and small e:, that is, 

e: << m << E, E'. 
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In the dimensional regularization scheme, 

1 
B=-2,r [(;,, (o/') l) ( d:4 + Pm(l) 

+ ~ ( ~ (o/'))2 + ( 1 _ ~ (E:~)) ~ (E:;)J 
Thus there is no infrared divergence in the differential cross­

section. However, some important non-perturbative information is 

still contained in the now infrared convergent exponential 

exp [ 2a(B+B)] 

such as radiation damping information and large momentum transfer 

behaviour for the region where p.p' 2 >> m . 

The absence of infrared singularities in physically observable 

processes suggests a different description of the asymptotic states 

in Quantum Electrodynamics. Thus if coherent states describing 

charged particles along with an indefinite number of soft photons 

(I-7) 

are used, the resulting S-matrix is free of any infrared difficultieJ
19

). 

It follows that even in QED the concept of a charged particle 

has to be modified. In QCD, the conceptual difficulties associated 

with charged particles are even greater. One must confront the 

property of "twinkling" which would occur if quarks and gluons were 

free entities. A quark accompanied by a cloud of gluons could 

continually change its colour charge by emitting and absorbing 

gluons which themselves carry colour charge. 



-14-

Perturbation Theory and Quantum Chromodyrtamics 

Cornwall and TiktopouloJZO) studied the leading infrared 

singularities arising in QCD in three kinematic regimes. The infra­

red regime refers to the limit in which the infrared regulator 

(whether it be the gluon mass A or the dimensional regulator e = d;4 ) 

tends to zero while all external momenta are held fixed and the 

external particles are on their mass-shells; also, no momentum 

transfer is allowed to vanish. 

The second regime is the fixed angle situation where all 

invariants, that is, squared energies and momentum transfers (s,t,u, ... ) 

are much larger than any of the masses in the theory. The third regime 

is the Sudakov region where external particles are off mass-shell 

and invariant momenta squared of the form 
2 (p.-p.) where the p. are 

l. J l. 

the external momenta, are much greater than the degree to which the 

particles are off mass-shell, that is, 
2 2 

p. - m. , for 
l. I. 

all i,j. In this region artificial regulation is unnecessary as the 

2 2 singularities appear in the limit asp.+ m .. 
l. l. 

In all three regimes the leading infrared singularities for, as an 

example, the colour singlet form factor F of a quark (up to O(g6)) 

take on a very similar appearance. 

2 
F = exp -{..&....fF H(t)}, FB 

a•n-2 

where FB is the Born approximation to F, CF is the quadratic Casimir 
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eigenvalue for the fermion representation of SU(3)c and H(t) is the 

one-loop Feynman integral associated with the lowest order correction 

to the Born approximation. 

For the fixed-angle regime, the amplitude T for a process with 

any number of quark and gluon legs can be written as 

1/2 
T = IT Fi (t) . TB 

i 

where Fi (t) 
th is the asymptotic form factor for the i particle 

(which carries colour charge C.). The simplification in this region 
l. 

is due to the fact that all the invariants have fixed ratios with 

respect to one another and thus logarithms of different invariants 

can be collected into a logarithm of a coIJllllon scale plus terms 

which contribute to the non-leading singularities. 

There are several very attractive indications that might be drawn 

from this picture of the leading singularities of QCD. Since each 

external gluon has associated with it a form factor, that is, the 

exponential of something large and negative, the calculation of 

cross-sections involving the emission of Bremsstrahlung radiation 

will not follow the pattern of QED. In fact, instead of the usual 

infrared divergent phase space integral associated with a photon 

of momentum k, which takes the general form 

p.p' 
p.k p' .k 

there is now an exponential damping factor involved provided all the 
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virtual radiative corrections associated with the emission of the 

gluon of momentum k are summed before the phase space integral is 

carried out, and 

Thus the situation in QCD with massive quarks is as follows: the 

Bremsstrahlung corrections to the cross-section for the scattering 

of a quark by a colour singlet potential do not contain infrared 

divergences arising from phase space integrations due to the 

factor which is the result of summing the virtual infrared divergences 

to arbitrarily high order in the coupling constant. It appears, then, 

that the inclusive cross-section still contains the virtual infrared 

divergences due to the radiative corrections to the basic process 

(quark+ photon + quark) and thus that the cross-section in the 

limit as the infrared regulator tends to zero, is itself zero. 

This "indication of confinement" is however based on a certain 

order of summing divergences and this double summation over the 

virtual and Bremsstrahlung divergences is manifestly non-uniform in 

its convergence. This fact has been confirmed by several authors 

who have reported that order-by-order in QCD the same inclusive 

cross-section (as would be measured by a real colour-blind detector 

with finite energy ~esolution) is infrared finite(2l). Indeed, there 

are proofs that such a statement is true to all orders in perturbation 

theory~~The result is perhaps not surprising in the light of the 
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theorems of Kinoshita{2l and Lee and Nauenberg~4). Kinoshita's 

theorem states that whenever infrared divergences arise in a process 

to any order of perturbation theory, they can be eliminated at the 

transition rate level by summing over the set of all initial and 

final states which are degenerate in energy, where by degenerate, it 

is meant that, for,example, a massless electron with three momentum t 

is degenerate with a state containing a massless electron with 

++ 
momentum p-k and a photon with momentum k when the angle between 

++ + 
p-k and k is zero. It should be noted that this theorem is stated 

in terms of the "bare" parameters of the theory because renormalization 

may introduce mass singularities not covered by the theorem. 

At present no-one has created coherent states of quarks and 

(19) 
gluons in a fashion similar to that employed by several authors 

in QED, so that the question of which is ½he '(right" way to sum the 

double series is quite unresolved. 

Chapters II and III and all but the last two pages of Chapter IV 

are devoted to the development of the differential equation for QCD 

matrix elements, the problem of the separation of overlapping 

infrared divergences, and ultimately, the solution of the equation. The 

end of Chapter IV comprises some comments on different renormalization 

procedures and their effects on the infrared singularities. Chapter V 

contains an application of the contents of the previous chapters to the 

study of the infrared singularities associated with semi-inclusive 

cross-sections in QCD. 

The considerations of Chapter IV are rather formal, and as such, 

need to be supplemented by low order perturbation theory calculations 

in the axial gauge before the situation can be resolved. 
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CHAPTER II 

A Differential Equation for Matrix Elements in QCD 

The need for information about QCD in a region where the 

effective coupling becomes large, such as the infrared region, 

requires methods more powerful than perturbation theory. Such 

methods do exist, coming from general consideration of field 

theory; for example, the Dyson equationJ25) by which Green's 

functions can be implicitly related by an integral equation. 

Also to be included in this category is the Bethe-SalpeteJ26) 

equation which is useful in the solution of bound state and scat­

tering problems. A difficulty which arises with such 

powerful equations is that the kernel is usually as hard to 

calculate as the amplitude in question; thus, a solution entails 

firstly an approximation to the kernel at which point the integral 

equation becomes tractable. However, in terms of Feynman diagrams, 

although diagrams of infinite order are sunnned by this method, 

there are an infinite number of diagrams which are not taken into 

account. 

Since infrared divergent corrections to a scattering process 

have a length scale much greater than that associated with hard 

scattering events (thatis, the scale is that associated with the 

transferred momentum) it is plausible that such divergences 

should ignore the intricacies of the actual scattering process 

and depend only on the external charged objects participating. 

Following along this line of reasoning would lead one to suspect 
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that the only infrared divergences arising from the insertion of an 

extra gluon (as when calculating higher order virtual radiative 

corrections) should come from insertions on the external lines. 

Indeed, in QED, such is the case. Yennie, Frautschi and Suura~6) 

showed that the overlapping infrared divergences arising from the 

insertion of a photon could be resolved leaving only those divergences 

arising from insertions on external charged lines. 

From a study of the combinatorics of QED, Caianiello and OkubJ2n 
derived a differential equation with respect to coupling constant of 

any S-matrix element. The effect of differentiating with respect to 

the coupling is to insert a photon propagator in all possible ways 

into the diagrams which make up the matrix element. They proceeded 

to separate the insertions into infrared divergent and infrared 

finite contributions. However, it was not made clear that the problem 

of overlapping infrared divergences had been dealt with(ZB). More 

recently, Korthals-Altes and de Rafael(Z9) used a differential 

equation with respect to photon mass (inserted by hand into each 

photon propagator) to study the QED infrared problem. The overlapping 

divergences were treated by using a modification of the technique 

of Grannner and Yennie(JO)_ This involves separating the photon 

propagator into two pieces (so-called "gentle" and "hard") whose 

separate contributions can be analysed systematically. 

The complications that arise from similar studies in QCD are 

due basically to the non-commutation of the colour charge and the 
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increased combinatorical complexity brought on by gluon self-couplings 

and the existence of the (massless) ghost fields. Since the Grammer 

and Yennie approach to the overlapping divergences was based on an 

expansion in the number of photons involved in correcting the basic 

process, this method cannot be applied to QCD since the number of 

gluons in diagrams of one order of perturbation theory is not uniform. 

In the following, all calculations are performed in ghost-free 

gauges (e.g., the axial gauge, the timelike gauge, the light-cone 

gauge (if it exists)) because the combinatorics are simpler (there 

being no ghost fields) and more importantly, because the overlapping 

divergences can be simply treated due to the simplicity of the Ward 

identities in these gauges. 

Thus, the QCD Lagrangian is written 

1 a µv . µ - _ .! (nµAa)2 -£ = - -4 G G + iiji".y D .. ijJ.-mij,iijJ. 2K µ 
µv a i µ J.J J 1 

where Aa is the gluon field, ijJj is the quark field and the field 
µ 

strength Ga is given by 
µv 

Ga = a Aa a Aa + l1bcAb Ac 
]..IV µ \) V µ g µ \) 

and the covariant derivative D~. (in the fermion representation) is 
l] 

µ a cS .. 
J.J 

Notice that because the colour force is being investigated, all 

reference to quark flavour and flavour dynamics is suppressed. 

The term -l(nµAa) 2 fixes the gauge. 
2K ).l 
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The Feynman rules corresponding to this choice of gauge are 

as follows: 

Quark propagator 

'VVVV'V",. 
Gluon propagator 

= 
Quark-gluon vertex 

Three gluon vertex 

V abed = 411µvcr 

Four gluon vertex 

-i o
1

. 
J 

µ a 
-i g y Tij 

-ig 2 fabefcde 

-ig 2 facefbde 

-ig 2 fadefcbe 

(gAvgµcr- gAcrgµv) 

(g).µgvcr- g).crgµ) 

(gAVgµcr- gAµgcr) 

The gauge-fixing vector nµ is an arbitrary (fixed) Lorentz four­

vector and the form of the gluon propagator tabulated above 

corresponds to the selection K=O. For KIO there is an additional 

term in the gluon propagator With the inclusion 
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of this term, however, power-counting arguments relating to the 

degree of divergence are difficult to formulate. 

We wish to ~iscuss manipulations carried out on the full 

perturbation series for S-matrix elements in QCD (assuming such matrix 

elements to exist). The S-matrix element for a process involving 

N quarks and antiquarks and M gluons as the external particles is 

conventionally written as the quotient of two perturbative expansions, 

the numerator yielding the set of all graphs (with correct incoming 

and outgoing states) including the disconnected graphs, while the 

denominator is the vacuum-to-vacuum amplitude. The quotient yields, 

as is well known, the set of all one particle irreducible (lPI) 

graphs. This decomposition is adequately explained in many texts 

(e • g. , Bj or ken and Drell (3l)) . 

For simplicity, all colour, Dirac and Lorentz indices are omitted 

unless required for clarification. Also, the only label required 

to keep track of the vertices which occur in the expansion of the 

exponential of the integral of the interaction Lagrangian over all 

space and time sandwiched between the initial and final states (i.e., 

the numerator referred to above) is their position four-vector. 

Thus, a quark-gluon vertex at position 

a three gluon vertex at position 

xµ 
1 is written as 

is written as 

a four gluon vertex at x" 11 
1 

is written as ;\" i 
1 

Different 

symbols ;\, ;\ 1 and An are used for the couplings of the quark-
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-gluon, three gluon and four gluon vertices respectively to aid 

in the identification of terms in the expansion. Actually, 

A = -i A I = -ig, 

The expanded form of the 

M(:')-
00 

I 1 
n! 

n=O 

matrix element can be sunnnarized as 

L (k:t) Jd
4
xl' • • • d4 d4 , d4 I 

xk xl •••• Xi 
k,l 

f 2 
(n-k-l) • 

) [ x1 ••• "k 3xi···3xl 4xl ••• 4x.;'_k-l] 

(Il-1) 

where (k:.e.) is the trinomial coefficient 
n! 

k! l! (n-k-l) ! 

The expression under the integral sign is the nth term in the 

expansion of the exponential of the action sandwiched between the 

initial and final states. The square bracket is a shorthand notation 

(27)) (referred to sometimes as a "hafnian" for the vacuum 

expected value of a time-ordered product of gluon fields. The 

expansion of such a square bracket is carried out using Wick's 

theorem in terms of ordered pairs [x1x2] which are precisely the 

gluon propagators: 
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The square bracket of eq.(II-1) (written explicitly in terms of 

the gluon fields it represents)is 

o 1 o2 o3 cr4 
n-k-l n-k..£. n-k..£. n-k-L I 

••• A 1 (x" k R)A 2 "(x k l)A 3 "{x k R...)A 4 "(x 1_ R...)) 0) 
cn-k-R... n- - cn-k-R... n- - cn-k-R... n- - cn-k-R... n-~-

The curved bracket ( p 'x1 • • • ·~) is similarly the vacuum expected 
p xl ••• -~ 

value of the time-ordered products of k quark fields and k antiquark 

fields and also the external quark wave functions specified here by 

their momenta p and p'. The curved bracket is nothing more than the 

determinant of the matrix of ordered pairs formed from the top and 

bottom rows of the bracket,and these ordered pairs are, of course, 

the Dirac propagators 

An ordered pair that involves one of the external momenta and one of 

the internal position vectors is simply the quark spinor wave function 

at that position; for example, 
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the incoming quark spinor carrying momentum and colour index i 1 . 

Finally, the pair (pp') is zero corresponding to the selection 

of the non-forward scattering problem for consideration, that is, the 

incoming quark must suffer interactions before emerging. Such a term 

remains, however in forward scattering giving a contribution from the 

disconnected graphs. 

Differentiating eq.(11-1) with respect to A and expanding the 

square bracket about its first entry (using the relabelling invariance 

of the integration variables to recompose the matrix elements) yields 

(II-2) 

Diagrannnatically, then 

- = -

Similar integro-differential equations may be written with respect 

to A' and A" . The final form of the sought-after equation is found 

by combining the three equations using the relation 

2 a 
g -al 

= + ' a 
A 3A' 
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It is: 

g2i2 M(p,p') = - Jd4xla4x2 [xlx2] [~(-igy1Tl)(-iy2T2) 
clg 

.M (:':~:~) + (-igy1T1)(-ig£2a2),~,:~J x2x2) 

+ ½(-igf1a1)(-igf2a2)M (~
1

,x1x1x2x2) 

+ (-igy1r1)(-ig2f;)M (~':~ I x2x2x2) 

+ (-igfl ell) (-iif;)M (rl x1x1x2x2x2) 

+ -}(-ig2fi) (-iif;)M (~'I x1x1x1x 2x 2x 2) ] 

+ fa4x1 [x1x1 ] [(-ig£1a1)M (~'Ix~ + (-ilfi)M (~'I x1x1)] 

(II-3) 

This equation is represented diagrammatically in Flg.l where each 

term is shown explicitly. The last two terms on the right hand side 

of eq. (II-3) could be dispensed with: the tadpole ~ 
disappears because of the antisymmetric nature of the coupling, 

that is, 

while the gluon propagator self-energy term can be made to vanish 

in the dimensional regularization scheme. If the gluon were given 

a mass A then the integral involved in the 
d4-2e:k 

correction would have the form J · 2 2 
(k -A ) 

gluon self-energy 
2-2£ 

(A.2) 



2 
- g .. = 

+ 

-27-

.. 

+ 

Fig.1 

+ + 

+ -- + 

+ --
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which vanishes in the limit of zero mass. However, from the point 

of view of constructing the equation order-by-order in perturbation 

theory, it is a convenient reminder that non-zero terms may be 

formed by gluon insertions into tadpole diagrams. 

In momentum space, eq.(II-3) can be written very concisely: 

2 a 
-g ZM(p ,p I) 

ag 
= }Dk Dµv(k) M (p,p';k,-k) µv (II-4) 

where M (p,p';k,-k) is the matrix element for quark scattering µv 

accompanied by the emission of a gluon with momentum k and a gluon 

with momentum -k (without the gluon wave functions). 

It seems surprising that such a concise result as eq. (II-4) 

requires as complicated a derivation. In fact, in QED, the equation 

analogous to eq. (II-4) can be derived rather elegantly using 

functional techniques, as demonstrated in appendix A. Attempts at 

a similar derivation for the equation in QCD are in progress. 
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CHAPTER III 

Ghost-Free Gauges and the Ward Identities 

The class of ghost-free gauges to be considered are those which 

are formed by the addition of the term -
2
.!. (n Aµ) 2 to the 

K µ 

symmetric Lagrangian (or alternately, by the employment of the 

subsidiary condition The introduction of a ghost field 

is not necessary mainly because the gauge-fixing term does not involve 

derivatives of a 
Aµ, the gluon field. An elegant discussion of this 

gauge using functional methods is given in the 1973 Erice summer 

school lectures by S.Coleman(32 ). 

The Lorentz four-vector nµ is arbitrary for the purposes of this 

discussion, however conventionally, gauges for which n2 
< 0 are 

2 called axial gauges, gauges for which n > 0 are known as timelike. 

2 
The light-cone gauge, specified by n = 0 has come under some 

criticism recently<33 ) as being not well-defined. This is 

unfortunate, as it is the only ghost-free gauge in which calculations 

(34) 
of Feynman graphs are as easy as in a covariant gauge (see Cornwall 

for theorems). 

The only difference (in terms of Feynman rules) between these 

non-covariant gauges and the covariant gauges lies in the gluon 

propagator. 2 In a gauge with arbitrary n and K the free gluon 

propagator of the theory is 

ab 2 2 n k + k n = io + _(n -t<k ) k k _ µ v µ v - 7 [ gµv (n.k) 2 µ v 
(III-1) 

(n.k) 
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In order to study the Ward identities in these gauges, consider the 

generating functional Z[J,n,n] for the Green's functions: 

Z[J,n,ri] = 

where 

and 

Z
0 

il<.& Aa) (.& ~) (1) lji) exp i(Jd
4

x 

+ JaAµ + nljJ + "°ipn) 
µ a 

is the gauge covariant derivative: 

(III-2) 

Dµ = ab 
al-lo + gf Aµ for the adjoint representation 

ab abc c 

and 
µ 

D .. = 
l.J 

µ a o .. 
l.J 

. Ta Aµ -1.g .. 
l.J a 

for the spinor representation. 

J , ii and n are the source functions for the gluon, quark and 
a 

antiquark fields respectively. Under an infinitesimal gauge 

transformation, the QCD fields transform according to the variations 

= 

a 
(D w) = 

µ 

. Ta,,, a 
ig 'I' w 

a W
a -igfabc o c 

oJ\il w µ b 

- a a = -igljJ T w 

h a • b" f • w ere w is an ar itrary gauge unction. Since the integration 

measure is invariant under such a gauge transformation as is 

a µv a 
GµvGa , and because w is arbitrary and redefinition of internal 

integration variables cannot affect the value of Z[J,n,nl, 

o Z[J,n,n] = 0. 

That is, 
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[ 
i µ cS abc b o 
- n a n - - igf J - + 
K µ V cSJa µ cSJC 

V µ 
(III-3) 

Relations between Green's functions (which are the derivatives of 

Z with respect to the source functions) may be found by carrying 

out functional differentiation on eq.(III-3) with respect to source 

terms the requisite number of times and evaluating with the sources 

set to zero. Thus, taking one functional derivative with respect 

to J~ of eq. (III-3) yields (after transforming to momentum space) 

V 
n L'I µv (k) = _ K k 

µ n.k 
(III-4.) 

where K is the gauge parameter, and L'I µv (k) is the fully dressed 

unrenormalized gluon propagator. 

In a similar fashion, taking two functional derivatives of 

eq. (III-3) with respect to n gives 

[
i µ cS o o . a o cS 
- n a n - - - + igT - -
K µ V oJa on OT) on cSn 

V 

Z[J ,n,11] = 0 ] 
a - (III-5) 

after evaluating at J =n = n = O. This lead~ upon Fourier transform­

in;g and amputating the external legs, to 

(III-6) 

where 11. a 
ij 

is the vertex part associated with the quark-gluon 

d S-Fl (p) vertex an is the inverse quark propagator with momentum p. 

This is just the nalve Ward identity of the type one finds in QED(JS). 

Note that the Ward identity for a quark scattering from a colour 
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singlet potential takes on a form very similar to eq. (III-6): 

aµ [ a i' j k fl. .. (p,p'-k,k) = ig (T ) . r .,(p-k,p' -k) 
µ 1J 1 1 

jt I a j ] -r i (p,p )(T )j' 

(III-7) 

Diagrammatically, 

where /1.~j (p,p'-k,k) is the !sociated vertex part and r{ (p,p') 

is the amputated Green's function for an incoming quark with 

momentum p and an outgoing quark with momentum p'. 

The last Ward identity that is of use in the discussion of 

infrared phenomena is that found by operating with 

eq. (III-3). Here again, there is little complication, resulting 

in the coordinate space expression 

i µ I A µ \/ f 4 I Kn aµ nA (0 T(Aa(x)~(y)Ac(z)exp i d w-£ (w) ) 0) 

= gfabd o4 (x-y) (OI T(A~(y)A~(z)exp if d4w-£) lo) 

+ gfacd o4 (x-z) (0I T(¾(y)A~(z)exp i J a
4
w-£) lo) 

(III-8) 

or, in momentum space, in terms of amputated Green's functions 

µv 
fabd f:.. -1 ( -k) 

g de p + 
µV 

facd ti -1 ( ) 
g bd p (III-9) 
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There is one relation of great use in analysis of infrared 

singularities which follows from eq. (III-4). In the gauges 

specified by K = O, 

a result that holds for both the bare and the fully dressed 

propagators. 

(III-10) 

Another simplifying feature of the ghost-free gauges is that 

the gluon field renormalization coefficient ZA and the coupling 

constant renormalization coefficient Z are related by 
g 

z = 
g (III-11) 

where 

and 

Aa(u.nrenormalized) = z!12 A(renormalized) 

g(unrenormalized) = Z g(renormalized), provided a gauge . . g 

invariant regularization and renormalization procedure is employed. 

This implies in particular that the renormalization group 

coefficients 8(g) and yA(g) are related (yA is the anomalous 

dimension of the vector gluon field) by 

8(g) = -gy A (g) = 
2 

1/J(g )/g (III-12) 

The Lorentz structure of the gluon self-energy is also considered 

here. If all the radiative corrections to the inverse propagator 

~-l(k) are denoted by TI that is, 
µV µv' 

~-1 (k) = 
µv (k k - k2g ) 

µ v µv 
1 

- - n n + 
K µ \) IT 

µv 
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then TI has the explicit Lorentz structure µv 

(III-13) 

As Curtright points out(33), because the Lorentz tensor expression 
2 

di TI ( 
(n.k) ) . ( ) prece ng 2 k2n2 in eq. III-13 does not appear in the 

Lagrangian, then rr 2 must be ultra-violet finite in four space­

time dimensions or else the theory would not be renormalizable. 

For technical details regarding such topics as renormalizability 

and unitarity in the axial gauge, the reader is referred to the 

various papers of Konetschny and Kunnner( 3G). 
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CHAPTER IV 

Non-Leading Infrared Divergences in Quark Scattering 

As presented in Chapter I, the leading infrared singularities 

in QCD combine to give a simple picture, not unlike QED in form. 

Although this picture is appealing, it would not be wise to regard 

the leading singularities as providing the dominant large-distance 

behaviour of QCD because this large-distance region is precisely 

that in which the effective coupling constant of the theory becomes 

large. Thus, in this chapter, the complete infrared singularity 

structure for the scattering of a quark by a colour-singlet 

potential is investigated using the differential equation derived 

in chapter II. It is found that the self-coupling of the massless 

gluons contributes infrared divergences not found in QED and it is 

argued that these extra singularities have the effect of changing the 

insertion of a bare propagator into the insertion of a fully-dressed 

propagator, or alternately, the replacement of the perturbation 

expansion parameter g by the effective coupling constant g(k) 

at the ends of the inserted gluon. 

A comparison of the literature on leading infrared singularities 

demonstrates some differences in the form of the singular factor 

which may be traced back to differences in the renormalization 

procedure. If one renormalizes the charge at a point far off-shell 

(as is the case with the usual asymptotic freedom calculations and 

also with the calculations of McCoy and Wu(
37

)), then the leading 



-36-

infrared singularities are independent of the renormalization 

point. If, however, one renormalizes the charge at a mass equal 

to that given to the gluon to regulate the infrared singularities(3S) 

or if one regulates both the ultraviolet and infrared singularities 

using dimensional regularization and on-shell renormalization( 39), 

the renormalization group function S appears explicitly in the 

expression for the leading singularities. Thus, Korthals-Altes 

and de Rafael( 4o)and Cvitanovic(4l) have shown that the anomalous 

magnetic moment of a coloured quark (infrared finite in unrenorma­

lized perturbation theory and infrared finite for the analogous 

QED process - the anomalous magnetic moment of the electron) 

develops infrared singularities due to charge renormalization when 

that renormalization is carried out near or at the mass-shell of 

the quark. In Ref.(41) it is conjectured that the infrared behaviour 

of the renormalized anomalous magnetic moment a (T,a) is governed 
q 

by the equation: 

where T = log l (mis the mass of the quark), and 
m 

A being the gluon mass inserted to regulate infrared 

and is also the renormalization point for the charge 

divergences 
2 

,. = L "" 4,r • 
4 

From the results of perturbation theory calculations to order g 

the leading infrared singular corrections to the cross-section for 
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the scattering of a quark by an external colour-singlet potential 

have the form( 42)(when calculated ind= 4 + 2£ dimensions, using 

dimensional regularization): 

2 cr = F(t,q ) • (J 
Born 

where t = - /e f~t: the exclusive cross-section, and t = log /J. for 

the inclusive processes, /J. being the upper bound on the energy of 

the emitted gluon Bremsstrahlung. The function F(t,q
2

) to their 

order of approximation was found to be consistent with 

2 t 
g2(t') CF M(q

2
) dt' F(t,q) = exp l 

0 

2 1 
2 

(l+r) where M(q ) = [ l+r log - 1 ], 
2-rl 2r 1-r 

2 -1/2 
r = ( 1 + 4m) and 2 q 

where CFand CV are the quark and gluon Casimir operator eigenvalues. 

The situation with regard to the non-leading infrared divergences 

associated with the scattering of a quark by a colour-singlet 

potential is not nearly as clear. Apart from the complexity of 

actually calculating non-leading effects in two-loop virtual· 

corrections to the basic scattering process there are more subtleties 

that arise in definition of the charge and the use of an infrared 

regulation that depends on the renormalization point. It is 
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due to difficulties such as these that render comparison of 

results somewhat awkward. Frenkel and Taylor<43) have questioned 

the simplicity of the infrared behaviour of QCD as indicated by the 

leading singularities. They claim (from investigations of quark 

scattering to O(g4) ) that the infrared singular part of a matrix 

element should satisfy a differential equation with respect to 

1 t = d _ 4 which includes a momentum dependent infrared anomalous 

dimension: 

cl _l__+ 2 5C_ 2 5C_ 2 [ ll + S(g) clg g G( z,t,g) ] A( z,t,g) = 0 
m m 

. (44) These results have been confirmed by Tyburski . Their 

2 renormalization scheme involved renormalization at a point (-µ) 

far off-shell (µ
2>>m2

). Poggio(45
) has found that simplifications 

arise in the form of the. infrared singular factor by choosing a 

subtraction procedure that carefully plays off infrared and ultra­

violet effects for the near mass-shell behaviour of the theory. 

Thus, he found that if subtractions are carried out for the massless 

2 2 2 2 gluons at q = - A and for massive quarks at p - m = -mA where 

2 2 
A << m, the colour-singlet form factor F1 is consistent with the 

form (up to O(g4)) 

where 

F1 = exp [B
1

([g(k2)]; G = -1)] 

2 B
1

([g(k )]; G = -1)] is the one loop contribution calculated 

in the Landau gauge (G = -1) with the effective coupling g(k
2

) 
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substituted for the perturbation expansion coupling gA and 

2 
gA fork = There are renormalization group arguments 

which suggest that this is an exact result(
46

). 

The approach to the infrared problem presented in this chapter 

involves the differentiation with respect to coupling constant 

of the matrix element under consideration (quark scattering by a 

colour-singlet potential) which is equivalent (from the discussion 

in Chapter II) to the insertion of a gluon propagator in all possible 

ways into the complete set of Feynman diagrams which represent 

the matrix element. An analysis similar to that employed by Yennie, 

Frautschi and Suura(l6) in their study of QED is used to separate 

the overlapping infrared divergences. 

In Chapter II it was shO'wn that the matrix element for quark 

scattering M(p,p') satisfies the differential equation 

a 
a an M(p,p') = (IV-1) 

where M(p,p') is the matrix element for the scattering of a quark 

of momentum p by an electromagnetic potential (acting once) supplying 

momentum q = p'- p, while H (p,p' ,k,-k) is the matrix element 
µv 

with the emission of two additional gluons (of momenta k and -k) µ V 

with the gluon legs amputated. The conversion from disconnected 

to connected Green's functions in general involves division by the 

vacuum-to-vacuum amplitude which cannot affect the infrared behaviour 

of the matrix element since the infrared singularities are a function 
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only of the external momenta. The integrations over gluon 

momentum kin eq.(IV-1) can be separated into two classes - the 

first yields an infrared divergent factor which multiplies the 

original matrix element M(p,p'), while the second part is a sum 

of integrations each of which is infrared finite in a manner to 

be described below. Infrared singularities arise ind dimensions 

as powers of 1 -- in the limit d + 4; for example, the one-loop d-4 

correction to the basic scattering process yields an integral of 

the form 

d 
4 , -( , ) µ ( ) f d k 1 1 1 p.p u p y u P • --d 2 2 2 

(2n) k k -2p'.k k -2p.k 

and in the limit k + 0, the integral has a singular part given by 

1 
d-4 

The extraction of infrared singular contributions is carried 

out in a fashion similar to that employed by Yennie et al. (l6 ) in 

their study of QED; one separates that part which is supposed to be 

the total infrared singular contribution due to the insertion of 

one end of the gluon and shows that a modified perturbation theory 

constructed from the remainder contains no infrared singularities. 

In order to follow the treatment of QED as closely as possible, and 

to avoid the combinatorical problems associated with zero mass 

ghost fields, a ghost-free gauge (GFG) is used, specified by the 

gauge-fixing term -l (n Aµ)Z in the Lagrangian, where Aµ is the 
2K µ 
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gluon field and n is some fixed Lorentz vector. The gluon propagator µ 

(as discussed in Chapter III) thus defined is 

corresponding to the choice K = 0. • 

The matrix element is further specified by factoring out the 

spinor dependence 

M(p,p') - u(p') r{ (p,p') u(p) (IV-2) 

corresponding to the scattering of a quark of momentum p and colour 

index i, leaving an outgoing quark of momentum p' and colour index j. 

In the case under consideration of scattering by a photon, 

r{ (p,p') = r(p,p') o{ 

All reference to the photon is suppressed - indeed, scattering from 

a colour singlet scalar field may be treated entirely analogously. 

Consider the contribution from inserting one end of the 

additional gluon on to the incoming quark line before the virtual 

gluon exchange interaction region. Suppose the gluon removes 

A momentum k and possesses the colour index a, then the factor 

in the matrix element is (keeping q fixed) 

"-y u(p) 

"-
(Ta) i

1 

;(p'-k) j (p-k,p'-k) u(p) (2p-k) = r i' 2 i k - 2p.k 
A ., 

- u(p'-k) j (p-k,p'-k) 1/2 [llix ] (Ta)~ u(p) (IV-3) f •I 2 1 k - 2p.k 1 
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The latter term on the right-hand side of eq. (IV-3) has the form 

of a magnetic moment interaction and as both numerator and denominator 

are proportional to k (for small k) this term is infrared finite 

with respect to kin the sense that no k-dependent singularity arises 

as k + 0. Approximating the former term in eq. (IV-3) by 

>.. 
(2p-k) 
2 k - 2p.k 

leaves a remainder: 

>.. 
(2p-k) 
2 

k - 2p.k 
r~ I ( p , p I ) } U ( p) 

1 

(IV-4) 

One of the reasons for using the ghost-free gauges now becomes 

apparent, as the Ward identity involving r~(p,p') is the naive one 
1 

(see eq.(III-7)) and so the above expression (eq.(IV-4)) is 

identically equal to: 

>.. (2p-k) 
2 

k - 2p. k 

where (Aa){ is the vertex part associated with the insertion of 

a gluon (colour index a) into r~(p,p'). 
1 

Thus the total contribution 

from this remainder plus the insertions of the gluon in all possible 

ways into the interaction region can be represented as 

(IV-5) 

The perturbation expansion of the formula (IV-5) results in the 
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replacement of the normal Feynman rules for vertices in QCD by those 

for modified vertices; for example, the quark-gluon vertex suffers 

the replacement 

(2p-k)µ i] 
2 

k -2p.k 

and the three gluon vertex is modified according to 

V~bc(Q,k) = [(2k-Q) g~ + (2Q-k) 1 g + (-Q-k) g 1 ]gfabc Aµv v Aµ A µv µ VA 

-~c 
VAµV(Q,k) = [(2k-Q)VgAµ + (2Q-k)Agµv + (-Q-k)µgVA 

(2p-k) 
+ 

2 
A {(k-Q) k + (2Q.k-k2)g + (-Q-k) k }Jgfabc 

k -2p.k V µ µv µ V 

A similar modification is made for the four gluon vertex. It should 

be noted that all of the modified vertices are gauge invariant in 

the sense that a longitudinal polarization vector will give zero 

contribution to the matrix element; thus, for example 

I • 1 h h 1 li f kA • • d tis c ear tat wen a g uon ne o momentum is inserte 

into a quark line or gluon line somewhere inside the interaction 

region, the number of denominators which can become small will, in 

general increase, raising the possibility of a higher degree of 

infrared divergence. However, and this is the crux of the matter, 

it is possible to show that the effect of using a modified vertex 

at the point of a gluon insertion is to cause no increase in the 

degree of infrared divergence, except when the other end of the 
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gluon is inserted in such a way as to contribute a gluon self-energy 

correction. Were it not for this self-energy term, all possible 

insertions of a gluon of momentum kA into the O(g2n) approximation 

to the matrix element would result in a factor anfrared singular) 

times the original matrix element (in its O(g2n) approximation)i 

that is, 

(IV-6) 

plus a part which-is not singular in k and which is no more 

singular in any of the other loop momenta than beforehand - a result 

completely analogous to QED. However, as will be explained below, 

this is not the whole story with QCD. 

Following Yennie et al. (l6), the insertion of a gluon of momentum 

kA into a quark line with momentum p + Q (using a modified quark­

gluon vertex) where Q is the momentum transferred to the quark since 

its entry into the interaction region, is effected by the replacement 

(IV-7) 

An increased degree of infrared singularity is possible due to the 

two denominators which may vanish simultaneously. The right hand 

side of eq.(IV-7) may be rewritten by anti-commuting the first 

propagator through the vertex term, yielding 
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2 
(Q-k) +2p. (Q-k) 

( -

(IV-8) 

The first term in curly brackets in eq.(IV-8) contains an inverse 

quark propagator which cancels the second propagator, rendering this 

part of the expression no more singular than before the gluon was 

inserted. The second term vanishes as Q + 0, thus preventing an 

" q" extra singularity from arising since for Q small, 2 is not 
Q -2p.Q 

singular in general. For the third term, if Q is set equal to zero 

in the first propagator then the k integration is regular in the 

region around k = 0. Thus the use of a modified quark-gluon 

vertex at the point of insertion of a gluon onto a quark line 

prevents an increase in the degree of infrared divergence. This is 

to be expected as the situation is completely analogous to the 

insertion of a photon into an electron line in QED. 

" The insertion of a gluon of momentum k into another gluon 

line with momentum Q (using the modified three gluon vertex) is 

rather more complicated. The insertion can be represented by the 

replacement 

1 

Q2 [ 
µv 

-g 
2 µv µv1 __ n_

2 
QµQv + Q n + n Q 

(n.Q) n.Q 

➔ 1 [-gµp _ n
2

(Q-k)µ(Q-~)P + nµ(Q-k)P+ (Q-k)µnp ] • 

(Q-k) 
2 

[n. (Q-k)] n. (Q-k) 
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• ( (k-Q)OgAP + (-Q)PgAO + vPAO(Q,k) + 

+ (;p-k)A [ (Q-k)p(Q-k)o _ QpQo + k,Vp,o(Q,k) ] ) , 
k -2p.k 

[ 
av -g 

n2QOQ\/ + nOQV+ QOn\/ ] 

(n.Q)
2 

n.Q 
(IV-9) 

where V\po(Q,k) = VAPO(Q,k) + (Q-k)og\p + Qpg\o and 

v\po(Q,k) = [ (2k-Q) 0 iP + (2Q-k/l0 + (-Q-k)pgo\ ]. The 

terms containing V have a form reminiscent of the insertions 

into the quark line: 

pa 
g 

The remainder, upon expanding out the product of (propagato.r) • 

(vertex)·(propagator) and carrying out a plethora of cancellations, 

may be written as (leaving out the propagator poles and _1_ ) 

(Q-k)2 

V AV µ AV 1 v Aµ V \µ VAµ \/Aµ 
kg - kg + -Q[n g Q•(Q-k)-Q g n.k+n Q k +Q n k 

1 +---
n. (Q-k) 

n. 

µ AV µ AV µ A. V µ A V [n g Q•(Q-k)+(Q-k) g n.k-n (Q-k)'k -(Q-k) n k 
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. A 
+ (~p-k)"- {-nµ(Q-k) 2kv+nµQ"Q• (Q-k)}] 

k -2p.k 

2 A 
+ n 2 [-(Q-k)µg"vQ•(Q-k)+k"(Q-k)µ[(Q-k)A+(_~p-k) (Q-k)2]] 

[n.(Q-k)] k -2p.k 

2 A 
+ n 2 [Q"(Q-k)µn.k(QA+ (~p-k) Q2)] 

[n.Q] n.(Q-k) k -2p.k 

2 A 
+ n 2 [-(Q-k)µQvn.k {(Q-k)A- (2p-k) (Q-k)2 }] 

[n.(Q-k)] n.Q k2-2p.k 

2 2 .A 
+ n 2 n 2 (Q-k)µQvQ•(Q-k)[-(ZQ-k)A- ~2p-k)(2Q.k-k2)] 

[n.Q] [n.(Q-k)l k -2p.k 

(IV-10) 

This horrifying collection of terms can, however, be classified 

into three genera. The first kind of term is one proportional to 

2 2 Q or (Q-k) , the second type consists of terms proportional to k 

and the third type consists of a grouping of the form proportional 

to [Q.A+ (~p-k)A Q.k]. 
k -Zp.k 
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The first type is characterized by a cancellation of one of 

1 1 the propagator poles, that is, either of - or 
Q2 (Q-k/ 

and 

1 1 
leaves in its place a term such as n.Q or -n-.-(-Q--k~) . That such an 

action reduces the degree of infrared divergence can be seen by 

comparing Feynman integrals, for instance 

2 
b = 2n (1-y) - 2n.p(l-y) + 2n.p'y + 2p.p'y 

2 2 
c = m + n + 2n.p 

and the parametric integral I 
0 is certainly of order 8 • 

The second group of terms, those proportional to k can be 

further sub-classified. One subclass concerns integrals such as 

f ddQ 
n.k 2 2 

Q (Q -2p.Q)n.Q n.(Q-k) 
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which, due to the identity 

n.k 1 = n.Q n. (Q-k) n. (Q-k) 
1 

n.Q 

can be shown to be finite in the limit k + 0. The other subclass 

exhibits a basic antisynnnetry of the form (kvgAµ - kµgAV) or 

variations thereupon. The nature of the rest of the matrix element 

M is symmetric in terms of its Lorentz structure and thus these µv 

terms do not contribute infrared singularities. 

The last type of remainder term 

(IV-11) 

has the property of making any integral over Q involving such a term 

deficient in one power of p. Now, if one considers a general 

graph representative of colour-singlet quark scattering (see Fig. 2 ), 

in most cases, the gluon of momentum Q into which the new gluon 

is inserted can be traced back the p-line, forming a loop that does 

not intersect the p'-line (i.e., the outgoing quark line). In this 

case, the effect of the integral over Q will be to replace Q by a 

linear combination of the other momenta in the diagram: 

where {ki} is the set of internal momenta intersected by the 

Q loop. The replacement of Qµ by a
1

pµ renders the expression 



-so-

• • • • • • • • • • 

fig. 2 
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(IV-11) of order (k) 1 rather than O(kO) and removes any problems 

of divergence associated with this vertex. Similarly, the replacement 

of Qµ by a
3
il1 gives a finite contribution in the limit ~ + O. 

Replacement of Qµ by any of the internal momenta { k.} 
]. 

also reduces 

the degree of infrared divergence. In the case of small momentum. 

transfer that is being considered at present, one may choose nµ to 

be parallel topµ, that is, nµ = ~pµ (where~ is a fixed complex 

number). The replacement Qµ +a nµ then enables the utilization 
2 

of arguments for the replacement of Qµ However, if one 

wishes to study a general matrix element with several external 

momenta, the restriction of Jlparallel topµ is not adequate. 

The terms for which Q\gpcr \ pa 
+ a 2n g do not contribute to the 

integral over the inserted gluon propagator because of the Ward 

identity 

(IV-12) 

Also the second term of eq.(IV-11) may be decomposed as a sum 

of terms of the first type which were discussed above, since 

and hence do not contribute to the infrared divergences. Thus the 

replacement of Q by porn leads to the highest power of p or 

n to be cancelled by virtue of the form of the modified vertex, 
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the resulting expression containing one more power of k or one of 

the internal momenta { k. } . 
1 

The radiative corrections associated purely with the p'-line 

are independent of the radiative corrections associated purely 

with the p-line as in QED, and so if a gluon of momentum k is 

inserted into the p-line blob (see Fig.2) there will be no 

infrared singularities introduced in the p'-line blob as the 

hard momentum transfer q = p'-p can absorb the small momentum 

k without singular adjustment. 

The remaining class of diagrams are those in which the insertion 

point inside the gluonic blob (see Fig,2) is not multiply connected 

with the p-line, that is, there is no closed Q-loop that connects 

the point of insertion with the p-line that does not also 

intersect the p'-line. The only way in which this can happen is 

when the gluonic blob is disconnected (see Fig. 3 ) . It now becomes 

important where the other end of the gluon is inserted. Insertion 

into either the p-line blob or the p'-line blob or insertion into 

a part of the gluonic blob already multiply connected with the 

p-line will not yield an extra infrared divergence as demonstraterl 

above. Also, insertion between disconnected parts of the gluonic 

blob (as shown in Fig. 4) do not introduce new infrared divergences 

because one creates a k-loop that connects with the p-line solely 

and arguments can be made showing that the use of the modified 

vertices at the points of insertion prevent divergences arising 
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• 
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in the k-loop. Then the only place where a divergence may arise 

is from the insertion of both ends of the gluon into the same 

disconnected part of the gluonic blob, in other words, the 

modified vertices help to remove all infrared divergences except 

for those which arise from gluon self-energy insertions. Even then, 

an infrared divergence will only occur provided the underlying 

dressed gluon onto which the insertion is made itself contributes 

to the infrared divergences. 

The last type of modified vertex, that is, the modified four 

gluon vertex contributes no extra infrared divergences in terms 

of the program set out above. The insertion of one end of a gluon 

into a three gluon vertex to form a four gluon vertex does not 

increase the number of denominators which may become small 

(compared with insertions into a quark or gluon propagator which 

do increase the possible number of small denominators) . This 

is also the case in scalar quantum electrodynamics(l6) where 

there is a scalar-scalar-vector-vector vertex. Also, a study of 

the leading logarithmically divergent graphs in QCD demonstrates 

nicely the absence of individual graphs containing four gluon 

vertices. Thus a graph that is leading at one order of perturbation 

theory will always be non-leading at the next higher order if the 

higher order graph is constructed by an insertion of a gluon which 

produces a four gluon vertex. 

Were it not for the gluon self-energy corrections, the insertion 
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of the other end of the gluon everywhere inside and outside the 

interaction region would then yield a similar infrared divergent 

factor multiplying the matrix element plus an innocuous remainder. 

Sewing the insertions together with a gluon propagator and integrating 

over k, at the same time synnnetrizing over the two gluon insertion 

points to allow for the consequences of double counting, gives 

on the right hand side of eq. (IV- 1 ) an infrared divergent integral 

2 
I(q) = -

2 
g CF 

2 

(IV-13) 

times the original matrix element u(p')r~(p,p') u(p) 
l. 

plus integrals over k which are non-singular as d + 4. 2 That I(q) 

is independent of n , the gauge fixing vector, and is in fact 

gauge invariant may easily be checked. 

However, the effect of infrared divergences arising from 

gluon self-energy corrections is to change the insertion from 

that of the bare propagator into the insertion of a fully dressed 

propagator, or alternately, the replacement of g2 , the perturbation 

theory expansion parameter, by g2(k2), the effective coupling 
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2 at the scale given by k. An inspection of the differential 

equation order by order in perturbation theory is useful for 

clarification of this statement, For the analogous QED process 

(electron scattering, Yennie et al. (l6) showed that if the pertur-

bation expansion is written as 

00 

M(p,p') = 

where n is the number of virtual photons involved in the radiative 

correction to the basic process, then 

n 
I 

r=O 

m 
n-r 

where them are infrared finite functions of order aj relative 
j 

to m
0 

and aB is the one-loop virtual correction to the basic 

scattering process. Summing the series yields 

00 

M = exp (aB) I 
n=O 

m n 

In contrast, for QCD, if the perturbation expansion for 

quark scattering is written as 

00 

M(p,p') = 

n=O 

(IV-14) 

where n now refers to the order (in a) of the correction to the 

basic scattering of a quark by a colour-singlet current. 
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The lowest order term is infrared finite, i.e., M
0 

- m
0

, and in 

the particular process chosen is independent of a. At the next 

order, the differential equation reads 

Inverting this equation gives 

where B0 is the one loop correction using the bare gluon 

propagator. For O(a2), the differential equation is 

(IV-15) 

(IV-16) 

a 
(aB

0
) a aa m1 + (aB1) m0 

(IV-17) 

where aB
1 

is the correction to the basic process where the gluon 

1 propagator itself has a self-energy insertion (to order a). The 

diagrammatic forms of eqs.(IV-15) and (IV-17) are shown in Fig.(5 ). 

The hatched circle represents the matrix element to the order of 

concern while the filled (black) circle indicates an infrared 

finite function and the triangular objects with curly tops 

represent the infrared divergent integrals and the fact that they 

factor out of the rest of the matrix element. 

Eq. (IV-17) may now be used to extract the equation for M2 

which :is 
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which has the solution 

M = 
2 

-59-

(IV-18) 

(IV-19) 

The result of this separation of infrared divergences is that the 

differential equation eq.(IV-1) can be rewritten as 

a .a - 2 -a cla M(p,p') s{a cla I(a,q )] •M(p,p') + F(p,p') (IV-20) 

where F(p,p') may be reconstructed from perturbation theory, and 

- 2 I(a,q) is given by 

- 2 I(a,q) = 
• 2c ig F 

- -2-

• [ (;p-k) V - (~p I - k) V] (IV-21) 
k -2p.k k -2p' .k 

where t (k
2

) is the fully dressed gluon propagator (in the µv 

purely gluonic sector of the theory) which may be written in terms 

of the Lorentz scalars rr
1 

and rr
2 

<33): 

A = - g + µ V µ V µ V µ V 1 

{ 

[k k n
2
-(n k +kn )n.k][l+TI1+n 2]+n n k

2
n2} 

µv k2[1+\J µv [(n.k) 2(l+TI
1
+rr

2
) - n2k2TI

2
] 

The term 

2 
n n k n2 µ '\) 

appears not to contribute to 
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the infrared divergences because it is proportional to k2 and 

thus removes the pole of the propagator. 

may be rewritten as 

- 2 In this case, I(a,q) 

- 2 I(a,q) = g2 ().{2) [ (2p-k) µ - (2p' -k) µ 12 

k 2 k2-2p.k k2-2p1 ,k 

(IV-22) 

h g2(k2) were receives contributions only from the massless 

fields (i.e., gluons). Equation (IV-20) may be solved(Z7) or 

alternately, eq,(IV-14) may be summed to give the complete 

form of the infrared singularities for this QCD scattering process: 

M(p,p') - 2 
= exp - I (a , q ) 

f 
• M (p,p') 

where Mf(p,p') contains no infrared singularities. 

(IV-23) 

If renormalization of the colour charge is carried out in a 

manner which is independent of the infrared regulation, eq,(IV-23) 

expressed in terms of renormalized quantities will contain no 

hidden infrared singularities. If, however, the renormalization 

point as connected to the infrared cutoff, then there will be an 

interference of infrared and ultraviolet singularities. A 

i f h b • h results of Frenkel et al.<42 ), compar son o t e pertur ation t eory 

Cvitanovic(4l) and Korthals-Altes and de Rafael(40) on the one 

hand and Cornwall and Tiktopoulos(ZO), McCoy and wu< 37) and 

Carazzone et al. ( 4 7) on the other will convince the reader of this 

distinction. 
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The effect of this interference of singularities is ielt 

only in the colour charge. This can be seen if the charge is 

renormalized on-shell. In the ghost-free gauges, the coupling 

constant renormalization coefficient Z is simply equal to a. 

the gluon wave function renormalization coefficient and can 

be expressed rather elegantly (using dimensional regularization 

with dimension d = 4 + 2£) in terms of the renormalization 

group function S ( a. ) 

z = a. 

a. 
expf dx 

Q X 

S(x) 
S(x)+2£ (IV-24) 

The ghost-free gauge is necessary in order that the work of 

Lautrup(4s) in QED can be carried over without modification to 

QCD. Using eq.(IV-24), with 

where a.U and a.Rare the unrenormalized and renormalized couplings 

respectively. One can still write down the solution to the 

differential equation in the form of eq.(IV-23), but the coupling 

constant must be modified to include the extra dependence on s~;) 
indicated by eq.(IV-24),and the solution now has hidden singularities 

characterized by a singular expansion parameter. 
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The fact that the complete form of the infrared singularities 

in QCD (though simple in comparison to the ugly combinatorics 

involved in sorting out the order-by-order perturbation theory) is 

more complicated than that of the other gauge theory with massless 

gauge bosons in current use - QED - is perhaps not surprising 

when one compares the behaviour of the renormalization group 

functions for the two theories. In Quantum Electrodynamics on 

the one hand, a= 0 is an infrared stable fixed point of the 

theory (and the existence of other fixed points is unknown in 

d = 4 + 2£ dimensions) while on the other hand, for QCD, in 

d = 4 + 2£ dimensions, low order perturbation theory indicates 

2 the existence of another fixed point in the theory (to O(a )), 

at where Thus QCD in 

greater than four dimensions has an infrared stable fixed point 

at a= 0 indicating perhaps a "free" phase; however, it is the 

region a>...£ 
bO 

that is presumably of physical significance. The 

claim to a knowledge of the complete structure of the infrared 

singularities of the quark scattering matrix element is made 

modulo a knowledge of the S function as the coupling constant 

becomes large; this requires further non-perturbative calculation. 

However, some progress has been made in that speculations based 

only on leading log infrared results can now be justified - the 

deeper structure of the theory produces no real surprises. It is 
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gratifying to note that the result for the corresponding situation 

in QED can be obtained simply by setting CF= 1 and CV= 0 in 

eq. (IV-23). 

This approach to the analysis of the infrared singularities in 

QCD is quite flexible as the separation of overlapping divergences 

does not depend on the method of renormalization (provided the 

regularization procedure preserves gauge invariance) nor does it 

depend at first sight on the manner in which one regulates the 

infrared divergences. For example, one could consider an 

off-shell process and separate the contributions from the inserted 

gluon in eq.(1v~1) which are infrared singular and non-singular 

in the limit as the external quarks tend to their mass-shells. 

It is interesting that only the gluonic sector contributes 

2 2 to g (k) in Eq.(IV-22) for the theory with massive fermions. 

This is because, as with QED( 30), insertions into a closed massive 

fermion loop do not give rise to infrared singularities. Thus, it 

is possible in QCD with the number of flavours nf >,. 17 (too large 

for asymptotic freedom), to have an infrared behaviour that has been 

suspected of having a relation to confinement. 

The discussion of infrared singularities presented here is 

completely formal - low order perturbation theory calculations (to 

order g4) in the axial gauge need to be carried out before the result 

can be fully believed. This is especially so in light of the 

contradictory calculations carried out by Frenkel and Taylor( 43), 

albeit in a different gauge. The fact -that Poggio <45 ) explicitly 

agrees with the result formulated here (to order g4) does not carry 

much weight due to his unorthodox renormalization prescription. 



-64-

CHAPTER V 

Infrared Divergences in Inclusive Cross-Sections 

It has been known for a long time that the infrared divergences 

in QED arising from phase space integrations over radiated soft 

photons contribute an exponential divergent factor which cancels 

the divergences due to virtual corrections to the process under 

consideration< 49),(SO). 

In QCD, several authors( 2l) have found that the Bloch­

Nordsieck program order-by-order in perturbation theory produces 

a cancellation between virtual corrections and soft gluon emission 

and hence leads to finite transition rates provided that no colour 

charge is detected - the so-called "colour-blind" experiments. 

Appelquist et al. (Zl) studied the production of a quark by a colour­

singlet current and its detection by a colour-blind quark 

detector(triggering, for instance, on the fractional elctric charge 

of the quark) with energy resolution lE. To the three-loop level 

in perturbation theory, they showed that the inclusive transition 

probability was infrared finite. Inclusive here means that the 

transition probability includes contributions from processes 

with soft gluons in the final state,as a quark and a long­

wavelength gluon are almost degenerate in energy and hence will 

not be resolved by the detector. 
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Poggio and Quinn(22) and Sterman(22 ) have shown that the 

totally unrestricted quark production rate is infrared finite to 

all orders of perturbation theory. This statement is not really 

surprising when one considers that the cross-section is found 

from taking the imaginary part of the vacuum polarization of the 

electromagnetic current and that for quark production this current 

has a momentum squared that is different from zero (i.e., off 

mass-shell for the photon) which provides an infrared cut-off. 

Consider the quark scattering process studied in Chapter IV. 

If the outgoing quark is detected by a colour-blind apparatus 

with a finite energy resolution ~E, then the inclusive cross­

section (allowing for the emission of soft gluons up to a 

combined energy of ~E) can be found by summing the various 

unitarity cuts associated with the process of forward elastic 

quark scattering by a colour-singlet current. Naturally, because 

of the phase space restriction, it is only a part of the full 

unitarity cut that contributes to the desired cross-section. 

Now the effects of the operation a. aaa. on the elastic scattering 

amplitude of a photon with a quark are described in Chapter IV in 

some detail. In summary, the analysis shows that the insertion 

of an extra gluon into the collection of diagrams that make up 

the amplitude yields infrared divergences when the insertion is 

between external charged lines. Thus, if the cross-section under 
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consideration was of the form 

photon + quark + anything 

the only insertion that could possibly yield an infrared divergence 

in the corresponding elastic amplitude 

photon + quark + photon + quark 

comes from the external insertion between the incoming quark of 

momentum p and the outgoing quark also with momentum p (see Fig.6 ). 

However, the integrand corresponding to this insertion is identically 

zero. Explicitly, the insertion gives a contribution (from Eq.IV-22) 

(2p-k)µJ2 g2(k2) 

k2-2p.kj k2 

= o. 

Since the imaginary part of this amplitude is ~part from trivial 

kinematic factors) the desired total cross-section, iteration of 

Eq.(IV-1) shows innnediately, to all orders (leading and non-leading) 

that the total production rate is infrared finite. 

As for the process 

quark + photon + quark + soft gluons, 

with a restriction on the gluon phase space, one may no longer 

ignore the fact that taking the unitarity cut places all particles 

in the intermediatestateson their mass-shells. 
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Fig.6 

Fig. 7 
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Let the differential cross-section for semi-inclusive quark 

scattering be written as 

dcr 
d£ = (V-1) 

where M is the amplitude for quark scattering with n soft gluons n 

in the final state (see Fig.( 7)) as well as the final state quark. 

Extra gluons in the final state are the only particles being 

considered as AE can be adjusted to be below the production 

threshold for qq. The gluon insertions which may produce infrared 

divergences are of three types (shown in Fig.(8 )). There is the 

insertion between the initial colour-charged quark and its 

counterpart (outgoing in the elastic forward amplitude) with the 

same momentum. This insertion, as mentioned above gives zero 

contribution. The second type of insertion consists of one 

termination of the gluon on the incoming quark of momentum p and 

the other termination of the gluon on one of the final state particles 

(intermediate states in terms of the elastic forward amplitude). 

Lastly, there are the insertions between final state particles. 

The insertions of the second type can most easily be considered 

in terms of the insertions into the elastic amplitude and the 

subsequent cutting of the graphs to yield the square of the 

inelastic amplitude. Figure ( 9) represents the insertion of a 

th gluon into the t gluon of M (the other gluons are not drawn for 
n 
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Fig.8 
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simplicity sake) and the incoming quark line. It shows the 

two possible unitarity cuts associated with such an insertion; 

one cut (Fig.(9-a)) giving an infrared divergent virtual correction 

to one of the M , while the other (see Fig. ( 9 -b)) gives a 
n 

contribution to the partial cross-section with n+l gluons in the 

final state. However, the contribution of this inserted real gluon 

in the final state may be simply integrated to give an infrared 

singular contribution to the partial cross-section containing n 

gluons in the final state. This is because the inserted gluon is 

strictly external by construction, which means that the cross­

hatched circles in Fig. ( 9) are not dependent on the momentum k of 

the inserted gluon. Specifying the colour group structure of the 

inelastic amplitude by the colour indices of the initial and 

final state particles, that is, representing the amplitude by 

M j al· • an the effect of the insertion shown in Fig. ( 9 -a) 
n i ' 

on the partial cross-section is given by 

Mj al ••• a.Q,, •• an 

ni, 

(V-2) 

and the effect of the insertion shown in Fig. ( 9-b) on the 

partial cross-section is given by 

a a i' 
l O '. n (Tb) 

i 

a.Q,ba.Q,, _ 
f I(p,qt) 

(V-3) 
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The integrals have the form 

= fik o(k~(2p-k)µ nPP'(q,Q,-k)VµO,Q,P(q9,,k)g2(;2) J (2rr )d • 2p.k k 

(V-4) 

where vµ
0

tP(q,Q,,k) is the Lorentz tensor part of the three gluon 

vertex. Similarly, for the third type of insertion, that is, insertion 

of the gluon between two particles in the intermediate state, there 

are four possible unitarity cuts that may be made. Figure (10) 

shows the possible cuts associated with the insertion between the 

•th d •th 1 f M ( h h 1 h ) Th 1 an J g uons o t e ot erg uons are nots own. e 
n 

contribution from Fig.(10-a) in terms of its group structure is 

The contribution from Fig. (10-b) is 

j a1 .. an) * j a1 .. a . , .. a . , .. a a . a . , b a . , a . b 
(M M 1 J n f 1 1 f J J I ( ) qi,qJ. 

ni ni 

The contribution from Fig.(10-c) is 

j a1 .. a., .. a a., a. b 
(M 1 n f 1 1) 

n. 
1 

The contribution from Fig.(10-d) is 

(M 
ja1 .• aJ., •• an a.a., b 

f J J ) 
n. 

1 

* • b J a1 .. a . , .. a aia . , 
M 1 n f 1 

n. 
1 
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I' 
I 
I 

I' ,,, 

Fig.10 
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For the virtual insertions, 

I{q.,q.) = 
l. J 

and for the insertions yielding an extra gluon in the final state, 

r(q.,q.) 
l. J 

(V-5) 

The generalization of the SU(2) relation 

to SU(3) is not so simple, due to the existence of the symmetric 

coefficients in SU(N) for N > 2: 

(V-6) 

and there is no benefit to be derived from such a substitution. Thus 

the differential equation for the cross-section:~ may now be written 

as 

a (do) a-aa de: 
a jal •• a 

,2 r I n = a- M aa n. 
l. 

2 {I(p,p') + ~ ' 1 = I(p,p )} 2 
ja

1 

.. a 1, ja
1 

.. a 
1 

ia
1 

.. a 2 

(M n) H n - -In I 
n. n. 3 n. 

l. l. l 

* 

(

M jal •• aj .an M j •• aj,.an) 
n. n. 

a., a. 
+ 2 I{I(p,q,)+I(p,q,)} [T J ,T ]] 

j J J 1 l. 

ja
1 
.. a., .a., .a 

~ M i J n 
+ 2 l { I(p,p') + I(p,p')} 

ni i<j 

* • Ja
1

.a .. a .. a 
M 1 J n 
ni 
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a., a.b a.a., b 

. f 1 1 f J J 

+ finite insertions. (V-7) 

It is quite evident that the sum of the virtual and Bremsstrahlung 

contributions shown above in Eq.(V-7) does not possess an infrared 

singular part in the limit as d + 4, that is, 

I(q.,q.) + I(q.,q.) = 
1 J 1 J 

1 0 

0 [ ( d-4 ) ] in the limit d + 4. 

~ Similar statements hold for the sum of I(p,qj) and I(p,qj) and 

for the sum of I(p,p') and I(p,p'). 

Since the exchange of a gluon causes the various colour 

channels to become mixed, it is necessary to write Eq.(V-7) in terms 

of the colour triplet channel for the calculation of the differential 

cross-section if the quark colour is the experimental trigger, or 

in terms of the colour singlet trlM2
1 for the case of a colour­

blind experiment. The treatment as presented above implicitly 

assumes that the colours of the final state particles are averaged 

over since the insertions are made into the intermediate states 

of the elastic quark scattering amplitude. However, the modification 

required to study the semi-inclusive cross-section for the detection 

of a quark with energy resolution ~E when the experimental trigger 

is the quark colour, that is,when it is only the colours of the 

quark and the gluons in the resticted phase space specified by the 

detector which are fixed and all colours of the other particles 



-76-

in the final state are averaged over, is minor. Consider only those 

gluons contributing to the coloured state. As the group structure 

changes caused by the virtual insertion of an extra gluon are precisely 

the same as those brought about by the emission of an extra gluon into 

the final state, provided the colour index of the emitted gluon is 

summed over, it is possible to show that the partial cross-section 

involving a quark with colour index j plus n gluons with indices 

a1 , ..... ,an plus any number of soft gluons whose colour indices 

are averaged over is also finite. This follows from an equation 

almost identical to Eq.(V-7) but for one particular M, rather than n 

the sum. But the desired cross-section for colour detection is 

just the sum of the integral (phase space) over those particular 

I M 1
2 which have the required colour. 

n 

Thus, as a direct result of the analysis of Chapter IV it has 

been shown by a simple and fairly elegant argument that: 

( i) The totally unrestricted rate for the production 

of quarks and gluons from the scattering of an incoming massive 

quark on a photon is infrared finite. This result was already 

(21), (22) 
known for a related process . 

(ii) The restricted rate for the scattering of a quark 

and a photon giving a quark and many soft gluons in the final state 

up to a total energy 6E where the trigger for the quark detector 

does not depend on the colour of the quark, is infrared finite. 

(iii) The semi-inclusive rate for quark plus photon gives 

quark plus anything where the quark detector has energy resolution 
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t.E and triggers on a particular colour of quark (massive) 

also appears to be free from infrared singularities. 

There has been a lengthy discussion in the literature about 

whether the cross-sections mentioned above are, in fact, infrared 

finite(ZO),(Zl), (ZZ)_ The consensus of opinion was that the 

double series consisting of the summation over the virtual 

corrections and the summation over the Bremsstrahlung contributions 

does not possess uniform convergence. Thus, Cornwall and 

Tiktopoulos(ZO) showed that if all the virtual (leading) infrared 

singular corrections to a scattering process were summed first, then 

the exponential damping factor associated with the emission of a 

real gluon prevented the emergence of an infrared singularity in the 

phase space integral. This is contrasted with the expectations 

of the Kinoshita theorem and the results of low order perturbation 

theory calculations which show that order-by-order, the cross-sections 

are free of singularities. 

It is interesting that the order of summation of infrared 

singularities used in this chapter is again different. The amplitudes 

M contain all orders of perturbation theory, and yet the effect of 
n 

the insertion of a gluon is to donate singularities to the virtual 

sum and to the Bremsstrahlung sum at equal rates. Thus the differential 

equation aproach when applied directly to the cross-section gives 

a hybrid order of the double summation, although more closely 

related to the order-by-order method. 
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CONCLUSIONS 

This thesis asserts that all the infrared singularities arising 

in on mass-shell scattering amplitudes in Quantum Chromodynamics 

can be collected by a reorganization of the perturbation theory 

into the iteration of the sum of all insertions of a single gluon 

between the external (asymptotic) states with the effective coupling 

g(k
2
), where k is the momentum of insertion, replacing the pertur­

bation expansion coupling g (renormalized at some off mass-shell 

point). This statement justifies previous statements made in the 

context of the leading singularities at each order of perturbation 

theory; an important step, since leading singularity results often 

do not reflect the true nature of the theory in a strong coupling 

region such as the infrared region. It should be noted that the 

ghost-free gauges used here are essential to the simplicity of the 

derivation of the result, and it is possible that the simple form of the 

solution in these gauges corresponds to the rather more complicated 

results of Frenkel and Taylor in a covariant gauge. The resolution of 

this situation requires the perturbation theory calculation (at the two 

loop level) of the quark colour-singlet form factor in the axial gauge. 

The work presented here has not added directly to the question 

of whether the quarks and gluons of Quantum Chromodynamics are 

permanently bound within hadrons~ however it does indicate the 

single most important question that must be answered before the 

problem of confinement can be settled·. This is the behaviour 

of the effective coupling constant g
2

(k
2

) in the limit as k
2 

+ 0. 
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The differential equation studied in Chapter II may be of some 

use in determining this quantity. For example, this differential 

equation may be written for the inverse gluon propagator in the 

axial gauge and a separation at least of the soft infrared 

singularities can be made. The resulting form is much simpler than 

the Dyson equation approach(Sl) which requires several strong 

assumptions before the problem becomes tractable. However, since 

the gluon is off mass-shell, it is not obvious that the hard 

divergences which occur for massless particles with parallel 

three momenta are actually controlled by the separation of 

divergences. 

The problem of hard divergences associated with a totally 

massless theory also occurs with the extension of the material 

presented in Chapter V to the consideration of massless quarks. 

Such an extension would allow an explicit (and simple) verification 

of the Kinoshita-Lee-Nauenberg theorem<23>,< 24>and also a probable 

solution to the question of factorization of the dependence on 

small momenta squared in semi-inclusive quark scattering processes. 

Mueller<52 ) has shown that the required factorization does take 

place to all orders in perturbation theory but only in the physically 

less interesting theory of ~4 . 
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APPENDIX A 

The derivation of the differential equation described in Chapter 

II, although straightforward, is somewhat clumsy. Since the result 

is independent of perturbation theory, one might expect that 

functional techniques may be applied to yield the same result 

in a more elegant fashion. In QED this is certainly true 11 . 

The Lagrangian in QED: 

may be rewritten as 

where~ is the photon propagator (bare) and Jµ is the source 
µv 

for the interaction Lagrangian (i.e., Jµ = ~yµ~ ). The sources 

j~ and jA enable the formation of the external fields by functional 

differation of the generating functional for the Green's functions. 

Consider, then, this generating functional Z[J,j~,jA] 

ir This appendix arose from conversations with J. Schonfeld 
whose connuents the author wishes to acknowledge. 

(A-1) 
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Since J does not depend explicitly on the photon field Aµ and 

and since the form of the exponent is quadratic, the Gaussian 

integral over A may be carried through exactly. After completing 

the square (and setting jA to zero since our interest is only in 

Green's functions with external electrons, at present) the result is: 

Green's functions may be formed by functional differentiation 

with respect to j~, and Jµ. Thus, for example, the electron­

electron scattering Green's function would be formed by evaluating 

a 
Now the operation a~ on such a Green's function brings down one 

factor of a f Jl).J d4x . This is precisely the required result: 

that is, differentiation of a Green's function with respect to 

coupling constant yields an integral of the Green's function with 

two extra ~yµ~ sources integrated over all points of insertion. 

(A-3) 

This formulation cannot, however, be carried over trivially to 

derive the differential equation for QCD. 
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