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Deep learning has achieved significant success in pattern recognition, with convolutional neural 
networks (CNNs) serving as a foundational architecture for extracting spatial features from images. 
Quantum computing provides an alternative computational framework, a hybrid quantum-classical 
convolutional neural networks (QCCNNs) leverage high-dimensional Hilbert spaces and entanglement 
to surpass classical CNNs in image classification accuracy under comparable architectures. Despite 
performance improvements, QCCNNs typically use fixed quantum layers without incorporating 
trainable quantum parameters. This limits their ability to capture non-linear quantum representations 
and separates the model from the potential advantages of expressive quantum learning. In this 
work, we present a hybrid quantum-classical-quantum convolutional neural network (QCQ-CNN) 
that incorporates a quantum convolutional filter, a shallow classical CNN, and a trainable variational 
quantum classifier. This architecture aims to enhance the expressivity of decision boundaries in image 
classification tasks by introducing tunable quantum parameters into the end-to-end learning process. 
Through a series of small-sample experiments on MNIST, F-MNIST, and MRI tumor datasets, QCQ-
CNN demonstrates competitive accuracy and convergence behavior compared to classical and hybrid 
baselines. We further analyze the effect of ansatz depth and find that moderate-depth quantum 
circuits can improve learning stability without introducing excessive complexity. Additionally, 
simulations incorporating depolarizing noise and finite sampling shots suggest that QCQ-CNN 
maintains a certain degree of robustness under realistic quantum noise conditions. While our results 
are currently limited to simulations with small-scale quantum circuits, the proposed approach offers a 
potentially promising direction for hybrid quantum learning in near-term applications.

Quantum machine learning (QML)1 has introduced new perspectives into traditional machine learning 
frameworks and has become a key focus of current research2. Quantum systems demonstrate particular 
effectiveness in tasks including random sampling in quantum circuits and molecular structure simulation3,4, 
both of which pose significant challenges for classical computing methods. In the era of noisy intermediate-scale 
quantum (NISQ) computing, which is defined by devices with approximately one hundred qubits, numerous 
quantum machine learning algorithms have emerged. Many of these approaches rely on parameterized 
quantum circuits (PQCs)5, including methods such as VQE, QAOA, QRSC, and QGAN6–9. These PQC-based 
QML algorithms demonstrate enhanced expressive capabilities and noise resilience, showcasing the practical 
applicability of QML. They hold promise for more efficiently solving problems that are currently intractable 
for classical computing. Variational Quantum Circuits (VQC)10 are a specific type of PQC, typically combining 
quantum circuits with classical optimizers, and are widely use in quantum algorithms.

Convolutional neural networks (CNN)11 are considered one of the most successful classic models in the field 
of image processing. Since their inception, CNNs have greatly advanced progress and innovation in computer 
vision (CV)12–14. Quantum neural networks (QNN) are inspired by traditional neural networks, and research 
has shown that QNN offers training speed advantages over classical networks15,16. Cong et al. introduce a 
quantum convolutional neural network (QCNN)17 base on the MERA circuit18, which adapts the basic features 
and structures of CNN to qubits, facilitating the identification of one-dimensional symmetric topological 
quantum states on NISQ devices19. QCNN has achieved success in both quantum many-body problems20 
and image classification. Wei et al. introduced a QCNN that reduces computational complexity compared to 
classical counterparts and shows partial robustness to noise in image classification21. Despite these advantages, 
QCNNs face practical limitations in applications, such as sensitivity to circuit depth, vulnerability to noise, 
and convergence instability on current noisy intermediate-scale quantum devices. Designing viable quantum 
algorithms under these constraints remains an open challenge. The comparative advantages of QML over classical 
approaches also require further clarification. Henderson et al.22 proposed a solution where the quanvolutional 
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layer (also known as quantum convolution layer) can be applied to input data, locally transforming it using 
random quantum circuits23 to generate features for image classification. These quanvolutional layers can be 
integrated into classical neural networks, creating hybrid quantum-classic architectures. Liu et al. proposed 
a quantum-classical convolutional neural network (QCCNN)24, which shares principles with quanvolutional 
layers but differs in terms of data encoding. QCCNN uses the RY gate instead of other single-qubit rotation 
gates to perform angle encoding on classical data. It employs parameterized quantum filters to extract features, 
mimicking the function of classical convolution layers, demonstrating good scalability and outperforming 
traditional CNNs. In the work of Fan et al.25 and Hur et al.26, QCCNN has been successfully applied to classify 
various image datasets. Given current limitations in qubit count, gate fidelity, and connectivity, quantum hybrid 
algorithms are regarded as one of the most promising directions before quantum error correction (QEC) 
becomes practical27. Quantum hybrid models are expected to remain relevant beyond the NISQ era, as they can 
be efficiently adapted to fault-tolerant quantum computers while continuing to leverage classical optimization. 
Although QCCNNs show improvements under specific settings, the quantum convolutional layers typically 
employ fixed circuits such as RandomLayers28, which lack trainable parameters, thereby limiting adaptability. 
Furthermore, several studies attribute performance gains mainly to classical fully connected layers15,29, rather 
than the quantum modules, making it difficult to isolate the quantum contribution. These issues constrain both 
the interpretability and the scalability of existing QCCNN models.

Here, we propose a new hybrid framework, the Quantum-Classical-Quantum Convolutional Neural 
Network (QCQ-CNN). This architecture introduces a trainable variational quantum neural network (QNN) at 
the classification stage, enabling optimization of quantum parameters. Specifically, the model consists of three 
stages: (i) a fixed quantum convolutional filter for local feature encoding, (ii) a classical CNN module, and 
(iii) a QNN classifier based on parameterized circuits (ZZfeatureMaps and RealAmplitudes). Compare 
to prior architectures, QCQ-CNN decouples the roles of quantum filtering and quantum decision making, 
allowing a more flexible and interpretable use of quantum components. The addition of trainable quantum 
layers enhances model adaptability under NISQ constraints and facilitates performance tuning across tasks. 
We evaluate our model through extensive numerical evaluations on diverse datasets, including medical image 
classification scenarios such as MRI brain tumor detection. QCQ-CNN demonstrates consistent improvements 
in classification accuracy, convergence rate, and robustness compare with both classical CNN and QCCNN 
baselines. To assess its practicality under realistic hardware conditions, we evaluate the noise robustness of 
QCQ-CNN by incorporating depolarizing noise channels and finite sampling into the simulation. These noise-
aware experiments demonstrate that our hybrid model maintains competitive performance even under realistic 
quantum noise conditions, indicating a certain degree of resilience suitable for near-term quantum devices. 
Furthermore, we analyze the influence of quantum circuit depth on model behavior. Simulation findings reveal 
that moderate-depth circuits yield the best trade-off between optimization stability and expressive capacity30–32, 
suggesting that depth can serve as a control parameter for tuning training dynamics. Our work confirms that 
QCQ-CNN is a practical solution for the NISQ-era and provides guidance for the architectural design of future 
hybrid quantum models. Leveraging classical infrastructure while avoiding the overhead of full quantum 
algorithm development, QCQ-CNN provides a framework that balances quantum utility and implementation 
cost. The model is well-suited for integration into broader applications, especially where data complexity or 
sample limitations pose challenges for classical architectures.

The remainder of this paper is organized as follows. We begin by introducing the necessary background on 
quantum computing concepts relevant to our model. Next, we review related work, highlighting the evolution 
of classical and hybrid quantum architectures. Then we present the design and implementation details of 
the propose QCQ-CNN model, outlining its hybrid structure and functional components. Following that, 
we conduct comprehensive simulations to evaluate the performance of the proposed model and benchmark 
it against classical and partially hybrid baselines. Finally, we summarize our findings and discuss potential 
directions for future research.

Preliminaries
Angle encoding
Quantum encoding is the process of transforming classical data into quantum states to enable quantum 
processing of classical data33. This transformation is essential to enable the manipulation of classical information 
within a quantum computing framework. Among various encoding strategies, angle encoding is one of the 
most widely used methods, where classical data is mapped directly to the rotation angles of quantum gates. Any 
single-qubit gate can be represented as a combination of rotating gates around the X, Y, and Z axes34. Commonly 
use gates include RY(θ), RX(θ), RZ(θ), where the rotation angle θ is derive from the input feature values. These 
gates are defined as:

	
RY(θ) =

[ cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, � (1)

	
R X(θ) =

[ cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]
, � (2)

	
R Z(θ) =

[
e−iθ/2 0

0 eiθ/2

]
. � (3)

In this study, we primarily apply the RY(θ) gate as the initial qubit rotation, encoding classical data into quantum 
states as the foundation of the quantum filter functionality. As part of the QNN embedding process, we combine 
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RY(θ) gates with other quantum operations, including Hadamard and Controlled-NOT (CNOT) gates, 
achieving complex feature mappings. The Hadamard gates transform the initial state |0⟩ into the superposition 
state |+⟩ = 1√

2 (|0⟩ + |1⟩), while RZ(θ) gates apply phase shifts around the Z-axis, parameterized by θ. The 
CNOT gate introduces entanglement between two qubits, conditionally flipping the target qubit depending on 
the control qubit’s state, the CNOT operation is represented as:

	

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .� (4)

In embedding QNN, we combine the RZ(θ) gate with other quantum gates to achieve feature mapping, followed 
by tuning the depth and circuit parameters to improve performance.

Parameterized quantum circuits
Parameterized quantum circuits (PQCs), have become foundational in the field of quantum computing. 
With limited shallow quantum circuit depth, PQCs can produce highly complex outputs through the direct 
combination of control gates and quantum rotation gates35. Extending the prior mapping strategy, PQCs serve as 
the core structures in many variational quantum algorithms. A typical strategy involves reformulating classical 
problems as variational optimization problems and approximating solutions through hybrid quantum-classical 
methods. This approach effectively reduces the quantum resource requirements, making it highly compatible 
with the constraints of current NISQ devices. PQCs and hybrid systems have achieved remarkable success in areas 
including combinatorial optimization, quantum chemistry, and quantum machine learning. For example, the 
Quantum Approximate Optimization Algorithm (QAOA) has successfully tackled large-scale MaxCut problems 
using small quantum systems36. Quantum Generative Adversarial Networks (QGAN) have indicated quantum 
advantages in generating small molecules, enabling effective molecular synthesis with fewer parameters37. Abbas 
et al.15 introduce a novel dimension in proving model efficiency, showcasing the quantum advantage of QML, 
particularly in QNN compared to similar feedforward networks. Among various types of PQCs, Variational 
Quantum Circuits (VQCs) specifically refer to parameterized quantum circuits whose parameters are optimized 
through variational methods, typically by minimizing a cost function via hybrid quantum-classical optimization. 
A VQC is generally constructed using a feature embedding circuit and a trainable structure known as an ansatz, 
a parameterized template composed of rotation gates and entangling gates. The choice of ansatz plays a critical 
role in determining the expressivity, trainability, and hardware efficiency of the circuit31,38. The advantage of 
incorporating VQCs in hybrid models has been demonstrated in both theoretical and empirical studies. For 
instance, Mari et al.39 showed that integrating VQCs significantly enhances model generalization in few-shot 
learning and domain adaptation scenarios. Furthermore, Schuld et al.40 analyzed the interplay between data 
encoding and variational ansatz design, and demonstrated that the choice of ansatz has a substantial impact on 
the expressive power of VQCs. Their findings suggest that VQCs contribute non-trivially to model capacity even 
under restricted or fixed data embeddings.

In this work, we employ the RealAmplitudes ansatz, which alternates RY(θ) rotation layers with CNOT 
entangling layers, and repeat the structure to control circuit depth. As shown in Fig. 1, the circuit integrates a feature 
mapping stage based on the ZZFeatureMap and a variational layer constructed from the RealAmplitudes 
ansatz, enabling expressive quantum transformations and learnable adaptability. In this configuration, the H 
gates denote Hadamard gates used to initialize qubits into superposition, and the X gates correspond to the 
CNOT operations that introduce entanglement. The feature encoding layer comprises parameterized RZ(λ) 
gates and entangling X gates, forming the ZZFeatureMap, which captures both individual and pairwise 
feature interactions. The variational ansatz layer employs alternating RY(θ) rotations and CNOT gates, forming 
the RealAmplitudes structure used to optimize the model output through trainable parameters.

In hybrid neural networks, VQCs show an essential role in enhancing expressive power and learning capacity. 
Similar to the convolutional kernel commonly used in models, VQCs serve as quantum layers that transform 
classical input into high-dimensional quantum states through structured quantum operations. Consequently, 
VQCs are commonly used as feature extractors in the Variational Quantum Eigensolver (VQE). Additionally, 
VQCs benefit from optimization techniques like gradient descent, allowing their parameters to be adjusted by 
minimizing the loss between circuit outputs and target labels, following principles from classical deep learning 
approaches. By fine-tuning the depth of the ansatz, these circuits can flexibly accommodate varying data sizes and 

Fig. 1.  The quantum circuits for the implementation of Hadamard, RZ, RY and CNOT gates.
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model complexities. This helps strike a balance between training efficiency and stability, unlocking the potential 
for quantum acceleration. A detailed discussion of these aspects is provided in the numerical simulations and 
results section.

Related works
Convolutional neural networks
Convolutional neural networks (CNNs) are a widely adopted deep learning architecture, primarily used in 
computer vision tasks such as image classification41. CNNs consist of several layers, beginning with convolutional 
layers that apply filters to input images to extract hierarchical features. These layers employ learnable weights 
and biases in the filters, enabling the networks to identify spatial patterns within the data. The pooling 
layers reduce the spatial dimensions of the feature maps while retaining salient information. This improves 
computational efficiency and reduces the risk of overfitting. Activation functions such as ReLU42, introduce non-
linearity, enabling the model to capture complex relationships within the data. Fully connected layers follow the 
feature extraction process, synthesizing high-level features for complex reasoning and classification. In binary 
classification tasks, the final output layer uses the activation function to provide probability estimates for input 
data. Training CNNs involves optimization techniques like stochastic gradient descent and backpropagation, 
utilizing binary cross-entropy loss functions for effective model training. “These approaches allow CNNs to 
perform effectively across a range of image-based binary classification tasks43.

Quantum convolutional neural networks (QCNNs)
QCNN17 utilizes quantum gates to encode images and to construct convolutional and pooling layers within 
quantum circuits, closely mirroring the architecture of traditional CNN. QCNNs implement convolutional 
and pooling operations directly on quantum states, inspired by the hierarchical structures of classical CNNs 
and multi-scale entanglement renormalization ansatz (MERA) circuits18. In QCNNs, structured input image 
datasets are first encoded into quantum states via predefined feature maps. The network architecture alternates 
between layers of quantum convolution and measurement-based pooling, progressively reducing the number of 
active qubits and extracting hierarchical features through quantum operations. Non-linearities are introduced 
via measurement outcomes, which control the unitaries applied to neighboring qubits in the pooling layers.

The overall transformation of the quantum state within the QCNN can be described as:

	 σ out (θ) = Tr out
[
U(θ)σ in U†(θ)

]
,� (5)

where σ in  denotes the input density matrix, U(θ) represents the parametrized quantum circuit compose of 
convolutional, pooling, and fully connected layers, and θ is the set of trainable parameters, the partial trace 
Tr out  is taken over the ancillary qubits outside the output subsystem. The final classification result is obtained 
by measuring the expectation value of a Hermitian observable on the reduced output state.

Despite its conceptual appeal, the quantum convolutional neural network (QCNN) remains in an early 
stage of development and faces several technical challenges, including sensitivity to hardware noise, limited 
circuit depth due to decoherence, and poor scalability when applied to high-dimensional or large-scale datasets. 
In particular, current implementations often operate with a few qubits (e.g., 8 in this study), which limits the 
expressive capacity of the model. Fully realizing the advantages of QCNNs requires access to more qubits and 
high-fidelity quantum gates, which remain largely unavailable on existing NISQ hardware. To evaluate QCNN’s 
behavior under these constraints, we conducted numerical simulations on MNIST, Fashion-MNIST, and MRI 
brain tumor datasets. The loss trajectories over 200 training epochs are shown in Fig. 2. Across all tasks, QCNN 
exhibits significant fluctuations in the loss function, even beyond 100 epochs, indicating instability in the 
training dynamics. These fluctuations may arise from flat or noisy parameter landscapes, limited entanglement 
capability, or barren plateau effects, all of which impede variational optimization. Among the three datasets, 
QCNN achieves the highest accuracy (75.31%) on the MRI brain tumor task, outperforming its results on 
MNIST (56.67%) and Fashion-MNIST (57.14%). This outcome may be attributed to the relatively well-structured 
nature of MRI images and clearer class boundaries, which allow the shallow QCNN to capture discriminative 
patterns more effectively. Although QCNNs have not demonstrated consistent advantages over classical CNNs 
in terms of accuracy or convergence, their architectural principles remain promising. These include local feature 
encoding, compact variational circuits, and measurement-driven feature extraction, which together form a solid 
foundation for quantum deep learning.

 Hybrid quantum-classical convolutional neural networks (QCCNNs)
To overcome the scalability issues, training instability, and hardware constraints observed in fully QCNNs, 
hybrid quantum-classical convolutional neural networks (QCCNNs) have been proposed as an extended 
framework. Unlike QCNNs, which rely entirely on quantum operations for both feature extraction and pooling, 
QCCNNs replace part of the quantum processing pipeline with classical convolutional layers, while retaining 
VQCs as local quantum filters. This hybrid approach reduces quantum resource requirements, improves training 
stability, and enhances compatibility with NISQ devices. In this architecture, quantum convolutional layers 
apply parametrized quantum gates to locally encoded input data, and classical pooling and fully connected layers 
follow to complete the learning pipeline. The QCCNN design has been explored in several studies, including 
the pioneering work of Henderson et al.22, which introduces an encoding-decoding scheme to align quantum 
outputs with classical operations. More recently, Liu et al.24 further formalized the framework by using VQCs 
composed of alternating single-qubit rotations and two-qubit entangling gates, including controlled-Z or CNOT, 
to capture local correlations within data patches. In the quantum convolutional layer, each local region of the 
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input data x, such as an image patch, is first mapped into a quantum state through a chosen encoding scheme. 
Several encoding strategies can be adopted, including angle encoding and threshold encoding, where classical 
values are mapped onto the parameters of quantum gates. The encoding process can be formally represented as:

	 |ψ in (x)⟩ = E(x)|0⟩⊗n,� (6)

where E(x) denotes the encoding operation and |0⟩⊗n is the initial quantum state of n qubits. Following the 
encoding, a parametrized quantum circuit U conv  acts as the quantum filter:

	
∣∣ψ out (θ̄, x)

〉
= U conv (θ̄) |ψ in (x)⟩ .� (7)

For QCCNNs, we denote the fixed quantum parameters as θ̄q , which are randomly initialized and remain 
unchanged during training. This non-trainable design reduces optimization overhead but limits model 
adaptability and quantum expressiveness. The proposed circuit architecture enables local feature extraction by 
exploiting quantum entanglement. The output features are obtained by measuring observables on the resulting 
quantum state, for a measurement operator Mi at location i is defined as:

	 fi(x; θ̄) =
〈
ψ out (θ̄, x)

∣∣ Mi

∣∣ψ out (θ̄, x)
〉

,� (8)

where Mi is selected as the Pauli-Z observable (measured after the circuit), this choice ensures consistency with 
the RZ(θ) based rotations used in the quantum convolutional filter and provides an efficient measurement 
scheme for feature extraction. Compared with conventional CNN layers, which aggregate features by spatially 
summing activations across neighboring positions, QCCNNs apply quantum measurements directly to select 
qubits following local quantum operations. These measurement outcomes capture localized feature information 
without explicit summation operations. The extracted quantum feature maps are subsequently fed into 
classical pooling layers for dimensionality reduction and then into fully connected layers to complete the final 
classification task. While QCCNNs similarly do not yet demonstrate exponential computational advantages, 
they offer a more hardware adaptive design by leveraging shallow quantum circuits alongside classical processing 
modules. This hybrid formulation enables more stable training and reduced quantum resource consumption, 
making it a practical candidate for near-term quantum applications where fully quantum architectures remain 
infeasible. While prior studies have explored trainable quantum filters, we opt to fix the filter structure following 
the original Quanvolutional approach. This decision aims to isolate the contribution of the variational quantum 
classifier, reduce optimization overhead, and ensure reproducibility. Exploring trainable quantum filters remains 
a promising direction for future work.

Hybrid quantum-classical-quantum convolutional neural network (QCQ-CNN)
While QCCNNs alleviate some of the limitations of fully quantum convolutional neural networks by combining 
quantum feature extraction with classical layers, their performance remains restricted by the expressiveness 

Fig. 2.  Training loss curves over 200 epochs for different datasets with QCNN.

 

Scientific Reports |        (2025) 15:31780 5| https://doi.org/10.1038/s41598-025-13417-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of shallow variational circuits and the scalability of quantum encoding schemes. Motivated by recent insights 
into quantum neural networks, we extend the QCCNN architecture to further exploit the strength of quantum 
modeling. Zhang et al.30 investigated the trainability of QNNs and demonstrated that step-controlled ansatze 
can avoid barren plateaus and deliver better convergence and accuracy for binary classification. Beer et al.16 
demonstrate that QNNs exhibit remarkable generalization performance and robustness against noisy training 
data, reinforcing their suitability for complex learning tasks under realistic conditions. In addition, Abbas et 
al.15 show that QNNs can achieve higher expressive capacity than classical neural networks, particularly when 
designed with structure parameterizations. These observations suggest that QNNs, when carefully constructed, 
can serve as powerful classifiers.

Inspired by recent advances, we propose a Quantum-Classical-Quantum Convolutional Neural Network 
(QCQ-CNN). As shown in Fig. 3, the architecture comprises three sequential components: a quantum filter 
for initial feature extraction, a classical convolutional network for intermediate representation learning, and a 
quantum neural network (QNN) as the final classification module.

The overall QCQ-CNN pipeline extends the QCCNN framework by adding a downstream quantum neural 
network classifier and follows a quantum–classical–quantum structure. The front-end quantum filter adopts 
the quanvolutional layer design proposed by Henderson et al.22, which is functionally similar to the quantum 
convolutional layer introduced by Liu et al.24. Each image patch is encoded into a quantum state and processed 
via a shallow variational circuit. Expectation values of Pauli-Z measurements are extracted as nonlinear quantum 
features, this approach avoids the need for classical nonlinearities such as ReLU. Therefore, the extracted quantum 
feature maps are subsequently passed to a shallow classical CNN consisting of convolutional, pooling, and fully 
connected layers. These classical components are computationally efficient, stable, and contribute additional 
nonlinearities to the hybrid system. The compact representation after flattening and projection, and re-encoded 
into a quantum state and input into a QNN classifier composed of structured ansatze, including ZZFeatureMap 
(Fig. 1) and RealAmplitudes (Fig. 4). Since the QNN operates on low-dimensional features, only a small 
number of qubits are required, significantly reducing resource costs. This design is particularly well suited 
for current NISQ devices, where limitations in qubit count and coherence time constrain model complexity. 
Furthermore, the parameterized RY(θ) gates in the RealAmplitudes layer serve as learnable weights, 
allowing the QNN to perform forward propagation analogous to classical networks via quantum evolution and 
observable-based measurements. In addition, the depth of the RealAmplitudes ansatz can be systematically 
increased by repeating its building blocks (e.g., RY–CNOT), enabling us to investigate how the number of 
quantum parameters affects training dynamics and model expressiveness. Such depth-controlled studies are 
essential for understanding trade-offs between quantum circuit complexity and performance, especially in the 
context of barren plateaus and NISQ constraints32,44.

Fig. 3.  The hybrid quantum-classical-quantum convolutional neural network (QCQ-CNN) model. It consists 
of a quantum filter for patchwise feature extraction, a classical CNN module for learning, and a QNN classifier 
that uses a ZZFeatureMap and RealAmplitudes ansatz. This hybrid design combines quantum and 
classical strengths to improve classification. The example shown processes MNIST digit images.
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Quantum filter feature extraction
To enhance compatibility with noisy intermediate-scale quantum devices, quantum convolutional filters 
operate on low-dimensional quantum states derived from classical image data. At each position, a local region 
is extracted from the input image and reshaped into a classical vector x = [x1, . . . , xN ], where N denotes the 
number of qubits used in the quantum filter. This vector is then mapped to a quantum state using a rotational 
encoding strategy:

	
|ψin(x)⟩ = E (x)|0⟩⊗N , E (x) =

N⊗
i=1

RY(πxi),� (9)

where each normalized pixel value xi ∈ [0, 1] is encoded as a rotation angle πxi on the Bloch sphere, covering 
the |0⟩ ↔ |1⟩ subspace. The encoded state is subsequently processed by a variational quantum circuit 
Uquanv(θ̄q), which consists of L layers of parameterized single-qubit RZ and RY rotations, along with nearest-
neighbor CNOT entangling operations:

	
Uquanv(θ̄) =

L∏
l=1

[
N⊗

i=1

RZ(θ̄i,l)RY(θ̄′
i,l) ·

∏
j

CNOTj,j+1

]
,� (10)

where θ̄i,l and θ̄′
i,l are randomly initialized fixed angles and remain unchanged during training. The resulting 

quantum state becomes:

	
∣∣ψquanv(θ̄q, x)

〉
= Uquanv(θ̄q) |ψin(x)⟩ .� (11)

Pauli-Z expectation values are then measured on each qubit to generate classical feature outputs:

	 zi = ⟨ψquanv|Zi|ψquanv⟩, i = 1, . . . , N,� (12)

where zi values are aggregated to form a multi-channel quantum feature map. For a single-layer 4-qubit 
circuit, this results in four channels per image, visualized as stacked feature maps in Fig.  3. Notably, in our 
implementation, the parameters θ̄q  of the quantum filter are randomly initialized and remain fixed during 
training. This design decouples the expressive yet noisy quantum encoding from the learning stage, reducing 
training overhead and improving robustness on NISQ devices. Such a fixed-filter strategy allows the quantum 
module to serve as a non-trainable feature extractor, offering structured quantum representations without 
incurring the cost or instability of end-to-end quantum optimization.

This choice is motivated by both practical considerations and alignment with established conventions. 
Specifically, we follow the original QNN architecture22, which employs randomly initialized yet fixed quantum 
filters. Adopting the same configuration ensures a fair comparison with QCCNN and allows us to isolate the 

Fig. 4.  Quantum circuits for real amplitudes with 3, 5, 7 circuit depths, corresponding to 4, 6, and 8 trainable 
RY(θ) parameters, respectively.
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contribution of the downstream variational quantum classifier (VQC). Furthermore, recent studies45 have 
observed that quantum filter parameters tend to exhibit negligible updates during gradient-based training, 
implying limited benefit from making them trainable. Fixing the quantum filter thus simplifies the optimization 
landscape, improves convergence stability, and facilitates reproducibility across different simulation platforms.

Classical convolutional processing
These quantum values are stacked across the image to form multi-channel feature maps, which are then passed 
to a classical CNN module for spatial representation learning:

	 h = fcnn(z; ϕ),� (13)

where ϕ denotes the trainable weights and biases of the CNN block. As illustrated in Fig. 3, this classical module 
consists of two convolutional layers (Conv1, Conv2), each followed by a max-pooling operation (Pool1, Pool2) 
to reduce spatial dimensions and increase feature robustness. The functional composition of this pipeline can be 
written explicitly as:

	 h = Dense2 ◦ Dense1 ◦ Pool2 ◦ Conv2 ◦ Pool1 ◦ Conv1(z),� (14)

where each function denotes a specific transformation layer applied to the quantum input z in sequence. This 
convolution–pooling pipeline enables the model to hierarchically abstract mid-level spatial features from the 
quantum inputs. After the final pooling layer, the resulting tensor is flattened and passed through a fully connected 
layer, producing a compact latent vector h ∈ Rd, which serves as the input to the downstream QNN classifier. 
Beyond providing spatial abstraction, the CNN block substantially contributes to the performance of the hybrid 
architecture. It introduces a rich set of classical trainable parameters, enabling gradient-based optimization to 
propagate effectively across the network. Prior works1,5 have highlighted that embedding classical components 
between quantum modules improves model stability and convergence in NISQ settings. By absorbing low to 
mid-level variability, the classical CNN also mitigates the risk of barren plateaus in the variational QNN classifier, 
allowing quantum resources to focus on learning high-level, expressive decision boundaries.

Quantum neural network classifier
After classical convolutional processing, the compact latent vector h ∈ Rd obtained by flattening and dense 
projection is re-encoded into a quantum state and fed into a quantum neural network classifier. Similar to 
classical neural networks, the QNN performs forward propagation through parameterized quantum evolution 
and observable measurements. Specifically, a two-qubit quantum feature map inspired by the ZZFeatureMap 
applies:

	 |ψqnn(h)⟩ = Eqnn(h)|0⟩⊗N′
,� (15)

where Eqnn denotes an encoding operation composed of local phase rotations and entangling interactions:

	 Eqnn(h) = [exp (iθh0h1Z0Z1)] · [RZ(θh0) ⊗ RZ(θh1)] ,� (16)

which embeds both individual features and pairwise correlations directly into the quantum phase. This encoded 
state is then processed by a variational quantum circuit V (θc), constructed using the RealAmplitudes 
ansatz:

	
V (θc) =

d∏
l=1

[
N′⊗
i=1

RY(θ(l)
i )RZ(θ′(l)

i ) ·
N′−1∏
i=1

CNOTi,i+1

]
,� (17)

where d is the circuit depth, and θc represents all trainable parameters. The θ(l)
i  and θ′(l)

i  denote the trainable 
rotation angles applied to the i-th qubit in the l-th ansatz block via RY and RZ gates, respectively. This ansatz 
alternates parameterized single-qubit rotation layers with fixed entangling CNOT layers and is repeated d times 
to control the expressive capacity of the variational quantum circuit (VQC). In quantum computing, the circuit 
depth refers to the number of gate layers applied sequentially on the quantum register, the number of time steps 
required, assuming gates acting on disjoint sets of qubits can be executed in parallel. For variational circuits, the 
depth d corresponds to the number of repeated entangle rotation blocks. Each block contains parameterized 
RY (θ) gates on every qubit followed by a CNOT entangling layer. For a two-qubit circuit, each repetition 
introduces two trainable parameters (one per qubit per RY gate), and the entangling layer introduces logical 
connectivity via CNOTi,i+1. Thus, circuit depths d = 3, 5, 7 correspond to variational circuits with 4, 6, and 
8 trainable parameters in the RY(θ) gates respectively. As shown in Fig. 4, each depth level includes repeated 
blocks of single-qubit rotations followed by entangling CNOT layers (denoted by the green X  symbols). The 
number of trainable parameters scales linearly with depth, while entangling layers remain fixed to preserve 
interpretability and control circuit complexity.

Deeper circuits increase expressive power by enabling more complex unitary transformations. At the same 
time, they exacerbate the barren plateau phenomenon, characterized by regions of exponentially vanishing 
gradients in the loss landscape, which significantly impedes optimization32. In our implementation, a depth of 
d = 5 achieves an optimal balance between expressivity and trainability, yielding stable convergence and strong 
performance across datasets. The output quantum state becomes:
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	 |ψout(θc, h)⟩ = V (θc) |ψqnn(h)⟩ .� (18)

We extract the final scalar prediction by measuring the expectation value of a Hermitian observable O, typically 
chosen as the Pauli-Z operator acting on the first qubit:

	 fQCQ(x) = ⟨ψout|O|ψout⟩ ,� (19)

and convert this continuous value into a binary prediction via thresholding with a trainable bias term b:

	
ypred =

{
0 if fQCQ + b < 1

2 ,
1 otherwise,

� (20)

where b ∈ R is updated during training. This final quantum module allows expressive nonlinear decision 
boundaries to be modeled at reduced qubit cost, making it well-suited for NISQ-era deployment. The complete 
training procedure of the proposed QCQ-CNN framework is summarized in Fig. 5.

Positioning the QNN classifier after the CNN confers three major advantages essential for practical 
deployment in the NISQ era: (i) The classical convolutional backbone effectively performs dimensionality 
reduction and spatial abstraction, reducing the number of qubits required in the quantum stage while mitigating 
cumulative quantum noise. (ii) The expressive capacity of the quantum model is concentrated at the decision 
boundary, which enhances nonlinear separability without burdening the quantum encoder with low-level feature 
extraction. (iii) The hybrid architecture benefits from classical optimization stability and quantum nonlinearity, 
promoting efficient gradient propagation and reducing the risk of barren plateaus. These design choices are 
theoretically grounded in prior studies5,38, which demonstrate that shallow qubit variational classifiers can 
match or outperform classical models when operating on structured, low-dimensional features. Building on this 
principle, our QCQ-CNN architecture employs the QNN not as a feature generator but as a binary quantum 
decision module, yielding improvements in both predictive performance and robustness. To substantiate these 
benefits, we conduct extensive simulations on MNIST, Fashion-MNIST, and an MRI brain tumor dataset. 
Ablation studies on circuit depth show that increasing the number of ansatz layers enhances model expressiveness, 
but may introduce convergence instability and noise sensitivity. Empirically, a moderate depth (e.g., a 5-layer 
RealAmplitudes circuit with 6 trainable RY(θ) gates) achieves the best trade-off between accuracy and 
training stability across datasets. Furthermore, the output from the QNN is derived from the expectation value 
of a Hermitian observable (e.g., Pauli-Z). This provides a physically grounded and interpretable decision score, 
offering a distinctive advantage over purely classical classifiers46. This observable-based prediction mechanism 
facilitates model introspection and aligns with recent efforts in explainable quantum learning. In addition, 
the QCQ-CNN architecture exhibits superior generalization, particularly in limited data or noisy regimes, 
highlighting its robustness and suitability for practical quantum-classical applications. The following section 
provides a detailed quantitative evaluation to support these findings.

Fig. 5.  Pseudocode for the training procedure of the QCQ-CNN framework.

 

Scientific Reports |        (2025) 15:31780 9| https://doi.org/10.1038/s41598-025-13417-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Numerical simulations and results
To validate the effectiveness and generalizability of our proposed QCQ-CNN architecture, we conduct extensive 
numerical simulations on a variety of image classification tasks. Our evaluation consists of two main parts: 
(i) a comparative study across five different models to assess the benefit of quantum components under equal 
capacity constraints, and (ii) an ablation analysis of the QNN classifier to examine how the ansatz circuit depth 
influences performance.

Dataset and preprocessing
To evaluate the generalization ability and learning behavior of the proposed QCQ-CNN model, we perform 
binary classification on three datasets: MNIST, Fashion-MNIST (F-MNIST), and a brain MRI tumor dataset. 
For MNIST, three binary tasks are constructed using digit pairs (3 vs. 5). F-MNIST is similarly used to construct 
a binary classification task (T-shirt vs. Trouser). The MRI dataset contains pre-labeled images for brain tumors 
and nontumor cases. The MNIST and Fashion-MNIST datasets are obtained from the standard TensorFlow/
Keras library and used to construct binary classification tasks by selecting specific class pairs. In the revised 
experimental setup, each task uses a total of 7250 images, consisting of 5000 for training, 1250 for validation, 
and 1000 for testing. Specifically, for both MNIST and Fashion-MNIST, the training set contains 3125 images 
from each class, from which 20% are held out to form a balanced validation set. The test set includes 500 images 
per class. This configuration ensures a more statistically robust evaluation while enabling early stopping and fair 
comparisons across models. To evaluate the adaptability of the model to practical data scenarios, we additionally 
include a brain MRI tumor classification task using a publicly available dataset from Kaggle47. The original MRI 
dataset consists of four categories: glioma, meningioma, pituitary tumors, and no tumor. For consistency with 
binary classification tasks, we group the samples into two classes: benign tumors (790 images) and malignant 
tumors (2745 images). The dataset is then split into 2089 training images, 653 validation images, and 523 test 
images.

Comparative model design
We evaluate five different models to analyze the contribution of quantum components at different stages of the 
hybrid architecture:

•	 MLP (flatten +dense layer): A purely classical baseline with no quantum components. It directly flattens the 
28 × 28 grayscale image and applies a fully connected layer with 10 softmax outputs. This model serves as the 
simplest baseline to highlight the effect of quantum feature learning.

•	 Quantum filter + MLP (Quanvo + MLP): This model applies the quantum filter, and uses a flatten and dense 
output layer (MLP) for classification. The 14 × 14 × 4 quantum feature map generated by the quantum filter 
is directly flattened and fed into the MLP. It represents a minimal hybrid model with quantum feature extrac-
tion only.

•	 Classical CNN: To ensure a fair comparison, we design a shallow classical CNN with two convolutional lay-
ers using 16 and 32 filters (3 × 3 kernel size), each followed by max-pooling and a final dense output layer. 
The number of trainable parameters is deliberately limited to maintain parity with the quantum-enhanced 
models, allowing us to assess whether quantum modules provide benefits under constrained model capacity.

•	 QCCNN: This hybrid quantum-classical model integrates a fixed quantum filter for feature extraction, fol-
lowed by a classical CNN and a fully connected output layer for classification. Compared to the classical CNN 
baseline, it introduces quantum-enhanced input features; compared to QCQ-CNN, it uses a classical rather 
than quantum classifier. As a strong and well-performing recent model, it serves as a competitive baseline to 
isolate the effect of adding a QNN classifier, by comparing with CNN and QCQ-CNN.

•	 QCQ-CNN (proposed): Our full hybrid model combining quantum convolutional feature extraction and a 
QNN classifier. The first stage applies a 2 × 2 quantum filter with stride 2, implemented using PennyLane’s 
RandomLayers48, producing a 14 × 14 × 4 quantum feature map. This is followed by a shallow CNN 
backbone and a two-qubit variational quantum circuit (VQC) classifier built using Qiskit49 with a ZZFea-
tureMap and RealAmplitudes ansatz. The quantum circuit is connected to PyTorch50 via TorchCon-
nector, enabling end-to-end hybrid optimization.

All models receive inputs resized to 28 × 28 × 1, and the output shape of the quantum convolutional layer is fixed 
at 14 × 14 × 4 to ensure consistency across models. This unified design enables a controlled and interpretable 
comparison. Specifically, the model variants are carefully chosen to isolate the contribution of each architectural 
element. By comparing models MLP and quantum filter + MLP, we evaluate the effectiveness of quantum 
feature extraction in capturing high-dimensional, non-linear representations. Similarly, comparing models with 
and without a QNN classifier allows us to assess whether quantum decision modules offer advantages over 
classical alternatives in terms of expressiveness and interpretability. The inclusion of a classical CNN baseline 
further grounds the evaluation, demonstrating whether quantum enhancements provide tangible benefits under 
equivalent model capacity constraints. These comparisons are critical for validating the contribution of quantum 
modules under realistic NISQ conditions.

Training details
All models are trained for 100 iterations (epochs) using the Adam optimizer with a learning rate of 1e-3, and 
the batch size is set to 4 for classical and QCCNN models. To reduce the simulation overhead in quantum layers, 
QCQ-CNN uses a batch size of 1 for fine-grained gradient updates in hybrid quantum-classical optimization. To 
ensure consistency, all models are optimized using the cross-entropy loss, detailed as follows:
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qf (r) = − 1

N data

N data∑
i=1

c∑
c=1

yi,c log (pi,c) ,� (21)

where qf  represents the output vector of the QCQ-CNN, and r denotes the set of all trainable parameters in 
the model. Ndata is the total number of samples in the dataset, and yi,c is a binary indicator of whether the 
class c is the correct label for the sample i. Where pi,c is the predicted probability of the sample i belonging 
to C , according to the output of the model. And we utilized the Adam optimizer for training our model. For 
the quantum filter block, the quantum feature extractor is non-trainable, while only the CNN weights ϕ and 
QNN variational parameters θc are optimized, above models are implemented in Python, using TensorFlow 
and PennyLane48,51 for quantum feature generation, and PyTorch50 with Qiskit and Tensoflow49,51 for QNN 
classification, to ensure reliability, each simulation is repeated on multiple datasets and classification tasks.

Model comparison and analysis
To evaluate the classification performance of our proposed QCQ-CNN model, we conducted comprehensive 
experiments on three binary classification tasks using MNIST (digits 3 vs. 5), Fashion-MNIST (T-shirt/top vs. 
Trouser), and MRI brain tumor datasets. All models were trained for a fixed 100 epochs with early stopping 
based on validation accuracy.  To ensure statistical robustness, each experiment was repeated ten times with 
different random seeds. The final results are reported as the average accuracy with standard deviation across 
these runs, as summarized in Table 1.

As shown in Fig. 6, the accuracy and loss curves for five models on two binary classification tasks from the 
MNIST dataset. We compare models on the task of classifying digits 3 and 5, which often have similar local 
structures and are harder to separate. This task is considered more challenging due to the visual similarity and 
overlapping local features of the two classes. Among all models, the proposed QCQ-CNN (red) consistently 
achieves the highest accuracy and lowest loss, exhibiting both faster convergence and superior final performance. 
The performance margin is especially clear after the initial 20 epochs, where QCQ-CNN surpasses all baselines 
by a noticeable gap. In contrast, models using only MLP (orange) or quantum filter followed by MLP (purple) 

Fig. 6.  Accuracy and loss curves over 100 training epochs on the MNIST 3-vs-5 binary classification task. The 
red line represents the proposed QCQ-CNN model, which combines quantum feature extraction with a VQC 
classifier. The blue line represents the QCCNN model, which incorporates a quantum filter and classical CNN 
layers. The green line indicates a shallow classical CNN, while the orange line corresponds to a purely classical 
fully connected network (MLP). The purple line shows results from a minimal hybrid model using quantum 
filtering followed by fully connected layers (Quanvo + MLP). The left panel presents the accuracy trends, and 
the right panel displays the corresponding loss curves.

 

Model MNIST (digits 3 vs 5) FMNIST (T-shirt/trouser) MRI brain tumor (benign/malignant)

MLP 96.56 ± 0.13 98.48 ± 0.11 86.10 ± 0.40

Quanvo + MLP 96.86 ± 0.14 98.58 ± 0.13 89.24 ± 0.85

CNN 98.79 ± 0.13 99.19 ± 0.19 89.43 ± 1.00

QCCNN 98.81 ± 0.25 99.28 ± 0.12 90.06 ± 1.00

QCQ-CNN 98.85 ± 0.25 99.41 ± 0.14 95.18 ± 0.65

Table 1.  Classification accuracy (%) on three binary classification tasks with standard deviation over than ten 
runs. Bold values indicate the best performance.
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converge more slowly and to lower accuracy levels, highlighting the necessity of spatial feature extraction. QCCNN 
(blue), which incorporates quantum convolutional features but uses a classical CNN classifier, performs better 
than the purely classical CNN (green), confirming the effectiveness of quantum feature encoding. However, the 
full hybrid architecture of QCQ-CNN provides further gains, suggesting that the VQC-based quantum classifier 
plays a complementary role in enhancing decision boundaries.

As shown in Fig. 7, we extend the evaluation to the Fashion-MNIST dataset using a binary classification task 
between two visually distinct classes: T-shirt/top and Trouser. Overall trends are similar, with QCQ-CNN again 
achieving the best performance in both accuracy and loss metrics. While other models converge relatively quickly 
due to the visual separability of the classes, QCQ-CNN still exhibits more stable optimization and achieves a 
higher final accuracy plateau. The advantage of QCCNN over the classical CNN remains consistent, indicating 
that quantum filters are effective in encoding discriminative features even in real-world object recognition tasks. 
Additionally, the performance difference between QCCNN and QCQ-CNN persists, underscoring the added 
value of the quantum classifier component. This result demonstrates that the quantum filter effectively extracts 
discriminative features in the high-dimensional Hilbert space and improves the nonlinear representational 
capacity of the overall model. As shown in Fig. 8, we further evaluate the models on a practical medical imaging 
task: classifying MRI brain scans into benign and malignant tumors. This scenario involves complex texture 
patterns and substantial intra-class variation, making the classification problem more realistic and challenging. 
In Table 1, the QCQ-CNN model again shows clear superiority, reaching a peak accuracy of 95.83% with a 
substantial margin of $5.12% over QCCNN and $5.75% over the classical CNN. As shown in the Table 1, the 
proposed QCQ-CNN consistently outperforms the baseline models, including purely classical (MLP, CNN) and 
hybrid quantum-classical (Quanvo + MLP, QCCNN) architectures. The Simulation results on practical datasets 
indicate that the integration of quantum features and trainable quantum classifiers enhances performance. In 
particular, performance gains on the more complex F-MNIST and MRI brain tumor classification tasks indicate 
that the QNN classifier plays a central role in surpassing QCCNN. This improvement reflects the ability of 
parameterized quantum decision boundaries to capture nonlinear separability and resolve ambiguity near class 
boundaries. These findings further support the robustness and practical applicability of QCQ-CNN in practical 
learning scenarios beyond idealized benchmarks.

Noise-aware evaluation of QCQ-CNN performance
To assess the robustness and practical feasibility of the proposed QCQ-CNN model under realistic quantum 
conditions, we conduct a series of noise-aware simulations. These experiments specifically target the inference 
stage of the QCQ-CNN, which uniquely involves a trainable quantum classifier subject to runtime quantum 
operations. As a testbed, we choose the MNIST binary classification task distinguishing digits 3 and 5. This 
subset is widely used in quantum machine learning due to its moderate complexity and well-characterized 
difficulty, making it ideal for controlled robustness analysis. In these experiments, we simulate the effects of 
quantum noise and measurement uncertainty using two key approaches:

•	 To provide a reference point, we include an idealized setting where the model is evaluated using noiseless 
statevector simulation and infinite-shot measurements. This curve represents the upper bound of achievable 
performance in the absence of quantum noise and sampling variability.

Fig. 7.  Accuracy and loss curves over 100 training epochs on the Fashion-MNIST binary classification task 
(T-shirt/top vs Trouser). The red line represents the proposed QCQ-CNN model, which integrates quantum 
convolutional filtering and a trainable VQC classifier. The blue line indicates the QCCNN model that combines 
quantum filtering with a classical CNN. The green line denotes a purely classical CNN baseline. The orange line 
corresponds to a fully connected (MLP-only) model, and the purple line shows the performance of a minimal 
hybrid model (Quanvo + MLP), which uses quantum filtering followed by dense layers. The left panel presents 
the accuracy trends, while the right panel displays the corresponding loss curves over training epochs.

 

Scientific Reports |        (2025) 15:31780 12| https://doi.org/10.1038/s41598-025-13417-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


•	 Finite sampling shots: Instead of using idealized expectation values, we simulate measurements with 128 and 
1024 sampling shots to reflect realistic execution on near-term quantum devices.

•	 Depolarizing noise models: Noise is applied to all quantum gates in the variational quantum circuit. Specifi-
cally, single-qubit gates (e.g., RX, RY, RZ) are modeled with depolarizing error rates of γ = 0.01, 0.02, while 
two-qubit CNOT gates are perturbed with error rates of δ = 0.02, 0.03. These values are consistent with 
current estimates of gate fidelity on NISQ hardware.

Simulations are executed using the qiskit.AerSimulator in density matrix mode to accurately capture 
noise propagation and decoherence. For comparison, an ideal (noise-free and infinite-shot) simulation is also 
included to establish an upper bound on performance.

As shown in Fig. 9, under 128-shot conditions, the presence of depolarizing noise leads to moderate but 
controlled degradation in training accuracy during early epochs. The intermediate noise level (γ = 0.01, δ = 0.02) 
shows less fluctuation and faster stabilization, while the clean 128-shot run closely tracks the ideal performance 
after initial epochs. The impact is noticeable for the highest noise setting (γ = 0.02, δ = 0.03), where the initial 
convergence is slower. However, the model still converges stably toward high accuracy, with differences across 

Fig. 9.  Effect of sampling shots and depolarizing noise on QCQCNN training accuracy (shots = 128).

 

Fig. 8.  Accuracy and loss curves over 100 training epochs on the brain MRI classification task (benign vs 
malignant tumors). The red line represents the proposed QCQ-CNN model, which integrates quantum 
convolutional filtering and a variational quantum classifier (VQC). The blue line corresponds to the QCCNN 
model that combines quantum filtering with a classical CNN. The green line denotes a purely classical CNN 
baseline, while the orange and purple lines indicate models using only fully connected layers (MLP) and 
quantum filtering followed by MLP, respectively. The left panel shows model accuracy evolution, and the 
right panel illustrates the loss convergence behavior. QCQ-CNN demonstrates faster convergence and higher 
final accuracy, highlighting the benefit of combining quantum feature extraction with trainable quantum 
classification in complex datasets.
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noise levels narrowing after approximately 5 epochs. Increasing the shot count to 1024, as shown in Fig. 10, 
significantly improves stability and reduces performance variance, with noisy results approaching the ideal case. 
Even with the highest noise setting (γ = 0.02, δ = 0.03), the model maintains strong classification accuracy 
above 95% after convergence. These results suggest that QCQ-CNN maintains a reasonable level of robustness 
under certain realistic noise settings. While these simulations do not fully capture the complexity of actual NISQ 
hardware, such as crosstalk, calibration drift, and measurement errors, they provide an initial indication that the 
model may tolerate typical noise levels to some extent. These findings represent a preliminary step toward more 
comprehensive validation using real quantum devices and support the continued investigation of quantum-
enhanced inference strategies in practical scenarios.

Effect of ansatz depth in QNN classifier
To evaluate how quantum circuit depth affects classification performance and training dynamics, we conduct 
a series of experiments on small-scale datasets. For the MNIST and Fashion-MNIST tasks, only 100 training 
images (50 per class) are used. This setting reflects a resource-constrained regime and is intentionally chosen 
to mitigate the high computational cost of deep quantum circuit simulations, especially when the quantum 
classifier is repeated multiple times. For example, with a repetition setting of res = 3, the variational quantum 
circuit reaches a depth of 7, significantly increasing simulation time. Despite the limited data, these tasks are 
sufficient to observe trends in convergence behavior and depth sensitivity. To validate the model’s generalization 
ability under realistic conditions, the entire MRI brain tumor dataset (containing 3,265 images) is used for 
training. By including this large and heterogeneous dataset, we enhance the credibility and practical relevance of 
the evaluation, particularly in assessing QCQ-CNN’s performance in more complex and clinically meaningful 
scenarios. To evaluate how quantum circuit depth affects classification performance and training dynamics, we 
investigate the influence of ansatz layer repetitions in the QNN classifier of QCQ-CNN. Specifically, we vary the 
depth of the RealAmplitudes ansatz, which directly controls the number of trainable parameters and the 
expressive capacity of the quantum circuit. These numerical evaluations provide preliminary insights into the 
effects of circuit depth on convergence, generalization, and computational cost within NISQ-relevant settings. 
As shown in Fig. 11, we analyze the performance of QCQ-CNN with different ansatz depths on three binary 
classification tasks: (a) MNIST digits 3 vs. 5, (b) Fashion-MNIST categories T-shirt/top vs. Trouser, and (c) brain 
MRI images of benign and malignant tumors. The models adopt ansatz depths of 3 (black), 5 (purple), and 7 
(blue), corresponding to 4, 6, and 8 trainable parameters respectively, as defined in Fig. 4. In the MNIST task 
shown in Fig. 11a, the model with ansatz depth 3 converges rapidly in early epochs but shows a premature plateau 
with suboptimal accuracy. The depth 5 model achieves the highest final accuracy with stable convergence, while 
the depth 7 model exhibits increased fluctuations after around 40 epochs, likely due to overparameterization, 
which can amplify gradient instability and sensitivity to quantum noise. This behavior reflects a potential trade-
off between expressivity and trainability, with the depth 5 model offering the best balance. In the Fashion-
MNIST task (Fig. 11b), all models eventually attain high accuracy, but training dynamics diverge. The depth 3 
model converges quickly but exhibits a plateau and slight underfitting. The depth 7 model achieves low loss but 
suffers from accuracy instability, similar to MNIST. In contrast, the depth 5 model maintains stable convergence 
and outperforms the others in final classification accuracy, again demonstrating its robustness. In the MRI brain 
tumor classification task (Fig. 11c), the performance differences among depths are less pronounced. While the 
depth 3 model shows a slight delay during early training, it eventually reaches comparable performance to the 
deeper circuits. This suggests that with sufficient training, shallow quantum circuits may still generalize well, 
even in complex medical imaging tasks.

In addition, circuit depth introduces non-negligible computational overhead. On the MNIST 3 vs. 5 task, 
total training time increases from 364.47 seconds at depth 3 to 438.70 seconds at depth 5 (a  20.4% increase), 

Fig. 10.  Effect of sampling shots and depolarizing noise on QCQCNN training accuracy (shots = 1024).
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and further to 525.83 seconds at depth 7 (an approximate 44% increase over depth 3). Despite this increased 
cost, deeper circuits do not translate into improved convergence or generalization, revealing diminishing returns 
in quantum expressivity beyond a moderate threshold. Although depths 5 and 7 exhibit similar convergence 
trends and final accuracy across both datasets, their training efficiency differs significantly. On larger or more 
complex datasets such as F-MNIST and MRI brain tumor, even a modest increase in circuit depth results 
in a proportional rise in training time and quantum resource consumption. This is due to the deeper ansatz 
introducing more layers of parameterized rotation and entanglement gates, which increases circuit evaluation 
cost and amplifies noise sensitivity under NISQ constraints. Considering the trade-off between performance, 
convergence stability, and resource overhead, we identify ansatz depth d = 5 (i.e., ansatz repetition parameter 
reps=2) as the optimal configuration for the QNN classifier across our image classification benchmarks. These 
results collectively indicate that while deeper ansatz circuits may reduce training loss, they do not necessarily 
yield better predictive accuracy. The depth 5 configuration consistently provides optimal performance across 
both easy and hard tasks, and is therefore adopted as the default setting in subsequent numerical simulations.

Conclusion
In summary, we proposed and evaluated a hybrid quantum-classical-quantum convolutional neural network 
(QCQ-CNN), which integrates quantum convolutional filters, classical CNN layers, and a trainable quantum 
neural network (QNN) classifier. By introducing trainable quantum parameters at the output stage, QCQ-CNN 
aims to enhance the expressiveness of decision boundaries in image classification tasks. This design builds upon 
previous hybrid architectures such as QCCNN, addressing their limitations by enabling end-to-end learning 
and improved representational capacity through variational quantum circuits. Our numerical simulation across 
three datasets, MNIST, Fashion-MNIST, and MRI brain tumor classification, demonstrates that QCQ-CNN 
achieves competitive performance in terms of accuracy and convergence behavior when compared to both 
classical and hybrid baselines. We conducted a systematic investigation of the impact of quantum ansatz depth 
and found that circuits of moderate depth provide a favorable trade-off between model expressivity and training 
stability. In contrast, deeper circuits tend to exhibit instability and signs of barren plateau effects, which hinder 
optimization. We also conducted noise-aware simulations incorporating depolarizing noise and finite-shot 
measurements to assess robustness under realistic quantum execution conditions. Results suggest that QCQ-
CNN retains its performance advantage and convergence behavior even in the presence of such quantum noise, 
providing preliminary evidence for its practical viability on near-term quantum hardware. Nonetheless, this 
work has several limitations. Our evaluations are still constrained to simulated environments and relatively 
small-scale circuits, which may not directly generalize to large-scale, high-dimensional tasks. In addition, the 
computational overhead of hybrid models and the current limitations of quantum simulators restrict our ability 
to explore more complex architectures or larger datasets. Further research is needed to validate these findings 

Fig. 11.  Accuracy and loss curves of QCQ-CNN with different ansatz depths on three binary classification 
tasks: (a) MNIST digits 3 and 5, (b) Fashion-MNIST categories T-shirt/top and Trouser, and (c) MRI brain 
tumor images of benign and malignant tumors. In all subfigures, the dotted black line represents QCQ-
CNN with ansatz depth 3 (number of trainable parameters = 4), the dotted purple line shows depth 5 
(number of trainable parameters = 6), and the dotted blue line corresponds to depth 7 (number of trainable 
parameters = 8). Insets provide zoomed-in views of convergence dynamics; original axis scales are preserved.
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on real quantum hardware, extend the model to multi-class or sequential data, and optimize quantum circuit 
design under resource constraints.

Overall, QCQ-CNN offers a modular and adaptable framework for integrating quantum learning components 
into classical deep learning pipelines. While our findings are preliminary, they highlight the potential of trainable 
quantum circuits in enhancing hybrid models and motivate continued exploration of hybrid quantum-classical 
learning in the NISQ era.

Data availability
The datasets generated during the current study are available from the corresponding authors on reasonable 
request. The dataset used for the simulation is available at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​m​a​s​​o​u​d​n​i​c​​k​p​a​r​v​a​​r​
/​b​r​a​i​n​-​t​u​m​o​r​-​m​r​i​-​d​a​t​a​s​e​t.

Code availability
The code used to develop, train, and evaluate the hybrid quantum-classical convolutional neural network 
(QCQ-CNN) is publicly available at the following GitHub repository: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​C​h​r​i​s​​R​y​u​2​1​​0​1​/​h​y​b​​r​i​
d​_​q​u​​a​n​t​u​m​-​​c​l​a​s​s​​i​c​a​l​-​q​​u​a​n​t​u​m​​_​c​n​n​/​t​​r​e​e​/​m​a​i​n.
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