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What the progenitors of Type Ia supernovae (SNe Ia) are, whether they are near-

Chandrasekhar mass or sub-Chandrasekhar mass white dwarfs, has been the matter
of debate for decades. Various observational hints are supporting both models as the

main progenitors. In this paper, we review the explosion physics and the chemical abun-

dance patterns of SNe Ia from these two classes of progenitors. We will discuss how
the observational data of SNe Ia, their remnants, the Milky Way Galaxy, and galactic

clusters can help us to determine the essential features where numerical models of SNe

Ia need to match.
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1. Introduction

Type Ia supernovae (SNe Ia) are well-understood as the thermonuclear explosions

of carbon-oxygen white dwarfs (CO WDs).1–3 They produce the majority of iron-

peak elements in the galaxy, in particular 55Mn. Their light curves can be stan-

dardized for measuring distance in the cosmological scale.4,5 Understanding their

progenitors, the explosion mechanisms and their obseravables are important for

understanding the Universe in the larger scale.6,7 In this review paper, we will

explore possible progenitors of SNe Ia, whether they are the explosions of near-

Chandrasekhar mass (Ch-mass) WDs or sub-Chandrasekhar mass (subCh-mass)

WDs. In Table 1 we tabulate the important features to contrast between the

Ch-mass and subCh-mass WDs.

The rise of the two classes of models comes from the diversity of observed SNe Ia.

In the literature, a number of explosion models have been proposed to explain the

normal and peculiar SNe Ia. For the Ch-mass WD, representative models include the

pure turbulent deflagration model (PTD),8–15 PTD with deflagration-detonation

transition,16–22 gravitationally confined detonation model23–27 and pulsation reverse
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detonation models.28,29 The subCh-mass WD models include the double-detonation

model,30–38 violent merger model39–42 and WD head-on collision model.43–45 On top

of these, unconventional models such as magnetized WDs,46 super-Chandrasekhar

mass WDs,47 differentially rotating WDs48,49 and interaction with dark matter

gravity50,51 have been proposed to explain some unusual SNe Ia.

Table 1. Comparing essential features of Ch-mass and subCh-mass WDs.

unit Ch-mass WD subCh-mass WD

mass M� 1.30 − > 1.38 0.9 – 1.2

central density g cm−3 109 − 1010 107 – 108

composition 12C+16O+22Ne core: 12C+16O+22Ne

envelope (env): 4He

reaction subsonic deflagration supersonic detonation
first site (near-)center off-center (He-env)

The study of SNe Ia as explosions of (sub)Ch-mass WDs is often linked to the

open question about the progenitors of SNe Ia: the single degenerate (SD) vs. the

double degenerate (DD) scenario. The SD scenario means that the primary WD

develops its nuclear runaway by mass accretion from its companion star, which can

be a slightly evolved main-sequence, a red-giant, or a He-star.49,52 The DD scenario

means that the primary WD triggers the runaway by dynamical interaction with

its companion WD.

We remind that the question on whether SNe Ia develop from Ch-mass WDs is

not equivalent to arguing SNe Ia mainly develop in the SD scenario. For example, in

the SD scenario, when the WD explodes as an SN Ia depends on the mass accretion

rate from its companion star and the WD initial mass (see the left panel of Figure

1). A WD having (1) a high mass accretion rate above ∼ 10−9 M� yr−1 or (2)

having a low mass accretion rate and a high initial mass > 1.1 M� is likely to

develop nuclear runaway in the Ch-mass limit. Otherwise, the WD is more likely to

explode as a subCh-mass WD.53 Similar features have been seen also for WDs in

the DD scenario.

To understand why the C-deflagration is associated with the Chandrasekhar

mass WD, we show in the right panel of Figure 1 the relative pressure change of

the CO-rich matter as a function of the matter density. During the thermonuclear

runaway, 12C and 16O burn to form iron-peak elements peaked at 56Ni, releasing

an amount of ∼ 1018 erg g−1. When the density is high (∼ 109 g cm−3), the elec-

tron degeneracy pressure dominates the matter pressure, and the overall pressure

becomes insensitive to its temperature. As a result, the relative pressure jump de-

creases as the matter becomes more degenerate. Without an abrupt pressure jump,

the nuclear runaway in the Ch-mass WD may not spontaneously trigger a shock

wave and hence no detonation may form. The hot matter may ignite 12C in the

nearby cold matter only by thermal conduction.
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Fig. 1. (left panel) The final fate of the WD in the SD scenario with the mass accretion rate

and the initial CO WD mass as parameters (derived and edited from Ref. 53). (right panel) The

relative pressure change ∆P/P0 and relative internal energy change q/u0 before and after nuclear
runaway as a function of the matter density for the He-rich (solid line) and CO-rich (dashed line)

matter (Ref. 30). The numbers on the top corresponds to the mass of the WD when the density

corresponds to the central density of the WD. The red arrow indicates the relative pressure change
of the CO-rich matter.

Unlike the detonation, the subsonic deflagration is subject to hydrodynamical

instabilities such as the Rayleigh-Taylor (RT), Kelvin-Helmholtz (KH) and Landau-

Derrieus54–56 instabilities. The analytic model suggests that the buoyancy force can

drive the early flame away from the center.57 In Figure 2 we plot the electron

fraction Ye profile of a canonical PTD model where the deflagration has quenched

after the expansion of the WD. The Ye profile is a useful scalar for tracking how the

fluid elements move inside the star. We observe the elongated “mushroom” shape

as features of the RT-instabilities and the spiral along and inside the “mushrooms”

as features of the KH-instabilities.

However, a WD may not naturally explode if there is only a slow subsonic

nuclear flame because the WD expands and quenches the flame before the whole

WD is burnt.8,12 To alleviate this issue, a deflagration-detonation transition16 and

a flame-acceleration scheme9,58,59 have been proposed for assisting nuclear burning

to spread around the entire WD before the WD expands.

2. Typical Type Ia Supernova Explosion

Both the Ch-mass and subCh-mass WD models have their individual strengths

and concerns, despite both of them can reproduce the observed features of normal

SNe Ia,60–62 including the Philip’s relation.37,63 For example, the Ch-mass model

can produce Mn with an amount consistent with the solar abundance,64 while the

subCh-mass models do not produce a significant amount of Mn. But the DDT

mechanism remains a matter of debate whether or not the turbulence is sufficient

to pre-condition the CO rich matter.57,65–69
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Fig. 2. A snapshot of the electron fraction Ye profile in a typical PTD model demonstrating simul-

taneously the Rayleigh-Taylor and Kelvin-Helmholtz instabilities due to interaction of turbulent
fluid motion with the deflagration front.

2.1. Typical Explosion Mechanism of Ch-mass and subCh-mass

Models

We now examine the typical explosion mechanism in both the Ch-mass and subCh-

mass WDs. Even though we have described a number of explosion mechanisms in

the previous section, in general they are only different by the progenitor or the

initial explosion kernel. The underlying mechanism, namely the deflagration and

detonation, remains unchanged. Here we examine how the WD explodes accordingly.

In Figures 3 and 4 we plot the temperature profiles of the representative Ch-mass

WD explosion using the PTD model with DDT for a WD of 1.37 M�, metallicity

Z = 0.02 and a c3 deflagration kernel22 based on two-dimensional simulations.70

The WD is burnt by subsonic flame for around 1 s, consuming about ∼ 30% of the

CO-rich matter in mass. After that, DDT is assumed to take place and the remaining

matter is burnt within ∼ 0.1 s. Eventually, the WD undergoes homologous expansion

which quenches both deflagration and detonation.

In Figures 5 and 6 we plot similar profiles to Figure 3-4 but for the subCh-

mass model with the initial mass 1.10 M�, Z = 0.02 and a single He-detonation

bubble.35 In the first 1 s, the detonation burns the He-rich matter along the envelope.
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Fig. 3. (left panel) The initial temperature profile of the quadrant cross-section in a typical
Ch-mass model using the PTD model with DDT for an initial mass M = 1.37 M�, metallicity

Z = 0.02, and a “three-finger” initial flame kernel.22 (top right panel) Same as the top left panel
when the DDT is assumed to be triggered.

Fig. 4. (left panel) Same as Figure 3 but during the detonation phase. (right panel) Near complete
disruption of the WD.

The detonation strength increases during the collision, which creates a shock that

penetrates into the CO-core. This creates the C-detonation which later disrupts the

entire WD.

2.2. General Thermodynamical Features

Typical multi-dimensional SN Ia simulations solve the Eulerian hydrodynamics

equations with a simplified nuclear reaction network. To obtain the detailed chemical

Table 2. Major isotopes of iron-peak elements and their corresponding electron fraction.

Isotope 54Fe 55Mn 55Fe 55Fe 56Fe 56Co 56Ni 57Fe 58Ni 60Ni

Ye 0.481 0.454 0.472 0.490 0.464 0.482 0.500 0.456 0.483 0.467
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Fig. 5. (left panel) The initial temperature profile of a typical subCh-mass model using the double
detonation model with the initial mass M = 1.10 M�, Z = 0.02, and a “single bubble” initial

detonation kernel.35 (right panel) Same as the top left panel but during the amplification of the
He detonation.

Fig. 6. (left panel) Same as Figure 5 but during the onset of the C-detonation. (right panel) Same
as the left panel but during the C-detonation phase.

features of the explosion, a passive tracer particle scheme71–74 is necessary. This

scheme allocates a number of Lagrangian tracers to follow the fluid motion. The

notation “passive” means that the tracers do not affect the fluid motion; they only

record the thermodynamical condition along their trajectories.

The tracer particles record (ρ(t), T (t)) as a Lagrangian fluid packet along its path

for reconstructing the exact chemical abundances. For SNe Ia, the trajectory is less

convoluted that its peak density and temperature (ρpeak, Tpeak) can characterize the

typical nucleosynthesis features inside the tracer. We make numerical experiments to

show how various nucleosynthesis quantities depend on the parameters (ρpeak, Tpeak)

parameter space.

We assume that the tracers start from given (ρpeak, Tpeak) and then adiabatically

expand. The expansion timescale is chosen according to the typical explosion energy

1051 erg. The nuclear reactions are computed using the 495-isotope network.75

In Figures 7 and 8 we plot the final mean atomic number Ā, Ye, asymptotic mass

fraction of 55Mn and 56Fe for tracers under different initial conditions. The region is
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Fig. 7. (left panel) The final mean atomic mass number Ā of the tracer particles starting from

different ρpeak and Tpeak (in units of 109 K). (right panel) Same as the left panel, but for the final

electron fraction Ye of the tracer.

Fig. 8. (left panel) Same as Figure 7, but for the final mass fraction of stable 55Mn. (right panel)

Same as the left panel but for the final mass fraction of stable 56Fe.

divided into three regions.76,77 The low-ρpeak region corresponds to the incomplete

Si-burning regime, where the nuclear reaction terminates before reaching Fe-group

elements, such as Si, S, Ar and so on. The high-Tpeak (in units of 109 K) and low-

ρpeak region corresponds to the α-rich freezeout regime. As the name suggests, the

nuclear reaction is confined to be along the α-chain from 12C to 56Ni. The high-

Tpeak and high-ρpeak region corresponds to the nuclear statistical equilibrium (NSE)

regime. This regime plays an important role in the Ch-mass WD as it allows isotopes

away from the α-chain to form through weak interaction (electron capture).

As the Ye-profile indicates, the NSE zone is also the region where matter with

Ye < 0.5 can be formed. The low Ye environment is vital for forming the parents of
55Mn (see Table 2 for the representative Ye for the major neutron-rich isotopes of

iron-peak elements). The 55Mn profile also shows that the NSE zone is the primary

site for generating a significant amount of stable 55Mn after decay. On the other

hand, 56Fe is mostly formed in the α-rich freezeout and NSE (Ye ≈ 0.5) regions.
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2.3. Thermodynamical Trajectories of SN Ia Models

Fig. 9. (left panel) The thermodynamical trajectories of tracer particles of the Ch-mass model

with the colour being the asymptotic 55Mn abundance. Same as the left panel but for the subCh-
mass model.

Having explored which thermodynamical parameter space is responsible for iron-

peak elements, we show in Figure 9 the thermodynamics trajectories of tracers ob-

tained from the typical Ch-mass and subCh-mass models. The chemical abundance

of each tracer is directly computed according to its individual (ρ, T ) time evolution.

The Ch-mass model (left panel) has two distinctive parts: the high density thin

tail and the thick body at low density. At high density (ρpeak > 109 g cm−3),

the tracers are in the NSE regime and have a significantly higher 55Mn and low

fluctuations in Tpeak for the same ρpeak. These are the tracers burnt by the subsonic

deflagration. The absence of shock ensures that nuclear burning does not generate

strong acoustic waves. On the other hand, the majority of tracers burnt by the

detonation undergo incomplete Si-burning. The aspherical explosion allows tracers

with the same initial mass coordinate to be burnt at a range of time. This leads to

a wide temperature range for the same ρpeak. There is also a narrow band of tracers

for 7 < log10 ρpeak < 9 and Tpeak ≈ 5 × 109 K also responsible for synthesizing a

small fraction of 55Mn.

The subCh-mass model (right panel) has a uniform structure where the Tpeak
scales with ρpeak with some fluctuations. Only a small part of tracers reaches the

NSE regime but their density is not high enough for the 55Mn synthesis. There is

also a narrow band of tracers containing 55Mn by the synthesis of 55Co. In general

the global 55Mn in the subCh-mass model is lower than that of the Ch-mass model.

2.4. Typical Nucleosynthesis in Ch-mass and subCh-mass Models

Now we have examined the thermodynamical differences between the Ch-mass and

subCh-mass WDs. In Figure 10 we compare the qualitative differences in the nu-

cleosynthesis pattern.
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Fig. 10. (top panel) The final chemical abundance pattern of the typical Ch-mass WD22 assuming

the aspherical explosion. (bottom panel) Same as the top panel but for the typical subCh-mass
WD.35 [Xi/

56Fe] = log10[(Xi/
56Fe) / (Xi/

56Fe)�]. The two horizontal lines correspond to 50%

and 200% of the solar value.
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Both Ch-mass and subCh-mass WDs share some common features. They are

responsible for the production of intermediate mass elements (IMEs) from Si to

Ca, and the iron-peak elements from Ti to Ni. Odd number elements of IMEs are

underproduced in SNe Ia. Some individual features allow us to distinguish the two

models. (1) The aspherical explosion of the subCh-mass model can lead to signatures

of strong Ti, V and Cr. (2) Mn is well-produced in the Ch-mass model but not in

the subCh-mass model.

3. Applications of Nucleosynthesis

We have surveyed the major differences of the nucleosynthetic signature between the

Ch-mass and subCh-mass WDs. Comparisons with observational data allow us to

understand the progenitors of observed SNe Ia, which directly constrains the mod-

eling. We can compare the optical signatures directly (i.e., light curves and spectra)

by matching the radiative transfer model with SN Ia data.41,60 One can also ex-

tract the chemical abundances from the spectra, and compare with nucleosynthetic

results.62,78 We shall focus on the latter method here.

3.1. Supernova Remnant Sagittarius A East

Within thousand years after the SN explosion, the shock-heated gas remains ob-

servable in the X-ray band, where the spectra reveal the metal composition inside

the ejecta. Such a technique has been applied to the study of galactic supernova

remnants (SNRs) including Tycho,80 Kepler81 and N103B.82

In Ref. 79 the SNR in Sagittarius A (Sgr A) East (G0.0+0.0) is observed based

on the X-ray data taken by the Chandra telescope. The observed abundance ratios

relative to Fe (with respect to the solar ratios) [Xi/Fe] are shown in Figure 11. The

SNR features sub-solar intermediate mass elements (IMEs) and slightly super-solar

iron-peak elements (Cr, Mn, and Ni).

The sub-solar IMEs exclude the possibility of associating a core-collapse SN as

the origin of this remnant. On the left panel, the abundances of two distinctive

classes of models, the subCh-mass and Ch-mass DDT models are plotted. The

model uncertainties are shown by the shaded area. The subCh-mass models clearly

overproduce the IME. Among the Ch-mass DDT models, the model that produces

enough Mn and Ni overproduces Cr and the IME. There is a model whose Cr and

Ni are consistent with the data points and IMEs are marginal, but its Mn is too

small.

The Ch-mass PTD model (i.e., no DDT) with the initial central density of

∼ 5 × 109 g cm−3 is shown to be compatible with the data (right panel of Figure

11). [Such a high central density is realized in the rotating WD model.83] Note that

this Ch-mass PTD model can well-explain the observed features of SNe Iax. Thus

this object is the first identified SN Iax in the Milky Way Galaxy observed as SNR.

This example also shows how the abundance guides us to identify the explosion

mechanism.
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Fig. 11. (left panel) The chemical abundance pattern of the supernova remnant (SNR) Sagittarius

A (from Ref. 79) for the data points compared with those of the subCh-mass35 and Ch-mass DDT22

models shown by the shaded regions. (right panel) Same as the left panel but for the Ch-mass

PTD15 models.

3.2. Supernova Remnant 3C 397

Fig. 12. (left panel) The Cr/Fe distribution of the tracers taken from the Ch-mass model with
the initial central density 1× 109 g cm−3.22 The color represents the tracer Fe mass fraction. The

horizontal line is the measured value in SNR 3C 397 from Ref. 84. (right panel) Same as the left
panel but for the model with the initial central density 5 × 109 g cm−3.

The SNR 3C 397 is a nearby object (8 kpc) on the galactic plane. Its close

distance allows astronomers to extract the spectra from individual parts similar to

Sgr A. This object features a high Mn/Ni ratio, which is a key evidence of the

Ch-mass explosion.85

In a recent observation using the XMM-Newton telescope, the spectra from the

South and West hot blobs are measured, which give the constraint on the Cr/Fe mass

ratio ∼ 0.106±0.011
0.009.84 The high value is used to distinguish the explosion progenitor

shown in Figure 12. By comparing the tracer in different Ch-mass models, it becomes

clear that the low-mass model (ρc = 1×109 g cm−3) does not have tracers reaching

the observed high value. Meanwhile the high density tail in the high-mass model
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(ρc = 5 × 109 g cm−3) has tracers crossing the expected value. This provides a

strong indication that this object is the explosion of the high-mass Ch-mass WD.

This also demonstrates how a precise measurement of element abundance ratios can

guide us to select the potential progenitor.

3.3. Milky Way Galaxy

In the last two sections we have shown how the SNR abundance determines its pro-

genitor and the explosion mechanism. While there is no distinctive SNR showing

chemical abundances exclusively for subCh-mass WD models, it is possible that a

large sample size is needed to understand the distribution of each model. To under-

stand the SN Ia explosion globally, we need the chemical abundances from a larger

system, for example, the Milky Way Galaxy. The elements ejected by supernovae

become the building block of the next-generation stars.6 The surface abundance

of stars in the solar neighbourhood may thus indicate how much each element is

ejected by generations of SNe Ia.

In Ref. 86 the galactic chemical evolution model is computed with supernova

abundance patterns taken from literatures. The Mn/Fe evolution is plotted in

Figure 13. Two contrasting classes of models are shown, one assuming the pure

Ch-mass WD explosion, and the other two assuming pure subCh-mass WD. To re-

produce the trend as well as the magnitude of the data, a non-negligible fraction of

the Ch-mass WD is necessary.

We remark that the supernova history can be strongly dependent on the galaxy

evolution history. Some galaxies (e.g., Sculptor dwarf spheroidal galaxy) have a low

Mn/Fe ratio that indicates the dominance of the subCh-mass WD explosion in their

evolution histories.90,91 Meanwhile, some early rise of [Mn/Fe] in this subclass of

galaxies can be a result of the Ch-mass SN Iax explosion.92

3.4. Perseus Galactic Cluster

The Milky Way Galaxy can provide a detailed reference in how generations of stars

contributes to the cosmic metal enrichment. However, large N-body simulations

suggest that each galaxy is unique in their evolution history. To understand how

each supernova model contributes in the cosmic scale, data from an even larger

system is important to average out the statistical fluctuations of individual galaxies.

In Ref. 93 the X-ray spectra of the Perseus Cluster is studied by the Hitomi

telescope. The highly resolved spectral lines provide the abundance measurement

with uncertainties down to ∼ 10%. The high precision can distinguish supernova

models and mechanisms explicitly. The fitting using SN Ia and CCSN models from

literature is shown in Table 3. The best-fit model is found to be the scenario as-

suming pure Ch-mass WD explosion. If the fraction of the Ch-mass WD is relaxed

as a model parameter, the expected Ch-mass WD still contributes about 10 – 40%

of the SN Ia population, depending on the exact CCSN models.
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Fig. 13. The [Mn/Fe] against metallicity [Fe/H] for the galactic chemical evolution models taken

from Ref. 86. Solid lines come from theoretical models assuming pure Ch-mass and subCh-mass
explosion history. Data points are the stellar abundances from the solar neighbourhood.87–89

Table 3. Models assuming different stellar and supernova models and their corresponding

(Ch-mass) SN Ia rates (data taken from [Ref. 93]).

Model fIa fChand χ2

pure Ch-mass[Ref. 22]+ CCSN[Ref. 94] 0.21 ± 0.02 N/A 11.78

Ch-mass[Ref. 95] + subCh-mass[Ref. 32] + CCSN[94] 0.25 ± 0.06 0.36 ± 0.14 23.96

Ch-mass[Ref. 95] + subCh-mass[Ref. 32] + CCSN[96] 0.38 ± 0.06 0.09 ± 0.09 15.73

4. Conclusion

In this review article we have presented the physical background about the Ch-

mass and subCh-mass WD models as the SN Ia explosion progenitors. We discussed

the differences in their explosion mechanisms and their associated nucleosynthetic

signatures. We have also demonstrated how the chemical abundances of SNRs,

Milky Way Galaxy, and galactic clusters can help us distinguish (1) the individual

SN explosion scenario and (2) the relative importance of each explosion model.

Nucleosynthesis will remain an important subject in the future supernova study

thanks to observational projects such as XRISM (X-Ray Imaging and Spectroscopy

Mission). Given the power of resolving spectral lines as its predecessor Hitomi, we

can anticipate that the high quality spectral data, and hence the precise chemical
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abundance measurements, will shed light on supernova models to an unprecedented

accuracy.
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