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What the progenitors of Type Ia supernovae (SNe Ia) are, whether they are near-
Chandrasekhar mass or sub-Chandrasekhar mass white dwarfs, has been the matter
of debate for decades. Various observational hints are supporting both models as the
main progenitors. In this paper, we review the explosion physics and the chemical abun-
dance patterns of SNe Ia from these two classes of progenitors. We will discuss how
the observational data of SNe Ia, their remnants, the Milky Way Galaxy, and galactic
clusters can help us to determine the essential features where numerical models of SNe
Ta need to match.

Keywords: Supernova; Hydrodynamics; Nucleosynthesis; Supernova Remnant; Galactic
Chemical Evolution

1. Introduction

Type Ia supernovae (SNe Ia) are well-understood as the thermonuclear explosions
of carbon-oxygen white dwarfs (CO WDs).}® They produce the majority of iron-
peak elements in the galaxy, in particular °*Mn. Their light curves can be stan-
dardized for measuring distance in the cosmological scale.*® Understanding their
progenitors, the explosion mechanisms and their obseravables are important for
understanding the Universe in the larger scale.>” In this review paper, we will
explore possible progenitors of SNe Ia, whether they are the explosions of near-
Chandrasekhar mass (Ch-mass) WDs or sub-Chandrasekhar mass (subCh-mass)
WDs. In Table 1 we tabulate the important features to contrast between the
Ch-mass and subCh-mass WDs.

The rise of the two classes of models comes from the diversity of observed SNe Ia.
In the literature, a number of explosion models have been proposed to explain the
normal and peculiar SNe Ia. For the Ch-mass WD, representative models include the
pure turbulent deflagration model (PTD),®*® PTD with deflagration-detonation
transition, 622 gravitationally confined detonation model?3 27 and pulsation reverse
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detonation models.?%2? The subCh-mass WD models include the double-detonation
model, 3938 violent merger model® 42 and WD head-on collision model.*34® On top
of these, unconventional models such as magnetized WDs,*¢ super-Chandrasekhar
mass WDs,*7 differentially rotating WDs*®4? and interaction with dark matter

gravity®® %! have been proposed to explain some unusual SNe Ia.

Table 1. Comparing essential features of Ch-mass and subCh-mass WDs.

unit Ch-mass WD subCh-mass WD
mass Mg 1.30 — > 1.38 0.9 -1.2
central density gcm~™3  10° — 1010 107 — 108
composition 12C4160+422Ne core: 12C+160+422Ne
envelope (env): 4He
reaction subsonic deflagration  supersonic detonation
first site (near-)center off-center (He-env)

The study of SNe Ia as explosions of (sub)Ch-mass WDs is often linked to the
open question about the progenitors of SNe Ta: the single degenerate (SD) vs. the
double degenerate (DD) scenario. The SD scenario means that the primary WD
develops its nuclear runaway by mass accretion from its companion star, which can
be a slightly evolved main-sequence, a red-giant, or a He-star.% %2 The DD scenario
means that the primary WD triggers the runaway by dynamical interaction with
its companion WD.

We remind that the question on whether SNe Ia develop from Ch-mass WDs is
not equivalent to arguing SNe Ia mainly develop in the SD scenario. For example, in
the SD scenario, when the WD explodes as an SN Ia depends on the mass accretion
rate from its companion star and the WD initial mass (see the left panel of Figure
1). A WD having (1) a high mass accretion rate above ~ 1079 Mg yr=! or (2)
having a low mass accretion rate and a high initial mass > 1.1 Mg is likely to
develop nuclear runaway in the Ch-mass limit. Otherwise, the WD is more likely to
explode as a subCh-mass WD.?? Similar features have been seen also for WDs in
the DD scenario.

To understand why the C-deflagration is associated with the Chandrasekhar
mass WD, we show in the right panel of Figure 1 the relative pressure change of
the CO-rich matter as a function of the matter density. During the thermonuclear
runaway, 2C and 'O burn to form iron-peak elements peaked at °°Ni, releasing
an amount of ~ 10'® erg g~!. When the density is high (~ 10° g cm™3), the elec-
tron degeneracy pressure dominates the matter pressure, and the overall pressure
becomes insensitive to its temperature. As a result, the relative pressure jump de-
creases as the matter becomes more degenerate. Without an abrupt pressure jump,
the nuclear runaway in the Ch-mass WD may not spontaneously trigger a shock
wave and hence no detonation may form. The hot matter may ignite 2C in the
nearby cold matter only by thermal conduction.
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Fig. 1. (left panel) The final fate of the WD in the SD scenario with the mass accretion rate
and the initial CO WD mass as parameters (derived and edited from Ref. 53). (right panel) The
relative pressure change AP/Py and relative internal energy change q/ug before and after nuclear
runaway as a function of the matter density for the He-rich (solid line) and CO-rich (dashed line)
matter (Ref. 30). The numbers on the top corresponds to the mass of the WD when the density
corresponds to the central density of the WD. The red arrow indicates the relative pressure change
of the CO-rich matter.

Unlike the detonation, the subsonic deflagration is subject to hydrodynamical
instabilities such as the Rayleigh-Taylor (RT), Kelvin-Helmholtz (KH) and Landau-

Derrieus®*26

instabilities. The analytic model suggests that the buoyancy force can
drive the early flame away from the center.’” In Figure 2 we plot the electron
fraction Y, profile of a canonical PTD model where the deflagration has quenched
after the expansion of the WD. The Y, profile is a useful scalar for tracking how the
fluid elements move inside the star. We observe the elongated “mushroom” shape
as features of the RT-instabilities and the spiral along and inside the “mushrooms”
as features of the KH-instabilities.

However, a WD may not naturally explode if there is only a slow subsonic
nuclear flame because the WD expands and quenches the flame before the whole
WD is burnt.® 12 To alleviate this issue, a deflagration-detonation transition'® and
a flame-acceleration scheme® 589 have been proposed for assisting nuclear burning
to spread around the entire WD before the WD expands.

2. Typical Type Ia Supernova Explosion

Both the Ch-mass and subCh-mass WD models have their individual strengths
and concerns, despite both of them can reproduce the observed features of normal
SNe 1a,%962 including the Philip’s relation.?”63 For example, the Ch-mass model
can produce Mn with an amount consistent with the solar abundance,% while the
subCh-mass models do not produce a significant amount of Mn. But the DDT
mechanism remains a matter of debate whether or not the turbulence is sufficient
to pre-condition the CO rich matter.57 6569
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Fig. 2. A snapshot of the electron fraction Y profile in a typical PTD model demonstrating simul-
taneously the Rayleigh-Taylor and Kelvin-Helmholtz instabilities due to interaction of turbulent
fluid motion with the deflagration front.

2.1. Typical Explosion Mechanism of Ch-mass and subCh-mass
Models

We now examine the typical explosion mechanism in both the Ch-mass and subCh-
mass WDs. Even though we have described a number of explosion mechanisms in
the previous section, in general they are only different by the progenitor or the
initial explosion kernel. The underlying mechanism, namely the deflagration and
detonation, remains unchanged. Here we examine how the WD explodes accordingly.

In Figures 3 and 4 we plot the temperature profiles of the representative Ch-mass
WD explosion using the PTD model with DDT for a WD of 1.37 Mg, metallicity
Z = 0.02 and a ¢3 deflagration kernel?? based on two-dimensional simulations.”
The WD is burnt by subsonic flame for around 1 s, consuming about ~ 30% of the
CO-rich matter in mass. After that, DDT is assumed to take place and the remaining
matter is burnt within ~ 0.1 s. Eventually, the WD undergoes homologous expansion
which quenches both deflagration and detonation.

In Figures 5 and 6 we plot similar profiles to Figure 3-4 but for the subCh-
mass model with the initial mass 1.10 Mg, Z = 0.02 and a single He-detonation
bubble.?® In the first 1 s, the detonation burns the He-rich matter along the envelope.
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Fig. 3. (left panel) The initial temperature profile of the quadrant cross-section in a typical
Ch-mass model using the PTD model with DDT for an initial mass M = 1.37 M, metallicity
Z = 0.02, and a “three-finger” initial flame kernel.2? (top right panel) Same as the top left panel
when the DDT is assumed to be triggered.
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Fig. 4. (left panel) Same as Figure 3 but during the detonation phase. (right panel) Near complete
disruption of the WD.

The detonation strength increases during the collision, which creates a shock that
penetrates into the CO-core. This creates the C-detonation which later disrupts the
entire WD.

2.2. General Thermodynamaical Features
Typical multi-dimensional SN Ia simulations solve the Eulerian hydrodynamics

equations with a simplified nuclear reaction network. To obtain the detailed chemical

Table 2. Major isotopes of iron-peak elements and their corresponding electron fraction.

Isotope  %*Fe 55Mn  %%Fe 55Fe 56Fe 56Co  96Nj 57Fe 58Ni 60Ni

Ye 0.481 0.454 0472 0490 0.464 0.482 0.500 0.456 0.483 0.467
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Fig. 5. (left panel) The initial temperature profile of a typical subCh-mass model using the double
detonation model with the initial mass M = 1.10 My, Z = 0.02, and a “single bubble” initial
detonation kernel.3% (right panel) Same as the top left panel but during the amplification of the
He detonation.
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Fig. 6. (left panel) Same as Figure 5 but during the onset of the C-detonation. (right panel) Same
as the left panel but during the C-detonation phase.

features of the explosion, a passive tracer particle scheme?! 74

is necessary. This
scheme allocates a number of Lagrangian tracers to follow the fluid motion. The
notation “passive” means that the tracers do not affect the fluid motion; they only
record the thermodynamical condition along their trajectories.

The tracer particles record (p(t), T'(t)) as a Lagrangian fluid packet along its path
for reconstructing the exact chemical abundances. For SNe Ia, the trajectory is less
convoluted that its peak density and temperature (ppeak, Tpeax) can characterize the
typical nucleosynthesis features inside the tracer. We make numerical experiments to
show how various nucleosynthesis quantities depend on the parameters (ppeak, Tpeak)
parameter space.

We assume that the tracers start from given (ppeak; Tpeax) and then adiabatically
expand. The expansion timescale is chosen according to the typical explosion energy
10°! erg. The nuclear reactions are computed using the 495-isotope network.”

In Figures 7 and 8 we plot the final mean atomic number A, Y,, asymptotic mass
fraction of ®*Mn and ®6Fe for tracers under different initial conditions. The region is
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(left panel) Same as Figure 7, but for the final mass fraction of stable >Mn. (right panel)

Same as the left panel but for the final mass fraction of stable 56Fe.
divided into three regions.”% 77
Si-burning regime, where the nuclear reaction terminates before reaching Fe-group
elements, such as Si, S, Ar and so on. The high-T}eax (in units of 10? K) and low-
Ppeak Tegion corresponds to the a-rich freezeout regime. As the name suggests, the
nuclear reaction is confined to be along the a-chain from 2C to 5°Ni. The high-
Tpeax and high-ppeak region corresponds to the nuclear statistical equilibrium (NSE)
regime. This regime plays an important role in the Ch-mass WD as it allows isotopes
away from the a-chain to form through weak interaction (electron capture).

As the Y.-profile indicates, the NSE zone is also the region where matter with
Y, < 0.5 can be formed. The low Y, environment is vital for forming the parents of
5®Mn (see Table 2 for the representative Y, for the major neutron-rich isotopes of
iron-peak elements). The ®*Mn profile also shows that the NSE zone is the primary
site for generating a significant amount of stable ®*Mn after decay. On the other
hand, 56Fe is mostly formed in the a-rich freezeout and NSE (Y, ~ 0.5) regions.

The low-ppeak Tegion corresponds to the incomplete
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2.3. Thermodynamical Trajectories of SN Ia Models
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Fig. 9. (left panel) The thermodynamical trajectories of tracer particles of the Ch-mass model
with the colour being the asymptotic > Mn abundance. Same as the left panel but for the subCh-
mass model.

Having explored which thermodynamical parameter space is responsible for iron-
peak elements, we show in Figure 9 the thermodynamics trajectories of tracers ob-
tained from the typical Ch-mass and subCh-mass models. The chemical abundance
of each tracer is directly computed according to its individual (p, T') time evolution.

The Ch-mass model (left panel) has two distinctive parts: the high density thin
tail and the thick body at low density. At high density (ppeax > 10° g cm™3),
the tracers are in the NSE regime and have a significantly higher °*Mn and low
fluctuations in Theak for the same ppeak. These are the tracers burnt by the subsonic
deflagration. The absence of shock ensures that nuclear burning does not generate
strong acoustic waves. On the other hand, the majority of tracers burnt by the
detonation undergo incomplete Si-burning. The aspherical explosion allows tracers
with the same initial mass coordinate to be burnt at a range of time. This leads to
a wide temperature range for the same ppeax. There is also a narrow band of tracers
for 7 < log;o ppeak < 9 and Tpeax ~ 5 X 10° K also responsible for synthesizing a
small fraction of 5Mn.

The subCh-mass model (right panel) has a uniform structure where the Theax
scales with ppeax With some fluctuations. Only a small part of tracers reaches the
NSE regime but their density is not high enough for the ®>Mn synthesis. There is
also a narrow band of tracers containing *Mn by the synthesis of **Co. In general
the global ®*Mn in the subCh-mass model is lower than that of the Ch-mass model.

2.4. Typical Nucleosynthesis in Ch-mass and subCh-mass Models

Now we have examined the thermodynamical differences between the Ch-mass and
subCh-mass WDs. In Figure 10 we compare the qualitative differences in the nu-
cleosynthesis pattern.
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Fig. 10. (top panel) The final chemical abundance pattern of the typical Ch-mass WD?2 assuming
the aspherical explosion. (bottom panel) Same as the top panel but for the typical subCh-mass
WD.3% [X;/%6Fe] = log;,[(X:/%%Fe) / (X;/%¢Fe)g]. The two horizontal lines correspond to 50%
and 200% of the solar value.
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Both Ch-mass and subCh-mass WDs share some common features. They are
responsible for the production of intermediate mass elements (IMEs) from Si to
Ca, and the iron-peak elements from Ti to Ni. Odd number elements of IMEs are
underproduced in SNe Ta. Some individual features allow us to distinguish the two
models. (1) The aspherical explosion of the subCh-mass model can lead to signatures
of strong Ti, V and Cr. (2) Mn is well-produced in the Ch-mass model but not in
the subCh-mass model.

3. Applications of Nucleosynthesis

We have surveyed the major differences of the nucleosynthetic signature between the
Ch-mass and subCh-mass WDs. Comparisons with observational data allow us to
understand the progenitors of observed SNe Ia, which directly constrains the mod-
eling. We can compare the optical signatures directly (i.e., light curves and spectra)
by matching the radiative transfer model with SN Ia data.*’:%0 One can also ex-
tract the chemical abundances from the spectra, and compare with nucleosynthetic
results.62:7 We shall focus on the latter method here.

3.1. Supernova Remnant Sagittarius A FEast

Within thousand years after the SN explosion, the shock-heated gas remains ob-
servable in the X-ray band, where the spectra reveal the metal composition inside
the ejecta. Such a technique has been applied to the study of galactic supernova
remnants (SNRs) including Tycho,® Kepler®! and N103B.%2

In Ref. 79 the SNR in Sagittarius A (Sgr A) East (G0.04-0.0) is observed based
on the X-ray data taken by the Chandra telescope. The observed abundance ratios
relative to Fe (with respect to the solar ratios) [Xi/Fe] are shown in Figure 11. The
SNR features sub-solar intermediate mass elements (IMEs) and slightly super-solar
iron-peak elements (Cr, Mn, and Ni).

The sub-solar IMEs exclude the possibility of associating a core-collapse SN as
the origin of this remnant. On the left panel, the abundances of two distinctive
classes of models, the subCh-mass and Ch-mass DDT models are plotted. The
model uncertainties are shown by the shaded area. The subCh-mass models clearly
overproduce the IME. Among the Ch-mass DDT models, the model that produces
enough Mn and Ni overproduces Cr and the IME. There is a model whose Cr and
Ni are consistent with the data points and IMEs are marginal, but its Mn is too
small.

The Ch-mass PTD model (i.e., no DDT) with the initial central density of
~ 5 x 10° g ecm™3 is shown to be compatible with the data (right panel of Figure
11). [Such a high central density is realized in the rotating WD model.®3] Note that
this Ch-mass PTD model can well-explain the observed features of SNe Tax. Thus
this object is the first identified SN Iax in the Milky Way Galaxy observed as SNR.
This example also shows how the abundance guides us to identify the explosion
mechanism.
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Fig. 11. (left panel) The chemical abundance pattern of the supernova remnant (SNR) Sagittarius
A (from Ref. 79) for the data points compared with those of the subCh-mass35 and Ch-mass DDT?22
models shown by the shaded regions. (right panel) Same as the left panel but for the Ch-mass
PTD'® models.

3.2. Supernova Remnant 3C 397
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Fig. 12. (left panel) The Cr/Fe distribution of the tracers taken from the Ch-mass model with
the initial central density 1 x 109 g cm™3.22 The color represents the tracer Fe mass fraction. The
horizontal line is the measured value in SNR 3C 397 from Ref. 84. (right panel) Same as the left
panel but for the model with the initial central density 5 x 109 g cm™3.

The SNR 3C 397 is a nearby object (8 kpc) on the galactic plane. Its close
distance allows astronomers to extract the spectra from individual parts similar to
Sgr A. This object features a high Mn/Ni ratio, which is a key evidence of the
Ch-mass explosion.®>

In a recent observation using the XMM-Newton telescope, the spectra from the
South and West hot blobs are measured, which give the constraint on the Cr/Fe mass
ratio ~ 0.106+0-954.84 The high value is used to distinguish the explosion progenitor
shown in Figure 12. By comparing the tracer in different Ch-mass models, it becomes
clear that the low-mass model (p, = 1 x 10° g cm~3) does not have tracers reaching
the observed high value. Meanwhile the high density tail in the high-mass model
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(pe = 5 x 10° g ecm™3) has tracers crossing the expected value. This provides a
strong indication that this object is the explosion of the high-mass Ch-mass WD.
This also demonstrates how a precise measurement of element abundance ratios can
guide us to select the potential progenitor.

3.3. Milky Way Galaxy

In the last two sections we have shown how the SNR abundance determines its pro-
genitor and the explosion mechanism. While there is no distinctive SNR showing
chemical abundances exclusively for subCh-mass WD models, it is possible that a
large sample size is needed to understand the distribution of each model. To under-
stand the SN Ia explosion globally, we need the chemical abundances from a larger
system, for example, the Milky Way Galaxy. The elements ejected by supernovae
become the building block of the next-generation stars.® The surface abundance
of stars in the solar neighbourhood may thus indicate how much each element is
ejected by generations of SNe Ia.

In Ref. 86 the galactic chemical evolution model is computed with supernova
abundance patterns taken from literatures. The Mn/Fe evolution is plotted in
Figure 13. Two contrasting classes of models are shown, one assuming the pure
Ch-mass WD explosion, and the other two assuming pure subCh-mass WD. To re-
produce the trend as well as the magnitude of the data, a non-negligible fraction of
the Ch-mass WD is necessary.

We remark that the supernova history can be strongly dependent on the galaxy
evolution history. Some galaxies (e.g., Sculptor dwarf spheroidal galaxy) have a low
Mn/Fe ratio that indicates the dominance of the subCh-mass WD explosion in their

90,91

evolution histories. Meanwhile, some early rise of [Mn/Fe] in this subclass of

galaxies can be a result of the Ch-mass SN Iax explosion.”??

3.4. Perseus Galactic Cluster

The Milky Way Galaxy can provide a detailed reference in how generations of stars
contributes to the cosmic metal enrichment. However, large N-body simulations
suggest that each galaxy is unique in their evolution history. To understand how
each supernova model contributes in the cosmic scale, data from an even larger
system is important to average out the statistical fluctuations of individual galaxies.

In Ref. 93 the X-ray spectra of the Perseus Cluster is studied by the Hitomi
telescope. The highly resolved spectral lines provide the abundance measurement
with uncertainties down to ~ 10%. The high precision can distinguish supernova
models and mechanisms explicitly. The fitting using SN Ia and CCSN models from
literature is shown in Table 3. The best-fit model is found to be the scenario as-
suming pure Ch-mass WD explosion. If the fraction of the Ch-mass WD is relaxed
as a model parameter, the expected Ch-mass WD still contributes about 10 — 40%
of the SN Ia population, depending on the exact CCSN models.
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[Fe/H]
Fig. 13. The [Mn/Fe] against metallicity [Fe/H] for the galactic chemical evolution models taken

from Ref. 86. Solid lines come from theoretical models assuming pure Ch-mass and subCh-mass
explosion history. Data points are the stellar abundances from the solar neighbourhood.87-89

Table 3. Models assuming different stellar and supernova models and their corresponding
(Ch-mass) SN Ia rates (data taken from [Ref. 93]).

Model fia fChand X2
pure Ch-mass[Ref. 22]+ CCSN[Ref. 94] 0.21 +£0.02 N/A 11.78

Ch-mass[Ref. 95] + subCh-mass[Ref. 32] + CCSN[94] 0.25 £ 0.06 0.36 £ 0.14 23.96
Ch-mass[Ref. 95] + subCh-mass[Ref. 32] + CCSN[96] 0.38 £ 0.06 0.09 £ 0.09 15.73

4. Conclusion

In this review article we have presented the physical background about the Ch-
mass and subCh-mass WD models as the SN Ia explosion progenitors. We discussed
the differences in their explosion mechanisms and their associated nucleosynthetic
signatures. We have also demonstrated how the chemical abundances of SNRs,
Milky Way Galaxy, and galactic clusters can help us distinguish (1) the individual
SN explosion scenario and (2) the relative importance of each explosion model.
Nucleosynthesis will remain an important subject in the future supernova study
thanks to observational projects such as XRISM (X-Ray Imaging and Spectroscopy
Mission). Given the power of resolving spectral lines as its predecessor Hitomi, we
can anticipate that the high quality spectral data, and hence the precise chemical
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abundance measurements, will shed light on supernova models to an unprecedented
accuracy.
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