

The $T_{c\bar{s}}(2900)$ as a threshold effect from the interaction of the D^*K^* , $D_s^*\rho$ channels

Raquel Molina^{1,*} and Eulogio Oset^{1,**}

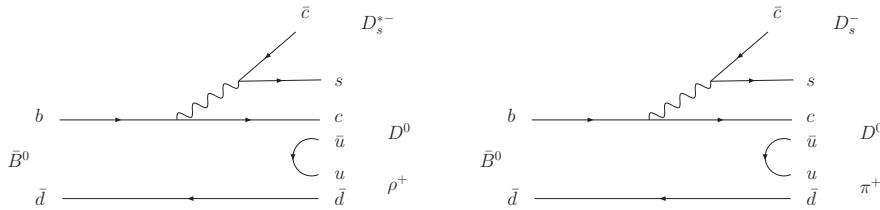
¹Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain

Abstract. We investigate the D^*K^* and $D_s^*\rho$ interaction in coupled channels within the hidden gauge formalism. A structure is developed around their thresholds, short of producing a bound state, which leads to a peak in the $D_s^+\pi^-$ mass distribution in the $B^0 \rightarrow \bar{D}^0 D_s^+\pi^-$ decay compatible with the experimental data. We conclude that the interaction between the D^*K^* and $D_s^*\rho$ is essential to produce the cusp structure that we associate to the recently seen $T_{c\bar{s}}(2900)$, and that its experimental width is mainly due to the decay width of the ρ meson. The peak obtained together with a smooth background reproduces fairly well the experimental mass distribution observed in the $B_0 \rightarrow \bar{D}^0 D_s^+\pi^-$ decay.

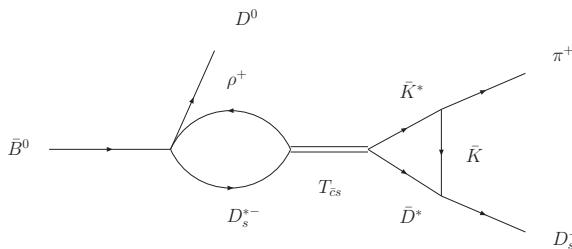
1 Introduction

The D^*K^* system was investigated in [1] and three states were found corresponding to $I = 0$; $J^P = 0^+$, 1^+ and 2^+ . The 2^+ state was identified with the $D_{s2}^*(2573)$ state, and served to set the scale for the regularization of the loops, allowing predictions in the other sectors. There, the $I = 1$ interaction of the D^*K^* and $D_s^*\rho$ channels was also studied and, a cusp was found for $J = 0$ and $J = 1$ around the $D_s^*\rho$ threshold.

Recently, the LHCb Collaboration has observed an state in the $D_s^+\pi^-$, $D_s^+\pi^+$ mass distributions in the $B^0 \rightarrow \bar{D}^0 D_s^+\pi^-$ and $B^+ \rightarrow D^- D_s^+\pi^+$ decays, respectively, at 2900 MeV [2, 3]. Indeed, the state branded as $T_{c\bar{s}}(2900)$ with $J^P = 0^+$, as seen in $D_s^+\pi^-$ and $D_s^+\pi^+$, exhibits an $I = 1$ character and it has also been associated with $J^P = 0^+$. On the other hand, 2900 MeV is just the threshold of the D^*K^* channel. Thus, one is finding a $I = 1$ $J^P = 0^+$ state in the threshold of D^*K^* (the $D_s^*\rho$ is only 14 MeV below neglecting the ρ width), which could correspond to the cusp found in [1].


In the present work we look again at the interaction of D^*K^* and $D_s^*\rho$ channels, taking into account the K^* and ρ widths and also the decay of the states found into the $D_s\pi$ channel where it has been observed, comparing our results with the recent experimental findings.

2 Formalism


In Ref. [2] a peak is found in the $D_s\pi$ invariant mass in the $B^0 \rightarrow \bar{D}^0 D_s^+\pi^-$ and $B^+ \rightarrow D^- D_s^+\pi^+$ decays. In order to have a b quark rather than a \bar{b} quark, we look at the reaction

*e-mail: Raquel.Molina@ific.uv.es

**e-mail: Eulogio.Oset@ific.uv.es

Figure 1. Left: \bar{B}^0 decay to $D_s^{*-} c \bar{d}$ with hadronization of the $c \bar{d}$ pair to produce $D_s^{*-} D^0 \rho^+$. Right: \bar{B}^0 decay into $D_s^- D^0 \pi^+$ (contribution to the background).

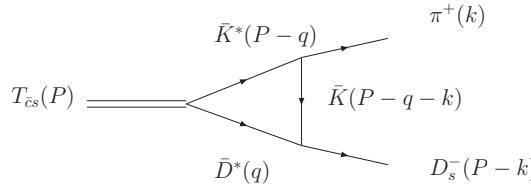
Figure 2. Mechanism by means of which the resonance is produced and decays into $\pi^+ D_s^-$.

$\bar{B}^0 \rightarrow D^0 D_s^{*-} \rho^+$. We produce this state with the external emission Cabibbo favored decay shown in Fig. 1 (left). In Fig. 1 (right) we depict the direct decay $\bar{B}^0 \rightarrow D_s^- D^0 \pi^+$ considered as background.

We evaluate the scattering matrix using the Bethe-Salpeter equation in the $D^* K^*$ and $D_s^* \rho$ channels,

$$T = [1 - VG]^{-1} V, \quad (1)$$

with G the diagonal loop function for the intermediate mesons and V the transition potential. However, the state is observed in $D_s \pi$, hence, the mechanism by means of which the reaction proceeds is given in Fig. 2. The amplitude for the process of Fig. 2 is given by,


$$t = a G_{\rho D_s^*} (M_{\text{inv}}) t_{\rho D_s^* K^* D^*} (M_{\text{inv}}) \tilde{V} (\pi D_s, M_{\text{inv}}), \quad (2)$$

where a is a normalization constant that we do not evaluate, unnecessary to show the shape of the πD_s mass distribution in the \bar{B}^0 decay, and M_{inv} is the invariant mass distribution of the $D_s \pi$ final state. The vertex function \tilde{V} corresponding to the triangle loop of Fig. 3 can be easily evaluated.

We assume the resonance to be in $J = 0$, and that the vectors have small momenta with respect to their masses. Then, the structure of the triangle diagram of Fig. 3 is given by

$$\tilde{V} = -i \int \frac{d^4 q}{(2\pi)^4} \epsilon_{\bar{K}^*}^l \epsilon_{\bar{D}^*}^l \epsilon_{\bar{K}^*}^i \epsilon_{\bar{D}^*}^j \frac{(2k + q)^i (2k + q)^j}{(P - q - k)^2 - m_{\bar{K}}^2 + i\epsilon} \frac{\theta(q_{\text{max}} - q)}{(P - q)^2 - m_{\bar{K}^*}^2 + i\epsilon} \frac{1}{q^2 - m_{D^*}^2 + i\epsilon}. \quad (3)$$

The loop function \tilde{V} is naturally regularized with a cutoff q_{max} , the same one used to regularize the $D^* K^*$ and $D_s^* \rho$ loops when studying their interactions. The equivalent q_{max} used in [1] was 1100 MeV. We find,

Figure 3. Triangle diagram accounting for the $R \rightarrow \pi \bar{D}_s$ decay of the R resonance of $I = 1$ generated with the $\rho \bar{D}_s$, $\bar{D}^* \bar{K}^*$ coupled channels.

$$\tilde{V} = - \int \frac{d^3 q}{(2\pi)^3} \frac{(2\vec{k} + \vec{q})^2}{8\omega_{K^*}(q)\omega_{D^*}(q)\omega_K(\vec{q} + \vec{k})} \frac{1}{P^0 - \omega_{D_s^*}(q) - \omega_{K^*}(q) + i\epsilon} \\ \times \left\{ \frac{1}{P^0 - k^0 - \omega_{D^*}(q) - \omega_K(\vec{q} + \vec{k}) + i\epsilon} + \frac{1}{k^0 - \omega_{K^*}(q) - \omega_K(\vec{q} + \vec{k}) + i\epsilon} \right\}, \quad (4)$$

which shows the different cuts of the loop diagram when pairs of the internal particles of the loop are placed on-shell.

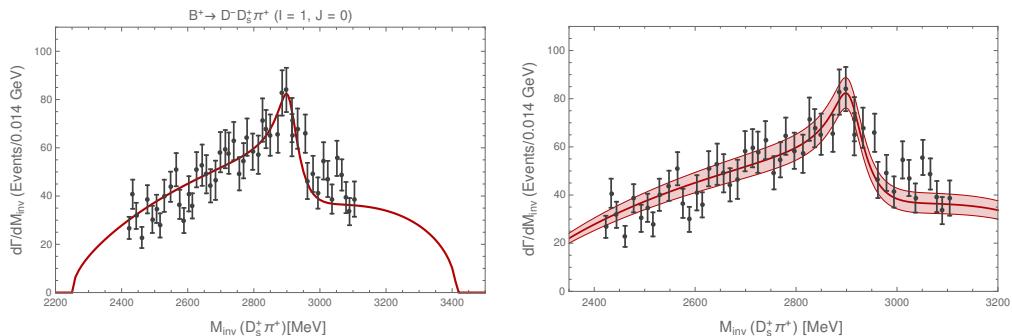
Then, we consider that the transition amplitude for $\bar{B}^0 \rightarrow D^0 D_s^- \pi^+$ is given by a constant background (considering the dominance of s-wave in the coupling of the bottom meson to the pseudoscalars), see Fig. 1 (right), together with the scattering amplitude of the diagram in Fig. 2, which accounts for the interaction of the VV coupled channels. It reads as

$$t' = a G_{\rho D_s^*}(M_{\text{inv}}) t_{\rho D_s^*, K^* D^*}(M_{\text{inv}}) \tilde{V}(\pi D_s, M_{\text{inv}}) + b. \quad (5)$$

Therefore, the mass distribution of πD_s^- in the \bar{B}^0 decay is given by,

$$\frac{d\Gamma}{dM_{\text{inv}}} = \frac{1}{(2\pi)^3} \frac{1}{4M_B^2} p_{D^0} \tilde{p}_\pi |t'|^2, \quad (6)$$

$$\text{where } p_{D^0} = \frac{\lambda^{1/2}(M_B^2, m_{D^0}^2, M_{\text{inv}}^2)}{2M_B} \text{ and } \tilde{p} = \frac{\lambda^{1/2}(M_{\text{inv}}^2, m_{D_s}^2, m_\pi^2)}{2M_{\text{inv}}}.$$


2.1 Results

We take into account the decay widths of the vector mesons K^* and ρ by means the convolution of the G function in Eq. (1) [4]. The result for the T matrix in $I = 1; J = 0$ is shown in Fig. 4. The cusp obtained for $J = 0$ has become wider. The position of the cusp is similar, it shows up slightly above the $D^* K^*$ threshold and around 2920 MeV, with a width coming basically from the decay of the ρ into $\pi\pi$. We have also obtained visible peaks in the scattering amplitudes for $J = 1$ and 2 [4].

Finally, we show the result of the invariant mass distribution of the decay $\bar{B}^0 \rightarrow D_s^- D^0 \pi^+$, Eq. (6), in comparison with the LHCb experimental data [2, 3] in Fig. 5 (left). In Eq. (6), we adjusted the constants a and b to reproduce well the experimental data around the $T_{cs}(2900)$ resonance, and we obtain $a = 2.1 \times 10^3$ and $b = -1.45 \times 10^3$. As can be seen, our model describes well the experimental data. A peak is obtained around the threshold of the $D^* K^*$ channel. Since these results were obtained fixing the subtraction constant to obtain the $T_{cs}(2900)$, this also supports the molecular picture of this state as $D^* \bar{K}^*$ of [5]. Thus, our

Figure 4. $|T|^2$ for $C = 1; S = 1; I = 1; J = 0$ with $\alpha = -1.474$.

Figure 5. Left: invariant mass distribution for $D_s\pi$ from the decay $B \rightarrow \bar{D}D_s\pi$ compared to the experimental data from Ref. [2, 3]. Right: the same but with the error band obtained by changing the parameter for the background (b) 5% up and down.

model strongly supports the $T_{c\bar{s}}(2900)$ as a cusp structure originated by the non-diagonal interaction $D^*K^* \rightarrow D_s^*\rho$, with a width mainly due to the decay of the ρ meson into $\pi\pi$

Finally, it is interesting to give a band of errors by changing the background, we do this to show the sensitivity of the results to this background. We have done this, keeping the value of a , needed to get the strength of the peak of the distribution, by varying the parameter b of the background by 5% (up and down). This is shown in Fig. 5 (right). The band obtained overlaps with the errors of the data.

References

- [1] R. Molina, T. Branz, E. Oset, Phys. Rev. D **82**, 014010 (2010), [1005.0335](https://arxiv.org/abs/1005.0335)
- [2] R. Aaij et al. (LHCb), Phys. Rev. Lett. **131**, 041902 (2023), [2212.02716](https://arxiv.org/abs/2212.02716)
- [3] R. Aaij et al. (LHCb), Phys. Rev. D **108**, 012017 (2023), [2212.02717](https://arxiv.org/abs/2212.02717)
- [4] R. Molina, E. Oset, Phys. Rev. D **107**, 056015 (2023), [2211.01302](https://arxiv.org/abs/2211.01302)
- [5] R. Molina, E. Oset, Phys. Lett. B **811**, 135870 (2020), [2008.11171](https://arxiv.org/abs/2008.11171)
- [6] C. Chen (CERN), Particle Zoo 2.0: New tetra- and pentaquarks at LHCb p. July 5 (2022)