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ABSTRACT

Analyzing complex quantum systems using quantum computational algorithms is one of the most promising applications of quantum com-
puters. This study focuses on evaluating the performance of a custom variational ansatz in the Variational Quantum Eigensolver (VQE)
algorithm compared to predefined ansatzes. To achieve this, we employ the evaporating black hole model as a test bed for our analysis. Using
the VQE approach, which integrates quantum and classical computing techniques, we aim to minimize the energy expectation value of the
Hamiltonian. By training the circuit parameters of a trial wave function as a parameterized quantum circuit, we determine the upper bound
for the ground state energy and assess the optimal variational form. We define a custom ansatz for the VQE protocol and compare its per-
formance with other predefined ansatzes. Additionally, we test the performance of three different classical optimizers to further understand
their impact on the VQE algorithm’s efficiency and accuracy.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0231558

I. INTRODUCTION

Deutsch (1985), Feynman (1982), and Benioff and Manin
(1980) were the first to shed light on the field of quantum com-
puting. A quantum mechanical model of Turing machines was
provided by Benioff.! Concurrently, Manin’ authored the bril-
liant work “Computable and Uncomputable,” which attracted the
interest of numerous quantum physicists. Subsequently, Feynman’
suggested using quantum computers to simulate models that, for
a variety of reasons, could not be simulated by classical com-
puters. The concept of quantum computation was revolutionized
by additional contributions made in the field of quantum com-
puting by Deutsch.” It was not until a decade later that quan-
tum computing became widely accepted after a special algorithm
came up. After Shor’s algorithm was developed in 1994, interest in

quantum computing and its potential was finally sparked.” Invest-
ments in the study and development of quantum computing
increased as a result.

Practical quantum computers that can execute algorithms like
Shor’s were made possible by the development of quantum hardware
by different companies, such as quantum processors and quantum
annealers. The only current drawback is that many quantum proto-
cols implemented on real devices do not provide the desired results
(as they suffer from error accumulation) due to the lack of fault-
tolerant qubits and effective error-correcting codes. Nevertheless,
it has been demonstrated that the noisy systems in use today are
effective for solving optimization problems.

A quantum computer is a computing device that utilizes fea-
tures of quantum mechanics to perform calculations,® thereby
providing access to computational capacity that would have been

AIP Advances 14, 125121 (2024); doi: 10.1063/5.0231558
© Author(s) 2024

14, 1251211

0t:€1:0L G20z Asenuer ¢|


https://pubs.aip.org/aip/adv
https://doi.org/10.1063/5.0231558
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0231558
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0231558&domain=pdf&date_stamp=2024-December-18
https://doi.org/10.1063/5.0231558
https://orcid.org/0000-0002-2177-3585
https://orcid.org/0000-0003-3631-8929
https://orcid.org/0000-0003-2629-3377
https://orcid.org/0000-0001-9725-2252
mailto:ritudhaulakhandi3626@gmail.com
mailto:raikhikd@gmail.com
mailto:bikas.riki@gmail.com
mailto:jaetae.seo@hamptonu.edu
https://doi.org/10.1063/5.0231558

AIP Advances

unattainable for a classical computer. Numerous algorithms are
employed by quantum computers to solve problems and model
quantum systems.” Numerous applications in different areas of
physics have been triggered by these quantum algorithms.” '’ Feyn-
man, as previously stated, was the one who first suggested using a
quantum computer to solve problems related to quantum mechan-
ics. His primary area of interest was the application of quantum
computers to model simulations of quantum systems, as classical
computers were unable to handle the intricacies of such models."’

Since the evolution of a Hamiltonian requires exponential
growth in resources, simulating any general Hamiltonian of a quan-
tum system in a classical computer is challenging. The details
of a quantum system as it evolves with respect to certain para-
meters can be studied thanks to quantum simulation.'” Quantum
cosmology'’ " and condensed matter physics®' are just a few of the
many physics-related fields in which it finds extensive application.
Proceeding with the applications of quantum simulation, Peruzzo
et al.”> developed the variational quantum eigensolver (VQE) algo-
rithm, which can be used to estimate the ground state energy of a
quantum system, an important quantity in quantum chemistry and
condensed matter physics. In this work, we investigate the perfor-
mance of the variational quantum eigensolver (VQE) algorithm for
the Evaporating Black Hole (EBH) model on the IBMQ experience
platform.”® With the IBMQ experience, we can use quantum devices
to carry out computation tasks from distant locations all over the
world.

Research into the quantum theory of gravity and the inter-
section of gravitation, quantum theory, and thermodynamics has
been greatly influenced by Hawking’s discovery’* that a black hole
emits particles akin to those produced by a black body with a tem-
perature linked to its surface gravity. Much effort has gone into
expanding Hawking’s research to produce dynamically evaporat-
ing black hole spacetime (hereafter referred to as “EBH spacetime”)
that is self-consistent and accurate in quantum mechanics, but little
progress has been made in this direction. To date, only a semi-
classical working field theory for Hawking radiation derivation has
been developed. Usually, the Vaidya metric is used to construct
classical spacetimes with EBHs. These model EBH spacetimes have
event horizons with finite lifetimes that are asymptotically flat and
spherically symmetric. Then, these model EBH spacetimes are used
as preset backgrounds for particle-creation calculations, hoping to
learn something about the dynamics of actual, semi-classical EBH
spacetimes, avoiding the difficulties posed by the back-reaction
problem.

An EBH toy model is used in this article for the implementation
of the VQE algorithm* from the Qiskit Aqua library* to determine
the upper bound of the Hamiltonian’s ground state eigenvalue. The
EBH toy model was selected mainly due to the fact that it is well
studied and, hence, we have enough literature to cross-check the
performance of the VQE protocol. Additionally, the library offers an
exact eigensolver that facilitates the comparison of the true value of
ground state energy eigenvalue and the outcomes of the VQE algo-
rithm. The Hamiltonian needed for the algorithm is obtained using
the Schwarzschild metric and the principle of least action. The VQE
algorithm is then used to find the upper bound for the Hamiltonian’s
energy eigenvalue.

The remaining portions of the paper are organized as
follows: The entire methodology—from obtaining the EBH
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model to the steps required for additional quantum algorithm
implementation—is provided in Sec. II. Section III contains the
results for the different protocol configurations. Sections IV
and V offer a comprehensive analysis of the findings, as well as a
prospective outlook and concluding remarks.

Il. METHODOLOGY
A. Evaporating black hole

Understanding the interplay between quantum theory and
gravity is crucial to comprehend the physics of black holes. The
Hawking radiation theory, which describes how black holes emit
particles, is a key idea in this area. The synthesis of quantum and
classical physics serves as the basis for this theory. However, because
of their powerful gravitational force, black holes display spatial cur-
vature. When analyzing quantum fields, which are made up of
particles and their interactions, we typically assume that they reside
in flat background geometry. However, the curvature of spacetime
has some interesting effects when quantum fields are studied near a
black hole.

In the presence of a black hole, particles can be generated from
nothing. This is the result of quantum field fluctuations brought on
by the strong gravitational attraction of the black hole. The presence
of the black hole may result in a nonzero expectation value for the
stress—energy tensor, which measures the quantum fields’ momen-
tum and energy. Using the Christensen and Fulling framework,
researchers have computed the expected value of the stress—energy
tensor outside the event horizon of a black hole. This calculation
helps us understand how black holes behave and radiate because it
accounts for the effects of quantum fields and gravity. More details
regarding the body of work on evaporating black holes are available
in the cited references.

Black holes can classically absorb particles but cannot emit
particles. However, black holes behave like a hot bath because of
quantum phenomena. It can be demonstrated that black holes cause
particles to be created and emitted. This causes the mass of the black
hole to gradually decrease over time. The term “evaporation of black
hole” describes this phenomenon.

A black hole that is evaporating loses mass over time as a result
of Hawking radiation emission. To simulate EBH, we can use a semi-
classical approach. We only attempt to simulate the EBH’s behavior
in the early time domain because, in the late time domain, when
the EBH has almost entirely evaporated, we encounter quantum
gravity-related issues that physicists have yet to resolve. However,
at the beginning of the evaporation, we can use approximate semi-
classical methods. Hawking provided a semi-classical analysis of
Becken-Stein’s theory, according to which the surface area of an
event horizon black hole is correlated with its entropy and surface
gravity. Hawking’s analysis was based on quantum field theoretic
computations. It is shown that massless particles, mainly photons,
are generated in the curved spacetime close to the black hole and
escape to I* as a result of the Unruh effect. This is observable as
alleged Hawking radiation.

Later, Hawking presented a different interpretation of Hawk-
ing radiation. He discusses the formation of particle and anti-particle
pairs as a result of quantum disturbances near a black hole. The emit-
ted null geodesics are followed by the positive frequency particles.
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Quantum tunneling causes the negative frequency particles to enter
the black hole, which reduces the black hole’s mass.

If one tries to construct a simple representation of the EBH
spacetime, one may assume spatial symmetry, which would cause
the metric components to rely on time in a manner that would
describe the EBH’s mass loss profile. Aste and Trautmann changed
the Schwarzschild metric’s mass term to depend on time in a
simplified model they created in 2005.”° We will be working in sim-
ilar environments in this work. Schwarzschild metric describes the
spacetime resulting from uncharged, non-rotating black holes. The
Schwarzschild metric has the following form in polar coordinates:

-1

ds* = —c2(1 - %)dt2 + (1 - %) dr* +1* do* + r* sin’0 d(/)z, (1)
where the Schwarzschild radius is denoted by r, = Zsz . M represents
the black hole’s mass. However, the mass of a Schwarzschild black
hole is constant, meaning that the spacetime solution of Einstein’s
equations yields a stationary metric. That is not the case for EBH.
The black hole mass term for EBH will be non-constant. It goes with-
out saying that the black hole’s mass will fluctuate over time as the
EBH emits energy. We will work with a very simple model of EBH.

In our model, the metric for spherically symmetric evaporating black
holes in polar coordinates is

ds* = —c2(1 - @)dt2 + (1 - @)Adrz

+7° d0* + #*sin’0 d¢2. (2)

After deciding on a model, the next step is to determine the
system’s Hamiltonian. The system will consist of Hawking radiation
and spacetime itself if we take the entire system outside of EBH into
consideration. Hence,

S= S:pucetime + Smatters (3)

where S = action of the whole system outside EBH, Sgpuacerime
= action due to the spacetime, and Spawer = action due to the
Hawking radiation.

One way to conceptualize the Hawking radiation action is as a
field action. Massless scalar fields have been widely used to charac-
terize Hawking radiation in the extensive body of research on the
phenomenon. Therefore, one can consider the action for a massless
field for Syater. On the other hand, the expression for Sgpacetime is as
follows:

Sspacetime = fd4X\/ —g(X)R(X), (4)

where \/-g(x) = y/—det (g(x)), and the Ricci scalar for the space-
time under consideration is R(x). In this article, we will only work
with a patch of the spacetime. Our system will span from r = 1.57,(t)
to r = 2r(¢). The patch under consideration appears arbitrary at
first glance, but it is significant because the “quantum atmosphere,”
which is responsible for the majority of particle-antiparticle pairs,
has been estimated to span radially from 1.5 to 2 Schwarzschild
radii,”” based on a 1 + 1 dimensional calculation. In an effort
to streamline our analysis, we will only consider an isolated
system—that is the background spacetime—rather than the entire

pubs.aip.org/aip/adv

system, which would be background spacetime + Hawking radia-
tion. It is also reasonable to wonder if, in doing so, we are likewise
ignoring the consequences of spacetime and Hawking radiation
interactions. However, we will only work with the spacetime patch
spanning from r = 1.5r(¢) to r = 2r,(¢) in order to simplify our sys-
tem as much as possible. From now on we will suppress the subscript
“spacetime” in Sspacetime and write

S= fd‘*xc(x), 5)

where the Lagrangian density is £ = v/-g(x)R(x). Using the metric
in Eq. (2), we get

V-g(x) =" sin®, R(x)= M, (6)

cz(r - rs)3

where 7 = d’;#. Using Eq. (6), we calculate the Lagrangian for our
system

) fer(t) 5 . (r(z'rf(t) +(r— rs(t))h(t)}))
1 (r-r(1)’
ZT”rs(t)(zs.slmf(t) +9.908 88 r4(t) F:(t)). (7)

R

Now, we will do a new parameterization: X(t) = [rs(¢)].> He the
Lagrangian takes the following form:

1 . .
L~ —(65.2427 X? +41.5062 XX). (8)
Cc

The Lagrangian in Eq. (8) leads to the following Hamiltonian:

65.2427
He 220X
c

)

Now that the Hamiltonian [Eq. (9)] of the EBH toy model is
ready, we have to map it into a discrete space system Hamiltonian in
order to implement the VQE protocol.

In our toy model, we considered the black hole to be non-
rotating and the metric to be spatially symmetric. So, we have
taken the Schwarzschild metric and made the radius of the black
hole horizon dependent on time. However, this metric ansatz has
shortcomings. This model is not entirely accurate since there is no
relationship between time inside and outside of a black hole. This is
because the model loses all physical meaning at the horizon when
the time coordinate expands into infinity.

During the late-time behavior of the black hole, our semi-
classical analysis breaks down as the quantum effects become pow-
erful. Hence, one has to consider quantum gravity for late-time
analysis of EBH. In this work, we strictly avoid the late-time radi-
ation scenario due to limitations in quantum resources (discussed in
more detail in Sec. I11).

The Vaidya metric is a time-dependent, spherically sym-metric
mass distribution that can absorb or emit radiation; as such, physi-
cists have frequently used it to describe the space-time structure
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outside of EBH.”"* However, our goal in this work is to consider
the effect of spacetime near the horizon of the evaporating black
hole. We have not considered the effect due to the Hawking radia-
tion. For this exact reason, we have considered this toy model instead
of the Vaidya metric (a more realistic metric for EBH), as the Ricci
scalar of the Vaidya metric is zero. In the case of the Vaidya metric,
the Hamiltonian is purely a result of Hawking radiation. Hence, our
method of analysis is rendered unfruitful in the case of the Vaidya
metric. However, our future direction, briefly mentioned in Sec. IV,
can solve this issue.

B. Discretization of space

The Hamiltonian obtained for the EBH model [Eq. (9)] has a
continuous eigenspectrum. To simulate it on a quantum computer,
it needs to be mapped to a discrete space system representation.’” To
accomplish this, a discretized two-dimensional space with x, y € [-L,
L] and N eigenvalues for each of x and y is described. This produces
a mesh with N? spatial elements, where each element is associated
with a unique eigenvalue that is determined by the element’s x and y
values. With the mesh centered at [0, 0], the discrete position oper-
ator’* has the following N x N matrix, with position eigenvalues
located along the diagonal:

[(-N/2) 0 o - - 0
0 (-N/2)+1 0 - - 0
d T 0
* e (ﬁ) 0
0
| o 0 0 - 0 (N/2)-1]

(10

The momentum operator can be obtained by taking the Fourier

transform of the x? (position operator).”” The following is the
momentum operator:

Pt = (FY) ', (11)

where the elements of the matrix FY, which represents the quantum
Fourier transform, are as follows:

[Fd]j,k _exp (i2njk/N). (12)

N2

With the position operator and momentum operator now in
hand, all that is left to do is select a value for N to obtain the Hamil-
tonian in matrix form. For the systems where N = 2, 4, 8, and 16, we
will work. As N increases, the discrete space operator indicates that
both the number of spatial points in the mesh and the number of
qubits needed to run the simulation will increase. For very high val-
ues of N, the simulation should, in theory, be more accurate because
it should be closer to the real model. However, more qubits in the
system mean that the ansatz needs to contain more parameters in
order to find the ground state wave function.

For a range of N values, the discrete space system Hamiltonian
for the Hamiltonian given in Eq. (9) is obtained and utilized as an
input for the VQE algorithm. The VQE protocol’s operation and the
different components involved in determining the upper bound of
the ground state energy eigenvalue must now be described before
moving forward with implementation.

ARTICLE pubs.aip.org/aip/adv

C. Variational quantum eigensolver (VQE) algorithm

The state of the quantum system is described by the wave func-
tion. Moreover, a normalized wave function can be expressed as a
superposition of its eigenstates,

W) = > culym)s (13)

where (y|y) = 3 |ea| = 1 and H |yn) = En ).
The Hamiltonian’s expectation value can be expressed in the
following way:

<H>=<y|H|y>=>" Eulcal”. (14)

It is established that the ground state energy of a system Eg is
either equal to or less than E, (E, < E,). Consequently, we derive the
following from quantum mechanics’ variational principle:®

S Egleal” < 3 Ealenl” = B S len* < 3 Euleal®

= Eg <> Enleal” (15)

Ansatz, which is a parameterized quantum circuit with para-
meters that are updated after every run, is built initially for the sup-
plied Hamiltonian in the variational quantum eigensolver (VQE)*
algorithm. Although the user has the ability to change them, the
parameters of the ansatz for the first run are typically initialized as
random numbers. Sufficient flexibility is required in the ansatz to
prevent the desired state from being overlooked. If the ansatz is not
chosen appropriately, the process may end at less-than-ideal para-
meters that do not correspond to minima. The algorithm is said
to have hit a “barren plateau” in this case. The ansatz is the trial
function 1//(6) used at the beginning of the algorithm. Following
the application of the ansatz, the Hamiltonian is appended, and
measurements are obtained in order to calculate the energy (E(é))
expectation value. Given that the parameterized state has variables
that can be changed, one can be sure to find the parameterized
state that is closest to the ground state of the Hamiltonian based on
the variational method of quantum mechanics. The parameters of
the ansatz are optimized via classical techniques. Finding a multi-
variable function’s minima is required for this minimization. Three
different classical optimizers provided by Qiskit are used for this
purpose. The circuit is run many times while constantly updating
the parameters of the ansatz until the global minima is obtained. The
parameters corresponding to the global minima found are saved as
the optimal parameters for the given ansatz. An upper bound for the
energy eigenvalue (E,) is obtained by implementing the entire pro-
tocol. An outline of the VQE algorithm can be found in Fig. 1 and
Algorithm 1.

D. Thermal noise model

The main challenge in developing large-scale quantum com-
puters and carrying out lengthy quantum computations is noise. It
is either caused by unintended interactions with the environment
(such as thermal, electromagnetic, or gravitational decoherence) or
by flaws in the quantum hardware (such as gates and measuring
devices).

Irreversible interactions between the quantum system and its
surroundings are one of the main sources of errors. This kind
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FIG. 1. An illustration of the VQE algorithm’s execution is shown here. For a given parameterized trial wave function of a Hamiltonian, the optimal ground state configuration
can be found using the VQE algorithm. The trial function used in the algorithm’s initialization is called the ansatz (parameterized quantum circuit). Following the addition of
the Hamiltonian, measurements are taken in order to determine the Hamiltonian’s expectation value. Utilizing three distinct classical optimizers supplied by Qiskit, the ansatz
parameters are optimized via classical techniques. The circuit is repeatedly operated upon, with the ansatz parameters updated continuously, until the global minima are
achieved. For each ansatz, the optimal parameters are those that correspond to the global minima and are saved.

of noise results in decoherence during computation in a vari-
ety of ways. The most prevalent one, which is also the one that
is used in our model, is thermal relaxation or excitation. Since
such quantum noise is irreversible, it is challenging to repli-
cate it using Pauli or Clifford operations, necessitating a more
complicated strategy. Other types of decoherence, such as elec-
tromagnetic or gravitational, are not taken into account in this
article.

Thermal error contains thermal decoherence (or relaxation),
which develops over time as excitation or deexcitation. Thermal
relaxation is the irreversible process of qubit spin thermalization to
an equilibrium state at ambient temperature. Energy is exchanged
between the qubits and their environment during this process, which
pushes the qubits in the direction of either the excited state, |1}, or
the ground state, |0). Conversely, dephasing characterizes the pro-
cesses by which coherence deteriorates over time. It is a method
that explains the transition of a quantum system from quantum to
classical behavior.

ALGORITHM 1. VQE algorithm.

Input: Discrete space system Hamiltonian. Ansatz (parameterized
quantum circuit). Initial parameters

Output: Upper bound for ground state energy.

The VQE algorithm follows the following steps

Step-1: The ansatz is first applied to the quantum circuit, followed
by the Hamiltonian operator

Step-2: Measurements are obtained to find the energy expectation
value of the Hamiltonian operator for the given ansatz

Step 3: The optimizers use different techniques to update the

parameters and get closer to the ground state

Step 4: Steps 1, 2, and 3 get repeated with the updated parameter
values until the global minima is obtained, ie., the
parameterized state (ansatz) is closest to the ground state
of the given Hamiltonian

This error group is already implemented as a quantum channel
by a function in Qiskit. The following factors are taken into account
by the model:

e The mean time of execution, denoted as T, for every kind
of quantum gate implemented, g.

o The relaxation and dephasing times of a single qubit ¢, which
are commonly represented as T1(q) and T>(qg), respectively,
for g € [0, n — 1], where 7 is the total number of qubits in the
quantum computer.

For each qubit, the behavior of the off-diagonal elements over
time is indicated by T2(q), which indicates a gradual perturbation
along the quantization axis (z component of the Bloch vector).
T1(q) represents a progression toward equilibrium as a perturbation
orthogonal to the quantization axis (x, y component of the Bloch
vector). T>(q) < 2T1(q) describes the relationship between these two
times. When a gate of type g is applied to a qubit g, the probability
that it will relax and dephase is given by pr, (o) = e - Tg/T1(q) and
P1y(q) = € — Tg/T2(q), respectively. Then, preser(q) = 1- pr, () defines
the probability that a qubit would reset to an equilibrium state.

lll. RESULTS

The EBH model used in this article only accounts for the early
behavior of the EBH, as later dissipation raises quantum gravity-
related problems. The EBH model is simple and built assuming
spatial symmetry of spacetime. This means that the metric compo-
nents are dependent upon time in a way that describes the mass loss
profile of the EBH.

Various predefined ansatz provided by the Qiskit library were
tested out, from which the TwoLocal ansatz performed the best. The
parameterized TwoLocal circuit has layers that alternate between
rotation and entanglement. All of the qubits have single qubit gates
applied to them to create the rotating layers. The user-configurable
entanglement approach is carried out by the two-qubit gates in
the entanglement layer. In this article, the default full entangle-
ment configuration is used, which entangles every qubit with every
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+

(a) Ansatz 1

(b) Ansatz 2

FIG. 2. (a) The U; gate is applied in ansatz 1 first, and then a Ry gate. This com-
bination is iterated twice for all implementations of the VQE protocol. (b) Ansatz 2
is the predefined TwolLocal ansatz provided by the Qiskit library. The iteration for
this ansatz is also set as twice for all implementations of the VQE protocol.

other qubit. A custom ansatz is also used to implement the VQE
protocol. The repeating unit of the custom ansatz used is defined
as follows:

pubs.aip.org/aip/adv

The three optimizers used for VQE protocols are COBYLA,
L-BFGS-B, and Sequential Least SQuares Programming (SLSQP)
optimizer. Michael J. D. Powell developed the numerical optimiza-
tion technique known as constrained optimization by linear approx-
imation (COBYLA) for constrained problems where the objec-
tive function’s derivative is unknown. Minimizing the value of a
differentiable scalar function f is the primary goal of the Limited-
memory Broyden-Fletcher-Goldfarb-Shanno Bound (L-BFGS-B)
algorithm. This optimizer employs a quasi-Newton technique
to find the minimal value of f. Unlike Newton’s method, it
does not require the Hessian, which is the matrix of f's sec-
ond derivatives. A function of many variables is minimized by
SLSQP under any arrangement of limits, equality, and inequal-
ity constraints. When the objective function and the constraints
are twice continuously differentiable, SLSQP is the best solution.
For the noisy model, the VQE protocol is implemented with
the estimator set to replicate the behavior of the thermal noise
model.

The first result is for the one-qubit system, or N = 2. The

' 8 0 n . 0 discrete space system Hamiltonian is given as
, cos — —sin— || cos— —e" sin -
Ry(0)Us(6,0:1) = . 92' i O g
simn— s e smoo ¢ cos 5 _]102.482 993 102.482 993 (17)
(16) [102.482 993 102.482 993 |

Figure 2 shows the custom ansatz repeat unit for a one-qubit
system and TwoLocal ansatz repeating unit for two qubit systems.
The TwoLocal ansatz for one-qubit system is simply the R, rota-
tion gate. A custom ansatz using a combination of Uz and R,
gates in a VQE protocol offers distinct advantages over standard
Qiskit ansatz options for simulating the Hamiltonian of an EBH,
where spacetime dynamics require precise control and express-
ibility to capture the underlying physics. By limiting unnecessary
entanglement and targeting specific qubit rotations, this ansatz
reduces the parameter space to the essential degrees of freedom,
optimizing computational resources while retaining fidelity to the
EBH dynamics. This precision reduces circuit depth and minimizes
noise, which is advantageous given current quantum processor
limitations.

TABLE I. VQE result for N = 2 and custom ansatz.

This Hamiltonian is used in the form of an operator input
for the VQE protocol. From Tables I and 1II, it can be observed
that the L-BFGS-B optimizer gave the upper bound value closest
to the actual ground state energy, with the custom ansatz result
being equal to the actual energy value. In addition, the optimiz-
ers, in general, gave better upper bounds for custom ansatz com-
pared to TwoLocal ansatz. However, for the noise model, it can
be seen that the TwoLocal ansatz worked better as the custom
ansatz reached the barren plateau early and stopped further iter-
ations. The custom ansatz has a higher cost function evaluation
than the TwoLocal ansatz, and the optimization time is also double
because of the higher number of parameters. The optimal para-
meter values for the two ansatz are also provided in the Tables
for N = 2.

0t:€1:0L G20z Asenuer ¢|

VQE performance COBYLA: Thermal
parameters COBYLA L_BFGS_B SLSQP noise model
Eigenvalue 5.6686 x 10~ 0.0 7.1054 x 107" 5.0041
Cost function evals 110 63 80 64
Optimizer time 0.3098 0.1583 0.1914 0.6416
Optimal parameter (x[0]) 4.7099 4.2478 6.6217 4.3811
Optimal parameter (x[1]) 4.4503 4.0795 3.8286 7.1175
Optimal parameter (x[2]) 0.6029 0.6020 0.6020 4.5132
Optimal parameter (x[3]) 5.8517 5.4751 3.9786 5.9910
Optimal parameter (x[4]) -2.1869 -3.2780 -2.5158 —-3.8096
Optimal parameter (x[5]) 1.8207 1.6851 0.7794 5.7907
Optimal parameter (x[6]) —5.4889 —5.4147 —5.2756 -4.6201
Optimal parameter (x[7]) 0.5104 0.0578 -2.4910 -6.2370
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TABLE II. VQE result for N = 2 and TwoLocal ansatz.

pubs.aip.org/aip/adv

VQE performance COBYLA: Thermal
parameters COBYLA L_BFGS_B SLSQP noise model
Eigenvalue 7.6681 x 10710 2.4970 x 107> 52107 x 107" 0.0044

Cost function evals 40 28 26 28
Optimizer time 0.1079 0.0748 0.0765 0.4510
Optimal parameter (9[0]) 4.0062 6.5692 4.4748 5.0721
Optimal parameter (9[1]) 5.4760 7.1503 5.0559 6.5665
Optimal parameter (9[2]) 1.5135 3.5593 1.4649 5.6661
TABLE lIl. VQE result for N = 4 and custom ansatz.

VQE performance COBYLA: Thermal
parameters COBYLA L _BFGS_B SLSQP noise model
Eigenvalue 3.5659 x 107 9.9476 x 107'*  1.3421 x 10”7 12.2099

Cost function evals 233 221 416 137
Optimizer time 0.9734 0.9499 1.7885 1.7502

The discrete space system Hamiltonian for N =4, i.e., two qubit
system, is given as follows:

performance of the COBYLA optimizer is better for the TwoLocal
ansatz this time. The upper bound obtained from the SLSQP opti-
mizer is of the same order for the two ansatz; hence, the TwoLocal
ansatz has a better overall performance. Since there are more para-

153.724 490 102.482 993  51.241 496  102.482 993 . . . .
meters than qubits, the optimal values are not given for higher N,
_ 102482993 153724490 102.482993  51.241 496 ) but they can be requested individually, just in case.
51.241 496  102.482 993 153.724 490 102.482 993 The discrete space system Hamiltonian for N = 8 and 16 is not
102.482 993 51.241 496 102.482 993 153.724 490 explicitly mentioned. However, following the directions provided
(18) in the methodology section, they can be calculated easily. From

The Hamiltonian in Eq. (18) is taken in as the input Hamil-
tonian operator for the VQE protocol. From Tables III and IV,
the upper bound obtained from the L-BFGS-B optimizer is closer
to the actual value for custom ansatz while compromising on the
cost function evals and optimization time. However, the overall

TABLE IV. VQE result for N = 4 and TwoLocal ansatz.

Tables V and VI, it is apparent that the L-BFGS-B and SLSQP opti-
mizers give a closer upper bound value for custom ansatz. However,
COBYLA performed better with the TwoLocal ansatz. This is the
same for N = 16, as seen from Tables VII and VIII, with the only
difference being that the SLSQP optimizer gave an almost similar
upper bound value. Figures 3 and 4 provide the plots for the upper

VQE performance COBYLA: Thermal
parameters COBYLA L_BFGS_B SLSQP noise model
Eigenvalue 1.9068 x 107 1.8341x 107" 4.3341 x 1077 0.0110

Cost function evals 128 101 58
Optimizer time 0.5778 0.7233 0.4982 0.9071

TABLE V. VQE result for N = 8 and custom ansatz.

VQE performance COBYLA: Thermal
parameters COBYLA L BFGS_B SLSQP noise model
Eigenvalue 10950 x 107°  3.6734x 107" 85378 x 107° 76.2434

Cost function evals 435 656 271
Optimizer time 4.4575 4.5689 6.8881 5.8686
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TABLE VI. VQE result for N = 8 and TwoLocal ansatz.
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VQE performance COBYLA: Thermal
parameters COBYLA L_BFGS_B SLSQP noise model
Eigenvalue 7.4639 x 1078 2.8348e-10 1.8818 x 1077 0.0590

Cost function evals 975 241 111
Optimizer time 10.6570 2.2315 2.6760 2.8914
TABLE VII. VQE result for N = 16 and custom ansatz.

VQE performance COBYLA: Thermal
parameters COBYLA L_BFGS_B SLSQP noise model
Eigenvalue 25.6208 6.0424 x 10~ 1.0030 x 1077 50.7473

Cost function evals 742 1716 1006 341
Optimizer time 25.0128 58.5081 34,3326 18.0251
TABLE VIII. VQE result for N = 16 and TwoLocal ansatz.

VQE performance COBYLA: Thermal
parameters COBYLA L_BFGS_B SLSQP noise model
Eigenvalue 8.6194x 107  6.0897 x 107" 1.1256 x 1077 0.1310

Cost function evals 847 629 144
Optimizer time 29.2660 21.5168 21.6713 7.8537

bound value calculated at each step by the various optimizers, along
with the number of iterations to achieve convergence. It can be seen
that for the custom ansatz, the COBYLA optimizer reaches a barren
plateau and stops iterating further.

A. Mitigation strategies for barren plateaus

It can be seen from Figs. 3 and 4 that barren plateaus are a
constant issue faced during optimization. The optimizers converge
differently for custom ansatz (with early plateaus for COBYLA, as
seen in Fig. 3). Initializing parameters strategically, such as setting
parts of the circuit to the identity or using Bayesian optimization
or beta distributions, can prevent early stage gradient vanishing and
improve gradient flow.”"”’

Barren plateaus arising due to optimization steps can be pre-
vented by using adaptive optimizers or momentum-based methods,
enabling better traversal of flat regions in the optimization land-
scape with dynamic learning rates that adjust to gradient patterns.
Perturbations added during gradient descent further encourage the
optimizer to escape flat areas, facilitating gradient retention and
optimization progress.

The custom ansatz used, though restricted to the rotational
degree of freedom, can still have entanglement introduced due to
the long iteration run time. Adaptive learning rates and strategic
restarts, triggered when entanglement entropy reaches a threshold
(a very useful technique when trying to prevent over-entanglement
in EBH models), can help the optimizer respond to low-gradient
areas by adjusting step size as needed, preventing stagnation in flat
regions.”

Furthermore, adjusting circuit structure—such as using shal-
low circuits or controlling expressibility via tdesigns—helps pre-
vent barren plateaus by avoiding overparameterization and reduc-
ing entanglement. Dynamically adjusting circuit depth based
on feedback maintains train-ability while mitigating gradient
vanishing.”

Regularization techniques from classical ML, like penalizing
large parameters, can help prevent overfitting to flat regions and
keep the optimization landscape dynamic. Classical shadows and
noise-aware methods adapt measurements to reduce noise impacts,
addressing barren plateaus on quantum hardware.*®

Finally, noise-resilient ansatz designs that restrict entangle-
ment across qubits can help maintain gradient values. Parameter
correlation, where parameters are linked or constrained, lowers
optimization dimensionality and manages noise, while error mitiga-
tion techniques like post-processing adjustments help reduce noise
effects. Together, these methods can help stabilize gradients and
optimize the training landscape for scalable VQE implementations.

B. Balancing tractability and applicability
in quantum simulations

Simulating black holes represents a formidable task at the inter-
section of quantum mechanics, general relativity, and quantum
gravity. The extreme conditions and singularities inherent to black
holes create significant challenges for quantum simulations. Con-
ventional quantum simulation frameworks, typically suited to less
extreme systems, fall short when it comes to capturing the intense
gravitational fields and event horizons unique to black holes.

AIP Advances 14, 125121 (2024); doi: 10.1063/5.0231558
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FIG. 3. Ansatz 1 results: The VQE results for different values of N for the custom ansatz have been provided. Figures (a)—(d) show the number of iterations each optimizer
took to reach the minimum for the custom ansatz. Figures (e)-(h) show the difference between the optimizer results and actual energy. Figures (i)-(I) show the optimizer
results for COBYLA after the application of the thermal noise model to the VQE estimator. Each column for figures corresponds to one value of N, with the value of N
increasing from left to right [N = 2 for (a), (€), and (i); N = 4 for (b), (f), and (j); N = 8 for (c), (g), and (k); N = 16 for (d), (h), and (I)]. The eval counts seen on the x axis of
the plots are the cost function evals, which are the number of iterations each optimizer took before reaching the convergence.

Current quantum resources permit only the implementation significantly increasing quantum resource requirements as system
of simplified toys models. These models provide a tractable sim- complexity scales. While quantum computers could leverage quan-
ulation framework within the constraints of present-day quantum tum parallelism for simulating black holes, the scale of the required
processors, though they inherently limit applicability, particularly circuits is immense.
in scenarios involving late-stage evaporation where quantum gravity The thermodynamic properties of black holes and their impli-
effects become essential. cations for the information paradox form another core focus.

A full quantum model of black holes demands a substantial Simulating black holes in a quantum framework necessitates a
number of qubits to represent the complex information dynam- deep understanding of how information is encoded, resonating

ics of black hole formation and evaporation. Simulating a black  with foundational quantum mechanics and thermodynamics prin-
hole requires not only modeling the black hole itself but also the ciples. Concepts like “black hole complementarity” and information
entangled states of particles involved in its formation and decay."’ scrambling through radiation are central to identifying the quantum
Consequently, this demands a high-dimensional Hilbert space, resources needed for such simulations.
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FIG. 4. Ansatz 2 results: The VQE results for different values of N for the TwoLocal ansatz have been provided. Figures (a)—(d) show the number of iterations each optimizer
took to reach the minimum for the TwolLocal ansatz. Figures (e)—(h) show the difference between the optimizer results and actual energy. Figures (i)—(/) show the optimizer
results for COBYLA after the application of the thermal noise model to the VQE estimator. Each column for figures corresponds to one value of N, with the value of N
increasing from left to right [N = 2 for (a), (), and (i); N = 4 for (b), (f), and (j); N = 8 for (c), (g), and (k); N = 16 for (d), (h), and (I)]. The eval counts seen on the x axis of
the plots are the cost function evals, which are the number of iterations each optimizer took before reaching the convergence.

As a future direction that can be used as an approach to model
a more realistic EBH simulation and gain relevant results, we wish
to incorporate the effects of Hawking radiation by the method
discussed in Sec. IV.

IV. DISCUSSION

There are shortcomings with the metric ansatz we have
employed in this work. Since there is no relationship between time
inside and outside of a black hole, this model is not an entirely
accurate representation of EBH.

So far, black hole models have been developed using the
Sachdev-Ye-Kitaev (SYK) model, which captures some chaotic
aspects of black hole dynamics.”” The SYK model requires qubits
to interact in ways that replicate the non-locality of black holes,
often demanding many qubits to represent even simple aspects of
black hole physics. Recent work exploring the SYK model on quan-
tum devices has shown that even a modest approximation requires
hundreds of qubits and operations.

The AdS/CFT correspondence suggests that a lower dimen-
sional quantum system (like a 2D conformal field theory) can
replicate the physics of a 3D black hole.”’ Quantum simulators
can exploit this relationship to reduce dimensionality and resource
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requirements, making black hole simulations more feasible on cur-
rent devices. However, even with dimensional reduction, achieving
sufficient qubit fidelity and managing errors due to decoherence
(especially in systems like trapped ions or superconducting qubits)
remains challenging.

Additionally, thermal noise can introduce relaxation and
dephasing, both major error sources in VQE. Relaxation drives
qubits toward the ground state, disrupting coherence and state
preparation, while dephasing reduces coherence by pushing qubits
toward classical states, hindering superpositions essential for accu-
rate computations.

As circuit depth and execution time increase, susceptibility to
thermal noise rises. VQE’s iterative nature compounds this effect,
degrading result fidelity and limiting useable circuit depth. Low-
ered fidelity from thermal noise necessitates more samples (shots)
for reliable results, escalating time and resources, particularly in
larger systems. To improve scalability, larger quantum volumes and
advanced EBH models could mitigate these noise impacts.

As mentioned before, we only considered the Hamiltonian due
to the spacetime. However, to calculate the total Hamiltonian, we
have to consider the Hawking radiation. To do so, we can discretize
the spacetime (as performed in this article) and couple it with the
methods in lattice QCD. Such a method,”' *° combined with quan-
tum computational methods, can help us calculate the Hamiltonian
due to the Hawking radiation. That will not only complement our
analysis but also enable us to work with the Vaidya metric as our
choice of spacetime metric for EBH.

The lattice QCD method encodes QCD’s gauge theories onto
digital quantum computers using a simpler, finite dimensional
Hamiltonian.”” The gauge degrees are encoded into qubits using
noncompact variables. Followed by developing a truncated Hamil-
tonian in the coordinate basis to facilitate quantum computation
while utilizing a qubit-based representation for gauge variables.
Implementing gauge fixing techniques can help reduce redundant
degrees of freedom and simplify the Hamiltonian used in computa-
tions.”! More details about EBH models can be studied in the cited
Refs. 28-32.

As was mentioned earlier in Subsection II C, the ansatz used
for the VQE protocol should be flexible enough so that it can reach
the actual ground state wave function. It appears that the L-BFGS-B
optimizer, which locates the input function minima where the vari-
ables are bounded, is well suited to the custom ansatz presented in
this article. However, the same ansatz results in the barren plateau
for N = 16 and the COBYLA optimizer. It also did not perform well
for the noise model case. While the TwoLocal ansatz mostly outper-
formed for all the cases except the L-BFGS-B optimizer in terms of
closer upper bound energy value.

VQE has drawn much interest in recent years because of its
potential to solve challenging quantum mechanical issues, particu-
larly in the fields of quantum chemistry and materials science. In
this article, we covered the main concepts involved in the VQE
algorithm.

e Variational Ansatz: VQE uses a variational ansatz, which is
a parameterized quantum circuit intended to simulate the
target quantum system’s ground state. To reduce the energy
expectation value of the system, the parameters in this circuit
are iteratively optimized.

ARTICLE pubs.aip.org/aip/adv

e Objective Function: The goal of VQE is to reduce the
system’s Hamiltonian expectation value, which represents
the quantum system’s overall energy. This objective function
gauges how closely the ansatz resembles the actual ground
state and is dependent on the variational parameters.

¢ Classical Optimization: In VQE, quantum and classical com-
putations are combined. The variational parameters are
updated iteratively to minimize the objective function using
traditional optimization techniques.

e Quantum Measurement: For each cycle of VQE, the
quantum circuit is measured in order to determine the
Hamiltonian’s expectation value. The classical optimizer can
modify the variational parameters using the information
from these measurements.

VQE simulates quantum systems more effectively than tradi-
tional computers by taking advantage of the parallelism that exists
in quantum computing. VQE scales more favorably with the num-
ber of qubits, whereas classical algorithms for quantum simulation
frequently suffer from the exponential growth in computer resources
required as the system size increases.

The adaptability of VQE is another one of its main advantages.
VQE is a quantum algorithm that does not necessitate an in-depth
understanding of the features of the quantum system. Instead, it
adapts to different systems by using a parameterized ansatz that may
be modified to fit the unique needs of the current issue. Because
VQE is hardware-independent, it can be used with various quantum
computing architectures. This is essential in the current quantum
computing environment, where a variety of quantum devices with
diverse qubit designs and error rates are available. The supercon-
ducting qubit-based machine, the trapped-ion quantum computer,
or any other technology can be used by researchers and practitioners
to implement VQE.

The hybrid nature of VQE brings together the advantages of
both classical and quantum computing. Classical computers han-
dle the optimization work, whereas quantum computers carry out
the quantum measurements and operations required for the pro-
cedure. VQE is more useful for current quantum devices thanks
to this hybrid method, which makes use of both the classical
and quantum systems’ processing power. Due to issues includ-
ing noise, gate errors, and decoherence, quantum computers are
prone to errors. Through the use of techniques like error cor-
rection codes or error-resistant variational forms, VQE may be
able to reduce some of these faults. Because of this, VQE is
a strong contender for resolving practical issues even before
fault-tolerant, error-corrected quantum computers are generally
accessible.

The cost of performing quantum calculations is decreased by
VQE’s capacity to perform quantum simulation using a compara-
tively small number of qubits compared to other techniques. As a
result, it is a viable option for simulating complicated quantum sys-
tems without the need for obscenely expensive quantum hardware.
By its very nature, parallelism is used in quantum computing to
speed up some calculations compared to their classical counterparts.
This parallelism is exploited by VQE to explore many trial states
concurrently, which can greatly accelerate the optimization pro-
cess. VQE’s potential for speedup increases as quantum hardware
advances.
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Quantum chemistry, condensed matter physics, and materials
science can all benefit from VQE’s capacity to tackle challeng-
ing quantum challenges. This interdisciplinary potential encourages
interaction between researchers from other disciplines, resulting in
novel discoveries and solutions. The precision and effectiveness of
VQE implementations may be impacted by certain hardware limita-
tions (connectivity issues, gate errors, and qubit count restrictions).
The trustworthiness of VQE results must be ensured by the appli-
cation of efficient error mitigation techniques, especially for big and
complicated systems.

It is essential to select the right classical optimization algorithm
for VQE. The efficiency and convergence behavior of various opti-
mizers may differ, which could have an impact on the algorithm’s
overall performance. The success of VQE is greatly influenced by
the variational ansatz’s design. It takes domain-specific knowledge
and expertise to select an ansatz that accurately represents the char-
acteristics of the target quantum system. Quantum volume, which
includes qubit count, gate integrity, and coherence duration, is a key
element in figuring out how effectively a quantum device can carry
out VQE. Increasing quantum volume will improve VQE’s perfor-
mance as quantum hardware develops. Although VQE scales better
than classical techniques, it still has difficulties when used with large,
highly connected quantum systems. A growing body of research is
being performed on approaches for managing system scalability.

V. CONCLUSION

In conclusion, our exploration of the performance of the varia-
tional quantum eigensolver (VQE) algorithm using the Evaporating
Black Hole (EBH) model has shed light on the potential and chal-
lenges of applying quantum computational techniques to the study
of complex cosmological systems. Although the ingoing Vaidya met-
ric turns out to be a more accurate ansatz for the EBH than the
metric that was previously studied, the limitations of the metric
ansatz used in this work highlight how difficult it is to fully describe
the dynamics of an evaporating black hole within the framework of
quantum mechanics.

VQE is a crucial asset in the present quantum computing land-
scape because of its versatility, hardware independence, and capacity
to address real-world problems, even in the face of quantum hard-
ware restrictions. However, our study reveals that the choice of the
variational ansatz, the classical optimization algorithm, and con-
siderations of quantum volume are crucial factors influencing the
performance and reliability of VQE. The custom ansatz presented in
this article, while effective with certain optimizers, exhibits limita-
tions in scalability, highlighting the ongoing challenges in managing
large, highly connected quantum systems.

VQE has the potential to solve challenging quantum puzzles
and speed up scientific discovery as quantum technology develops
and improves. The hybrid nature of VQE, which combines the ben-
efits of both quantum and classical computing, also places it in a
position to serve as a link between existing quantum technologies
and the realization of the quantum advantage for real-world applica-
tions. A growing body of research is being performed on approaches
for managing system scalability.

While concerns like hardware constraints and error mitigation
continue to be a problem, continuous research efforts are devoted
to solving these problems and further increasing the capabilities of

ARTICLE pubs.aip.org/aip/adv

VQE. As aresult, VQE continues to be a crucial algorithm in the field
of quantum computing, opening the door to new understandings of
quantum systems and the creation of new materials and chemical
compounds with revolutionary features.

In conclusion, VQE opens new avenues for exploring the fron-
tiers of quantum mechanics, offering a glimpse into the future of
computational methodologies that may redefine our understanding
of the fundamental principles governing the universe.
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