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Introduction

To construct models of relativistic compact
stars, it is vitally important to know exact
composition and behaviour of particle inter-
actions at exceptionally high density regime.
Knowledge of the equation of state (EoS) of
the matter composition of a relativistic mat-
ter confined under gravity is rather very cru-
cial to study the physical properties of the
star. The complications is that we still lack
credible information about the physics of par-
ticle interactions at very high densities. While
no dependable information is available about
the composition and nature of particle interac-
tions, it can be achieved by generating exact
solution of Einstein’s field equations narrat-
ing the interior of a static spherically symmet-
ric relativistic compact star. After all, gen-
eral relativity comes up with a mutual corre-
lation between matter composition of a com-
pact star and it’s correlated spacetime, thus
one way out is to adopt the this geometric ap-
proach to deal with [1] such a situations. So,
in the Present work, we shall utilize the ansatz
for metric potential grr to decide the unspeci-
fied metric potential gtt describing the interior
spacetime of static spherically symmetric stel-
lar structure. We would like to point out here
that anisotropic matter is a very exotic choice
for relativistic compact objects like neutron
stars, quark stars [2] etc.

When studying neutron stars, we are inter-
ested in the relation between the mass and the
radius of the star. To find this relation, we
need equation for the stellar structure specif-
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ically to the underlying equation of state. It
has recently been pointed out that the stiffest
detainment to the mass-radius relation of neu-
tron stars, the largest mass, the largest radius,
and the maximum surface gravity are provided
by the observations for pulsars. Here we make
an attempt to obtain the mass-radius rela-
tion using the geometrical EoS deduced from
geometrically, adopted for the core-envelope
model of compact objects[3]. An interesting
feature of our model is that the solution ad-
mits a quadratic EoS. The core is of linear
equation of state because it is of strange or ex-
otic matter, therefore, govern by nuclear mat-
ter, the envelope is of the quadratic equation
of state because of the presence of baryonic
matter. Several core envelope models for com-
pact stars in the general relativistic frame-
work have been studied in the recent past
years.[4, 5]

Theoretical Methodology

In the traditional Tolman-Oppenheimer-
Volkoff(TOV) treatment, the density and the
pressure are apriory assumed to be continuous
as well as the local anisotropy of the system.
The interior of an anisotropic fluid sphere is
described by the non-rotating spherical sym-
metric space-time metric given by [6]

ds2 = eν(r)dt2−eλ(r)dr2−r2dθ2−r2sin2θdφ2
(1)

where the ν(r) and λ(r) are only function of
the radial coordinate r. Let’s numerically cal-
culate the structure of neutron star as follow-
ing equations for mass, density and pressure
as function of radius.



dm(r)

dr
= 4πr2ρ, (2)

dp

dr
= − [p(r) + ρ(r)][m(r) + 4πr3p(r)]

r[r − 2m(r)]
. (3)

Eq.(3) turn out to be the TOV equation. In
the present study we have solve TOV for two
distinct EoSs for core and envelope. We cal-
culate the equation of the state for M-R rela-
tion from the EFE’s, after solving EFE’s we
get the density , radial and tangential pres-
sure. Using that we have developed quadratic
equation according to pressure as function of
density. Thus, we have computed EOS from
the Einstein field equations is referred here as
geometric EoS. The mathematical expression
of the computed quadratic EoS is such that

p = αρ2 − β (4)

Where α and β are free parameters. These
constants are selected in such a way that all
the physical properties of the considered stel-
lar objects are physically allowed. In this
case we have taken as α = 100/km2 and
β = 0.0000109/km2.

Results and Discussion
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FIG. 1: The relation between the mass and ra-
dius of neutron star. The mass is scaled by solar
masses M� and the radius in Km.

For our numerical computations, we used
the expressions for the pressure and density
of the geometric EOS to find an equation of
state. Using this equation of state, we solved
TOV equation and mass continuity equation
numerically for a given central density. By it-
erating over a range of central densities, the
relation between the mass and radius of neu-
tron star was found. This curve has maximum
mass of Mmax = 2.060 M�, for a radius of
Rmax = 11.585 km. This maximum means
that there is upper bound on the mass of a
neutron star. The maximum mass for the neu-
tron star neutron star happens when the cen-
tral density is ρ0 = 1.064 × 1015gm/cm3 and
central pressure is p0 = 6.848×1034dyne/cm2.
The core of a neutron star with this mass is
almost 10 times as dense as the nucleus of an
atom. The present result is in better agree-
ment with observations, where neutron stars
with masses up to 2 M� have been found [7].
The present model can be extended in sev-
eral directions to describe a neutron star or a
highly compact star properties and starquakes
and bursts.
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