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Abstract. New families of time-dependent potentials related with the stationary singular
oscillator are introduced. This is achieved after noticing that a nonstationary quantum invariant
can be constructed for the singular oscillator. Such a quantum invariant depends on coefficients
related to solutions of the Ermakov equation, where the latter guarantees the regularity of the
solutions at each time. In this form, after applying the factorization method to the quantum
invariant rather than to the Hamiltonian, one manages to introduce the time parameter into
the transformation, leading to factorized operators that become the constants of motion for
the new time-dependent Hamiltonians. At the appropriate limit, the initial quantum invariant
reproduces the stationary singular oscillator Hamiltonian. Some families of stationary potentials
already reported by other authors are also recovered as particular cases. A striking feature of
the method is that the singular barrier of the potential can be managed to vanish, which leads
to non-singular time-dependent potentials.

1. Introduction

The dynamics of non-relativistic quantum mechanical systems is determined by the Schrodinger
equation. An essential part of such equation is the Hamiltonian operator, which characterizes the
system under consideration. For either stationary or time-independent systems, the Hamiltonian
plays the role of the energy observable, and the corresponding mathematical problem is reduced
to solve a simple eigenvalue equation. Even in this case, only some few Hamiltonians are
known to admit exact solutions. Examples include the harmonic oscillator, the hydrogen
atom, and the interaction between diatomic molecules. But the set of such potentials does
not include much more than a dozen of well known cases. The search of new exactly-solvable
models is indeed a mathematical challenge. In this regard, the factorization method [1-5] is
an outstanding technique to explore the existence and construction of new exactly-solvable
stationary models. The method is intimately connected to the Darboux transformation [6]
and serves as the mathematical foundation of supersymmetric quantum mechanics [1,2]. Using
the factorization method, a wide class of new exactly-solvable models has been reported for
Hermitian Hamiltonians [7-9], non-Hermitian Hamiltonians with all-real spectra in both, PT
and non-P7T regimes [10-15], and position-dependent mass models [16-18], among others.

For nonstationary (time-dependent) systems the Schrédinger equation can not be reduced
to an eigenvalue equation and, in most of the cases, it must be solved directly. The latter may
require approximation techniques to face the related mathematical difficulties, see e.g. [19]. In
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this context, it is notable that despite its complexity, time-dependent phenomena find immediate
applications in electromagnetic traps of charged particles [20-23], as well as in optical-analogs
under the paraxial approximation [24-26]. Among the nonstationary quantum systems, the
parametric oscillator [27,28] is perhaps the most well-known model that admits a set of exact
solutions. Lewis and Riesenfeld addressed the problem by noticing the existence of an constant
of motion (quantum invariant) for the corresponding nonstationary eigenvalue equation [29].

On the other hand, in agreement with the conventional factorization method, some years
ago Bagrov and Samsonov proposed an approach to construct new solvable time-dependent
potentials [30,31]. That is, two different Schrédinger equations are linked by the appropriate
intertwining relationships and assuming that one of the equations is exactly solvable with
well known solutions. The method has been successfully applied to construct nonstationary
quantum potentials with exactly solvable Schrédinger equation [30-37]. However, it is necessary
to emphasize that the solutions of the new equations are not necessarily orthogonal, even if the
solutions of the initial equation form an orthogonal set, see e.g. [35]. In addition, the physical
meaning of such solutions is unclear since they are not eigenfunctions of the corresponding
Hamiltonian and the Bagrov-Samsonov method (by itself ) does not provide information about
the constants of motion of the system, so the latter have to be computed in independent form.

Considering the usefulness of the stationary singular oscillator [38—40] to characterize two-ion
traps [41], in the present work we apply the factorization method to generate time-dependent
versions of such potential. We show that the appropriate quantum invariant of the singular
oscillator admits factorization in terms of time-dependent ladder operators, and that such
operators are useful to intertwine the stationary singular oscillator with its time-dependent
counterparts. The orthogonality and physical meaning of the solutions of the new systems are
therefore associated to both invariants, the one belonging to the initial singular oscillator and
that arising from the intertwining relationships.

The organization of this paper is as follows. In Sec. 2, the solutions of the stationary
singular oscillator are briefly discussed. Then, an additional quantum invariant, different from
the Hamiltonian, is constructed and its spectral problem is properly identified. In Sec. 3,
the implementation of the factorization method on the aforementioned quantum invariant is
introduced, leading to a new family of time-dependent potentials whose solutions are mapped
from the initial system. Some particular cases are discussed in Sec. 4, where as a particular
limit the well known stationary results are recovered. Additional details on the construction
of the new Hamiltonians are presented in Appendix A. In Appendix B, the intermediate steps
required in the calculation of the normalization constant associated with the added eigenvalue
are presented. Final comments and perspectives of this work are presented in Sec. 5.

2. Singular Oscillator

The stationary singular oscillator is defined through the Hamiltonian

S R N . N +1
Hy = p* + (%), vl(x)=x2+g(g@2), (1)

with g > 0 an arbitrary constant. Given that Hi is time-independent, the Schrodinger equation

.0 A
Za¢($at) = Hldj(l‘a t)7 (2)
admits a set of stationary orthonormal solutions {ip,(x)}22, computed through the time-

evolution operator U’(t) _ it

2 T i
Hiu(a) =~ 20nl2) [ n g(g“)] bnl() = Bnn(2),  tonlat) = Pl (a),  (3)

0x2 22

and the eigenvalue equation
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where the coordinate representation & — x and p — —id/Jx has been used. The singular
oscillator is one of the few exactly-solvable models in quantum mechanics, and its eigenfunctions
¢n(x) and eigenvalues E,, have been reported in the literature [38,40],

_2? I(n+1)
= Npe T g9t Lt1/2) (22) N2 =2 , E,=4n+2¢9+3, 4
On(T) he 2T " (:L") o Tn+g+3/2) " n+2g+ (4)
with L${”>(z) the associated Laguerre polynomials [46]. The normalization constant N, was fixed
from the condition (¢,|¢n) = 1, where the physical inner-product is defined as

(flg) = /O " def(2)g(@), (5)

with z* the complex conjugate of z and f(z) = (z|f) is the coordinate representation of the
vector |f).

2.1. Nonstationary quantum invariant

Remarkably, even if the Hamiltonian is time-independent, there is a constant of motion, different
from the Hamiltonian H;. The latter is a fact that was explored for the stationary oscillator 28],
and it was used in the construction of new solvable time-dependent models [37,42].

To illustrate the existence of such a constant of motion, consider the time-dependent operator
of the form

2m 32

I1(t) = Cyl(t) (732 + M) + C1(t)2% + Co(t){&, p}, (6)

where {Z,p} = £p+ pz is the anti-commutation relationship and the real-valued functions C;(t),
for i = 1,2, 3, are determined from the quantum invariant condition

iy = it @) +
- =1 -
pras 1,141 it
Notice that a particular solution should be given as Cp = C1 = 1 and U3 = 0, where the operator
I, (t) simply reduces to the Hamiltonian H;, which is indeed a constant of motion of the system.
In the general case, with the use of the identities

2 2, 9lg+1 e 2 PN
{x2,p2 + (332)} =2i{z,p}, [2% %] = 2i{2,p},

[ 202 0)] s (32 020

.’i2

Ii(t) =0. (7)

the following set of coupled equations are obtained:

. . . . df (¢
20C1 —Cy)+C =0, 4C2+Cp=0, —-4Cy+C; =0, f(t):{l(t) (9)

The latter can be solved with ease, but it is convenient to introduce the re-parametrization
Co(t) = 02(t) such that, after some calculations, one obtains
O',Z

Co(t) =0°, Ci(t)=—+ %, Co(t) = —— (10)

54 do —
g g = 1

o3’

where o(t) solves the Ermakov equation [43]. Such an equation admits a solution through the
nonlinear combination [12-14]:

o%(t) = agi (t) + bar (H)aa(t) + cg3 (1), b* —dac=——— (11)
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with Wy = q142 — §g1g2 # 0 the Wronskian of two linearly independent solutions of the classical
equation of motion ¢y 2 + 4¢1,2 = 0. These two solutions are given by

q1(t) = cos[2(t — tp)], qo(t) =sin[2(t —to)], Wo =2, (12)

with #y an arbitrary real phase-shift. After some calculations, the solution of the Ermakov
equation takes the form

o?(t) = ? ; 4l ; ¢ cos[4(t — to)] + Vac — 1 sin[4(t — to)], (13)

where the parameters a, ¢ > 0, together with the constraint in (11), ensure that o(t) is a nodeless
function for ¢ € R, for details see [14].

Now, from the Lewis-Riesenfeld approach [29], it follows that the quantum invariant I;(t)
solves an eigenvalue equation of the form

L)W (x,t) = XDV (2, 1), (14)

n

where A are the time-independent eigenvalues [29], and @%1)(:U,t) the nonstationary

eigenfunctions that satisfy the finite-norm condition <g07(11)(t)|<p%1)(t)) < o0, with the inner
product as defined in (5). It is worth to remark that go%l)(a:,t), for n = 0,1,---, are not

solutions of the Schrédinger equation (1), but they are used to construct the solutions wg)(:c, t)
through the addition of the appropriate time-dependent complex-phase [29]:

(1) d .0 -
oM (@, 1) = e WM (2, 1) @99)(15) = <90§3)(t)\la — e (1), (15)

where w,(ll)(x,t) are indeed solutions of the Schrodinger equation. Contrary to the stationary
solutions ¥, (x,t) of (3), the phase 97(11)(t) is not related with the time evolution of the system,
except for the cases in which I;(¢) = H;.

Before proceeding, one has to solve the eigenvalue equation (14). To this end, it is convenient
to introduce the coordinate representation and the reparametrization

oW (@, t) = ﬂ\;:x“(z(x,t)), o =2(a,t) =~ (16)

Notice that the re-parametrization z(x,t) is well defined at each time, since it has been
guaranteed that o(¢) is a nodeless function at each time. After substituting (16) in (14), one
recovers a differential equation for x,(z(zx,t)) of the form

0%xn +1
_ 8;(2 n {22 n 9(922 )] Y = AWy, a7

where it is clear that y,(z) solves the same eigenvalue equation (3), but in the z-parameter
instead. One thus has

Xn(2) = Npe 2 229F L2 (22) - AW = dn 4+ 29 + 3, (18)
with A, the normalization constant given in (4). Interestingly, the nonstationary

eigenfunctions (16) have found applications in wave propagation in optical models, where wave-
packets are described by self-focusing Laguerre-Gaussian modes [44].
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Figure 1: Nonstationary probability density |z/)$,1)(x, t)|? given in (16) for g=1,a =2, c=1 and to = 0.

The re-parametrization z(x,t) also simplifies the calculation of the complex-phase 67(11)(15)
n (15), leading to

t / (1)
0 (t) = =AW / a;lzt’) = —% arctan (Vac — 1+ ctan[2(t — t9)]) , (19)

where the integral has been solved using the properties of the Ermakov equation, for details
see [14]. Tt is worth to mention that the orthogonality of the set {1/1,&”(90, t)}2° ; holds provided
that the solutions are evaluated at the same time, that is, <¢§,P(t)|¢,(})(t)> = 0p,m. For different
times though, the orthogonality does not longer hold, <1/)£,p(t’ )|1/},(11) (t)) # Onm. From the
completeness of the associated Laguerre polynomials, it is guaranteed that the nonstationary
solutions ngl)(x,t) form a complete set of solutions, with a well defined number of zeros and

interlacing properties at each time. The respective probability densities |¢£L1) (z,1)]?

in Figure 1 for n = 0,1, 2.

are depicted

3. Nonstationary deformed singular oscillator

The time-dependent quantum invariant of the previous section, along with its respective set of
nonstationary eigenfunctions, provides an alternative set of solutions to the Schrédinger equation
of the singular oscillator. Those results can be used further in an attempt to construct new
exactly solvable model. For stationary systems, the factorization method has been applied
to the singular oscillator, and used to construct new families of stationary Hamiltonians such
that the spectrum is preserved, with the exception of one possible added level [45]. In this
section, an alternative factorization is explored such that, even if the initial Hamiltonian is time-
independent, the new resulting Hamiltonians are in general time-dependent. This is achieved
by applying the factorization method to the quantum invariant I (t) instead of the Hamiltonian
H,. The latter procedure has been proved useful while exploring the time-dependent rational
extensions of the parametric oscillator [42].

Consider a set of mutually adjoint operators, defined in coordinate representation as first-
order differential operators in the spatial variable of the form [42]:

At) := a% +w(x,t), Alt):= —a% +w*(x,t), (20)

where o is the solution of the Ermakov equation given in (13), and complex-valued function
w(z,t) is determined from the factorization condition

I = AT () A®) + ¢, (21)
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with € a real constant and I; (t), given in (6), is rewritten in coordinate representation as
R 0? 0 glg+1) oG 52 1
—_ 2 - 2 g 2
After substituting (20) in (21) and comparing with (22) one obtains

| 2 1
w(e,t) = —iSe t Wat), —o W=t 200D

where W (z,t) is a real-valued function. Notice that the re-parametrization z = z /o leads to a
Riccati equation of the form

€, (23)

oW glg+1)
—E+W2=z2+7z2 -6 (24)

where W = W (z(z,t)) becomes a function of z, which is solved though the linear equation

82

—@U(Z) + |:Z2 +

1 1 Ou(z

g(gz;-)} u(z) = eu(z), W(z)= ) 8<z ) (25)
The latter coincides with the spectral problem associated with the stationary singular oscillator.
But in this case, the solutions u(z) are not required to have a finite-norm. Nevertheless, given
the relationship between W(z) and wu(z), it is necessary to impose u(z(z,t)) to be a nodeless
function in z € R, such that W (z) is a regular function. In general, the solutions of (25) are
determined by taking (25) into the hypergeometric differential equation form [47], leading to a
general solution of the form

22
e 342 —e€ 3 1-29—¢ 1
u(z) = —; [k'a 2R <49,2 +g;z2> + k1 Fy (f,2 - 9; zQ)] , (26)

where 1Fi(-,+;2) stands for the confluent hypergeometric function [46]. The arbitrary real
constants kg, kp and e are constrained such that wu(z) satisfy the nodeless condition. A first
condition is given by € < /\(()1)7 this guarantees that the linear combination of the confluent
hypergeometric functions in (26) have at most one zero in € R*. Then, with the use of
the asymptotic behavior of the confluent hypergeometric function [46], a relationship between
ke and kj is determined such that the aforementioned zero is placed at x — oco. After some
calculations one finds the conditions

r{i-gr 3+2g—€
%>— (z79) (124 ) e<29+3 ky#0. (27)
b T (3+g)T ()

With (27), the solutions to the Riccati equation W(z(z,t)) are free of singularities, except
perhaps in x — 0.

Now, with the factorization operators A(t) and At(t) already determined, it is convenient to
introduce a new operator that is factorized as

N

I(t) == A(t)AT(t) + e, (28)
which in coordinate representation takes the form

R 0? 0 glg+1)
Io = — 0% —— 4 idor— JJ )
2 o +idox— + R(x) + (0.2

— - + F(a(x,1)), (29)
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F(ae, ) = 22 (e, )) = 2.2 mu(a( 1) (30)
z(x =2—Wi(z(z = -2——Inu(z(z .
’ 0z ’ 072 ’

It is clear that fg(t) is not a quantum invariant of the singular oscillator. However, one may
determine the respective Hamiltonian Ha(t) for which I5(t) is its quantum invariant. Such
Hamiltonian is given as (see Appendix A and [42] for details):

i(t) = 0? glg+1)

—am T Va(@t), Va(e.t) = ? + . Uz(t)F(Z(wvt))- (31)

Notice that, in general, the time-dependent potential V5 (z, t) is not trivially separable as the sum
of a spatial part plus a time-dependent part. Thus, the solutions of the Schrodinger equation
may not be determined in a straightforward way if one tries to solve it directly. Nevertheless,
in the sequel it is shown that the factorization operators lead to a mechanism to compute the
solutions through simple mappings.

3.1. Spectral properties of fg(t) and solutions of I%(t)

Now, with the new time-dependent Hamiltonian ﬁg(t) already identified, one has to address
the solutions of the respective Schrodinger equation. As discussed in Sec. 2.1, it is required
to solve the spectral problem associated with I2(t), and then the appropriate time-dependent
complex-phase must be added to the nonstationary eigenfunctions. Remarkably, the spectral
problem

L)l (x,t) = NP (2, 1), (32)

n

with <p7(12) (x,t) and the /\%2) the respective nonstationary eigenfunctions and eigenvalues, is
determined from the intertwining relationships between I(t) and Iy(t). The latter is obtained
from the factorizations defined in (21) and (28), leading to

A A~ A

L(HAT(t) = AT (1), L(tA(t) = AL (). (33)

Eq. (33) provides a mechanism to map the eigenfunctions of I1(¢) into eigenfunctions of I(t),

and vice versa, it also allows determining the respective eigenvalues )\%2) in terms of )\,(11). In
Sec. 2.1, the spectral problem related to I (t) was already identified. Thus, it is straightforward

to obtain the spectral information for I5(t) as

o2 (2, t) = ¥fl(t) D(z,t), A2 =AY, n=0,1..., (34)
)\511) —€

where the orthogonality condition <g07(73) (t)|<p£?)(t)) = 0pm is inherited from that of the set

{gog)(x, t)}, with respect to the physical inner-product (5). The additional factor ()\S) —e)71/2
has been introduced as a normalization constant. Notice that the sub-index of the mapped
eigenfunctions in (34) has been fixed at n + 1, this is because of the existence of an additional
nonstationary eigenfunction cpg) (x,t) that can not be constructed through the mapping provided
by A(t) The existence of such an eigenfunction, henceforth called missing state, is well-known

in the literature of the factorization method for stationary systems [1,5,8]. The missing state is
determined from the orthogonality condition <g07(12_~)_1(t)|cp£0) (t)) =0 for all n = 0,1,---. In this
form it is guaranteed that 4,09) (x,t) is not a linear combination of the eigenfunctions in (34),

and thus it should be added to the set of elementary solutions, provided that @EQ) (z,t) satisfy
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the finite-norm condition. Straightforward calculations show that the orthogonality condition
implies /U(t)gog)(x,t) = 0, which also means that fg(t)gpgz) = egp@(:c,t). That is, € is an
eigenvalue of the new quantum invariant and, from the nodeless condition € < 2g + 3 = )\[()1),
it is the lowest eigenvalue in the spectrum. Thus, after some calculations, the normalized

(2)

nonstationary eigenfunction ¢’ (x,t) takes the form

2

N, elis® @ _
VoG = (%)

where N, stands for the normalization constant, given as (see [48] and Appendix B for details):

P (2,1) = 0@ (a,1) =

r(1=29) p (3+20—¢
N2 = (1+29) | kaky + k2 r((?’2+229>) <<12;>) . (36)

Eq. (36) holds provided that the constraints (27) are fulfilled.

i) = Hyyp) 129 = fo(t)y®
(1) _ 000 ) 2 = (i) 2
Lo = 30! e = 2el?

Li(t)=AtA+e Io(t) = AAt + ¢

Figure 2: Scheme summarizing the construction of Ha(t), together with the respective solutions of the
Schrodinger equation wﬁf) (z,t).

Now, following the discussion at the end of Sec. 2, the nonstationary eigenfunctions of the

quantum invariant are mapped into solutions of the Schrodinger equation 1#%2) (z,t) through the
addition of the complex-phase

v (e, t) = W OO0y, LoD (1) = (P Wlig — BP0, 67)
where n = 0,1,---. With the use of the re-parametrization z(z,t) = z/o, and after some

calculations, one obtains (for details, see Appendix A in [42]):

(2)
02 (t) = —% arctan (vVac — 1+ ctan[2(t — to)]) - (38)

Therefore, both the spectral information of the invariant I (t) and the solutions of the
Schrodinger equation associated with ﬁg(t) have been completely determined from the
information of the initial stationary singular oscillator and its quantum invariant. It is worth to
remark that, contrary to the stationary case, the factorization on the quantum invariant adds an
additional level which is not necessarily an energy eigenvalue, nevertheless it provides a physical
solution that can not be disregarded. A summary of the factorization method implemented in
this work is depicted in the scheme of Figure 2.
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4. Particular cases
4.1. Stationary limit

The condition a = ¢ = 1 leads to o(t) = 1 and consequently to z = x. In this limit, it is clear
that I, (t) — Hy. Moreover, the nonstationary eigenfunctions converge to the eigenfunctions
of the singular oscillator ¢,(z). The eigenvalues of both the Hamiltonian and the quantum
invariant are the same, regardless of the stationary limit. In the same limit, both the new
quantum invariant I»(t) and the Hamiltonian Hy(t) converge the stationary models obtained
through the conventional factorization method, already reported in the literature [45].

4.2. Non-singular potentials Vao(x,t)

It is worth to discuss the special class of potentials in Va(z,t) for which the singularity at x = 0
is removed. A first case is obtained in the limit g — 0, the initial potential V;(z) reduces to the
truncated oscillator [49], which is a shape-invariant case of the singular oscillator Vi (x) given in
(1). In such a limit, the new potential Va(x,t)|q—0 is still time-dependent and non-singular at
the origin. Clearly, in the stationary limit a = ¢ = 1, the potential Va(x,t)|4—0 reduces to the
first-step transformed potentials reported in [49].

Figure 3: Non-singular potential Va(z,t) for g=1,e= -2k, =1, ky =1/4,a=2,c=1and t = 0.

The singularity at = 0 is also removed with ¢ = 1. In this case, the factorization method
adds an additional singular term in the potential such that the singular-barrier vanishes. The
behavior of Va(z,t) and the respective probability densities are depicted in Figure 3. In the
latter, it can be seen that indeed the potential is finite at x = 0, with V' (0,¢) a periodic function
on time.

From the explicit form of the potential Va(x,t) it is easy to show that only the cases g = 0,1
lead to non-singular potentials. Also, it is worth to remark that, although the singularity has
been removed, the domain of definition = € R is still preserved.

4.3. Equidistant spectrum, in I5(t)

From (18), it is clear that the spectrum of the initial quantum invariant I (t) is equidistant,

)\SJ)FI — )\511) — 4, for n=0,1,... The new quantum invariant I (t) admits equidistant spectrum

if e = 2¢g — 1, which is physically admissible since it satisfies the constraint imposed in (27). The

respective eigenvalues of I5(t) are then AP = a4+ 29 —1,n=0,1,...
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To illustrate the form of the new potential, the parameters are fixed as ¢ = 2 and ¢ = 3.
Thus, one has

2
Va(a,t) = 2% + % - % (1 + ng In [15y/Tk,Erf(z) + 8k, — 10k,=(3 + 2z2)e—z2D C(39)
where z(z,t) = x/o(t) and ky > —I'(7/2)k,. That is, the new potential and its solutions are well
defined for any positive constants k, and kp. The behavior of the potential and the respective
probability densities are depicted in Fig. 4. From Fig. 4b, the new time-dependent potential
can be compared to the initial singular oscillator. Its clear that the minimum of the potential
Vo (z,t) is lower to that of Vi (z) at any time, as expected, since the new time-dependent potential
admits a new eigenvalue at € < )\(()1). Asymptotically, at x — oo, both potentials have the same
behavior, for it the deformation produced by the factorization method is localized around the

origin for the parameters used in this particular case.

2 ¢ 4

(c)n=0 (dn=1

Figure 4: (Upper row) (a) Time-dependent potential Va(x,t) for ¢ € [0, 27] and (b) the respective 2-D projection
for t = 0 (solid-red), t = 37/8 (dashed-green) and t = 37/4 (dotted-blue) together with the stationary singular
oscillator Vi (x) (thick-black). (Lower row) Probability density |1/J£2)(x, t)|? for the n = 0,1,2. In all the cases, the
parameters are fixed ase =3,¢9g=2,a=2,¢c=1,1t =0, ko =1 and k, = 1/4.

5. Conclusions

It has been shown that the factorization method can be also implemented to construct exactly
solvable time-dependent potentials. In particular, we have applied the method to the eigenvalue
problem defined by a time-dependent quantum invariant of the singular oscillator. Then we
have found that, although the initial model is stationary, the new potentials and their solutions

10
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are time-dependent. Indeed, we have shown that the method provides a constant of motion for
the new singular oscillators that inherits the initial spectral problem, which is already solved.
As the time-dependence of the potentials so constructed is periodic, the results reported in this
paper may be useful in the trapping of particles, where such a profile is addressed to confine the
particles in a given region of space [22].

To mention some possible directions in which this work can be addressed consider the rational
extensions of the stationary singular oscillator reported in, e.g. [50,51]. As the solutions are given
in terms of the exceptional Laguerre polynomials, one may explore such a construction in the
time-dependent regime (see the development associated to the parametric oscillator in [42]).
Work in this direction is in progress.

Appendix A.

The new time-dependent Hamiltonian Hy(t) related to the quantum invariant I5(¢) is determined
from the following ansatz:

Hy(t) := Hy + G(t)F(2(i,1)), (A.1)
where F'(z(%,t)) is defined in (30) and G(¢) is determined from the quantum invariant condition
1) = il (t), Ba(6)] + 2 a(t) = 0 (A2)

gz 2(8) = tlH2(t), Iy 572 =0 .

With aid of the commutation relationships (8), together with the identity [{z,p},T(Z,t)] =
2z[p, T(z,t)], valid for any smooth function T'(x,t) in the real z-variable, one obtains

—i (G — 012> {o?[p* F(2(3,1))] — 062 [p, F(2(%,t))]} = 0. (A.3)

It is clear that G(t) = o ~2(t) solves (A.3). With G(t) and (A.1), the time-dependent Hamiltonian
Hj(t) is then given as in (31).

Appendix B.

The normalization constant N, in (36) is determined from the finite-norm condition and the
re-parametrization z(z,t) = z /o, leading to the integral

B 9 [ dz _ 5 [ dz 1
L= /0 (kau1(2) + kpua(2))? o /0 u3(2) [kqui (2) Jua(2) + kp]* (B.1)

where

z2 z2
—Z 1 F 34+2g—€ 3 2 . —E 1-2g—€ 1 L2
ul(Z):e 229+ 1 1( 4g 7§+g72>a UQ(Z)—B 2291F1< 49 ;5_9,2),

are the two linearly independent solutions of (25), with W = u1(2)d,u2(2) — uz(2)d,u1(2) the
respective Wronskian. Given that (25) is an incomplete second-order differential equation, it
is straightforward to realize that 1 is in general a constant [48]. Now, the change of variable
w = uj Jug, together with dz = —W /u3(2), leads to

1 1 [wE—=oo) dw 1

1 o0
__1 _ . B.2
NE ™ W Jueey e TR Whe {kaul(z)/UQ(Z)vab 0} (B-2)

From (B.2) and the asymptotic behavior of the confluent hypergeometric function [46] one
recovers the normalization constant in (36).
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