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Résumé

L’apprentissage automatique a permis de résoudre de nombreux problèmes du monde réel
que d’autres méthodes informatiques traditionnelles avaient du mal à résoudre, ou qu’elles
pouvaient résoudre de manière plus coûteuse. L’informatique quantique est un paradigme de
calcul utilisant les états quantiques de la matière qui permet une grande vitesse de calcul
pour certains problèmes. Les progrès récents dans le développement du matériel quantique
ont encouragé la recherche d’applications concrètes des ordinateurs quantiques. Il est donc
devenu naturel de chercher des moyens d’appliquer les ordinateurs quantiques à l’apprentissage
automatique. Cette thèse est une contribution à cet objectif.

La première partie vise à comprendre les capacités générales des circuits quantiques variation-
nels pour les tâches d’apprentissage automatique à partir de données vectorielles, et d’éclaircir
les conditions nécessaires pour obtenir un avantage quantique. Les circuits variationnels sont
une famille d’algorithmes quantiques où les opérations sont paramétrées et où l’on cherche les
paramètre qui minimisent une fonction de coût, à la manière des réseaux de neurones. Ce sont
en réalité des modèles linéaires dans un espace à grande dimension. Je montre que bien que
les circuits soient coûteux à évaluer, on peut parfois construire des approximations classiques
en utilisant la technique de "random features regression". Si cette approximation est possible,
l’avantage quantique est limité. Je souligne également le fait que l’apprentissage d’un modèle
classique dans le même espace converge vers une solution appelée estimateur MNLS (Minimum
Norm Least Square), mais que la dynamique d’apprentissage des circuits quantiques ne conduira
pas nécessairement à la même solution. Cette séparation est la source de l’avantage quantique,
je montre qu’il suffit que le vecteur des coefficients du modèle quantique ait une grande norme,
et je donne des exemples concrets.

La deuxième partie explore l’utilisation d’ordinateurs quantiques pour effectuer des tâches
d’apprentissage automatique sur des graphes. L’apprentissage automatique sur des graphes
possède beaucoup d’applications, et les algorithmes pour des données vectorielles ne sont pas
directement applicables. Dans cette partie, j’ai cherché à développer des algorithmes quantiques
adaptés à la structure de graphes des données. L’idée principale est d’encoder le graphe dans un
hamiltonien qui a une topologie similaire. On prépare ensuite un état quantique en faisant évoluer
cet hamiltonien, et les mesures sont incorporées dans un algorithme classique d’apprentissage
automatique. Cette approche est particulièrement adaptée aux processeurs quantiques à atomes
neutres. Avec de telles plateformes, on peut en effet facilement créer un système quantique
avec la connectivité souhaitée, et la géométrie peut être modifiée à chaque exécution. J’ai
développé une diverse famille d’algorithmes, inspirés par les noyaux, les réseaux neurones et
les transformers, avec l’intention de pouvoir les implémenter sur les machines actuelles. J’ai
réalisé des expériences numériques sur des ensembles de données à grande échelle et décrit les
résultats d’implémentation expérimentale sur la machine de Pasqal.
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Abstract

Machine learning enabled the resolution of many real world problems that other traditional
computational method struggled to solve, or could solve in more expensive ways. Quantum
computing is a paradigm of computation using the quantum states of matter that enables a
large computational speed up on some problems. The recent progress in the development of
quantum hardware encouraged the research of concrete applications of quantum computers. It
then became natural to look for ways in which quantum computers can be applied for machine
learning. This thesis is a contribution towards this goal.

The first part aims at understanding the general capabilities of variational quantum circuits
(VQC) for machine learning tasks given unstructured vector data inputs, and have a clearer
idea on the necessary conditions in order to expect a quantum advantage. VQCs are a family
of quantum algorithms where one finds gates parameters that minimizes a cost function, in
the same way as neural networks. They are effectively linear models in a high dimensional
feature space. I show that although VQCs are costly to evaluate, one can sometimes construct
cheap classical approximators called classical surrogate using the technique of random features
regression. If this approximation is possible, the quantum advantage is limited. I also highlight
the fact that learning a classical model on the same feature map will lead to a solution called
the Minimum Norm Least Square (MNLS) estimator, but the training dynamics of the quantum
circuits will not necessarily lead to the same solution. This separation is the source of quantum
advantage, I show that it is sufficient that the weight vector of quantum models has a large
norm, and I give concrete examples.

The second part explores the use of quantum computers to perform machine learning
tasks on graph structured data. Machine learning on graph data encompasses many real world
applications, and algorithms for vector data cannot be directly applied. I aimed in this part
to develop quantum algorithms adapted to the graph structure of the data. The main idea
is to encode the graph into a Hamiltonian that has the same topology. One then prepares
a quantum state by evolving this Hamiltonian, and the measurements are incorporated in
a classical machine learning algorithm. This approach is especially suited to neutral atoms
quantum computers. With such platforms, one can indeed easily create a quantum system with
the desired connectivity, and the geometry can be changed at each run. I developed a large
family of algorithms, inspired by kernels, graphs neural networks, and transformers with the
intention to be ran on current hardware. I performed numerical experiments on large scale
datasets, and described the results of an experimental implementation on the hardware of
Pasqal.
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Introduction

Machine learning is the science of creating programs that perform tasks without a handcrafted
set of rules to execute. Instead, the program adapts the parameters of a model from a set of
data that would be called training data (BN06). An example of task for which machine learning
is especially relevant is image classification. It is very easy for humans to distinguish images of
cats and dogs, but it is much harder to create an algorithm to do it with deterministic logic. The
pioneering work of (KSH12) that built on (Ros58; lec89; LB+) showed that the most effective
way to perform this task is to fit a parameterized function called neural network over a dataset of
images, using a general set of methods called deep learning (LBH15). Other computational tasks
that have been solved most effectively by machine learning include playing games (SSS+17),
compute the 3D structure of proteins (JEP+21), or generating text (AI23; ADL+22).

Quantum computing and quantum information processing is the use of the quantum states of
matter to encode information and to perform computations (NC11). Classical computation uses
classical bits and logical gates, whereas quantum computation uses quantum states, quantum
operators, and measurements as building blocks of computation. Several technologies enable
the building of quantum computers, including superconducting qubits (dev13), trapped ions
(cir95), neutral atoms (HBS+20), or photonics (O’b07).

This paradigm of information processing opened up a very rich area of research and several
questions in complexity theory. Quantum computing can be indeed much more powerful than
classical computing, ie some tasks can be solved in polynomial time with a quantum computer,
but there is no known classical algorithms that can do the same. The most famous example of
such a quantum algorithm is Shor’s algorithm for prime factoring and period finding (Sho94).
The best known classical algorithm to factor prime numbers takes an exponential time. Such a
problem is the basis of modern cryptography, which makes the stakes even higher.

It then became natural to look for ways in which quantum computing can be used for machine
learning, which gave birth to the field of quantum machine learning (QML) (BWP+17; CVH+22).
The expression quantum machine learning is employed to designate a large variety of protocols
in the literature. Such variety is due to the fact that both the data and the processing algorithm
can be either classical or quantum. (SP18) proposed to create four categories in the field.

• CC: classical data, and classical algorithm. It refers to usual machine learning.

1



INTRODUCTION

• CQ: classical data, and quantum algorithm. The goal is to create quantum algorithms to
solve machine learning tasks that people used to tackle with classical machine learning
algorithms.

• QC: quantum data, classical algorithm. It refers to the use of classical machine learning
techniques to process data from quantum experiments (DAR+22).

• QQ: Quantum algorithms, and quantum data. One can imagine a quantum state decoded
by a quantum algorithm. A classic application is the phase detection of a quantum state
(CCL19).

This thesis will be exclusively focused on the CQ category. I will also only work on supervised
learning where the goal is to assign a target value to a data (e.g classifying images, predicting
prices). Other learning paradigms exist like unsupervised learning, reinforcement learning, or
generative learning, which have also been studied in the context of quantum computing. I am
interested in whether quantum computers can perform some machine learning tasks on classical
data better than classical algorithms. The term "better" can be in principle be evaluated by
several metrics. I will consider that a quantum algorithm is better than a classical one if it
can get a better accuracy in the prediction result irrespective of the computational resources
employed, or if it can match the accuracy with a lower cost.

The latter objective was the goal of an important line of work in quantum machine learning
using quantum linear algebra. Quantum linear algebra is the use of quantum algorithms for
speeding up linear algebra tasks. It started with the HHL algorithm (HHL09) for matrix
inversion and linear system solving. This family of algorithms have led to the creation of
quantum machine learning algorithms offering an exponential speed up over their classical
counterparts known at that time. Examples of such algorithms include quantum versions of
recommender systems (KP16), k-means clustering (KLLP19), or convolution neural networks
(KLP19). It was later proven that the speed up is only polynomial (Tan19; Tan23), but the
quantum algorithms are still valuable.

The quantum linear algebra machine learning algorithms require a fault tolerant quantum
computer, which is very far from the performances of current hardware (see (ZKH+25) table
1 for a summary of state of the art error rate of current platforms). The community then
proposed to use variational quantum circuits (VQC), which use parameterized quantum gates
and tune the parameters to minimize a loss function (CAB+21; SBSW20). Contrary to previous
algorithms, they can be implemented on available hardware.

VQCs are conceptually similar to deep learning and neural networks, where the goal is
to fit a parameterized function with little hypothesis on the structure of the data. They are
used as heuristics and there is little theoretical guarantees on how they could perform better
than classical algorithms. As in modern machine learning practice, performance on real world
datasets is the most important.
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At the beginning of this work, it was known that VQCs suffered issues in trainability. The
main problem was that for a widely used family of circuits, gradients were too small to be
efficiently estimated via sampling, this phenomenon is called barren plateaus (MBS+18). There
was also significant progress made in the characterization of the function that could be expressed
with these circuits (SSM21a).

In this thesis, I wished to understand the capabilities of variational quantum circuits (VQC)
for machine learning tasks, and have a clearer idea on the necessary conditions in order to
expect a quantum advantage. I also wished to design algorithms that can exploit the graph
structure of data. Graph machine learning problems can indeed be associated to a lot of real
world tasks, and have been little investigated by the quantum machine learning community.

In Part I, I will explore the theoretical properties of VQCs with unstructured vector data
input, and general architectures. I focus on the question of determining the conditions in which
VQCs can provide a quantum advantage.

In Chapter 1, I introduce the concepts of variational quantum circuits (VQC), describe
their use in machine learning, and give a brief overview of the existing literature.

In Chapter 2, I investigate first some limitations of these quantum models. I indeed show
that under certain conditions, one can classically approximate a VQC given only the description
of its architecture, with a technique from the classical machine learning community called
Random Fourier features. I provide general theoretical bounds for classically approximating
models built from exponentially large quantum feature space by sampling a few frequencies to
build an equivalent low dimensional kernel, and I show experimentally that this approximation
is efficient for several encoding strategies.

In Chapter 3, I refine the analysis made in the previous chapter. I compare the inductive
bias between classical linear regression and quantum models. I characterize the separation
between quantum and classical models by their respective weight vector. I show that a sufficient
condition for a quantum model to avoid dequantization by its classical surrogate is to have a
large weight vector norm. I suggest that this can only happen with a high dimensional feature
map. Through the study of some common quantum architectures and encoding schemes, I
obtain bounds on the norms of the quantum weight vector and the corresponding classical
weight vector. It is possible to find instances allowing for a separation, but in these cases
concentration issues become another concern. I finally prove that there exists linear models
with large weight vector norm and without concentration, potentially achievable by a quantum
circuit.

When I started this thesis work, there were very few work on machine learning for graph
structured data. The study of machine learning on graphs and networks is an increasingly
popular topic of research (Ham20) in the classical machine learning community.

In Part II, I propose methods to perform machine learning tasks on graph structured data,
especially adapted to neutral atoms quantum computers. The main idea is to encode the
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topology of the input graph in the Hamiltonian of a quantum system, and to make the quantum
state evolve. The evolution produces measurement samples that retain key features of the data.
These features are in general out of reach for a classical computer, and I prove that some of
these quantum features are theoretically more expressive for certain graphs than the commonly
used relative random walk probabilities or laplacian eigenvectors.

In Chapter 4, I introduce important concepts in machine learning for graph data. I define
graph kernels, graph neural networks, and graph transformers. I give examples of the most
recent algorithms and architectures for graph learning. I also give a brief overview on the
capabilities of neutral atom quantum computers.

In Chapter 5, I detail the methods to perform graph machine learning with a quantum
computer following a general blueprint. I introduce the algorithms that I developed during my
thesis, and detail their inner working. I also describe the theoretical properties that could be
established.

In Chapter 6, I describe all the experiments and implementations that have been performed
with the algorithms. I show numerically that the performance of state-of-the-art models can be
improved on standard benchmarks and large-scale datasets by computing tractable versions of
quantum features. I also describe the results of the implementation of a quantum kernel algorithm
on the neutral atom hardware of Pasqal. I first show that interactions in the quantum system
can be used to distinguish non isomorphic graphs that are locally equivalent. I then describe
the implementation of a toxicity screening experiment, consisting of a binary classification
protocol on a biochemistry data set comprising 286 molecules of sizes ranging from 2 to 32
nodes, and obtain results which are comparable to the implementation of the best classical
kernels on the same data set. Using techniques to compare the geometry of the feature spaces
associated with kernel methods, I then show evidence that the quantum feature map perceives
data in an original way, which is hard to replicate using classical graph kernels.

This thesis is based on the following published papers and preprints:

• (ADL+23) Boris Albrecht, Constantin Dalyac, Lucas Leclerc, Luis Ortiz-Gutiérrez, Sli-
mane Thabet, Mauro D’Arcangelo, Julia RK Cline, Vincent E Elfving, Lucas Lassablière,
Henrique Silvério, Bruno Ximenez, Louis-Paul Henry, Adrien Signoles, Loïc Henriet. (2022)
Quantum feature maps for graph machine learning on a neutral atom quantum processor.
Physical Review A, 107(4), 042615.

• (LTD+22) Jonas Landman, Slimane Thabet, Constantin Dalyac, Hela Mhiri, Elham
Kashefi (2022). Classically Approximating Variational Quantum Machine Learning with
Random Fourier Features. International Conference on Learning Representations 2023

• (TFH22) Slimane Thabet, Romain Fouilland, Loic Henriet (2022). Extending Graph
Transformers with Quantum Computed Correlations arXiv:2210.10610
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• (TDS+) Slimane Thabet, Mehdi Djellabi, Igor Sokolov, Sachin Kasture, Louis-Paul Henry,
Loïc Henriet (2024). Quantum Positional Encodings for Graph Neural Networks. Interna-
tional Conference on Machine Learning 2024

• (TML24) Slimane Thabet, Léo Monbroussou, Eliott Z Mamon, Jonas Landman (2024).
When Quantum and Classical Models Disagree: Learning Beyond Minimum Norm Least
Square arXiv:2411.04940

I also had the opportunity to participate in the following preprint under rewiew that is not
detailed in this thesis:

• (MMHG+24) Hela Mhiri, Léo Monbroussou, Mario Herrero-Gonzalez, Slimane Thabet,
Elham Kashefi, Jonas Landman (2024). Constrained and vanishing expressivity of quantum
fourier models,arXiv:2403.09417
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Introduction to variational quantum
circuits

Variational Quantum Circuits (VQC), also named Variational Quantum Algorithms (VQA),
Parameterized Quantum Circuits (PQC), or Quantum Neural Networks (QNN) are a family of
quantum algorithms that emerged in the recent years. (CAB+21) proposes a review of VQCs
summarizing the different techniques, their potential and challenges.

This chapter will introduce the key technical elements that will be used in this part. In
Section 1.1, I give a brief overview of the general structure of VQCs, and the original use cases.
In Section 1.2, I give some details about linear regression and kernel ridge regression, two
key machine learning algorithms that will constitute a basis for this part. In Section 1.3 and
Section 1.4, I detail how VQCs are used in the context of machine learning and I introduce
some key concepts that will be used throughout this part.

1.1 Overview

The general idea is to create a circuit U(θ) parameterized by the classical parameters θ, and a
cost function C(θ) depending on the circuit. Such a circuit U(θ) is sometimes called an ansatz.
The goal is therefore to find the parameters θ∗ that minimize this cost function. The optimal
value of the cost function, or the quantum state generated by the optimal parameters would
constitute a solution to the problem one wishes to solve. Each problem will need a different
circuit and cost function, therefore the construction of the parameterized circuit and the cost
function is the core of a VQC.

9



CHAPTER 1. INTRODUCTION TO VARIATIONAL QUANTUM CIRCUITS

A general formulation of a parameterized unitary U(θ) can be expressed as

U(θ) =
K∑

k=1
exp(−iHkθk)Wk (1.1)

where θ = (θ1, . . . θK) is the vector of parameters, Hks are hermitian matrices, and Wks are non
parameterized unitaries. A popular way to create cost functions is to take the expectation of an
observable O on the circuit, and to express the cost function as C(θ) = Tr(U †(θ)OU(θ)|0⟩⟨0|).

The first example of such known algorithms is the variational quantum eigensolver (VQE)
(PMS+14). The problem that motivated the method is to find the ground state energy of a
given hamiltonian H. The authors of (PMS+14) proposed to create a parameterized quantum
state |ψ(θ)⟩, and to minimize ⟨ψ(θ)|H|ψ(θ)⟩ with an optimization algorithm such as the Nelder
Mead algorithm (NM65). The minimum of this function would be a heuristic for the ground
state energy of H.

Another famous example of a variational algorithm is the Quantum Approximate Optimiza-
tion Algorithm (QAOA) (FGG14). The objective of this algorithm is to solve combinatorial
optimization problems. Combinatorial optimization problems can be formulated as finding the
ground state of a hamiltonian (Luc14). Let HC be the cost hamiltonian, depending on the
problem, and HM be a mixing hamiltonian. The QAOA algorithm introduces the parameterized
state

p∏
k=1

exp(−iγkHC) exp(−iβkHM ) (1.2)

for an integer p ≥ 1, with parameters (β1, . . . , βp) and (γ1, . . . , γp). The algorithm aims to mimic
the Troterrization (Suz76) of an adiabatic evolution (Kat50). If one prepares the ground state
of HM , and makes the system evolve during a time T following the time dependent hamiltonian

t

T
HC + (1− t

T
)HM (1.3)

the final state obtained will be the ground state of HC provided that T is big enough.
An important issue in the use of parameterized circuits is the barren plateaus phenomenon

originally discovered by (MBS+18). It means that the gradients of the loss functions becomes
too small to be reliably estimated with measurements. More quantitatively, a circuit has barren
plateaus if the variance of the cost function over the distribution of the initialization of the
parameters θ is exponentially small, ie Eθ[C(θ)] = 0 and Vθ[C(θ)] = O(b−n) where n is the
number of qubits and b > 0. It is a very dynamic area of research in the community, (LTW+24)
made an extensive review of the topic. This topic is mainly out of the scope of this thesis, I will
only refer to it in Section 3.4.

1.2 Linear regression and kernel ridge regression

We present in this section the Linear Ridge Regression (LRR) and Kernel Ridge Regression
(KRR) problem ((BN06)). The problem of regression is to predict continuous label values from
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feature vectors. We are given a dataset {(xi, yi), i ∈ J1,MK, xi ∈ Rd, yi ∈ R}, and to each data
point x an associated feature vector ϕ(x) ∈ Rp. The goal of LRR is to construct a parameterized
model f such that f(x) = y. The model is parameterized by a weight vector w of size p such
that f(x;w) = wTϕ(x). Training the model consists of finding the vector w∗ that minimizes
the loss function

w∗ = arg min
w

1
M

M∑
i=1
|wTϕ(xi)− yi|2 + λ||w||2 (1.4)

= arg min
w

1
M
||Φw− y||2 + λ||w||2 (1.5)

(1.6)

where Φ is a matrix of size M × p with each row i corresponds to ϕ(xi)T and y is the vector of
all the labels yi. The first term of the loss is the Mean Square Error (MSE) and corresponds
to the difference between the prediction and the ground truth. The second term is the ridge
regularization, and prevents the weights from exploding. The magnitude of the regularization is
controlled by the hyperparameter λ > 0.

When p < M , an analytic solution to this problem is given by w∗ = (ΦTΦ+MλIp)−1ΦTy.
If p > M , the solution is not unique and the matrix ΦTΦ will not be invertible, one can find a

solution by performing a gradient descent on the loss function L(w) = 1
M

M∑
i=1
|wTϕ(xi)− yi|2 +

λ||w||2.
The dual formulation of this problem is given by expressing w as a linear combination of

the data points w = ΦTα. The minimization on w become a minimization on α and can be
expressed as

α∗ = arg min
α

1
M
||ΦΦTα− y||2 + λαTΦΦTα (1.7)

(1.8)

The solution of this problem is α = (ΦΦT +MλIM )−1y.
Note that the dual solution only depends on the matrix of scalar products between feature

vectors ΦΦT . One can then replace this matrix by a kernel matrix K and the obtained model
is a Kernel Ridge Regression.

1.3 Variational quantum circuits as machine learning models

We consider a standard learning task where a parameterized function f , named model, must be
optimized to map vector data points to their target values. The data used for the training is
made of M points x = (x1, . . . , xd) in X = Rd along with their target values y in Y = R. We
define a quantum model as the family of parametrized functions f : (X ,Θ) −→ Y, such that

f(x; θ) = ⟨0|U(x; θ)†OU(x; θ)|0⟩ (1.9)

11
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where U(x; θ) is a unitary that represents the parametrized quantum circuits, θ represents
the trainable parameters from a space Θ, and O is an observable. We can always describe the
parametrized quantum circuit as a series of two types of gates. The first are called encoding
gates as they only depend on input data values, whereas the trainable gates depend on internal
parameters that are optimized during training. A typical instance of a Variational Quantum
Circuit (VQC) is illustrated in Figure 1.2. In the recent literature, these gates are often grouped
as layers, which is not mandatory, since any circuit can be sliced into alternating sequences of
encoding and training blocks (even if containing a single gate).

Any quantum unitary implements the evolution of a quantum system under a Hamiltonian.
Thus, we choose to write the ℓth encoding gates as exp(−ixiHℓ), where xi is one of the d
components of x, and Hℓ is a Hamiltonian matrix of size 2p if p is the number of qubits this
gate acts on. We will note L the number of encoding gates for each dimension of x (the same
for each dimension, for notation simplicity).

In this framework, the aim is to find the optimal mapping between data points and their
target values. This is done by optimizing the parameters θ to find the best guess f∗ such that

f∗ = arg min
θ

1
M

M∑
i=1

l(f(xi; θ), yi) (1.10)

where l is a cost function adapted to the task. For a standard regression task, we can choose
l(z, y) = |z − y|2

1.4 Quantum models are large Fourier series

It is known since (SSM21b) that the family of quantum models defined Equation (1.9) can be
rewritten as a Fourier series:

f(x; θ) =
∑
ω∈Ω

cωe
iωx (1.11)

where the spectrum Ω of frequencies is determined by the ensemble of eigenvalues of the
encoding Hamiltonians and the coefficients cω depend on the parametrized ansatz, as pictured
in Figure 1.2.

In order to get familiar with the structure of the spectrum, I explicitly show an example
of Ω in the case of a one dimensional data input (X = R) and with a variational circuit
containing only L encoding gates. The accessible frequency spectrum Ω is the ensemble of all
the differences between all possible sums of the eigenvalues of the encoding gates as shown
in Figure 1.1. I note λk

ℓ the kth eigenvalue of the ℓth encoding Hamiltonian Hℓ having dℓ

eigenvalues. I use the multi-index i = (i1, . . . , iL) indicating which eigenvalue is taken from
each encoding Hamiltonian. We define Λi as

Λi = λi1
1 + · · ·+ λiL

L (1.12)

12



CHAPTER 1. INTRODUCTION TO VARIATIONAL QUANTUM CIRCUITS

Finally, I can express Ω, the set of frequencies :

Ω =
{

Λi − Λj , i, j ∈
L∏

ℓ=1
[|1, dℓ|]

}
, (1.13)

Figure 1.1: From encoding Hamiltonians to frequencies. The frequencies com-
posing the VQC model (on one dimensional input) come from all the combinations
of eigenvalues from each encoding Hamiltonians. This can be seen as a tree, with
L = 3 Hamiltonians in this figure. We also see potential redundancy in the leaves.

The simplest encoding is called Pauli encoding, where all encoding Hamiltonians are Pauli
matrices (e.g. encoding gates RZ(x) = e−i x

2 σZ ) as in (SSM21b; CGFM+21). In this case, all
the eigenvalues are λ = ±1/2, and therefore, the Λi are all the integers (or half-integers, if L is
odd) in [−L/2, L/2]. It follows that the set of distinct values in Ω is simply the set of integers
in J−L,LK. In this case, there are many redundant frequencies, due to the fact that all Pauli
eigenvalues are the same. Namely, only 2L + 1 distinct frequencies among the 22L possible
values of Λi − Λj . As shown in Figure 1.1, more various eigenvalues would create more distinct
frequencies in the end.

We can now generalize, if we now have that X = Rd, such that we encode a vector
x = (x1, . . . , xd) in our quantum model, and we assume that each encoding gate is a function
of a single coordinate xi then Ω becomes the following d−dimensional Cartesian product

Ω = Ω1 × Ω2 × · · · × Ωd (1.14)
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Figure 1.2: Variational quantum circuits give rise to Fourier series. In a
quantum machine learning task, classical data is encoded in a subset of variational
gates of a quantum circuit (green), while blue gates are trainable.

where each Ωκ is defined as in Equation (1.13) on its own set of Hamiltonians. In this context,
one can note that the frequencies ω are now vectors in Rd and there are d different trees to build
Ω (see Figure 1.1). Note that for notation simplicity, we assumed that L gates were applied on
each input’s component, but it can be generalized to any number of gates per dimension.

We therefore see that the size of the spectrum |Ω| can potentially grow exponentially with
the number of encoding gates and the dimension of the input data. For instance, if we consider
a d-dimensional vector x and L Pauli-encoding gates for each dimension in such a way that
there are Ld encoding gates in the VQC. According to equation (Equation (1.14)), the size of
the spectrum Ω would scale as O(Ld), which becomes quickly intractable as d increases. As an
example, the spectrum associated to a VQC with L = 20 encoding gates and d = 16 would
require more than one hundred times the world’s storage data capacity available in 2007 to be
stored (HL11). The ability to represent a model with such a high dimension is the intuitive
reason one would think of having an advantage using quantum models.
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Classically approximating variational
quantum models

In the previous chapter, I introduced variational quantum circuits and how one can use them for
a machine learning task. Understanding their potential advantage is therefore a very dynamic
research question in the community. Much of the intuition about the potential advantage of
VQCs is the fact that they can represent a linear function in a very high dimensional space,
and therefore would be very costly to evaluate.

However, this ability is not enough to guarantee an advantage. In this chapter, I show
that high dimensional models can sometimes be approximated with smaller efficient models. I
propose a classical sampling method that may closely approximate a VQC with Hamiltonian
encoding, given only the description of its architecture. It would consist in building a classical
approximator f̃ as

f̃(x) =
∑
ω∈Ω̃

c̃ωe
iωx (2.1)

such that Ω̃ is of tractable size and the two solution are close, written as
∥∥∥f(x)− f̃(x)

∥∥∥ ≤ ε,
using a given error measure (ℓ∞ or ℓ2 norms, for instance).

It uses the seminal proposal of Random Fourier Features (RFF) (RR07) and the fact that
VQCs can be seen as large Fourier series. I provide general theoretical bounds for classically
approximating models built from exponentially large quantum feature space by sampling a few
frequencies to build an equivalent low dimensional kernel, and I show numerically that this
approximation is efficient for several encoding strategies. In the cases where the construction of
such a model is possible, it would imply that although classically simulating the encoding VQC
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might not be possible, the quantum model that emerges from it can be efficiently approximated
in a classical way.

This chapter is based on the following paper

• (LTD+22) Jonas Landman, Slimane Thabet, Constantin Dalyac, Hela Mhiri, Elham
Kashefi (2022). Classically Approximating Variational Quantum Machine Learning with
Random Fourier Features. International Conference on Learning Representations 2023

2.1 Quantum models are shift-invariant kernel methods

As the quantum model is a real-valued function, it follows that ω ∈ Ω implies −ω ∈ Ω and
cω = c∗

−ω. We express the Fourier series of the quantum model as a sum of trigonometric
functions by defining for every ω ∈ Ω:

aω := cω + c−ω ∈ R (2.2)

bω := 1
i
(cω − c−ω) ∈ R (2.3)

such that

f(x; θ) =
∑

ω∈Ω+

cωe
iωx + c−ωe

−iωx

=
∑

ω∈Ω+

aω cos(ωx) + bω sin(ωx),
(2.4)

where Ω+ contains only half of the frequencies from Ω. Considering only Pauli gates, if d = 1,
we simply have Ω = J−L,LK and Ω+ = J0, LK. In dimension d, we have Ω = J−L,LKd and Ω+

is built by keeping half of the frequencies (after removing those of opposite sign), plus the null
vector. In the end, we have

|Ω+| =
(2L+ 1)d − 1

2 + 1 (2.5)

With a more general encoding scheme, if there is a different number of distinct positive
frequencies per dimension, the formula is different but is built similarly.

In the following parts, we will focus solely on Ω+ and conveniently drop the + subscript.
We can also define the feature map of the quantum model (Sch21) as

f(x; θ) = ⟨ψ(x; θ)|O|ψ(x; θ)⟩ = w(θ)Tϕ(x) (2.6)

where ϕ(x) is the feature vector, the mapping of the initial input into a larger feature space,
where the new distribution of the data is supposed to make the classification (or regression)
solvable with only a linear model. This linear model is in fact the inner product between ϕ(x)
and a trainable weight vector w. In the case of VQCs, we can explicitly express them as:
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ϕ(x) = 1√
|Ω|


cos(ωTx)
sin(ωTx)

...


ω∈Ω

, w(θ) =


aω

bω

...


ω∈Ω

(2.7)

If the spectrum Ω is known and accessible, one can fit the quantum model by retrieving the
coefficients aω, bω associated to each frequency ω. This can be done by using general linear ridge
regression techniques (see Section 1.2). Interestingly, there exists a dual formulation of the linear
ridge regression that depends entirely on the kernel function associated to the model (BN06).
In our case, the related kernel function is defined by:

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩

= 1
|Ω|

∑
ω∈Ω

cos
(
ω⊤x

)
cos
(
ω⊤x′

)
+ sin

(
ω⊤x

)
sin
(
ω⊤x′

)
= 1
|Ω|

∑
ω∈Ω

cos
(
ω(x− x′)

) (2.8)

which is a shift-invariant kernel, meaning that k(x, x′) can be written k̄(x− x′) where k̄ is a
one variable function.

It is known that quantum models from VQCs are related to kernel methods (Sch21), which
means that it is equally possible to fit the quantum model by approximating the related kernel
function. These kernels are high dimensional (since the Ω can be numerous) which makes it
hard to simulate classically in practice. But due to their shift-invariance, we propose to study
their classical approximation using Random Fourier Features (RFF), a seminal method known
to be powerful approximator of high-dimensional kernels (RR07).

One should note however that classically fitting the coefficients aω and bω will not necessarily
lead to the same output as fitting the quantum model. This distinction is the subject of Chapter 3.
For this chapter, we will consider that it is a decent approximation.

2.2 Random Fourier features approximates high-dimensional
kernels

In this section, we explain the key results of the classical method called Random Fourier
Features (RFF) (RR07; LTOS19; SS15). We will use this method to create several classical
sampling algorithms for approximating VQCs.

Let X ⊂ Rd be a compact domain and k : X × X −→ R be a kernel function. We assume k
is shift invariant, meaning

k(x, y) = k(x− y) = k(δ) (2.9)

where k : X −→ R is a single variable function, and we will note k = k to simplify the notation.
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Bochner’s theorem (Rud17) ensures that the Fourier transform of k is a positive function
and we can write

k(δ) =
∫

ω∈X
p(ω)e−iωT δdω (2.10)

If we assume k is also normalized (ie
∫

ω∈X
p(ω)dω = 1, then the Fourier transform p(ω)

of k can be seen as a probability distribution. With a dataset of M points, fitting a Kernel
Ridge Regression (KRR) model with the kernel k necessitates M2 operations to compute the
kernel matrix and O(M3) to invert it. This becomes impractical when M reaches high value in
modern big datasets.

The idea of the Random Fourier Feature method (RR07) is to approximate the kernel k by

k̃(x, y) ≃ ϕ̃(y)T ϕ̃(x) (2.11)

where ϕ̃(x) = 1√
D

cos
(
ωT

i x
)

sin
(
ωT

i x
)

i∈J1,DK

and the ωis are D frequencies sampled iid from the

frequency distribution p(ω). Formally, it is a Monte-Carlo estimate of k. Note that p(ω) can be
analytically found in some cases such as Gaussian or Cauchy kernel (RR07).

Then instead of fitting a KRR for k, one will solve a Linear Ridge Regression (LRR) with
ϕ (see details in Section 1.2). The two problems are equivalent (BN06), and the number of
operations needed for the LRR is O(MD2 +D3), O(MD2) to compute the covariance matrix
and O(D3) to invert it. If D is much smaller than M , it is much cheaper than solving the KRR
directly. Even if D is so big that the linear regression cannot be exactly solved, one can employ
stochastic gradient descent or adaptive momentum optimizers such as Adam (KB14).

The output of the LRR or gradient descent is simply a weight vector w̃ that is used to
create the approximate function

f̃ = w̃T ϕ̃(x) (2.12)

We give here two useful results about the bounds of the error of the RFF method. RFFs
are supposed to approximate a certain kernel k by using fewer features. Intuitively, not enough
features would lead to imprecise solutions. The following theorems ((RR07; SS15)) bound the
error obtained when comparing the kernel k(x, y) by the RFF approximator ϕ̃(x)T ϕ̃(y) using
D samples.

where p(ω) is the distribution of the frequencies ω.

Theorem 2.1. (RR07) Let X be a compact set of Rd, and ϵ > 0.

P( sup
x,y∈X

|k(x− y)− ϕ̃(x)T ϕ̃(y)| ≥ ϵ) ≤ 66(σp|X |
ϵ

)2exp(− Dϵ2

4(d+ 2)) (2.13)

with σ2
p = Ep(ωTω), the variance of the frequencies’ distribution, and |X | = maxx,x′∈X (∥x−x′∥)

the diameter of X .
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The following theorem (SS15) bounds the actual prediction error when using RFF compared
to the KRR estimate. The formula in the original reference contains a sign error and we correct
it here.

Theorem 2.2. (SS15) Let X be a compact set of Rd, and ϵ > 0. We consider a training
set {(xi, yi)}Mi=1. Let f be the KRR model obtained with the true kernel k and regularization
λ = Mλ0 for λ0 > 0, and f̃ the KRR model obtained with the approximate kernel and the same
regularization. Then we can guarantee |f(x)− f̃(x)| ≤ ϵ for all x ∈ X with probability 1− δ for
a number D of samples given by:

D = Ω
(
d

((λ0 + 1)σy

λ2
0ϵ

)2[
log(σp|X |) + log

(λ0 + 1)σy

λ2
0ϵ

− logδ
])

(2.14)

with σ2
y = 1

M

∑M
i=1 y

2
i and σp, |X | being defined in Theorem 2.1. We recall that in Equation (2.14)

the notation Ω stands for the computational complexity "Big-Ω" notation.

2.3 Random Fourier features for approximating VQCs

In this section, I present in detail our solutions to approximate a VQC using classical methods.
The intuitive idea is to sample some frequencies from the VQC’s frequency domain Ω, and
train a classical model from them, using the RFF methods from Section 2.2. The general idea
is illustrated in Figure 2.1. I first introduce some related work (Subsection 2.3.1), then present
three different strategies to sample those frequencies to build classical models (Subsection 2.3.2).
I finally provide theoretical bounds on the number of samples required (Subsection 2.3.3) and
present potential limitations to the methods (Subsection 2.3.4), opening the way for VQCs
with strong advantage over classical methods.

2.3.1 Related work

A recent work (SEM22) independently proposed a similar approach where classical surrogate
methods approximate VQCs. The difference with this work is the necessity of having access to
all Ω, the totality of the frequencies of the VQC considered, without sampling from them.

Indeed, if Ω is known, the coefficients aω and bω of the VQC function (see Equation (2.4))
can be easily fitted by solving the classical least square problem. Namely, one determines w∗

such that

w∗ = arg min
w

1
M

M∑
i=1
|wTϕ(xi)− yi|2 + λ0

M
||w||2 (2.15)

where ϕ(x) =
[
cos(ωx)
sin(ωx)

]
ω∈Ω

, and λ0 is the regularisation parameter. As explained in the

previous section, with a dataset of M points, this can be solved exactly using matrix inversion
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Figure 2.1: Random Fourier features as a classical approximator of quan-
tum models. Instead of training a Variational Quantum Circuit by using a
quantum computer, I propose to train a classical linear model built by sampling a
few frequencies of the quantum model. These frequencies can be derived from the
quantum circuit architecture, in particular from the encoding gates. Using random
Fourier features, one can build a classical model which could perform as good as the
quantum model with a bounded error and a tractable number of random features.

in O(M |Ω|2 + |Ω|3) operations if M ≥ 2|Ω|. If the inequality is not fulfilled or if |Ω|3 is too big,
one would use stochastic gradient descent instead of matrix inversion.

However, this method assumes that Ω is known, and is not too large, which will usually
be the case as we show in Section 1.4. One should also be able to enumerate all individual
frequencies ω ∈ Ω. Moreover, as we will show the redundancy of some frequencies in Ω has a
key importance, which is not captured by such a method.

For completeness, we note from the seminal work (Sch21) that the author briefly mentions
the idea of approximating kernels with RFF. Similarly, in a more recent work (PS22), the
authors mention RFF as a sampling strategy on VQCs with shift invariant kernels, without
further details.

2.3.2 RFF sampling strategies

We now propose 3 types of sampling strategies of the spectrum Ω. We will explain in which
case these strategies are suited, according to the type of the encoding circuit, the dimension of
the input vectors, the number of training points, and so on.

As shown in Equation (2.7) and Equation (2.8), the corresponding kernel k of the VQC
is built from frequencies ω ∈ Ω. In section Section 2.1, we have shown that this kernel is
shift-invariant, which ensures us the efficiency of RFF to approximate them. Applying the RFF
method would consist in sampling from Ω and reconstructing a classical model which should
approximate the VQC output function f .
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2.3.2.1 RFF with Distinct sampling

This strategy describe the basic approach of using RFF for approximating VQCs. We assume
the ability to sample from Ω. It is straightforwardly following the method described in Section
Section 2.2, and given in Algorithm 1.

The benefit of this method, compared to the one presented in Subsection 2.3.1, is the
ability to use far fewer frequencies than the actual size of Ω. As shown in Subsection 2.3.3, one
might require a number D of samples scaling linearly with the dimension of the input d, and
logarithmically with the size of Ω.

Algorithm 1 RFF with Distinct sampling
Require: a VQC model f , and M data points {xj}j∈[M ]
Ensure: Approximate function f̃

1: Diagonalize the Hamiltonians of the VQC’s encoding gates.
2: Use their eigenvalues to obtain all frequencies ω ∈ Ω, as in Equation (1.13)
3: Sample D frequencies (ω1, · · · , ωD) from Ω

4: Construct the approximated kernel k̃(x, y) = ϕ̃(y)T ϕ̃(x) with ϕ̃(x) = 1√
D

[
cos(ωT

i x)
sin(ωT

i x)

]
i∈J1,DK

5: Solve the LRR problem ( Section 1.2), and obtain a weight vector w̃.
6: Obtain the approximated function f̃(x) = w̃T ˜ϕ(x)

2.3.2.2 RFF with Tree sampling

The abovementioned method requires constructing explicitly Ω, which can become exponentially
large if the dimension d of the datapoints is high (see Section 1.4). The size of Ω is also increased
if the encoding Hamiltonians have many eigenvalues (when the Hamiltonian is complex and
acts on many qubits), or if many encoding gates are used. A large Ω is indeed the main interest
of VQCs in the first place, promising a large expressivity.

In some cases, and in particular for a VQC using many Pauli encoding gates, a lot of
redundancy occurs in the final frequencies. Indeed, if many eigenvalues are equal, the tree leaves
will become redundant. Very small eigenvalues can also create groups of frequencies extremely
close to each other, which in some use cases, when tuning their coefficients aω and bω, can
be considered as redundancy. In the numerical experiments (see Figure 2.3), we observe an
interesting phenomenon: On average, the frequencies with the more redundancy tend to obtain
larger coefficients. Conversely, isolated frequencies are very likely to have small coefficients in
comparison, making them "ghost" frequencies in Ω. For VQC with solely Pauli encoding gates,
we observe that the coefficients of high frequencies are almost stuck to zero during training.
Therefore, one can argue that the Distinct Sampling described above can reach even more
frequencies than the corresponding VQC. However, if one wants to closely approximate a given
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VQC with RFF, one would not want to sample such isolated frequencies from Ω but instead
draw with more probability the redundant frequencies.

Algorithm 2 RFF with Tree sampling
Require: a VQC model f , and M datapoints {xj}j∈[M ]
Ensure: Approximate function f̃

1: Diagonalize the Hamiltonians of the VQC’s encoding gates.
2: Sample D paths from the tree shown in Figure 1.1, obtain D frequencies (ω1, · · · , ωD) from

Ω
3: Follow steps 4-6 of Algorithm 1.

This is what we try to achieve with Tree Sampling. Knowing the eigenvalue decomposition of
each encoding’s Hamiltonian, we propose to directly sample from the tree shown in Figure 1.1.
The first advantage of this method is that it does not require computing the whole set Ω, but
only draw D paths through the tree (which can be used to generate up to

(D
2
)

+ 1 positive
frequencies, with potential redundancy). Second, it naturally tends to sample more frequencies
that are redundant, and therefore more key to approximate the VQC’s function. Overall, it
could speed up the running time and necessitate fewer samples.

2.3.2.3 RFF with Grid sampling

The two above methods suffer from a common caveat: if one or more of the encoding Hamiltonians
are hard to diagonalize, sampling the VQC’s frequencies is not possible as it prevents us from
building some of the branches of the tree shown in Figure 1.1.

Even in this case, we propose a method to approximate the VQC. If the frequencies are
unknown, but one can guess an upper bound or their maximum value, we propose the following
strategy: We create a grid of frequencies regularly disposed between zero and the upper bound
ωmax, on each dimension. In practice, if unknown, the value of ωmax can simply be the largest
frequency learnable by the Shannon criterion (see Section Subsection 2.3.3) hence half of the
number of training points. Letting s > 0 be the step on this grid, the number of frequencies on
a single dimension is given by ωmax/s. Over all dimensions, there are ⌈(ωmax/s)⌉d frequency
vectors.

Therefore, instead of sampling from actual frequencies in Ω, one could sample blindly from
this grid, hence the name Grid Sampling. At first sight, it might seem ineffective, since none of
the frequencies actually in Ω may be represented in the grid. But I show in Theorem 2.4 that
the error between the VQC’s model f and the approximation f̃ coming from the grid can be
bounded by s. When s is small enough, the number D of samples necessary to reach an error
ϵ > 0 grows like log(1/s)/ϵ2 which is surprisingly efficient. However, the trade-off comes from
the fact that a small s means a very large grid, in particular in high dimension.
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Algorithm 3 RFF with Grid Sampling
Require: Assumption on the highest frequency ωmax, a step s > 0 and M datapoints {xj}j∈[M ]
Ensure: Approximate function f̃

1: Create a regular grid in [0, ωmax]d with step s.
2: Sample D frequencies (ω1, · · · , ωD) from the grid.
3: Follow steps 4-6 of Algorithm Algorithm 1.

2.3.3 Number of samples and approximation error

In (SS15), authors bound the resulting approximation error in the RFF method, see Theorem 2.2.
In this theorem, the error between the final functions f and f̃ is considered. One can see that
if the error must be constrained such that |f(x)− f̃(x)| ≤ ϵ, for ϵ > 0, one can derive a lower
bound on the number D of samples necessary for the approximation. Fortunately, the bound
on D grows linearly with the input dimension d, and logarithmically with σp which linked to
the variance of the frequency distribution p(ω).

In our case, the continuous distribution p(ω) will be replaced by the actual set of frequencies
Ω,

p(ω) = 1
|Ω|

∑
ω∈Ω

δω (2.16)

where δω represents the Dirac distribution at ω. As a result, we can write the discretized
variance as

σp =
∑
ω∈Ω

p(ω)ωTω (2.17)

From this, we want to know the relation between the number D of samples necessary and the
size of Ω, or even the number L of encoding gates per dimension.

In the general case, we consider that σp is the average value of ωTω. The more the frequencies
are spread, the higher σp will be, but the number of frequencies in itself doesn’t seem to play
the key role here.

Finally, note that it is important to take into account the Shannon criterion, stating that
one needs at least 2ωmax training points to estimate the coefficients of a Fourier series of
maximum frequency ωmax. In practice, it puts some limitation on the largest frequency one
can expect to learn (both classically and quantumly) given an input dataset. Large frequencies
with VQCs, as in (STJ22) would have a limited interest with a restricted number of training
points. The efficiency of RFF against VQCs in such cases becomes even more interesting, as it
allows reducing the number D of sample compared to the actual exponential size of Ω.

2.3.3.1 Pauli encoding

We provide here a bound on the minimum of samples required to achieve a certain error between
the RFF model and the complete model in the case of Pauli encoding in the distinct sampling
strategy. The proof and details for this theorem is shown in Appendix A.1.

23



CHAPTER 2. CLASSICALLY APPROXIMATING VARIATIONAL QUANTUM MODELS

Theorem 2.3. Let X be a compact set of Rd, and ϵ > 0. We consider a training set {(xi, yi)}Mi=1.
Let f be a VQC model with L encoding Pauli gates on each of the d dimensions and full freedom
on the associated frequency coefficients, trained with a regularization λ. Let σ2

y = 1
M

∑M
i=1 y

2
i

and |X | the diameter of X . Let f̃ be the RFF model with D samples in the distinct sampling
strategy trained on the same dataset and the same regularization. Then we can guarantee
|f(x)− f̃(x)| ≤ ϵ for all x ∈ X with probability 1− δ for a number D of samples given by:

D = Ω
(
dC1(1 + λ)2

λ4ϵ2

[
log
(
dL2|X |

)
+ log C2(1 + λ)

ϵλ2 − log δ
])

(2.18)

with C1, C2 being constants depending on σy, |X |. We recall that in Equation (2.18) the notation
Ω stands for the computational complexity "Big-Ω" notation.

We can conclude that the number D of samples grows linearly with the dimension d, and
logarithmically with the size of Ω ( see Equation (2.5)). It means that even though the number
of frequencies in the spectrum of the quantum circuit is high, only a few of them are useful in
the model. This fact limits the quantum advantage of such circuits.

One should note however that this theorem assumes that the inductive biases of the quantum
and classical models are similar, which is not necessarily true. The case where they are different
is the subject of Chapter 3.

However, the scaling in ϵ and λ, respectively in Ω(1/ϵ2) and Ω(1/λ4) is not favorable, and
can limit in practice the use of the RFF method.

One may think at first sight that the RFF method would be efficient to approximate the
outputs of any VQC, or find a "classical surrogate" (SEM22). Instead, the bound that is provided
is on the error between a VQC trained on an independent data source and a RFF model trained
on the same data. There is contained in this result the potential incompleteness of the dataset
to render an accurate representation of the underlying data distribution. If the dataset fails to
correctly represent the data distribution, then the VQC will fail to correctly model it, and the
theorem provide the minimal number of samples to perform "as badly". This was tested in the
numerical simulations in Section 2.4. However, we recall that these are bounds that can hardly
be reached in practice with the current classical and quantum computing resources. They give
an intuition on the asymptotic scaling as quantum circuits become larger.

2.3.3.2 Grid sampling

We provide here a bound on the minimum number of samples required to achieve a certain
error between the RFF model and the complete model in the case of a general encoding in the
gird sampling strategy. The proof and details for this theorem is shown in Appendix A.1.

Theorem 2.4. Let X be a compact set of Rd, and ϵ > 0. We consider a training set {(xi, yi)}Mi=1.
Let f be a VQC model with any hamiltonian encoding, with a maximum individual frequency
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ωmax and full freedom on the associated frequency coefficients, trained with a regularization λ.
Let σ2

y = 1
M

∑M
i=1 y

2
i and |X | the diameter of X . Let f̃ be the RFF model with D samples in the

grid strategy trained on the same dataset and the same regularization. Let C = |f |∞|X | and s
the sampling rate defined in the grid sampling strategy. Then we can guarantee |f(x)− f̃(x)| ≤ ϵ
for all x ∈ X for 0 < s < ϵ

C with probability 1− δ for a number D of samples given by:

D = Ω
(
dC1(1 + λ)
λ4(ϵ− sC)2

[
log(ωmax|X |/s) + log C2(1 + λ)

λ2(ϵ− sC) − log δ
])

(2.19)

with C1 and C2 being constants depending on σy and |X |. We recall that in Equation (2.19) the
notation Ω stands for the computational complexity "Big-Ω" notation.

The bound depends on the maximum individual frequency ωmax that is equal to the sum of
the largest eigenvalues of encoding hamiltonians. It can be made arbitrarily big by introducing
a scaling coefficient α in exp(−ix αH). In the case of Pauli encoding, we have that ωmax = L.

2.3.4 Limitations of RFF for approximating VQCs

We now have seen the theoretical power of Random Fourier Features and three different
adaptations to approximate VQCs in practice. Since many parameters are to be taken into
account (size and structure of Ω, number of qubits, circuit depth, number of training points,
input dimension, encoding Hamiltonians, etc.), it is natural to ask ourselves which of the three
strategies is recommended given a use case, and whether there are any use cases for which none
of them work.

As seen in Subsection 2.3.3, we know the lower bound on the number of samples to draw
in RFF, to reach a specific error. This bound grows linearly with the input dimension d, and
logarithmically with the size of Ω (itself growing like Ld so exponentially in d). Nonetheless,
one could see in practice that very large spectrum are hard to approximate, simply because it
would require much more samples. This scaling will be judged once such VQCs will be actually
implemented on large enough quantum computers (with enough qubits and/or long coherence).

The size of Ω increases as well when the encoding Hamiltonians have distinct eigenvalues
and are acting on many qubits. Therefore, quantum computers allowing for many qubits and
various high locality Hamiltonians would be a plus for enlarging the spectrum.

As the Hamiltonians become larger and their eigenvalues complex, we could reach a limit
where it becomes impossible to diagonalize them. In such a case, without sampling access to Ω,
the Distinct and Tree sampling strategies would be unavailable. The Grid sampling scheme
would suffice until suffering from the high dimensionality or other factors detailed above.

Another important limitation of the theoretical bounds is the scaling in the regularization
parameter. As illustrated in Figure 2.9, this constant prefactor make the bound still reach
intractable numbers, so it is of little value to determine a priori if the RFF method will be
efficient.
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Figure 2.2: Random instance of a VQC. In this example, three encoding
Hamiltonians {H1, H2, H3} are randomly assigned over four qubits, and load a
1-dimensional vector x. Following each encoding gate Hi, an ansatz with trainable
parameters and a ladder of CNOTs is applied, li times in a row.

Overall, some limits for our classical methods can be guessed and observed already, but the
main ones remain to be measured on real and larger scale quantum computers. This research
is left for future work. On another hand, one could want to understand better the relation
between the available frequencies and their amplitude in practice, to find potential properties
that could be in favor or not of the VQCs.

Finally, we want to insist on the fact that the assumptions on VQCs are crucial on the
whole construction that we propose, and that some of them could be questioned, especially
concerning the encoding. For instance, when encoding vectors x = (x1, · · · , xd), not having
encoding gates expressed as exp(−xiH) could potentially change the expression of f(x; θ)
(Equation (1.11)) and therefore could change the fact that the associated kernel would be
easily expressed as a Fourier series, with shift-invariance. For instance, in (KPE21), the authors
use exp(−arcsin(xi)H) to encode data, resulting in f being expressed in the Chebyshev basis
instead of the Fourier one. More generally, understanding what happens with encodings of
the form exp(−g(xi)H), and whether one can still use our classical approximation methods is
tackled in Chapter 3.

2.4 Numerical experiments

In this section, I aim to assess the accuracy and efficiency of the classical methods to approxi-
mate VQCs in practice. Three types of simulations have been conducted. In Subsection 2.4.1,
I instantiate random VQCs and try to mimic their output using our RFF methods. In Sub-
section 2.4.2, I create artificial functions and compare VQCs and RFF on the same task of
learning it. In Section Subsection 2.4.3, I compare VQCs and RFF on real datasets. Finally, I
observe the scaling of our methods in Section Subsection 2.4.4.

As shown in Figure 2.2, a typical random VQC instance is built from a list of general
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(a) Average Fourier Transform of the VQC’s
quantum models. The frequencies with high
coefficients are the ones with high redundancy
in Ω (seen in the inner red histogram). Frequen-
cies over 100 have negligible coefficients and
redundancy, and therefore are not shown.

(b) Evolution of RFF train loss as a function
of the relative number of frequencies sampled.
The Tree sampling strategy takes advantage of
the high redundancy to sample less frequencies
to reach a good approximation.

Figure 2.3: Random 1d VQCs with L=200 Pauli encoding gates, averaged over 10
different random initialization.

encoding Hamiltonians {H1, · · · , Hk}, applied to randomly selected qubits according to their
locality. The number of qubits is fixed to 5 in the following experiments (Note that the number
of qubits has no impact on the expressivity on the spectrum a priori, it will only influence the
spans of coefficients).

2.4.1 Using RFF to mimic random VQCs

In a first stage, I focus on approximating random VQCs (i.e. with random parameter initial-
ization) using Random Fourier features. To this end, the quantum spectrum Ω is fixed by
making a certain choice about the structure of the encoding gates. The training dataset is
{Xgrid, Ygrid} with Xgrid being a set of d-dimensional data points spaced uniformly on the
interval

∏d
i=1[0, xmaxi ] and Ygrid the evaluation of the quantum circuit on the input dataset

Xgrid. I then observe and evaluate the performance of our three RFF strategies (Distinct, Tree,
and Grid sampling, see Section Subsection 2.3.2) to approximate the quantum model. For
completeness, I have tested our methods on different types of VQCs: some with basic Pauli en-
coding in 1 dimension (Figure 2.3), in higher dimension (Figure 2.4), some with more elaborate
Hamiltonians (Figure 2.5), and with the scaled Pauli encoding as in (STJ22) (Figure 2.6). For
each type, I have also observed the actual Fourier Transform of the random VQCs model on
average, to understand which frequencies appear more frequently in their spectrum.

It can be noted that the number of data points in Xgrid needed to efficiently learn the
quantum function is N >

∏d
i=1

xmaxi wmaxi
π . This choice is basically related to the Shannon

criterion for effective sampling in order to reconstruct the full function covering all of its
frequencies. Moreover, for the solution to be unique and hence for the least square problem
introduced in Equation (2.15) to be well defined, we better choose N to be bigger than the
number of features in the regression problem (these two criteria coincide in the case of Pauli
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Figure 2.4: RFF performance for L = 5, d = 4, to approximate random VQCs with
Pauli encoding.

encoding).

2.4.1.1 Pauli encoding

I first consider a quantum model with L Pauli encoding gates per feature resulting in an
integer-frequency spectrum (half of J−L,LKd). In this case, the corresponding quantum model is
a periodic function of period T = (2π)d and thus, we choose xmax = 2π for Xgrid construction.

In Figure 2.3, I implement a VQC with L=200 Pauli encoding gates, for a 1-dimensional
input. One can observe that our classical approximation methods are indeed able to reproduce
such VQCs. On average, the RFF training error for Distinct and Grid sampling is a linear
function of the number D of samples taken from Ω. On the other hand, the error using Tree
sampling exhibits a faster decreasing trend, reaching relatively low errors with only 20% of the
spectrum size.

I conjecture that the efficiency of Tree sampling is closely related to the redundancy in the
discrete frequency distribution over Ω. In fact, as shown in Figure 2.3, Fourier coefficients of the
VQC are, on average, correlated to the frequency redundancy in the empirical quantum spectrum.
Frequencies above a certain threshold ωeffective are merely redundant for this particular encoding
scheme, and one observes that they are cut from the quantum model empirical spectrum. The
effective spectrum of the VQC is therefore smaller than what the theory predicts. Consequently,
the fast decreasing trend of the Tree sampling stems from the fact that we sample according to
the redundancies, therefore requiring less frequency samples. One can see that 0.2× |Ω| samples
are sufficient to sample approximately all frequencies in [|0, ωeffective|]. In Figure 2.4, I show
similar simulations with a d-dimensional input (d = 4) and L = 5 Pauli gates per dimension.
According to Equation (2.5), the theoretical number of distinct positive frequencies is 7321. In
this case in the tree sampling procedure, we didn’t correct for the fact that one can sample
both a frequency ω and its opposite −ω. Therefore the scheme is a bit less performant than in
dimension 1.
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(a) Fourier transform averaged over different
random initialization of the VQC. The intensity
of the vertical red lines indicates the concentra-
tion of the theoretical frequencies in Ω.

(b) RFF train loss with different sampling meth-
ods on the random VQCs. The Distinct sam-
pling benefit from the concentration of frequen-
cies in packets to approximate with less sam-
ples.

Figure 2.5: Random 1d VQC with 4 scaled Paulis and and a 3-qubits HXY Z

Hamiltonian

2.4.1.2 More elaborate Hamiltonian encodings

For Pauli encoding, we have shown in the previous part that Tree sampling is highly effective
for approximating the quantum model. Consequently, I designed VQCs with different spectrum
distributions to study the RFF approximation performance in these cases.

As explained in Section 1.3, I consider encoding gates of the form exp(−ixiH) for each
dimension i. One way to alter the spectrum distribution is the use of more general Hamiltonians
H. I restrict the experiment to physical Hamiltonians (ie involving only two-bodies interactions),
and use the generic expression

HXY Z =
∑
⟨i,j⟩

αijXiXj + βijYiYj + γijZiZj +
∑

i

δiPi (2.20)

with the first term describing the interactions: ⟨i, j⟩ indicates a pair of connected particles and
the second term describing a single particle’s energy (Pi = {Xi, Yi or Zi}).

In Figure 2.5, I construct VQCs mixing both such Hamiltonians1 and scaled Paulis2 as
encoding gates, on 1-dimensional inputs. In these cases, the corresponding quantum model is
no longer 2π-periodic, thus we have to find empirically a good value for xmax (by increasing it
until the performance reaches a limit).

With such complex encoding, we witness a different behavior for the Distinct sampling
method, in comparison to the previous basic Pauli encoding scenario. Essentially, Distinct
sampling has a faster than linear scaling, showing a clear and unexpected efficiency of RFFs in
this case. We also notice that the Tree sampling method has a similar scaling. This observation
points to the fact that, with the chosen encoding strategy, the frequencies in the spectrum Ω

1in Figure 2.5, we used a 3-qubits Hamiltonian defined by: HXY Z = 7X0X1 +7X1X0 +0.11X0X2 +0.1X2X0 +
8[Y1Y2 + Y2Y1 + Z0Z2 + Z2Z0]

2Scaling factors are [26.4309, 34.4309, 22.4309, 0.4309]
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(a) Fourier transform averaged over different
random initializations of the exponential encod-
ing VQC with L = 5.

(b) RFF approximation performance of an the
exponential encoding VQC with L = 5.

Figure 2.6: Random VQCs with exponentially large spectrum, using scaled Pauli
encoding as in (STJ22).

are concentrated in many packets or groups. This behavior is displayed with the concentrated
red lines in Figure 2.5. Therefore, even though the frequencies in Ω have a low redundancy
(545 distincts frequencies out of 2017), sampling just one of the many frequencies in a narrow
packet is enough for the RFF to approximate it all. To put it diffrently, we can consider that
there is a Ωeffective where each packet can be replaced by its main frequency, and RFF manages
to approximate it with fewer samples than the actual size of Ω. To conclude, many distinct
frequencies is not a guarantee of high expressivity.

As for Grid sampling, the choice of s seemed too high for this solution to work in this case,
in line with the theoretical bounds for this sampling method given in Theorem 2.3.

2.4.1.3 Exponential Pauli encoding

In order to obtain VQCs with a large number of frequencies, but low redundancy and no
concentrated packets, we exploit the exponential encoding scheme proposed in (STJ22), resulting
in a non degenerate quantum spectrum with zero redundancies and thus a uniform probability
distribution over integers. In this encoding strategy, encoding Pauli gates are enhanced with a
scaling coefficient βkl for the lth Pauli rotation gate encoding the component xk. This gives
us a total of 3Ld positive and negative frequencies. These frequencies can be all distinct with
the particular choice of βkl = 3l−1, resulting in an exponentially large and uniform Ω. Note
however that Ω is analytically known and contains only integer frequencies, mostly very high
frequencies for which the usefulness in practice remain to be studied.

The RFF strategies have been tested, shown in Figure 2.6, and we obtained again the
confirmation that RFF can approximate such an exponential feature space with a fraction of
|Ω|. This fraction might however be too large in practice. We also observe as expected that all
three strategies have a linear scaling, in line with the absence of redundancy and frequency
packets.

With these experiments, we conclude a few important properties. One can observe that
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when some frequencies in the spectrum Ω have much redundancy (e.g. Pauli encoding), these
frequencies are empirically the ones with higher coefficients. In such case, the Tree sampling
strategy is able to approximate the VQC’s model with fewer samples than the other methods
as expected. With more complex Hamiltonians, concentrated packets of frequencies appear,
and even without much redundancy, both Tree and Distinct sampling require fewer frequency
samples to cover these packets. According to these experiments, the worst case scenario for
the RFF is a uniform probability distribution where all the three sampling techniques will be
equivalent. Nonetheless, the theoretical bounds prove that the number of Fourier Features will
scale linearly with respect to the spectrum size that scales itself exponentially.

2.4.2 Comparing VQC and RFF on artificial target functions

In the above section, a RFF is trained to mimic the output of random VQCs. In practical
use cases, the ground truth relies on a classical dataset with an underlying function to find.
Therefore a relevant comparison is to measure the efficiency of both VQC and RFF on a
common target function. One wants to see when RFF can obtain a similar or better results
than the VQC on the same task.

We have seen that for VQCs with Pauli encoding, the Fourier coefficients are rapidly
decreasing, cutting out frequencies higher than ωeffective from the empirical spectrum. For this
reason, I have chosen a particular synthetic target function: I create a sparse Fourier series (i.e.
having only few non-zero coefficients) as a target function: s(x) =

∑
ω∈{4,10,60} cos(ωx)+sin(ωx)

and a VQC with L = 200 Pauli encoding gates as the quantum model.
In Figure 2.7, it can be observed that the VQC, as well as RFF with Tree sampling, can

not learn the frequency ω = 60 > ωeffective (their train loss reach a high limit) while the RFF
models based on Distinct and Grid sampling can effectively learn the target function with
enough frequency samples. This result shows that even when a VQC with Pauli encoding is
trained, it cannot reach all of its theoretical spectrum, thus questioning the expressivity of such
a quantum model. On the other hand, its classical RFF approximators (Distinct and Grid)
succeed in learning the function in this case. This is due to the specific choice of the frequencies
in s and of the VQC’s structure, which has a high redundancy in its spectrum. Indeed, the
VQC is not able in practice to obtain non-negligible coefficients for frequencies higher than
ωeffective. This limit appears similarly for the Tree Sampling RFF, but not for the two other
types. Of course, when one choses an artificial function for which all frequencies are below
ωeffective, the VQC and all RFF methods manage to fit it.

2.4.3 Comparing VQC and RFF on real datasets

In order to compare the learning performances of a VQC and its corresponding RFF approxima-
tor on real-world data, we choose the fashion-MNIST dataset (XRV17) and consider a binary
image classification task(coat and dress). We pre-process the input images by performing a
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(a) Predictions of the target function s(x) with the
quantum model and its corresponding RFF approxi-
mator using Distinct sampling on 80% of all frequen-
cies.

(b) RFF learning curves for sparse target fitting
based on the VQC description. Distinct and
Grid sampling are able to outperform the VQC.

Figure 2.7: Fitting a target function s(x) =
∑

ω∈{4,10,60} cos(ωx) + sin(ωx) with
a VQC architecture of L = 200 Pauli gates.

(a) Fashion-MNIST dataset (classification) (b) California Housing dataset (regression)

Figure 2.8: On real datasets. Prediction results of a VQC and the its classical
RFF approximator (Tree Sampling) on two 5-dimensional real datasets. A very low
number of frequency samples is necessary to obtain similar results.

principal component analysis keeping the first 5 features (therefore d = 5) and by re-scaling
the new input features between −π and π. We also use the California Housing dataset for a
regression task with 5 features and a re-scaling between 0 and π.

We chose to solve these two problems by training VQCs with Pauli encoding (L = 5 for
each dimension). According to Equation (2.5), the number of distinct positive frequencies in Ω
is 80526. In Figure 2.8, we observe that, with very few frequencies sampled, the RFF model
with Tree sampling succeeded as well in learning the distribution of the input datasets. We
conclude that this RFF method allows to closely approximate the trained quantum models. We
observe that for the two tasks, with a radically lower number of frequencies (0.002× |Ω| ≃ 160),
the RFF accuracy/MSE loss performance mimics with fidelity the VQC performance even when
more frequencies are used.

This result could indicate that the underlying distributions to learn were simple enough,
such that the VQC had an excessive expressivity. In this case, and despite the large size of Ω,
the RFF manage to find similar solutions more quickly.
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Figure 2.9: Evolution of D as a function of input dimension d and of L
encoding gates per dimension, and theoretical bounds. The number of
samples D given as a fraction of |Ω| decreases with the growth of the data input
dimension and the number of encoding gates. The regime where the experiments
were performed is however limited to see the dependency of D ∼ log |Ω| according
to the theoretical bounds.

2.4.4 Numerical test of the theoretical bounds

In this section, we test the theoretical bound provided by the Theorem 2.3. Given a spectrum
Ω = J0, LKd, a Fourier series model trained on a specific dataset, the theorem bounds the
necessary number of samples for a RFF model to approximate the original model with an ϵ

error. This is an approximation to the Pauli encoding VQCs where the spectrum is Ω = J−L,LKd.
For fixed values of L, d, and a spectrum Ω = J0, LKd, we implement the following protocol to
test this bound:

• Generate a dataset of 105 points sampled uniformly from [0, 1]d and labels coming from a
Fourier series on Ω with coefficients chosen uniformly from [0, 1/

√
|Ω|], split into a train

set and a test set with respective fractions .9 and .1.
• For each value of D in {1, k|Ω|/10 for k ∈ J1, 10K}, sample D frequencies from Ω without

replacement, and train a linear ridge regression with λ = 10−6 on the train set. We
performed the training with a Adam optimizer, a learning rate of .001, and between 50
and 200 epochs depending on the size of the spectrum with the constraint of computation
time. Compute the output on the test set.

• Compute the mean absolute error between the output of the trained model with all the
frequencies and the output of all other model. Select the model with the lowest number
of samples that has an error below ϵ.

The results of the application of this protocol are shown Figure 2.9. For the values of |Ω|
between 103 and 106, one can see a reduction (more or less pronounced depending on the
experiment setting) of the number of samples needed to approximate the whole model. For
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ϵ = .05, one can expect to need only half of the spectrum, whereas for ϵ = .5, one only need
about 10% of the spectrum. The trend does not continue above |Ω| = 107.

There are several limitations to this experiment. The main one is the limited training of the
models. For the biggest values of |Ω| we limit ourselves to 50 epochs, which may be not enough
to reach the optimal parameters, and thus blur the interpretation. Furthermore although the
theorem is valid for every number of data points, the overparameterized regime where there are
much more parameters than data points is known to exhibit unusual effects in linear regression
(HMRT22).

Given the choices of λ and ϵ, the theoretical bounds are very high for the regimes we
experimentally tested, so they are not relevant. The effect that is quantified by the theory
appears from |Ω| = 1030, e.g one need approximately D = 1030 samples to approximate 1040

frequency which is still unfeasible on a classical computer. ignificant

2.5 Conclusion

In this work, we have studied the potential expressivity advantage of Variational Quantum
Circuits (VQCs) for machine learning tasks, by providing novel classical methods to approximate
VQCs. Our three methods use the fact that sampling few random frequencies from a large
dimensional kernel (exponentially large in the case of VQCs) can be enough to provide a
good approximation. This can be done given only the description of the VQCs and does not
require running it on a quantum computer. We studied in depth the number of samples and
its dependence on key aspects of the VQCs (input dimension, encoding Hamiltonians, circuit
depth, VQC spectrum, number of training points). On the theoretical side, we conclude that our
classical sampling method can approximate VQCs for machine learning tasks on Hamiltonian
encoding of classical data, with a number of samples that scales favorably but with potentially
large constant overheads. Experimentally, we have tested our classical approximators on several
use cases, using both artificial and real datasets, and our classical methods were able to match
or exceed VQC results. By providing a new way of comparing classical and quantum models,
these results may help to understand where the true power of VQCs comes from, and define
more rigorously quantum advantage in this context. In particular, it opens up questions about
alternative encoding schemes, harnessing the effective expressivity of VQCs, and the link
between a full expressivity and trainability.
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Learning beyond minimum norm least
square

It is known that variational quantum circuits are linear models in some feature space of finite
dimension (see Chapter 1). Optimizing the parameters of a quantum circuit amounts then to
a specific way of searching in the space of linear models for a given feature map (Sch21). At
first sight, if this feature map can be explicitly computed classically, one may wonder what
is the interest of searching the best parameters of the quantum circuit instead of performing
classically a linear regression on the same feature map, using a so called classical surrogate
model (SEM23). Even when the feature space is too large to be computed classically, Chapter 2
introduced a method to reduce its dimension by random sampling, realizing approximated
classical models. A refined analysis of this technique has been also made in (SRJ+23). However,
the sampling technique must have some limitations because it has been proven that quantum
circuits can still offer advantages in learning tasks with examples related to cryptography
(JFPN+23; GD23; LAT21).

In this chapter, I present necessary conditions for a quantum model to avoid such dequanti-
zation, and I highlight that this could be only satisfied for high dimensional feature maps. I
propose conditions that guarantee a quantum model to remain far from its equivalent classical
model. For that, I use the important fact that classical linear regression tends to make the
optimized weight vector converge towards a specific solution called minimum norm least square
(MNLS). The study focuses on showing when the quantum weight vector doesn’t possess the
same bias. Figure 3.1 summarizes the methodology.

Those conditions are then analyzed for several usual frameworks and architectures, showing
that the methodology can be seen as a new tool for one to rule out some quantum circuits of
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Space of all s.t.

MNLS
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The goal is to learn:

Classical Surrogate Model

Classical

Training

Quantum

Training

Figure 3.1: A quantum model fQ(x) = βQ(θ) · ϕ(x) is trained by optimizing its
weight vector βQ(θ). If one can train a surrogate model on a classical computer,
using the same (or approximated) feature map ϕ(x), it would constitute an obstacle
to quantum advantage. It has been shown that during classical linear regression, the
weight vector converges towards a specific point βMNLS called the minimum norm
least squares estimator. Ensuring that the quantum weight vector βQ converges far
from βMNLS is therefore a necessary condition to avoid such dequantization.

their choice. Using Weingarten calculus, I show that some proposed quantum models can be far
from the MNLS.

In addition, I study the link between these dequantization schemes and concentration,
another crucial issue of quantum circuits. I prove that there should exist models that avoids
both of these problems. In Section 3.1, I introduce the setup and define the quantum models
their classical surrogates. In addition, I discuss the connection between model distances and
their weight vector norms.

In Section 3.2, I highlight results from classical learning theory about the convergence of
linear models towards the minimum norm least square estimator (MNLS). I also introduce the
approximated classical models with random feature sampling, and show the link between the
number of random features and the norm of the weight vector. Then, in Section 3.3, I point
out that a quantum model will not necessarily converge to the same solution as its classical
surrogate (MNLS). As specific examples, we analyze two classes of VQCs and see if their
quantum models can be far from their classical surrogates. Finally in Section 3.4, I address the
question on whether it is possible to construct a quantum model that avoids dequantization
and that is not concentrated.

This chapter is based on the following preprint:
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• (TML24) Slimane Thabet, Léo Monbroussou, Eliott Z Mamon, Jonas Landman (2024).
When Quantum and Classical Models Disagree: Learning Beyond Minimum Norm Least
Square arXiv:2411.04940

The most common variables and notations of this chapter are summarized in Table 3.1.

Notation Object
x Input vector
M Size of the dataset
d Input dimension
Φ Data matrix of shape (M,p)
ϕ(x) Feature map
y Vector of targets of shape (M, 1)
p Given context: dimension of ϕ(x), size of Ω
D Number of random features

fQ(x; θ), βQ Quantum model and its weight vector
Ω Spectrum of the quantum model
θ Parameters of the Quantum circuit

Ω∗ Spectrum of the quantum model without 0
f∗, β∗ Target function and its weight vector

Ω+ Subset of Ω∗ such that ∀ω ∈ Ω+,−ω ∈ Ω\Ω+
fMNLS, βMNLS Minimum norm estimator and its weight vector

n Number of qubits
K Kernel matrix
N N = 2n, size of the Hilbert space

Table 3.1: Main notations used in this chapter.

3.1 VQC in arbitrary basis and surrogate models

In this section I define the setup of the analysis. In Chapter 1 I explained that VQCs can be
considered as linear models in the Fourier basis, here I generalize these notions by considering
a data input with any preprocessing function, and show that quantum models can be expressed
as linear models in a feature map

3.1.1 Setup

We consider a learning problem with an input vector x distributed in X ⊆ Rd, a feature map
ϕ : Rd −→ Rp, and a target function expressed as

f∗(x) = β∗⊤ϕ(x) , (3.1)

where β∗ ∈ Rp. Furthermore we assume ∥ϕ(x)∥ ≤ 1 which is a very usual assumption. One
needs to consider this assumption to ensure that the KRR solution is defined (BN06; SHS01).
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If the upper bound of the feature map is greater than 1, one can always renormalize it. We are
given a dataset {(xi, yi) = (xi, f

∗(xi))}Mi=1 where xis are iid given a distribution µ(x). We also
assume that ||f∗||∞ ≤ 1. This assumption comes from the fact that expectations of Pauli strings
on quantum circuits are bounded by 1, so the target function has to respect this property. Note
that f∗ can always be rescaled.

The goal of the learning task is to train f(x) = β⊤ϕ(x) with β the weight vector to be
optimized. To quantify the error between an estimator f and the true solution f∗, various
distances between functions can be considered. We will consider the square of the L2 distance
(with respect to a distribution µ on the input space)

∥f − g∥2µ :=
∫

X
(f(x)− g(x))2dµ(x) , (3.2)

which in the case of a uniform distribution on the training dataset {xi}Mi=1 takes the form of:

L(f, g) := 1
M

M∑
i=1

(f(xi)− g(xi))2 . (3.3)

Lastly, for bounded functions f, g, we may also consider their ∞-distance:

∥f − g∥∞ := sup
x∈X

∣∣f(x)− g(x)
∣∣ . (3.4)

∥f − f∗∥2µ represents the true risk, while L(f, f∗) represents the empirical risk. In the over-
parametrized case (p > M), note that many functions f can have an empirical risk equal to
zero without minimizing the true loss, as the empirical risk concerns only the M data points
from the training set. A model with low true risk implies better generalization properties.

3.1.2 Quantum models

We consider a quantum circuit corresponding to a n-qubit unitary matrix U(x, θ) with x ∈
Rd the input vector and θ the set of trainable parameters, and O the observable matrix
corresponding to the final measurement. We define the quantum model as the parameterized
function f : X ×Θ −→ R that can be expressed as:

fQ(x; θ) = ⟨0|U(x; θ)OU(x; θ) |0⟩ . (3.5)

We consider unitary matrices composed of successions of layers of the form

U(x; θ) =
[ L∏

l=1
V l(θ)Sl(x)

]
V 0(θ) , (3.6)

where the V ls are trainable unitary matrices depending on θ (for the rest of the paper, the
dependency on θ will be dropped when there is no ambiguity. Sl(x) are encoding gates, and we
assume that they are of the form

Sl(x) = exp
(
−igl(x)H l

)
, (3.7)
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where Hl is the encoding Hamiltonian of the layer l and gl : Rd −→ R is a preprocessing function.
Both Hl and gl are independent of θ.

We propose similar computations as (SSM21a) in the case of general preprocessing functions.
It generalizes the above Fourier basis into any arbitrary basis. Given an encoding gate Sl(x) =
exp

(
−igl(x)H l

)
, one can decompose the generator Hamiltonian as H l = P l†ΛlP l such that

Sl(x) = P l† exp
(
−igl(x)Λl

)
P l. Without loss of generality, the unitaries P l and P l† can be

absorbed into the trainable unitaries.
The component i of the state vector U(x; θ)|0⟩⊗n can be written as

[U(x; θ)|0⟩⊗n]i =
2n∑

j1...jL=1
exp

(
− i

L∑
l=1

λ
(l)
j1
gl(x)

)
WL

ijl
. . .W 1

j2j1W
0
j11 , (3.8)

where λ(l)
ji

is the ji-th eigenvalue of H l, or the ji-th coefficient in the diagonal of Λl. By taking
into account the observable, one can write

fQ(x) =
∑
j,j′

exp
(
− i
(∑

l

λ
(l)
jl
gl(x)−

∑
l

λ
(l)
j′

l
gl(x)

))
ajaj′ , (3.9)

fQ(x) =
∑
ω∈Ω

cω e
−iφ(x; ω) (3.10)

=
∑
ω∈Ω

(βQ)ω ϕ(x; ω) (3.11)

= β⊤
Q ϕ(x), (3.12)

(3.13)

where j = (j1, . . . jL) is a L uplet of integers whose entries go from 1 to 2n, and aj is a coefficient
that can be expressed solely with the trainable unitaries. In the case where there are arbitrary
preprocessing functions, one is able to express the output of the quantum model as a linear
combination of basis functions, different from the Fourier basis, but still individually computable.
The quantum model can be expressed as a linear function in a feature map β⊤

Q ϕ(x).

3.1.3 Classical surrogate models

Given a quantum circuit, one can design a surrogate model by considering a classical model
with the same feature map ϕ, defining a new linear model:

fC(x) = β⊤
C ϕ(x) , (3.14)

with βC a weight vector that is explicitly optimized using gradient descent or kernel ridge
regression as explained in Subsection 3.2.1. Even if the feature maps is too large for classical
memory, approximation techniques have been presented to reduce the dimensionality of the
feature map. We analyze these techniques in Subsection 3.2.3, and studies such as (SRJ+23) have
shown that quantum models can sometimes be dequantized using random features regression
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techniques, with limitations exist for resource-constrained circuits. The sampling technique
must have some limitations because it has been proven that quantum circuits can still offer
advantages in learning tasks with examples related to cryptography (JFPN+23; GD23; LAT21).

3.2 Bias of classical models and random feature regression

In this section, I study the bias of the classical model training that makes the quantum weight
vector converges to a unique solution called the Mean Norm Least Square. Then, I study
Random Feature regression (generalized from Chapter 2), a randomization technique used to
lower computational costs for kernel methods. I show that this technique is adapted to construct
surrogate models.

3.2.1 Classical methods : gradient descent

The linear regression and kernel ridge regression were introduced in Section 1.2. I remind in
this section the important elements, while adding supplementary information relevant to this
chapter. Classical learning is done by minimizing the mean square error over the training set
(BN06). One wants to converge to the vector β∗, and obtain β̂ that minimizes

L(β) = 1
M

M∑
i=1

(ϕ(xi)⊤β − yi)2 = 1
M
∥Φβ − y∥2 , (3.15)

with ϕ the feature map, Φ the data matrix, and y the target vector of size M . We will call
finding such a β̂ the least square problem.

In order to prevent overfitting, one can add a regularization term to the loss, and minimize

Lλ(β) = 1
M
∥Φβ − y∥2 + λ∥β∥2 . (3.16)

We will call this problem the regularized least square problem.
The optimization is usually done with gradient descent (GD) or stochastic gradient descent

(SGD). In the following section, we will look at the properties of the solution given by gradient
descent.

If p < M , the solution to the least square problem is unique, and can be expressed as

β̂ = (Φ⊤Φ)−1Φ⊤y . (3.17)

And if there is no noise in the target data, and the samples are adequately chosen (ie (Φ⊤Φ) is
invertible), we have β̂ = β∗

If p > M , there exists an infinite number of solutions such that L(β) = 0. The set of
solutions forms an affine space of dimension M − p.

The linear regression problem can also be related to kernels. A kernel function is a function
k : Rd × Rd −→ R symmetric positive definite, representing an inner product in a potentially
infinite dimensional Hilbert space, called the Reproducing Kernel Hilbert Space (RKHS).
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The kernel ridge regression is the equivalent of a linear regression in the RKHS (BN06;

HSS08). The goal is to construct a linear model f(x) =
N∑

i=1
αik(x, xi) where xi ∈ Rd. Given a

dataset of size M , the representer theorem (SHS01) states that the minimizer of the empirical
loss

L(f) =
M∑

i=1
(f(xi)− yi)2 + λ∥f∥2 , (3.18)

can be written as f̂ =
M∑

i=1
αik(x, xi).

A search in a high dimensional space has become a search in a M dimensional space, since
we are guaranteed that the optimal solution can be described by the αi coefficients.

Given a feature map ϕ, we can define a kernel k(x, y) = ϕ(x)⊤ϕ(y). Solving the linear
regression with ϕ is equivalent of solving the KRR with k. We can define a dual problem to the
least square problem by defining α ∈ RM such that β = ΦTα. Solving the least square problem
on β is equivalent to solving it on α, and we have that the optimal α is given by

α̂ = (ΦΦ⊤)−1y = K−1y . (3.19)

where K is the kernel matrix, and then β̂ = Φ⊤(ΦΦ⊤)−1y. This expressison is correctly defined
only in the case where p > M . The obtained β̂ is the same β̂ obtained by GD. This formulation
is helpful because it will help derive bounds on the norm of β̂ in the following of the work.

3.2.2 Bias of classical models

I just described the classical linear regression and kernel ridge regression. In this subsection, I
detail the known results (BN06; HMRT22) about the solution of these methods. I distinguish
two regimes:

• The underparameterized regime where the number of features is lower or equal to the
number of datapoints: p ≤M .

• The overparameterized regime where the number of features is greater than the number
of datapoints: p > M .

In the underparameterized regime, the solution to the least square problem is unique, and
can be expressed as

β̂ = (Φ⊤Φ)−1Φ⊤y . (3.20)

And if there isn’t noise in the target data, and the samples are adequately chosen, we have
β̂ = (Φ⊤Φ)−1Φ⊤y = (Φ⊤Φ)−1Φ⊤Φ β∗ = β∗.

In the overparameterized regime, there exists an infinite number of solutions such that
L(β) = 0. The set of solutions forms an affine space of dimension M−p. However, the algorithms
of GD and KRR will converge towards a specific solution βMNLS called minimum norm least
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square estimator (MNLS), which is the unique solution that minimizes the empirical loss with
a minimal norm:

βMNLS = arg min ∥β∥2 such that L(β) = 0 . (3.21)

This is formalized in the following theorem

Theorem 1 (From (HMRT22)). Let β0 = 0 the initialization of a gradient descent algorithm.
Let the following iterations be defined by

βk+1 = βk + γ Φ⊤(y − Φβk) , (3.22)

with γ the learning rate such that 0 ≤ γ ≤ 1/λmax(Φ⊤Φ) where λmax(Φ⊤Φ) is the largest
eigenvalue of Φ⊤Φ. Then

• βk converges towards the minimum norm least square estimator βMNLS defined in Equa-
tion (3.21).

• βMNLS = Φ⊤(ΦΦ⊤)−1y.

For completeness, I give a proof in Appendix A.2. The key reason for such a property is that
when performing GD, each iterate of β stays in the subspace V = span(ϕ(x1), . . . ϕ(xM )), the
row space of the data. Each vector of Rp can be decomposed as β = βV +βV ⊥ where βV ⊥ ∈ V ⊥,
the orthogonal of V in Rp, such that ΦβV ⊥ = 0.

Each vector β̂ such that L(β̂) = 0 can then be written

β̂ = βMNLS + u , (3.23)

where u ∈ V ⊥, and ΦβMNLS = y, Φu = 0, ∥β̂∥2 = ∥βMNLS∥2 + ∥u∥2. Since the iterates of GD
stay in V , then u = 0 all along.

The kernel matrix is defined as:

[K]i,j = ϕ(xi)⊤ϕ(xj) = k(xi, xj) . (3.24)

We also define the data matrix Φ and the target vector y:

Φ =


ϕ(x1)⊤

...
ϕ(xM )⊤

 , and y =


y1
...
yM

 . (3.25)

The weight vector β obtained through the data will be the Minimum Norm Least Square
(MNLS) one, defined as:

βMNLS = Φ⊤(K−1y) . (3.26)
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is close to the MNLS model

MNLS MNLS

RF RF

Space of all s.t.

Figure 3.2: The random feature approximator fRF approximates the MNLS fMNLS
of a feature map, given suitable behavior of the kernel matrix, which depends on
the feature map and the data distribution.

3.2.3 Classical linear regression models can be approximated with
randomization

In this section, we show how the above method can be generalized for many other cases in
classical linear regression (RR08a; RR08b). It applies therefore to the arbitrary basis quantum
models defined in Subsection 3.1.2 . Again, the goal is to reduce the number of features
required to approximate the target function. The problem is to learn a function of the form

f(x) =
p∑

i=1
βiϕi(x) where one wants to learn the vector of coefficient β. The continuous version

of this problem would be to learn a continuous function β(ω) such that f(x) =
∫

ω∈Ω
α(ω)ϕ(x;ω).

If the number of basis function is too big to be stored in memory, or infinite in the case of
continuous function learning, the problem can become too difficult to solve.

However, it has been shown that this problem can be simplified by learning a function of
the form f̂(x) =

∑D
k=1 βiϕk(x) with D << p where the functions ϕ( · ;ωk) are sampled from

J1, pK. In this case, one only has to learn a vector of dimension D.

Theorem 2. Let ϕ(x) = [√q1 ϕ1(x) . . .√qp ϕp(x)]⊤ where ϕi(x) are basis functions such
that ∀x, |ϕi(x)| ≤ 1 and q = (q1, . . . qp) represents a discrete probability distribution, and let
f(x) = β⊤ϕ(x). Let S be a subset of J1, pK sampled independently with the probability density q,
with D = |S|. Then there exists coefficients c1, . . . cD such that f̂(x) =

∑
k∈S

ckϕk(x) satisfies

∥f̂ − f∥µ ≤
maxi |βi /

√
qi|√

D
(1 +

√
2 log 1

δ
) (3.27)

As a consequence, if one applies the above to βMNLS obtained from a kernel matrix K and target
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vector y such that ∥y∥∞ ≤ 1 there exists coefficients c1, . . . cD such that

∥f̂ − fMNLS∥µ ≤
M√

D λmin(K)
(1 +

√
2 log 1

δ
) . (3.28)

We illustrate this in Figure 3.2 and we present the proof of this theorem in Appendix A.3.
Other bounds can be obtained with better scaling in M (SRJ+23; RR17) but involve other

quantities like the norm of the kernel operator.

3.2.4 Analysis of the kernel matrix for Fourier models with integer
frequencies

Previous results such as Theorem 2 depend on the kernel matrix K. In this section, I consider
Fourier models, the case where the frequencies are vectors of integers and the uniform measure
in [0, 2π]d. As shown in Section 1.4, this case is very important in the quantum machine learning
literature (SSM21a; SEM22; SRJ+23; PS22), and could help us understand what quantum
circuit design needs to be done in order to do variational circuit learning.

I consider the Fourier feature map:

ϕ(x) = 1
√
p


cos
(
ω⊤x

)
sin
(
ω⊤x

)
...


ω∈Ω+

(3.29)

with Ω ⊂ [−L,L]d/2, L ∈ N, and p = |Ω|. I consider the input vector x to be uniformly dis-
tributed in [0, 2π]d. The domain [0, 2π]d is enough to consider because the function is periodic,
the distribution could be chosen non uniform and it could change the results.

Let x ∈ [0, 2π]d be the input vector. The kernel is defined as:

k(x, x′) = 1
|Ω|

∑
ω∈Ω

cos
(
ω⊤x

)
cos
(
ω⊤x′

)
+ sin

(
ω⊤x

)
sin
(
ω⊤x′

)
= 1
|Ω|

∑
ω∈Ω

cos
(
ω⊤(x− x′)

) (3.30)

Theorem 3. Let (x1, . . . xM ) uniformly distributed on [0, 2π]d, and let K be the empirical
kernel matrix. Then there exists a constant C such that

P(λmin(K) > 1
2) ≥ 1− C

p

(M − 1)2p2

(p− 4(M − 1)2)2 = 1− C

p

(M − 1)2

1− 4 (M−1)2

p2

(3.31)

A proof is presented in Appendix A.4. If p > CM2 there is a high probability that the
smallest eigenvalue of K is constant. It is the most favorable case to apply random feature
regression, from the Theorem 2 it is then enough to have on the order of M2 random features
to approximate the MNLS estimator.
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MNLS MNLS

MNLS

No Separation Separation,
Uncertain Quantum Advantage

MNLS

a) b)

MNLS

MNLS

Separation,
Quantum Advantage

c)

Figure 3.3: Illustration of the potential quantum advantage. If βQ is close to βMNLS
there is no separation between the quantum estimator and the classical one. If
βQ and βMNLS are far from each other and far from the ground truth, there is a
separation but uncertain quantum advantage. If βQ is closer to the ground truth
than βMNLS, there is a suggestion of quantum advantage.

3.3 Bias of quantum models and potential advantage

In this section, we discuss about the potential advantage of using parameterized quantum circuits
for learning tasks. In our work, we would like to focus on the case where the input variable is
continuous. Most proven theoretical results in quantum machine learning come from problems
where the input data take discrete values (GD23; MGD24; JFPN+23; LAT21; JGM+24),
typically {0, 1}n. It is convenient because the problems can be linked to cryptography problems
which are known or strongly supposed to be hard to solve classically. However many real world
use cases utilize continuous vectors, so it is important to have a better understanding in that
domain.

First of all, we note that in the underparameterized regime, where the feature space has
less dimensions than the number of samples (p ≤M), there is little possibility of solving the
linear regression problem in a better way with a quantum computer. The optimal solution to
the least square problem has indeed a closed form, and if there is no noise in the data, it is
equal to the true weight vector. It means that any other optimization technique will converge
towards that optimal solution. Moreover, since we assume that the number of data points is
small enough to be handled with a classical computer, the total number of operations in the
procedure is still polynomial in the size of the dataset. We do not exclude an advantage using a
quantum computer to invert the covariance matrix (HHL09), or other more modest polynomial
advantages (CVH+22) but it will require fault tolerant quantum computers.

In this Section, we will first explain why having a quantum weight vector norm far from the
one of the MNLS is a necessary condition for a potential advantage, as illustrated in Figure 3.3.
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Then, we present a class of VQCs that can fulfill this condition in Subsection 3.3.2.

3.3.1 Quantum models can differ from Minimum Norm Least Square

In the setup discussed in this chapter, it makes the most sense to use quantum computers in
the overparameterized regime, i.e. p > M .

I described in Subsection 3.2.2 the implicit bias of classical learning algorithms. We showed
that a classical linear regression trained with gradient descent, or a kernel ridge regression
will output a model fMNLS(x) = β⊤

MNLSϕ(x) with βMNLS the weight vector of minimum norm
which minimizes the training loss. I also showed (See Appendix A.3) that in lots of cases, if one
provides a sampling access to the entries of ϕ(x), then fMNLS could be classically approximated.

Because VQCs are parametrized in a different way from classical models, they do not
necessarily converge towards the MNLS as a result of the training. The weight vector associated
to the quantum model may indeed not be contained in the row space of the data, as it is the
case for classical linear regression. Contrary to the classical case, one does not have access
directly to the coefficients β while tuning a quantum model. One instead optimizes a vector of
parameters θ such that β = β(θ) and optimizes the loss function L(θ) = ∥y −Xβ(θ)∥2. The
update rule defined in Equation (3.22) becomes

βk+1 = β(θk+1) = β
(
θk − t

∂L
∂θ

∣∣∣
θ=θk

)
(3.32)

∂L
∂θ

= 2 ∂β
∂θ

⊤
X⊤(Xβ − y) (3.33)

If t is small enough, one can linearize Equation (3.32) and write

βk+1 = βk − t
∂β

∂θ

∣∣∣⊤
θ=θk

∂L
∂θ

∣∣∣
θ=θk

(3.34)

= βk − t
∂β

∂θ

∣∣∣⊤
θ=θk

∂β

∂θ

∣∣∣
θ=θk

2X⊤(Xβ − y) (3.35)

In the general case, β does not remain in the row space of X therefore it does not necessarily
converge towards the minimum least square estimator. This constitutes a crucial potential
distinction between quantum and classical models. It remains to see when βQ can converge far
from βMNLS or an approximation of MNLS via Random Features.

Since fMNLS is the interpolating model of minimum norm, any quantum interpolating model
fQ must verify ||βQ|| ≥ ||βMNLS||. A sufficient condition for separation between ||βQ|| and
||βMNLS|| would be that ||βQ|| ≫ ||βMNLS||. We state it in the informal theorem

Theorem 4 (Informal). Let fQ be an interpolating quantum model, ie L(fQ) = 0. Therefore
fQ has a potential quantum advantage if ||βQ|| ≫ ||βMNLS||.

In practice, we can consider ∥βQ∥ ≥ poly(N) in order to have a clear separation. Such a
separation would have to be confirmed for a larger class of classical algorithms for training, which
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is reserved for future work. In the examples that are developped in section Subsection 3.3.2, we
have that p is of the order of N2 and ||βQ||2 is of the order of N . Having a weight vector of
large norm will provide a difference with classical models (see Subsection 3.2.3), but a true
advantage will be reached if in addition the quantum models is closer to the ground truth than
the MNLS. We illustrate these views in Figure 3.3.

If the quantum models would converge to fMNLS, they could be approximated with random
feature regression techniques. Therefore we suggest that the best usage of quantum computers
would not be to reproduce classical linear regressions. The quantum circuit should be used to
provide a model βQ such that βQ ̸= βMNLS. This should be possible in principle because the
optimization trajectory of the parameters would not lead to converge to βMNLS.

Other works have outlined the differences between quantum and classical linear regression,
but none of them mentions the criteria about the norm of the weight vector. The authors in
(JFPN+23) study the fact that variational circuits express a different solution than the kernel
ridge regression (therefore the MNLS). They point out that there exists functions that are
learnable with variational quantum circuits but that require exponentially more resources to
learn with quantum kernels. In (YCCW23), the authors analyse the optimization dynamics of
QNNs and conclude that they are different from the neural tangent kernel. They study in detail
the convergence rate of the respective methods, but do not study the actual solution reached.

3.3.2 Example of quantum Fourier models far from their classical
counterparts

In this section, we study an example of quantum circuit generating a Fourier model. We show
that the norm of the weight vector reached by this circuit can be much bigger than the norm of
the MNLS estimator. We consider a circuit with a specific type of encoding layer S(x) followed
by a trainable unitary V and an observable O such that Tr(O) = 0. The circuit outputs the
model:

fQ(x) = Tr[V †OV S(x)|0⟩⟨0|S(x)†] = Tr[V †OV |ψ(x)⟩ ⟨ψ(x)|] = Tr[V †OV ρ(x)] (3.36)

: trainable layer (4 design)

: encoding layer with integers eigenvalues
diag

: measurement

Figure 3.4: Parameterized quantum models considered: hamiltonian encoding with
no integer eigenvalues.
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Suppose that there exists integer uplets (λ1, . . . λN ) such that:

|ψ(x)⟩ = 1√
N


eiλ⊤

1 x

...
eiλ⊤

N x

 (3.37)

with some λi that can be equals. This can be achieved with a Hadamard gate followed by a
RZ gate on each qubit.

Therefore, after the encoding layer S(x), we have the following density matrix:

ρ(x) = |ψ(x)⟩⟨ψ(x)| = 1
N


1 . . . ei(λk−λℓ)⊤x . . .
... . . .

e−i(λk−λℓ)⊤x . . .
... 1

 = 1
N


1 . . . eiω⊤x . . .
... . . .

e−iω⊤x . . .
... 1


(3.38)

The frequencies ωs are given by all the pairwise differences between λis.
The feature map is given by:

ϕ(x) = 1
√
p

cos
(
ω⊤x

)
sin
(
ω⊤x

)
ω∈Ω+

(3.39)

We call R(ω) =
∣∣{(λi, λj), λi − λj = ω}

∣∣ the number of redundancies of ω distinguishing ω
and −ω, and R(0) the number of redundancies of the 0 frequency on the whole matrix, out of
the diagonal. For each ω we note the set of indices of which ω appears by (m(ω)

i , n
(ω)
i )i∈R(ω).

We have that
2
∑

ω∈Ω∗
+

R(ω) +R(0) = N2 −N (3.40)

We can discard the diagonal because its contribution will amount to the trace of O which is 0
by definition.

The quantum model can then be written as

fQ(x; θ) = 1
N

R(0)∑
i=1

(V †OV )
m

(0)
j ,n

(0)
j

+ 1
N

∑
ω∈Ω+

R(ω)∑
i=1

(V †OV )
m

(ω)
i ,n

(ω)
i

eiω⊤x + (V †OV )∗
m

(ω)
i ,n

(ω)
i

e−iω⊤x

(3.41)

We have

fQ(x; θ) = 1
N

R(0)∑
i=1

(V †OV )
m

(0)
j ,n

(0)
j

+ 1
N

∑
ω∈Ω

R(ω)∑
i=1

[(V †OV )
m

(ω)
i ,n

(ω)
i

+ i(V †OV )∗
m

(ω)
i ,n

(ω)
i

] cos
(
ω⊤x

)

+ 1
N

∑
ω∈Ω

R(ω)∑
i=1

[(V †OV )
m

(ω)
i ,n

(ω)
i

− i(V †OV )∗
m

(ω)
i ,n

(ω)
i

] sin
(
ω⊤x

)
(3.42)
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We can write the weight vector components as:

βcos(ω) =
√
p

N

R(ω)∑
i=1

[(V †OV )
m

(ω)
i ,n

(ω)
i

+ i(V †OV )∗
m

(ω)
i ,n

(ω)
i

] (3.43)

βsin(ω) =
√
p

N

R(ω)∑
i=1

[(V †OV )
m

(ω)
i ,n

(ω)
i

− i(V †OV )∗
m

(ω)
i ,n

(ω)
i

] (3.44)

and

β(0) =
√
p

N

R(0)∑
j=1

(V †OV )mj ,nj (3.45)

Theorem 5. Let V be drawn from a 2 design. We have that

EV [∥βQ∥2] = p

N + 1 (3.46)

Furthermore, if V is drawn from a 4 design, we have that

VV [∥βQ∥2] = Θ( p
2

N6

∑
ω∈Ω

R(ω)2 + p2

N4 ) (3.47)

We obtain this result by integrating order 4 moments of the Haar measure (CŚ06; Fuk99),
the proof is given in Appendix A.5. This result shows that we can have a separation between
quantum and classical models. If 1 R(ω) = 1 for all ω, and p ∼ N2, then E[∥βQ∥2] = N and
V[∥βQ∥2] = Θ(1). In Subsection 3.2.2, we have shown that the norm of the MNLS on the same
basis scales like O(M), and thus we have ||βQ|| ≫ ||βMNLS||.

In this example, considering that the trainable unitary is drawn from a 2-design implies
the model concentration and vanishing gradient phenomenon called Barren Plateau (HSCC22;
MBS+18; LTW+24).

3.4 Discussion

3.4.1 Avoiding concentration issues

In this Section, we present the connection between the model concentration and the existence
of a quantum model that is far from the MNLS solution. We prove the existence of such a
potential quantum model in Theorem 6.

Concentration phenomenon of parameterized quantum circuits have been studied a lot in
the literature. We say that a function is concentrated if the variance is too small. I quantify it by
computing the quantity Vx[f(x)]. Typically, for a quantum model we say that f is concentrated

1Note that having a dimension of the feature map close to the maximal value implies that the number of
redundancies are all close to 1 (see (MMHG+24) for more details).
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if V[f ] ≤ 1
poly(N) , with N being the dimension of the Hilbert space so N = 2n. It is equivalent

to the Barren Plateau phenomenon (MBS+18), where the gradient of the loss function is
exponentially close to 0.

The quantum model fQ can only be estimated by taking an average of Nshots measurements
with a precision of 1√

Nshots
. Thus if f is concentrated, it would take an exponential amount of

shots to evaluate it reliably. Therefore it would not be useful as a model.
For the Random Fourier features (Subsection 3.2.3), the variance of the function is given by

the norm of β, Vx[f ] = ||β||2/p. For the weight vectors of the proposed quantum circuits, we
have that Vx[f ] is of the order of 1/2n which is concentrated. We would like to find functions
such that ||βQ||2 ≥ p , and I wonder if it can be compatible with the fact that f should be
bounded independently of p, ie |f(x)| ≤ 1 for all x. The fact that f should be bounded comes
from the fact that it is the expectation value of an observable.

In the following, I propose a special family of Fourier model such that the norm of the weight
vector is large (thus far from MNLS), and that is not concentrated. In addition, I show that this
function is bounded. If one could find a quantum circuit architecture that realizes a function
from this family, the conditions in Theorem 4 would be satisfied, which would constitute a
potential quantum advantage.

Theorem 6. Let Ω a subset of J−L,LKd, where L is an integer. We consider the following
function f : Rd −→ R

f(x) = 1
√
p

∑
ω∈Ω

(βω,cos cos
(
ω⊤x

)
+ βω,sin sin

(
ω⊤x

)
) (3.48)

with p = |Ω|, and βω,cos, βω,sin are all iid uniform random variables in the interval [−σ, σ] with
σ = Θ(1/(d (log d+ logL))) We have the following properties:

1.
∣∣∥β∥2 − 2

3pσ
2∣∣ ≤ σ2√p log(2/δ) with probability at least 1− δ

2. Vx[f(x)] ≥ 2
3σ

2 − σ2
√

p

√
log(2/δ) with probability at least 1− δ

3. |f(x)| ≤ 1 ∀x ∈ Rd with high probability

The high probabilities are with respect to the choice of β.

In the above theorem, (1) shows that ∥β∥2 is of the order of pσ2 therefore of potentially
higher norm than βMNLS (which scales like M), (2) shows thatf is not concentrated, and (3)
shows that f is bounded by a constant, which leaves open the amenability to realize it as an
quantum expectation value of an observable O with ∥O∥∞ bounded by a constant, which is a
property of commonplace quantum observables . Finally, thanks to Theorem 3 we know that
∥βMNLS∥ would be small in this case.

I give a proof and the probability of (3) in Appendix A.6. This Theorem gives a function
that seems possible to achieve from a VQC, far from the classical model, and not concentrated.
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However, one needs to find a quantum circuit capable of implementing such a function. In 3.3.2,
we present an example of a quantum model that is far from the MNLS solution and bounded,
but that is concentrated.

3.4.2 Limitations of the analysis

We list some limitations of our framework. Situations where our analysis doesn’t apply and
give therefore more or less hope for quantum models to avoid dequantization.

Non standard classical linear regression. We focused our analysis on usual classical
gradient descent and KRR, giving rise to the bias of converging towards the MNLS estimator.
We did not explore other classical learning algorithms that may not converge to the same
solution. One could envision another classical model that is equivalent to a linear model with
a high norm weight vector. A simple way to do so would be to add an arbitrary component
of the null space of the data to the MNLS, by definition the training loss will still be 0. This
would constitute another type of dequantization for quantum models.

Discrete data distributions. A lot of the results in this work depend on the feature map
chosen and the associated data distribution. In particular if the input data take discrete values
(GD23; MGD24; JFPN+23; LAT21; JGM+24), typically in {0, 1}n, it can greatly affect the
values of the average error. In such cases, the analysis has to be refined.

Different feature maps. One could envision a change of the feature map. For exam-
ple, instead of using ϕ one may use arbitrary projections and create a new feature vector
ϕ′ = (α⊤

1 ϕ, . . . α
⊤
p′ϕ). Even though both the MNLS associated to ϕ and ϕ′ are linear models of

ϕ, their characteristics may differ.

Different quantum circuits. We envisioned the model to be composed of a single quantum
circuit, we can imagine a succession of quantum circuits interleaved with classical post-processing,
in the way of a multi layer neural networks, and then we don’t know how the results will hold.

Classically hard feature maps. An intuitive case where one expects to find a quantum
advantage would be when the individual components of the feature map are functions that are
easy to compute on a quantum computer, but hard to do so on a classical one. Therefore even
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trying to train a classical surrogate wouldn’t be possible. We can give two examples. Using the
discrete logarithm (Sho94), (LAT21) constructs the quantum feature map such that:

|ϕ(x)⟩ = 1
2k

2k−1∑
i=0
|Ci(x)⟩ (3.49)

Ci(x) = x · gi mod p (3.50)

If one had to compute it classically, one could reformulate it as

ϕi(x) =

1 if ∃k, x · gk mod p

0 otherwise
(3.51)

So one would need to compute the discrete logarithm of i in order to evaluate ϕi(x), which is
known to be a hard problem classically.

We can also mention feature maps involving the ground state of data dependent hamiltonians.
In (UK24), the authors propose a feature map ϕ(x) equal to the ground state of the single
chain Ising hamiltonian where the longitudinal part depends on the input x

H(x) =
n∑

i=1
ZiZi−1 + x

n∑
i=1

Xi +
n∑

i=1
Zi (3.52)

In the general case where all interaction coefficients depend on x, the feature map is hard to
compute classically.

In this work, we will not talk much about this case, we will assume that each element of
the feature map can be easily computed classically. We are interested about the inductive bias
of the optimization dynamics of the variational circuits.

3.5 Conclusion

In this chapter, I point out that quantum and classical models for the same feature map do not
converge towards the same solution. Classical linear regression trained with gradient descent
converges towards the minimum norm least square estimator (MNLS), which is also the output
of kernel ridge regression (KRR). Such a bias is due to the fact that the gradient of the mean
square error loss function is contained in the row space of the data (ie it is a linear combination
of the data features). Because of the fact that quantum circuits are a special parameterization
one does not have the same bias for quantum neural networks.

In the underparametrized regime where there are more training data points M than
dimensions p of the feature space (p < M), I show that there is little value to be brought
by quantum computers, since the MNLS has a close form and is an optimal solution. In the
overparametrized regime (p > M), there is an infinity of weight vectors that will minimize
the training loss, including the MNLS. It could then be that VQCs will converge to another
solution than the MNLS, but closer to the ground truth hence resulting in a better model.
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It would also not always be useful to use quantum computers in order to look for the MNLS
estimator, because this estimator can be approximated with regression on random features,
with a number of random features polynomial on the number of data points. The quality of
approximation is also influenced by the spectrum of the empirical kernel matrix, which depends
on the exact feature map and on the data distribution. So we do not rule out a case where
quantum computers could provide an advantage by evaluating the MNLS.

I investigate in greater details the case of the Fourier feature map with integer coefficients.
In this case, the condition number of the kernel matrix is constant in high probability whenever
p > M2, so it is the most favorable case to apply random features regression. I show examples
of quantum circuits that implement the same feature map and whose weight vector has a norm
much bigger than the norm of the MNLS. Therefore there could exist a separation between
quantum and classical models in this cases. Such a separation would have to be confirmed for a
larger class of classical algorithms for training.

Unfortunately, the proposed quantum models are highly concentrated, which makes them
unusable in practice. The concentration of a linear function for integer Fourier features with
uniform distribution also directly depends on the norm of the weight vector. We asked whether
it was possible to simultaneously have a weight vector norm scaling like the number of features
and the function to be bounded. I show that it is possible and we exhibit a function with these
properties. The quantum circuit realizing these models remains to be found.

I see the following open questions:

• Similarly than classical linear regression, can we prove a inductive bias of variational
quantum circuits linked to the optimization dynamics? (YCCW23) started going into
this direction.

• Can we analyze the norm of weight vectors for generalized reuploading circuits, for
example using the Pauli string representations of the circuits (RFHC23; BBR+24) ?

• Can we investigate other input data distributions?
• Can we generalize the comparisons we made to other classical learning algorithms?
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Preliminaries

This part is dedicated to explore the use of quantum computers to perform machine learning
tasks on graph structured data. The protocols that are developed are especially relevant for
neutral atoms quantum hardware. In this chapter, I introduce the elements needed to understand
the content of this part. I give a review of the important concepts of classical machine learning
for graph based data, and I explain neutral atoms quantum computers. In Section 4.1, I give
concrete examples of machine learning on graph structured data and I define general concepts.
Therefore, I detail important families of algorithms popular in the classical machine learning
community. Section 4.2 will focus on graph kernels, and Section 4.4 will focus on graph neural
networks and graph transformers. Section 4.5 will introduce the Weisfeiler-Lehman test, a useful
tool to quantify the expressivity of graph neural networks. Finally Section 4.6 will introduce
the basics of the neutral atoms quantum hardware.

4.1 Graph machine learning and applications

A graph is is a set of nodes (or vertices) V linked by a set of edges (or links) which are tuples
of nodes E = {(u, v), u ∈ V, v ∈ V}. The graph is said directed if the order of the edge is
important, ie (u, v) is different from (v, u) and undirected otherwise. Graph data often possess
features linked to the nodes or edges. We note for each node v ∈ V the node feature vector
hv ∈ RdV and for each edge (u, v) ∈ E the edge feature vector euv ∈ RdE . We note by H the
matrix of shape (|V|, dV ), where each row v represents the feature vector of the node v and by
E the matrix of shape (|E|, dE), where each row (u, v) represents the feature vector of the edge
(u, v).

Graph machine learning (GML) is an expanding field of research with applications in
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Domain Node features Edge features Task

Recommender systems User’s characteristics User-item interactions:
likes, ratings

Predict new items users
may like

Molecules Atom types Chemical bonds types Toxicity prediction
Social networks User’s posts Friendship ties Predict interests of users

Table 4.1: A few examples of real world applications of graph machine learning.
The type of graphs, the node features, the edge features and the corresponding
tasks are indicated.

chemistry (VB12; GSR+17), biology (ZAL18; MOB20; BOS+05), drug design (Kon14), social
networks (Sco11; PARS14), natural language processing (NMR+17; GŠ13), computer vision
(HB07) and science (SGGP+20; XHLJ18). A few examples of machine learning tasks for graph
data are enumerated in Table 4.1. In those fields, some problems can be efficiently tackled by
machine learning, and observations have an inherent graph structure. Usual machine learning
algorithms cannot be directly used to exploit this graph structure, requiring the development
of specific algorithms.

4.2 Graph kernels

A large body of work exists in the classical machine learning literature, trying to study graphs
through the use of graph kernels that are measures of similarity between graphs(LR15; KJM20;
BGLL+20; SS01).

The idea behind the graph kernel approach is very generic, and consists first in finding a
way to associate any graph with a feature vector encapsulating its relevant characteristics
(the feature map) and then to compute the similarity between those vectors, in the form of a
scalar product in the feature space. A graph kernel K constitutes such an inner product and
therefore allows to perform machine learning tasks on graphs. More specifically, a graph kernel
is a symmetric, positive semidefinite function defined on the space of graphs G. Given a kernel
K, there exists a map ϕ : G→ H into a Hilbert space H such that K(G1,G2) = ⟨ϕ(G1)|ϕ(G2)⟩
for all G1,G2 ∈ G(NSV19). The design of a kernel always comes down to a trade-off between
capturing enough characteristics of the graph structure while still being algorithmically efficient.

For completeness, we detail here two algorithms in which graph kernels can be used: Support
Vector Machine (SVM) for classification (i.e. sorting data in categories) and Kernel Ridge
Regression (KRR) for regression (i.e. the prediction of continuous values)(SS01; BN06). These
methods have been successfully applied to data sets of graphs of up to a few dozen nodes
(MKB+20). KRR has been already introduced in another context in Section 1.2.
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4.2.1 Support Vector Machine

The SVM algorithm aims at splitting a dataset in two classes by finding the best hyperplane
that separates the data points in the feature space, in which the coordinates of each data point
(here each graph) is determined according to the kernel K.

For a training graph dataset {Gi}i=1...M , and a set of labels y = {yi}i=1...M (where yi = ±1
depending on which class the graph Gi belongs to), the dual formulation of the SVM problem
consists in finding α̃ ∈ AC(y) =

{
α ∈ [0, C]M

∣∣∣αT y = 0} such that

1
2α̃

TQα̃− eT α̃ = min
α∈AC(y)

{1
2α

TQα− eTα

}
(4.1)

where e is the vector of all ones, Q is a M ×M matrix such that Qij = yiyjK(Gi,Gj), and C is
the penalty hyperparameter, to be adjusted. Setting C to a large value increases the range of
possible values of α and therefore the flexibility of the model. But it also increases the training
time and the risk of overfitting.

The data points for which α̃i > 0 are called support vectors (SV). Once the αi are trained,
the class of a new graph G is predicted by the decision function, given by:

y(G) = sgn {⟨ϕ(G)|ϕ0⟩} (4.2)

= sgn
{∑

i∈SV

yiα̃iK(G,Gi)
}
, (4.3)

with
ϕ0 =

∑
i∈SV

yiα̃iϕ(Gi) (4.4)

In this case, the training of the kernel amounts to finding the optimal feature vector ϕ0. It
is worth noting that in many cases, equation (4.3) is evaluated directly, without explicitly
computing ϕ0.

If the dataset is to be split into more than two classes, a popular approach is to combine
several binary classification in a one-vs-one scheme(POG+20). This means that a classifier
is constructed for each pair of classes in the dataset. Namely, for a dataset with nc classes,
nc(nc − 1)/2 classifiers will be constructed and trained (one for each pair of classes). This is
the strategy that will be used here, whenever necessary.

4.2.2 Kernel Ridge Regression

The regression is similar to the classification task, but here the aim is to attribute a continuous
value to each graph. Given a training graph dataset {Gi}i=1...M , and a set of labels y = {yi}
(that we assumed here to be in R), the problem of linear regression consists in finding weights
α = {αi}i=1...d (where d is the dimension of the embedding space H), such that for any new
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input graph G, yα(G) = αTϕ(G). The solution α is found by minimizing

J(α) = 1
2

M∑
i=1

[yα(Gi)− yi]2 + λ

2α
Tα, (4.5)

where λ is the regularization hyperparameter. This problem has a dual formulation by setting
a = ΦTα where Φ is the matrix whose rows are the embedded vectors ϕ(Gi). By injecting the
value of a = {ai}i=1...M in (4.5) the solution to the problem is given by

a = (K + λI)−1y (4.6)

where K = {K(Gi,Gj)}ij = {⟨ϕ(Gi)|ϕ(Gj)⟩}ij is the kernel matrix and y is the vector of targets.
The prediction for a new input G is then given by:

y(G) =
M∑

i=1
aiK(G,Gi) (4.7)

4.3 Examples of graph kernels

In this section, we give a brief description of a few examples of graph kernels. More examples
can be found in Appendix A.7. These kernels will be used as a benchmark for the quantum
algorithm QEK in Chapter 6.

4.3.1 Size kernel

The Size kernel only depends on the number of vertices of the graphs. It may seem trivial, but is
a relevant baseline for the experiments described in Chapter 6. Given two graphs G1 = (V1, E1)
and G2 = (V2, E2), the Size kernel is defined as:

Ksize(G1,G2) := e−γ(|V1|−|V2|)2
(4.8)

with a choice of hyperparameter γ > 0.

4.3.2 Graphlet Sampling kernel

Let G = (V, E) and H = (VH , EH) be two graphs. We say that H is a subgraph of G if there
exists an injective map α : VH → V such that (u, v) ∈ EH ⇐⇒ (α(u), α(v)) ∈ E . In general it
might be possible to map H into G in several different ways, i.e. the mapping α, if it exists, is
not necessarily unique.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the idea behind the Graphlet kernel is to
pick an integer k < min{|V1|, |V2|}, enumerate all possible graphs of size k and find the number
of ways they can be mapped to G1 and G2. Denote by f (k)

Gi
the vector where each entry counts
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the way a specific graph of size k can be mapped as a subgraph of Gi. A kernel can then be
defined as the dot product f (k)

G1
· f (k)

G2
between the two vectors.

The complexity of computing such a kernel scales as O(nk), as there are
(n

k

)
size-k subgraphs

in a graph of size n. For this reason it is preferable to resort to sampling rather than complete
enumeration (SVP+09). Given a choice of integer N , graphs g1, . . . , gN of size between 3 and
k are randomly sampled. The number of ways each gi can be mapped as a subgraph of Gj is
computed and stored in a vector fGj , and the Graphlet Sampling kernel is defined as the dot
product:

KGS(G1,G2) := fG1 · fG2 (4.9)

To account for the different size of G1 and G2, each vector can be normalized by the total
number of its subgraphs.

4.3.3 Random Walk kernel

The Random Walk kernel is one of the oldest and most studied graph kernels (GFW03).
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the idea is to measure the probability of
simultaneous random walks of a certain length between two vertices in G1 and G2.

Simultaneous random walks can be conveniently encoded in powers of the adjacency matrix
on the product graph. The product graph G1 × G2 = G× = (V×, E×) is defined as follows:

V× := {(ui, ur) | ui ∈ V1, ur ∈ V2} (4.10)

E× := {
(
(ui, ur), (vj , vs)

)
| (ui, vj) ∈ E1,

(ur, vs) ∈ E2}. (4.11)

In other words, an edge in the product graph indicates that an edge exists between the endpoints
in both G1 and G2. If A× is the adjacency matrix of the product graph, then the entries of
Ak

× indicate the probability of a simultaneous random walk of length k between two vertices
ui, vj ∈ V1 and ur, vs ∈ V2.

If p, q ∈ R|V×| are vectors representing the probability distribution of respectively starting
or stopping the walk at a certain node of V×, the first idea for a kernel would be to compute
the sum

∑
k q

TAk
×p, which however may fail to converge. A simple modification to make the

sum convergent is to choose an appropriate length-dependent weight µ(k):

K(G1,G2) :=
∞∑

k=0
µ(k) qTAk

×p. (4.12)

The Geometric Random Walk kernel is obtained by choosing the weights to be the coefficients
of a geometric series µ(k) = λk, and p, q to be uniform. If λ is tuned in such a way as to make
the series convergent, the kernel reads:

KRW(G1,G2) :=
∞∑

k=0
λk eTAk

×e = eT (I − λA×)−1 e (4.13)
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where e denote vectors with all the entries equal to 1.
The cost of matrix inversion scales as the cube of the matrix size. If |V1| = |V2| = n, then

the cost of the algorithm scales as O(n6), as it involves the inversion of an adjacency matrix of
size n2 × n2. Several methods are proposed in (VSKB10) to make the computation faster. The
Spectral Decomposition method in particular allows to reduce the complexity for unlabeled
graphs to O(n3). Essentially, one exploits the fact that the adjacency matrix of the product
graph can be decomposed in the tensor product of the individual adjacency matrices:

A× = A1 ⊗A2 (4.14)

which allows to diagonalize each n×n adjacency matrix in O(n3) time and perform the inversion
only on the diagonal components.

4.4 Graph neural networks and graph transformers

Graph Neural Networks (GNNs) are neural networks that take into account the graph structure.
The objective is to learn suitable vector embeddings of the nodes and edges that enable efficient
solutions to the original problem. In the past few years, significant effort has been put into the
design of GNNs (Ham20).

A GNN is composed of a succession of layers. The node and edge features at the layer ℓ+ 1
are computed from

Hℓ+1 = fℓ+1(Hℓ, Eℓ;Wl) (4.15)

Eℓ+1 = f ′
ℓ+1(Hℓ, Eℓ,Wℓ) (4.16)

fℓ, f ′
ℓ are the functions of the layer ℓ, and Wℓ is the associated weight matrix. Training the

neural network amounts to minimizing a loss function which depends on the problem to solve.
For example, in the case of a graph regression task over a dataset {(Gi, yi), i ∈ [1,M ]}, the loss
function to minimize can be expressed as

L(W ) =
M∑

i=1
(f(Gi; W )− yi)2 (4.17)

The optimization is usually done with a gradient descent algorithm (Rud16).
There are little limitations on how the functions f ′

ℓ and fℓ can be, it must however respect
the property of equivariance by relabeling the nodes. It means that one must obtain the same
output for a given node if the indexing is changed. It means that for every permutation matrices
P and P ′ associated a node relabelling, one must have:

fℓ+1(PHℓ, P
′Eℓ;Wl) = Pfℓ+1(Hℓ, Eℓ;Wl) (4.18)

f ′
ℓ+1(PHℓ, P

′Eℓ,Wℓ) = P ′fℓ+1(Hℓ, Eℓ;Wl) (4.19)
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4.4.1 Message passing neural networks

Message Passing Neural Networks are a family of GNNs where for each layer the feature vector
hℓ+1

v is a function of hℓ
v and {hℓ

v, v ∈ N (v)}. More precisely, the update equations can be written
the following way

mv = UPDATE(hv) (4.20)

hl+1
v = AGGREGATE(mv, {mv, v ∈ N (v)}) (4.21)

where UPDATE and AGGREGATE are parameterized functions. For each node, a message mv

is computed from hv with the function UPDATE, and the messages of the neighbors of v are
aggregated to v with the function AGGREGATE. Plenty of variants alongside this architecture
have been proposed. We detail here a few of them. In the following, σ is an activation function.

Graph Convolution Networks.
Graph Convolution Networks (GCN) have been originally introduced in (KW16), and are now
one of the most effective GNN baseline. The aggregation is made by summing the normalized
messages of the neighbors. The update rule can be written as

hℓ+1
v = σ

( ∑
u∈N (v)∪{v}

W ℓ+1 hℓ
u√

|N (v)||N (u)|

)
(4.22)

Graph Attention Networks.
Another strategy of aggregation of messages is to apply attention (BCB14). Attention between
two elements can be understood as an importance weight of the relationship between those
elements. (VCC+18) proposed to use attention to improve the aggregation procedure of GCNs.
The authors suggest to compute an aggregation weight between a node and its neighbors. The
update can then be written as

hℓ+1
v = σ

( ∑
u∈N (v)∪{v}

αuvW
ℓ+1hℓ

u

)
(4.23)

where

αuv =
exp

(
a⊤[W ℓ+1hu ⊕W ℓ+1hv]

)
∑

u∈N (v)∪{v}
exp

(
a⊤[W ℓ+1hu ⊕W ℓ+1hv]

) (4.24)

4.4.2 Transformers

The transformer architecture has been first introduced by (VSP+17). It is now one of the most
popular neural network architecture used for sequence modelling (Dev18; ADL+22) but also for
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computer vision tasks (CMS+20; DBK+20). Transformers are neural networks only composed
of attention layers, and were originally introduced for sequence modelling tasks. Attention was
already a feature accompanying Recurrent Neural Networks (RNNs) (WHZZ16). A transformer
layer is a parameterized function fθ : RN×d −→ RN×dmodel . An attention head is defined as

HEAD(X;Q,K, V ) = softmax(XQK⊤X)XV (4.25)

Q,K, V are matrices of shape (d, dhead), and are usually called query, key and value matrices
respectively.

A transformer layer is the concatenation of attention heads such that

LAYER(X) =
∣∣∣∣∣∣nheads

i=1
HEAD(X;Q,K, V ) (4.26)

|| denotes the concatenation of matrices by the columns, and nheads are concatenated such that
nheads × dhead = dmodel

4.4.3 Graph transformers and positional encodings

Despite some successes, it has been shown that MPNNs suffer several flaws. First and foremost,
their theoretical expressivity is related to the Weisfeiler-Lehman (WL) test. It means that two
graphs who are indistinguishable via the WL test will lead to the same MPNN output (MRF+19).
This can cause several problems because two different substructures will not be differentiated.
More details can be found in Section 4.5. MPNNs also perform best with homophilic data
and seem to fail on heterophilic graphs (ZYZ+20). Homophilic graphs mean that two nodes
have the same labels if they are close to each other in the graph, which is not necessarily the
case. Finally, MPNNs suffer from oversmoothing (CLL+20) and oversquashing (TDGC+21).
Oversmoothing means that the output features of all nodes will converge to the same value as
the number of layers increases. Oversquashing occurs when few links on the graph separates
two dense clusters of nodes. The information that circulates through these links is then an
aggregation of many nodes and is much poorer compared to the information initially present.

Solutions to circumvent those issues are currently investigated by the community. The main
idea is not to limit the aggregation to the neighbors, but to include the whole graph, or a larger
part of it. Graph Transformers were created in this spirit with success on standard benchmarks
(YCL+21; RGD+22). Similarly to the famous transformer architecture, an aggregation rule is
provided to every pair of nodes in the graph with incorporation of global structural features.

"Positional" or "structural" embeddings are features computed from the graph that are
concatenated to original node or edge features to enrich GNN architectures (either MPNN
or GT). These two terms are used interchangeably in the literature and we denote them as
"positional encodings" (PEs) in the rest of this work. PEs can include random walk probabili-
ties (RGD+22; MLL+23), spectral information (DJL+20; RGD+22; KBH+21), shortest path
distances (LHW18), or heat kernels (MCSM21). They can also be learned (DLL+21). Table 4.2
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extracted from (RGD+22) gives a few examples of positional encodings in the literature. We
detail below the most common ones that will be included in our benchmarks.

Laplacian Eigenvectors. The spectral information of the graph can be used as PE, more
precisely the eigenvectors of the Laplacian matrix with the smallest eigenvalues, or laplacian
eigenvectors (LE). For a line graph, the laplacian eigenvectors almost correspond to positional
embeddings in the transformer architecture for sequences (VSP+17). The main issue of this
encoding is to ensure that the model remains invariant by changing the sign of eigenvectors,
and a solution has been proposed by (LRZ+22).

Relative Random Walk Probabilities (RRWP). The authors of (MLL+23) introduced
the RRWP with which they initialize their model. For a graph G, let A be the adjacency matrix
and D the degree matrix. Let P be a 3 dimensional tensor such that Pk,i,j = (Mk)ij with
M = D−1A. For each pair of node (i, j), we associate the vector P:,i,j , i.e., the concatenation of
the probabilities for all k to get from node i to node j in k steps in a random walk. P:,i,i is the
same as the Random Walk Structural Encodings (RWSE) defined in (RGD+22). The authors
of (MLL+23) highlight the benefits of RRWP. They prove that the Generalized Distance WL
(GD-WL) test introduced by (ZLWH23) with RRWP is strictly more powerful than GD-WL test
with the shortest path distance, and they prove universal approximation results of multi-layer
perceptrons (MLP) initialized with RRWP. They also achieve state of the art results on most
of benchmark datasets.

(DLL+21) proposed a way to learn the position embedding from the initial embedding
that can either be the laplacian eigenvectors or the diagonal of the random walk matrix. They
define an architecture in which position embeddings are concatenated to node features and are
updated separately at each layers. We detail here the equations of their model. Consider at a
layer ℓ the feature vector of the node i noted hℓ

i , the feature vector to the edge (i, j) noted eℓ
ij ,

and position vector of the node i noted pℓ
i . Then the updates are computed with the following

formulas.

hℓ+1
i = fh

([
hℓ

i

pℓ
i

]
,

{[
hℓ

j

pℓ
j

]}
j∈N (i)

, eℓ
ij

)
(4.27)

eℓ+1
i = fe(hℓ

i , h
ℓ
j , e

ℓ
ij) (4.28)

pℓ+1
i = fp(pℓ

i , {pℓ
j}j∈N (i), e

ℓ
ij) (4.29)

This scheme gives a supplementary expressivity compared to just taking the position features as
an input to the GNN. fp and fh follow the same analytical formula, but the activation function
used for fp is tanh, allowing negative values.

The authors separate the training of the position encoding. The final loss function is written
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Global PE
(node fea-
tures)

Allow a node to
know its global po-
sition within the
graph

• Eigenvectors of the Adjacency, Lapla-
cian or distance matrices. (KBH+21;
DJL+20)

• Distance from the graph’s centroid.
• Unique identifier for each connected

component of the graph.

Relative
PE (edge
features)

Allow two nodes
to understand
their distances
or directional
relationships

• Pair-wise node distances from heat
kernels, random-walks, Green’s func-
tion, graph geodesic, or any lo-
cal/global PE. (KBH+21; BPL+21;
MCSM21)

• Gradient of eigenvectors or any lo-
cal/global PE. (KBH+21; BPL+21)

• Boolean indicating if two nodes are
in the same cluster.

Local SE
(node fea-
tures)

Allow a node to
understand what
substructures it is
a part of

• Degree of a node (YCL+21)
• Diagonal of the m-steps random-walk

matrix (DLL+21)
• Time-derivative of the heat-kernel di-

agonal (gives the degree at t = 0).
• Enumerate or count predefined struc-

tures such as triangles, rings, etc.
(BFZB22; ZJAS21)

• Ricci curvature (TDGC+21)

Table 4.2: A few examples of different positional (PE) encodings and structural
encodings (SE) identified from (RGD+22).

as

Loss = LossTask(hL, pL) + αLossPos(pL) (4.30)

LossPos(p) = 1
k
Tr(pTLp) + λ

k
||pT p− Ik||2F (4.31)

with α, λ > 0 hyperparameters and || · ||F . the Frobenius norm.
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4.5 Theoretical expressivity of GNNs

4.5.1 Weisfeiler Lehman test

Evaluating the expressivity of graph neural networks is a rich area of research. The Weisfeiler-
Lehman test (WL test) is an important tool introduced by (WL68). It is a widely popular
fast to compute isomorphism test. It is not universal, (Bam22) proposed a method to generate
graphs non distinguishable by the WL test. One can also improve the test by adding a notion
of distance (ZLWH23).

Figure 4.1: General steps of the WL test algorithm. a. Two graphs with node
colorings. b. Node coloring and the nodes of the neighbors. c. New mapping from
the set of colors and colors of neighbors to new colors. d. The two graphs with new
colors from the previous mapping. Elements of the figure are taken from (SSVL+11),
figure 2 in accordance with the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/legalcode) .

Wesfeiler-Lehman test
The Weisfeiler-Lehman test (WL test) is an isomorphism test developed from a color refinement
algorithm (WL68; BK79). The algorithms outputs for each graph a set of node colorings that
are computed iteratively. We start with a graph G and labeled nodes. Each node v is labeled
by a color cv. The colors of the nodes are computed iteratively, the color of the node v at
step t, noted c

(t)
v can be computed by hashing c

(t−1)
v with the colors of the neighbors of v,

{c(t−1)
u | u ∈ N (v)}.

The update rule can be written as

c(t)
v = HASH({c(t−1)

v , {c(t−1)
u | u ∈ N (v)}}) (4.32)

where HASH is an injective hash function. The process is repeated until convergence. The
final isomorphism test is done by comparing the histograms of final colors for two graphs.

65



CHAPTER 4. PRELIMINARIES

Higher order WL tests can be defined by aggregating the k neighbors of the nodes, giving
birth to the family of k −WL tests.

Generalized Distance Wesfeiler-Lehman test
The GDWL test (ZLWH23) is similar to the WL test, but add a notion of distance between all
pairs of nodes. The iterative update can be written as

c(t)
v = HASH({c(t−1)

v , {(c(t−1)
u , d(u, v) | u ∈ N (v)}}) (4.33)

4.5.2 Properties

The WL test is especially relevant for the study of GNNs. It has been shown that the theoretical
expressivity of MPNNs can be directly linked to the WL test. It means that two graphs who
are indistinguishable via the WL test will lead to the same MPNN output (MRF+19). To
alleviate the limitation, the authors have proposed to use higher The GD-WL has been used to
characterize the expressivity of the GRIT architecture developed by (MLL+23).

4.6 Neutral atoms quantum computing

In this section, I explain the inner working of a neutral atom quantum computer. I start by
describing the physical set up of the machine, and I expand on the analog quantum computation
that the platform is able to perform. This ability is its main advantage compared to other types
of quantum hardware.

4.6.1 Rydberg atoms and optical tweezers

Neutral atoms quantum computers use atoms in their rydberg state as qubits. The most
common element used is the rubidium, where the states |0⟩ and |1⟩ are chosen as energy levels
of the atom. These atoms are manipulated by light and trapped in a vacuum chamber.

A laser and a Spatial Light Modulator (SLM) will create a set of traps in the chamber
(HBS+20), and each trap will capture exactly one atom. Experimental progress enabled the
manipulation of hundreds of atoms (SSW+21; EKC+22), approaching the thousands (PLB+24),
in comparison to one atom at the beginning of the century (SRPG01). It also enabled a very
large degree of freedom in the positioning of the atoms, allowing to realize different shapes and
lattices (BLL+18), as shown in Figure 4.2a. Information processing is done by applying a laser
pulse to the register of atoms in their Rydberg state while shutting off the traps. Measurement
is realized by capturing emitted photons by the atoms after turning on the traps again. If the
atom is in the |0⟩ state, it will be captured by the traps and be detected whereas if it is in the
|1⟩ state it will be ejected.
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(a) Set up of a neutral atom device from
(HBS+20) (b) Array of atoms from (BLL+18)

Figure 4.2: An illustration of the experimental set up of a neutral atom quantum
computer and some shapes that can be produced with arrays of atoms.

4.6.2 Analog quantum computing

Although neutral atom devices can be used as digital quantum computer, they are currently
most effectively useful for performing analog computation. If we consider n atoms located at
the positions (r1, . . . rn), the global hamiltonian of the system is given by

Ĥising = Ω(t)
n∑

i=1
Xi − δ(t)

n∑
i=1

Ni + C6
∑
i,j

NiNj

|ri − rj |6
(4.34)

with N = (I + Z)/2. Ω(t) and δ(t) are time dependent functions depending on the laser pulse
applied to the register. C6 is a constant which depends on the atomic levels used to encode the
|0⟩ state and the |1⟩ state. Ω is called the Rabi frequency and depends on the power of the
laser, δ is called the detuning, and depends on the frequency of the laser. The quantum state of
the system will be given by the solution to the Schrodinger equation

d|ψ⟩
dt

= −iĤ(t)|ψ⟩ (4.35)

In the rest of this thesis unless specified otherwise we assume that ℏ = 1.
Another important hamiltonian that can be realized on the platform is the XY hamiltonian

ĤXY = Ω(t)
n∑

i=1
Xi − δ(t)

n∑
i=1

Ni + C3
∑
i,j

XiXj + YiYj

|ri − rj |3
(4.36)

C3 is a constant just like C6 which depends on the atomic levels used for the encoding.
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Analog quantum computing opens new possibilities in comparison to digital quantum
computing. One can indeed in the analog mode prepare unitaries that would take a number
of 2-qubits and 1-qubits gates much bigger than any available digital hardware. (DBK+22)
showed as an example what were the resources needed to simulate a 10x10 Hubbard model
at the same error rate as in current experiments (GB17). They showed that one would need
at least 200 logical qubits, 106 error corrected gates at 10−7 error rate. This is beyond any
available hardware on other platforms.
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Quantum Algorithms for graph machine
learning

This chapter will develop core contributions of this thesis. I will describe the different ways to
construct a machine learning model that takes a graph as an input, using a quantum computer.
Unlike the previous part, this chapter is written from different parts of the following papers:

• (ADL+23) Boris Albrecht, Constantin Dalyac, Lucas Leclerc, Luis Ortiz-Gutiérrez, Sli-
mane Thabet, Mauro D’Arcangelo, Julia RK Cline, Vincent E Elfving, Lucas Lassablière,
Henrique Silvério, Bruno Ximenez, Louis-Paul Henry, Adrien Signoles, Loïc Henriet. (2022)
Quantum feature maps for graph machine learning on a neutral atom quantum processor.
Physical Review A, 107(4), 042615.

• (TFH22) Slimane Thabet, Romain Fouilland, Loic Henriet (2022). Extending Graph
Transformers with Quantum Computed Correlations arXiv:2210.10610

• (TDS+) Slimane Thabet, Mehdi Djellabi, Igor Sokolov, Sachin Kasture, Louis-Paul Henry,
Loïc Henriet (2024). Quantum Positional Encodings for Graph Neural Networks. Interna-
tional Conference on Machine Learning, 2024

The process of constructing quantum models for graph data has been done iteratively in
the presented papers, and by following the evolution of the classical graph machine learning
community. In this thesis, I wished to unify the work I have done under a single framework. I will
therefore present all the algorithms I developed, and for which I have performed experiments,
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as variations of a single workflow. This way of presenting will allow inspirations for future work
by encouraging to create more variations.

In Section 5.1, I give an overview of the elements of a quantum algorithm for graph machine
learning. From Section 5.2 to Section 5.5, I develop each one of these elements. In Section 5.6, I
provide some theoretical results about the capabilities of the constructed quantum algorithms.

5.1 General view

Building a graph machine learning model with a quantum computer amounts to constructing a
function

f(G; θ, W ) = g(|ψ(G; θ)⟩; W ) (5.1)

where G is a graph, θ is a vector of parameters, |ψ(G; θ)⟩ is a quantum state depending on G
and θ, and W is a vector of classical parameters.

The process can be decomposed into 4 steps and is illustrated in Figure 5.1.

1. Mapping of the graph G to a hamiltonian ĤG with each node being mapped to one qubit.
2. Creating a quantum state dependent on the graph with the hamiltonian previously defined.

The quantum state may involve some parameters to be optimized
3. Performing measurements on the quantum state previously defined.
4. Performing a post processing of the measurements. The post processing can be minimal

(i.e the measurement is the final output), or be a significant part of the procedure.

At the end, one can add a feedback loop to any step of the procedure. It means that each
of the previous step can be updated depending on the output of the model.

One may think intuitively that the potential advantage of using a quantum computer to
perform graph machine learning tasks is the ability to potentially extract intractable topological
features. It is known that quantum computers can help to solve combinatorial optimization
problems involving graphs (FGG14; AAA+24; Had18). Two examples of such problems are
the maximum independent set problem (MIS) and the maximum cut problem (MAX-CUT).
The goal of the MIS is to find the largest set of vertices in the graph such that there exists
no edge between any nodes. The goal of MAX-CUT is to find a partition of two sets such
that the number of edges that cross going from one partition to the other is maximum. For
a graph G(V, E) of n nodes, these problems can be formulated as finding binary variables
z = (z1, . . . zn) ∈ {0, 1}n that maximize the following cost functions

CMIS =
∑
i∈V

zi − U
∑

(i,j)∈E
zizj (5.2)

CMAX-CUT =
∑

(i,j)∈E
zi(1− zj) (5.3)

(5.4)
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These problems are believed to be hard to compute on a classical computer (GJ78; Spi99).
The research on how to solve them more efficiently with classical computers is still very active
(DHK+23), with concrete real world applications in mind (Ves22). Since one is able to construct
hard to compute functions of a graph with a quantum computer, one may therefore think about
using theses functions for machine learning tasks.

Graph
Hamiltonian

- Ising
- XY
- Heisenberg

Quantum state

- Parameterized
- Ground state

Measurements

- Correlations
- Distributions of 

observable

Post processing

- Kernel
- GNN
- Transformer

Modification after feedback

Flow of the 
algorithm

Figure 5.1: General steps of a graph machine learning algorithm with a quantum
computer.

At the begining of this research, few works have explored the idea of using quantum
computers to do graph machine learning. (SBI+20) proposed to use a gaussian boson sampler
to extract graph features. The input graph is embedded into the interferometer such that the
covariance matrix of the gaussian state is equal to the adjacency matrix of the graph. The
device outputs photon counts then proportional to the permanent of the adjacency matrix of
the graph. (VML+19) proposed a general framework for quantum variational ansatzes using a
graph as input data, and proposed a few applications, like graph isomorphism or hamiltonian
learning. Both previous works follow the different steps described.

During this thesis, a few other works have been developed by the quantum computing
community about graph machine learning, following adjacent directions of this thesis (MMC22;
LZF24). Reviews of the progress can be found in (TYE22; CMDF+24).

5.2 Graph to hamiltonian mapping

We associate a graph G(V, E), to a hamiltonian ĤG of |V| qubits of the form

ĤG =
∑

(i,j)∈E
Ĥij (5.5)
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where Ĥij is a Pauli string acting non-trivially on i and j only. Such examples of hamiltonians
are the Ising hamiltonian

ĤI =
∑

(i,j)∈E
ZiZj (5.6)

the XY hamiltonian
ĤXY =

∑
(i,j)∈E

XiXj + YiYj (5.7)

or the Heisenberg hamiltonian

ĤXXZ =
∑

(i,j)∈E
XiXj + YiYj + ZiZj (5.8)

In the following of this work, I will mainly focus on the Ising and XY hamiltonian. Those
two Hamiltonians are analyzed here because they are ubiquitous spin models, that can be rather
easily implemented on currently existing platforms, particularly in the case of neutral-atom
processors (SSW+21; SWB+22).

The neutral atom quantum computer offers the flexibility to change the topology of the
system at each run which makes it a prime tool to run these procedures. The change of geometry
of the atomic register only introduces a constant overhead cost due to the calibration of the
devices. The calibration parameters can then be stored in memory and reused when needed. If
one would want to do the same with another platform like superconducting qubits, one would
need to introduce SWAP gates since the topology of the chip is fixed, which would significantly
increase the depth of the circuit.

5.3 Graph quantum states

In the previous section I described how to create a mapping from a graph to a Hamiltonian.
I describe now how to create a quantum state dependent on the graph, that I will call graph
quantum states, not to be mistaken by other common definitions of graph states in quantum
computing (HDE+06).

5.3.1 Ground states

One family of quantum states that is natural to explore is the ground state of the graph
hamiltonian (GHL+15). Ground state properties are indeed widely studied in many-body
physics and their properties depend on the topology of the graph. The ground state of a system
is defined as the lowest-energy eigenstate of its hamiltonian (when it is degenerate, one considers
the ground state manifold HGS).

Preparing this state is the purpose of quantum annealing (DC08). When using neutral atom
quantum processors (HBS+20), one can natively address hamiltonians of the form

ĤG =
∑

(i,j)∈E
Jij(Zi − αiI)(Zj − αjI) (5.9)
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with αi real coefficients. Its eigenstates are the basis states |b⟩ = |b1 . . . bN ⟩ described above.
In the case where αi = 1− δ/(2zi) with zi =

∑
j|(i,j)∈E Jij and Jij = 1/4, the eigenenergies (or

eigenvalues) are

E(b) =
∑

i,j∈E
bibj − δ

N∑
i=1

bi. (5.10)

When 0 < δ < 1, this is the cost function associated with the maximum independent set problem,
a NP-hard problem (GJ79). In the absence of degeneracy-lifting or symmetry-breaking effects,
a quantum annealing scheme would prepare an equal-weight superposition of all maximum
independent sets. With that in mind, I will call ground state of the graph the state

|ψGS⟩ = 1√
|HGS |

∑
b∈HGS

|b⟩. (5.11)

Such a quantum annealing scheme is not however applicable to all systems. It would indeed
only work if the energy gap between the ground state and the first excited state is big enough
(Ami09; Dal23).

5.3.2 Parameterized quantum states

Alternate layered quantum state
We consider the quantum state obtained by alternated action of p layers of ĤG and a mixing

hamiltonian ĤM (that doesn’t commute with ĤG , for instance ĤM ∝
∑|V|

i=1 Yi) on an initial
state |ψ0⟩

|ψG(θ)⟩ =
p∏

k=1

(
e−iĤM θke−iĤGtk

)
e−iĤM θ0 |ψ0⟩ , (5.12)

where θ = (θ0, t0, θ1, t1, . . . θp) is a real vector of parameters. The choice of these states is
motivated by their similarity with the Trotterized dynamics of several quantum systems(Suz76).
They are also heavily used in other quantum algorithms for combinatorial optimization like the
Quantum Approximate Optimization Algorithm (FGG14).

Continuously parameterized graph states
The layered time-evolution scheme, can be easily extended to any kind of parametrized

time-evolution Ĥ(t) such that the final state is

|ψf ⟩ = T exp
[
−i
∫ tf

0
dt Ĥ(t)

]
|ψ0⟩ , (5.13)

where T is the time-ordering operator. This can be thought of as taking the limit of an infinite
number of layers. Analog quantum processing platforms are particularly well suited to the
evaluation of this kind of quantities. One can indeed prepare quantum states resulting from the
time evolution of a time dependent hamiltonian that can be written as

Ĥ(t) = Ω(t)
|V|∑
i=1

Xi − δ(t)
|V|∑
i=1

Zi + ĤG (5.14)
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Indeed in those systems, some of the parameters of the Hamiltonian can be continuously
tuned (and it is often difficult to generate strictly piece-wise constant Hamiltonians).

5.4 Measurements

In this section, I will describe the quantities that can be measured from the quantum state that
has been created. Subsection 5.4.1 will present the probability distribution of an observable,
Subsection 5.4.2 will present the correlation matrices, Subsection 5.4.3 will introduce the k-
particles quantum random walks, and Subsection 5.4.4 will present a quantum inspired version
of the quantum random walks. All these quantities satisfy the equivariance property crucial for
graph algorithms Section 4.4.

The quantities defined here are well known in the quantum physics community, but their
use as signature of a graph is an original contribution of this thesis.

5.4.1 Probability distribution of an observable

Let Ô be an observable, {λ1, . . . λK} its eigenvalues (i.e. the possible outcomes of the measure),
and {|o1⟩ , . . . |oK⟩} the corresponding eigenstates. The normalized histogram of measured values
approaches in the large M limit the following probability distribution

PÔ
G (Λ) = (p1, . . . pK), where pk = |⟨ok|ψf ⟩|2 . (5.15)

This probability distribution can then be used as a graph feature.
Remark: Note that if some eigenvalues are degenerate, one would get instead pk =

∑
i

δ(λi −

λk) |⟨oi|ψf ⟩|2, where the pk are restricted to the K̃ < K distinct eigenvalues of Ô.
In practice, if K is large, one would resort to binning the values of λi, i.e. by defining a set

of K ′ < K intervals {Ik = [λ̃k, λ̃k+1]}k=1...,K′ , with λ̃1 ≤ mink λk and λ̃K+1′ ≥ maxk λk, such
that PÔ

G (Λ) = (p̃1, . . . p̃K′), where

p̃k = |{mi|mi ∈ Ik}|
M

≡
M→∞

∑
i|λi∈Ik

|⟨oi|ψf ⟩|2 . (5.16)

Typically Ô will be a sum of Pauli strings, and must be invariant by the relabelling of the
nodes. An observable that stisfies this property would be

∑
i

Zi.

5.4.2 Correlations

The correlations (or correlators) Cij of local operators Ôi and Ôj acting respectively on qubits i
and j can be defined either as the expectation value of their product ⟨ÔiÔj⟩, or their covariance
⟨ÔiÔj⟩ − ⟨Ôi⟩⟨Ôj⟩ (note that the orders matters if Ôi and Ôj don’t commute). In the rest of
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the thesis, I will indifferently call correlation the two former expressions, and give details when
necessary. We will be focusing on the case where Ôi is a Pauli string of length 1 (i.e., Xi, Yi or
Zi). This includes single Pauli types correlators (i.e. XiXj , YiYj , ZiZj) or multiple types Pauli
correlators (i.e. XiYj , YiZj , XiZj etc).

5.4.3 k-particles quantum random walks (k-QRW).

In this subsection, I introduce the k-particles (or walkers) random walk probabilities that can
be obtained using ĤXY (see Equation (5.7)). We denote by Hk the k-particles subspace (i.e.
the Hilbert space obtained as the span of states |b⟩ of Hamming weight k, noted |i1 . . . ik⟩,
parameterized by k integers i1 . . . ik ∈ {0, 1}k). It is a well-known property that ĤXY stabilizes
each of the Hks and I denote by ĤXY

k the XY hamiltonian restricted to Hk (HTDH21a). ĤXY

can also be called Hamming weight preserving.
ĤXY

k can be seen as the adjacency matrix of a graph called the k occupation graph. Therefore,
a quantum evolution of ĤXY

k can be seen as a quantum walk on the k occupation graph. I use
the hamiltonian ĤXY

k to prepare a quantum state as in Equation (5.12) that will represent a
superposition over all k-tuples of nodes, and I measure observables for each pair of nodes which
will give edge features. For a 1-particle QRW, I calculate the probability

[X(1)(t)]ij = | ⟨j| e−iĤXY
1 t |i⟩ |2 (5.17)

to find particle at node j coming from node i after time t. Similarly for a 2-particle QRW, I
calculate

[X(2)(t)]ij = | ⟨ij| e−iĤXY
2 t |ψinit⟩ |2 (5.18)

where |i, j⟩ ∈ ĤXY
2 is the state with walkers at nodes i and j and

5.4.4 Quantum inspired encodings

I propose a discrete version of the quantum features described above, where I consider powers
of the hamiltonian (ĤXY )p for integers p instead of continuous evolutions as explained in the
previous paragraph. The discrete powers are not implemented natively on a quantum computer,
hence the name quantum-inspired. They are however directly comparable to the RRWP scheme
of (MLL+23), and they are cheaper to compute than the continuous quantum random walks.
ĤXY is indeed of size O(|V|k) when restricted in the subspace of Hamming weight k, and is
furthermore a sparse matrix for low density graphs, so the powers can be efficiently computed.
We consider a discrete 2-particle quantum-inspired RW (2-QiRW) encoding that reads

Pij =
[
⟨ij| ((DXY

2 )−1ĤXY
2 )k |ψinit⟩ |k ∈ [0,K]

]
ij

(5.19)

where DXY
2 is the diagonal matrix sum of the rows of ĤXY

2 .
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5.5 Post processing

In the previous sections, I described the features that can be obtained from a graph using a
quantum computer. In this section, I will describe how these features can be used in a machine
learning algorithm.

5.5.1 Quantum evolution kernel (QEK)

As a first example of algorithm, I will describe a way to construct a graph kernel using the
probability distributions computed in Subsection 5.4.1. I contributed to the development of this
method (HTDH21b) prior this thesis, and part of this thesis work is the hardware implementation
of the procedure. We can naturally define a graph kernel by computing the distances between the
probability distributions. There are many choices of distances between probability distributions.
I will here use the Jensen-Shannon divergence (Lin91), which is commonly used in machine
learning. Given two probability distributions P and P ′, the Jensen-Shannon divergence can be
defined as

JS(P,P ′) = H

(P + P ′

2

)
− H(P) +H(P ′)

2 , (5.20)

where H(P) = −
∑

k

pk log pk is the Shannon entropy of P. JS(P,P ′) takes values in [0, log 2].

In particular JS(P,P) = 0, and JS(P,P ′) = log 2 is maximal if P and P ′ have disjoint
supports. For two graphs G and G′, and their respective probability distributions P and P ′

(computed as described in Subsection 5.4.1), I define the graph kernel as

Kµ(G,G′) = exp
[
−µJS(P,P ′)

]
∈
[
2−µ, 1

]
. (5.21)

The kernel is then positive by construction (BH09). µ is a hyperparameter that can be tuned.
For the following, I will set µ = 1, but it might be helpful to adjust this value to improve the
results.

We can then use this kernel in usual algorithms like SVM or KRR (see Section 4.2), and
find the best dual coefficients αi as defined in Equation (4.3) and Equation (4.7). The target
of a new graph G is then predicted by computing its probability distribution PÔ

G and then
computing its kernel values with respect to graphs in the training dataset. One should also
optimize the quantum state to be constructed by finding the best time evolution parameters
in Equation (5.12). Since the whole procedure is in general non differentiable, one would
compute a cross validation score on a training set, and find the parameters that give the best
score using gradient free methods. It is similar as the way one would find hyperparameters in
classical machine learning models. One can think of randomized seach, bayesian optimization
(Fra18), SPSA (HCT+19). In the case of neutral atoms quantum computers, methods have
been developed to find the analog pulse (LH22) giving the best performances.
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5.5.2 Graph Transformer with Quantum Correlations

This section presents GTQC (Graph Transformer with Quantum Correlations), an architecture
of Graph Neural Network based on Graph Transformers and incorporating global graph features
computed with quantum dynamics. A global view of the algorithm is represented on figure 5.2.
Representation learning on graphs using neural network has become the state of the art of
graph machine learning (WPC+20). Scaling deep learning models has brought lots of benefits
as shown by the success of large language models (BMR+20; ADL+22). The goal was to bring
the best of both worlds, meaning large overparameterized deep learning models, and structural
graph features intractable with a classical computer. The architecture I propose only uses nodes
features, but similar techniques could be implemented for edges features.

! "

#

$!! " $! ! " $!

$!

! = (!!, %", !", … %#, !#)

Parameterized quantum graph state

. . .

Correlation matrices

Node features

Graph

$!"#
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Figure 5.2: Overview of the model. The graph is translated into a hamitonian that
will drive a quantum system. After a parameterized evolution, the correlations are
measured and aggregated into a single attention matrix.

Here I develop a method to compute a parameterized transition matrix or quantum attention
matrix from the correlations of a quantum dynamic. This matrix will later be used in the update
mechanism of my architecture. Once the quantum attention matrix is computed, the rest of
the architecture is purely classical, and all existing classical variations could be implemented.
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Finally, the quantum attention matrix is by construction equivariant to a permutation of the
nodes.

I consider a parameterized graph state as defined in equation 5.12, parameterized by the train-
able parameter θ = (θ0, t0, θ1, t1, . . . θp), and noted |ψ(θ)⟩. θ will be called the quantum parame-
ters in the rest of the paper. I then compute for every pair of nodes (i, j) the vector of 2-bodies ob-
servables Cij = [⟨ZiZj⟩, ⟨XiXj⟩, ⟨YiYj⟩, ⟨XiZj⟩, ⟨XiYj⟩, ⟨YiZj⟩, ⟨XjZi⟩, ⟨XjYi⟩, ⟨YjZi⟩]T where
⟨O⟩ = ⟨ψ(θ)|O |ψ(θ)⟩. These observables are all possible correlators.

The quantum attention matrix is computed by taking a linear combination of the previous
correlation vector and optionally a softmax over the lines.

A(θ)ij = γTCij (5.22)

A(θ)ij = softmax(γTCij) (5.23)

where γ is a trainable vector of size 9. Multiple correlators are measured to enrich the number
of features that can be extracted out of the quantum state. Limiting ourselves to e.g ⟨ZiZj⟩
might be inefficient because ⟨ψf |ZiZj |ψf ⟩ could be written XX† where X is a matrix with row
i equal to (Zi |ψf ⟩)†. The resulted weight matrix is therefore a symmetric positive semi-definite
matrix, and can be reduced by a Choleski decomposition A = LLT where L is a real matrix of
shape N ×N . The same model can then be constructed by learning the matrix L even though
it is unclear if that would be efficient.

The quantum weight matrix previously computed is used as a transition matrix, or attention
matrix, in the update mechanism of the model. Given H l the node features matrix at the layer
l, the node features matrix at the next layer is computed with the following formula :

H l+1 = σ((A(θ)H l||H l)W ) (5.24)

where σ is a non-linearity, H is of size (N × d) where each row represents a node feature
of dimension d, W is a learnable weight matrix of size (2d× dh), A(θ) is the attention matrix
with parameters θ computed in 5.5.2 and || is the concatenation on the columns.

With the same approach as Transformers or Graph Attention Networks, one can use several
attention heads per layer to improve the expressivity of the architectures. The update formula
is given by:

H l+1 =
∣∣∣∣∣∣Nheads

i
HEADi(H l) (5.25)

where each head is computed with the formula 5.5.2. The total dimension of the feature
vector is Nheadsdh. Each head has a different quantum circuit attached, and can be computed
in parallel if one possesses several QPUs.

We provide here some precisions on how the model would be implemented on real quantum
devices.
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Decoupling between quantum and classical parts
The parameters of the quantum states and the classical weight parameters are independent in the
proposed algorithm. One can then asynchronously measure all the quantum states of the model
and run the classical part. This may be particularly important for near term implementation
since the access of QPUs are quite restricted in time. Furthermore, the gradients of the classical
parameters depend only on the correlation matrices, so they can be easily computed with
backpropagation without any supplementary circuit run.

Training the parameters of the quantum state
Computing the gradients of parameterized quantum circuits is a challenge source of numerous
research in the quantum computing community (KE21; WIWL22; BC21). Finite-difference
methods can be challenging to use because of the sampling noise of quantum measurements
and the hardware noise. Some algorithms named parameter-shift rules were then created to
circumvent this issue (MNKF18). In some cases, the derivative of a parameterized quantum
state can be expressed as an exact difference between two other quantum states with the same
architecture and other values of the parameters.

I detail here how I would compute the gradient in a simple case of the proposed architecture.
Let Ĥ be a hamiltonian, Ô an observable, |ψ0⟩ an initial state. I introduce

|ψ(θ)⟩ = U(θ) |ψ0⟩ = exp
(
−iθĤ

)
|ψ0⟩ (5.26)

f(θ) = ⟨ψ(θ)| Ô |ψ(θ)⟩ (5.27)

It is known (WIWL22) that f can be expressed as a trigonometric polynomial

f(θ) =
∑
ω∈Ω

aω cos(ωθ) + bω cos(ωθ) (5.28)

where Ω is a finite set of frequencies depending on the eigenvalues of Ĥ. In the case of Ĥ = ĤM

(see Equation (5.12)), the frequencies are the integers between 0 and N . One can then evaluate
f on 2N + 1 points and solve the linear equations to determine {aω}, {bω} and the derivative
of f . This is the same for the ĤI hamiltonian which associated frequencies are the integers
between 0 and |E|.

For the other hamiltonians listed, there is no known analytical formula to compute the
gradients like previously. The only method would be to use finite difference schemes which are
sensitive to noise.

Random parameters
Optimizing over the quantum parameters can be costly and ineffective with current quantum
hardware. Even with emulation, back-propagating the loss through a system of more than 20
qubits is very difficult. I encounter memory errors for more than 21 qubits on A100 GPUs, even
though the implementation is certainly not optimal. Therefore I propose an alternative scheme
to the model, to help with both actual hardware implementations and classical emulation.
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The main idea in the spirit of (RR08b) is to evaluate the attention matrices on many
random quantum parameters, and only training the classical weights. From a model f(x;W, θ) =∣∣∣∣∣∣Nheads

i
σ((A(θi)H l||H l)Wi) with one layer, I would normally find the parameters that minimize

a loss between inputs x and labels y

W ∗, θ∗ = arg max
W,θ

M∑
i=1

l(f(xi;W, θ), yi) (5.29)

Instead, I create a model with more heads and fixed random values. θ′ expressed as
f(x;W, θ′) =

∣∣∣∣∣∣N ′
heads

i
σ((A(θ′

i)H l||H l)Wi) and I minimize only on θ

W ∗ = arg max
W

M∑
i=1

l(f(xi;W, θ′), yi) (5.30)

5.5.3 Positional encodings with quantum features

In this section, I detail my proposals to incorporate quantum features in GNN models and
discuss the potential benefits and drawbacks. I focus on two types of encoding: the first uses
the ground state of the graph as defined in section Subsection 5.3.1, the second uses the XY
hamiltonian on the k-particles subspace (detailed in Subsection 5.4.3). Both methods use a
quantum state that is difficult to prepare in the general case, so I expect to obtain features
that are not available with classical approaches. For details of the corresponding algorithms,
see Appendix A.8.

5.5.3.1 Eigenvectors of the correlation on the ground state.

I propose to use the correlation matrix Cij = ⟨ZiZj⟩ on the ground state of the graph defined in
Subsection 5.3.1. Since this matrix is symmetric with nonnegative eigenvalues, it can formally
be used in the same place as the Laplacian matrix in graph learning models. Hence, I use the
eigenvectors of this correlation matrix in the same way Laplacian eigenvectors (LE) are used in
other architectures of graph transformers. Instead of taking the eigenvectors with the lowest
eigenvalues as for the Laplacian eigenmaps, I take the ones with highest eigenvalues, since
they are the ones in which most of the information about the correlation matrix is contained.
I expect to face the same challenges due to the sign ambiguity (DLL+21; KBH+21), and to
implement the same techniques to alleviate them (LRZ+22).

5.6 Theory

I present in this section the main theoretical results I established regarding the expressive power
of the quantum algorithms. In this section, I aim to investigate the theoretical properties of
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Figure 5.3: Summary of the proposed method. (a) The hybrid quantum-classical
framework utilizes a classical computer for parameter optimization (if required)
and employs a hybrid model using a Quantum Processing Unit (QPU) and a CPU
and/or GPU, denoted as classical Processing Unit (cPU). In the quantum graph
NN, I initialize QPU at a quantum state |ψ0⟩, apply a mixing Hamiltonian ĤM

evolution for a duration θ, and utilize a Hamiltonian ĤG evolution for the graph
feature map with a duration t. K layers are used to obtain a sufficiently expressive
quantum model. Finally, the output is obtained by measuring correlators, e.g.,
⟨ZiZj⟩. See Section 5.4.2 for details. (b) Static or trainable PE is constructed
for a graph G via (c) (quantum) random walk (static PE) or a quantum graph
NN (static/trainable PE), which computes quantum correlations. Note that the
proposed PEs are not restricted to classical models (such as the transformer studied
in this work) but are also applicable to all quantum models.

the quantum walk features. I show that they are able to distinguish strongly regular graphs
whereas usual positional encoding features cannot.

5.6.1 Quantum walks and strongly regular graphs

Definition 5.1. A strongly regular graph (SRG), noted srg(ν, k, λ, µ), is a graph with ν vertices
of fixed degree k, such that every pair of adjacent vertices have a fixed number λ of common
neighbors, and every pair of non-adjacent vertices have a fixed number µ of common neighbors.

Each tuple (ν, k, λ, µ) defines a family of SRGs, and it is possible to find multiple non
isomorphic graphs within the same family (Spe24). We chose to work on these particular graphs
because their regularity makes them especially difficult to distinguish within the same family.
For instance, (ZLWH23) provide a worst-case analysis for the GD-WL test, a provably more
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powerful version of 1-WL , in the case of distance-regular graphs. Their examples include
Rook’s and Shrikhande graphs, both of diameter 2. We know on the other hand that a SRG is
a distance-regular graph with a diameter 2 when µ ̸= 0 (Big93). In (MLL+23), proposition 3.2.,
the authors show that GD-WL with RRWP distance is strictly more powerful than GD-WL
with shortest path distance. They test their approach on 2 distance regular graphs. In the
following, we propose to analyze the distinguishability of SRGs through the GD-WL test with
RRWP distance, as well as a test involving a particular case of Hamiltonian evolution by the
Ising model, constituting one of the rare configurations where it is possible to extract generic
formulas without any costly simulation or quantum computing.

Proposition 5.1. (BFW+21) It requires a 3-WL test or higher to distinguish two non-
isomorphic strongly regular graphs from the same family.

This result highlights the difficulty of the task, as a 3-WL test requires overlapping informa-
tion from all the triplets in the graph, and is therefore costly in terms of memory and time as
the size of the graph analyzed increases. We continue in the same line with the following result:

Proposition 5.2. GD-WL with RRWP distance cannot, even with eigen-decomposition of the
distance matrix, distinguish any two non isomorphic SRGs from the same family.

Proof. One can show (SJ03; GFZ+10) that for strongly regular graphs, the powers of the
adjacency matrix A can be expressed as

An = αnI + βnJ + γnA

where αn, βn, γn only depend on N, k, λ, µ. I is the identity matrix, J is the matrix full of 1s.
The degree matrix D is also equal to kI, then (D−1A)n = An/kn. Hence the information about
distance contained in Puv for strongly regular graphs is the same as in their adjacency matrices.
Therefore, for strongly regular graphs, the GD-WL with RRWP test is equivalent to the WL
test. The F.I. consists of eigenvalues and eigenvectors. It has been shown that F.I is stronger
than 1-WL, but weaker than 2-WL (RS). Therefore, GD-WL along with eigenvectors cannot
distinguish SRGs, which require 3-WL or higher.

This extends to the RRWP distance the results recovered in (ZLWH23), in which they show
the same for shortest path distance and resistance distance.We provide in the next section a set
of experiments as empirical evidence that show that in some cases, a GD-WL with correlations
on 2-QW distinguishes SRGs.

5.6.2 Empirical study : Ising and XY models for the distinguishability of
SRGs

This result shows that the case in which it is possible to derive formal expressions actually
fails to distinguish non isomorphic SRGs. We have proven that in the previous subsection that
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(a) (b)
Figure 5.4: Normalized values of Ising correlations (upper triangular part) and
XY model correlations (lower triangular part) for (a) the family srg(26, 10, 3, 4)
that includes 10 non-isomorphic graphs, and (b) the family of srg(25, 12, 5, 6) that
includes 15 non-isomorphic graphs.

the GD-WL test cannot distinguish non isomorphic SRGs. Figure 5.4 shows the results of the
distinguishability in a set of 2 families, with 25 and 26 nodes. We compute both Ising and
XY-hamiltonian evolutions, for p = 2 in the former and for a 2-QW in the latter. We use the
following permutation invariant measure to compute the distance between a pair of graphs

d(Gi, Gj) = 1
2

ν2∑
k=1
||S(C(Gi))− S(C(Gj)||k where C is the correlation matrix, S(M) a function

that receives a matrix M ∈ RN×N as input and returns a vector m ∈ RN2 containing the
sorted elements of M . Using this formula, a non- zero value implies that the two graphs are
not isomorphic, but the opposite is not necessarily true. We can see from this figure that it
is possible to distinguish these graphs. We also ran experiments to verify that the distance
between any of these graphs and a set of 5 randomly selected isomorphic counterparts is zero
as expected.This shows empirically that for certain data sets, a two layers Ising evolution and
a 2-QW are strictly more powerful than 2-WL. We also run the GD-WL test with the edge
features S(M) and we obtain that all pairs of graphs are successfully distinguished. Finally, it
is important to point out that the classical k-WL test requires comparisons between pairs of
subsets of nodes of size k, rendering its complexity to at least Nk, N being the size of the graph.
On the other hand, for quantum evolutions, the complexity of the algorithm is characterized by
the number of shots that need to be measured in order to reconstruct the distribution of the
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desired observable. The number of shots is O( 1
ϵ2 ) for a precision up to ϵ (HKP20). This number

does not increase with the number of layers in the Ising hamiltonian case, where we only have a
linear increase in the evolution time (which is short in practice), or with the number of quantum
walkers that only depends on the initial input state preparation. This gives our approach an
attractive potential for quantum advantage, albeit limited to datasets on which large values of
k in the k-WL test are relevant. This also assumes that the k-QW as well as the k-layers Ising,
are both strictly more powerful than the k-WL for any values of k. This property has been
demonstrated in some cases for k = 1 and observed for k = 2 in the case of SRGs, but not yet
demonstrated in the general case and for any value of k. Our comparison is however limited to
graph neural networks of the message passing neural networks and graph transformers family.
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Experiments

In this chapter, I detail the experimental implementations of the algorithms described in
Chapter 5. Unlike the previous part, this chapter is written from different parts of the following
papers:

• (ADL+23) Boris Albrecht, Constantin Dalyac, Lucas Leclerc, Luis Ortiz-Gutiérrez, Sli-
mane Thabet, Mauro D’Arcangelo, Julia RK Cline, Vincent E Elfving, Lucas Lassablière,
Henrique Silvério, Bruno Ximenez, Louis-Paul Henry, Adrien Signoles, Loïc Henriet. (2022)
Quantum feature maps for graph machine learning on a neutral atom quantum processor.
Physical Review A, 107(4), 042615.

• (TFH22) Slimane Thabet, Romain Fouilland, Loic Henriet (2022). Extending Graph
Transformers with Quantum Computed Correlations arXiv:2210.10610

• (TDS+) Slimane Thabet, Mehdi Djellabi, Igor Sokolov, Sachin Kasture, Louis-Paul Henry,
Loïc Henriet (2024). Quantum Positional Encodings for Graph Neural Networks. Interna-
tional Conference on Machine Learning 2024

I show numerically that the performance of state-of-the-art models can be improved on
standard benchmarks and large-scale datasets by computing tractable versions of quantum
features. Our findings highlight the potential of leveraging quantum computing capabilities to
enhance the performance of transformers in handling graph data. In Section 6.1 and Section 6.2,
I present numerical experiments of the transformer based algorithms, and in Section 6.3 I
analyze the results of the experimental implementation of graph kernels done in collaboration
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with the Pasqal hardware team. To that end, we introduce a quantum feature map to encode
the information about graphs in the parameters of a tunable Hamiltonian acting on an array
of qubits. Using this tool, we first show that interactions in the quantum system can be used
to distinguish non isomorphic graphs that are locally equivalent. We then realize a toxicity
screening experiment, consisting of a binary classification protocol on a biochemistry data set
comprising 286 molecules of sizes ranging from 2 to 32 nodes, and obtain results which are
comparable to the implementation of the best classical kernels on the same data set. Using
techniques to compare the geometry of the feature spaces associated with kernel methods, we
then show evidence that the quantum feature map perceives data in an original way, which is
hard to replicate using classical kernels.

It remains unclear whether an actual performance improvement will be observed on real-
world use cases, and whether this improvement will justify the cost of using quantum hardware
in the future.

6.1 Numerical experiments on graph transformers

I benchmarked our model GTQC (see Subsection 5.5.2) and its randomized version with different
GNN architectures. I selected different datasets from various topics and with diverse tasks to
show the general capabilities of our approach. I limited the size of the graphs to 20 nodes in
order to be able to simulate the quantum dynamics, and performing a backpropagation. I then
chose datasets with the majority of graphs falling below this size limit. The details of each
dataset can be found in Appendix A.9.1.

I implemented the models with a classical emulator of quantum circuits implemented in
pytorch (PGM+19) and with dgl (WZY+19), and ran them on A100 GPUs. All experiments
were done using one GPU, except QM9 which required 4. We used a Adam optimizer with a
learning rate .001, no weight decay for 500 epochs. The quantum parameters were only updated
every 10 epochs because of computation time. As an order of magnitude, one epoch of QM7
takes 6 min with 1 GPU, and one epoch of QM9 takes 1h with 4 GPUs. Most of the time is
allocated to compute the quantum dynamics, the size of classical parameters has little effect
on the compute time except for the 2048 hidden layers. I do not consider any shot noise or
potential hardware noise in the experiments.

I compare my model to three architectures of message passing models : GCN (KW16),
SAGE (HYL18), GAT (VCC+18). In order to have a fair comparison between the models, we
employ similar hyperparameters for all of them. I use ReLU function for all activation functions.
Each model has 2 layers and 1 head for multi-head ones like ours and GAT, except on the
randomized version of our model. I don’t use softmax as described in Subsection 5.5.2, except
for the randomized instance because I observed the training was more stable without using
it. We also report the results by comparing models that have the same number of hidden
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neurons per layer and therefore approximately the same number of parameters. Each dataset is
randomly split in train, validation, test with respective ratios of .8, .1, .1 and the models are
run on 5 seeds, except QM9 for which we have only one seed.

All metrics are such that the lower the better, for classification tasks we display the ratio
of misclassified objects. For QM9 the loss is aggregated over all the targets. Figure 6.1 shows
results as box plots accompanied by the underlying points. Though the variability of the results
is a bit higher, GTQC reaches similar results than usual classical well-known approaches on
QM7 and DBLP_v1 (even beating GCN on this dataset) and seems relevant on QM9 as well.
GTQC random usually outperforms GTQC, illustrating the complexity of the optimisation
of the quantum system. GTQC random provides very promising results on DBLP_v1 and
outperforms all other approaches on QM9. Letter-med seems to represent a difficult task for
our quantum methods as they both perform very poorly and way worse than classical methods.
QM7 also seems to be challenging for GTQC random. Table 6.1 shows the results grouped by
breadth, compared to the results for GTQC with the same breadth and averaged other various
dataset splits. GTQC random has only been trained for breadth of 128 neurons and yields
impressive results by clearly outperforming other methods on QM9 and being on par with the
best method on DBLP_v1.
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Figure 6.1: Summary graph of the results of the different models on the studied
datasets. Each point is an instance of the model with specific hyperparameters and
specific seed for dataset splits.

87



CHAPTER 6. EXPERIMENTS

Table 6.1: Relative best test error compared to GTQC, grouped by breadth of
the hidden layer. We colored in blue the classical models for which at least one
of GTQC or GTQC random is better. The standard deviations are over different
splits of the datasets.

dataset DBLP Letter-med QM7 QM9
model breadth

GAT

128 0.08 ± 0.00 0.22 ± 0.02 64.27 ± 6.40 4.03 ± 0.00
512 0.08 ± 0.01 0.20 ± 0.03 60.42 ± 5.56 3.23 ± 0.00
1024 0.08 ± 0.01 0.21 ± 0.04 56.06 ± 2.77
2048 0.08 ± 0.00 0.19 ± 0.04 59.27 ± 3.33

GCN

128 0.09 ± 0.01 0.21 ± 0.05 67.50 ± 4.70 4.22 ± 0.00
512 0.09 ± 0.01 0.16 ± 0.02 63.30 ± 2.67 3.44 ± 0.00
1024 0.09 ± 0.01 0.15 ± 0.02 62.94 ± 2.90
2048 0.09 ± 0.01 0.14 ± 0.02 60.70 ± 2.30

GTQC

128 0.08 ± 0.00 0.71 ± 0.06 68.95 ± 8.50 8.01 ± 0.00
512 0.08 ± 0.00 0.66 ± 0.04 70.09 ± 18.48 6.23 ± 0.00
1024 0.08 ± 0.01 0.67 ± 0.06 67.85 ± 16.78 5.27 ± 0.00
2048 0.08 ± 0.00 0.73 ± 0.06 65.53 ± 2.48 5.30 ± 0.00

GTQC random
32 0.56 ± 0.00
64 0.48 ± 0.00
128 0.08 ± 0.01 0.49 ± 0.00 92.62 ± 2.82 2.34 ± 0.00

SAGE

128 0.08 ± 0.01 0.09 ± 0.02 62.30 ± 3.47 3.26 ± 0.00
512 0.07 ± 0.00 0.09 ± 0.02 61.47 ± 3.06 2.41 ± 0.00
1024 0.07 ± 0.00 0.09 ± 0.01 61.30 ± 3.07 2.23 ± 0.00
2048 0.08 ± 0.01 0.09 ± 0.02 54.41 ± 6.42

6.2 Numerical experiments on positional encodings

6.2.1 Experiments on random walk models

In this subsection, I test concatenating the QRW encodings (see Subsection 5.4.3, Subsec-
tion 5.4.4) to the RRWP in the GRIT model (MLL+23). The (continuous) 1-CQRW for K
random times and the discrete 2-QiRW are computed for K steps. Those encodings are com-
puted numerically since they are still tractable for graphs below 200 nodes compared to the
higher order k-QiRW ones. I benchmark our method on 7 datasets from (DJL+20), following
the experimental setup of (RGD+22) and (MLL+23). The method is compared to many other
architectures and the results directly taken from (MLL+23). I do not perform an extensive
hyperparameter search for each architecture and only run myself the GRIT model by taking the
same hyperparameters as the authors. The experiments are done by building on the codebase
of (MLL+23) which is itself built on (RGD+22). More details about the datasets can be found
in Appendix A.9.1. The results are included in Table 6.2. The proposed methods performs
better on ZINC, MNIST and CIFAR10 than all others, and comes second for PATTERN
and CLUSTER. I also benchmark my methods on large-scale datasets, ZINC-full (a bigger
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version of ZINC (ISM+12)) and PCQM4MV2 (HFR+21). For these datasets, I run a variety of
models (GINE, GatedGCN, and GRIT) with different position encodings (LE, RRWP, 2-QiRW,
and a mix of RRWP and 2-QiRW. The results are reported figure 6.2 and the full numbers
are reported in Appendix A.11. Quantum features perform better for all models in the case
of ZINC-full and for some models of PCQM4Mv2. All hyperparameters for this sections are
reported in the appendix in Appendix A.10.

Table 6.2: Test performance in five benchmarks from (DJL+20). We show the mean
± s.d. of 4 runs with different random seeds as in (MLL+23). Highlighted are the
top first, second, and third results. Models are restricted to ∼ 500K parameters
for ZINC, PATTERN, CLUSTER ∼ 100K for MNIST and CIFAR10. We compare
our model to our run of GRIT and indicate the results obtained by the authors for
information. Figures other than the last 3 lines are taken from (MLL+23). Models
in bold are our models.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑

GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GatedGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
EGT 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
GPS 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
GRIT (our run) 0.060 ± 0.002 98.164 ± 0.054 76.198 ± 0.744 90.405 ± 0.232 79.856 ± 0.156

GRIT 1-CQRW 0.058 ± 0.002 98.108 ± 0.111 76.347 ± 0.704 87.205 ± 0.040 78.895 ± 0.1145
GRIT 2-QiRW 0.059 ± 0.004 98.204 ± 0.048 76.442 ± 1.07 90.165 ± 0.446 79.777 ± 0.171

6.2.2 Synthetic experiments

In this section, I provide one example of dataset with a binary graph classification task for which
the use of the correlation matrix on the ground state as defined in 5.5.3.1 is more powerful than
other commonly used features like the laplacian eigenvectors or RRWP. The idea is to construct
graphs that will exhibit very different Ising ground states but similar spectral properties or
random walk transition probabilities. I illustrate the differences between the encodings in the
appendix A.9.2. I train classical models like GINE, GatedGCN, and GRIT on these datasets
with LEs and RRWP as node features and edge features, and I compare it to a simple GCN
model with the eigenvectors of the correlation matrix as node features.

I train the GCN model for 200 epochs using the Adam optimizer, 0.001 learning rate, no
weight decay. I split randomly the dataset on train/validation/test with a proportion 0.8/0.1/0.1,
and I measure the test accuracy of the model having the highest validation accuracy. For the
other models we use the same hyperparameters as in table A.8, but with hidden dimensions
of 32 for normal models and 64 for big models. I also use a dimension 20 for all positional
encodings, and initialize with uniform node and edge features full of 1s.

I also benchmark the GRIT model with RRWP. The results are shown in table 6.3. The
quantum encoding models achieve 100% accuracy whereas all other classical models achieve
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Figure 6.2: Test performance (mean absolute error) of different models with different
positional encodings on large scale datasets. Q: 2-QiQRW features, RRWP+Q:
RRWP and 2-QiQRW concatenated. Top : ZINC-full . Bottom: PCQM4Mv2. For
ZINC-full, we show the mean and s.d of 4 runs with different random seeds. For
PCQM4Mv2 we show the output of a single run.GRIT has 500k parameters for
ZINC-full and 11.8M for PCQM4MV2. Normal models have about 200k parameters
and big models about 700M.

45% accuracy.

6.2.3 Discussion

I performed several experiments comparing the quantum encodings to the classical ones.
Including the quantum walk features into state-of-the-art models improves their performances
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Figure 6.3: Results on synthetic data. We show the accuracy on the test set. Q:
eigenvectors of the correlation on the ground state. GCN model has about 4k
parameters, GRIT model has 500k parameters, other normal models have about
10k parameters, big models have about 60k parameters.

on most of the datasets tested. It is not surprising that the method works well for datasets
such as ZINC for which random walks are known to provide relevant features (RGD+22). I
only experimented on versions of quantum features that can be easily computed with classical
computers and we were able to show a small gain in performance compared to state-of-the-art
models. It is then plausible that using quantum features that cannot be classically accessible
could lead to a greater improvement of models, if quantum hardware can be made widely
available. I was able to engineer an artificial dataset for which classical approaches fail to
perform the associated binary classification tasks and the quantum encoding perfectly realizes
it, even with only 4k parameters where classical models have between 10k and 500k.

6.3 Hardware implementation of quantum feature maps

In this section, we describe implementation of the methods developed in Subsection 5.3.2,
Subsection 5.4.1, and Subsection 5.5.1 on the neutral atom quantum hardware of Pasqal. The
actual experiment was performed by the experimental team of the company, in this section I
describe the protocol and the results.

Starting from a unit disk (UD) graph G reproduced in the array of tweezers with qubits
all starting in |0⟩, we apply a parameterized laser pulse onto the atoms in order to generate a
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wavefunction |ψG⟩ of the form
|ψG⟩ = U(G; t) |0⟩⊗|G|, (6.1)

where we define the time-evolution operator U(G; t) = T
[
exp

(
−i/ℏ

∫ t
s=0 ĤG(s)ds

)]
to be our

quantum feature map unitary for graph structured data. We will restrict ourselves to laser
pulses with constant detuning δ and Rabi frequency Ω, with an adjustable duration t (see
Subsection 4.6.2). Depending on the task at hand, we consider various observables Ô to evaluate
on |ψG⟩. Measurements of a site-dependent (respectively global) observable give rise to a
probability distribution P which is node (graph) specific and can be used for various machine
learning tasks at the node (graph) level.

In Subsection 6.3.1, we show theoretically and experimentally that the graph quantum
feature map already shows interesting properties when associated with local or global observables
built from single-body expectation values ⟨Ôj=1,...,|G|⟩.

In the rest of the section, we implement a graph classification task corresponding to the
prediction of toxicity of molecules on the dataset PTC-FM (HKKS01).

6.3.1 Insight on a quantum feature map

The graph quantum feature map already shows interesting properties when associated with
single-body observables ⟨Ôj=1,...,|G|⟩. The measured values are not only affected by local graph
properties such as node degrees, but also by more global ones such as the presence of cycles. This
enrichment provided by the quantum dynamics contrasts with the locality of node representations
in many classical graph machine learning algorithms. This key feature comes from the fact
that the quantum dynamics of a given spin model ( e.g. an Ising model) will be significantly
influenced, beyond short times (given by the Lieb-Robinson bound (LR72; TGS+19)), by the
complete structure of the graph.

We illustrate experimentally this behavior for two graphs G1 and G2 that are non-isomorphic
but locally identical. In these graphs, nodes can be separated into two equivalence classes
according to their neighborhood: border nodes B have one degree-3 neighbor and one degree-2
neighbor, while center nodes C have two degree-2 neighbors and one degree-3 neighbor (see
Figure 6.5a). We will see that the presence of interactions will enable us to discriminate between
G1 and G2 by comparing the dynamics of local observables on border and center nodes.

We first map the graphs in a tweezers array with a nearest-neighbor (NN) distance of
rNN = 5.3µm and apply a constant pulse with Ω/2π = 1.0 MHz and δ/2π = 0.7 MHz. We then
measure the local mean Rydberg excitation ⟨nj⟩j∈B/C for varying pulse duration t ∈ [0, 2.5]µs.
As illustrated in Figure 6.5b, a qualitative difference in the dynamics of both graph appears
after t ∼ 0.25µs. Precisely, the excitation of the border nodes (see Figure 6.5b, left panel) is
initially increasing with indistinguishable behavior between the two graphs. Then, a distinction
appears between the two graph instances. The mean density for the border qubits of G1 exhibits
damped oscillations around ⟨nB⟩ ∼ 0.15 with period of the order of 0.5µs while for G2 it
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Figure 6.4: a. A dataset of graphs G is first mapped onto atomic registers r(G)
implementable on the QPU, and separated between a training set Gtraining and a
test set Gtest. We use the training set to determine numerically the optimal pulse
sequence to be applied on the hardware using a grid search algorithm for optimizing
F1(t) (see b). This training phase outputs the optimal parameter T used to design
the laser-pulse sequence applied experimentally on each register of the test set. The
resulting dynamics performed on the QPU generates U(G;T ), driving the system
from |0⟩⊗G to |ψG⟩. F1 is then derived from the measured probability distributions
{P(G)}G∈Gtest . b. The optimization of the score function F1 during the training
includes several steps. The input t, taken from the parameter space [tmin, tmax]
defines a laser sequence with Ω and δ fixed parameters followed by a measurement.
The dynamics of the system is emulated and enables us to compute the probability
distributions associated to this particular value of t for the whole training part of the
dataset. Finally, F1(t) is obtained by fitting the SVM with the kernel constructed
from those probability distributions.

exhibits flatter oscillations centered around 0.25 with period around 1µs. We can observe a
comparable distinction between the two graphs for the center qubits (see Figure 6.5b, right
panel). The experimental measurements are consistent with the theoretical predictions and
with the expected level of noise (see Appendix A.12.2 for more details).

When restricted to the mean-field approximation (or similarly in the classical limit), the
qubits’ dynamics on either graphs are far more similar, as illustrated in the insets of panels in
Figure 6.5b. We still observe distinct dynamics between the two graphs, which is due to next
nearest neighbors (NNN) interactions (more pronounced for the center nodes). If we neglected
those NNN interactions, the mean-field equations governing the dynamics of each qubit would
only depend on its direct neighborhood, i.e. the local structure of the graph. In that case, the
qubits dynamics for G1 and G2 obey the exact same equations (see black dashed line in the
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Figure 6.5: a. G1 (red) and G2 (blue) are two different graphs with identical local
structure. Based on their neighborhood, the nodes either belong to the border
B (circle) or to the center C (square). b. We plot the evolution of the mean
occupation ⟨ni⟩ of the two regions B (left) and C (right) for both graphs G1 (red)
and G2 (blue). The dots represent the experimental results while the full curves
show noisy simulation results. Horizontal error bars account for the sequence-trigger
uncertainty (≈ 40ns) while the vertical ones account for the sampling noise. The
insets show the corresponding mean field dynamics (dashed) with only NN (black)
or full (colored) interactions. c. The evolution of the Jensen-Shannon divergence
obtained experimentally (dot) is compared to the noisy simulation (plain). At
each point in time, JS(P1,P2) is computed using the excitation distributions
P1/2 = {Pn(G1/2)}n=0...6 obtained either numerically (bar) or experimentally (dot).
The inset depicts P1/2 obtained at t ≈ 0.57 µs which yields the maximum value
JSmax ≈ 0.28 reached.

insets of Figure 6.5b). We therefore conclude that the presence of interactions in the system
enables us to discriminate between the two non-isomorphic graphs G1 and G2 by evaluating
node-level local observables ⟨nB⟩ or ⟨nC⟩.

6.3.2 Dataset and mapping on hardware

In this section, we describe the realization of a toxicity screening experiment, consisting of a
binary classification protocol on the Predictive Toxicology Challenge on Female Mice (PTC-FM)
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dataset (HKKS01) comprising 286 molecules of sizes ranging from 2 to 32 nodes. Between 200
and 1000 usable shots (meaning with no rearranging defects) per graphs were taken, with a
data acquisition phase that lasted 3 days. In the original PTC-FM dataset, the 349 molecules
are represented under the form of graphs where each node is labeled by atomic type and each
edge is labeled according to its bond type. We first truncate the dataset to small graph sizes
in order to be able to train the kernel in reasonable time, and discard larger molecules. For
the M = 286 remaining graphs of this dataset, we take into account the adjacency matrix of
the graphs representing the compounds and discard the nodes and edges labels. Note that the
results of our implementation are therefore not directly comparable to kernel results in the
literature which take into account edge and node labels (see Ref. (KJM20) for example).

We will estimate the quality of the classification by using the F1 score F1 = tp

tp+(fp+fn)/2 .
Here, tp, fp and fn are respectively the number of true positives, false positives and false
negatives of the predicted distribution.

Each node of a graph will be represented by a qubit in the QPU. We first need to determine
the positions of these qubits, in order to implement an interaction term in Equation (4.34)
that effectively reflects the graph topology. For completeness, we detail the whole procedure in
Appendix A.12.1, and give the outline here.

We first design a local optimizer detailed in Appendix A.12.1 to estimate in free space a
preliminary 2D layout for each graph. Starting from a Reingold-Fruchterman layout (FR91),
our optimizer minimizes the average distance between two connected nodes while maximizing
the distances between unconnected nodes. Then taking advantage of our ability to tailor the
spatial disposition of the tweezers generated by a Spatial Light Modulator (SLM) to fit the
optimized layout, we can replicate the graph in the hardware. Following a batching method
also detailed in Appendix A.12.1, we group similar graphs and superimpose them on the same
SLM pattern, effectively mapping the whole dataset on only 6 different SLM patterns over a
triangular grid. We therefore reduce the time needed to implement the whole dataset on the
QPU.

6.3.3 Model training

To test the performance of our implementation, we perform a standard procedure called cross-
validation. Cross-validation consists of dividing the dataset in 5 equal parts called ‘splits’, and
using each split for testing while the rest of the dataset is used for training. During the training
phase, we construct for each pulse duration t the corresponding kernel and train a SVM model
with it (see Subsection 4.2.1). We then evaluate the F1-score on the part of the dataset that
was left as a test set. We repeat the splitting 10 times, and the cross-validation score is defined
as the average of the F1-score of each split (50 splits in total). We perform a grid search on the
penalty hyperparameter C of the SVM on the range [10−3, 103] such that the final score of a
given pulse is the best cross-validation score among the tested values of C.
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Figure 6.6: Each kernel is represented by a M ×M matrix where Ki,j = K(Gi,Gj)
as defined in Equation (5.21). The graph indices are sorted by increasing size. A
separation (black line) is drawn between numerically simulated (top right) and
experimentally measured (bottom left) QEK matrices. a. QEK kernel obtained
using directly the raw distributions Pi and Pj . b. Kernel obtained via SVM-ϑ
method. c. Size kernel obtained with Ksize(Gi,Gj) = exp

(
−γ(|Gi| − |Gj |)2) with

γ = 0.1. d. QEK kernel obtained using modified distributions P̃i and Pj , where
graphs of smaller sizes are convoluted with binomial distributions when compared
to larger graphs.

Including graphs with sizes |G| ≤ 20, we numerically compute the score for a nearest-neighbor
distance of rNN = 5.6µm and a resonant constant pulse with fixed Ω/2π = 1 MHz, and we
vary its duration between tmin = 0.1µs and tmax = 2.5µs. We select the optimal duration
T = 0.66µs that exhibits the maximum F1-score. We then implement this pulse on the QPU.
The whole process is illustrated in Figure 6.4.

6.3.4 Classification results

After a training of our model, we experimentally obtain an F1-score of 60.4± 5.1%. For com-
parison purposes, we examine the performances of other kernels on this dataset: the Graphlet
Sampling (GS), Random Walk (RW), Shortest Path (SP) and SVM-ϑ kernels, all these kernels
being described in detail in Section 4.3. The F1-scores reached by the various kernels are
collected in Table 6.3. Obtained scores range from 49.8± 6.0% up to 58.2± 5.5%. Those results
show that the Quantum Evolution Kernel is competitive with standard classical kernels on this
dataset. The SVM-ϑ kernel is found to be, among the classical kernels tested, the one with the
best performance. As described in Appendix A.7.1, it is defined up to a choice of base kernel
between real numbers, which gives it a certain degree of flexibility.

We show in Figure 6.6a the kernel matrix associated with QEK, with indices sorted
by increasing size of the graphs. Using the same noise model as in the previous section,
we find adequate agreement between the numerically Pnum and experimentally Pexp ob-
tained data. Quantitatively, we make use of the JS divergence to estimate this agreement for
any Gi and observe that ⟨JS(Pnum

i ,Pexp
i )⟩i ≈ 0.03 ± 0.01 is one order of magnitude below
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Kernel F1-score (%)
QEK 60.4± 5.1

QEK (size-compensated) 45.1± 3.7
SVM-ϑ 58.2± 5.5

Size 56.7± 5.6
Graphlet Sampling 56.9± 5.0

Random Walk 55.1± 6.9
Shortest Path 49.8± 6.0

Table 6.3: F1-score reached experimentally on the PTC-FM dataset by QEK (± std.
on the splits). In addition, the scores reached numerically by the classical kernels
SVM−ϑ, Size, Graphlet Sampling, Random Walk and Shortest-Path. The values
reported are the average over a 5-fold cross-validation repeated 10 times.
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Figure 6.7: The PTC-FM dataset exhibits a strong size imbalance. For small number
of nodes (≲ 10) more graphs are labeled as harmless (blue) while it is the opposite
for larger graphs, more prone to be labeled as toxic (red).

⟨JS(Pexp
i ,Pexp

j )⟩i ̸=j ≈ 0.33±0.01. An interesting feature of both QEK and SVM-ϑ (Figure 6.6b)
kernel matrices is the emergence of size-related diagonal blocks, signaling that the models
identify the size of the graphs as an important feature for classification. Examining more closely
the dataset, we indeed remark that the subset of PTC-FM that we used is significantly size
imbalanced, as illustrated in Figure 6.7. Since the graph size seems to be a relevant feature
for this particular dataset, we define a Size kernel as a Gaussian in the size difference, which
reaches an F1-score of 56.7± 5.6%. The corresponding kernel matrix is displayed in Figure 6.6c
and exhibits a block-diagonal shape with a Gaussian tail.

It is interesting to note that the quantum model was able to identify size as a relevant
parameter for this dataset, leading to classification results which are on par with the best
classical kernels.

Going forward, we modify the QEK procedure in order to make the kernel insensitive to size.
To that end, we compare the measurement distributions obtained for different graph sizes using
a convolution operation. Let us consider two graphs Gi and Gj of Ni and Nj = Ni + ∆N > Ni

nodes respectively; and note their respective observable distributions Pi and Pj . From Pi we
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construct P̃i = Pi ⋆ b
(i/j)
∆N the convolution of Pi and a binomial distribution :

b
(p)
∆N (n) =

(
∆N
n

)
pn(1− p)∆N−n. (6.2)

P̃i corresponds to the distribution one would get by adding to the graph ∆N non-interacting
qubits, submitted to the same laser pulse as the other. Each of these isolated qubits undergoes
Rabi oscillations, induced by the applied pulse sequence. They are therefore measured either in
|0⟩ with probability p or in |1⟩ with probability 1− p, where p = sin2(πΩT ) (≈ 0.768 here). We
finally define the modified graph kernel as

Kconv(Gi,Gj) = exp
[
−JS(P̃i,Pj)

]
. (6.3)

Using this procedure on the data obtained experimentally, we obtain the kernel matrix shown
in Figure 6.6d, with a corresponding F1-score of 45.1± 3.7%. If this size-compensated version
of QEK had been implemented without interaction between atoms, its score would be 42%,
which is the lowest score reachable by any kernel. We therefore see that this version of QEK
cannot capture useful features beyond the graph size, meaning that the presence of interactions
by itself is not sufficient to produce an interesting kernel for the task at hand. While the
size-compensated QEK does not give results that are comparable with classical kernels, we
study in the following part its expressive power, and show that the geometry induced by this
method is hardly reproducible by a classical kernel.

6.3.5 Geometric test with respect to classical kernels

In order to obtain an advantage over classical approaches it is not sufficient to implement
a quantum feature map based on quantum dynamics that are hard to simulate classically.
As shown in (HBM+21), classical ML algorithms can in certain instances learn efficiently
from intractable quantum evolutions if they are allowed to be trained on data. The authors
consequently propose another metric between kernels in the form of an asymmetric metric
function called the geometric difference g12. It compares two kernels K1 and K2 in the following
way:

g12 =
√
||
√
K2 (K1)−1√K2||∞ (6.4)

where ||.||∞ is the spectral norm. Intuitively, g12 measures the difference between how kernels
K1 and K2 perceive the relation between data. Precisely, it characterizes the disparity regarding
how each of them maps data points to their respective feature spaces. In our case, we take K1

to be the size-compensated QEK Kconv, and K2 is selected from a set of classical kernels. If
the geometric difference is small, it means that there exists no underlying function mapping
the data to the targets for which Kconv outperforms the classical kernel. On the other hand,
a high geometric difference between a quantum and a classical kernel guarantees that there
exists such a function for which the quantum model outperforms the classical one. Estimating
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the geometric difference is therefore a sanity check to stating that the encoding of data to
the feature space through the Quantum Evolution Kernel could not be closely replicated by a
classical model.

We compute the geometric difference between QEK and various classical kernels over the
PTC-FM dataset and report the results in Table 6.4. The threshold for a high geometric
difference is typically taken to be

√
M , where M is the size of the dataset. Here, the obtained

g12 is always far beyond
√
M ∼ 101, indicating that the embedding of data through our

quantum-enhanced kernel is not trivial and cannot be replicated by a classical machine learning
algorithm.

To summarize, while the F1-score on PTC-FM is rather similar using quantum or classical
models, we see nonetheless that the geometry created by our quantum model is non-trivial. A
possible interpretation of the non-superiority of quantum approaches on PTC-FM would be
that the relationship between the data and the targets is not better captured by our quantum
model, although its feature space is not reproducible by classical means. To further confirm
this understanding, we find a function that increases and even maximizes the utility of our
rich quantum feature space. We build such a function by artificially relabeling the targets
according to a procedure presented in (HBM+21). If v is the eigenvector of

√
K2 (K1)−1√K2

corresponding to the eigenvalue g2
12, the vector of new labels is given by ynew =

√
K2v.

When dealing with a finite amount of training data, Equation (6.4) should be regularized in
order to stabilize the inversion of K1. The regularized expression reads:

g12(λ) =
√
||
√
K2
√
K1 (K1 + λI)−2√K1

√
K2||∞ (6.5)

where λ is the regularization parameter. The geometric difference g12(λ) has a plateau for small
λ, when the regularization parameter becomes smaller than the smallest eigenvalue of K1, and
decreases for increasing λ. The effect of λ is to introduce a certain amount of training error.
The training error can be upper bounded by a quantity proportional to:

gtra(λ)2 = λ2||
√
K2 (K1 + λI)−2√K2||∞. (6.6)

Practically, one should look at the regime where g12 has not plateaued but the training error is
still small enough.

A regularization should be introduced also in the relabeling procedure. The new labels are
taken to be ynew =

√
KQv, where v is the eigenvector of the regularized matrix√

KQ

√
KC (KC + λI)−2√KC

√
KQ

corresponding to the eigenvalue g12(λ)2.
We observe that QEK, without retraining, retains an F1-score of around 99% on the relabeled

dataset, while the closest classical kernel reaches a score of at most 82% even after retraining it
on the new labels. The results are summarized in Table 6.5, where the difference in F1-score
between QEK and the various classical kernels is shown.
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Geometric Difference w.r.t. QEK
SVM-ϑ 103

Size 105

Graphlet Sampling 104

Random Walk 105

Shortest Path 105

Table 6.4: Order of magnitude of the geometric difference between QEK and various
classical kernels.

F1-score gap (%) w.r.t. QEK (relabeled)
SVM-ϑ 17.2± 4.5

Size 17.8± 4.2
Graphlet Sampling 20.1± 4.5

Random Walk 17.3± 4.3
Shortest Path 18.2± 4.4

Table 6.5: Gap in F1-score between QEK and various classical kernels after relabeling
the dataset.

In light of the geometric difference assessment and the observed gap of F1-score between
QEK and classical kernels on an artificial function, it remains an open question to generally
characterize which types of dataset naturally offer a structure that better exploits the geometry
offered by our quantum model, without requiring artificial tweaking of the labels. In the following
section, we present a synthetic dataset on which QEK is able to outperform classical methods
without any relabeling.

6.3.6 Synthetic dataset

This binary classification dataset is created by sampling weighted random walks on a triangular
lattice. In class A, sites belonging to a honeycomb-type sublattice are favored. They are explored
with a weight p0 = 1 while the rest of the triangular lattice sites are explored with a weight
p < 1. Class B is constructed in a similar fashion, but taking a kagome instead of a honeycomb
sublattice. The construction of this artificial dataset is illustrated in Fig. 6.8. In the case
where p = 0, the differences in their local structure make the two classes easily distinguishable.
However, with increasing p, their local structure becomes more and more similar, as additional
triangular lattice sites are incorporated. When p is large enough, a lot of triangular local
substructures are shared by the two classes, rendering them potentially hard to distinguish by
classical methods. At p = 1, the underlying triangular lattice is explored uniformly, rendering
the datasets indistinguishable.

Building on our ability to distinguish between graphs with similar local structure but globally
distinct, we apply QEK on this synthetic dataset. We expect our method to be hardly affected
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by the presence of sparse defects and therefore be able to outperform classical approaches.

Weighted 
random
walks

Class A Class B

𝑝 < 1 𝑝! = 1

Figure 6.8: Graphs in Class A contains honeycomb sites (blue) with inclusions of
non-honeycomb sites (red) with probability p. Graphs in Class B contains kagome
sites (blue) with inclusions of non-kagome sites (red) with probability p. We show
examples of generated graph with the aforementioned process.

We investigate numerically this assumption, for several values of p. In each case, we create
200 graphs of 20 nodes each, 100 in each class. The graphs are mapped to a triangular lattice
with 5 µm spacing. Here, we consider two alternative schemes of pulse sequences. The first one
remains almost the same as the experimentally implemented one, i.e. a unique resonant pulse
of Ω/2π = 2 MHz with parameterized duration up to 8µs. The second one is an alternate layer
scheme with 4 parameters as described in (HTDH21a), where we evaluate 500 random values
of the parameters and select the best one. The procedure is designed such that it would be
directly implementable on the hardware, as we did for the PTC-FM dataset. We then compare
the F1-score reached by QEK to those reached by other classical kernels, namely: SVM-ϑ, GS,
RW and SP. The results are summarized in Fig. 6.9. With decreasing proportion of defects,
all methods perform increasingly better, as expected. Overall, regarding the mean F1-score
reached, the two QEK schemes outperform the four other classical kernels tested for all p ≤ 0.5.
Noticeably, at p = 0.1 (resp p = 0.2), the mean gap in F1-score between the QEK scheme and
the the best classical scheme is 4.5% (resp 7.1%) while the mean gap obtained with the alternate
QEK scheme is even larger with 13.7% (resp 21%), thus showing that QEK can significantly
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surpass classical approaches on certain types of datasets. When adding too many defects, i.e.
p = 0.5, our Quantum Evolution Kernel exhibits similar performance to the SVM-ϑ.
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Figure 6.9: F1-score (%) reached on the synthetic dataset for different probabilities
p of including non-sublattice sites, by the Quantum Evolution Kernel (the alternate
scheme is noted QEK layer) as well as by the best SVM-ϑ, GS, RW and SP kernels.
The values reported are the average over a 5-fold cross-validation repeated 10 times.
Each kernel reaches an F1-score of 100% when p = 0.
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Conclusion and outlook

Machine learning enabled the resolution of many real world problems that other traditional
computational methods struggled to solve, or could solve in a more expensive way. Quantum
computing is a new paradigm of computation using the quantum states of matter that enables a
large computational speed up on some problems. The recent development of quantum processing
units encouraged the research of concrete applications of quantum computers. It then became
natural to look for ways in which quantum computers can be applied for machine learning.

The first part of this thesis aimed at understanding the capabilities of variational quantum
circuits (VQC) for machine learning tasks on unstructured vector data, and have a clearer idea
on the necessary conditions in order to expect a quantum advantage. Much of the intuition
of the community about the advantage of VQCs over classical learning methods was the fact
that VQCs were high dimensional functions. VQCs could in principle express functions that
could not be expressed otherwise. However, it is not enough to guarantee a quantum advantage.
For high dimension linear models, one can indeed construct an approximate representation of
quantum models using the technique of random features regression. I showed that a necessary
condition for a quantum model to avoid dequantization by its classical surrogate is to have a
large weight vector norm. This is due to the fact that learning a classical model on the same
feature map will lead to a solution called the Minimum Norm Least Square (MNLS) estimator,
but the training dynamics of the quantum circuits will not necessarily lead to the same solution.
I give concrete examples of this separation.

The previous part studied the properties of VQCs with little hypothesis on the structure
of the data. The second part explores methods to perform machine learning tasks on graph
structured data. The main idea is to encode the graph into a hamiltonian that has the same
topology. One then prepares a quantum state by driving this hamiltonian, and the measurements
are incorporated in a classical machine learning algorithm. This approach is especially suited to
neutral atoms quantum computers. With such platforms, one can indeed easily create a quantum
system with the desired connectivity, and the geometry can be changed at each run. I developed
a large family of algorithms, inspired by kernels, graphs neural networks, and transformers
with the intention to be ran on current hardware. I performed numerical experiments on large
scale datasets, and described the results of an experimental implementation on the hardware of
Pasqal.
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Some topics were out of the scope of this thesis, but are relevant to the theme of quantum
machine learning:

• In this thesis I did not provide many theoretical results about the advantage in terms
of complexity (only a little in Chapter 2 and Chapter 3), in contrary to other works in
quantum machine learning (GD23; JFPN+23). Concerning the part on learning on graphs,
a promising research direction would be to identify real world learning tasks related to
combinatorial optimization (e.g classify graphs related to their MIS or max-CUT) that
can be solved better on a quantum computer.

• The noise of the hardware can severely hinder the execution of any quantum algorithms.
Quantum error correction (QEC) is the design of algorithm to detect and correct error as
the circuit is executed. The idea is to encode a logical qubit into several noisy qubits which
allow some redundancy and robustness to noise. The idea is quite old (Got02; Kit97)
but has been experimentally implemented only very recently at scale (BEG+24; goo23).
Several works provided resource estimate to execute usual algorithms like Shor with
QEC (HLH22; GRLR+23). In contrary, there is little work on estimating the cost of error
correction in the context of a machine learning task.

• There are some difficulties in using neutral atoms quantum computers for quantum
machine learning. The main issue in the short term is the low repetition rate. At the
optimistic rate of 10 Hz, if one wants to acquire 1000 measurements per data input
on a dataset of 106 datapoints, one would need around 3 years for acquiring all the
data, assuming a non stop running QPU. In addition to hardware improvements, a
way to overcome this problem would be to look for ways to use as less measurement
shots as possible. Instead of measuring the correlation matrix with good fidelity as in
Subsection 5.5.2 and Subsection 5.5.3, one could investigate if some error is tolerated in
the process.

• This thesis was mostly about supervised learning. There are other learning paradigms like
unsupervised learning, reinforcement learning, and generative learning. Generative learning
has several real life applications like natural language processing or drug discovery. One
wants to generate new data with the same distribution as the training data. Generative
tasks can be more interesting than prediction tasks for gaining a quantum advantage,
because they use samples instead of expectation values of observables. There are indeed
classes of circuits like the IQP circuits for which sampling is difficult (BMS16) but
computing expectation values are easy on a classical computer (RAAB25; dN10).

I conclude by giving my perspective about the evolution of the research on quantum machine
learning for classical data. An aspect of understanding quantum algorithms for machine learning
that will gain increasing importance in my opinion is analyzing the signal extracted from the
data. In classical machine learning, this concept has been extensively explored. As highlighted
in (BBCV21), many successful algorithms owe their effectiveness to leveraging the geometric

104



CHAPTER 6. CONCLUSION AND OUTLOOK

structure of input data—such as convolutional neural networks, which excel in image processing
due to their translation invariance. To achieve a quantum advantage with classical data, it is
essential to identify relevant inductive biases. Almost all existing proofs for quantum advantage
in learning tasks (GD23; JGM+23; LAT21) come from cryptography problems where we know
quantum computation provide an advantage. It seems also likely that quantum advantage will
manifest in quantum data, or data coming from quantum systems.

Until now, most of the work on variational quantum circuits, and near term quantum
algorithms (including this thesis) were guided primarily by the capabilities of the hardware,
more than a theoretical analysis. Most of the progress of classical machine learning was also
done by experimenting, and theoretical explanations of the capabilities of the algorithms often
came a posteriori. Since quantum hardware is expensive to run, it is likely that progress of
quantum machine learning in practical use cases will come from theoretical analysis a priori.
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A.1 Approximation results for RFF in the context of VQCs

A.1.1 Distinct sampling in the Pauli encoding case

In the case of Pauli encoding only, we know that Ω = J−L,LKd (considered here to be the full
spectrum, not Ω+ defined in Section 2.1, which would have been equivalent). In one dimension,
we simply have σp = 1/L

∑
ℓ=−L,··· ,L ℓ

2 = O(L2). In dimension d, a frequency ω is given by its
values on each dimension (j1, · · · , jd) with jk ∈ [| − L,L|]. We similarly have

σp = 1
(2L+ 1)d

∑
j1,··· ,jd

j2
1 + · · ·+ j2

d (A.1)

Note that
∑

j1,··· ,jd
j2

1 + · · ·+ j2
d is d(2L+ 1)d−1 times the sum of all squares,

σp = d(2L+ 1)d−1

(2L+ 1)d

L∑
ℓ=−L

ℓ2 = d

2L+ 1
2L(L+ 1)(2L+ 1)

6

= O(dL2) = O(d|Ω|2/d)

(A.2)

The expression is then obtained by replacing the value of σp in theorem 2.2.
We note that we can generalize this results to scaled Pauli encoding, as done in (KPE22;

STJ22), by replacing L by a term growing as cL where c is a constant. D would grow linearly
in L and not logarithmically anymore.

A.1.2 Grid sampling with a general hamiltonian

We provide here a bound on the minimum of samples required to achieve a certain error between
the RFF model and the complete model in the case of a general encoding in the gird sampling
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strategy. The proof and details for this theorem is shown in Appendix Section A.1.2.

Theorem A.1. Let X be a compact set of Rd, and ϵ > 0. We consider a training set {(xi, yi)}Mi=1.
Let f be a VQC model with any hamiltonian encoding, with a maximum individual frequency
ωmax and full freedom on the associated frequency coefficients, trained with a regularization λ.
Let σ2

y = 1
M

∑M
i=1 y

2
i and |X | the diameter of X . Let f̃ be the RFF model with D samples in the

grid strategy trained on the same dataset and the same regularization. Let C = |f |∞|X | and s
the sampling rate defined in the grid sampling strategy. Then we can guarantee |f(x)− f̃(x)| ≤ ϵ
for 0 < s < 1

C with probability 1− δ for a number D of samples given by:

D = Ω
(

dC1
λ4(ϵ− sC)2

[
log(ωmax|X |/s) + log

C2
λ2(ϵ− sC) − logδ

])
(A.3)

with C1 and C2 being constants depending on σy, d(X). We recall that in Eq.A.3 the notation
Ω stands for the computational complexity "Big-Ω" notation.

Proof. The following theorem bounds the approximation between a function defined by its
Fourier series and another function with frequencies distant by at most a constant s of the
original frequencies.

Let X a compact set of Rd with diameter |X | and Ω a finite subset of X . Let f(x) =∑
ω∈Ω

aωcos(ωTx) + bωsin(ωTx). Let Ω′ a subset of X and s > 0 such that ∀ω ∈ Ω, ∃ω′ ∈

Ω, |ω − ω′| ≤ s.

Let FΩ′ =
{ ∑

ω∈Ω′

aωcos(ωTx) + bωsin(ωTx), aω, bω ∈ R
}

.

Theorem A.2. It exists f’ ∈ FΩ′ such that

sup
x∈X
|f ′(x)− f(x)| ≤ sC (A.4)

with C = |X ||f |∞.

Proof. For each ω ∈ Ω let b(ω) ∈ Ω′ be such that |ω − b(ω)| ≤ s. Such element exists by
definition but is not necessarily unique. Let f ′(x) =

∑
ω∈Ω

aωcos(b(ω)Tx) + bωsin(b(ω)Tx). The

b(ω)s are not necessarily different therefore there might be less frequencies in f ′ than in f .

|f(x)− f ′(x)| = 2
∣∣∣∣ ∑

ω∈Ω
sin((ω − b(ω))T

2 x) (A.5)

[bωsin((ω + b(ω))T

2 x)− aωcos(
(ω + b(ω))T

2 x)]
∣∣∣∣ (A.6)

≤ 2
∑
ω∈Ω

∣∣(ω − b(ω))T

2
∣∣|x|[|bω|+ |aω|] (A.7)

≤ s|x|
∑
ω∈Ω
|bω|+ |aω| (A.8)

≤ s|X ||f |∞ (A.9)
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We shall here extend the proof where we sample from the grid described above. Let us note
f̂s the RFF model with the whole grid and f̃ the RFF model with D samples from the grid
below. For all x ∈ X we have

|f̃(x)− f(x)| ≤ |f̃(x)− f̂s|+ |f̂s − f(x)| (A.10)

≤ |f̃(x)− f̂s|+ sC (A.11)

Then

P(|f̃(x)− f(x)| ≥ ϵ) ≤ P(|f̃(x)− f̂s| ≥ ϵ− sC) (A.12)

for s < ϵ/C.
In this case |Ω| = (ωmax/s)d Using the expression of Section A.1.1, we can guarantee that

|f(x)− f̃(x)| ≤ ϵ with probability 1− δ if

D = Ω
(
d

1
(ϵ− sC)2

[
log(ωmax|X |/s) + log

1
ϵ− sC

− logδ
])

(A.13)

A.2 Minimum norm least square estimator

We recall Theorem 1:

Theorem 1 (From (HMRT22)). Let β0 = 0 the initialization of a gradient descent algorithm.
Let the following iterations be defined by

βk+1 = βk + γ Φ⊤(y − Φβk) , (3.22)

with γ the learning rate such that 0 ≤ γ ≤ 1/λmax(Φ⊤Φ) where λmax(Φ⊤Φ) is the largest
eigenvalue of Φ⊤Φ. Then

• βk converges towards the minimum norm least square estimator βMNLS defined in Equa-
tion (3.21).

• βMNLS = Φ⊤(ΦΦ⊤)−1y.

Proof. The algorithm converges to a minimizer of ||y−Xβ||2 noted β̂ for the choice of the step
size. Furthermore, at each iteration iteration of the algorithm, βk lies in the row space of X.
Then β̂ also lies in the row space of X, and we will show that it is necessary the minimum
norm least square.

If (X⊤X) is low rank, then the minimum least square is unique as shown previously.
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Otherwise, if (XX⊤) is full rank, let us denote β∗ = X⊤α⋆ = X⊤(XX⊤)−1y. β∗ is a
minimizer of the least square loss and is in the row space of X. We also have that Xβ = y.
We will show that there are no other minimizer of the least square loss on the row space of
X and that β∗ is the minimum norm least square. Let β = X⊤α another minimizer of the
least square loss in the row space of X. We then necessarily have Xβ = y = Xβ∗. Then
X(β − β∗) = XX⊤(α− α∗) = 0, and α = α∗ since XX⊤ is full rank.

Let β = X⊤α+ v be a minimizer of the least square loss where v is in the orthogonal of the
row space of X. We then have

Xβ = Xβ∗

XX⊤α+Xv = XX⊤α∗

XX⊤(α∗ − α) = Xv

Let us compute ||X⊤α||2 − ||X⊤α∗||2.

||X⊤α||2 − ||X⊤α∗||2 = (X⊤α)⊤(X⊤α−X⊤α∗) + (X⊤α−X⊤α∗)⊤(X⊤α∗) (A.14)

= (X⊤α+X⊤α∗)⊤(X⊤α−X⊤α∗) (A.15)

= (α+ α∗)⊤XX⊤(α− α∗) (A.16)

= −(α+ α∗)⊤Xv (A.17)

= −(X⊤α+X⊤α∗)⊤v (A.18)

= 0 (A.19)

where at the last equality we use the fact that v is orthogonal to the row space of X. Finally
we have ||β||2 − ||β∗||2 = ||X⊤α||2 + ||v||2 − ||X⊤α∗||2 = ||v||2 > 0 if v is non zero. Then the
minimum norm least square is the unique least square estimator to be in the row space of
X.

A.3 Random Feature regression

We recall Theorem 2:

Theorem 2. Let ϕ(x) = [√q1 ϕ1(x) . . .√qp ϕp(x)]⊤ where ϕi(x) are basis functions such
that ∀x, |ϕi(x)| ≤ 1 and q = (q1, . . . qp) represents a discrete probability distribution, and let
f(x) = β⊤ϕ(x). Let S be a subset of J1, pK sampled independently with the probability density q,
with D = |S|. Then there exists coefficients c1, . . . cD such that f̂(x) =

∑
k∈S

ckϕk(x) satisfies

∥f̂ − f∥µ ≤
maxi |βi /

√
qi|√

D
(1 +

√
2 log 1

δ
) (3.27)
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As a consequence, if one applies the above to βMNLS obtained from a kernel matrix K and target
vector y such that ∥y∥∞ ≤ 1 there exists coefficients c1, . . . cD such that

∥f̂ − fMNLS∥µ ≤
M√

D λmin(K)
(1 +

√
2 log 1

δ
) . (3.28)

Proof. The Equation (3.27) is a direct consequence of theorem 3.1 from (RR08a) (reminded in
Appendix A.3).

To derive Equation (3.28), we note that βi = √qi k
⊤K−1y where k = [ϕi(x1) . . . ϕi(xM )]⊤.

We have then

|βi/
√
qi| ≤ |k⊤K−1y| (A.20)

≤ ||k||||K−1y|| (A.21)

≤ M

λmin(K) (A.22)

The second equation is obtained using Cauchy Schwarz inequality, and the last one by using
the facts that ||k|| ≤

√
M because ||k||∞ ≤ 1, and ||y|| ≤

√
M because ||y||∞ ≤ 1

A.4 Concentration of eigenvalues of the kernel matrix for the
Fourier feature map with integer coefficients

In this section, we establish concentration bounds on the eigenvalues of the kernel matrix. We
consider the Fourier feature map:

ϕ(x) = 1
√
p

cos
(
ω⊤x

)
sin
(
ω⊤x

) (A.23)

with Ω ⊂ Zd,.
The kernel is defined as:

k(x, x′) = ϕ(x)⊤ϕ(x′)

= 1
p

∑
ω∈Ω

cos
(
ω⊤x

)
cos
(
ω⊤x′

)
+ sin

(
ω⊤x

)
sin
(
ω⊤x′

) (A.24)

Let (x1, . . . xM ) uniformly distributed on [0, 2π]d, and let K be the empirical kernel matrix.
We want to lower bound the smallest eigenvalue of K, and we use the following lemma

Lemma A.1. Theorem 2.1 from (WS80). Let A be a M × M complex matrix with real
eigenvalues. Let m = tr(A)/M and s2 = tr(A2)/M −m2. We have that

m− s
√
M − 1 ≤ λmin(A) ≤ m− s√

M − 1
(A.25)
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For the kernel matrix, m = 1 and s2 = 1 + 1
M

∑M
j ̸=i k(xi, xi)2 − 1 = 1

M

∑M
j ̸=i k(xi, xj)2.

We prove the following result:

Lemma A.2. The expectation of s2 is given by

• E[s2] = M(M − 1)
2Mp

= (M − 1)
2p

Furthermore, there exists a constant C such that

• V[s2] ≤ C

p

Proof. With the use of the lemma A.3, we have that

E[s2] = M(M − 1)
M

E(k(x, x′)2) = M − 1
2p (A.26)

E[s4] = E
[

1
M2

( M∑
j ̸=i

k(xi, xj)2
)2]

= 1
M2E

[
2

M∑
j ̸=i

k(xi, xj)4 +
M∑

j ̸=i ̸=k ̸=l=1
k(xi, xj)2k(xk, xl)2

]
(A.27)

≤ C ′

p

M(M − 1)
M2 + M(M − 1)(M − 2)(M − 3)

M2
(M − 1)2

4p2 (A.28)

V[s2] ≤ C ′

p

M(M − 1)
M2 + M(M − 1)(M − 2)(M − 3)

M2
1

4p2 −
(M − 1)2

4p2 (A.29)

≤ C ′

p

M(M − 1)
M2 + 1

4p2 ((M − 2)(M − 3)− (M − 1)2) (A.30)

≤ C

p
(A.31)

Now we prove the following inequality

P(λmin(K) > 1
2) ≥ 1− C

p

4(M − 1)2p2

(p− 8(M − 1)2)2 = 1− C

p

4(M − 1)2

1− 8 (M−1)2

p2

(A.32)

Proof. With Chebyshev’s inequality

P(|s2 − 2(M − 1)
p

| > ϵ) ≤ V[s2]
ϵ2

(A.33)

P(s2 ≥ 1
4(M − 1)) ≤ P(s2 − 2(M − 1)

p
≥ 1

4(M − 1) −
2(M − 1)

p
) (A.34)

≤ P(s2 − (p− 8(M − 1)2)
4(M − 1)p ) (A.35)

≤ C

p

4(M − 1)2p2

(p− 8(M − 1)2)2 (A.36)
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With lemma A.1,

P(λmin(K) > 1
2) ≥ P(s ≤ 1

2
√
M − 1

) = P(s2 ≤ 1
4(M − 1)) (A.37)

≥ 1− P(s2 ≥ 1
4(M − 1)) (A.38)

≥ 1− C

p

4(M − 1)2p2

(p− 8(M − 1)2)2 (A.39)

We just need to prove the following lemma

Lemma A.3. Let xi, xj independent and uniformly distributed on [0, 2π]d. There exists a
constant C ′ > 0 such that

• E[k(xi, xj)2] = 1
2p

• E[k(xi, xj)4] ≤ C ′

p

E[k(xi, xj)2] = 1
p2E[

∑
ω

(cos
(
ω⊤xi

)
cos
(
ω⊤xj

)
+ sin

(
ω⊤xi

)
sin
(
ω⊤xj

)
)2] (A.40)

+ 1
p2E[

∑
ω ̸=ω′

(cos
(
ω⊤xi

)
cos
(
ω⊤xj

)
+ sin

(
ω⊤xi

)
sin
(
ω⊤xj

)
)× (A.41)

(cos
(
ω′⊤xi

)
cos
(
ω′⊤xj

)
+ sin

(
ω′⊤xi

)
sin
(
ω′⊤xj

)
)] (A.42)

We have that E[cos2(ω⊤xi) cos2(ω⊤xj)] = 1
4 and E[sin2(ω⊤xi) sin2(ω⊤xj)] = 1

4 .
Furthermore E[cos

(
ω⊤xi

)
cos
(
ω⊤xj

)
sin
(
ω⊤xi

)
sin
(
ω⊤xj

)
] = 0.

Therefore,
E[k(xi, xj)2] = 1

2p (A.43)

We introduce some simplifying notations that will be used for the rest of the calculation.∑
ω∈Ω

cicj + sisj =
∑
ω∈Ω

cos
(
ω⊤xi

)
cos
(
ω⊤xj

)
+ sin

(
ω⊤xi

)
sin
(
ω⊤xj

)
(A.44)

∑
ω1,ω2∈Ω

(c(1)
i c

(1)
j + s

(1)
i s

(1)
j )(c(2)

i c
(2)
j + s

(2)
i s

(2)
j ) (A.45)

=
∑

ω1,ω2∈Ω

(
cos
(
ω⊤

1 xi

)
cos
(
ω⊤

1 xj

)
+ sin

(
ω⊤

1 xi

)
sin
(
ω⊤

1 xj

)
)
)(

cos
(
ω⊤

2 xi

)
cos
(
ω⊤

2 xj

)
+ sin

(
ω⊤

2 xi

)
sin
(
ω⊤

2 xj

))
(A.46)
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By applying the multinomial formulas, we have that

k(xi, xj)4 = 1
p4

( ∑
ω∈Ω

cicj + sisj

)4
(A.47)

= 1
p4

∑
ω∈Ω

(cicj + sisj)4 (A.48)

+ 4
p4

∑
ω1,ω2∈Ω,ω1 ̸=ω2

(c(1)
i c

(1)
j + s

(1)
i s

(1)
j )3(c(2)

i c
(2)
j + s

(2)
i s

(2)
j ) (A.49)

+ 6
p4

∑
ω1,ω2∈Ω,ω1 ̸=ω2

(c(1)
i c

(1)
j + s

(1)
i s

(1)
j )2(c(2)

i c
(2)
j + s

(2)
i s

(2)
j )2 (A.50)

+ 4
p4

∑
ω1,ω2,ω3∈Ω,ω1 ̸=ω2 ̸=ω3

(c(1)
i c

(1)
j + s

(1)
i s

(1)
j )2(c(2)

i c
(2)
j + s

(2)
i s

(2)
j )(c(3)

i c
(3)
j + s

(3)
i s

(3)
j ) (A.51)

+ 24
p4

∑
ω1,ω2,ω3,ω4∈Ω,ω1 ̸=ω2 ̸=ω3 ̸=ω4

(c(1)
i c

(1)
j + s

(1)
i s

(1)
j )(c(2)

i c
(2)
j + s

(2)
i s

(2)
j )(c(3)

i c
(3)
j + s

(3)
i s

(3)
j )(c(4)

i c
(4)
j + s

(4)
i s

(4)
j )

(A.52)

Our goal is to show that there exists a constant C such that E[k(xi, xj)4] ≤ C
p . All the sums

except the last one have at most p3 terms, and we can bound each one of them using the fact
that |cicj + sisj | ≤ 2. We need to look at the last sum.

E[(c(1)
i c

(1)
j + s

(1)
i s

(1)
j )(c(2)

i c
(2)
j + s

(2)
i s

(2)
j )(c(3)

i c
(3)
j + s

(3)
i s

(3)
j )(c(4)

i c
(4)
j + s

(4)
i s

(4)
j )] (A.53)

=
∑

f1,f2,f3,f4∈{cos,sin}
E[f1(ω⊤

1 xi)f2(ω⊤
2 xi)f3(ω⊤

3 xi)f4(ω⊤
4 xi)f1(ω⊤

1 xj)f2(ω⊤
2 xj)f3(ω⊤

3 xj)f4(ω⊤
4 xj)]

(A.54)

=
∑

f1,f2,f3,f4∈{cos,sin}
E[f1(ω⊤

1 xi)f2(ω⊤
2 xi)f3(ω⊤

3 xi)f4(ω⊤
4 xi)]2 (A.55)
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cos
(
ω⊤

1 xi

)
cos
(
ω⊤

2 xi

)
cos
(
ω⊤

3 xi

)
cos
(
ω⊤

4 xi

)
= 1

8[ cos
(
(ω1 + ω2 + ω3 + ω4)⊤xi

)
+ cos

(
(ω1 + ω2 − ω3 − ω4)⊤xi

)
+ cos

(
(ω1 + ω2 + ω3 − ω4)⊤xi

)
+ cos

(
(ω1 + ω2 − ω3 + ω4)⊤xi

)
+ cos

(
(ω1 − ω2 + ω3 + ω4)⊤xi

)
+ cos

(
(ω1 − ω2 − ω3 − ω4)⊤xi

)
+ cos

(
(ω1 − ω2 + ω3 − ω4)⊤xi

)
+ cos

(
(ω1 − ω2 − ω3 + ω4)⊤xi

)
]

cos
(
ω⊤

1 xi

)
cos
(
ω⊤

2 xi

)
cos
(
ω⊤

3 xi

)
sin
(
ω⊤

4 xi

)
= 1

8[ sin
(
(ω1 + ω2 + ω3 + ω4)⊤xi

)
− sin

(
(ω1 + ω2 − ω3 − ω4)⊤xi

)
− sin

(
(ω1 + ω2 + ω3 − ω4)⊤xi

)
+ sin

(
(ω1 + ω2 − ω3 + ω4)⊤xi

)
+ sin

(
(ω1 − ω2 + ω3 + ω4)⊤xi

)
− sin

(
(ω1 − ω2 − ω3 − ω4)⊤xi

)
− sin

(
(ω1 − ω2 + ω3 − ω4)⊤xi

)
+ sin

(
(ω1 − ω2 − ω3 + ω4)⊤xi

)
]

All terms in sin
(
ω⊤xi

)
for all ω and all terms in cos

(
ω⊤xi

)
for all ω ̸= 0 have a zero expectation,

therefore the only contribution comes from the terms such that there is an even number of sin
among {f1, f2, f3, f4}.

Given ω1, ω2, ω3, there is only a constant number of ω4 such that there is a zero element in
the set {ω1 + ϵω2 + ϵ′ω3 + ϵ′′ω4, ϵ, ϵ

′, ϵ′′ ∈ {+1,−1}}.
Therefore∑

ω4∈Ω\{ω1,ω2,ω3}

∑
f1,f2,f3,f4∈{cos,sin}

E[f1(ω⊤
1 xi)f2(ω⊤

2 xi)f3(ω⊤
3 xi)f4(ω⊤

4 xi)]2 ≤ C (A.56)

24
|Ω|4

∑
ω1,ω2,ω3,ω4∈Ω,ω1 ̸=ω2 ̸=ω3 ̸=ω4

(c(1)
i c

(1)
j + s

(1)
i s

(1)
j )(c(2)

i c
(2)
j + s

(2)
i s

(2)
j )(c(3)

i c
(3)
j + s

(3)
i s

(3)
j )(c(4)

i c
(4)
j + s

(4)
i s

(4)
j )

(A.57)

≤ 24C|Ω|3

|Ω|4 ≤ C ′

|Ω| (A.58)
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where C is a constant

A.5 Computation of Weingarten sums

A.5.1 Diagonal observable

In order to evaluate the norm of the weight vector, we need to be able to bound expressions
coming from Haar unitaries.

We prove the following result:

Theorem A.3. Let U be a Haar random unitary and O be a Pauli string composed only of I
and Z, different from identity. Let

u =
q∑

i=1
(UOU †)mini , ∀i,mi ̸= ni and ∀i ̸= j, (mi, ni) ̸= (mj , nj) (A.59)

Then we have
EU∼Haar(|u|2) = qN

N2 − 1 (A.60)

Proof. We have

|u|2 =
q∑

i,j

(UOU †)mini(UOU †)∗
mjnj

=
q∑

i,j=1

( N∑
k=1

umikOku
∗
nik

) ( N∑
k=1

umjkOku
∗
njk

)∗ (A.61)

=
q∑

i,j=1

N∑
k,ℓ=1

umikunjℓu
∗
niku

∗
mjℓ OkOℓ (A.62)

(A.63)

With the Weingarten calculus we have (CŚ06; CSV+21):

E(umikunjℓu
∗
niku

∗
mjℓ) = 1

N2 − 1[δminiδmjnjδkkδℓℓ + δmimjδninjδ
2
kℓ] (A.64)

− 1
N(N2 − 1) [δminiδmjnjδ

2
kl + δmimjδninjδkkδℓℓ] (A.65)

N∑
k,ℓ=1

OkOl = 0 therefore we can eliminate all the terms in δkkδℓℓ. Furthermore ∀i δmini = 0

and we have

E(|u|2) = 1
N2 − 1

q∑
i,j=1

N∑
k=1

δmimjδninjO
2
k = N

N2 − 1

q∑
i,j=1

δmimjδninj (A.66)

We also made the hypothesis that ∀i ̸= j, (mi, ni) ̸= (mj , nj) therefore δmimjδninj = 1 iif
mi = mj and ni = nj iif i = j. Finally we have

E(|u|2) = N

N2 − 1

q∑
i=1

δmimiδnini = qN

N2 − 1 (A.67)
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We will prove the following result

Theorem A.4. Let u =
∑q

i=1(UOU †)mini , u
′ =

∑q′

i=1(UOU †)m′
in

′
i
. If U is sampled from a

4-design then
EU∼Haar[|u|4] = 2q2W4(N)N2 +O( q

N3 ) (A.68)

If ∀i1, there exists i2 such that (ni2,mi2) = (mi1, ni1), then

EU∼Haar[|u|4] = 3q2W4(N)N2 +O( q

N3 ) (A.69)

EU∼Haar[|u|2|u′|2] = qq′W4(N)N2 +O( qq
′

N3 ) (A.70)

where we note

W4(N) = N4 − 8N2 + 6
N8 − 14N6 + 49N4 − 36N2 , W2(N) = − 1

N5 − 14N3 + 9N (A.71)

Proof. We have

|u|4 =
∑

i1,i2,i3,i4
(UOU †)mi1,ni1(UOU †)∗

mi2,ni2(UOU †)mi3,ni3(UOU †)∗
mi4,ni4 (A.72)

=
∑

i1,i2,i3,i4

∑
k1,k2,k3,k4

umi1,k1Ok1u
∗
ni1,k1u

∗
mi2,k2Ok2uni2,k2umi3,k3Ok3u

∗
ni3,k3u

∗
mi4,sOk4uni4,k4

(A.73)

=
∑

i1,i2,i3,i4

∑
k1,k2,k3,k4

umi1,k1uni2,k2umi3,k3uni4,su
∗
ni1,k1u

∗
mi2,k2u

∗
ni3,k3u

∗
mi4,k4Ok1Ok2Ok3Ok4

(A.74)

By using the Weingarten calculus (CŚ06), we have that

E(umi1,k1uni2,k2umi3,k3uni4,su
∗
ni1,k1u

∗
mi2,k2u

∗
ni3,k3u

∗
mi4,k4) (A.75)

=
∑

σ,τ∈S4

δmi1,σ(mi1) · δmi3,σ(mi3)δni2,σ(ni2)δni4,σ(ni4)δk1,kτ(1)δk2,kτ(2)δk3,kτ(3)δk4,kτ(4)Wg(τσ−1, N)

(A.76)

where Wg is the Weingarten function and S4 is the set of permutations on {1, 2, 3, 4}.

E[|u|4] =
∑

i1,i2,i3,i4

∑
k1,k2,k3,k4

∑
σ,τ∈S4

Ok1Ok2Ok3Ok4 (A.77)

δmi1,σ(mi1)δmi3,σ(mi3)δni2,σ(ni2)δni4,σ(ni4)δk1,kτ(1)δk2,kτ(2)δk3,kτ(3)δk4,kτ(4)Wg(τσ−1, N)
(A.78)

=
∑

i1,i2,i3,i4

∑
σ∈S4

δmi1,σ(mi1)δmi3,σ(mi3)δni2,σ(ni2)δni4,σ(ni4) (A.79)

∑
τ∈S4

Wg(τσ−1, N)
∑

k1,k2,k3,k4

δk1,kτ(1)δk2,kτ(2)δk3,kτ(3)δk4,kτ(4)Ok1Ok2Ok3Ok4 (A.80)

=
∑

i1,i2,i3,i4

∑
σ,τ∈S4

δmi1,σ(mi1)δmi3,σ(mi3)δni2,σ(ni2)δni4,σ(ni4)A(τ)Wg(τσ−1, N) (A.81)

(A.82)
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where we note A(τ) =
∑

k1,k2,k3,k4

δk1,kτ(1)δk2,kτ(2)δk3,kτ(3)δk4,kτ(4)Ok1Ok2Ok3Ok4 .

Let us look at the term A(τ) for a given permutation τ . We can verify that only for
the permutations included in table A.1 the sum will be non zero. For instance, A(id) =∑

k1,k2,k3,k4 Ok1Ok2Ok3Ok4 = Tr(O)4 = 0, andA(τ1) =
∑

k1,k2,k3,k4 δk1,k2δk2,k1δk3,k4δk4,k3Ok1Ok2Ok3Ok4 =∑
k1,k3 O

2
k1
O2

k3
= N2.

So we have

E[|u|4] =
∑

σ∈S4

∑
i1,i2,i3,i4

δmi1,σ(mi1)δmi3,σ(mi3)δni2,σ(ni2)δni4,σ(ni4)
∑

τ∈{τ1,τ2,τ3}
Wg(τσ−1, N)N2

(A.83)

Let us look at the term
∑

i1,i2,i3,i4 δmi1,σ(mi1)δmi3,σ(mi3)δni2,σ(ni2)δni4,σ(ni4) for a given per-
mutation σ.

Since we assumed all elements (UOU †)mini are off-diagonal, we have that δmi,ni = 0,
and it restricts the permutations potentially giving non-zero terms. These permutations are
enumerated in table A.2.

For each permutation σ we compute the dominant term in
∑

τ A(τ)Wg(τσ−1, N). These
numbers are enumerated in table A.3. We compute the number of non zero terms in∑

i1,i2,i3,i4 δmi1,σ(mi1)δmi3,σ(mi3)δni2,σ(ni2)δni4,σ(ni4). These numbers are enumerated in table
A.2

From (Fuk99), if σ ̸= id,Wg(σ,N) = O( 1
N5 ) andWg(id, N) = N4 − 8N2 + 6

N8 − 14N6 + 49N4 − 36N2 =

O( 1
N4 ). We can verify that only for σ1, σ4, σ7 there exist τ ∈ τ1, τ2, τ3 such that τσ−1 = id,

and τ is unique.
By combining the numbers in tables A.2 and A.4 we have the final result.

k1 σO(k2) k3 σO(k4) 1 2 3 4 A(τ)
τ1 k2 σO(k1) k4 σO(k3) 2 1 4 3 N2

τ2 k4 σO(k3) k2 σO(k1) 4 3 2 1 N2

τ3 σO(k3) k4 σO(k1) k2 3 4 1 2 N2

τ4 k2 k4 σO(k1) σO(k3) 2 4 1 3 N
τ5 k2 σO(k3) k4 σO(k1) 2 3 4 1 N
τ6 k4 σO(k1) k2 σO(k3) 4 1 2 3 N
τ7 k4 σO(k3) σO(k1) k2 4 3 1 2 N
τ8 σO(k3) k4 k2 σO(k1) 3 4 2 1 N
τ9 σO(k3) k1 k4 k2 3 1 4 2 N

Table A.1: τ permutations that give non zero values for non diagonal O. For diagonal
O, consider σO = id.
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mi1 ni2 mi3 ni4 Number of non-zero terms
σ1 mi2 ni1 mi4 ni3 q2

σ2 mi2 ni3 mi4 ni1 q +O(q)
σ3 mi2 mi4 ni1 ni3 O(q)
σ4 mi4 ni3 mi2 ni1 q2

σ5 mi4 ni1 mi2 ni3 q +O(q)
σ6 mi4 ni3 ni1 mi2 O(q)
σ7 ni3 mi4 ni1 mi2 0 or q2

Table A.2: σ permutations to be considered

Let us now look at

u1 =
p1∑

i=1
(UOU †)

m
(1)
i n

(1)
i

, ∀i,m(1)
i ̸= n

(1)
i and ∀i ̸= j, (m(1)

i , n
(1)
i ) ̸= (m(1)

j , n
(1)
j ) (A.84)

u2 =
p2∑

i=1
(UOU †)

m
(2)
i n

(2)
i

, ∀i,m(2)
i ̸= n

(2)
i and ∀i ̸= j, (m(2)

i , n
(2)
i ) ̸= (m(2)

j , n
(1)
j ) (A.85)

|u1|2|u2|2 =
( p1∑

i,j=1

N∑
k,ℓ=1

u
m

(1)
i k

u
n

(1)
j ℓ
u∗

n
(1)
i k

u∗
m

(1)
j ℓ

OkOℓ

)( p2∑
i,j=1

N∑
k,ℓ=1

u
m

(2)
i k

u
n

(2)
j ℓ
u∗

n
(2)
i k

u∗
m

(2)
j ℓ

OkOℓ

)
(A.86)

=
∑

i1,i2,i3,i4

∑
k1,k2,k3,k4

u
m

(1)
i1 ,k1

u
n

(1)
i2 ,k2

u
m

(2)
i3 ,k3

u
n

(2)
i4 ,s

u∗
n

(1)
i1 ,k1

u∗
m

(1)
i2 ,k2

u∗
n

(2)
i3 ,k3

u∗
m

(2)
i4 ,k4

Ok1Ok2Ok3Ok4

(A.87)

(A.88)

E[|u|4] = 2q2(W4(N)N2 + 4NW2(N)) + Θ(q)(2W2(N)N2 + NW4(N)) = 2q2W4(N)N2 +
O( q

N3 )
We do the same reasoning as above, but this time the number of non zero term for the

permutations σ are given table A.3.

m
(1)
i1

n
(1)
i2

m
(2)
i3

n
(2)
i4

Number of non-zero terms
σ1 m

(1)
i2

n
(1)
i1

m
(2)
i4

n
(2)
i3

q1q2

σ2 m
(1)
i2

n
(2)
i3

m
(2)
i4

n
(1)
i1

O(q1q2)
σ3 m

(1)
i2

m
(2)
i4

n
(1)
i1

n
(2)
i3

O(q1q2)
σ4 m

(2)
i4

n
(2)
i3

m
(1)
i2

n
(1)
i1

0
σ5 m

(2)
i4

n
(1)
i1

m
(1)
i2

n
(2)
i3

O(q1q2)
σ6 m

(2)
i4

n
(2)
i3

n
(1)
i1

m
(1)
i2

O(q1q2)
σ7 n

(2)
i3

m
(2)
i4

n
(1)
i1

m
(1)
i2

0

Table A.3: σ permutations to be considered in the cross terms
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σ n(σ,W4, N
2) n(σ,W2, N

2) n(σ,W4, N) n(σ,W2, N)
∑

τ A(τ)Wg(τσ−1, N)
σ1 1 0 0 4 N2W4(N) + 4NW2(N)
σ2 0 2 1 0 NW4(N) + 2N2W2(N)
σ3 0 2 1 0 NW4(N) + 2N2W2(N)
σ4 1 0 0 4 N2W4(N) + 4NW2(N)
σ5 0 2 1 0 NW4(N) + 2N2W2(N)
σ6 0 2 1 0 NW4(N) + 2N2W2(N)
σ7 1 0 0 4 N2W4(N) + 4NW2(N)

Table A.4: σ permutations to be considered in the cross terms. For each permutation
σ, we compute the dominant factors in the term

∑
τ A(τ)Wg(τσ−1, N). To do so,

for each σ, we compute the number of permutations τ such that A(τ)Wg(τσ−1, N)
is equal to N2W4(N), NW4(N), N2W2(N), NW2(N). We use a computer to find
the numbers in the first four columns.

Theorem A.5. Let U be drawn from a 2 design. We have that

E[||β||2] = p

N + 1 (A.89)

Proof.
E[||β||2] = p

N2E[|u0|2] + 2 p

N2

∑
ω∈Ω∗

E[|uω|2] = p

N2
N

N2 − 1[R(0) + 2
∑

ω∈Ω∗
R(ω)] (A.90)

= p

N

N(N − 1)
N2 − 1 = p

N + 1 (A.91)

Theorem A.6. Let U be drawn from a 4 design. We have that

V[||β||2] = Θ( p
2

N6

∑
ω∈Ω

R(ω)2 + p2

N4 ) (A.92)

Proof. We note
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E[||β||4] =
( p

N2 (|u0|2 + 2
∑

ω∈Ω∗
|uω|2)

)2
(A.93)

= p2

N4

(
E[|u0|4|+ 2

∑
ω∈Ω∗

E[|uω|2|u0|2] + 4
∑

ω∈Ω∗
E[|uω|4] + 4

∑
ω ̸=ω′∈Ω∗

E[|uω|2|uω′ |2]
)

(A.94)

= p2

N4

([
3R(0)2 + 4

∑
ω∈Ω∗

2R(ω)2]N2W4(N) +O
[
R(0) + 2

∑
ω∈Ω∗

R(ω)
]
N2W2(N)

(A.95)

+
[
2R(0)

∑
ω∈Ω∗

R(ω) + 4
∑

ω ̸=ω′∈Ω∗

R(ω)R(ω′)
]
N2W4(N) (A.96)

+O
[
2R(0)

∑
ω∈Ω∗

R(ω) + 4
∑

ω ̸=ω′∈Ω∗

R(ω)R(ω′)
]
N2W2(N)

)
(A.97)

= p2

N2

([
3R(0)2 + 8

∑
ω∈Ω∗

R(ω)2 + 2R(0)
∑

ω∈Ω∗
R(ω) + 4

∑
ω ̸=ω′∈Ω∗

R(ω)R(ω′)
]
W4(N)

(A.98)

+O
[
R(0) + 2

∑
ω∈Ω∗

R(ω) + 2R(0)
∑

ω∈Ω∗
R(ω) + 4

∑
ω ̸=ω′∈Ω∗

R(ω)R(ω′)
]
W2(N)

)
(A.99)

= p2

N2

([
(R(0) + 2

∑
ω∈Ω∗

R(ω))2 + 2R(0)2 + 4
∑

ω∈Ω∗
R(ω)2 − 2R(0)

∑
ω∈Ω∗

R(ω)]W4(N)

(A.100)

+O
[
R(0) + 2

∑
ω∈Ω∗

R(ω)(1 +R(0) + 2
∑

ω∈Ω∗
R(ω))

]
W2(N)

)
(A.101)

= p2

N2

([
N2(N − 1)2 + 2R(0)2 + 4

∑
ω∈Ω∗

R(ω)2 − 2R(0)
∑

ω∈Ω∗
R(ω)]W4(N) (A.102)

+O
[
R(0) +N2]W2(N)

)
(A.103)

E[||β||4]− E[||β||2]2 = p2

N2

([
N2(N − 1)2 + 2R(0)2 + 4

∑
ω∈Ω∗

R(ω)2 − 2R(0)
∑

ω∈Ω∗
R(ω)]W4(N)

(A.104)

+O
[
R(0) +N2]W2(N)

)
− p2

(N + 1)2 (A.105)

120



APPENDIX A. APPENDIX

p2

N2N
2(N − 1)2W4(N)− p2

(N + 1)2 = p2(N − 1)2(N4 − 8N2 + 6)
N8 − 14N6 + 49N4 − 36N2 −

p2

(N + 1)2 (A.106)

= p2(N − 1)2(N4 − 8N2 + 6)
N2(N2 − 1)(N4 − 13N2 + 36)) −

p2

(N + 1)2 (A.107)

= p2(N − 1)(N4 − 8N2 + 6)
N2(N + 1)(N4 − 13N2 + 36) −

p2

(N + 1)2 (A.108)

= p2(N − 1)(N + 1)(N4 − 8N2 + 6)− p2N2(N4 − 13N2 + 36))
N2(N + 1)2(N4 − 13N2 + 36))

(A.109)

= 4p2N4 +O(p2N2)
(N + 1)2N2(N4 − 13N2 + 36)) (A.110)

= Θ( p
2

N4 ) (A.111)

W4(N) = Θ( 1
N4 ) (A.112)

N2W2(N) = O( 1
N3 ) (A.113)

E[||β||4]− E[||β||2]2 = Θ( p
2

N6

∑
ω∈Ω

R(ω)2) + Θ( p
2

N4 ) (A.114)

A.5.2 Non diagonal observable

We do the same computation as above, but we no longer assume that O ∈ {I, Z}⊗n. We indeed
assume that O is a general Pauli observable. Then there exists a permutation σO ̸= id such
that for each row k of O, Ok,σO(k) ̸= 0. Because O is hermitian we have σ2

O = id And we have

(UOU †)ij =
n∑

k=1
uikOk,σO(k)u

∗
j,σO(k) (A.115)

and

|(UOU †)ij |2 =
( N∑

k=1
uikOk,σO(k)u

∗
j,σO(k)

) ( N∑
k=1

uikOk,σO(k)u
∗
j,σO(k)

)∗
(A.116)

=
N∑

k,ℓ=1
uikOk,σO(k)u

∗
j,σO(k) u∗

iℓO
∗
ℓ,σO(ℓ)uj,σO(ℓ) (A.117)

=
N∑

k,ℓ=1
uikuj,σO(ℓ)u

∗
j,σO(k)u

∗
iℓOk,σO(k)O

∗
ℓ,σO(ℓ) (A.118)

More precisely, we want to evaluate E[|u|2] where

u =
q∑

i=1
(UOU †)mini , ∀i,mi ̸= ni and ∀i ̸= j, (mi, ni) ̸= (mj , nj) (A.119)
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We have

|u|2 =
q∑

i,j

(UOU †)mini(UOU †)∗
mjnj

(A.120)

=
q∑

i,j=1

( N∑
k=1

umikOk,σO(k)u
∗
ni,σO(k)

) ( N∑
k=1

umjkOk,σO(k)u
∗
njσO(k)

)∗
(A.121)

=
q∑

i,j=1

N∑
k,ℓ=1

umikunjσO(ℓ)u
∗
niσO(k)u

∗
mjℓ Ok,σO(k)O

∗
ℓ,σO(ℓ) (A.122)

E(umikunjσO(ℓ)u
∗
niσO(k)u

∗
mjℓ) = 1

N2 − 1[δminiδmjnjδk,σO(k)δℓ,σO(l) + δmimjδninjδklδσO(l)σO(k)]

(A.123)

− 1
N(N2 − 1) [δminiδmjnjδklδσO(l)σO(k) + δmimjδninjδk,σO(k)δℓ,σO(l)]

(A.124)

We have that

∀k, l, δk,σO(k)δℓ,σO(l) = 0,
N∑

k,ℓ=1
δklδσO(l)σO(k)Ok,σO(k)Oℓ,σO(ℓ) =

N∑
k=1

Ok,σO(k)O
∗
k,σO(k) = N

(A.125)

E[|u|2] = 1
N2 − 1

q∑
i,j=1

δmimjδninjN −
1

N(N2 − 1)

q∑
i,j=1

δminiδmjnjN (A.126)

= qN

N2 − 1 (A.127)

We note

u1 =
q∑

i=1
(UOU †)

m
(1)
i n

(1)
i

(A.128)

u2 =
q∑

i=1
(UOU †)

m
(2)
i n

(2)
i

(A.129)

(A.130)

We want to compute E[u1u
∗
2] and E[u1u2].
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We have

u1u
∗
2 =

q1∑
i=1

q2∑
j=1

(UOU †)
m

(1)
i n

(1)
i

(UOU †)∗
m

(2)
j n

(2)
j

(A.131)

=
q1∑

i=1

q2∑
j=1

( N∑
k=1

u
m

(1)
i k

Ok,σO(k)u
∗
n

(1)
i ,σO(k)

) ( N∑
k=1

u
m

(2)
j k

Ok,σO(k)u
∗
n

(2)
j σO(k)

)∗
(A.132)

=
q1∑

i=1

q2∑
j=1

N∑
k,ℓ=1

u
m

(1)
i k

u
n

(2)
j σO(ℓ)u

∗
n

(1)
i σO(k)

u∗
m

(2)
j ℓ

Ok,σO(k)O
∗
ℓ,σO(ℓ)

(A.133)

E(u
m

(1)
i k

u
n

(2)
j σO(ℓ)u

∗
n

(1)
i σO(k)

u∗
m

(2)
j ℓ

) = 1
N2 − 1[δ

m
(1)
i n

(1)
i

δ
m

(2)
j n

(2)
j

δk,σO(k)δℓ,σO(l) + δ
m

(1)
i m

(2)
j

δ
n

(1)
i n

(2)
j

δklδσO(l)σO(k)]

(A.134)

− 1
N(N2 − 1) [δ

m
(1)
i n

(1)
i

δ
m

(2)
j n

(2)
j

δklδσO(l)σO(k) + δ
m

(1)
i m

(2)
j

δ
n

(1)
i n

(2)
j

δk,σO(k)δℓ,σO(l)]

(A.135)

u1u2 =
q1∑

i=1

q2∑
j=1

( N∑
k=1

u
m

(1)
i k

Ok,σO(k)u
∗
n

(1)
i ,σO(k)

) ( N∑
k=1

u
m

(2)
j k

Ok,σO(k)u
∗
n

(2)
j σO(k)

)
(A.136)

=
q1∑

i=1

q2∑
j=1

N∑
k,ℓ=1

u
m

(1)
i k

u
m

(2)
j σO(ℓ)u

∗
n

(1)
i σO(k)

u∗
n

(2)
j ℓ

Ok,σO(k)O
∗
ℓ,σO(ℓ)

(A.137)
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j σO(ℓ)u

∗
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i σO(k)

u∗
m

(2)
j ℓ

) = 1
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m
(1)
i n

(1)
i

δ
m

(2)
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(2)
j
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(2)
j

δ
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(1)
i m

(2)
j

δklδσO(l)σO(k)]

(A.138)

− 1
N(N2 − 1) [δ

m
(1)
i n

(1)
i

δ
m

(2)
j n

(2)
j

δklδσO(l)σO(k) + δ
m

(1)
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(2)
j

δ
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(1)
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(2)
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(A.139)

E[u1u
∗
2] = 1
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q1∑
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q2∑
j=1

δ
m

(1)
i m

(2)
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δ
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(A.140)

E[u1u2] = 1
N2 − 1

q1∑
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q2∑
j=1

δ
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= 0 (A.142)
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|u|4 =
∑

i1,i2,i3,i4
(UOU †)mi1,ni1(UOU †)∗

mi2,ni2(UOU †)mi3,ni3(UOU †)∗
mi4,ni4 (A.143)

=
∑

i1,i2,i3,i4

∑
k1,k2,k3,k4

(A.144)

umi1,k1Ok1,σO(k1)u
∗
ni1,σO(k1)u

∗
mi2,k2O

∗
k2,σO(k2)uni2,σO(k2)umi3,k3Ok3,σO(k3)u

∗
ni3,σO(k3)u

∗
mi4,k4Ok4,σO(k4)u

∗
ni4,σO(k4)

(A.145)

=
∑

i1,i2,i3,i4

∑
k1,k2,k3,k4

(A.146)

umi1,k1uni2,σO(k2)umi3,k3uni4,σO(k4)u
∗
ni1,σO(k1)u

∗
mi2,k2u

∗
ni3,σO(k3)u

∗
mi4,k4Ok1,σO(k1)O

∗
k2,σO(k2)Ok3,σO(k3)O

∗
k4,σO(k4)

(A.147)

E[|u|4] =
∑

i1,i2,i3,i4

∑
σ,τ∈S4

δmi1,σ(mi1)δmi3,σ(mi3)δni2,σ(ni2)δni4,σ(ni4)A(τ)Wg(τσ−1, N) (A.148)

(A.149)

whereA(τ) =
∑

k1,k2,k3,k4

δk1,τ(k1)δσO(k2),τ(σO(k2))δk3,τ(k3)δσO(k4),τ(σO(k4))Ok1,σO(k1)O
∗
k2,σO(k2)Ok3,σO(k3)O

∗
k4,σO(k4)

We then do the same reasoning as with O diagonal.

A.6 A Fourier model with random coefficients

We consider the following function f : Rd −→ R

fβ(x) = 1
√
p

∑
ω∈[−L,L]d

(βω,cos cos
(
ω⊤x

)
+ βω,sin sin

(
ω⊤x

)
) (A.150)

with p = (2L + 1)d, and βω are iid uniform random variables in the interval [−σ, σ] with
σ = Θ(1/poly(d, L)). Unless needed, we will simplify the notation with f = fβ.

Theorem A.7. We have the following properties:

•
∣∣||β||2 − pσ2∣∣ ≤ σ√2p log(1/δ) with probability at least 1− δ

• Vx[f(x)] ≥ σ2 − σ√
p

√
2 log(1/δ) with probability at least 1− δ

• |f(x)| ≤ 1 ∀x ∈ Rd with high probability

Proof. We first remark that for all ω, E[β2
ω,cos] = E[β2

ω,sin] = σ2/2.
The first item is proven by applying the Hoeffding inequality to the random variable

||β||2 =
∑
ω

β2
ω,cos + β2

ω,sin since every element of the sum is iid, and E[||β||2] = pσ2.

To prove the second item, we remind that for all ω ≠ 0, Ex[cos
(
ω⊤x

)
] = Ex[cos

(
ω⊤x

)
] = 0

and Ex[cos
(
ω⊤x

)2
] = Ex[sin

(
ω⊤x

)2
] = 1/2, Ex[cos

(
ω⊤x

)
sin
(
ω⊤x

)
] = 0 and for all ω ̸= ω′,

Ex[cos
(
ω⊤x

)
sin
(
ω′⊤x

)
] = Ex[cos

(
ω⊤x

)
cos
(
ω′⊤x

)
] = Ex[sin

(
ω⊤x

)
sin
(
ω′⊤x

)
] = 0.
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Then we have E[f(x)] = 0 and E[f(x)2] = 1
p

∑
ω

β2
ω,cos + β2

ω,cos = ||β||
2

p
and we apply the

result of the first item.
We will now show that |f(x)| ≤ 1 on Rd.

First, we show that ∀x,P(|f(x)| ≤ ϵ) ≤ exp
(
− ϵ2

2σ2

)
. Let i0 ∈ [1, p] and

β′ = (βω1,cos, βω1,sin . . . β
′
ωi0 ,cos, βωi0 ,sin, . . . βωp).

|fβ(x)− fβ′(x)| = 1
√
p

∑
ω ̸=ωi0

(βω,cos cos
(
ω⊤x

)
+ βω,sin sin

(
ω⊤x

)
) +

β′
ωi0 ,cos
√
p

cos
(
ω⊤x

)
+
βωi0 ,sin
√
p

sin
(
ω⊤x

)
(A.151)

− 1
√
p

∑
ω ̸=ωi0

(βω,cos cos
(
ω⊤x

)
+ βω,sin sin

(
ω⊤x

)
)−

β′
ωi0 ,cos
√
p

cos
(
ω⊤x

)
−
βωi0 ,sin
√
p

sin
(
ω⊤x

)
(A.152)

= 1
√
p

cos
(
ω⊤x

)
|βωi0 ,cos − β′

ωi0 ,cos| (A.153)

≤ 2σ
√
p

(A.154)

The last inequality comes from |βωi0
− β′

ωi0
| ≤ 2σ and | cos

(
ω⊤x

)
| ≤ 1. The same result can be

obtain with β = (βω1,cos, βω1,sin . . . βωi0 ,cos, β
′
ωi0 ,sin, . . . βωp). Furthermore, for all x, Eβ [fβ(x)] = 0

From McDiarmid’s inequality

P(|fβ(x)| ≥ ϵ) ≤ exp

− 2ϵ2∑p
i=1

4σ2

p

 ≤ exp
(
− ϵ2

2σ2

)
(A.155)

Now we prove that |f | ≤ 1 on Rd. f is a periodic function, so we only need to prove that
f is bounded over the domain X = [0, 2π]d. We consider a covering net of radius r of X . Let
T = {r1, . . . rT } be the set of centers of the balls composing the covering net.

Let r = (r1, . . . rd) ∈ § and u = (u1, . . . ud) ∈ § such that ||r − u|| ≤ ϵ.
Then we have, by applying Taylor’s formulas

f(r + u)− f(r) =
d∑

i=1
∂if(r)ui +

∑
i,j

Rij(r + u)uiuj (A.156)

= u⊤∇f(r) + u⊤R(r + u)u (A.157)

with [R(r + u)]ij = Rij(r + u) = Sij

∫ 1

0
(1− t)∂ijf(r + tu)dt (A.158)
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where Sij = 1 if i = j and Sij = 2 if i ̸= j.

∂if(r) =
∑
ω∈Ω

ωi√
p

(−βω,cos sin
(
ω⊤r

)
+ βω,sin cos

(
ω⊤r

)
)

∂ijf(r + tu) = −
∑
ω∈Ω

ωiωj√
p

(βω,cos cos
(
ω⊤r

)
+ βω,sin sin

(
ω⊤r

)
)

∀a, b ∈ R
∫ 1

0
(1− t) cos(at+ b)dt = −1

a
sin(b)− 1

a2 cos(a+ b) + 1
a2 cos(b)

and
∫ 1

0
(1− t) sin(at+ b)dt = −1

a
cos(b)− 1

a2 sin(a+ b) + 1
a2 sin(b)

Rij(r + u) = −Sij

∑
ω∈Ω

ωiωj√
p

[
βω,cos

∫ 1

0
(1− t) cos

(
ω⊤(r + tu)

)
dt + βω,sin

∫ 1

0
(1− t) sin

(
ω⊤(r + tu)

)
dt

]

= −S
∑
ω∈Ω

ωiωj√
p

[
βω,cos

(
− 1
ω⊤u

sin
(
ω⊤r

)
− 1

(ω⊤u)2 cos
(
ω⊤u+ ω⊤r

)
+ 1

(ω⊤u)2 cos
(
ω⊤r

))
+

βω,sin
(
− 1
ω⊤u

cos
(
ω⊤r

)
− 1

(ω⊤u)2 sin
(
ω⊤u+ ω⊤r

)
+ 1

(ω⊤u)2 sin
(
ω⊤r

))]
= −Sij

∑
ω∈Ω

ωiωj√
p
βω,cos(cos

(
ω⊤r

)
+ cu) + βω,sin(sin

(
ω⊤r

)
+ su)

= A(r)ij +B(r)ijc
′
u

A(r)ij = −Sij

∑
ω∈Ω

ωiωj√
p
βω,cos cos

(
ω⊤r

)
+ βω,sin sin

(
ω⊤r

)
B(r)ij = −Sij

∑
ω∈Ω

ωiωj√
p
βω,cos + βω,sin

with cu, su, c
′
u = O(|ω⊤u|), ie there exist a constant C such that ∀u, cu, su, c

′
u ≤ C|ω⊤u|.

cu, su, c
′
u are obtained by applying Taylor formulas to sin and cos.

Then

|f(r + u)− f(r)| ≤ |u⊤∇f(r)|+ |u⊤R(r + u)u| (A.159)

≤ ||u||||∇f(r)||+ ||R(r + u)||F ||u||2 (A.160)

≤ ϵ||∇f(r)||+ ϵ2||R(r + u)||F (A.161)

|ω⊤u| ≤ dLϵ (A.162)

since ||u|| ≤ ϵ.
If we have for all r ∈ T , and for all i, j ∈ J1, dK,

1. |f(r)| ≤ 1
3

2. |∂if(r)| ≤ 1
3dϵ

3. |A(r)ij | ≤
1

6dϵ2
4. |B(r)ij | ≤

1
6d2Lϵ3
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then we will have ∀x ∈ X , |f(x)| ≤ 1.
Now let us lower bound the probability over drawing βs of each condition . Each time we

adapt the equation A.155 derived from McDiarmid’s inequality

1. P(|f(r)| ≤ 1/3) ≥ 1− exp
(
− 1

18σ2

)
2. P(|∂if(r)| ≤ 1

3dϵ) ≥ 1− exp
(
− 1

9d2ϵ22σ2L2

)
= 1− exp

(
− 1

18d2ϵ2σ2L2

)
3. P(|A(r)ij | ≤ 1

6dϵ2 ) ≥ 1− exp
(
− 1

72d2ϵ4σ2L4

)
4. P(|B(r)ij | ≤ 1

6d2Lϵ3 ) ≥ 1− exp
(
− 1

72d4ϵ62σ2L6

)
By performing a union bound on all conditions, we have that

P(|f | ≤ 1) ≥
(

1− exp
(
− 1

18σ2

))|T |(
1− exp

(
− 1

18d2ϵ2σ2L2

))d|T |(
1− exp

(
− 1

72d2ϵ4σ2L4

))d2|T |

(A.163)(
1− exp

(
− 1

72d4ϵ6σ2L6

))d2|T |

(A.164)

≥ 1− |T | exp
(
− 1

18σ2

)
− d|T | exp

(
− 1

18d2ϵ2σ2L2

)
− (A.165)

d2|T | exp
(
− 1

72d2ϵ4σ2L4

)
− d2|T | exp

(
− 1

72d4ϵ6σ2L6

)
(A.166)

If ϵ ≤ 1
21/2dL

, then exp
(
− 1

18d2ϵ2σ2L2

)
, exp

(
− 1

72d2ϵ4σ2L4

)
, and exp

(
− 1

72d4ϵ6σ2L6

)
≤ exp

(
− 1

18σ2

)
Therefore

P(|f | ≤ 1) ≥ 1− (1 + d+ 2d2)
(
Ld23/2π

)d
exp

(
− 1

18σ2

)
(A.167)

To satisfy these inequalities, it is enough to have σ on the order of Θ(1/(d (log d+ logL)))

A.7 Further examples of graph kernels

A.7.1 SVM-ϑ kernel

The SVM-ϑ kernel was proposed as an alternative to the more computationally intensive
Lovasz-ϑ kernel. Both ϑ kernels leverage the so-called orthogonal representation of a graph.
Given a graph G = (V, E), the orthogonal representation is an assignment of unit vectors {ui}
to each node of the graph, subject to the constraint that unit vectors associated to vertices
that are not joined by an edge are orthogonal: ⟨ui,uj⟩ = 0 if {i, j} /∈ E .

Orthogonal representations are not unique, but there is a particular representation associated
with the ϑ number (Lov79) of a graph. Given a graph G = (V, E) with n vertices, denote UG an
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orthogonal representation of G, and C the space of unit vectors in Rn. The ϑ number is defined
as:

ϑ(G) := min
c∈C

min
UG

max
ui∈UG

1
⟨c,ui⟩2

. (A.168)

From now on, we will always be referring to the particular orthogonal representation UG that
minimizes (A.168).

Now consider a subset of vertices B ⊂ V, and call UG|B the orthogonal representation
obtained from UG by removing the vectors that are not in B:

UG|B := {ui ∈ UG : i ∈ B}. (A.169)

Note that UG|B preserves the global properties encoded in UG through the orthogonal constraint,
and that UG|B is not in general the orthogonal representation of the subgraph of G containing
only the vertices in B. Define the ϑB number:

ϑB(G) := min
c∈C

max
ui∈UG|B

1
⟨c,ui⟩2

. (A.170)

We are ready now to give the definition of the Lovasz-ϑ kernel. Given two graphs G1 = (V1, E1),
G2 = (V2, E2), define:

KLo(G1,G2) :=
∑

B1⊂V1

∑
B2⊂V2

δ|B1|,|B2|
1
Z
k (ϑB1 , ϑB2) (A.171)

where Z =
( |V1|

|B1|
)( |V2|

|B2|
)
, δ is the Kronecker delta, and k is a freely specifiable kernel (called base

kernel) from R× R to R.
The SVM-ϑ kernel is defined as (A.171), but it uses an approximation for the ϑ numbers.

Consider a graph G with n vertices and adjacency matrix A, and let ρ ≥ −λ, where λ is the
minimum eigenvalue of A. The matrix

κ := 1
ρ
A+ I (A.172)

is positive semi-definite. Define the maximization problem:

max
αi≥0

2
n∑

i=1
αi −

n∑
i,j=1

αiαjκij . (A.173)

If {α∗
i } are the maximizers of (A.173), then it can be proven that on certain families of graphs

the quantity
∑

i α
∗
i is with high probability a constant factor approximation to ϑ(G):

ϑ(G) ≤
n∑

i=1
α∗

i ≤ γϑ(G) (A.174)

for some γ. The SVM-ϑ kernel then replaces the ϑB numbers on subgraphs with:

ϑB(G)→
∑
j∈B

α∗
j . (A.175)

The SVM-ϑ kernel requires a choice of base kernel k : R × R → R. We choose a translation
invariant universal kernel (MXZ06) k(x, y) = (β+ ||x−y||2)−α, where α and β are two trainable
hyperparameters.
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A.7.2 Shortest Path kernel

Given a graph G = (V, E), an edge path between two vertices u, v ∈ V is a sequence of edges
(e1, . . . , en) such that u ∈ e1, v ∈ en, ei and ei+1 are contiguous ( i.e. they have one of the
endpoints in common) and ei ≠ ej for i ≠ j. Computing the shortest edge path between any
two nodes of a graph can be done in polynomial time with the Dijkstra (Dij59) or Floyd-
Warshall (Flo62) algorithms, which makes it a viable feature to be probed by a graph kernel.

The first step of the Shortest Path kernel is to transform the graphs into shortest path
graphs. Given a graph G = (V, E), the shortest path graph GS = (VS , ES) associated to G is
defined as:

VS = V (A.176)

ES = {(u, v) | ∃ an edge path (e1, . . . , en)

between u and v in G} (A.177)

In addition, to each edge e ∈ ES a label l(e) is assigned given by the length of the shortest path
in G between its endpoints. The Shortest Path kernel is then defined as:

KSP(G1,G2) :=
∑

e∈ES
1

∑
p∈ES

2

k(e, p) (A.178)

with k being a kernel between edge paths such as the Brownian bridge kernel:

k(e, p) := max{0, c− |l(e)− l(p)|} (A.179)

for a choice of c.

A.8 Algorithms for quantum positional encodings

We detail the algorithms corresponding to the use of positional encodings obtained with a
quantum computer.
Firstly, we give a generic algorithm that allows the simulation of quantum features on a classical
computer, according to an arbitrary choice of Hamiltonian and quantum observables.
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Algorithm 4 Positional encoding with a generic classical simulation of a Hamiltonian evolution
Input : a graph G(V, E), a hyper-parameter set {θ1,θ2, ...,θK}1 and a set of quantum

observables {Ôi}i∈V
2

Output : the matrices of node pairs positional encoding PE ∈ Rde×K , and single nodes
positional encoding PN ∈ RN×K where de =

(N
2
)
, and N the number of nodes in the graph.

for k ∈ {1, 2, ...,K} do
Compute |ψG(θk)⟩ according to equation (5.12)
(PE)ij,k = ⟨ψG(θk)|ÔiÔj |ψG(θk)⟩ − ⟨ψG(θk)|Ôi|ψG(θk)⟩ ⟨ψG(θk)|Ôj |ψG(θk)⟩
(PN)i,k = ⟨ψG(θk)|Ô2

i |ψG(θk)⟩ − ⟨ψG(θk)|Ôi|ψG(θk)⟩2

end forreturn PE and PN.

Next we provide an efficient classical algorithm for the simulation of the 2 particles quantum
walk (which also applies to the 1 particle random walk, if one applies the following on the
original adjacency matrix of the graph).

Algorithm 5 Positional encoding with a classically simulated 2 particles QW
Input : a graph G(V, E), a hyper-parameter set {t1, t2, ..., tK}
Output : the matrices of node pairs positional encoding PE ∈ Rde×K , and single nodes

positional encoding PN ∈ RN×K where de =
(N

2
)
, and N the number of nodes in the graph.

- Compute the adjacency matrix A2 of the (2 particles) product graph : we draw an edge in
the latter if the symmetric difference {i1, j1}∆{i2, j2} is a pair of adjacent nodes in the input
graph3.
- Define ĤXY

1 as in equation (5.7) on the edges of the product graph, indexed as (i1j1, i2j2)
for k ∈ {1, 2, ...,K} do

if Continuous random walk scheme then
(PE)ij,k = | ⟨ij| e−i.tk.ĤXY

1 |ψ0⟩ |2 ∀i ∈ {1, .., N} and ∀j ∈ {i+ 1, ..., N} 4

(PN)i,k = | ⟨ii| e−i.tk.ĤXY
1 |ψ0⟩ |2 ∀i ∈ {1, .., N}

else if Quantum-inspired random walk scheme then
(PE)ij,k = [(D−1

2 .A2)k.ψ0]ij ∀i ∈ {1, .., N} and ∀j ∈ {i+ 1, ..., N}
(PN)i,k = [(D−1

2 .A2)k.ψ0]ii ∀i ∈ {1, .., N}5
end if

end forreturn PE and PN.

Finally, we present an algorithm for computing our quantum features using a quantum
computer.
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Algorithm 6 Positional encoding with a generic Hamiltonian evolution on a quantum computer
Input : a graph G(V, E), a hyper-parameter set {θ1,θ2, ...,θK}, the number of measure-

ments Nm for the estimation of the average of quantum observable Ôi

Output : the matrices of node pairs positional encoding PE ∈ Rde×K , and single nodes
positional encoding PN ∈ RN×K where de =

(N
2
)
, and N the number of nodes in the graph.

for k ∈ {1, 2, ...,K} do
for m ∈ {1, 2, ..., Nm} do

Let the system evolve according to equation (5.12) to prepare the quantum state
|ψG(θk)⟩

Perform a measurement of the observables6 {Ôi}i∈V
end for

(PE)ij,k = ⟨ψG(θk)|ÔiÔj |ψG(θk)⟩ − ⟨ψG(θk)|Ôi|ψG(θk)⟩ ⟨ψG(θk)|Ôj |ψG(θk)⟩ estimated
from the measurements

(PN)i,k = ⟨ψG(θk)|Ô2
i |ψG(θk)⟩ − ⟨ψG(θk)|Ôi|ψG(θk)⟩2 estimated from the measurments

end forreturn PE and PN.

A.9 Datasets

A.9.1 Description about the benchmark datasets

QM7 and QM9 molecules and graph regression

Context
QM7 dataset is a subset of the GDB-13 database (BR09), a database of nearly 1 billion stable
and synthetically accessible organic molecules, containing up to seven heavy atoms (C, N, O,
S). Similarly QM9 is a subset of the GDB-17 database consisting of molecules with up to nine
heavy atoms. Learning methods using QM7 and QM9 are predicting the molecules electronic
properties given stable conformational coordinates.

QM7 figures
QM7 consists of 7165 molecule graphs. Each node is an atom with its 3D coordinates and
atomic number Z. The only edge feature is the entry of the Coulomb matrix. Each graph is
thus fully connected and has one regression target corresponding to its atomization energy.

QM9 figures
QM9 consists of 130831 molecule graphs of between 1 and 29 nodes with an average of 18
nodes (see Figure A.1). Each node is an atom with its 3D coordinates and its atomic number
Z. Edges are purely distance based and have no feature. Each graph is thus fully connected
and has 12 regression targets corresponding to diverse chemical electronic properties. In our
implementation, all the targets are recentered and rescaled by their standard deviation.

Benchmarks
On the QM7 dataset, Quantum Machine benchmark reached MAE of 3.5 and 9.9 (MRG+13).
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Figure A.1: Distribution of the number of nodes in a graph for QM9 dataset.

Conf. category Conferences #Papers #Graphs
DBDM SIGMOD, VLDB, ICDE,

EDBT, PODS, DASFAA,
SSDBM, CIKM, DEXA,
KDD, ICDM, SDM, PKDD,
PAKDD

20601 9530

CVPR ICCV, CVPR, ECCV, ICPR,
ICIP, ACM Multimedia,
ICME

18366 9926

Table A.5: DBLP_v1 details.

The best models of the MoleculeNet benchmark (WRF+17) reached a test MAE of 2.86 ±
0.25 on QM7 and 2.4 ± 1.1 on QM9.

DBLP_v1 and node classification

Context
DBLP_v1 is a graph stream built out of the DBLP dataset (PZZY13) consisting of bibliography
data in computer science. To build a graph stream, a list of conferences from DBDM (database
and data mining) and CVPR (computer vision and pattern recognition) fields are selected (as
shown in Table A.5). The papers published in these conferences are then used (in chronological
order) to form a binary-class graph stream where the classification task is to predict whether a
paper belongs to DBDM or CVPR field by using the references and the title of each paper.

Papers without references are filtered out. Then, the top 1000 most frequent words (excluding
stop words) in titles are used as keywords to construct the graph (see Figure A.2).
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Figure A.2: Graph representation for a paper (P.100) in the DBLP_v1 dataset.
The rectangles are paper ID nodes and circles are keyword nodes from titles. The
paper P.100 cites (connects) paper P.101 and P.102, and P.100 has keywords Data,
Stream, and Mining in its title. Paper P.101 has keyword Query in its title, and
P.102’s title include keywords Large and Batch. For each paper, the keywords in
the title are linked with each other

Figures
DBLP_v1 consists of 19456 graphs evenly split between the two groups of conferences (the two
classes) from 2 to 39 nodes with an average of 10 nodes.

These graphs are actually local parts of a bigger graph. To perform node classification (on
nodes representing a paper), the local neighborhood of each graph is extracted and a graph
classification task is run.

There are 3 types of edges:

• 0: paper - paper
• 1: keyword - paper
• 2: keyword - keyword

Node features are only a unique ID to be identified between multiple graphs (cf P.100 in
Figure A.2 which will also appear in P.101 graph). There are 41325 unique IDs so keywords
don’t have a single keyword identifier among all graphs.

Benchmarks
DBLP_v1 (PZZY13) benchmarks show accuracy ranging between 0.55 and 0.80 in a chunked
graph stream classification setup.

Data augmentation
The map from IDs to topics and paper IDs is also provided and has been used to perform data
augmentation to provide node features. USing Stanford GloVe word embedding pre-trained on
Wikipedia 2014 and Gigaword 5 in a 50-dimension space, each topic node could be enriched
with its embedding. A boolean flag was also added to identify a node as a topic or not (a
paper).
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Computer vision: letters and graph classification

Context
Letters datasets (RB08) are 3 datasets of distorted letter drawings with low, medium or high
distorsion levels. Only the 15 capital letters of the Roman alphabet that consist of straight
lines (A, E, F, H, I, K, L, M, N, T, V, W, X, Y, Z) are represented. Distorted letter drawings
are converted into graphs by representing lines by undirected edges and ending points of lines
by nodes.

Figures
Node attributes are their 2D positions and edges have no attribute. The graphs are uniformly
distributed over the 15 letters. We focused on the medium distorsion dataset consisting of 2250
graphs.

Benchmarks
Benchmark results from k-NN are given by (RB08): 99.6% (low), 94.0% (medium), and 90.0%
(high). The best classical algorithm we trained on this dataset was GraphSAGE with results of
100% (low), 94.5% (medium), and 80% (high)).

Datasets used in experiments on quantum random walks

The datasets used for benchmarking the use of quantum random walks encodings are standard
in the GNN community. The first five are from (DJL+20), the last one is from (HFR+21). We
reproduce the table of statistics A.6 taken from (MLL+23), and we also refer the reader to
(RGD+22) for more information about the datasets.

Table A.6: Overview of the graph learning datasets involved in this work (DJL+20),
(ISM+12), (HFR+21) .

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction level Prediction task Metric

ZINC(-full) 12,000 (250,000) 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Accuracy

PCQM4Mv2 3,746,620 14.1 14.6 No graph regression Mean Abs. Error

A.9.2 Construction of artificial datasets

In this subsection, we explain how to construct our artificial dataset. Our building blocks are 3
types of graphs, called types 0, 1, 2. Each type is composed of one ladder graphs with crossings
inserted at different places. All crossings are in the same fixed arbitrary direction. Type 0 graphs
are plain ladder graphs and their Ising hamiltonian has two ground states. Type 1 graphs are
type 0 graphs with crossings separated with an odd number of nodes. The crossings are located
such that they have one possible Ising ground state which is one of the ground states of the
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type 0 associated graph. The crossings will effectively select one of the two possible ground
states. Type 2 graphs are ladder graphs of odd length with crossings at the beginning and the
end. An illustration of the types of graphs is provided figure A.3.

We construct a graph given two graphs of same length but different types concatenated
to each other. The first class is determined by graphs of type 0 and type 1 concatenated,
and the second class is composed of graphs of type 0 concatenated to graphs of type 1. The
concatenation is made by adding edges to continue the ladder, the process is illustrated figure
A.4. The ground state of the total graph is included in a union of the groundstates of the
subgraph, so it can be efficiently computed. The length of graphs are taken between 100 and
400, our dataset consists of 400 graphs per class, so 800 in total.

In figure A.4 we see that the RRWP features are very similar for the two classes whereas
the correlations on the ground state are very different.

Figure A.3: The base subgraphs (type 0, type 1, type 2) and their possible ground
state. Top : type 0 graph of length 7, 2 possible ground states. Middle: type 1 graph
of length 7, 1 possible ground state. Bottom : type 2 graph of length 7, 9 possible
ground states.
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Figure A.4: Left: construction of our artificial dataset. Right: RRWP and quantum
features for each class of the dataset on a 40 nodes graph.

A.10 Hyperparameters

Table A.7: Hyperparameters for GRIT model five datasets from BenchmarkingGNNs
(DJL+20), ZINC-full (ISM+12) and (HFR+21)

Hyperparameter ZINC/ZINC-full MNIST CIFAR10 PATTERN CLUSTER PCQM4Mv2

# Transformer Layers 10 3 3 10 16 16
Hidden dim 64 52 52 64 48 256
# Heads 8 4 4 8 8 8
Dropout 0 0 0 0 0.01 0.1
Attention dropout 0.2 0.5 0.5 0.2 0.5 0.1
Graph pooling sum mean mean − − mean

PE dim (RW-steps) 21 18 18 21 32 16
PE encoder linear linear linear linear linear linear

QPE dim (1CQRW steps) 20 18 18 20 32 16
Max duration π π π π π π
Min duration 0.1 0.1 0.1 0.1 0.1 0.1
Initial distribution local local local local local local

QPE dim (2QiRW steps) 20 18 18 20 32 16
Initial distribution adjacency adjacency adjacency adjacency adjacency adjacency

Batch size 32/256 16 16 32 16 256
Learning Rate 0.001 0.001 0.001 0.0005 0.0005 0.0002
# Epochs 2000 200 200 100 100 150
# Warmup epochs 50 5 5 5 5 10
Weight decay 1e − 5 1e − 5 1e − 5 1e − 5 1e − 5 0

# Parameters GRIT 473,473 102,138 99486 477,953 432,206 11.8M
# Parameters 2QiRW GRIT 476,033 104,010 101,358 480,513 434,742 11.8M
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Table A.8: Hyperparameters for non transformer base models large scale datasets
, ZINC-full (ISM+12) and PCQM4Mv2 (HFR+21). Each entry has to be read as
the values for ZINC-full/PCQM4Mv2, when there is a single entry, the value is the
same for both datasets. * : same as the first column. - : non applicable.

Hyperparameter GINE GINE-big GatedGCN GatedGCN-big

# Layers 5/3 * * *
Hidden dim 128 256 128 256
Dropout 0 * * *
Aggregation mean * * *
# Layers MLP postprocessing 3 * * *
PE encoder linear * * *

PE dim (RRWP) 21 40 21 40

PE dim (LE) 32 * * *

PE dim (Q) 21 40 20 40
Initial distribution adjacency * * *

PE dim RRWP(RRWP+Q) 20 * * *
PE dim Q(RRWP+Q) 20 * * *

Batch size 256 * * *
Learning Rate 0.001/0.0002 * * *
# Epochs 2000/150 * * *
# Warmup epochs 50/10 * * *
Weight decay 1e − 5/0 * * *

A.11 Results on large scale datasets

Table A.9: Test performance on ZINC-full and PCQM4MV2.

Method Model ZINC-full (MAE ↓) PCQM4MV2 (MAE ↓)

GatedGCN

LE .033± .001 .1056
RRWP .026± .003 .1045
Q .031± .002 .1079
RRWP+Q .026± .001 .1052

GatedGCN-big

LE .033± .0008 .1016
RRWP .025± .0017 .1005
Q .025± .0023 .1035
RRWP+Q .022± .0017 .0999

GINE

LE .035± .002 .1155
RRWP .029± .003 .114
Q .027± .0005 .1149
RRWP+Q .029± .003 .1124

GINE-big

LE .036± .0022 .1063
RRWP .029± .003 .1041
Q .024± .002 .1054
RRWP+Q .027± .0025 .1048

GRIT RRWP 0.025± 0.002 .0842
RRWP+Q 0.023± 0.002 .0838
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A.12 Hardware implementations

A.12.1 Mapping and Batching

(a) (b)
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Normalized Normalized

Figure A.5: Histograms of normalised pairwise distances between atoms in the 286
graphs of the truncated dataset when performing the embedding with a. only a
Fruchterman-Reingold layout or b. when adding a local optimization step afterwards.
For a given graph (insets), two atoms forming a pair ∈ E (blue) can be close enough
to form a bond via interaction (plain) or too far, creating a missing bond (dotted).
Likewise, two atoms forming a pair /∈ E can be placed too close and form a fake
edge (thick line).

We present in detail our method to embed the graphs of the PTC-FM dataset. Let G = (V, E)
be a graph of the dataset for which we have a layout of the nodes. Embedding the graph
amounts to replace its nodes with atoms, the latter interacting between themselves with the
1/R6 dependence. Moving two atoms slightly apart can therefore drastically reduce their
interaction strength but it remains non-zero. In order for the Hamiltonian to reflect the topology
of G, this 1/R6 dependence needs to be approximated by the Heaviside function defined as:

h(r) =
{
∞ if r ≤ rb

0 else
(A.180)

For the Heaviside approximation to be correct, we have to ensure that the largest distance
between a pair sharing an edge in the graph is always far less than the shortest distance between
a pair not sharing an edge. In other words, in theory, min{Uij , (i, j) ∈ E}/max{Uij , (i, j) /∈
E} ≫ 1.

We use a local optimizer to maximize this ratio and find good solutions in polynomial
time. The method optimizes the position of each node in turn, depending on the previously
mapped nodes and the presence of cycles in the graph. For the dataset used in this study, we
achieve a significant increase of the mean ratio up to 16.8, starting from 5.9 with the classical
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Fruchterman-Reingold layout. We report that more than half the dataset exhibits a ratio higher
than 10 and less than 5% of the dataset is embedded with some defects, i.e. a ratio smaller
than 1. We also assess the benefit of this approach in Fig. A.5 by comparing the distributions
of distance of pairs ∈ E and pairs /∈ E (a) before and (b) after the optimization. While some
defects, such as fake or missing bonds, frequently appear in the pre-optimisation embedding, the
optimised positions are constrained such that a clear cut is visible between the two distributions,
easing the approximation.
In order to further characterize the effect of these defects, we analyzed their effect on the
measurement histograms. For each graph, we first compute the histogram that would have been
obtained with a perfect embedding. We then compute the Jensen-Shannon divergence between
this histogram and the one measured in the QPU. From these, we can also estimate that if one
were to perform the SVM using histograms resulting from ideal embedding, one would expect a
slightly worst F1-score of 58.8± 4.0.

Jensen-Shannon divergence

Figure A.6: Distribution of Jensen-Shannon divergences between measured and
expected histograms for a pulse of duration T = 0.66µs. In the inset are shown the
emulated traces of each of these divergences as a function of the duration of the
pulse. The implementation was done in a regime where this difference can be large
for some graphs.

In principle, we can program a different SLM pattern for the layout of each graph from the
dataset. In practice however the SLM calibration step can be quite time-consuming, i.e. of
the order of the minute. We can compare it to the duration of hundreds of shot, each of which
consisting in applying a sequence and measuring a quantum state, performed at a frequency of
1 Hz. Then for each graph, calibrating the SLM and obtaining the probability distribution take
approximately the same order of time.
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We therefore seek to regroup many graphs onto the same SLM pattern, to be able to reduce
the number of calibrations needed for the whole dataset. We do so by clustering the graphs
according to similarities in their structures. Because the dataset consists in representations of
organic molecules, many of the graphs share common structures. We thus focus on retrieving
the presence and multiplicity of pentagons and hexagons. We then build a similarity measure
between the graphs. For the pentagons for example, the similarity can be written under the
form:

s(G1,G2) = 1− exp
(
−α|NP

1 −NP
2 |
)

(A.181)

where NP represents the number of pentagons in G and α is a hyper-parameter. We then use
a linear combination of similarity measures in order to build a similarity matrix between all
graphs of the dataset. We then apply a k-means clustering algorithm (C.04) using the similarity
matrix in order to separate the graphs into different batches. Furthermore, since the laser
power is distributed over all the traps, we want to reduce the total number of traps, in order to
maximize the intensity provided to each trap. This ensures that the traps are deep enough to
obtain a satisfying filling efficiency (∼ 55%) over the whole pattern. For each batch, we thus
apply the following mapping algorithm

Algorithm 7 Creating a triangular SLM pattern by batching M graphs
Require: Graphs {G1, . . . ,GM} in sorted sizes and optimized positions {x1, . . . , xM}
Ensure: Single SLM pattern that embeds M graphs with optimal positions on a triangular

lattice.
1: traps = {}
2: for i in range 1, · · · ,M :
3: find rGi = {r1, . . . , r|Gi|} triangular grid points that best conserve the pairwise distances

between points in xi and maximizes overlap with existing traps.
4: traps← traps+ rGi \traps
5: if |traps| < 2|GM |, add additional random triangular grid points to guarantee the filling

property for re-arrangement.

We successfully map the entire dataset of 286 graphs into only 6 SLM patterns. For example,
we batch 66 graphs together onto the 71-trap SLM pattern presented in Fig. A.7. On average,
the 6 SLM patterns use 70 traps each to encode 48 graphs each.

A.12.2 Noise model

Despite the precise calibration of the control devices which enable to monitor quantities such as
the SLM pattern spacing or the pulse shapes, several experimental imperfections may alter the
data measured on the experiment. All experimental data obtained during this study, including
those presented in Figure 6.5 and 6.6, are uncorrected and thus needs to be benchmarked with
respect to their simulated counterpart, taking into account the following main sources of noise.
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Figure A.7: A family of 66 graphs, ranging in sizes from 4 to 19 nodes, is mapped
and batched to the same SLM pattern (white dots) over a triangular grid with
spacing 5.6µm. The traps used when implementing G1 (G2) are colored in red (blue).
The bi-colored traps are those used for both graphs.

First and foremost, due to the nature of the quantum state and the limited budget of
shots, measurements are subject to sampling noise. For instance, on average, each of the 25
experimental points on Figure 6.5 is obtained using 600 shots and the uncertainty related to
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this effect (vertical error bars) can be estimated using the Jackknife resampling method (ST95).
The finite sampling is also inherently flawed by several physical processes like atoms thermal

motion, background-gas collisions or Rydberg state finite lifetime, whose effects can all be
encompassed as first approximation into two detection error terms, ε and ε′. ε (resp ε′) yield
the probability to get false positive (resp negative), i.e. measure an atom in |0⟩ (resp |1⟩) as
being in |0⟩ (resp |1⟩). ε can be measured with a regular release-and-recapture experiment and
ε′ with a more advanced method (Ldk18) involving π and pushout pulses. To replicate the
probabilistic effect of detection errors, the simulated distributions of bitstrings are altered using
the following rule to compute the probability of measuring j instead of i:

Pj|i =
∏
k

(1− |i− j|k)− (−1)|i−j|k [(1− ik)ε+ ikε
′] . (A.182)

i, j ∈ BN , ik = 0 (resp 1) if atom k is in |0⟩ (resp |1⟩). On our device, we measure ε ≈ 3% and
ε′ ≈ 8%; thus as an example, we can compute P1001|0101 = εε′(1 − ε)(1 − ε′) ≈ 0.2%. Those
detection errors can deeply modify the measured excitation distributions, with a noticeable
effect shown on Figure 6.5b at t = 0 where the simulated ⟨nj⟩ does not start at 0 despite
|ψ(t = 0)⟩ = |0 . . . 0⟩.

Additional errors can also lead to decoherence in the system (Ldk18), affecting the atom
dynamics in ways costly to emulate. For instance, since the Rydberg transition used is ad-
dressed by a two-photon process, misalignments and power fluctuations of the two lasers are
twice as likely to occur. Atoms are subject to positional disorder between each shot and their
finite velocities make them sensitive to the Doppler effect. Since taking all those effects into
consideration becomes quickly intractable, they were only individually simulated in order to
assess their limited action on the implemented protocols. However, in order to replicate the
experimental data presented in Figure 6.5, we resort to an effective decoherence model in the
form of solving the Master equation with a relaxation rate of 2π × 0.06 MHz (BVC+13). This
value was obtained by fitting with the above model damped Rabi oscillations measured on the
same device. Thus, reaching similar behaviour within error bars between numerically simulated
and experimentally obtained JS(P1,P2) was achieved with no free parameter.
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