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Abstract

Most implementations of the C++ programming language
generate binary executable code. However, interpreted ex-
ecution of C++ sources has its own use cases as the Cling
interpreter from CERN’s ROOT project has shown. Some
limitations are derived from the ODR (One Definition Rule)
that rules out multiple definitions of entities within a sin-
gle translation unit (TU). ODR is there to ensure uniform
view of a given C++ entity across translation units. Ensur-
ing uniform view of C++ entities helps when producing ABI
compatible binaries. Interpreting C++ presumes a single ever-
growing translation unit that define away some of the ODR
use-cases. Therefore, it may well be desirable to relax the
ODR and, consequently, to support the ability of developers
to override any existing definition for a given declaration.
This approach is especially well-suited for iterative proto-
typing. In this paper, we extend Cling, a Clang/LLVM-based
C++ interpreter, to enable redefinitions of C++ entities at
the prompt. To achieve this, top-level declarations are nested
into inline namespaces and the translation unit lookup table
is adjusted to invalidate previous definitions that would oth-
erwise result in ambiguities. Formally, this technique refac-
tors the code to an equivalent that does not violate the ODR,
as each definition is nested in a different namespace. Fur-
thermore, any previous definition that has been shadowed
is still accessible by means of its fully-qualified name. A pro-
totype implementation of the presented technique has been
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integrated into the Cling C++ interpreter, showing that our
technique is feasible and usable.
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1 Introduction

Recently, interpreted languages have been widely adopted
for application prototyping in multiple areas and to aid un-
experienced users in defining the logic of their applications.
In that regard, application developments based on compiled
languages for performance issues can benefit of using an
interpreter of the same language for rapid prototyping in
order to reduce the time-to-market. Following this idea, the
CERN’s ROOT project has demonstrated that the use of a
C++ interpreter (Cling) can reduce the necessary effort for
developing prototypes and transforming them into high-
performance applications.

However, since the C++ language has been designed to
be compiled, interpreting this language in a user-friendly
way presents some challenges. In this paper, we focus on
providing Cling with the functionality of redefining entities,
such as variables, functions, and types, in a similar way
to other interpreted languages like Python. To do so, it is
necessary to relax the C++ One Definition Rule so that we
allow more than one definition per translation unit.

In this paper, we present a formalization for supporting
entity redefinition on interpreted C++ and we implement this
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behavior on Cling as a validation of the proposed technique.
Specifically, this paper contributes with the following:

e We present a formalization for relaxing the ODR in
C++ that can be leveraged on any C++ interpreter.

e We implement an Abstract Syntax Tree (AST) trans-
former to support entity redefinition on a real-world
C++ interpreter.

e We analyze the output of the new transformer to vali-
date the proposed technique, and evaluate the possible
overhead.

The rest of this document is organized as follows. Sec-
tion 2 revisits some related works in the area. Section 3
gives an overview of the CERN’s ROOT framework and the
Cling interpreter. Section 4 presents the formalization for
supporting entity redefinition. Section 5 describes the imple-
mentation of the required AST transformer for relaxing the
ODR in Cling. In Section 6, we employ some examples to
validate our proposal and evaluate the overhead introduced
by the required additional handling. Finally, Section 7 closes
this paper with some concluding remarks and future works.

2 State of the Art

Interpreted languages have become popular in the industrial
and scientific areas. This is mainly due to three important
characteristics: (i) the adoption of agile software develop-
ment methodologies based on fast application prototyping
(Rapid Application Development [16]); (ii) the need to pro-
vide tools that ease the application development for non-
experts, which is important in scientific areas and industrial
data management; (iii) the increased portability with respect
to compiled languages. For instance, Scala [18] has been
widely adopted for managing large data sets in Big Data
applications. On the other hand, Python [20] has become
even more popular thanks to its high-level abstractions that
help domain experts to develop scientific applications [19].

However, interpreted languages are slower than compiled
ones due to the instruction generation at run-time and the
difficulties for exploiting the available resources in a given
platform. Thus, to increase the performance, interpreters
of these languages leverage Just-in-Time (JIT) compilation
techniques to generate a compiled version of application
hot-paths, e.g. PyPy [21], HOPE [2]. Additionally, multiple
libraries implemented in high-performance compiled lan-
guages provide bindings to be used on interpreted appli-
cations to improve the performance, e.g. TensorFlow [1].
Moreover, it is worth mentioning that almost every contem-
porary programming language has a Read-Eval-Print-Loop
(REPL) also known as language shell, e.g. Swift[4], that de-
spite being a compiled language heavily supports REPL-style
development.

Nevertheless, in order to obtain the maximum perfor-
mance and to minimize response times in a production build
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of the application, it is necessary to generate a compiled bi-
nary or to transform the interpreted application to compiled
languages. In this sense, we can find two major approaches:
(i) tools that allow generating compiled applications or byte-
code that runs on a Virtual Machine (VM) from an interpreted
language script [17], and (ii) the development of interpreters
for typically compiled languages to reduce the code trans-
formation for the production version.

Some examples of tools able to compile Python scripts are
Cython [5], Jython [12] and IronPython [9]. For instance,
Cython is a Python and C compiler that can generate opti-
mized binaries. However, this tool requires to use a superset
of the Python language to exploit the available resources
such as the general lock releasing for exploiting thread par-
allelism. For this reason, these tools are mainly used for im-
plementing libraries that will be used from an interpreted
script.

On the other hand, several interpreters of C and C++ lan-
guages can be found: Ch [6], Clip [15], CInt [10], UnderC [8]
and Cling [22]. These tools allow developers to take advan-
tage of interpreted languages for fast application prototyping
having, as a result, a code that can be compiled with minimal
efforts. Compiled language standards and, C++ specifically,
presents some limitations to be used as an interpreted lan-
guage. An example of these limitations is the C++ ODR that
avoids entity redefinition in the same translation unit [11].
This limitation is not required in interpreted languages since
the definition of an entity depends only on the interpreta-
tion order of the script code. This way an entity definition is
valid until its next redefinition. In this paper, we present a
technique to allow entity redefinition on a C++ interpreter
while keeping the C++ language consistent.

3 Background

In this section, we describe the ROOT project and its C++
interpreter (Cling), widely used in the community of High-
Energy-Physics (HEP) and other scientific areas.

3.1 ROOT Project

ROOT][3] is a cross-platform C++ framework for data pro-
cessing in the high-energy physics area, developed mostly at
CERN. This framework is designed for storing and analyzing
large amounts of data. Basically, it provides the following
components:

Data model. The ROOT framework provides a data mo-
del that allows to store data, represented as C++ ob-
jects, into compressed binary machine-independent
files. Those binary files also store the format descrip-
tion of the data, allowing access to the information
from anywhere.

Statistics and data analysis libraries. ROOT also pro-
vides a huge set of tools for mathematical and sta-
tistical analysis that can easily operate over ROOT
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files. Furthermore, it also provides visualization tools
to display histograms, scatter plots and function fit-
ting. Additionally, these tools take full advantage of
C++ features and parallel processing techniques.

Interactive C++ interpreter. This component provides
a C++ interpreter (Cling) for interactive developing
and to compile the resulting application to exploit
the available resources. This interpreter can also be
used with user-friendly development environments
designed for interpreted languages such as Jupyter
notebook, either through ROOT or the Xeus-cling [7]
project.

Other language bindings. ROOT provides a set of bind-
ings that allow to use the framework with different lan-
guages such as Python, R and Mathematica. In the con-
text of this paper, the Python bindings (PyROOT/cp-
pyy [14]) are especially relevant as they leverage Cling
to access the C++ side at run-time.

3.2 Cling

Cling is a Clang/LLVM-based C++ interpreter developed at
CERN, that has been adopted as the interpreter for the ROOT
project. Cling leverages the Clang/LLVM infrastructure for
parsing and code generation, meaning that it only has to
deal with issues derived of C++ interpretation. This keeps
Cling codebase reasonably small (about 36K LOC) and eases
maintenance. An overview of Cling is shown in Figure 1.

AST
transformers

Parse
(Clang)

JIT

+ exec

Wrap in

Input line —|
P function?

Figure 1. Cling input transformation

In general, Cling users expect a Python-like interaction.
In other words, the user expects the interpreter to accept
an statement, even if it does not appear as a part of the
body of a function. However, this practice usually results
in ill-formed code according to ISO C++[11]. If the input
line cannot be proved to be valid, it will be wrapped in a
uniquely-named function. At this stage, several simple cases
can be detected as valid (functions, classes, namespaces, etc.).
However, Cling is not able to do so for variable declaration,
suchas “int i = @;”. This is fixed lated by the DeclExtractor
transformer, which extracts declarations out of the wrapper
functions. Cling also supports a “raw input” mode, in which
this “wrapping in functions” stage is skipped completely.

After turning the user code into valid C++, it can be nor-
mally parsed by Clang. The output of this stage is the ab-
stract syntax tree (AST) for the parsed top-level declarations.
Clang also adds these to the translation unit declaration list.
In this sense, the TU is constructed incrementally.

The generated AST for top-level declarations, i.e. those
that appear at the TU level, may be transformed to support
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other Cling features. This processing is performed by inde-
pendent transformation blocks which are executed sequen-
tially after the AST is created. The former blocks may be
classified as either an ASTTransformer (apply to all parsed
declarations), or WrapperTransformer (apply only to wrap-
pers generated in the first stage). For example, declaration
statements that were previously wrapped into a function
must be moved back to the global scope (TU), which is done
by the DeclExtractor transformer. Figure 2 shows the modi-
fications performed by DeclExtractor for the input line “int
i = @, j;”. Additionally, Cling includes transformers to
support other features, e.g. auto specifier synthesis, invalid
memory reference protection, etc.

- __cling_Un1Qu30

\

'void (void *)'

| - vpClingValue 'void *'
|_
| |- i "int' cinit 1
[ "int' o
| - j 'int'

Figure 2. Transformation performed by DeclExtractor

The last step in the interpreter pipeline is just-in-time (JIT)
compilation and execution. Cling offloads this task on LLVM.

4 Proposal for Entity Redefinition

This section introduces the proposed technique to override
a previous definition for a given declaration. The described
procedure relies on nesting each redeclaration into its own
scope by using C++ inline named namespaces. Therefore,
using this technique does not incur in a violation of the ODR,
nor requires major changes to the compiler. According to ISO
C++[11], members of an inline namespace can be accessed as
if they are members of the enclosing namespace, i.e. names
introduced by such namespace “leak” to the enclosing scope.
However, as shown in Listing 1, if a name is made available
in the enclosing scope through more than one inline names-
pace, unqualified lookup for the given name is ambiguous.
In Section 4.3, we tackle this issue by manually adjusting the
lookup table of the enclosing scope.

In addition to the technique described in this section, the
following approaches were analyzed and finally discarded
in favour of the current proposal: (i) instead of manually ad-
justing the TU lookup table, we considered removing the
previous declaration from the AST and the matching JIT ed
symbol, but this causes problems with type/variable defini-
tions, as they may be still in use by user code, e.g. redefining
a type while there is a variable in scope that still uses the
old type definition, or redefining a variable while being used
by a thread; and (ii) in order to keep C++ more conformant,
we considered to replace the changes in the TU lookup ta-
ble by another AST transformation for each reference to a
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namespaced entity, so that it is qualified with the name of
the latest generated namespace; however, this is not feasible
because most compilers (including Clang) only have the AST
available after semantic analysis, which cannot be passed by
C++ code that contains ambiguous names.

inline namespace ns@ { int i = 0;
inline namespace ns1 { double i =
auto j = 1i; i

3
1.0; 3%
s

//unqualified lookup i
ambiguous

Listing 1. Ambiguous unqualified lookup

4.1 Covered Cases and Exceptions

Not all declarations that introduce a name are subject to the
aforementioned transformation. Instead, it can only be ap-
plied in contexts where an inline namespace may be used.
Therefore, to avoid ill-formed namespace constructs, we re-
strict this transformation to the translation-unit level. Simi-
larly, only named declarations that are definitions, or that
may be defined later, i.e. forward declarations, should be
moved into a namespace.

Additionally, some declarations that introduce a name
must not be nested into a namespace, either because repeti-
tion is allowed, or because nesting them changes the original
meaning. This includes:

using-directive e.g. using namespace std, that makes

all the names in std visible for unqualified name lookup.

In this case, such declarations shall not be transformed,
since issuing twice a using-directive in a given scope
does not pose any problem.

using-declaration e.g.using std: :vector, that makes
vector accessible for unqualified lookup in the current
scope. The same rationale applies for these declara-
tions.

4.2 Rules for AST Transformation

The proposed transformation may be formally described
using a syntax-directed definition (SDD)[13], that appends
semantic rules to the grammar productions relating to decla-
rations whose redefinition is to be allowed. In this notation,
each grammar production has been associated a set of se-
mantic rules that are evaluated in the specified order. Each
rule may either set the value of an attribute for the given
entity, e.g. E.attr ., or call a function that may have
side-effects.

As shown in Table 1, for top-level redefinable declarations,
the semantic declaration context (DeclContext attribute)
is set to a synthesized uniquely-named inline namespace,
which in turn is added to the translation unit. Added semantic
rules has been typesetted in bold face. Due to space limitation,
only some productions are shown.
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inline namespace NS1
int PI = 0;
std::string S;

NS1 lookup table
(

} [\ NS2 lookup table
inline namespace NS2 e { [ PI [ double = 3.14. . . |
[ 7 [ double
double PI = 3.14159265,
J;
3
TU lookup table
PI | int = ©

double = 3.14159265
S std::string
J double

Figure 3. Lookup tables for translation unit and inline
namespaces

4.3 Invalidation of Ambiguous Unqualified Names

Rules in Table 1 cause target top-level declarations to be
nested into inline namespaces. Because inline namespaces
make their members visible in the enclosing scope, declared
names may still be accessed as if they were not part of a
namespace. However, if the same name is “leaked” via differ-
ent namespaces, unqualified lookup will fail due to ambiguity.
Instead, such lookups should resolve to the latest declaration.

4.3.1 Removing Ambiguity

To that aim, ambiguous lookups must turn into non-ambigu-
ous that return the expected result. As shown in Figure 3,
each declared name in the inline namespace (NS1) is made
visible not only in the namespace lookup table, but also in
that of the enclosing scope (TU). If the same name is made
visible by several namespaces (NS1, NS2, ...), then there
will be more than one entry with the given name in the TU
lookup table.

Therefore, to get rid of ambiguity, existing entries for the
given name must be removed, provided that they cannot be
considered an overload. An overload is a set of declarations
that despite having the same name, the compiler is able to
disambiguate using the number and/or type of the arguments.
This adjustment is made by the fix_TU_lookup_table()
function. As can be seen in Algorithm 1, this function looks
up the specified name in the TU scope and iterates through
the results invalidating ambiguous names that introduce a
previous definition (lines 4—18). The InInlineNS() function
returns whether the given declaration is part of a synthesized
inline namespace. Note that, enumerators introduced by
an unscoped enumeration are reachable from the TU scope
through unqualified lookup and should be invalidated. Also,
further non-definition redeclarations of the same entity are
discarded (lines 20—22) to avoid ambiguity between the last
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Table 1. Syntax-directed definition to nest declarations into a namespace

ProbpucTIiON

SEMANTIC RULES

function-definitionp — ---

simple-declarationp — ---

decl-specifier-seq init-declarator-list ’;’

declarator virt-specifier-seqop: function-body

)

D.node = new FunctionDefinition(. . . , declarator, function_body)
D.DeclContext = new Namespace("__NS_xxx", INLINE, { FD.node })

D.node = FD.DeclContext
D
D
D

.node = new SimpleDeclaration(. . .)
.DeclContext = new Namespace("__NS_xxx", INLINE, { D.node })
.node = FD.DeclContext

definition and the new non-definition declaration that is part
of a different namespace.

Moreover, if the whole functionality is encapsulated in
the allow_redefine() function shown in Listing 2, then
allowing a declaration to adopt a new definition may be
accomplished only by adding a call to allow_redefine(), as
shown in the syntax-directed translation scheme (SDT)[13]
excerpt in Listing 3.

D.DeclContext new Namespace ("
INLINE, { D.node })

D.node = D.DeclContext

fix_TU_lookup_table (D)

__NS_xxx",

Listing 2. The allow_redefine() function used in the SDT

4.3.2 Exceptions: Overloads, Unscoped
Enumerations, etc.

Some particular cases require either to preserve existing
lookup table entries, or to invalidate additional ones, namely:

Function overloads. If all the duplicated entries refer
to a function overload, none of them shall be removed.
In this case, the lookup result is said to be overloaded
(not ambiguous). Additionally, ISO C++ paragraph
[temp.over.link]p4[11] must be verified for overloaded
templated functions.

Unscoped enumerations. An unscoped enumeration
is a transparent context, i.e. enumerators are made vis-
ible in the parent context. Because declared enumer-
ators are made visible in the enclosing inline names-
pace, and therefore in the translation unit, the removal
of all those names from the TU lookup table shall also
be considered.

Declaration after definition. Any non-definition dec-
laration that comes after a definition is ignored, e.g.

class C { ... };
class C; // ignored

5 Cling Implementation

This section describes the implementation of the aforemen-
tioned technique on top of the Cling C++ interpreter. Given
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1 Function fix_TU_lookup_table(D)
Data: D: new declaration that introduces a name

2 begin

3 Previous «— LookupTUName(D);

4 for p € Previous do

5 if IsDefinition(p) A

(= IsDefinition(D) V = InInlineNS(p)) then

6 ‘ continue;

7 end

8 if p, D are function declarations/templates

A IsOverload (D, p) then

9 ‘ continue;

10 end

11 RemoveFromTULookupTable(p);

12 if p is an unscoped enum then

13 E «— EnumeratorsOf(p);

14 fore € Edo

15 ‘ RemoveFromTU LookupTable(e);
16 end

17 end
18 end

19 // Ignore further non-definition redeclarations
20 if |Previous| # 0 A =IsDefinition(D) then
21 ‘ DiscardDeclaration(D);
22 else

23 ‘ AddDeclaration(D);
24 end
25 end

Algorithm 1: The fix_TU_lookup_table function

that Cling’s architecture allows for AST transformation be-
fore the JIT compilation takes place, all the additional han-
dling required for supporting redefinition has been fitted in
the new DefinitionShadower AST transformer®.

Cling AST transformers run in strict order in which they
are registered. As will be discussed in Sections 5.1.2 and 5.1.3,

IDefinitionShadower has been merged into Cling master branch. See
https://github.com/root-project/cling/.
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function-body { ---;

{ cee

function-definition — attribute-specifier-seqep; decl-specifier-seqop; declarator virt-specifier-seqop:
allow_redefine(); 3}
simple-declaration — decl-specifier-seq init-declarator-listep; ';'

| attribute-specifier-seq decl-specifier-seq init-declarator-1list °';

allow_redefine(); 3}

Listing 3. Modified SDT that allows redefining entities

DefinitionShadower must run before the existing DeclEx-
tractor transformer to produce the expected behavior.

5.1 The DefinitionShadower AST Transformer

This transformer employs the aforementioned “shadowing”

technique, and therefore requires to rewrite most top-level

declarations as if they were nested into an inline namespace,
and to apply the fixes detailed in Section 4.3 to the lookup

table of the enclosing scope (TU), so that unqualified lookup

always resolves to the latest declaration. These changes do

not require a patch to Clang sources, and can be entirely im-
plemented in Cling.

5.1.1 Namespacing Top-Level Declarations

The DefinitionShadower: :Transform(Decl *) function
implements the transformation described in Section 4.2. Specif-
ically, it performs the following: (i) creating —if needed- a
uniquely-named per-transaction NamespaceDecl node (re-
ferred to as DefinitionShadowNS) that has been marked as
inline, and adding it to the TranslationUnitDecl declara-
tion list; (ii) removing the given named declaration from the
TranslationUnitDecl declaration list; (iii) setting its decla-
ration context to the DefinitionShadowNS namespace; and
(iv) adding it to the DefinitionShadowNS declaration list.

Note that, step (iii) fails for out-of-line member function
definitions, because the semantic declaration context should
be the CXXRecordDecl of the class, and cannot be changed.
Therefore, out-of-line member functions cannot be directly
shadowed. As a workaround, the owning class has to be rede-
fined prior to attaching a new out-of-line function definition.

Additionally, because function template instantiations in-
herit the declaration context of the templated declaration,
the instantiation pattern must also be updated. Otherwise, if
we try to redefine a templated function, the mangled name
for template instantiations may clash with a previous defini-
tion of the same template.

5.1.2 Adjusting the Translation Unit Lookup Table

The required patching to the translation-unit lookup table is
performed by the invalidatePreviousDefinitions(Decl
*D) function. Provided that D is a definition, this function
hides from Sema lookup any previous definition of the same
entity. Note that, while unqualified lookup will only return
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the latest definition, it still allows reachability of shadowed
declarations via qualified lookup, e.g. __cling_N50: :decl.

The previous function checks whether the given decla-
ration is a wrapper function generated by Cling, in which
case we iterate through all local declarations (that will be
moved by DeclExtractor), invalidating any previous global
definition.

invalidatePreviousDefinitions(NamedDecl *D) han-
dles the invalidation of any previous definition of a named
declaration. In general, we lookup the given name in the
translation unit and iterate through the results, skipping
over non-definitions. Candidates for removal are checked for
function/template overload using the Sema: : IsOverload()
function, and if so they are kept. Otherwise, we remove the
declaration from the StoredDeclsList (lookup table) of the
translation-unit. As an special case, because unscoped enu-
merations “leak” enumerator names to the enclosing scope,
we also invalidate any previous definition of the enumera-
tors.

Also, because some Cling extensions cache information
about declarations, e.g. TCling, we registered an interpreter
callback that provides notification when a definition has
been shadowed. Therefore, the new DefinitionShadowed
callback may be used in that case to erase cached informa-
tion.

5.1.3 Modifications to Declaration Extraction

The implementation required minor changes to the DeclEx-
tractor transformer, so as to properly move declarations
to the enclosing scope. The unmodified DeclExtractor in-
correctly assumed that this scope is always the translation
unit. However, if DefinitionShadower is enabled, the wrap-
per function has been moved to an inline namespace and
declarations should be extracted onto it, as can be seen in
Figure 4.

This fact also implies that the DefinitionShadower trans-
former should always run before DeclExtractor.

5.2 [Enabling/Disabling the New Transformation

If registered, the AST transformer may be turned on/off for
the next input line by means of the EnableShadowing com-
pilation option. Compilation options control several aspects
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t- __cling_N50 inline

__cling_Un1Qu3@ 'void (void =*)'

| - vpClingValue 'void *'
I -
| - i 'int' cinit
| Y- "int' @

Figure 4. New DeclExtractor behavior

of Cling, such as the optimization level or toggling a feature,
e.g. declaration extraction, invalid memory reference protec-
tion, etc.

EnableShadowing is set to 0 if Cling raw input is enabled.
Otherwise, if EnableShadowing equals 1, valid named top-
level declarations shall be transformed except in the follow-
ing cases:

Not typed in the Cling prompt. Shadowing is enabled
only for declarations that were parsed from an input
line, therefore disabling it for #include’ed files; other-
wise, it might break system header files. Because Cling
stores input lines in a virtual file with overriden con-
tents, they may be easily recognized based on their
source location.

Is a UsingDirectiveDecl/UsingDecl. As discussed in
Section 4.1, using-directive and using-declara-
tion should not be transformed.

Is a NamespaceDecl. Shadowing namespace members
is currently not supported.

Is a function template instantiation. Cling copiesin-
put lines in a distinct virtual file and starts parsing it.
Consequently, at end of file, ASTConsumer : :HandleTr-
anslationUnit() emits pending template instantia-
tions. These instantiations are fed through AST trans-
formes as top-level declarations, and should be ignored
by DefinitionShadower.

5.3 Other Minor Changes

Cling is able to pretty-print the type and value of an expres-
sion. This behavior is automatically turned on if an input
line is not terminated by a semicolon. However, nesting type
declarations into a namespace changes the qualified name
of the type, which affects how it is printed.

Because the proposed transformation moves most top-
level NamedDecl nodes into a namespace, their fully qualified
name changes w.r.t. the original typename as seen by the
user. Take the input “class MyClass { ...} X asan
example. As shown in Figure 5.b, X is pretty-printed by Cling
as “(class __cling_N50@: :MyClass &) @ox7f0. . . ”after
enabling DefinitionShadower.
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As can be seen, the typename shown in the output changes
w.r.t. Figure 5.a. The issue is fixed by setting the PrintingPol-
icy flag SuppressUnwrittenScope = 1inValuePrinter.c-
pp. This flag specifies whether to print parts of qualified
names that are not required to be written, e.g. inline/anony-
mous namespaces.

(a) Original Cling ValuePrinter output
root [@] class MyClass {} X
(class MyClass &) @@x7fb4deb45008

(b) DefinitionShadower enabled

root [@] class MyClass {} X

(class __cling_N50::MyClass &)
@ox7f0f2da63008

(c) DefinitionShadower enabled and fixed ValuePrinter
root [0@] class MyClass {} X
(class MyClass &) @@x7fdfé6baac008

Figure 5. Cling pretty-print for “class MyClass {} X”

5.4 Limitations

While the current implementation closes the behavioral gap
between the Cling C++ interpreter and other interpreted
languages, e.g. Python, it has some known limitations that
restrict its use, namely:

Shadowing a global object does not free storage. In
C++, an I-value is an object that has a memory location,
e.g. a variable, and therefore it may appear on the left-
hand-side of an assignment expression. A shadowed
I-value cannot be found via unqualified lookup, but
the memory it was referring to is still allocated. Fur-
thermore, these objects can be referenced using their
qualified name.

Changes in RTTI type information. Run-Time Type
Identification (RTTI) is a C++ mechanism for type
introspection. As discussed in the previous section,
nesting type declarations into a namespace changes
the qualified name of types, which might be a problem
for applications heavily relying on RTTL Fixing this
issue requires additional patches to the compiler.

6 Validation

This section presents an analysis of Cling DefinitionShad-
ower behaviour to validate the correctness of the proposed
entity redefinition technique. To do so, we provide a close-
up view of the resulting AST and lookup table state for a set
of examples that covers most of the recurrent uses of inter-
preted C++.

Table 2 shows the step-by-step sequential execution of
interpreted code in Cling, including the transformed AST
and the lookup table state.
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Table 2. Step-by-step execution of interpreted code

CoODE TRANSFORMED AST TU LOOKUP TABLE
1int 1 = 1; | -NamespaceDecl __cling_N50@ inline Name Type Value
|-vVarDecl used i 'int' cinit i int 1

|
| | “-IntegerLiteral 'int' 1
| “-FunctionDecl __cling_Un1Qu3@ 'void (void *)'

| “-StringlLiteral 'const char [6]' lvalue "Cling"
*-CXXDefaultArgExpr

2 double i = 3.141592; | -NamespaceDecl __cling_N51 inline Name Type Value
| |-VarDecl used i 'double' cinit i int El
| | *-FloatingLiteral 'double' 3.141592e+00 i double 3.141592
| “-FunctionDecl __cling_Un1Qu31 'void (void *)'
3 char f(int x) { return 'X'; } | -NamespaceDecl __cling_N52 inline Name Type Value
sint £O) { return 0; )} | “-FunctionDecl f 'c'har (int)"' i double 3.141592
| |-ParmVarDecl x 'int' f char (int)
| “-CompoundStmt f int ()
| *-ReturnStmt
| ‘-CharacterLiteral 'char' 88
| -NamespaceDecl __cling_N53 inline
| “-FunctionDecl f 'int (void)'
| “-CompoundStmt
| *-ReturnStmt
| *-IntegerLiteral 'int' @
5 double f() { return 1.0; } | -NamespaceDecl __cling_N54 inline Name Type Value
| “-FunctionDecl f 'double (void)' i double 3.141592
| “-CompoundStmt £ char (int)
| *-ReturnStmt £ FI—ay
| ‘-Floatingliteral 'double' 1.000000e+00 f double ()
6 template <typename T> | -NamespaceDecl __cling N56 inline Name Type Value
7struct S { T i; }; | ‘-C_lTassTlemplTateD:clns ) qenth 0 ind i double' 3.141592
. | | -TemplateTypeParmDec typenémg .ept Q index 0 T £ char—(iRt)
| |-CXXRecordDecl struct S definition £ double—C
9 S<int> f{99}; | | “-FieldDecl i 'T' S<T> | __cling_N55::5<T>
| “-ClassTemplateSpecializationDecl struct S 3 __cling_N55::5<int> {993
| |-TemplateArgument type 'int'
| “-FieldDecl i 'int':'int'
| -NamespaceDecl __cling_N57 inline
| |-VarDecl f 'S<int>':'__cling_N56::S<int>'
| | “-InitListExpr 'S<int>':'__cling_N56::S<int>'
| | ‘-IntegerLiteral 'int' 99
| “-FunctionDecl __cling_Un1Qu33 'void (void *)'
10 template <typename T> | -NamespaceDecl __cling_N58 inline Name Type Value
s . | “-ClassTemplateDecl S i double 3.141592
wstruet S { T4, J; ) | |-TemplateTypeParmDecl typename depth @ index @ T S<F> | —eting No55-5<P>
12 | |-CXXRecordDecl struct S definition f __cling N55::S<int> | (99}
13 S<double> g{0, 33.0} | | |-FieldDecl i 'T' S<T> __cling_N57::S<T>
| | *-FieldDecl j 'T' g __cling_N57::S<int> {0,33.0}
| ‘-ClassTemplateSpecializationDecl struct S
| |-TemplateArgument type 'double’
| |-FieldDecl i 'double':'double'
| “-FieldDecl j 'double':'double'
| -NamespaceDecl __cling_N59 inline
| |-VarDecl f 'S<double>':'__cling_N58::S<double>'
| | “-InitListExpr 'S<double>':'__cling_N58::S<double>'
| | |-FloatingLiteral 'double' ©.000000e+00
| | ‘“-FloatinglLiteral 'double' 3.300000e+01
| “-FunctionDecl __cling_Un1Qu34 'void (void *)'
14 using namespace std; |-UsingDirectiveDecl Namespace 'std’ Name Type Value
15 namespace NS { | -NamespaceDecl NS ) ) ) i double 3.141592
K K . N | “-VarDecl s 'std::string':'std::basic_string<char>' £ __cling_N55::5<int> {99}
16 string s("Cling"); | -ExprWithCleanups S<T> | __cling_N57::5<T>
17 } | *-CXXConstructExpr g __cling_N57::5<int> | {9o,33.0}
| |-ImplicitCastExpr 'const char *' NS [namespace]
|
|

219



Relaxing the One Definition Rule in Interpreted C++ CC *20, February 22-23, 2020, San Diego, CA, USA

(a) Function (re-)definition (b) Class (re-)definition (c) Variable (re-)definition
40 | 40 | 40 4
20 - 20 - 20 -
10 - 10 - 10 -
7 A 74 7 A
51 5 5
34 3 34
24 24 24
14 14 1
128 ‘ 512 2048 ‘ 8192 ‘ 128 ‘ 512 2048 ‘ 8192 ‘ 12‘8 5i2 20‘48 81‘92
256 1024 4096 16384 256 1024 4096 16384 256 1024 4096 16384
’ —— No shadow —+—— Shadow ‘ ’ —%—*— No shadow —+—— Shadow ‘ ——x— No shadow —%—— No shadow, NORT
—+—+ Shadow —+—+ Shadow, NORT

Figure 6. Cling run time plots (both shadowing enabled/disabled)

In the first line, an integer variable (int i) is declared. This been wrapped into function __cling_Un1Qu3@. Definition-
declaration is wrapped in a function named __cling_Un1Qu- Shadower nests the templated structure, along with its spe-
30. Then the AST tree is generated, and both DefinitionShad- cializations, into an inline namespace (__cling_N56). The
ower and DeclExtractor transformers are executed. First, function wrapping the variable declaration is nested into a
DefinitionShadower transforms the AST by nesting the func- different inline namespace (__cling_N57). This transformer
tion into the __cling_N50 inline namespace. Then, DeclEx- also removes all previous entries on the TU lookup table that
tractor extracts the declaration out of the wrapper function, have the given name. Finally, DeclExtractor extracts the dec-
yielding the AST shown in Table 2. Given that this is the first laration out of the wrapper function.
declaration named i, the TU lookup table is not modified. Lines ten through thirteen replace the templated struc-

In the second line, a variable with the same name but dif- ture introduced in lines six and seven. Also, we declare an
ferent type (double i)is declared. As before, the declaration instance of this structure (S<double> g). As before, the vari-
is wrapped in a function named __cling_Un1Qu31. After the able declaration requires the wrapper function __cling_Un-
AST is created, DefinitionShadower nests the function into 1Qu34. DefinitionShadower nests the templated structure,
the __cling_N51 inline namespace, and also removes the along with its specializations, into the __cling_N58 names-
previous entry for the given named declaration from the TU pace. On the other hand, the variable declaration is nested
lookup table. Finally, DeclExtractor extracts the declaration into a different inline namespace (__cling_N59). The trans-
out of the wrapper function. former also removes the entry for the previous declaration

Lines three and four declare two different functions with of the structure from the TU lookup table. Finally, DeclEx-
the same name. However having both of them different pa- tractor extracts the variable declaration out of the wrapper
rameters, it can be considered a function overload. These function.
input lines do not require to be wrapped. However, both are Finally, in lines fourteen through seventeen, we introduce
nested into inline namespaces (__cling_N52 and __cling_- a using directive (using namespace std) and the NS names-
N53, respectively) by DefinitionShadower. In this case, De- pace. Neither of these declarations have to be wrapped into
clExtractor does not do anything and the TU lookup table is a function. Also, DefinitionShadower does not modify the
not modified. AST because both, using directives and user-defined names-

Line five declares a function with the same name and pa- paces are considered exceptions. In this case, DeclExtractor
rameters as the one on line four. As before, this declaration does not do anything and the TU lookup table is not modi-
does not require a wrapper. Again, DefinitionShadower nests fied.
the declaration into namespace __cling_N54. This trans- As can be seen, this proposal improves the user experience
former also removes the previous entry with the same name of using interpreted C++ for fast application prototyping,
from the TU lookup table. while the code can still be reused for the high-performance

Lines six through nine declare a templated structure with compiled version. Moreover, in a Jupyter notebook environ-
one member (struct S), and an instance of S<int> with ment the user is allowed to edit existing cells and change
the same name as the functions presented on lines three, type/function definitions.
four and five. In this case, only the variable declaration has Finally, for the sake of completeness, we have also evalu-

ated the overhead caused by the transformations performed
by the DefinitionShadower. To do so, we have compared the
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run time (JIT compilation and code execution) of the same
test program, both enabling and disabling entity redefini-
tion. This test program is comprised of a varying number of
top-level declarations of different types (function, class or
variable), ranging from 128 to 16384. Note that, in case of
enabling entity redefinition, all the declarations have been
given the same name. In order to obtain the overhead, we
performed multiple executions and measured the average
run time. All the executions were run on a platform com-
prised of 24 x Intel(R) Xeon(R) CPU E5-2695 v2 running at
2.40 GHz, and 128 GB of RAM.

As seen in Figures 6.a and 6.b, the run time behavior is sim-
ilar for both, the function and class definition tests, yielding a
time that grows with the number of declarations. Comparing
the original Cling implementation (No shadow) with our pro-
posal (Shadow), we can conclude that the “Shadow” version
icurrs in an non-linear overhead in the range of 4—52%. One
of the possible explanations for this variability, is that dif-
ferent LLVM/Clang data structure optimizations are applied
depending on the entry size.

However, the test performed for variables (see Figure 6.c),
while still growing with the number of declarations, it ex-
hibits a much higher run time, with a smaller overhead rang-
ing 2—13% for the “Shadow” version. This is due to the fact
that wrapper functions generated around variable declara-
tions call a Cling function that updates the internal state of
the interpreter. Cling includes the -noruntime command
line option that, among other things disables this behav-
ior. As shown in Figure 6.c, the run time using this option is
comparable to the other two cases. However, the overhead is
much smaller, in the range of —28—15%, with the “Shadow”
version being faster in some cases. Again, this variability
might be caused by different optimizations in LLVM/Clang
data structures.

At the light of the results, we can conclude that using
the proposed technique allows interpreted C++ to obtain a
closer behaviour to an interpreted language with moderate
overheads.

7 Conclusion and Future Work

Interpreted languages have been proved to be a good solu-
tion for fast prototyping in agile development methodologies,
and closing the gap between domain experts and applica-
tion development. Since interpreted languages incur in extra
overhead at runtime, in some cases it is necessary to gener-
ate a compiled version of the application. To pave the way,
multiple implementations of C and C++ interpreters have
been developed. Nonetheless, these languages present some
inherent limitations due to their compiled nature.

In this paper, we present a technique to support entity
redefinition in C++ interpreters, thus allowing the user to
redefine functions, types and variables in a similar way to
other interpreted languages such as Python. Relaxing the
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ODR aids rapid prototyping while keeping the C++ language
relatively sound and consistent for the particular use case.
Specifically, the contribution enables the following: (i) pro-
viding a new definition for a function; if the function is over-
loaded or templated, the new definition only overrides the
matching overload candidate, thus not interfering with the
C++ overload mechanism, (ii) overriding the definition of a
type (struct, class, or typedef), while declared variables
of an overriden type preserve the old type definition; there-
fore, old members of an overriden struct/class may be still
accessed as long as a variable type is not refreshed redeclar-
ing the variable, and (iii) providing a new definition for a
global variable, possibly changing its original type or initial-
ization value. Also, implementing this technique does not
require major changes or patches to the compiler.

To validate the proposed technique, we have implemented
the DefinitionShadower AST transformer to support entity
redefinition in Cling with moderate overheads. As observed
through the validation, entities can be given a new definition
similarly to other interpreted languages. It is important to
remark that the presented Cling implementation is part of
the ROOT master branch, and will be used by the domain
experts at CERN by the end of 2019.

As future work, we plan to address limitations of the cur-
rent implementation, including allocated storage issues, and
RTTI. Also, we intend to add more features to Cling, such as
the generation of debugging information for JIT ed code.
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