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Abstract
We explore the possibility of generating large-scale magnetic fields from second-order
cosmological perturbations during the pre-recombination era [1]. The key process for
this is Thomson scattering between the photons and the charged particles within the
cosmic plasma. To tame the multi-component interacting fluid system, we employ
the tight coupling approximation. It is shown that the source term for the magnetic
field is given by the vorticity, which signals the intrinsically second-order quantities,
and the product of the first order perturbations. The vorticity itself is sourced by
the product of the first-order quantities in the vorticity evolution equation. The
magnetic fields generated by this process are estimated to be ∼ 10−29 Gauss on the
horizon scale.

1 Introduction

Magnetic fields are known to be present on various scales in the universe [2, 3]. For example, magnetic
fields are observed in galaxies and clusters, with intensity ∼ 1 µGauss. Only an upper limit has been
given for magnetic fields on cosmological scales, < 10−9 Gauss. Primordial large-scale magnetic fields
may be present and serve as seeds for the magnetic fields in galaxies and clusters, which are amplified
through the dynamo mechanism after galaxy formation [4].

A number of models have been proposed for generating large-scale magnetic fields in the early universe.
However, they rely more or less on some unknown physics. In the present paper, we discuss magneto-
genesis in the pre-recombination era using only the conventional physics that has been established. The
generation of magnetic fields in this era has been studied in Refs. [5, 6, 7, 8]. Now it is widely accepted
that large-scale cosmological perturbations, generated from inflation in the early universe, evolve into
a variety of structures such as the cosmic microwave background anisotropies and galaxies. However,
inflation produces only density fluctuations (scalar perturbations) and gravitational waves (tensor per-
turbations); vector perturbations, and hence large-scale magnetic fields, are quite unlikely to be generated
in the context of standard inflationary scenarios. Even if they were generated due to some mechanism,
they only decays without any sources. This argument is based on linear perturbation theory, and so we
will be studying second-order perturbations to overcome this difficulty. We consider a multi-fluid system
composed of photons, electrons, and protons, which are tightly coupled via Thomson and Coulomb scat-
tering but slightly deviate from each other [9]. Thomson scattering is important for the generation of
large-scale magnetic fields in the pre-recombination era, because a rotational current will be produced by
the momentum transfer due to the Thomson interaction. We shall see how this process occurs by doing
the tight coupling expansion.
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2 Basic equations in second-order cosmological perturbation the-
ory

The background spacetime is given by the spatially flat Friedmann-Lemaitre-Robertson-Walker metric.
We write the perturbed metric in the Poisson gauge as

ds2 = a2(η)
[
−

(
1 + 2ϕ(1) + 2ϕ(2)

)
dη2 + 2χ

(2)
i dηdxi +

(
1 − 2R(1) − 2R(2)

)
δijdxidxj

]
, (1)

where a is the scale factor and η is the conformal time We have dropped the first order vector perturbations
χ

(1)
i since they are not generated from inflation in the standard scenarios. We also neglect the tensor

perturbations (gravitational waves) for simplicity.
We consider a multi-fluid system composed of photons (γ), electrons (e), and protons (p). We assume

that the energy-momentum tensor for each fluid component is given by that of a perfect fluid (i.e., we
neglect anisotropic stresses):

T ν
(I)µ = (ρI + pI)u(I)µuν

(I) + pIδ
ν

µ (I = γ, p, e), (2)

where pI = wIρI (wp = we = 0, wγ = 1/3) and uµ
(I) is the 4-velocity of the fluid satisfying gµνu(I)µu(I)ν =

−1. We define δv(IJ)i ≡ v(I)i − v(J)i, β ≡ me/mp and v(b)i as the center of baryon’s mass velocity.
The equations of motion governing the present 3-fluid system are given by

∇νT(γ)i
ν = κγp

i + κγe
i , (3)

∇νT(p)i
ν = enpEi + κpe

i + κpγ
i , (4)

∇νT(e)i
ν = −eneEi + κep

i + κeγ
i , (5)

where we neglected the Lorentz force from the magnetic field because it will give rise to higher order
contributions and scattering term is

κγe
i = −κeγ

i = −σT neργ

(
u(γ)i − u(e)i

)
, (6)

κγp
i = −κpγ

i = −m2
e

m2
p
σT npργ

(
u(γ)i − u(p)i

)
, (7)

where σT , ργ , ne, np and me, mp are the Thomson cross section, the energy density of photons, the
number density and mass of electrons and protons [6, 8]. The momentum transfer due to Coulomb
scattering is written as

κpe
i = −κep

i = −e2npneηC

(
u(p)i − u(e)i

)
, (8)

where ηC is a electric resistivity which comes from Coulomb scattering.
We get “Ohm’s law” from Eq.(4) and Eq.(5):

Ei =
1 − β3

1 + β

σT

e
aργ(1 − 2R)δv(γb)i. (9)

where we neglect δv(pe)i because δv(pe)i ≪ δv(γb)i in our case [8]. This equation may be regarded as
“Ohm’s law” in some sense. In the standard Ohm’s law, the electric field is proportional to the electric
current density ∼ eδv(pe)i. It is reminded that the contribution from the electric current gives us the
diffusion term in the evolution equation for the magnetic field, and then the source for the magnetic field
cannot be induced. However, the electric field is proportional to δv(γb)i in the above formula. The current
in our “Ohm’s law”is originated from the velocity difference between protons and electrons through the
interaction with photons. Indeed, if one takes the same mass limit of β → 1 (though it is not realized in
the nature), the electric field cannot be generated.

Maxwell equation, ∇[λFµν] = 0, is(
a3Bi

)′
= −ϵijk∂j [a (1 + ϕ)Ek] − ϵijk (avjEk)′ . (10)
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Thus we substitute Eq.(9) into Eq.(10) and get(
a3Bi

)′
= −1 − β3

1 + β

σT

e
ϵijka2

[
∂j

(
ργδv(γb)k

)
+ ργ∂j(ϕ − 2R)δv(γb)k +

1
a2

(
ργvja

2δv(γb)k

)′]
. (11)

Our remaining task is to evaluate δv(γb)i. The evolution equation of δv(γb)i is (4ργ/3)−1 × (3) −
[mp (1 + β) n]−1 × [(4) + (5)] :

ρ′γ
ργ

(
v(γ)i + χi

)
− n′

n

(
v(b)i + χi

)
+

(
δv(γb)i

)′ + 4Hδv(γb)i − (ϕ + 2R)
[
ρ′γ
ργ

v(γ)i −
n′

n
v(b)i +

(
δv(γb)i

)′ + 4Hδv(γb)i

]
−5R′δv(γb)i +

1
4

∂iργ

ργ
+ ∂j

(
v(γ)iv

j
(γ)

)
− 1

1 + β
∂j

(
v(p)iv

j
(p) + βv(e)iv

j
(e)

)
= −α(1 − 2R)δv(γb)i, (12)

where α is defined as

α :=
1 + β2

1 + β
(1 + R)

aσT ργ

mp

(
=

β(1 + β2)
1 + β

(1 + R)
1
τT

)
(13)

with R := 3mp (1 + β) n/4ργ and τT is the timescale of Thomson scattering for electrons.

3 Tight coupling approximation

We are to solve Eq. (12) using the tight coupling approximation (TCA) [9]. In this approximation
the time scale of Thomson scattering, τT , is assumed to be much smaller than the wavelengths of the
perturbations (k−1). Thus, the small expansion parameter of the TCA is kτT , which is dimensionless.
During the pre-recombination era, photons, protons, and electrons are strongly coupled via Thomson
scattering, and hence the TCA will be a good approximation.

At zeroth order in the TCA, all fluid components have the same velocity vi and the density fluctuations
are adiabatic. Following Ref. [8], we define the deviation from the adiabatic distribution for baryons by
nb = n̄b (1 + ∆b) . Then, we expand various quantities such as ∆b and v(I)i in terms of the tight coupling
parameter kτT :

∆b = ∆(I)
b + ∆(II)

b + · · · , (14)

v(γ)i = vi, v(b)i = vi + v
(I)
(b)i + v

(II)
(b)i + · · · , (15)

δv(γb)i = δv
(I)
(γb)i + δv

(II)
(γb)i + · · · , (16)

where vi is the common velocity of photons and baryons in the tight coupling limit. Our notation is that
Roman and Arabic numerals stand for the order of TCA and that in cosmological perturbation theory,
respectively. Here, we adopt the photon frame, so that ∆(I)

γ = ∆(II)
γ = 0. In other words, the quantities

associated with photons give the “background” in the TCA. Note that we consider cosmological pertur-
bation theory and the TCA simultaneously. The following analysis includes cosmological perturbations
up to second-order and the tight coupling expansion up to TCA(II), where TCA(n) denotes the tight
coupling approximation at n-th order.

4 Generation of magnetic fields

We solve Eq.(12) for δv(γb)i using TCA and substitute the results into Eq.(11). When we consider up to
TCA(I), the equation of the magnetic field is

(a3Bi)′ = 2
1 − β3

1 + β

σT

e
a4ρ̄(0)

γ

H
ᾱ(0)

ω(2)i. (17)

where ω(2)i is photon’s vorticity, ωi ≡ − 1
2εiνρλu(γ)λ∇νu(γ)ρ. The evolution equation of the vorticity is

obtained by taking the curl of the total momentum conservation:(
2a2ρ̄

(0)
T ωi(2)

)′
+ 8a2Hρ̄

(0)
T ωi(2) = 0. (18)
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It is important to note here that there is no source for the vorticity at TCA(I). Therefore, the vorticity
decays and the magnetic field is not generated at TCA(I).

Next we consider up to TCA(II). Then the equation of the magnetic field is

(a3Bi)′ =
1 − β3

1 + β

σT

e
a2ρ̄(0)

γ

[
2a2H
ᾱ(0)

ω(2)i + ϵijk R̄(0)

1 + R̄(0)
∂j∆

(I,1)
b δv

(I,1)
(γb)k

]
. (19)

In the same way the evolution equation of the vorticity is

(a2ω(2)i)′ +
HR̄(0)

1 + R̄(0)
a2ω(2)i =

R̄(0)

2(1 + R̄(0))2
ϵijk∂j∆

(I,1)
b δv

(I,1)
(γb)k. (20)

Since the right hand side in Eq. (20) contain the source term for the vorticity at TCA(II), the vorticity
can be generated at this order. Thus the magnetic field is generated. We estimate roughly the value
of the generated magnetic field at the recombination epoch. When we consider the horizon scale, B ∼
10−29 Gauss. According to [4], this will be amplified enough to explain the present observed magnetic
fields.

5 Summary and future works

We have derived an analytic formula for the magnetic fields generated from second-order cosmological
perturbations in the pre-recombination era. Photons and charged particles are strongly coupled via
Thomson scattering within the cosmic plasma, and hence the system behaves almost as a single fluid. In
this single-fluid description magnetic fields are never generated, and therefore the tiny deviation from the
single-fluid description is crucial here. Using the tight coupling approximation (TCA) to treat the small
difference between photons and charged particles, we have seen how magnetic fields are generated from
cosmic inhomogeneities. It was found that magnetic fields are not generated at first order in the TCA.
Therefore, we conclude that magnetogenesis requires both the second-order cosmological perturbations
and the second-order TCA. The resultant magnetic fields are expressed in terms of the vorticity and
the product of the first-order perturbations. The latter can be computed by solving the linear Einstein
equations, while the former is governed by the vorticity evolution equation, with the source term given
by the product of the first order terms.

We have not included the effect of anisotropic stresses of photon fluids and the recombination process,
though they will be equally important for magnetogenesis on small scales [7]. Taking into account these
effects and computing the power spectrum of the generated magnetic fields require detailed numerical
calculations, which are left for future works.
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