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Abstract

The work presented in this thesis is a contribution towards the understanding of holo-
graphic entanglement from an operational perspective. Following the interpretation which
is most natural for quantum information theory, entanglement is viewed as a resource that
can be produced, stored, transferred and used for practical purposes.

The first chapter introduces the main concepts which are necessary throughout the
discussion. Quantum entanglement, as opposed to merely classical correlation, is presented
in detail within the framework of quantum mechanics. This is followed by a brief overview
on the current state of knowledge about entanglement in quantum field theory and more
specifically in gauge/gravity duality.

The second chapter investigates a particular measure of entanglement, known as nega-
tivity, in the context of holographic field theories. This is further explored in the following
(third) chapter, where an interesting dependence of the entanglement between a region
and its complement on the topology of their interface is presented.

The forth chapter investigates qubits systems and compares equivalence classes of
entanglement structures to known properties of holographic states.

The fifth chapter focuses on the behaviour of the tripartite information for highly en-
tangled states, both in a bipartite and multipartite sense, in relation to the sign definiteness
imposed by holography.

A final chapter comments on future directions of investigation within this program.
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Chapter 1

Introduction

In 1975 Hawking proposed that information might be lost as a consequence of black holes
evaporation. While black holes are one of the most important windows onto quantum
phenomena in gravity, unitary evolution of closed systems, and hence conservation of
information, is the cornerstone of quantum mechanics. The tension between these two
paradigms of gravitational and quantum theory, dubbed the black hole information para-
dozx, has been at the center of many discussions for the last forty years but a satisfactory
resolution still seems out of reach and will probably require a full theory of quantum
gravity. Despite these difficulties, the paradox is one of the first indications that quantum
information is a physically meaningful concept and might be a fundamental element of a
quantum theory of gravity.

While the theory of classical information has a long history which goes back to the sem-
inal paper by Shannon in 1948, its quantum version has eluded physicists for many decades.
Besides practical reasons, such as the difficulty of protecting quantum systems from de-
coherence, this is probably a consequence of the counterintuitive character of quantum
behaviour as opposed to the classical. Indeed, for long time the fundamental ingredient of
the future theory of quantum information, namely quantum entanglement, was considered
to be merely a curiosity.

After the seminal work in the 80’s and 90’s by a relatively small group of people, quan-
tum information theory is now a well developed and quickly growing subject. Similarly
to its classical counterpart, the new theory describes how quantum systems can be ma-
nipulated and constitutes the theoretical foundation of countless applications. It is this
operational perspective that will be central in the discussion presented in this work.

Besides practical applications, the development of quantum information theory is also
sharpening our understanding of quantum behaviour, providing new powerful tools of
investigation. It is striking how after almost a century quantum mechanics is still able
to surprise us with unexpected predictions. Indeed, part of the research in quantum
information theory is intimately related to investigations on the foundations of quantum
theory. While it is conceivable that a fully satisfactory theory of quantum gravity will
require some modifications of quantum mechanics, for the purposes of this work the theory

of quantum information might be considered as the theory of manipulations of systems

1



1.1. The concept of quantum entanglement 2

governed by the laws of conventional quantum mechanics.

To make progress towards a deeper understanding of the role played by quantum
information in gravity we need to extend the theory to the relativistic framework of field
theory. From an operational perspective this is a highly non trivial problem because the
language of field theory is much more unnatural than the one of quantum mechanics for
the description of manipulations of quantum systems. Nevertheless we now have new
tools to start tackling the problem. On the one hand there are in field theory computable
measures of quantum entanglement for which we can look for an operational interpretation
starting from their counterparts in quantum mechanics. On the other hand investigations
of entanglement structures in quantum mechanics might be a guidance for further progress
in field theory.

If one could develop an operational understanding of quantum entanglement in field
theory, one can then make contact with quantum gravity using the gauge/gravity duality,
or AdS/CFT correspondence. The duality is a concrete realization of the holographic
principle, asserting that quantum gravity in a region of spacetime can be fully described
by the information contained on its boundary. In 2006 Ryu and Takayanagi showed that
entanglement entropy of a boundary region, perhaps the most important of all entangle-
ment measures, is associated holographically to a geometric object in the gravity dual. Its
value is given by the famous Bekenstein-Hawking formula associating entropies to areas
in gravity. The discovery opened a new area of investigations where quantum information
principles are used for investigations in quantum gravity. The work presented in this thesis
is a modest step towards the understanding of this correspondence from the operational

perspective, the one which is more natural in quantum information theory.

1.1 The concept of quantum entanglement

The origin of the notion of quantum entanglement goes back to Schrodinger and his reply
to the famous argument by Einstein, Podolsky and Rosen advocating the incompleteness
of quantum theory. Several attempts to “complete” quantum mechanics made used of local
hidden variables, an important example being Bohm formulation. It was only in 1964 that
Bell proved a no-go theorem against this approach [1]. He showed that any attempt to
reproduce correlations of quantum theory with local variables would inevitably conflict
with special relativity. This subtle interplay between causality and locality is the essence

of Bell’s theorem and can be used to define quantum entanglement.

1.1.1 Spooky action at a distance

Causality and locality can be nicely defined in an abstract fashion using only probability
theory. Consider two experimentalists, Alice and Bob, that are space-like separated and
hence cannot communicate. Suppose they share a physical system composed of two sub-
systems A and B that have been prepared in advance and may in general contain some sort

of correlations. A pictorial representation of the set-up is shown if Fig. 1. The nature of
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Figure 1: A pictorial representation of PR boxes. The boxes A and B represent a physical system made of two
space-like separated subsystems, the random variables ¢ and j label the possible choices of experiments and the
variables a and b the possible outcomes. The vertical line reminds of the fact that we are assuming A and B

to be space-like separated.

these correlations is what we want to study. The two observers have the freedom to chose
randomly the experiment they want to perform to probe the subsystems (the observable
to be measured for example). This is encoded in the random variables i and j. For a
particular choice of experiments the subsystems will respond producing the outcomes a
and b respectively. The correlations are encoded in the joint probability distribution P;;
of getting the results (a,b) for the choice (i,j). For consistency with probability theory

we must have

> Paj=1 Vi
a,b
Pawjij =20 Va,bi,j (1.1.1)

At this stage a generic realization of the joint probability distribution might allow commu-
nication between the observers because there might be an observable dependence of the
outcome a on the choice of the experiment j (and similarly of b on 7). To prevent this,
consistently with the assumption of space-like separation, one has to impose the following

no-signaling condition on the marginal probabilities

Pajij = Z Pabjij = Z Pabjijr = Pajisr Va,i,j,5'
b b

Pb|ij = Z Pab|ij = Z Pab\i’j = Pb\i’j Vb, j,i,i/ (112)

In other words, the marginal probabilities of a and b are independent on j and i respec-

tively. We can then write
Pajij = Paji Pyjij = Puyj (1.1.3)
Note that the no-signaling condition does not imply for example
Pablij = Pablijr (1.1.4)

because the two observers can learn about joint probabilities only when they are in causal

contact.
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If the correlations between subsystems are a consequence of a “hidden variable”, i.e.
some random variable shared by the observers, the joint probability distribution can be

written as
Papjij = /d/\p()‘)Xah'()‘)ij(/\) (1.1.5)

where the functions y are “response functions” of the subsystems A and B, A is the random
variable that determines the response and P is its probability distribution. The assumption
of locality of correlation is encoded in the requirement that the response functions do
not depend on the choices j and 7 respectively. By excluding this dependence we are
restricting the possible values of Pgy;;. One can then call entangled all states which
contain correlations that violate this locality constraint. In specific cases, one can follow
this procedure to derive inequalities that are violated by entangled states, these are the

Bell inequalities.

1.1.2 A constructive definition of entanglement

The previous formulation is not optimal for practical purposes. Bell inequalities are in
general difficult to derive and the definition does not make direct contact to our ability
of manipulating the system. With the development of quantum information theory, it
has become clear that entanglement is the key resource for the implementation of all
interesting protocols. It is then important to have a definition of entanglement based on
a preparation procedure.

Imagine a situation similar to the one presented in the previous section, where now
the two agents Alice and Bob are not causally separated any more and instead can com-
municate classical information. By this we mean that they can for example send messages
describing measurement outcomes but they are still not allowed to send quantum sys-
tems. Under these assumptions the class of operations that they are able to perform on
their subsystems is the set of all local quantum operations, such as unitary evolution and
measurements, where the operations they decide to apply can depend on shared classical
information. These operations are called LOCC, which stands for local operations and
classical communication.

Suppose now that Alice and Bob have two subsystems which initially are in a product,
and hence uncorrelated, state. We consider the most general scenario where these states
are both mixed. The initial state is then pi@B = p%) ® pg). Clearly, since the choice of
operations that Alice can perform can depend on the outcome of Bob’s operations (and
vice versa), they can implement a protocol that produces a new state p%)g which contains
some kind of correlation between A and B. What is the most general form of a state that
Alice and Bob can build in this way?

Let us reformulate the set-up slightly differently. Since quantum measurements are
stochastic, the effect of sharing the outcomes using classical communication is equivalent
to the case where Alice and Bob have access to a shared random variable A, similarly as in

our previous discussion for Bell inequalities. According to the value of A they then extract
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states from the ensembles {p%} and {p%} according to a probability distribution p(\). In
this way they can build any state with the following form

> pidh®ps, D> pi=1, pi=>0 (1.1.6)
i A

States that can be written in this way are called separable states. Since the correlations
contained in separable states can be build by a procedure that makes use of only LOCC, it
is natural to assume that these are local correlations. We then define non-local correlations
as the one that cannot be realized by LOCC operations. For these reason, in quantum
information theory, it is customary to define entangled states as the one that are not

separable.

1.1.3 Non-locality and the physical principle of quantum mechanics

The two definitions given above are not fully equivalent. For pure states they agree, since
the only pure states which are separable are the product states, while any state which
cannot be written as a product violates some Bell inequality. On the other hand the
situation for mixed states is much less clear. Indeed, there are states that are explicitly
non-separable but nevertheless do not violate any Bell inequality. We will further discuss
the discrepancy between the two definitions of entanglement in chapter 2.

Even if the two definitions do not completely match, it is quite clear that non-locality
is one of the key elements which distinguish quantum behaviour from the classical and it is
interesting to ask whether this is the essential physical principle of quantum theory. Indeed
quantum mechanics is defined by a set of postulates which are justified “a posteriori”, by
their ability to make predictions that reproduce results of experiments with remarkable
accuracy. But the physical principles behind the theory that could justify the postulates
“a priori“ are still rather obscure.

In 1994 Popescu and Rohrlich asked if the non-signaling condition together with the
assumption of violation of locality could be enough to define quantum mechanics [2].
Interestingly, the answer turned out to be negative. It is important to note that the
definition of entanglement based on probability theory is completely independent from
any detail of the language of quantum mechanics. We can imagine the two subsystems A
and B to be two “black boxes”, called PR-boxes, containing systems governed by some
physics which in principle could be more general than quantum mechanics. The power
of the formalism is the fact that it can be used to investigate the nature of correlations
in a theory independent way, using only probability theory. In the simplest possible set-
up where the random variables i, j,a,b € {0,1}, one can define a correlator (B), often
called the Bell observable, which satisfies (B) < 2. This is a Bell inequality known as the
CHSH inequality [3] and of course can be violated by quantum correlations. Popescu and
Rohrlich found that by allowing non-locality, with the only constraints of consistency of
probability and no-signalings the bound is (B) < 4. On the other hand, it was proved

by Tsirelson [4] that quantum mechanics allows for a strength of correlations only up to
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(B) < 21/2. What is the physical principles that produces this bound and does not allow
for correlations with 2v/2 < (B) < 47 The question is still open, see [5] for a nice review.

1.2 Quantum information theory

Quantum information theory encompasses a broad range of subjects in the area of quan-
tum mechanics and its applications. Sometimes the term is used more specifically to refer
to the generalization of Shannon’s classical theory of communication to the realm of quan-
tum systems. Throughout this work instead we will use it in a broader sense, including
other areas of investigations and applications of quantum mechanics such as the theory of
quantum computation, protocols like teleportation, or the research on the foundations of
quantum theory.

It is perhaps this desire of better understanding quantum phenomena that leaded to
the development of the new theory although its origins are difficult to track in a clear way.
Rather, the field emerged in the 80’s and 90’s from investigations regarding entanglement
and from the desire of acquiring practical control over quantum systems.

Quantum information theory is now a very wide field which continues to grow very
quickly and a detailed presentation is beyond the scope of this work. In the next section
we will limit ourselves to the presentation of some important elements of the theory and
briefly comment on each of them. What really is remarkable is the fact that in the last few
years nearly all of them have at some level entered the discussion about quantum gravity

and holography.

1.2.1 Quantum wonders

The no-cloning theorem this is one of the first results that started the field of quan-
tum information theory. The theorem asserts that it is not possible to build a machine
which, given an unknown quantum state |1) together with an additional system in some
reference state | 0), produces as outputs two copies of |9). The impossibility of cloning
quantum information has played a role in several recent discussion regarding the black

hole information paradox and the firewall argument [6].

Quantum computation: a quantum version of the Universal Turing Machine was first
proposed by Deutsch in 1985. A set of simple unitary operations acting on single qubits
or pairs of qubits, called quantum gates, was shown to be universal, in the sense that any
unitary evolution can be realized using an appropriate circuit of these quantum gates. The
interest in quantum computers largely increased after the proof by Shor of the possibility
of factorizing numbers in polynomial time, showing the power of quantum computers over
their classical version. In recent years other schemes for quantum computation have been
developed, including one based on measurements known as one way quantum computa-
tion [7]. In this case entanglement is the resource contained in the initial state which is

consumed to run the computation. The ability of black holes to process information very
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efficiently, in particular the conjecture that they are fast scramblers, suggests an analogy

between black holes and quantum computers [8].

Teleportation: this is perhaps the most striking application of quantum information
theory. Using entanglement, it allows to transfer a quantum state from one agent to
another using only measurements and classical communication. Suppose Alice and Bob
share a Bell pair AB, one particle each. Furthermore, Alice has a qubit C in a state |¢)¢
and she wants to transfer the state to Bob. She just needs to do a Bell measurements
on the two qubits AC' and communicate the result to Bob. The measurement creates a
new Bell pair on AC' and Bob can use the received classical information to perform a
local unitary transformation on B that produces |¢)p. Quantum teleportation can also
be used to build an alternative scheme for quantum computation [9]. In quantum gravity,
a modified version of teleportation where Bob can produce |)p without receiving any
information from Alice, known as post-selected teleportation, has been used to propose a

solution to the black hole information paradox, the black hole final state proposal [10].

Quantum noiseless coding theorem: this is the first of various theorems proved in
the context of quantum communication along the lines of its classical counterpart. It was
proved by Schumacher in 1995 and is the direct generalization of Shannon’s theorem to
the quantum world, where the role of Shannon entropy is now played by the von Neumann
entropy. Consider a message composed of “letters” where each letter is a pure quantum
state drawn from an ensemble {| 1), ..., |¥y)} with probabilities {pi, ..., pn}. The theorem
says that there exists a code that compresses the message to S(p) qubits per letter, where

p =iy pi|i)(1i] and S(p) is the von Neumann entropy.

Quantum error correction: the ability to correct errors is crucial for all practical
applications of quantum information theory, both in quantum communication and quan-
tum computation. Suppose that we want to send a state | 1) of some physical system
associated to a Hilbert space H. To protect the message we can encode the same state
on some larger system with Hilbert space H. To do this, a subspace of this new enlarged
Hilbert space Heoge C H is sufficient, this is called the “code subspace”. The details
of how this should be done depend on the kind of noise one want to protect the state
from. Essentially, the mechanism works because the information contained in the original
message is encoded in a redundant manner in the enlarged system. Again, entanglement
plays a crucial role, tailor made entanglement structures should be used to define the code
subspace and guarantee the ability of the receiver to correct the error. In the context
of AdS/CFT, recent work suggested that a similar mechanism is the way the boundary
reproduces the bulk [11].

Entanglement distillation: is a procedure that can be used to extract Bell pairs from

a quantum state using LOCC. Distillability of entanglement is used to define distillable
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entanglement, an important measure of entanglement which will be introduced in the next

section.

Quantum state merging: conditional entropy is an important quantity in classical
information theory and its quantum counterpart is the conditional von Neumann entropy
S(A|B) = S(AB) — S(A). Interestingly, this quantity can be negative, this happens for
example any time AB is in a pure state and there are correlations between A and B.
Quantum state merging is a protocol that gives an interpretation to this quantity, even
when negative. Consider a situation where, using entanglement and classical communica-
tion, a sender wants to send a state to a receiver who already has some information about
the full state. The conditional entropy is a measure of the minimal amount of entangle-
ment which is necessary to implement this protocol. When this quantity is negative, the
sender can transfer the state without entanglement, while some amount of entanglement
is instead produced. In holography, a version of this protocol has been proposed to give

an operational interpretation to the length of certain curves in the bulk [12].

1.2.2 Measuring entanglement

Given a generic state of a (for simplicity) bipartite system, one can in principle use the
definition of entanglement based on separability to determine if the state is entangled
or not. Nevertheless the problem is known to be computationally hard. Tools like Bell
inequalities, called in general entanglement witnesses, can be used to determine whether a
state contains some entanglement, but they are not always conclusive and do not provide
a full characterization of the entanglement in the state. The discussion in the previous
section should have made clear that quantum correlations are now viewed as a resource
that should be produced, stored, transformed and used in desired applications. It is then
crucial to develop measures which have a clear operational interpretation and are able to
quantify the amount of entanglement that pertains to the state.

The first measure to be introduced, and certainly one of the most important, is en-
tanglement entropy. For a given pure state |Y)ap € Ha ® Hp of a bipartite system, the
entropy of entanglement between A and B is given by the von Neumann entropy of the

reduced density matrix p4 (or pp)

Sy =—Trapalogpa, pa=Trp |V) (Y| (1.2.7)

As a consequence of purity, the result is independent on which one of the subsystem we
choose, i.e. Sy = Sp. This is not true any more if the original global state was mixed. In
this case the von Neumann entropy is not a good measure of entanglement.

In general the von Neumann entropy satisfies a set of inequalities which are of particular
importance not only in quantum information theory but also for later discussions in field

theory and holography:
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e subadditivity: Sap < Sa+Sp VA, B
e strong subadditivity: Sapc + S < Sap + Spc VA,B,C
e Araki-Lieb: |Sy — Sp| < Sap VA,B

Even for pure states, the von Neumann entropy is just a single number and is not able
to completely characterize the full entanglement structure of a state, to this end we need
additional measures. Furthermore, one would like to have measures of entanglement with
a nice operational interpretation which can be used also for mixed states. An axiomatic
theory of entanglement measures is not fully developed yet, nevertheless there are several
properties that are usually required to be satisfied by good candidates for measures of

entanglement:
e An entanglement measure F(p) is a mapping: p — E(p) € RT
e E(p) = 0 for separable states
e On average, E(p) does not increase under LOCC, it is an entanglement monotone
e For pure state, i.e. p =|9)(1 |, the measure reduces to entanglement entropy

e Convexity: E (>, pipi) < Y, piF (p;) Intuitively, the motivation behind this require-
ment is the fact that in going from a selection of identifiable states p; to a mixture

p = Y pip; some information is lost

o Additivity: F (p®") = nE(p) is the weaker form of additivity. A much stronger
requirement, which is not satisfied by most measures is instead E(p ® o) = E(p) +
E(o)

e Continuity

Over the years several measures have been proposed satisfying all or part of these proper-
ties, see [13] for a review. Here we briefly mention two of them which, at least conceptually,

are perhaps the most satisfactory.

Entanglement cost Ec(p): is the minimal number of maximally entangled states, i.e.
Bell pairs, which are required to create copies of a state p using only LOCC operations.
More precisely, for a given state p, this measure quantifies the maximal possible rate at
which one can convert blocks of Bell pairs into output states that approximate many copies
of p, such that the approximation becomes vanishingly small in the limit where the size
of the block is large. The maximization is over all possible protocols that can be used to
implement the procedure, for this reason this measure is an extremely difficult quantity

to evaluate.
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Distillable entanglement Ep(p): intuitively, this is the opposite of entanglement cost.
It is the maximal rate at which one can convert copies of a state p into copies of approxi-
mately maximally entangled pairs. Again, as for entanglement cost, the maximization is

over all possible protocols and makes this measure very hard to compute.

For pure states these two measure match and are equal to entanglement entropy, which
also serves for their calculation. Quite interestingly, this is not always true for mixed
states where in general one has Ec(p) > Ep(p). This irreversibility in manipulations of
entanglement suggests that one could hope to develop a “thermodynamics” of entangle-
ment [14]. States for which the inequality is strict are called bound entangled, stressing
that the entanglement of the state is in some form that cannot be distilled. An important
example of a measure that is sensible to this kind of entanglement is the negativity. This
quantity is important for practical purposes because at least in quantum mechanics can
be easily computed. We will define it rigorously and discuss its properties extensively in
the following chapters, which will focus on the role that negativity plays in field theory
and holography.

1.3 Entanglement in Quantum Field Theory

In quantum field theory entanglement is much less understood than in quantum mechan-
ics, even more so from an operational perspective. One could argue that quantum field
theory is just the continuous limit of quantum mechanics and that the same definitions
we presented above should apply. Nevertheless there are several complications. To be-
gin with, the notions of causality and locality introduced with the PR-boxes formalism
are not fully equivalent to the concept of microcausality which is instead natural in field
theory. Further technical issues arise as a consequence of the infinite dimensionality of
Hilbert spaces and the fact that, for gauge theories, the Hilbert space does not factorize
for a given bipartition. A definition of entanglement based on LOCC seems unnatural for
field theories, where operations such as measurements are much less understood than in
quantum mechanics. In this regard one could appeal to the algebraic formulation of the
theory, but this is notoriously difficult to deal with for practical purposes. Finally there is
the problem of defining information theoretical quantities in a relativistic covariant fash-
ion. Relativistic quantum information theory is a new area of research which is still at its

infancy.

1.3.1 Towards a notion of entanglement for field theory

Although much work still has to be done, we briefly review here some known facts which
will potentially play a crucial role in defining entanglement along the same lines as in

quantum mechanics.
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Violation of Bell inequalities: in the algebraic formulation, it was proved in 1987 by
Summers and Werner [15] that the violation of Bell inequalities is a generic fact in the

vacuum of an arbitrary field theory.

Reeh-Schlieder theorem: the theorem is derived in the axiomatic framework of quan-
tum field theory. It asserts that in the vacuum of a field theory, the space of states
generated by operators acting on an arbitrary subregion is dense in the Hilbert space of
the theory. This means that by acting locally with an appropriate operator, although in
principle it can be very complicated, we can produce a state which is arbitrarily closed to
any possible desired state. Naively, one is tempted to interpret this result as suggesting
that the vacuum of an arbitrary field theory contains a large amount of entanglement
which can be used for practical applications. Quite differently from the result concerning
Bell inequalities, this theorem seems to be more in line with an operational interpretation

of field theory entanglement.

Tsirelson problem: in the previous section we discussed how the formalism of PR-
boxes can be used to investigate, using only probability theory, the interplay between
non-locality and causality that characterises quantum correlations. Using the formalism
of quantum mechanics, the set Q of correlations that can be produced corresponds to joint

probability distributions that can be written as

Papjij = (| My @ My |) (1.3.8)

where | 1)) is the state of the system AB in a Hilbert space that factorizes H 4 ® Hp. Note
that in general the state of AB can be mixed, but we can always enlarge the system to
purify the state and write the probability distribution in this form. For quantum field

theory on the other hand, probability distributions are given by expressions like

Parjij = (| My My; %) (1.3.9)

where we instead of requiring factorization of the Hilbert space, we impose the micro-
causality condition between local operators [Ma|i, My, j] = (0. We call the set obtained in
this way Q’. Since [Ma”- ®R1p,14® MbU] = 0 it immediately follows Q C Q. It is an
open question [16] whether the inclusion is strict and Q # Q.

1.3.2 Entanglement measures in field theory

At present, an axiomatic approach to entanglement measures in field theory along the
lines of the quantum mechanical case still has to be developed. Most of our understanding
of entanglement comes from the calculation in field theory of some of the measures defined
for quantum mechanics, but an operational interpretation of these quantities is far from
clear. Furthermore, already in quantum mechanics most measure are very difficult to

compute and the situation gets even more complicated in field theory.
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In practice, the measures that can be computed in field theory are generalization of the
von Neumann entropy known as Renyi entropies, which are defined as follows. Consider
a field theory state at some instant in time. Pick a subregion of interest A and build the
reduced density matrix pa by integrating out the degrees of freedom of its complement

A¢. The Renyi entropies of p4 are defined as

Salpa) = ——Tr(p%) (1.3.10)

l—gq
While it is natural to expect that the full set of Renyi entropies, usually called the en-
tanglement spectrum, carries complete information about the pattern of correlations of a
state, unfortunately they do not have an operational interpretation. This is one of the
reasons that motivated us to look at other quantities for the investigations presented in
the following chapters.

From Renyi entropies one can derive the von Neumann entropy by differentiation with

respect to q

S(pa) = - qurAP?ax = aalog Trap? (1.3.11)
g=1 q q=1
This is the technique which can be used to derive entanglement entropy in field theory,
where the direct computation of the logarithm of a density matrix is not possible. If the
original state of the field theory from which p4 was derived is a pure state, and if the
Hilbert space factorizes H 4 ® Hae, it is natural to interpret this quantity as the field
theory generalization of quantum mechanical entanglement entropy.
To compute Renyi entropies in field theory we can use the “replica trick” [17] to
evaluate TrAle. We start with a path integral representation of the reduced density
matrix ps. For the ground state of a field ®(x) the wave functional is given by path

integration in Euclidean time on the interval tg € (—o0,0)

®(tp=0)=¢

U(p(x)) = / DP e 5@ (1.3.12)
tgp=—00

where ¢(x) is the filed configuration of ®(z) at tg = 0. To build the total density matrix

we need the complex conjugate W(¢'(x)), which is given by integration on tg € (0, +00).

The density matrix is then given by a FEuclidean integral on tg € R with a cut along tg =0

p6:6) = W)W @) = fo o\, DB (1.3.13)
P(tp=0")=¢'
To derive the reduced density matrix p4 we need to trace over the degrees of freedom in
A°. We impose then the condition ¢(x) = ¢'(x) for z € A® and integrate over x. This
is equivalent to “gluing” W(¢(z)) and ¥(¢'(x)) on A€ leaving boundary conditions to be
specified only in A

pa(¢,¢') = %D(tEO’zeAW DP e 5(®) (1.3.14)
O(tp=0T,xcA)=¢
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Now to compute p’y we take multiple copies of p4 and glue each sheet to the following one
by matching boundary conditions along the cuts which correspond to the copies of region
A: ¢i(x) = ¢, (x) with i = 1,2, ...,¢. Finally, we get Trap% by gluing the ¢-th copy to

the first one. The result is a path integral on an g-sheeted Riemann surface R,

Trap} = / D® e5(®) (1.3.15)
(tE,I)ERq

Following this procedure one can derive the analogous result for a field theory in a
thermal state at temperature T = 1/3. The path integral representation of the density
matrix is obtained by integrating for an interval in Euclidean time of length 8. The reduced
density matrix obtained by gluing along A€ becomes a cylinder with a cut along A and the
Riemann surface R, is obtained as before by gluing multiple copies of the cylinder along
the cuts.

For an arbitrary region A, which in particular could be disconnected, in an arbitrary
quantum field theory of dimension d, the calculation of these path integrals is intractable.
Nevertheless for some specific cases, (1.3.15) can be evaluated. This happens for example
when the field theory is a two dimensional conformal field theory. In this case the Riemann
surface R, can be mapped to a sphere with the insertion of operators at the endpoint of
the intervals corresponding to the region A. These operators, called twist operators, are
primary operators of dimension 15 (q— %) and encode the gluing conditions that defined R,.
The partition function is then given by a 2¢-point correlation function of twist operators.
For ¢ > 1 the result is not universal and depends on the details of the theory. On the

other hand, when A is a single interval, the result is universal. For the ground state one

gets
c l
Sa= 3 log - + cons (1.3.16)
€
and for the thermal state
l
Sa = glog (fe sinh ;) + cons (1.3.17)

where € is a UV cut-off and the constant term is not universal.

For more complicated choices of A or in higher dimensions few results are known,
although this is a very active area of research. Nevertheless, for the simplest situation
where A is a ball region, entanglement entropy can be computed and it is known to satisfy
an area law . This means that the entropy is not proportional to the volume of the ball

but rather to the area of the spherical surface which constitutes its boundary

A(DA)

Sa~——=
cd—2

+ subleading terms (1.3.18)

where € is a UV cut-off in the field theory and d > 2. This was first proved in free
field theory in [18] and later shown to be true in several situations also with numerical
techniques. Indeed, in the context of condensed matter theory, several tools have been
introduced specifically to approximate this particular entanglement structure that charac-
terizes ground states of local Hamiltonians. Tensors networks are an important example

which is currently of very much interest also for holography.
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1.4 Holographic entanglement

The famous result due to Bekenstein and Hawking associates an entropy to a black hole

given by

A

where A is the area of the event horizon. This suggests that gravity might be holographic
and that all information about a region of spacetime is somehow encoded on its boundary.
A concrete realization of this holographic principle, and certainly the most important so
far, is the AdS/CFT correspondence, or gauge/gravity duality, proposed by Maldacena in
1997 [19].

1.4.1 Gauge/gravity duality

In essence the duality asserts that string theory on an asymptotically Anti de Sitter back-
ground is dual, and hence equivalent, to a certain field theory which lives on the boundary
of that spacetime. The most important example of the correspondence relates type 1IB
superstring theory on AdSs x S® to N/ = 4 super Yang-Mills theory in 3 + 1 dimensions
with gauge group SU(N). On the string theory side, both Anti de Sitter space and the
sphere have radius of curvature L, the free parameters are the string coupling gs; and the
ratio L2/a/, where o/ = [? and I, is the length of the string. On the other hand on the
field theory side the free parameters are the rank of the gauge group N and the coupling
constant g%, - The correspondence is established by the following identifications

4
9y m = 27gs 208N = =5 (1.4.20)

For the purposes of the discussion presented in this work, we will need a particular
regime of the parameters where the AdS side is not dominated by stringy effects but
rather reduces to classical gravity. We then make the assumption gs < 1 while keeping
L/ V! fixed, such that the strings are weakly coupled and tree level diagrams dominate in
perturbation theory. On the field theory side it follows from (1.4.20) that gy s < 1 while
g%, u N remains finite. This is equivalent to taking the 't Hooft limit N — oo for fixed
A= g% u V. Finally, if we take the limit A — oo in the field theory, this is equivalent to
Vao! /L — 0 for the strings. In this regime the string is very small compared to the radius of
curvature of AdS and this side of the duality reduces to type IIB supergravity on AdSsx.S°.
This particular example can be generalized to motivate a duality AdSgy1/CFTg.

Once the correspondence is established, it is important to clarify the dictionary that
maps between objects on the two sides. An important feature of the correspondence is the
fact that the symmetry groups on the two sides match. This allows to map operators O on
the field theory side to supergravity fields ¢ in the AdS background. More specifically, the
boundary value ¢g of the supergravity fields are interpreted as a source for the operators O.

This allows to formulate the correspondence as an equivalence between partition functions
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on the two sides. In its strongest form, the duality equates the partition function of the
field theory to that of string theory on the AdS background

ZQFT[qbQ] = <exp/ddaz¢00> = Zstring (1.4.21)
QFT

where Zgtring is not known explicitly. On the other hand in the regime we are interested

in, a saddle point approximation to the string action is given by the on-shell action of

supergravity. The correspondence is then

Zqrr[do] = <eXP / ddw¢00> = S — by (1.4.22)
QFT
The supergravity action is evaluated on the solution of the equations of motion of super-

gravity with boundary condition
lim ¢(z, ) 2274 = po(x) (1.4.23)
z—0

where A is the scaling dimension of the operator O and z is the radial coordinate in the
bulk of AdS. Once this relation is established, one can then compute correlation functions
as usual by taking functional derivatives.

The great advantage that derives from the correspondence is the fact that it can be
used as a tool to investigate one side working with the other. In the regime we are focusing
onto, the field theory is strongly couple and perturbation theory is useless. But on the
other side the string dual reduces to classical gravity which can then be used as a tool
to investigate strongly coupled field theories. While this is certainly the property that
makes the AdS/CFT correspondence useful in countless applications, we are interested in
a slightly different aspect of the duality. Understanding how the correspondence works and
what are its physical foundations, would probably represent an important step towards

the development of a theory of quantum gravity.

1.4.2 Holographic entanglement entropy

In the regime where the bulk dual is just classical gravity, one can ask if the correspon-
dence is able to tell us anything about information theoretic quantities in the boundary
field theory. Remarkably, in 2006 Ryu and Takayanagi proposed that when a classical
holographic dual is available for a given state of a field theory, the von Neumann entropy
of a boundary subregion is given by a nice geometric quantity [20].

More precisely, for a static situation, consider a time-slice of the asymptotically AdS
geometry. On the boundary pick a subregion of interest A, with boundary dA, for which
we want to compute the von Neumann entropy. The holographic prescription tells us
to look for the bulk surface X,y with boundary dA that minimizes the area. The von

Neumann entropy is then given by

A (Emin)

Sa = 4G N

(1.4.24)
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where G is the Newton constant in the bulk. The formula is of crucial importance for
practical application, as it gives a tool to easily compute the von Neumann entropy in
many situations where it would be inaccessible with other techniques such as the replica
trick. The analogy to the Bekenstein-Hawking formula is striking and once more suggests
that there is some deep connection between gravity and information theory.

When the field theory is in a pure state, we know that Sy = Sgc. This is straight-
forward to see in the holographic picture, where the bulk minimal surface anchored to
0A is the same for A and A°. On the other hand, when the state of the field theory is
mixed, we known that the entropies o a subregion and its complement are different. A
typical example is the thermal state of the field theory that corresponds holographically
to the geometry of an eternal black hole in AdS. In this case the prescription for the
computation of holographic entanglement entropy should be modified by introducing an
additional requirement. The bulk minimal surface should not only be anchored to 0A, it
should also be homologous to A.

With such a prescription at hand, one should then check that it satisfies all the prop-
erties of the von Neumann entropy. This in particular means that all the inequalities
presented in (1.2.2) should be satisfied. Strong subadditivity was checked in [21] while the
Araki-Lieb inequality is guaranteed to be satisfied by the homology constraint. Remark-
ably, for this static situation, the Ryu-Takayanagi prescription has now been proved [22].

The results obtained from this holographic prescription are divergent, this is the con-
sequence of the fact that the boundary of AdS is at infinite proper distance from any point
in the bulk. The correct regularization procedure consists in truncating the geometry at
some finite large distance, this corresponds to the UV cut-off on the field theory side.
Taking the limit where the truncation of the geometry is at infinity is dual in field theory
to the limit where € goes to zero.

Unfortunately, the Ryu-Takayanagi prescription we just reviewed applies only to sta-
tionary scenarios. One would like instead a prescription that can be used in any dynamical
situation. Such generalizations was found by Hubeny-Rangamani-Takayanagi in [23]. For
a field theory state on some Cauchy slice one can define the von Neumann entropy as
before, but now the bulk geometry has Lorentzian signature. In this case one cannot min-
imize the area of bulk surfaces as the area is not bounded from below any more. The new
prescription then requires to find all extremal surfaces homologous to A with boundary
0A and among them the one that minimizes the area. The entropy is then again given by
(1.4.24).

1.4.3 Holographic entanglement structures

One of the interesting consequences of the holographic entanglement entropy prescription
is that under some conditions the Araki-Lieb inequality is saturated, this phenomenon
is called entanglement plateauz. For a field theory in a thermal state, when the region
of interest A is large enough, the minimal surface splits into two terms, one being the

minimal surface which computes the entropy of A¢ and the other the black hole horizon.
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For arbitrary states the Araki-Lieb inequality is known to be very difficult to saturate,
suggesting that the entanglement structure of the field theory in this holographic setting
could be quite special. We will explore this behaviour for qubits systems in chapter 4.

Another interesting consequence of the Ryu-Takayanagi prescription is a further con-
straint independent on (1.2.2). For any three subregions A, B, C holographic states satisfy
the following inequality

Sa+Sg+Sc—SaB—Sac—Spe + Sape <0 (1.4.25)

The quantity on the left hand side is called tripartite information. This inequality will be
investigated for qubits systems in chapter 4 and for some special highly entangled states
in 5.

The results reviewed above suggest that there is a deep connection between bulk ge-
ometric quantities and quantum information on the boundary. More generally, it has
been argued by various recent works that the bulk geometry somehow “emerges” from
the pattern of entanglement of the boundary theory. This entanglement structure, and in
particular its operational interpretation, are the main subjects of this work.

A promising approach to investigations of entanglement structures in holography are
tensor network constructions, see for a general review [24]. An arbitrary quantum state

of N qu-d-its (the higher dimensional generalization of a qubit) can be written as

|) = Z Tivsinyin |115925 s iN) (1.4.26)
01,02,esin

with 1,49, ...,ix € {0,1,...,d — 1}. The state is specified by the coefficient of the tensor
T. Since the dimension of the Hilbert space of such a system grows exponentially with
N (dimH = dV), both analytical and numerical investigations become infeasible even
for relatively small N. Depending on the situations one can then focus attention on
particular structures of 7. An appropriate choice of the tensors used to build the network
leads to states which satisfy an area law for entanglement, making them good ansatz to
approximate ground states of local Hamiltonian. An important example in the context of
holography is the MERA (multi-scale entanglement renormalization ansatz) [25], which
was first related to holography in [26]. Other tensor networks have also been used to
suggest a form of the exact holographic mapping between Hilbert spaces of boundary and
bulk theories [27], and to analyse the connection between holography and quantum error
correction [28]. Tensor networks will not enter directly into the discussion presented in the
main body of this work, but they constitute the natural prosecution of our investigations.
We will comment more on this in the final outlook.

The connection between entanglement and geometry is so deep that it has even be
suggested that it could be upgraded to a full equivalence in quantum gravity. The pro-
posal goes under the name ER=EPR [29], where ER stands for Eistein-Rosen bridge,
referring to geometric connectedness, and EPR for Einstein-Podolski-Rosed, referring to
entanglement. This conjecture as originally formulated is a general statement about quan-

tum gravity which in principle could be independent from holography. Nevertheless it is
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quite natural to imagine an holographic version, where entanglement refers to quantum
correlations in the boundary theory and geometric connectedness to the bulk. If this is
true to some extent, it would be interesting to understand the operational interpretation
of the equivalence. Is there an holographic dual to protocols performed by agents acting
on the boundary? Understanding this potentially striking and fascinating phenomenon is

perhaps the final goal of the kind of investigations presented in this work.



Chapter 2

Entanglement Negativity in Field
Theory

This chapter is a reproduction of the paper Comments on Entanglement Negativity in
Holographic Field Theories [30], written in collaboration with Mukund Rangamani.

This work initiated the investigation of a measure of quantum entanglement called
negativity in the context of holographic field theories. Negativity is a measure of bipartite
quantum entanglement that can be used even for global mixed states, where other measures
based on the von Neumann entropy, such as the mutual information, are not able to
distinguish classical from quantum correlations.

In quantum mechanics negativity can be easily computed and has an operational in-
terpretation. It is an upper bound to the amount of quantum entanglement that can
be distilled from a system. In the context of field theory, negativity was first explored
in [31], which for the case of global pure states established an important relation to Renyi
entropies.

Here we look at holography and after a thorough introduction to negativity and its
properties, we compute the entanglement negativity for the thermofield double state, the
state dual to the eternal black hole geometry in AdS. The answer is a function of the free
energy of the field theory at different temperatures which matches entanglement entropy,
and hence the entropy of the black hole, in the limit of infinite temperature.

We then use this result to compute the negativity for spherical regions in the vacuum
of different field theories, both free and strongly coupled. Interestingly, a comparison of
these results shows that the negativity seems to be smaller at strong coupling. Naively it
is tempting to interpret this result as suggesting that when the fields are strongly coupled
fewer Bell pairs can be distilled from the vacuum. Unfortunately, a rigorous interpretation
along this lines will require a much deeper understanding of the operational perspective
on entanglement in field theory.

For pure states entanglement entropy coincides with the amount of entanglement that
can be distilled from the system, while negativity, which is just an upper bound, is a larger

quantity. In four dimensions the leading contribution to both entropy and negativity is

19
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proportional to the area of the entangling surface, but this term is unphysical as it depends
on the regularization scheme. The logarithmic terms instead are scheme independent
and their coefficients carry important physical information. We conjecture that the ratio
between the coefficients of the universal terms for the negativity and entanglement entropy
is always greater than one, in accordance with the operational interpretation of these
quantities. The conjecture is supported by some explicit examples, but will be falsified
by a counterexample in the next chapter. We will see that under some conditions the
ratio depends non trivially on the topology of the entangling surface and for complicated
topologies can be less than one.

Finally, we comment on a possible connection between negativity and the entanglement
plateaux phenomenon of [32]. This behaviour will be further explored in the chapter 4 in

the case of simple qubits systems.

2.1 Introduction

Quantum mechanics, as is well appreciated, is characterized by an important feature, en-
tanglement. While the colloquial usage of the word “entanglement” often simply refers to
presence of correlations which could simply be of classical nature, nature of quantum en-
tanglement transcends this interpretation. A natural question is to segregate and quantify
in a given quantum state the genuinely quantum parts of entanglement from those that
are inherited from underlying classical correlations.

One way to proceed would be to use the intuition garnered from Einstein-Podolsky-
Rosen (EPR) like entangled states, which are non-product (pure) states in the quantum
Hilbert space. One of the characteristic hallmarks of these states as elucidated by Bell [1]
is that they fail to satisfy the Bell inequality (and hence its generalization, the CHSH
inequalities). We now understand quite well that this means that the entanglement inher-
ent in the EPR state is a genuine quantum aspect and relatedly that one cannot invoke
some local hidden variable (LHV) to describe the quantum state. A-priori one might have
thought that the Bell/CHSH inequalities provide a complete characterization of the nature
of entanglement.

While for pure states this is true, the state of affairs is much less clear in case of mixed
states. Consider a bipartite system in a state p with two Hilbert spaces which we will
refer to as the left and right Hilbert space, Hy, and Hpg respectively. Such a state is called

separable if it can be written as
p=_ pir@p, > pi=1, pi >0, (2.1.1)
i i

otherwise it is called entangled. Physically this definition attempts to encode the fact
that separable states are classically correlated as they can be produced using only local

operations and classical communication (LOCC).! In particular, it introduces a distinction

! LOCC for two parties consists of steps in each of which any party is allowed to perform local mea-
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between the correlations that are classical and those that ought to be considered quantum.

In analogy with pure states above, one would then be inclined to think that even in
the case of mixed states any entangled state violates some Bell inequality. Surprisingly
this is not true, as demonstrated by Werner in [33], where mixed entangled states that
can nevertheless be described by a LHV model were constructed. In some sense, despite
manifesting some quantum correlation, these states ought to be viewed as local as they are
not in tension with the notion of local realism.? Furthermore, if we have access to several
copies of the state then it is sometimes possible using only LOCC to distill a new state that
violates some Bell inequality [35] (see [36] for details on distillation). One might then be
led to the intuition that this process should be achievable starting from any mixed state;
therefore the only states that always satisfy all Bell inequalities are the separable ones.
Unfortunately, even this intuition fails; to put it mildly the boundary between classicality
and quantumness is rather fuzzy with no clear demarcation. The main lesson we wish to
emphasize is one ought to distinguish different notions of entanglement in the quantum
realm.

Because of the intricate nature of entanglement for mixed states, several measures of
entanglement have been proposed. The concept of distillation for example can be used
to define the distillable entanglement as a measure of how much pure entanglement it is
possible to extract from some state using only LOCC. On the other hand the entanglement
of formation quantifies the amount of pure entanglement required to create a given state.?
In case of pure states these measures are equal and agree with entanglement entropy (for a
comprehensive review on entanglement measures see [13]). Unfortunately the drawback is
that these measures cannot be computed because they are given by variational expressions
over possible LOCC protocols. A more pragmatic approach is to therefore consider a
quantity that is computable [37] — this leads us to the consideration of entanglement
negativity which will form the focus of the present investigation. Heuristically, the concept
uses the spectral data of the density matrix* (sometimes called entanglement spectrum)
to ascertain the amount of entanglement inherent in the mixed state (cf., §2.2 for a precise
definition) .

While the above discussion has been firmly rooted in the realm of quantum mechanics,
one expects that many of these issues generalize to relativistic quantum field theories, see
e.g., [38]. Understanding the nature of entanglement in different quantum states in this
context is not only interesting in its own right, but also from the potential connections
with holographic dualities. Indeed, the geometrization of the notions of entanglement

entropy in the gauge/gravity context for holographic field theories as originally proposed

surements and communicate the outcome to the other using classical channels.

2 For a discussion on the properties of Werner states in the context of teleportation see e.g., [34].

3 These measures must be interpreted in an asymptotic sense. They give extremal rates achievable
when one has many copies of the state p.

4 We actually need the spectral data of an auxiliary matrix constructed from the density matrix; we

will be more precise below.
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in [20,39] (and made geometrically covariant in [23]) makes one wonder if there are further
lessons one can learn by understanding the distinct notions of entanglement in the context
holographic field theories.

Moreover, the connections between geometry and entanglement as we now are starting
to understand are perhaps much more intimate. The original arguments espoused in [26]
and [40,41] suggest a close association between entanglement inherent in a quantum state
and the realization of the holographic dual in terms of classical geometry. The relation
between entanglement and the emergence of a macroscopic spacetime, is further bolstered
by the arguments of [29] who suggest an intimate connection between EPR like states
and Einstein-Rosen bridges, succinctly summarized by the catchphrases “ER =EPR” or
“entanglement builds bridges”.’

While these fascinating developments hint at an underlying structure wherein entangle-
ment of quantum states plays an important role in emergence of macroscopic geometry and
gravitational physics from the microscopic quantum dynamics, it is fair to ask whether the
different notions of entanglement as described above have any useful intuition to impart
in explicating the general structure. Does the spacetime geometry care if the entangle-
ment is EPR like, or if it undistillable, or if the quantum entanglement is contaminated
by classical correlations? These are, we believe, interesting questions whose answers may
potentially shed some light into the geometrization of quantum entanglement.

In this chapter, we undertake a modest step in this direction by studying the properties
of entanglement negativity, which as previously mentioned is a computable measure of
entanglement, in relativistic field theories. We begin in §2.2 by reviewing the necessary
definitions in quantum mechanics and use these to guide our intuition for negativity in
simple examples. We first show quite generally that the entanglement negativity of a
thermofield double state (the pure entangled state in a tensor product Hilbert space) has
a very simple expression in terms of the difference of free energies.

While this result is a corollary of a more general result known already in [37] relating
the entanglement negativity of pure states in a bipartite system to a particular Renyi
entropy (at index 3) of the reduced density matrix for one of the components, it casts the
general result in simple terms, which in turn allows us to extract some lessons. We argue
for instance in §2.3 that it allows us to recover the negativity of the vacuum state of a CFT's
for a spherical partitioning of the spatial geometry. In particular, employing the conformal
mapping developed in [48], we give results for the entanglement negativity for spherical
regions for d-dimensional CFTs. In this context it bears mentioning that the results
for entanglement negativity have been obtained in 2-dimensional CFTs by employing
the replica trick in [31,49]. These results are of course more powerful and express the
computation of the entanglement negativity in terms of twist operator correlation functions

for cyclic orbifolds. In §2.4 we make some general comments on extracting the negativity

5 See also [42] for suggestions relating growth of entanglement with that of spacetime volume created
thus using analogies with tensor networks and [43-47] for attempts to recover gravitational dynamics from

quantum information.
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in holographic field theories using the generalized gravitational entropy prescription of [22]
and comment on some general lessons one can learn from these analysis. We conclude with

a discussion of open questions in §4.6.

2.2 Entanglement negativity

While our ultimate aim is to explore quantum information theoretic ideas in the holo-
graphic realm, we first however need to explain the basic concepts. We therefore begin
our discussion with a review of the salient issues relevant for discussing entanglement neg-
ativity in quantum mechanics, and postpone generalizations to relativistic quantum field
theories to a later stage.

As discussed in §4.1, given a density matrix describing a mixed state of some bipartite
system it is natural to ask whether there is any way we can reveal if it is separable or
entangled. More generally one could hope to find a criterion to distinguish different kinds
of entanglement in general, which could prove useful in various contexts as discussed
hitherto.

A powerful tool in this direction is the so called positive partial transpose criterion
(PPT). Consider the set-up described in §4.1 where we have a bipartite system® in a
tensor product Hilbert space Hy ® Hpr. We pick a basis in the space of each subsystem
| tq) and |ly) with a € {1,2,--- ,dim(Hg)} and a € {1,2,---,dim(H )}, making clear
left-right distinction in our notation. A general density matrix p (or indeed any operator

O) in the tensor product Hy ® Hpr has matrix elements in our chosen basis

Pacps = (Talalp|tslg) . (2.2.2)

On occasion we will need to also talk about the reduced density matrix of one of the
components Hp 1. We define then pf = Try(p) as the reduced density matrix inherited
for the right subsystem from p (similarly p”). Given such a density matrix, one defines
the partial transpose with respect to the one of the systems, which w.l.o.g. we take to be
the left system.” Denoting this partial transposed density matrix as p' we have its matrix

elements in the aforementioned basis to be

Pabs = Papba = (Talg|pltsla) . (2.2.3)

If pI" has non-negative eigenvalues then p is said to have positive partial transpose (PPT).

With these definitions one has the following criterion due to Peres [52]

p is separable = pis PPT

6 We focus exclusively on bipartite entanglement. Attempts to understand multipartite entanglement

in the holographic context can be found in [50] (see also [51]).
" With this understanding we denote the partial transpose of p by p', economizing notation by dis-

pensing with indicating that the left subsystem was transposed.
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The converse is true only for two-qubit (and qubit-trit) systems but not for higher dimen-
sional Hilbert spaces [53].

As discussed earlier all distillable states are in direct conflict with local realism, so one
could think that only separable states are undistillable. Here the PPT criterion comes

strongly into play showing that this intuition is wrong. In fact it was proved in [54] that
p is PPT = p is undistillable

For this reason these states are called bound entangled in contrast to free entanglement
that can be distilled. In other words if a state is bound entangled it is not possible
to extract pure entanglement from it using only LOCC. The authors of [54] proposed
an interesting analogy with thermodynamics. To prepare a bound entangled state some
amount of entanglement is necessary, but the process is irreversible, as after the state is
produced it is not possible to distill the initial entanglement back.

It is then reasonable to ask whether a PPT state, which is undistillable, is local in the
sense of Werner. Indeed Peres conjectured in [55] that this is the case, i.e., if a state is
PPT it cannot violate any Bell inequality. The question remained open for fifteen years
even if strong evidence has been found in its support (cf., results in [56,57] and references
therein). Very recently the conjecture has finally been disproved in [58] where a small
violation of a Bell inequality has been found for a particular PPT state. This shows that
local Werner states cannot be exactly identified with undistillable states.

As we see above, while the PPT criterion per se is not conclusive in identifying local
entanglement, it can be used to define a measure of the amount of distillable entanglement
contained in a state. This measure, called negativity, was introduced first in [37] and will
form the focus of our investigation.

Given a density matrix p one defines the negativity as measure of entanglement based

on the amount of violation of the PPT criterion® [37]

Negativity: N (p) = HPFH21—1 , (2.2.4)
Logarithmic Negativity: &(p) =log|p" |1, (2.2.5)

where [|O||1 denotes the trace-norm of an operator
10| = Tr( of o) . (2.2.6)

Recall that operationally the trace norm computes the sum of the absolute values of the
eignevalues of an operator ||O|[1 =Y, |Ao.l, i.e., ||O]}1 = Tr|O|. As a result one is effec-
tively computing a “signed trace” with non-trivial weighting for the negative eigenvalues

of the partial transposed matrix p'.

8 A comment about the notation: the negativities depend not only on the state p but also the biparti-

tioning. We refrain from explicitly indicating the latter to keep the notation clean.
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For completeness we also recall the notions of entanglement entropy and entanglement

Renyi entropies:

S(p) = —Tr (plog p) = lim SV (p),
q—1

1

—q

5 (p) = 3 logTr (p7) , q€Zy (2:2.7)

From the definition of the trace norm it then follows that the negativity provides a

measure of the number of negative eigenvalues of the density matrix p''. Indeed, passing to

(

a Schmidt basis, with eigenvalues of pI being {AZ(»JF), A j_), Ok }, with the non-zero eigenvalues

separated by their parity, we see that
Te(p") =Y AP + 327 =1=m(p). (2.2.8)
( J

Here and in the following we will assume that the density matrix to be normalized as
indicated. Note that while the eigenvalues of p! are different from those of p generically,

the trace is invariant under partial transposition. On the other hand
A= [P D 1) =) (2.2.9)
=3 — 17 — 17 RS A o
1 J J

is the sum of the absolute values of the negative eigenvalues of p', explaining the termi-
nology. At the risk of being pedantic, let us note that the negativity is a property of the
original density matrix p (the partial transpose p' is just a computational aid).
Properties of negativities have been discussed in the literature on quantum information,
cf., [37,59-62]. By construction both the negativity and the logarithmic negativity fail to
detect bound entangled states and for this reason they do not quantify the total amount
of entanglement inherent in a mixed state of the system. Furthermore it is important
to note that even in case of pure states these quantities do not in general agree with
entanglement entropy. Specifically, the logarithmic negativity gives in general a larger
measure of entanglement, as we will see explicitly below, while the negativity reduces to
one half of the entanglement robustness’. Agreement with entanglement entropy on pure
states is a property commonly required in the construction of an axiomatic entanglement
measure'?, but the case of negativities is different. This fact distinguishes negativities from
most entanglement measures, such as entanglement of formation and distillation, which
instead reduce to entanglement entropy for pure states. Nevertheless negativities can be
used to quantify entanglement provided that they do not increase under any LOCC, i.e.,

they are entanglement monotones. This is indeed the case, as proved in [60]'!.

9The robustness of entanglement can be understood as a measure of the amount of noise required to

disrupt the entanglement of the system. See [63] for more details.
0For more details on the axioms that have to be satisfied by entanglement measures see [13] .
1Tt was actually shown that negativities are entanglement monotones under a larger class of operations

called PPT-operations. This is the class of all operations that map the set of PPT states to itself. For

further properties of negativities relatively to PPT-operations see [59].
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The previous properties are shared by both negativities, but each of them has peculiar
properties of interest by itself. The logarithmic negativity for example has been shown
to give an upper bound to the distillable entanglement of p and to satisfy an additivity
relation. For a separable state of a bipartite system of two parties A and B one indeed
has

&(pa® pp) = E(pa) + &(pB) - (2.2.10)
On the other hand the negativity can be related to the maximal fidelity that can be

achieved in a teleportation protocol that uses p as a resource.

It is interesting to note that the negativity satisfies an interesting disentangling theo-
rem. Consider a tripartite system ABC' in a pure state | U 4p¢) and denote the negativity
between A and BC as A4y pc and the negativity between A and B as A p. It was re-
cently proved in [61] that if and only if .4 pc = .44 then there exists a partitioning of
B into B; and Bs such that the state of the whole system factorizes

| Wapc) =|¥aB,)® |Vp,c) (2.2.11)

It is an immediate consequence that under the hypothesis of the theorem the negativity
between A and C' (denoted as .4¢) is zero, equivalently the reduced density matrix
obtained from | ¥ 4pc) by tracing out B factorizes: pac = pa ® pc. Furthermore, in this
particular case, one has the saturation of a monogamy inequality for the square of the

negativity previously proved by [62] for systems of three qubits
Nipe > Nig+ Mo (2.2.12)

The authors of [61] conjectured that this inequality should be true in general giving nu-
merical results in its support. Finally it interesting to mention that contrary to what one
could expect, the previous inequality does not hold for the negativity itself.

To build some intuition for the negativity, we would like to understand its properties
in simple situations. It should be no surprise to the reader that negativity can be non-
vanishing even in pure states. After all the simple Bell state for a 2-qubit system we can
have an EPR state % (M1 + [44)) which is pure, but entangled. It is easy to verify that
for this state the negativity is % Perhaps more usefully, the logarithmic negativity is
log 2 which is also the von Neumann entropy for the reduced density matrix for one of the
qubits. It is easy to see that this result is not restricted to two-qubit systems. One has
the following general result:

Logarithmic entaglement megativity of a maximally entangled state V4. in a bipartite
system equals the Entanglement entropy of the reduced density matrix pTLn’ﬁ; for one of the
subsystems.

8 (tmar) = S(pEL) (2.2.13)
While this statement illustrates the basic feature of this particular measure of entanglement
it is useful to look at a simple generalization that will allow us to build some intuition for

the negativity.?

12 We find it convenient to notationally distinguish pure and mixed states and therefore denote a pure
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2.2.1 Negativity in thermofield state

Let us consider the thermofield double state | ) in with Hr, g being two copies of the

same physical system. Working in an energy eigenbasis with spectrum {E;} we have!?

N
W) = ) 3 e3P e, ) (2.2.14)
a=1

The state in the tensor product is of course pure, but entangled. We want to take a

measure of this entanglement, using the logarithmic negativity & (v) with

N

_8¢
Y= |V)s(¥|g= Z 2 (Bt Bo) e, 1) (| (2.2.15)
It is then trivial to see that
N
IB B 7 Z Q(Ea+Eb) |ta [b> <tb [a| (2216)
ab=1
and
f LN~ b(EaE
Yrayl s = e PWBatE) e 1) (vl 2.2.17
BY B Z(ﬂ)2ab=1 |b ><b | ( )
whence it follows that
2(3)°
&(1hg) = log Zfﬁ) = B(F(B) — F(B/2)) (2.2.18)

with the final result written in terms of the free energy F(5) = —% log Z(3).

The logarithmic negativity of the thermofield state 13 is proportional to the difference
of free energies of the system at temperature 7' and 27 respectively.'* This is main
observation which we will exploit in the sequel to obtain some insight into the nature of
entanglement in quantum field theories. On the other hand the reduced density matrix
pg”’L for the right or left systems has a von Neumann entropy S(p4) which is obtained
directly from Z() itself. In the limit 5 — 0 we recover the previous assertion (2.2.13) for

maximally entangled states.

2.2.2 Renyi Negativities

For the thermofield state there is a simple relation between the negativity of the total

density matrix and that of the reduced matrix of one component. This in fact generalizes

state density matrix as ¢ =|U)(¥|.

13 We have for simplicity assumed that we are dealing with a finite system where dim(Hz) = dim(Hg) =
N.

14 The simplicity of the final result in terms of the free energy difference is the reason for preferring
the logarithmic negativity over the negativity itself. We henceforth will focus on & and refer to it as the

negativity in the rest of our discussion for convenience.
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to pure states of the bipartite system quite simply. To get further intuition for the neg-
ativity, it is worthwhile to follow the line of thought that led to the replica analysis for
entanglement entropy. Just as we consider the moments of the density matrix in order to

compute its von Neumann entropy, we now examine the moments of the partial transpose

ph.

Consider following [31] the notion of Renyi negativity for a density matrix p:
qe )\ 2e

= (A s (W) ee2zy
4o )\ 2o

() -2 () wezzi 41

As is clear from the above definition the parity of the integer ¢ plays a crucial role.

exp (g<q>(p)) = Tv (ph)? = (2.2.19)

Should we wish to employ the replica construction and recover the logarithmic negativity
from these Renyi entropies then we will need to exclusively use the even sequence. The
logarithmic negativity is obtained by an analytic continuation of even Renyi negativities
to gc — 1, i.e.,

E(p) = lim &) ¢ e2Z, (2.2.20)

qe—1
Using the definition (2.2.19) we can immediately generalize our considerations for the

thermal state to any pure state ¢ =|¥)( | of a bipartite system. We have [49]
£6) () = 2(1 - ) SUD (™),
&) () = (1 — o) S (p""). (2.2.21)

In particular note that
&) = SU2 (pRr), (2.2.22)

as the generalization of our previous assertions (2.2.13) and (2.2.18). We note that the
Renyi negativities have been used to extract the negativities in two dimensional conformal
field theories (CFTs) in [31,49]. The technical tool involved is to appropriately map the
computation as in the case of entanglement entropy to that of computing twist operator
correlation functions. We will have occasion to comment on some of their results in due

course.

2.3 Negativity of a CFT vacuum

Having defined the basic quantity of interest let us now turn to its computation in rela-
tivistic field theories. To our knowledge the only study of negativity in such as context
are the aforementioned works [31,49] who examine its behaviour in 2d CFTs. Our interest
is in understanding properties of negativity more generally. In what follows we explain
how one can exploit (2.2.18) to find explicit results for a certain choice of bipartitioning
of the vacuum state of a CFT. Subsequently we describe how to tackle the problem more
generally.

Consider a relativistic QFT in d-dimensions on some background geometry B. As

remarked earlier in §4.1 we want to ask how to quantify the entanglement of the vacuum
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state in this theory. For the present we are going to use the concept of logarithmic
negativity introduced in §2.2 to serve as the measure of interest.

A natural way to proceed is to consider a spatial Cauchy slice . and consider some
region A C X. One can ask how degrees of freedom in A are entangled with those in
A =¥\ A. By now we have a good idea about the entanglement entropy associated with
the reduced density matrix p4 = Tr4c(|0)(0|) either by direct field theory computation
in d = 2 using the replica trick or using holography in all d.

To be be specific let us examine two situations which are particularly simple, where
the field theory calculation boils down effectively to a spectral computation. Consider a
conformally invariant field theory which we will place on one of two background geometries

for the present:

(i). By = R&™LL (Mink): | 0,) is the Minkowski or Poincaré vacuum and A is a ball

shaped region centered w.l.o.g. at the origin

AcCR¥l: r<R, dsg = —dt* +dr* + r*dQ5_, . (2.3.23)

(ii). By = S471 x R (ESU). |0,) is the global or vacuum and A is a polar-cap region
about the north pole of S%~!

Acstl. g<oy, dsp = —dt* + R* (d6® +sin® 0dQ7_,) . (2.3.24)

The reasons for using R to denote the size of the ball as well as the curvature radius of the
sphere in the two distinct cases will become clear momentarily. For these two cases we will
exploit a well known fact about the reduced density matrix p4 to make some inferences
about the negativity.

Let us begin by recalling some salient features elucidated in [48]. For our two regions
the domain of dependence D is conformally equivalent to the hyperbolic cylinder Hy =
H;_1 x R, with the curvature radius of the hyperbolic space Hy_; being R. Since the
entanglement structure is a property of an entire causal domain, not just a spatial region,
we can as well think of €(p4) as a function defined on D.1?

With this understanding the conformal mapping of [48] implies that the reduced den-
sity matrix p4 is unitarily equivalent to the thermal density matrix for the CFT on the

hyperbolic cylinder'® Hy
pa=UpsU', B=27R. (2.3.25)

We note that the temperature is set by R and in particular it is independent of 64 for
the theory on ESU. This is intuitive on dimensional grounds, though we should note that

the angular dependence is implicit in p4. For e.g., in computing entanglement entropy a

15 In the language of [64] we should think of the negativity also as a wedge observable. Thus it is also

subject to the constraints of causality as described therein for entanglement entropy.
16 We refer the reader to [48] for explicit expressions of the unitary map.
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04 dependence will arise by relating the UV cut-off on ESU with the IR cut-off for the
CFT on the hyperbolic cylinder. It is perhaps more instructive to note that the modular
Hamiltonian defined via p4 = e 4 has an explicit dependence on the angular extent of
the polar-cap (see e.g., [65]).

We interpret this result as follows. The vacuum state of the tensor product H 4 ® H 4e
for the aforementioned choice of regions is expressible in terms of the thermal state on the

hyperbolic cylinder. Schematically, we can write

¢0‘Mink, ESU — ¢5’H ’ (2.3.26)

From this observation using (2.2.18) we infer that (for either |0,) or [0g4))
E (o) =27 R(Fu(2rR) — Fu(mR)), (2.3.27)

where Fy is the free energy of the CFT on the hyperbolic cylinder.

So the problem of computing negativity in the vacuum state of a CFT can thus be
mapped to computing the spectrum on the hyperbolic space. As long as we have this
spectral data we can then immediately infer the negativity of the vacuum. It will turn out
that the negativity has an inherent UV divergence and necessitates a UV regulator for its
computation.

To ascertain the divergence structure we note that a UV regulator on B; maps to an

IR regulator on Hy by virtue of the conformal mapping. We have from the analysis of [48]

2 2
Ly = log <€M'Rk> , Ly =log <€E§J sin 9A> , (2.3.28)

in the two cases of interest. Here Ly is the IR regulator of the length scale in the hyperbolic

the relations

cylinder and eg is the UV cut-off in the background indicated. This mapping between
the cut-offs can be used to express the volume of the hyperbolic cylinder in terms of field
theory data on By. Denoting by Vol(H,_1) the spatial volume of a unit radius of curvature
hyperbolic space,using the explicit expression mapping the cut-offs (2.3.28), one obtains

the desired expression for By = Mink,,

R d—1
& _ 2T 2
Vol(Hg-1) = wq—2 / dx (2% — 1)% , Wy—9 = Fdjl
1 ()
d—2 d—4
Wa—2 R (d—2)(d-3) (R
il I S /A S et Vv 9.3.2
d—2 <e) 2(d—4) € et (2:3.29)
where
d_q1 2 2R
(et (=1)271 = log <> , de2Z
Vaniv = \f ( 2 ) )d o € i (2.3.30)
'e | s, de2z, +1

Similar expressions can be derived for B; = ESUy; all we would need to do is replace
the upper limit of the integral in (2.3.29) by the appropriate cut-off expression given in
(2.3.28). Armed with this information we now present some expressions for the negativity

using various results already present in the literature.
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CFTs in 2 dimensions: In d = 2 we have a simplifying feature that Hy is flat. Indeed
using the result F(T') = — % (cz +cg) T? L for a thermal CFT at temperature T in spatial

volume L we find

i B = Mink

c
o) =SlogX, X={
=Fsinfy, B = ESU

(2.3.31)

One may alternatively have derived this answer by using (2.2.22) and the familiar result
S = £ (1 + %) log X for CFTs.

Free CFTs in various dimensions: The second example where we can explicitly
compute the negativity is to use the results for the free energy Fy of free fields in various
dimensions. Results for free scalars in all dimensions were derived initially in [66] and
analogous results for various theories in d = 3 were obtained in [67]. From here we can
immediately read off the answer for the Renyi entropy at ¢ = % and thence the negativity
using (2.2.22).

For a free field of mass m in R>! one has the free energy on H at temperature J3

explicitly in closed form [67] in terms of the function

o0
Lyq(m) = / dA X\ tanh" (7 \) log (1 — ety )‘2+m2) . (2.3.32)
0
Here n = £1 encode the statistics (n = +1 for bosons and 1 = —1 for fermions respec-

tively). One then finds that the negativity for free massless fields are given as

Vol(H.
sty =Y (1 0) - 27, (0)
Vol(Hy) [* 1—ne 27X
= O7rQ)/O dA X tanh" (7 \) log <(1_Z:_ﬂ>\)2> . (2.3.33)

Note that the integral is convergent and all the divergences are encoded in the pre-factor
Vol(Hs), which we have already expressed in terms of the relevant variables in Eq. (2.3.29).
The expression for &(1)4) would be similar with an appropriate replacement of the volume
of the hyperbolic space.

Let us also record the expression for the entanglement entropy for the reduced density

matrix p4 for comparison. One has from [67]

s - 245 |

(T—m)¢B)
7,1(0) — ——=——=| . 2.3.34

We see from (2.3.33) and (2.3.34) that the divergent terms in the negativity are (struc-
turally) the same as in the entanglement entropy; the numerical coefficient however is
rather different. Let us define the ratio

Xy =

C[W’ (2:3.35)

Cuniv [S(p4)]
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where Cypiv[x] denotes the coefficient of the universal term Vyn;y occurring in the expression
x. We claim that this quantity gives a precise measure of the negativity for |0) in terms
of the entanglement entropy of the reduced density matrix p4.

For a free massless scalar in d = 3 we find X:;free ~ 2.716, while for a massless fermion
Afree ~ 1.888. We note that X3(m) defined formally for massive fields is a monotonically
increasing function of m. We will return to this ratio below once we also obtain analogous
results from holography for strongly coupled CFTs.

Results for Renyi entropies for spherical entangling regions are also known for free
SU(N) N = 4 Super-Yang Mills theory in d = 4 [68]. From these results we find

0= [t ()
S(p4) ~ N* [ — —log <6>] (2.3.36)

This is a peculiar example where the structure of divergent terms in the negativity for
the ground state differs from that in the entanglement entropy of the reduced density
matrix induced in the spherical region A.!7 From the expressions above we find that
Xy = ‘2% ~ 1.708 for free N' =4 SYM.

Holographic CFTs in diverse dimensions: Our final example is the class of holo-
graphic field theories in various dimensions. While the computation of the spectrum of
an interacting CFT on H is in general unfeasible, holography provides us with a simple
answer when the CFTs in question have (a) large central charge and (b) a sufficient gap
in the spectrum. The reason is that the computation of the free energy at temperature
B amounts to finding an asymptotically locally AdS;41 geometry whose boundary is Hg,
with the Euclidean time direction having a period 8. The relevant geometry is well known,

it is the so called hyperbolic black hole in AdS;y1 [69]. The bulk metric is given as

dr? 2 raNd—2 [ r2

ds® = — Ade()dt2+—+r v, . fr)=5——(— (+—>—1
f(r) Ha Ras (7" ) (Ras

(2.3.37)

whose conformal boundary is indeed H with the desired spatial curvature R. r is the

location of the horizon and we have explicitly kept the AdS length scale £xq5. We note

that the combination of this length scale and the (d + 1)—dimensional Newton’s constant
d—1

G(dH) gives the effective central charge ceg of the dual CFT: cog = #d(jd“)‘

This geometry has in fact been used before to compute the Renyi entropies for holo-

graphic field theories in [70] and we can in fact use their results to infer the behaviour of

17 We find this rather peculiar in light of the conformal mapping described above. Given the free
scalar /fermion and holographic results one might have been tempted to consider the ratio of the negativity
to the entanglement entropy en masse, without isolating the universal part (assuming both computations
be regulated in a similar fashion). We thank Horacio Casini and Tadashi Takayanagi for useful discussions

on this point.
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the negativity directly. We first note that the black hole thermodynamic data are given

in terms of the geometric parameters as

dri —(d—-2) Eids 1 d—1
= S = Vol(H;_1) . 2.3.38
41 Rlpqs T+ ’ 4G§lv+1 "+ ol(Ha-1) ( )

Given that we know the free energy and the entropy, we can invoke standard thermody-
namic relation S(7") = —g—g to obtain the final result [70]

& (1hy) = T ceig VOl(Ha—1) X3 = S(pa) X3, (2.3.39)

where the dimension dependent coefficient X (?01 for holographic CFTs is a simple function

of the spacetime dimension

1 2 d = d?
ol — (2 2472 (1 + 22) — 1) . ma= <1 iy 1-5+ 4> : (2.3.40)

This function interpolates rather mildly between XQhOI = % and limg_,o Xéml =(e—1)~

1.718, hinting that up to an overall multiplicative renormalization much of the information
is already contained in the entanglement entropy.

It is also curious to note that in d = 3 one can compare the free field answers to the
strong coupling results obtained above.'® For a free scalar field we find X! a~ 0.601 Afree,
while for a free Dirac field the proportionality is larger X:?Ol ~ 0.864 X?free.

It would be interesting to understand this ratio which suggests a decrease in (distill-
able?) entanglement in the strong coupling regime from first principles. The ratio of our
measure at weak and strong couplings % can decrease either by the total entanglement
being reduced at strong coupling or more simply by just the negativity decreasing. In the
latter case one would only find a decrease in the amount of distillable entanglement at
strong coupling. Ascertaining which of these scenarios is realized might provide new clues
in the relation between geometry and entanglement.

A similar comparison for N’ = 4 SYM gives a much more intriguing result A ~
0.98 Xfee, where we switched to using the ratio of the coefficient of the universal logarith-
mic terms (2.3.35) owing to the non-trivial behaviour of the free theory answer (2.3.36).
In this case it is rather curious that the free field result undergoes a very mild reduction
as we crank up the coupling. Similar comparisons for the Renyi entropies of N' =4 SYM

at different g are described in some detail in [71].

2.4 Holographic negativity: general expectations

Having understood the basic features of entanglement negativity in the vacuum state of a

CF'T for bipartitioning by spherical regions, we now turn to more general situations. Most

18 Since we are considering ratios of the negativity to the entanglement, the precise normalization of
central charge ceq is immaterial, unlike the case when we compare the entanglement entropy at weak and

strong coupling.



2.4. Holographic negativity: general expectations 34

of the discussion below will be of a qualitative nature, devoted to explaining some of the

general features.

2.4.1 Arbitrary bipartitions of pure states

Let us start with pure states | ¥). Once again we can focus on bipartitioning a Cauchy
slice of the background geometry for the field theory as ¥ = AU A°. We can then relate
the negativity & (1) to the Renyi entropy S(1/2)(p4) (for the bipartition H4UH 4c). Hence
as long as we are in a position to compute the Renyi entropies for non-integral values, we
would be able to ascertain the negativity.

To obtain the Renyi entropy at index half, we follow the the holographic computation
of [22].19 For an arbitrary region A we therefore consider replicating the background
geometry B to B, on which we place our field theory. B, would as usual be characterized
by having branch points inside A (and its images under the replica construction). Having
obtained the answers for integral ¢ which involves finding bulk saddle points with boundary
B, we then analytically continue to ¢ = % A-priori it is not clear that this last step can
be carried out for all choices of A.

One can infer the following about the negativity in pure states of a CFT from the basic

definition even in the absence of an explicit computation:

e The negativity in a pure state is divergent with the leading divergent term scaling

like the area of the entangling surface 0.A.

e The structure of the sub-leading divergent terms is identical to that encountered
in the computation of the entanglement entropy for the reduced density matrix
pA in holographic field theories. This follows from the fact that the divergent terms
encountered in the evaluation of the on-shell action in gravity during the computation

of the Renyi entropies is independent of q.

e Perhaps more importantly the value of the negativity & (1) is in general larger than
the entanglement entropy S(p4). The difference we conjecture should be in a geo-
metric factor. To wit, the ratio X4 defined analogously to (2.3.35) should depend

just on the geometry of the entangling surface 9.A.

2.4.2 Mixed state negativity

In principle in the holographic discussion we do not need to restrict attention to pure
states. In fact, given that the negativity is naturally intended to test mixed states, one
ought to be considering density matrices p and attempt to compute their negativity. This

as far as we know has been only achieved in d = 2 CFTs in [49]. While we have no concrete

19 At this stage we have to restrict states | ¥) to have a moment of time reflection symmetry and at
this preferred instant of time. A general prescription for computing holographic Renyi entropies (even for

integer ¢) in time-dependent states is not available at present.
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computation to report in this context, it is worth recording various cases of interest for
future exploration.

The general situation which one can consider can be motivated in the following manner.
Given a state in some quantum field theory, we focus on some region A lying on a particular
Cauchy slice. By integrating out the degrees of freedom in A¢ = ¥\ A we obtain the
reduced density matrix p4 as usual. Now we further bipartition A itself, i.e., divide
A = Ap UAg. With this decomposition at hand we define the negativity & (p4) as before
by partial transposing the part of the density matrix associated with Ajp. As concrete

examples consider:

(a). Take A to be the spherical region of size R in R?! considered in §2.3 in our previous

construction and pick any two mutually adjoining regions for Ay, and Ag respectively.

(b). A itself could be the composed of two disconnected regions which we can associate

with the bipartitioning of interest.

¢). A C Xg in the thermofield double state | ¥)s € H; ® Hr. One can attempt to
B
quantify the negativity of pg for the bipartition defined by Xp = AU A°.

For these situations it no longer suffices to compute a particular Renyi entropy for
some reduced density matrix. Instead one computes the Renyi negativities for the density
matrix p4, and analytically continues the even sequence of these down to ¢¢ — 1 as
explained earlier. The state of the art is the computations of [49] in d = 2 CFTs for certain
specific configurations. For instance, for A4 C R being a segment of length ¢ bipartitioned
into two segments of length £« and ¢ (1 — «) respectively the negativity was found to be
&(pa) = § log [a (1-a) g] The computation was made possible by explicit computation
of twist operator correlation functions in d = 2. We refer the reader to [49] for a discussion
of other configurations and corresponding results for finite systems, disjoint regions, etc..

It should be possible to carry out in some specific holographic situations a direct
computation of the relevant quantities. We postpone this to the future, concentrating at

present on the general lessons to be learnt from holography.

Bipartitioning of A and phase transitions?: Let us start with cases (a) and (b)
described above where A is partitioned into Az, U AR (case (c) is elaborated upon in §4.6).
In such cases one commonly considers the mutual information I(Ag, . Az). This is defined
in terms of the entanglement entropy for the reduced density matrices induced on the two

components:

I(AL, AR) = S(pay) + S(pag) — S(pa) - (2.4.41)

If 0AL NOAR # () as in case (a), then both the mutual information and the negativity
diverge as the area of this common boundary owing to the UV degrees of freedom in its

vicinity.
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There is an interesting phenomenon that occurs for holographic theories?”

in case (b)
where A is composed of two disjoint regions. The mutual information vanishes to leading
order in ceg when the regions are widely separated [39]. In the holographic construction
this occurs because one has to pick the globally minimal area surface (subject to boundary
conditions and the topological homology constraint), which allows for phase transitions.
Moreover, this behaviour is well understood in d = 2 in large cog = ¢ CF'Ts in terms of
a phase transition in Renyi entropies for widely separated intervals [72,73]. To understand
this let us describe the region by its end-points as A = [u1, v1] U [ug, v2] C R. The compu-
tation of the Renyi entropy S@ involves computing the four-point correlation function of

Z, twist operators 7y

SO (Ta(ur) To(vr) Ty(uz) Ta(v2) ) (2.4.42)

(v1i—u1) (v2—u2)
(uz—u1) (va—v1)
scale invariant factor). At large central charge c this correlation function undergoes a phase

transition at x = % This is seen by decomposing the above using the OPE expansion

which depends only on the cross-ratio x = € [0,1] (up to some universal

and evaluating the contributions of the conformal block in a saddle point approximation
(valid for large c¢). For small z the result is dominated by the s-channel factorization but
for z > % the t-channel factorization takes over. In the bulk the transition is between a
single connected surface and two disconnected surfaces computing S(.A).

One might anticipate that a similar behaviour will pertain in the negativity as well

since to compute the negativity one instead evaluates [49]
éa : <’7:1€ (ul)’i:]e (Ul)’i:]e (UQ) ’7:16 (UQ) > (2443)

Up to a switch of the insertions ug <> v the computation is very similar to the one required
for Renyi (2.4.42). The correlator (2.4.43) has a non-trivial dependence on the cross-ratio
x, in addition to some universal contribution arising from scale invariance. This seems to
suggest that there ought be a similar phase transition in the negativity at x = % for large
central charge theories.

The argument however appears to be a bit more subtle than suggested above.?! To
see the issue first consider the four-point functions relevant for the Renyi computation

(2.4.42). By a suitable conformal transformation we map this to
(74(0) To(2) Tq(1) Ty(o0) ) = Fy(x) (2.4.44)

and we recall that 7, is a twist or anti-twist operator with dimensions

= c 1

20 A necessary condition in field theory terms is that the field theories have large central charge ¢ >> 1

(so as to admit a planar limit) and a low density of states for energies below a gap set by c.
21 We thank Tom Hartman and Alex Maloney for discussions on this issue.
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It is sufficient to understand the behaviour of this function, since one can by utilizing the
swap ug <+ v map the four-point function required for the negativity (2.4.43) to above.

Tracking through the conformal transformations one finds [49]

T

(Ty(u) Tyo) Tofun) Ty(w)) g Fa (1)
T (1o = (2.4.46)

(Tq(u1) Ty ) Tg(v2))

We thus have a direct link between the two computations and all we need is the

behaviour of the function F,(z). One has control on this function for = € [0, 1] from the
analysis of [73] in the large ¢ limit (cf., footnote 20), which can be used to argue that
the Renyi entropies undergo a phase transition. To make an argument for the negativity
however requires that we also control the function outside this domain. It is tempting to
conjecture that the phase transition does indeed happen and moreover one encounters a

similar behaviour in higher dimensions. We leave a more detailed analysis for the future.

2.5 Discussion

In this chapter we have focussed on properties of entanglement negativity, defined as a
measure of distillable entanglement in a given state of a quantum system. The rationale
for its definition lies in understanding the entanglement structure of mixed states. To gain
some intuition for this quantity we explored its properties in simple states such as the
vacuum of a CFT in various dimensions. While we laid out some general expectations for
the behaviour of negativity in holographic field theories more generally, we did not offer
any concrete computations in supporting evidence. We hope to remedy this in the near
future. It is nevertheless useful to take stock and examine some of the questions posed by
the analysis we have undertaken.

First of all, it is interesting to ask if there is some intrinsic meaning to the geometric
pre-factor X4. Since & provides only an upper bound on the distillable entanglement,
what physical interpretation, if any, should be ascribed to its being greater than the
entanglement entropy? Can one think of X4 cef as a measure of the effective number of
Bell pairs that can be distilled out of a pure state in a CFT?

We have also seen earlier that this function renormalizes and for spherically symmetric
regions X4 it was smaller (in magnitude) at strong coupling. Does this reduced amount
in distillable entanglement have a fundamental significance in how spacetime geometry is
related to the presence of entanglement? It would be instructive to know whether one can
formalize some statement along these lines in a quantitative fashion. At a more prosaic
level it would be interesting to understand this function both as a function of the state
as well as the geometry of the region A.

Secondly, all of our discussion has been restricted to density matrices at a moment
of time symmetry (or in special cases static density matrices). This allowed us in the
general context to make use of the generalized gravitational entropy construction of [22]
to compute the Renyi entropies and negativities for integer values of the index q. These are

clearly special situations and one would like to be able to make statement for time-evolving



2.5. Discussion 38

states. As in the case of entanglement entropy extending the construction to dynamical
situations could perhaps teach us some new lessons about spacetime and entanglement.

As a final comment, we turn to the situation where A is a single connected region,
but one has a mixed state on the entire Cauchy slice ¥ (denoted py) (case (c) in §2.4.2).
As remarked earlier one of the main reasons to focus on negativity is to understand the
precise nature of entanglement in mixed states. In the holographic context one encounters
an interesting feature for the entanglement entropy of reduced density matrices p 4 induced
from a parent thermal state. When A is a sufficiently large region of the Cauchy slice one
finds an interesting phenomena dubbed entanglement plateaux [32]: S(pa) = S(p.ac)+Spy,
i.e., Araki-Lieb inequality [74] is saturated. This behaviour has been argued to be robust
in holographic field theories for finite systems at large ceg.

One can interpret this to mean that the entanglement inherent in p 4 has two distinct
contributions: (i) the quantum entanglement between the region and its complement
encapsulated in S(p4c) and (ii) correlations built into the thermal density matrix S, .
This distinction seems to suggest that in this regime there is a clear demarcation in the
degrees of freedom inside A in terms of their entanglement properties [75] (see also [76]
for related considerations). Indeed this interpretation is natural from the perspective of
the disentangling theorem for tripartite systems described in §2.2. The thermofield double
state which purifies the density matrix py. factorizes as in (2.2.11) with B = H 4. It would
be fascinating to see this arise directly by computing the negativities in the holographic

context.



Chapter 3

Topology and the sign of

entanglement in field theory

This chapter is a reproduction of the paper Central Charges and the Sign of Entanglement
in 4D Conformal Field Theories [77], written in collaboration with Eric Perlmutter and
Mukund Rangamani.

In the previous chapter we introduced the ratio between the coefficients of the universal
terms of respectively, the logarithmic nagativity and entanglement entropy, for spherical
regions in the vacuum of a field theory. Motivated by quantum information arguments
we conjectured that for any field theory this quantity should be larger than one. Further
evidence was derived in [78] [79] that considered, in perturbation theory, deformation of
the entangling surface.

For arbitrary regions, the general structure of the universal term of Renyi entropies in
four dimensional CFTs was derived in [68]. It is the sum of three integrals of geometric
data, specifically the intrinsic curvature, extrinsic curvature and Weyl tensor, each of
which is multiplied by a function of the anomalies of the theory. Various properties of these
functions were derived in [78] [79], which also provided evidence for further constrains.

Drawing on their analysis, this work shows that in the quite unusual case where the
anomalies satisfy the condition a > ¢, and if the genus of the entangling surface is large

enough, the ratio defined above can be smaller than one.

Note: the results presented in this chapter rely on some assumptions about the coeffi-
cients of the formula derived in [68]. It has recently be argued in [80] that the relation
fo(q) = fe(q) might not be correct.

3.1 Introduction

States of a quantum mechanical system are distinguished by the presence of entanglement.
Oftentimes one characterizes this by bipartitioning the system and computing the entan-

glement entropy, S. In continuum quantum systems, the natural subdivision is geometric:

39
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we partition the state across a fiducial entangling surface. While (for pure states) S is
the best measure of the total amount of quantum entanglement between a region and its
complement, other measures provide additional information about the pattern of entan-
glement for the same bipartition. A natural question is: given a fixed state of the system,
how does entanglement depend on the geometry and topology of the entangling surface?

While S is plagued with UV divergences in a continuum QFT, its universal piece
contains non-trivial physical information, including central charges and RG monotones
[48, 81-83]. In many respects, these universal terms are the natural counterparts of
quantum-mechanical entropies, which are positive. Another interesting measure is the
logarithmic negativity & [37,59,60], which gives an upper bound on distillable entangle-
ment in quantum mechanics, and is thus strictly greater than the entanglement entropy.

These intuitive analogies with quantum mechanics suggest that, in QFT, the universal,
cutoff-independent terms of S and of & — .S are also positive-definite. Indeed, this appears
to be true for spherical entangling surfaces in vacuum states of CFTs in flat spacetime
[30,48,82,83]. As we will prove, however, these signs depend non-trivially on the topology
of the entangling surface and, in particular, can be negative.

We focus on connected entangling surfaces in 4d CFTs, which are Riemann surfaces.
While for simple topologies the universal terms are positive-definite, we show that one
can always pick complex enough entangling surfaces to violate this bound. Curiously, the
violation hinges on the difference of the central charges a and c. Specifying to entanglement
entropy, the universal part of S becomes negative for a suitable choice of surface if and only
if a > ¢; the effect is linear in the product of a — ¢ and the genus of the surface, exhibiting

a novel interplay between central charges and topological sensitivity of entanglement.

3.2 Entanglement measures

Consider a (relativistic) QFT on a d-dimensional spacetime B; the state p (=|)(v | if
pure) is defined on a spatial Cauchy slice ¥ at fixed time. The biparitioning is provided by
geometrically dividing > = A U A¢ across a smooth spacetime codimension-2 entangling
surface 0A. Defining the reduced density matrix p4 = Tr4c (p), the entanglement and
Rényi entropies are:

S(pa) = —Tr(pa logpa) = lim S9(pa),
(3.2.1)

1
SD(pa) = T logTr (pa?).

- q
Another quantity of interest to us will be the negativity which is defined in terms of
an auxiliary partial transposed density matrix p'. Picking a basis, |t;) for A and |[,,) for

A, one defines the map p — p! as:
(tiln| p" [tjlm) = (vilm| p [tjln) - (3.2.2)

Thence, the logarithmic negativity is given in terms of the trace norm, [|O||, viz.,

&(p) = log ||p"|| = log [Tr ( (P11 prﬂ (3.2.3)
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It is important to note that the negativity provides an upper bound on entanglement
inherent in the state and as such satisfies & > S 4. For mixed states the negativity is
notoriously hard to compute (see [31,49,84,85] for results in 2d CFTs). For pure states
one can relate it to the Rényi entropy [31], viz., &(p =|¥)(¢ |) = S(%)(pA). This was
exploited in [30] to explore negativity for ball-shaped regions with 0.4 = 82 in a CFT
vacuum.

Local dynamics of a QFT implies that the measures, collectively denoted as E =
{S,8@ &} are UV divergent. Given a UV cut-off € one finds [39]

d—4 V4
Ex Cuniv]E] log 4 +Cp, d=-even
E= Z cd—2-2k
k

=0 (=)' Cuniv[E], d = odd

(3.2.4)

The leading UV-divergence obeys an area law, Ey o< Area(d.A), followed by scheme-
dependent (but state independent) subleading pieces Ex. Cuniv[E] depends on the state
and captures important universal physical information; for 0.4 = 842 in the vacuum, for

instance, Cyuniv[S(p4)] is a measure of degrees of freedom.

3.3 Entangling geometries

Our specific interest will be in d = 4, where 0.A can be taken to be a Riemann surface
of arbitrary topology; we will explore how topology imprints itself on the entanglement.

Two particular issues will be of concern to us:
o Is Cuniv[S(pa)] = Sy sign-definite?

e Consider the ratio

Cuniv[€(p)]
Cuniv[S(pa)]

defined originally in [30]. Is X — 1 = X positive definite?

X = (3.3.5)

Recently, variants of this question have been addressed by several authors: [86] and
[87] examined the shape dependence of entanglement entropy for entangling surfaces of
spherical topology in d dimensions. The latter conjectured that A = S92 minimizes
the universal term in that topological class. In [88], the authors searched for surfaces
that maximize entanglement entropy keeping the area of d.A fixed. They related the
construction to a well-known geometric problem called the Willmore conjecture [89]. Their
conclusion was that in d = 4, the maximizer over all topological classes is 9.4 = S2. We
will make use of their techniques to show that this is, in fact, not true for general CFTs,

and appears to rely on the tacit assumption that a = c.

3.3.1 Universal Rényi entropy of 4d CFTs

To make progress we will make use of a result for Cypiy[S(@] = Sy (¢) in 4d CFTs [68] (nb

Sy = Su(1)):

_ Jal9)
2m

Roa+ f;(q) Ko fe(q) Co
T 2

Su(q) (3.3.6)
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The geometric quantities depend on intrinsic and extrinsic geometry of A4 C B. For an
embedded 2-surface X,

Rx = / d2x\ﬁ7R,
X
1 )
Kx = / d*x /Y {K‘j K =2 (KoH)? (3.3.7)
X
Cx = 2/ d’x VY Cuppotts”tls?
X

Here 7;; is the intrinsic metric on X, g, that of the full spacetime B, K7} is the extrinsic
curvature of X with o = {¢, s} indexing the two normal directions (one timelike t* and
the other spacelike s#) and Cx is the pullback of the Weyl tensor C),,,,» onto X.

We see here a clean separation between the geometric data and the intrinsic field
theory features captured by the coefficient functions f,p.(¢). In the ¢ — 1 entanglement
limit [81],

fl)=a, 1) =f(1) =c. (3.3.8)

For generic ¢, these functions are known not to obey a universal form.

We now have some ammunition to tackle the questions we raised. For simplicity we will
take B = R®! (or equivalently B = S® x R as appropriate for radial quantization). These
backgrounds being conformally flat, one finds no contribution from f.(¢q), for Cog4 = 0. If
we further restrict attention to regions A which lie on constant time slices, Kltw =0. We
can then focus on the purely spatial geometry of 2-surfaces 9.4 embedded in either R? or
S3. This allows us to use some useful results in Riemannian geometry to make precise
statements.

With this understanding let us focus attention on Sy(q) and X , and ask if they obey

any sign-definiteness properties.

3.3.2 Of central charges and Rényi coefficients

Let us start by noting some basic results that hold for unitary CFTs. The central charges

a, ¢ are positive definite and their ratio is bounded as [90]

1 a 31
<l 3.3.9
37 ¢~ 18 ( )

The bounds are tighter in superconformal field theories. Recently it has been argued that

the Rényi coefficient functions are not independent and satisfy

1o(@) = Je(@) = 25 [o = Jala) = (= 1) ful@)] (3.3.10)

The first of these equalities has not been shown in full generality but holds in both free
and holographic CFTs [91]. We will however assume this in what follows. The second has

been proved directly in Rényi index perturbation theory [78]. One can further prove

fal@) >0, filg) <0 = fclqg)>0, Vg (3.3.11)
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where we used (3.3.10) in obtaining the implication. The inequalities on f,(q) follow from
the fact that S(p4) obeys general inequalities for any A [92], and that S(p4) x fa(q) for
OA = S2.

3.3.3 Geometry of entangling surfaces

To make progress we need to examine the geometry of the Riemann surface 0.A. The
intrinsic curvature contribution in (3.3.6) is topological; for compact X the Gauss-Bonnet

theorem relates it to the Euler number
Rx =8r(1—g). (3.3.12)

The extrinsic contribution can be noted to be positive definite (using Kj; = 0, K7; = Kjj)

1 2
Kx = /X &> \/y (Kij 5% 7™ Kkl) (3.3.13)

This by itself is not sufficient, but we can invoke some geometry, see [88]. Introduce the

Willmore energy functional [89]*

Wycgs = % / d*z \/y (1 - i (v¥ Kij)2> : (3.3.14)
X

This functional was introduced by Willmore, who explored surfaces which minimize their
mean curvature. It obeys Wy > 4x for all X, and is minimized by the equatorial S? C S3.
Willmore conjectured that at g = 1, the Willmore functional obeys Wyx > 272. This result
was proven recently [93]; the unique minimizer is the Clifford torus, whose stereographic
projection onto R? yields a torus with 7 = i/+/2. This conjecture was generalized to higher

genus, where there exist so-called Lawson surfaces [94] L, for g > 2 satisfying
4 < W, <81, (3.3.15)

which are conjectured to be the unique minimizers of Wx [95]. The precise value of Wy, is
unknown, but at every genus it has been proven that there is a surface that obeys (3.3.15),
irrespective of being the minimizer [95,96]. These results will suffice for our purposes.?
See [99] for further details.

To make use of the bounds on the Willmore functional, we exploit the Gauss-Codazzi
equations, which are geometric identities which relate intrinsic and extrinsic curvatures.

The relation we need is simple (cf., [88]):

1
Wx = 5 (RX + IC)() (3.3.16)

For compact X we are immediately in business, since we can use the topological constraint

on the Euler number and the geometric constraint (3.3.15) of Lawson surfaces to examine

!For surfaces embedded in R® we can drop the contribution from the area of the surface.
2Lawson surfaces tend to be bulgy with small handles, especially as g increases. We encourage the

reader to peruse the numerically-constructed surfaces in Table 1 of [97] or Figure 1 of [98].
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bounds on S, and X. In particular, plugging (3.3.16) into (3.3.6), we dial up the genus,
driving Ro4 negative, while restricting to Lawson surfaces A = L, which have Wp,

bounded from above.

3.4 Entanglement bounds

Let us begin by studying the bounds on the universal part of entanglement entropy. It
is useful to treat the genus g = 0 cases first and then consider g > 1. For a spherical
entangling surface, it is known from [48] that the Rényi entropies are related to thermal
entropies on the hyperbolic cylinder H? x R. The geometry is such that the extrinsic
curvature term Ky4 vanishes and so Sy(q) = 4f.(q), which we have shown is positive
definite, cf., (3.3.11). It then follows as described in [30] that X = 1f.(3)—1is also
positive definite. Assuming the sphere is the minimizer of X at g = 0, this establishes
positivity for all g = 0 entangling surfaces. Alternatively, positivity follows from (3.4.19)
if one assumes that ayp > 0 for all CFTs. As we will discuss, this is true in all known
examples.

Let us turn to entangling surfaces with non-trivial topology. Simplifying (3.3.6) using

(3.3.16),
Sy = % (2 Woa + (* - 1) RaA)
C

~ o < Waar+ (1-7) ’CM)

These equations make it clear that there is a curious interplay between the sign of the

(3.4.17)

central charge difference ¢ — a, the topology and geometry of 0.4, and the sign of S,.
While there is no constraint from toroidal topology (as ¢ > 0,V > 0), we can infer that
for g > 2:

e a<c=— S, >0,V 0A owing to the lower bound on the Willmore functional and
positivity of K.

e g >c =5, 2 0. The indefinite sign owes its origin to the fact that there are
Lawson surfaces which have genus-independent bounded W (3.3.15), but R that can
be made arbitrarily negative by ramping up the genus. The sign flip of S, across

such surfaces occurs at a critical genus

Wi, ¢
ATt a—c

ge =1+ —22 (3.4.18)

We note in passing that it is strongly believed that Wr monotonically increases
with ¢ [100].

In [88] it has been conjectured that A = S? minimizes S, (assuming a = c). We now see
that when a > ¢, there is no minimizer: S, is unbounded from below.
Note that not all higher genus surfaces will render S, < 0. However, this is guaranteed

to occur above some critical genus for all surfaces whose Willmore energy grows slower
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than linearly in g. There are likely other families of surfaces besides the Lawson surfaces,
as well as isolated surfaces that exist for particular values of g, that satisfy this criterion.
For example, one can smoothly deform Lawson surfaces with fixed topology.?

Strictly speaking, the results above pertain to bounded regions A so that 0.4 is com-
pact. For non-compact entangling surfaces we are not aware of any obvious upper bound
on W.

Let us now turn to the negativity and consider the quantity X which was conjectured
in [30] to be positive definite. Using the definition in terms of the Willmore functional

and the expressions (3.3.10) we can write:

arRoa +2awWaoa

X =
2¢ Woa+ (a —¢) Roa (3.4.19)
1,1 1

OéRZifé(i)‘FC, aW:fc(§)_C

We can infer that the sign of X depends on the coefficients ag and ap in a non-trivial

fashion.

e Tor a toroidal entangling surface, X o ay and so positivity requires fc(%) > ¢. This

is seen to be true in all known examples.
e At higher genus, if a < ¢ we require that ag < 0 to ensure X >0.

e On the other hand if a > ¢, we can easily end up with negative values of X: even if
ap < 0 there is some genus g for which X < 0. This is because whilst the numerator
is ensured to be positive, the denominator can be made arbitrarily negative by pick-
ing an appropriate Lawson surface. The situation cannot be remedied by changing

the sign of ag in any obvious manner.

3.5 Examples

We have derived above some general conditions for the positivity of S, and X in terms
of the central charges. In Table 3.1 we provide explicit results for a class of free and
holographic CFTs [68, 70, 78].

Several comments are in order. First, all known examples obey the inequalities ap > 0
and ar < 0. We believe that these are likely to be true for all CFTs.

Second, X is shape-independent for the free scalar. It follows from [78] that X is
shape-independent only for theories whose f,(q) equals that of a free scalar; besides the

scalar itself, there are no known examples of such theories.

3See [98] for such a construction at g = 2, especially Figures 2 and 5 therein.
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Theory || ¢ fa(q) fe(q) ar | ow Su X
Scalar || 3 | UM 3fule) | Ha| Pa | O i
Fomion [ 3 || CHRGRTR, [ MEREEN, [ g | A [ ST GRS
Vector % 1+q+1;%21£;;r91q3 “ 3(1+({)2(41q+311q )a _% a % a (13726;:6 W)a _2(13175:76231)(}\;
Free N =4 || 1 %a %%‘”a ~Ua | By w —LLR 30w
Binstein || 1 || 5l (2— 25— 2)a | spin(ef —opa | —Ha | M5 Fa e —

Table 3.1: Results for the universal terms in Rényi entropy and their implications for S, and X in a class of
CFTs. We have chosen to write the answers in terms of the a central charge. In the last line, we have defined

2q = 7 (1+ /1 +8¢%).

Finally, the free vector field is the only theory in this table with a > ¢, and indeed, we
see that both S, and X become negative for sufficiently negative R and upper-bounded
W, as happens for Lawson surfaces. Assuming monotonicity of Wr, as a function of g,
the critical genus is g. = 4. In arriving at this conclusion, we are assuming that the
modular Hamiltonian that defines f,(¢q) includes the effects of the edge modes described
in [101] and [102]. This is necessary for Sy to be determined by the a central charge for
spherical entangling regions. Curiously, ignoring these modes leads to S, being determined
by a = ;’—(15 a [103] which satisfies @ < ¢. Exploring the dependence of S, on the entangling
surface should reveal whether it is controlled by a as opposed to the physical central charge

a; our diagnostic would simply involve a sign check for a ¢ = 5 Lawson entangling surface.

3.6 Discussion

We have found that in CFTs with a > ¢, the universal term in entanglement entropy, Sy,
necessarily becomes negative for certain higher genus entangling surfaces. The negativity
ratio X also generically becomes negative for a > ¢; if ag < 0 for all CFTs, this can only
happen for a > c. It would be nice to establish whether ar < 0 and ay > 0 identically,
as suggested by all examples.

Aside from the free vector, theories with a > ¢ include the IR fixed point of the
SU(2) model of [104], as well as the non-Lagrangian Gaiotto-type T theories [105]. The
latter are IR limits of worldvolume theories of N M5-branes wrapping genus-g Riemann
surfaces. A characteristic example is the Ay_1 theory preserving N' = 2 SUSY, which has
24(a—c) = (N —1)(g—1) for g > 1. Central charges for a larger family of related N' =1
theories with @ > ¢ are given in [106]. At large N [107], where a,c o< N3, there is an
interesting relation between N and the entangling surface topology: namely, the critical
genus g. in (3.4.18) scales like N2. The growth of g. with large N will be true of any
holographic theory with a sensible derivative expansion in the bulk [108].

It is worth noting that a — ¢ controls and relates to many phenomena in CFT and
holography. These include the mixed current-gravitational anomaly [109] in SCFTs; su-
perconformal indices and their high temperature asymptotics [110-112]; violations of the
KSS bound on 7/s in holographic CFTs [113,114]; and the size of the single-trace higher
spin gap in large N SCFTs [115].
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Finally, it is a remarkable and still mysterious fact that nearly all “traditional” CFTs
have a < ¢ rather than a > ¢. Our result may be regarded as suggesting a naturalness of
such asymmetry, along the lines of [110]. It would be very interesting to make this more

concrete.



Chapter 4

Qubits systems and holographic

entanglement structures

This chapter is a reproduction of the paper Entanglement structures in qubit systems [116],
written in collaboration with Mukund Rangamani.

In the previous two chapters the discussion pertained mainly measures of entanglement,
and in particular logarithmic negativity, in quantum field theory. The main reason to
consider such a quantity, instead of other measures like Renyi entropies, is the fact that
negativities have an operational interpretation in terms of entanglement manipulations
and are sensible to different kinds of entanglement. Unfortunately, at present it is not
known how to calculate the logarithmic negativity for a single subregion in a mixed state
of a field theory or between two subregions. Furthermore, no measure of multipartite
quantum entanglement have even been defined for field theories.

The lack of tools to explore patterns of entanglement directly in field theory forces
us to look at simpler systems, where other entanglement measures can be computed and
have an operational interpretation. In this chapter we look at quantum mechanics and in
particular we focus our attention on systems made of few qubits. We compute negativities
between subsystems and explore the ratio between negativity and entropy that was at
the centre of the discussion in the previous two chapters. In field theory it was more
natural to use the logarithmic version of the negativity, here instead we will prefer the
negativity. This is motivated by the fact that for Hilbert spaces of finite dimensions, and
for pure states, there is a nice operational interpretation of this quantity called robustness
of entanglement. Intuitively, this is a measure of the amount of noise that has to be
injected into the system to completely erase its quantum entanglement. We explore how
the ratio depends on the pattern of entanglement of the entire state.

Furthermore, when the size of the system is small, all the possible states can be clas-
sified into equivalence classes of entanglement structures defined by certain operations.
Given a state one can use different measures of entanglement to determine the corre-
sponding class and further explore the entanglement structure. In this way we learn what

pattern of entanglement produces properties which are known to characterize holographic

48
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states, such as the saturation of the Araki-Lieb inequality or the sign definiteness of tri-
partite information. Although simple systems of few qubits are very different from field
theories, these investigations represent a starting point towards a deeper understanding of
entanglement structures in field theory with particular focus on the operational perspective

and its meaning for holography.

4.1 Introduction

One of the key features distinguishing quantum mechanics is the presence of entanglement
which is a natural consequence of the superposition principle. Usually this is characterized
simply by the inability to separate a composite system into its constituent parts without
losing some information about the whole. The lack of knowledge of how the individual
parts comprise the entire system is encoded by entanglement.

While the presence or absence of entanglement elicits a binary response, one often
would like to know more and in particular be able to quantify the precise nature of entan-
glement in a quantum system. In simple bipartite systems, e.g., two qubits, this is easily
done using the von Neumann entropy of the reduced density matrix for one of the compo-
nents. This quantity which is referred to as the entanglement entropy provides a complete
characterization of the entanglement inherent in the state.! However, this ceases to be the
case in more general scenarios: density matrices of bipartite systems or equivalently pure
states of multipartite systems.

To quantify the amount of entanglement in more general cases various measures of
entanglement have been proposed in the quantum information literature. Some of these
which we shall review in the sequel are easy to compute, while others have restricted
applicability. Nevertheless, given that the structure of entanglement in multi-component
systems can get rather intricate (if only due to the rapid growth of potential permutations
involved), it is interesting to contrast the different observables against each other.

While this is an interesting exercise in its own right in quantum mechanics, part of our
motivation in attempting to understand such detailed structure of entanglement stems
from potential insights it can offer in the context of holography. One of the amazing
facts about the holographic AdS/CFT correspondence is the observation that the entan-
glement in a class of strongly coupled planar field theories is geometrized in terms of a
gravitational background in higher dimensions. This statement is manifest in the holo-
graphic entanglement entropy proposals of Ryu and Takayanagi [20,39] and its covariant
generalization [23]. A more intricate and intriguing picture arises when we ask whether
the structure of entanglement in the field theory is itself responsible for the emergence
of geometry as was first suggested a few years ago in [26,40,41]. These ideas have been

central to the recent thesis that “entanglement builds geometry” codified succinctly in the

1 To be sure this only captures the entanglement under the obvious bipartitioning; we will later be

careful to distinguish this from the entanglement contained in further subdivisions of the each system.
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statement ER = EPR [29].

One obvious question in this context is the following: is the emergence of geometry
simply reliant on the presence or absence of entanglement, or does it depend more crucially
on the structure of entanglement? Most discussions in the holographic context presuppose
a pure state of a bipartite system whence entanglement entropy suffices. However, we
should be able to ask for the emergence of geometry in situations where the configuration
in question is more complicated and admits no simple bipartite description. Typical
scenarios we have in mind are multipartite systems exemplified by the multi-boundary
wormhole geometries of [117-119] in three dimensions. Here the precise manner in which
the individual parts are entangled does play a role in the emergence of some sort of semi-
classical geometry and indeed previous investigations [50,51] indicate this to be the case.

The prototype scenario for this discussion is a IN-partite system wherein integrating
out (N — 3) components leads to a density matrix for the residual three components. In
this case, it is known following an interesting analysis of [120] that the density matrix
of the resulting tripartite system has to have non-positive definite tripartite information
(see below) in order to admit a semi-classical geometry as a holographic dual.? On the
other hand for simple quantum systems the tripartite information can have either sign,
so not all states of a tripartite system can a-priori admit a semi-classical gravity dual.
This point was already made in [51], cautioning that the ER=EPR statement should be
accompanied by some riders. We will take this as sufficient motivation to examine the
nature of entanglement in simple systems.

To set the stage for our discussion, let us recall that in the holographic context we are
interested in studying continuum quantum field theories in the large central charge limit.
While the central charges can be formally defined in terms of conformal anomalies, it is
operationally useful to think them as measuring the curvature scale of the holographic
dual geometry £aqs in units of the Planck constant £p, viz., cog ~ aqs/lp. Thus ceg > 1
corresponds to the regime where semi-classical geometry is trustworthy.® Heuristically
this means that we are interested in considering systems with a large number of degrees
of freedom. Given such a theory we want to understand what structures of entanglement
are possible.

The canonical route of exploration is to consider various measures of entanglement in
continuum QFTs, such as entanglement entropy, Renyi entropies, negativity etc.. However,

these quantities are rather difficult to compute generically in interacting systems. If we

2 As far as we know this condition is necessary but not sufficient to guarantee a semi-classical geometric
dual. The constraint was derived in [120] by examining the properties of holographic entanglement entropy,
essentially adapting the arguments leading to the proof of strong-subadditivity of holographic entanglement
entropy. It appears not to follow simply from strong subadditivity, making it in an independent statement
about systems with large numbers of degrees of freedom as is relevant for holography. We thank Matthew
Headrick and Veronika Hubeny for an extremely illuminating discussion on this point.

3 Strictly speaking we also need £aqs > £s where £ is the string scale, which requires the field theory
coupling being large. If not we end up with a classical theory, but one which involves stringy excitations

as well.



4.1. Introduction 51

start with a pure state in the QFT and demarcate various (disjoint) regions A; i =
1,---, M, then while it is possible to compute the entanglement entropy for U; A; in
holographic systems,* it is harder to compute the Rényi entropies and negativities.’

Entanglement negativity, introduced in [37], is a clean measure of the quantum entan-
glement even for mixed states, while the usual von Neumann entropy is contaminated by
classical correlations. This is particularly pertinent, if we are interested in understanding
the entanglement between two of our regions, say A; and Ay, after tracing out the state.
Entanglement properties of the density matrix p4;u4, are more cleanly encoded in the
negativity, which bounds the amount of distillable entanglement, so it tells us directly how
many Bell pairs are common to this disjoint region. It is however quite hard to compute
it in continuum systems.®

In a previous work [30], we examined the (logarithmic) negativity in the vacuum state
of a CFT (for bipartitionings given by connected regions of spherical topology). We
conjectured that the ratio of the universal part of the logarithmic negativity of a pure
state with respect to a given bipartitioning was bounded from below by the entanglement
entropy of the reduced density matrix obtained by integrating out one of the components.”
Further analysis of this result for more complicated regions (building on the analysis of [78])
reveals a rather interesting interplay between the central charges of the CFT and the
geometry and topology of the entangling surface [77]. Motivated by these observations in
the continuum, we introduce a new measure involving negativity, called specific robustness,
which is sensitive to the pattern of internal entanglement in simple systems (see below).

To get further insight into features of quantum entanglement we look at a toy problem
of non-interacting qubits.® Our motivation here is to understand how the measures of
entanglement that have been proposed in the quantum information literature serve to help
us delineate the entanglement structure of the state. The advantage of working with qubit
systems is that we can explicitly compute (at least for small numbers of qubits) various
measures of entanglement. Starting with a pure state of N-qubits, we can consider tracing
out k < N qubits and examining the entanglement inherent in the remainder (N — k)-

qubits. Furthermore we can consider different bipartitions (or multi-partitions) of the

* Given a collection of boundary regions as above, the [23,39] require one to solve a classical gravitational
problem to find an extremal surface in the geometry dual to the state in question. Even in complicated
geometries, this is a problem of solving classical partial differential equations, which whilst involved, is
nevertheless a lot simpler than the quantum problem (the simplification is made possible by the ceg > 1
limit).

5 Similar statements apply for entangled states in tensor product of CFTs, e.g., [50,121].

5 In recent years negativity has been explored quite extensively in pure and thermal states of two
dimensional CFTs in a series of works, cf., [31,49,84,85,122-124]. We should also note that negativity in
spin chains has been studied in [125-128].

" The universal part here refers to the renormalization scheme independent term; in even dimensional
CFTs it is the coefficient of the logarithmically divergent term, while in odd dimensional CFTs it corre-
sponds to the finite part.

8 Strictly speaking we pick random pure states of a few qubits and are agnostic about the actual

Hamiltonian (which may well be the identity operator); hopefully our terminology does not cause confusion.
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remaining qubits and investigate how entanglement is distributed among them and what
are its properties. We perform some simple numerical experiments starting with randomly
chosen pure states of N-qubits (with N < 8 for computational reasons) and argue that in
general the combination of information emerging from different measures of entanglement
can give useful insights about the properties of the state. Even for a fixed bipartition of
a pure state, where entanglement entropy determines the amount of entanglement, other
measures give additional information about the nature of this entanglement. While the
holographic systems we are really after are not as simple as non-interacting qubits, it is
useful to use this toy model to build some intuition about the nature of entanglement
inherent in many-body wavefunctions.”

Following our interest for the ratio between the logarithmic negativity and entangle-
ment entropy motivated by field theory arguments [30, 77], we consider a similar (and
strictly related) quantity for qubit system, i.e., the ratio R between the negativity (not
logarithmic) and the entropy. Using a known operational interpretation for the negativity
in terms of robustness of entanglement against noise, we introduce the concept of specific
robustness which is measured by the ratio and investigate how this property is related to
the pattern of entanglement inside the state. In the case of 4 qubits, where a classification
of the possible states under a particular class of operations (called stochastic LOCC, aka,
SLOCC) exists, we show how this additional information allows a partial resolution of
the classes and investigate the detailed structure of entanglement within this classification
scheme.

We also undertake an analysis of mutual information and the monogamy constraint,
both for generic states and also for the different classes of 4 qubits. We find that generically
the monogamy constraint is not particularly restrictive. However, if we restrict attention
to SLOCC classes of states, we find a unique class that respects monogamy.

In [30] part of the motivation for considering negativities as a measure of entanglement
in holographic systems was its ability to provide clear distinction between classicality and
quantumness. For bipartitions of mixed states the von Neumann entropy mixes classical
and quantum correlations, while negativities can distinguish between them. In a multi-
partite setting the same problem arises for the tripartite information. We use a measure
of multipartite entanglement known as tangle in the quantum information literature, as a
witness of intrinsically quantum multipartite correlations. Even though its interpretation
is somewhat murky and its definition restricted to qubit systems alone, we show that it
provides useful information when compared against the tripartite information (and flesh
out some connections to the monogamy of mutual information). Armed with these result
for qubit systems, we attempt to draw some general lessons for continuum field theories.

The outline of the chapter is as follows: in §4.2 we introduce the measures of bi-

partite and multipartite entanglement as well as the notation that we will use for our

9 The entanglement we explore is more closely related to the notion of particle partition entanglement
used in certain contexts to gain information complementary to that contained in spatial cuts of the systems,
cf., [129-132].
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investigations. We then start in §4.3 with the simplest case of 3 qubits, which serves as an
introduction to the kind of investigations that we will later conduct on larger systems. §4.4
is the core of the chapter, we first investigate generic states of 4 qubits and then present a
detailed analysis of the structure of entanglement for the known equivalence classes. We
extend the analysis to generic states of larger systems (6 and 8 qubits) in §4.5 and discuss
the main results and potential implication for holography in §4.6. Appendix 4.A, contains

additional plots that complete the main results presented in the other sections.

4.2 Measures of entanglement

The problem of quantifying entanglement has been at the center of research in quantum
information theory for the last 15 years, nevertheless no conclusive measure has been found
so far that enables us to fully capture the structure of entanglement of generic states. Sev-
eral measures have been proposed in the literature but they are usually strongly dependent
on the specificities of the application for which they have been developed, and often very
difficult to compute. Alternatively, quantities with the correct mathematical properties
to be good candidates for entanglement witness, often lack a clear physical interpretation.
In this section we review some properties of entanglement and some measures that can be
efficiently used to investigate its structure. In the following we will be careful in distin-
guishing classical from quantum correlations and reserve the term entanglement for the

latter.

4.2.1 Bipartite entanglement

In its original formulation entanglement is a form of correlation that is not compatible with
local physics. Bell’s inequalities impose a bound on the strength of correlations achievable
by local physics, the violation of these constraints is a witness of entanglement, which
actually serves as its definition. For pure states this is well understood — states which are
not products are entangled and always violate some (generalized) Bell’s inequality.

This is not always the case for mixed states. A mixed state p in a Hilbert space

Ha ® Hp is said to be separable if it is a convex combination of product states
p=Y mptepl,  Yp=1, p>0, (4.2.1)
i i

and entangled otherwise. Product states contain no correlation, separable states have only

classical correlation (i.e., correlations that can be produced by LOCC!) and entangled

11

states contain some sort of quantum correlation.”” It is important to realize that the

bipartition of the system is a crucial part of the definition.

10 1,0CC stands for local operations and classical communication, which includes action by unitaries,

measurement and information exchange on classical channels.
' The question of whether these correlations may or may not be compatible with local physics is still

open, see [30] for additional comments and further references.
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From a more recent perspective entanglement, can also be interpreted as a powerful
resource for specific protocols that are not possible when only classical resources are avail-
able. In this context one often would like to be able to manipulate entanglement, convert
it into different forms, extract it from a system and transfer it to another and so on.
In this context entanglement can be quantified depending on a specific task such as the
preparation of a state (entanglement of formation), or the extraction of Bell’s pairs from
a given state (entanglement of distillation) (see [133]).

For pure states of a system where a bipartition is specified, it is well known that
entanglement entropy is a measure of the amount of entanglement between the subsystems.
In a practical situation where two parties only have limited access to the subsystems this
is the best measure known so far, as it quantifies both non-locality and the value of
entanglement as a resource for specific tasks such as teleportation.'? Naively it is the
number of Bell pairs available.'3

We want instead to investigate how different subsystems are correlated among each
other in a state of a given global system, being particularly careful in distinguishing
classical from quantum correlations. One natural way to proceed is to consider different
bipartitions of the entire system: this would certainly give additional information about
the distribution of correlations. If we restrict this analysis to pure states, entanglement
entropy is a reasonable way to capture the quantum entanglement inherent in the state.

The problem becomes much more intricate for mixed states, where the relation between
non-locality and the “task dependent” formulation of entanglement is in general not clear
at present.'* In this case the von Neumann entropy is not a good measure of entanglement
any more.

This is also a problem one faces in the attempt to completely characterize the internal
pattern of entanglement in a given state, even if the state is pure. One can use entangle-
ment entropy as long as only bipartitions of the entire state are considered, but this is not
enough to describe the state entirely. Given a pure state of a system ABC), if we want to
study the entanglement among internal subsystems, for example A and B alone, we first
need to trace out the degrees of freedom in C', but the result of this operation is a mixed
state. In order to characterize the entanglement between A and B we need some other
measure.

In a previous chapter 2 we focused on negativities [37] as the measures of interest. Let

us recall their definitions and salient properties for convenience. Given a density matrix

12 Tn this case entanglement entropy is known to be equal to both entanglement of formation and

distillable entanglement [133].
'3 This is precisely the meaning of distillable entanglement, but it is important to realize that the

definition is an asymptotic statement in the limit where an infinite number of copies of the original state

is available. In the context of holography one would prefer an interpretation in terms of a single system.
4 There exist bound entangled states which are entangled (i.e., not separable), but at the same time

they are of very limited value as resource for typical quantum information (QI) protocols; specifically Bell

pairs cannot be distilled from them.
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p and a bipartition H4 ® Hp one defines the partial transpose p' as
(1P | o1 [0 = (12| [0 (42.2)
The logarithmic negativity then is defined as
& =log o'l (4.2.3)

where ||...|| denotes the trace norm.'® This is known to be an upper bound to distillable
entanglement. It is in general greater or equal to entanglement entropy (for pure bipartite
states), with the equality holding for maximally entangled states. It is somewhat natural
in continuum systems as one can give a suitable path integral representation [31]. One

can also define the negativity as

Ty
N = ”p|2|1. (4.2.4)

While simply related to the logarithmic negativity, it is more convenient to consider in
simple discrete systems; hence we will focus for the most part on the negativity itself.
Armed with the tools of entanglement entropy for bipartition of pure states and nega-
tivity for bipartition of pure or mixed states, one can ask how much information about the
structure of entanglement of a given state can be extracted considering different partition-
ings and comparing the two measures. More specifically [30,77, 78] considered the ratio
between negativity and entanglement entropy for bipartitions of pure states. One of the
motivations of the present work is to flesh out a possible interpretation of this quantity.
To this end it turns out it will be useful to interpret the negativity in terms of another
measure of entanglement called robustness [63]. Given a state p and a separable state
ps, one can consider mixtures of the two states and ask how much of ps is necessary to

completely disentangle p. Formally

p= 1+s (p+sps) - (4.2.5)

The minimal value of s such that p is separable is called the robustness of p relative to
ps- One can then ask what is the minimal value of s for all possible choices of ps, this is
the robustness of p. Intuitively this corresponds to the robustness of p against “intelligent
jamming”; it is the minimal amount of noise needed to disrupt the entanglement when we
have full knowledge about the structure of the state.

For finite dimensional systems the negativity is known to be equal to a half of the
robustness

1
N = 5 réllins (4.2.6)

This then provides a potential interpretation of negativity. Note however that this way

to quantify entanglement is operational and is quite different from the intuition we have

5 The trace norm is defined as ||| = Tr (\/ OT(’)) for any Hermitian operator O.
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for the entropy in terms of non-locality and separability. It is interesting to ask if and
how the robustness is related to the internal structure of entanglement, namely to the way
entanglement is distributed among subsystems.

Inspired by this concept, to get a quantitative handle, we introduce a measure, which
we call specific robustness R. It is defined as the ratio of the negativity of a given state
(and bipartitioning), to the entanglement entropy of the reduced density matrix under the

same bipartitioning. Schematically we can write'®

R = < (4.2.7)

Heuristically we want to think of it as a measure of the minimal amount of noise sufficient
to disentangle Bell pairs in a given state. More specifically, given two states with the
same entropy but different negativity, we will then interpret the entanglement as more
or less robust, depending on the ratio R; higher values of R would correspond to greater
robustness of the entanglement pattern. It is worth reiterating that such a notion of
robustness captures the operational sense of the concept, as it relies on a procedure that
mixes the state with some noise. We want to ask whether (and how) this quantity depends
on the internal pattern of entanglement of the state. In particular, given an entangling
surface corresponding to a fixed bipartition, one can distinguish entanglement inside the
two subsystems or entanglement “across” the entangling surface. In the rest of the chapter
we will examine this quantity in simple qubit systems.

Finally, as a measure of bipartite correlations we recall the definition of mutual infor-

mation

I(A|B) = S(A) + S(B) — S(AB) (4.2.8)

This has been argued to capture the total amount of correlations, both classical and
quantum [134].

In the theory of quantum information it is often useful to consider inequalities that
constrain the values of the measure of interest among different subsystems. One such ex-
ample is a relation called monogamy, which is defined for a quantum information theoretic
function f as

f(AIB) + f(A|C) < f(AIBC) (4.2.9)

Monogamy is known to be a general feature of quantum entanglement. One can interpret
Eq. (4.2.9) as follows: if f is some entanglement measure, and subsystem A is almost
maximally entangled both with subsystem B and a larger one BC| then there is almost
no entanglement between A and C, i.e., f(A|C) = 0. This corresponds to the common
intuition for the concept of monogamy. Alternatively, the monogamy relation is the precise
statement of the fact that the “union is more than the sum of its parts”. Specifically, there

is some subtle correlation between A and the pair BC which is lost if one only looks at

'8 Tn [30,77] we considered the ratio X = &/S which was convenient in continuum systems. For qubit

systems the ratio R seems more appropriate, and one can anyway translate to X if necessary.
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the correlations A|B and A|C. The latter interpretation of monogamy will be crucial in
the definition of some measures of multipartite entanglement in the following.

We will be interested in exploring monogamy relations as a potential way to constrain
the allowed entanglement structures. Specifically, we will have occasion to explore the
monogamy relation for the square of the negativity that was proved in [61]. Another
monogamy relation involves the mutual information. While I(A|B) is not monogamous
in general, it happens to be so for holographic theories, as proved in [120] (this holds
asymptotically at large cog). We note that recently [135-137] used a similar philosophy to
derive a set of (inequality) constraints on holographic theories, using strong-subadditivity

and relative entropy.

4.2.2 Multipartite entanglement

The definition of entangled and separable states introduced previously can be extended to
a multipartite setting. For a system of IV parties a state is said to be fully separable if it

can be written as!”

p= P @pt. Y, Ypi=1,  pi20, (4.2.10)
@ i

where the states p; contain no entanglement. If some of the parties contain some entangle-
ment the state is called m-separable if it can be similarly decomposed into a convex linear
combination of products of m parts only. A state is said to contain genuine N-partite
entanglement if it is neither fully separable nor m-separable for any m > 1.

We will focus on pure states as in the mixed case the properties of multipartite entan-
glement are much less understood. The prototype of multipartite entangled states is the
well known GHZ state (a.k.a. cat state), whose general expression for N qubits is given
by

GHZY) = —=(10-2-0+ L2 1) (12.11)
N N
This is sometimes called a mazimally entangled state (in an N-partite sense) as it is the
state that violates a N-partite generalization of Bell’s inequality maximally [139].

The interpretation and quantification of multipartite entanglement is in general diffi-
cult and much less understood than in the bipartite case. Some measures exist but their
physical meaning is usually not known. In the following our measure of interest for mul-
tipartite entanglement of pure states will be the N-tangle (7n), which was introduced
for three qubits by [140]. In the three qubits case 73 is known to quantify the residual

multipartite entanglement in the state, which is not captured by its bipartite counterpart!®

TQ(A’B)+TQ(A’C)+T3(ABC) :TQ(A’BC) (4.2.12)

7 For more details about multipartite entanglement see [133] and [138].
18 For pure states the 2-tangle is simply 72 = 4 det pa, where pa is the usual reduced density matrix of
the qubit A.
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This equation precisely corresponds to the intuition we have from the previous discus-
sion about monogamy and actually serves as the definition of the tripartite entanglement
measure Tj3.

A formal generalization of 73 to any even number N of qubits was given in [141]

TN =2 ‘Z Qay..anOB;..Bn Oy1..yn Boy...0n X
€a161€azfz--Can 188167161 €W252"'67N715N71601N’YN65N5N} (4.2.13)

where the coefficients correspond to the components of the state vector |¢) in the con-
ventional computational basis (]0---00),/0---01), ...). This quantity is known to be an
entanglement monotone'® and invariant under qubits permutation, nevertheless its inter-
pretation for generic N is not fully understood. For N = 4 an interpretation in terms of
residual entanglement analogous to the three qubits case was given in [142]. Nevertheless
it is worth noting that this interpretation has some peculiarities [142]: for example, 74 = 1
for a product state of two Bell pairs suggesting that it cannot be interpreted as a measure
of genuine 4-partite entanglement. We emphasize that these measures are only defined for
qubits — there is no generalization to a continuous setting.

Another measure of mutipartite correlation that we will use is the so called tripartite
or interaction information (I13). This is measure of tripartite correlation which is defined

as:

13(A|B|C) = S(A) + S(B) + S(C)
— S(AB) — S(BC) — S(AC) + S(ABC) (4.2.14)
It is important to notice that this is a combination of mutual informations and hence
it mixes classical and quantum correlation. For generic quantum states the tripartite

information can be either negative or positive, but one can rephrase the condition for the

monogamy of mutual information in terms of 13 simply as [120]:
13(A|B|C) <0 (4.2.15)

In the following we will investigate the relation between monogamy of mutual information

and the structure of internal entanglement for simple qubits systems.

4.2.3 Notation

For the convenience of the reader we summarize here the notation that we will use in the
sequel. Given a system of N qubits we employ the following notation to denote various

partitionings of interest:

e single qubits will be labeled by small letters: a,b,c,....

19° A measure of entanglement is called an entanglement monotone if its value on a given state cannot

increase under the effect of LOCC operations performed on the state.
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Figure 1: Example of our notation for 6 qubits, the horizontal line represents the entangling surface 3. (a)

Local entanglement, . 1'flc. (b) Entanglement across the entangling surface, /1/1‘22

e capital letters will identify subsets of qubits: A, B,C,.. ..

e partitioning of N-qubits in groups of m,n, k,... etc., withm+n+k+--- < N will
be denoted simply as m|n|k|--- when we don’t need to specify the particularities of

the grouping.

For example .47 ;. denotes the negativity between qubits a and be, A4 pc is the negativity
between a subset A and a subset BC (further decomposed into B and C), .4}, is the
negativity between a generic single qubit and two other qubits in the system. Fig. 1 shows
an example for 6 qubits.

We will often consider averages of different quantities and use an overline to identify
them. For example Tp is the negativity between a single qubit and two qubits, averaged
over all the possible choices of three qubits from the original set. In the following we
will mostly focus on systems made of an even number of qubits. For this systems it is
obviously possible to consider bipartitions into two subsets with N/2 qubits each, we will
refer to this particular bipartition as the mazimal one.

Using natural terminology from the context of holography we will call the fiducial
surface that specifies a bipartition of a system the entangling surface (¥). We will be
interested in the entanglement among qubits that could lie in the two subsystems across
the entangling surface X, or in the same one, see Fig. 1. Expressions such as '/’/1\%
to negativity between one qubit in a subset and one qubit in the other subsystem. In this

refer

case we use the expression entanglement across .. We call instead local entanglement the
correlation between qubits in the same subsystem, and use expressions like Jl/ll“ic

In the following sections we investigate the structure of entanglement for pure states
of systems composed by few qubits. These are simple toy models where the structure
of entanglement can be studied numerically, nevertheless the pattern of entanglement is
highly non-trivial. Our goal is twofold, on the one hand we use qubits systems as simple
laboratories to investigate the properties of different measures of entanglement and their
interpretation. On the other hand we will look for entanglement structures that might be
relevant for bulk reconstruction in holography. We start with the simplest case of three
qubits, this serves as an introduction to the kinds of investigations which we will later

apply to larger and more interesting systems.
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4.3 Warm up: Three qubits

We start by recalling the definition of two particular states, the GHZ and the W states of
three qubits:?°

1 1
V2 V3

These states are well known in the literature. The GHZ state only carries genuine tripartite

|GHZ5) = —(|000)+ [111)) | W3) = —(| 100)+ |010)+ | 001)) (4.3.16)

entanglement, this is captured by the fact that the value of the 3-tangle is maximal,
73 = 1. In particular after tracing out one of the qubits one is left with a system of
two qubits in a separable (mixed) state, i.e., not entangled. On the other hand the W
state contains the maximal possible amount of bipartite entanglement, i.e., the correlation
between any pair of qubits is maximal. It does not contain any tripartite entanglement
and 73 = 0. This distribution of internal bipartite entanglement corresponds to the known
fragility and robustness against qubits removal of the GHZ and W states respectively. An
alternative motivation for considering the GHZ state as the maximally entangled state
of three qubits (cf., the definition in terms of Bell inequalities in §4.2.2) is precisely this
notion of fragility [139].

General pure states of three qubits were classified in [143]. The classification relies
on an equivalence relation under a class of operations called SLOCC (stochastic local
operation and classical communication). Two states are considered equivalent when there
is a non vanishing probability to convert one state into the other using LOCC and a single
copy of the state.?’ There is a total number of six classes: the class of product states,
three classes of entangled pairs where the third qubit is not entangled, and two classes of
states which contain entanglement involving all three qubits. These are the classes we will
focus on, they are called GHZ and W classes from the names of their representatives.

Given any pure state it is possible to decide with certainty which class it belongs to
using 73. When 73 = 0 there is no truly 3-partite entanglement in the state, which is then
in the W class. We will reverse the process and use instead 73 to generate random states
in the two classes for which we study the pattern of bipartite entanglement. It should
be noted however that the W class has measure zero with respect to the generic class
(GHZ), this means that our numerical investigation will not respect the statistics of the
two classes.

We label the qubits by abe. There are three possible bipartitions of the entire sys-
tem which are generally inequivalent, we will denote them by: albe, blac, c|ab. For such

bipartitions one could in principle consider both entanglement entropy and negativity.

20 The definition of the W state here is given for the case of 3 qubits, but similarly to the GHZ case the
generalization to a higher number of qubits is straightforward.
21 Equivalence under LOCC instead would require the ability to convert one state into the other with

certainty. It is known that when only a single copy of a state is available two states are equivalent under
LOCC if and only if they are related by local unitaries (LU) [144]. In this case a classification under LOCC

would result in an infinite number of inequivalent classes even for a system of only three qubits.
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Figure 2: 50000 random states in the W (light violet) and the GHZ (color map) classes. The color map
corresponds to the value of 73 in the range (0, 1) as shown in panel (a). The GHZ and W states correspond to
the orange and purple large dots respectively. Left and right panels show the same plots with different overlay.
(a)-(b): Monogamy of the square of the negativity for a specific bipartition of the global system. (c)-(d):
Average of the squared negativity over all possible bipartitions. (e)-(f): Average negativity between single

qubits compared to the average negativity for bipartitions of the entire system.
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Nevertheless since one of the parties only contains a single qubit, its entanglement is com-
pletely determined by a single number.?? This means that if we only look at bipartitions
of the entire system there is no additional information carried by a second measure and we
can choose to equivalently use either the entropy or the negativity. The negativity being
a well defined measure of entanglement, which works well for mixed states, we will prefer
it to the entropy and use it to quantify the entanglement between single qubits.

We start by choosing a specific bipartition (a|bc) and computing the following nega-
tivities: A pe, Aajps Aa)e- As a first exercise we can check the monogamy relation for the
square of the negativity which was proved in [61]

Nty T Nl < Nooe (4.3.17)

e =

this is shown in Fig. 2a-2b. We notice that monogamy seems to be saturated more easily
by W states. More interestingly we find that there is a lower bound on the internal
negativity for W states. Some non-vanishing amount of tripartite correlation is necessary
to disentangle pair of qubits while at the same time strongly entangling each qubit with the
other pair. An analogous result holds for the average over the three possible bipartitions
of the global state, Fig. 2c¢-2d.

— 9 1 —
2/ =3 (JVfb + A +</Vb|2¢) <3 (ﬂfbc + MR+ NP ) =2, (43.18)

3 a le a lac clab

One can notice how the distribution of the states in the W class is reproduced by the states
in the GHZ class with small value of 73 (dark blue). It is useful to contrast this behaviour
with the saturation of the Arkai-Lieb inequality, but we postpone that discussion till we
discuss the situation with more qubits.

As a measure of the strength of correlations in the state it is also interesting to look

at the average of the internal negativity between single qubits
— 1
i = 3 (Hap + Aage + e (4.3.19)

and compare it to the average negativity for bipartitions of the entire state 7”2. One
clearly sees that the internal negativity is always close to the maximum for states in the
W class, Fig. 2e-2f. This corresponds to the common intuition for W-like entanglement as
being more robust when a qubit is removed from the system.

Note however that this concept of robustness is different from the definition we gave
in the previous section. In that case the robustness is proportional to the negativity for
a bipartition of the global state (JVM), which on average is actually maximized by the
GHZ state, and not the W state. The relation between this last concept of robustness
and the pattern of internal entanglement will be discussed extensively in the next sections

for larger systems. In order to keep this distinction clear we will reserve the expression

22 Formally a single qubit density matrix has only one non-trivial eigenvalue, the other being determined

by the trace normalization.
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robustness to the noise-related quantity and refer to the robustness against qubits removal
simply as internal entanglement.

Finally one can ask for the monogamy of mutual information. It is straightforward
to check that for pure states of only three qubits 13 is identically zero; consequently the

mutual information is always monogamous.

4.4 Four qubits

In this section we consider the more interesting case of four qubits, we will see that the
addition of a single qubits introduces much more structure and correspondingly several
new investigations are possible.

For a four qubits system two kinds of bipartitions of the global state are possible, using
the notation of the previous section we will refer to them as (1|3) and (2|2). As before, the
first case is less interesting as the entropy essentially carries the same information as the
negativity. The second case instead is more interesting, for such bipartition we can now
compute both the negativity and entanglement entropy and ask what kind of information
about the state one can gain by comparing them. More specifically we will consider the
specific robustness (4.2.7) and show that it conforms to the interpretation we wish to give
it.

A second novelty of a four qubits system is the possibility to investigate the properties
of different states with respect to the disentangling theorem for the negativity. In partic-
ular, we explore the relation to the saturation of Araki-Lieb inequality for entanglement
entropy. This is again inspired from holography owing the occurrence of the entanglement
plateaux phenomena [32] there.

Finally, it is now possible to obtain a mixed state of three qubits by simply tracing out
a single qubit, the value of 13 is then non-trivial and one can investigate the monogamy of
mutual information in relation to the structure of entanglement of the state.

In §4.4.1 we will start these investigation for random generic states. Following this
in §4.4.2 we will introduce a SLOCC classification for four qubits systems and apply the

extend the consideration to the different classes.

4.4.1 Generic states of 4 qubits

We begin our discussion here by picking out random pure states of 4-qubits. We will
subject these to various examinations, testing for the saturation of the AL inequality, the
disentangling theorem, and finally explain how the specific robustness can play a useful

role in delineating internal entanglement structure.

Monogamy of the negativity and disentangling theorem

Similarly to the three qubits case, it is interesting to ask how the saturation of the

monogamy is related to the four-partite entanglement measured by 74. There are now
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Figure 3: Monogamy of the squared negativity for 100000 random states. (a), (b), (c) show inequalities
(4.4.20a), (4.4.20b), (4.4.20c) respectively. (d) Contrasting Araki-Lieb saturation with the disentangling theo-

rem for negativities.

three different kinds of monogamy relations (up to permutation of the qubits), depending

on different ways to partition into subsystems:

‘/Kl?ﬂc + %%|d < ‘/Kz%ﬂcd (4420&)
Ny + Nl S Nl (4.4.20b)
'/Va|2bc + '/12|2d S %|2de (44200)

The results are plotted in Fig. 3a-3b-3c; note that the Hilbert space is now much larger and

by random sampling one only covers a small portion of the space. Curiously, in the second

case (4.4.20b), Fig. 3b, the monogamy relation seems to be saturated more by states with

a higher content of multipartite entanglement while in the third case (4.4.20c), Fig. 3c,

the states with low tangle saturate monogamy inequality. It is tempting to interpret this

result in terms of residual multipartite entanglement (cf., three qubit discussion in §4.3).
Rewriting the saturation of (4.4.20b) as

NG+ NS A L) = e (4.4.21)

a

where f () is some measure of mixed residual tripartite correlation, it is natural to con-

jecture that high values of 74 correspond to small values of bipartite (.#?) and tripartite
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(f®)) correlation. 74 ~ 1 then implies f®) ~ 0 and the saturation of (4.4.20b). Similarly
one could rewrite the saturation of (4.4.20c) as

Adhhe T Nafa + Fapea = Aethed (4.4.22)

albe a

where now f®) is some measure of 4-partite correlation related to 74. The saturation of
(4.4.20c) then corresponds to 74 ~ 0.

Let us now turn to the connection between the monogamy of the negativity and the
saturation of Araki-Lieb inequality (AL) [74] for entanglement entropy [76]. Recall that
the AL inequality reads:

|S(A) — S(B)| < S(AB) (4.4.23)

For a joint system A U B in a mixed state, for reasons explained hitherto, it is difficult
to interpret AL in terms of quantum correlations. In order to understand what kind
of constraint AL implies for the internal structure of entanglement of the state, it is
convenient to introduce the purification C of the state AB. Thus for a system U of N
qubits we then consider only tripartitions such that A U B U C = U and the global state

is pure. With this choice one can then rewrite (4.4.23) as

|SaiBc — SBlacl < Scias (4.4.24)

where by expressions like Sy pc we mean the entropy of entanglement between A and
BC' (which of course is S(A) = S(BC)), stressing the interpretation of the von Neumann
entropy as a measure of entanglement between a subsystem and its complement.

In the case of four qubits then there is only one possible kind of tripartition, up to
qubits permutation, i.e., 1|1|2. We consider the set-up A = {a}, B = {bc}, C = {d},
(4.4.24) then reads

|Sa\bcd - Sbc|ad| < Sd|abc (4-4.25)

Permuting the qubits one obtains a set of constraints on the internal pattern of entangle-
ment of the global state. We want to ask how this set of constraints is related to the one
obtained from the monogamy of the negativity. In particular it is known that AL is in
general difficult to saturate and it is certainly not saturated by generic states.?> We want
to investigate when this saturation actually happens and for which distribution of internal
negativities.

More specifically, we invoke the disentangling theorem for the negativity of [61] for
this purpose. For a pure state of U = AU BUC, if A4 pc = A p then it is possible
to partition B = By U By such that the state factorizes | ¥) =|1¢ap,)® |¥p,c). For our
specific set-up the condition for the disentangling theorem is: Agpcq = A5 pe- Eq.(4.4.20c)

23 For further discussion we refer the reader to [76] for general analysis of AL saturation, [32] for
explicit examples where the saturation occurs in holographic systems, and [75] for a general analysis of AL
saturation of holographic entanglement entropy. We should note that the saturation of AL in holography

is not generic, but does happen in a large class of examples involving bulk spacetimes with horizons.
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then implies .4 |2 » < 0, which is absurd; the only possible solution is saturation of the
monogamy relation and in particular .4;; = 0. The consequence of the disentangling
theorem is even stronger, not only there is no distillable entanglement between ald, but
there is no entanglement at all and the global state factorizes either as |1.)® [1q) or as
|%ac)® |bd)-

The disentangling theorem implies saturation of AL in the following way: because of
the factorization of the state one has S(B) = S(B1) + S(Bz), but since the individual
states in the product are pure S(B) = S(A) + S(C). Note that C now is the purification
of AB, hence S(B) = S(A)+ S(AB) i.e., AL is saturated. We measure the saturation for
random states by ASyp = S(AB) — [S(A) — S(B)| > 0 and correspondingly the amount
by which the states match the hypothesis of the disentangling theorem by AAapc =
NaBc — A = 0. With our specific choice these quantities are

ASap = Sqjabe = |Sajped = Sbefad| » ANaBc = Nped — Nafbe (4.4.26)

The results are shown in Fig. 3d. Note that as expected there are no states that saturate
AL, while the states that get closer to the saturation correspond to the states that almost
satisfy the conditions of the disentangling theorem. This in itself is not particularly sur-
prising, as we discussed AL inequalities are statistically difficult to saturate. Furthermore
the result shows that matching the hypothesis of the disentangling theorem is a sufficient
conditions for a state to saturate AL. On the other hand it is interesting to ask if these
conditions are necessary and what is the meaning of states that saturate AL without fac-
torization. We will comment more on this issue as we investigate further aspects of the

relation in greater detail in the following.

Negativity to entanglement ratio

We can now initiate the study of the ratio between entanglement entropy and negativity,
which is one of the main motivations of the present work. In order for the entropy to be
a sensible measure of quantum entanglement we only consider global bipartition of pure
states. Furthermore, for the same reason discussed in the case of three qubits, in the
case of a 1—3 bipartition both the entanglement entropy and negativity carry the same
information. We will therefore focus on the 2|2 bipartition only, where we can distinguish
the negativity and entanglement.

Let us start with a particular partition (ab|cd) and refer to the fiducial separation of
the two subsystems (i.e., the symbol “|”) as the entangling surface (X). One can then
compute both negativity and entropy for this particular bipartition. Since the state is
pure the entropy is a measure of the amount of entanglement between the subsystems,
intuitively the number of Bell’s pairs that can be distilled.?* On the other hand we

interpret the negativity as the robustness of the entanglement between the subsystems.

24 Note however that more precisely this would be an asymptotic statement.
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Figure 4: Average negativities across the entangling surface ¥ and inside the subsystems for a fixed bipartition
(100000 states). The left panels show the results for random states with entropy in the range (0.27292,1.32195),
the large red dots show the maximally entangled state (Z). The right panels show states with a constrained
value of the entropy 0.799 < S(ab) < 0.8.
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Figure 5: Average negativities across the entangling surface ¥ and inside the subsystems for a fixed bipartition
(2000 states). The left panels show the results for random states with entropy constrained in the range
0.39 < S(ab) < 0.4. The right panels show states with a constrained value of the entropy in 1.19 < S(ab) < 1.2.
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We stress again that this notion captures the robustness against “intelligent jamming”,
which is in principle different from the common intuition about the robustness of the W
states. In the latter case one actually refers to the amount of internal entanglement. As
described in §4.2 we want to interpret the ratio R as capturing the specific robustness in
a given state. We explore the dependence of R on the entanglement structure of the state
focusing on the internal pattern of entanglement.

For the bipartition ablcd we have A4 1“;0 and A }3‘3 for local entanglement, while for

a
entanglement across 3 we consider all the possible negativities of the kind Jl/lz and A

1 12
where the sets of qubits are subsets of the original subsets of the bipartition. |Finally vxle
take the average of all the negativities of a particular kind, keeping the original bipartition
fixed. The results are shown in Fig. 4a-4c-4e and show the dependence of the ratio on
the internal entanglement with unconstrained value of the entropy across ¥. For states
which are almost maximally entangled?® the spread between possible values of entropy and
negativity is very restricted. Interestingly the spread grows considerably for small values
of the entropy, which also correspond to a higher value of the ratio. These are states that
are less entangled but whose entanglement is particularly robust. In some sense it seems
that if a state is highly entangled, its entanglement is more fragile against noise. Larger
R corresponds to greater specific robustness, justifying our terminology.

One can also look for the distribution of the states when the entropy is almost fixed,
the results are shown in Fig. 4b-4d-4f. The fixed value is picked to be somewhere in the
middle-range of the entanglement spread for our sampling; other choices outside the edge
regions lead to similar results. Note that the dependence on the entropy now is completely
random. Furthermore the ratio seems to be increasing when the (1|2) entanglement across
the entangling surface is higher. On the other hand it seems not to depend on the average
(1|1) entanglement. It will be useful to contrast this result against those for larger systems.
For now we tentatively interpret the results as suggesting that states with a higher amount
of (1]2) entanglement across the entangling surface, but the same value of the entropy, are
more robust.

Finally, we look at the average entanglement inside the subsystems specified by 2. We
find that high values of local negativity correspond to high value of the ratio although
the converse is not always true. Fig. 5 shows two other slices for different constraints
on the entropy. For states which are almost maximally entangled (Fig. 5b-5d-5f) the
results agree with the previous analysis. On the other hand when the entropy is fixed
but small (Fig. 5a-5c-5e) the dependence of the ratio on 1|2 entanglement becomes less
evident. Furthermore a larger amount of local 1|1 entanglement is not sufficient any more

to produce higher values of the ratio.

25 By maximally entangled state here we mean the usual state that maximizes entanglement for a given
4 . .
[3)® |4)

bipartition. For four qubits this is the state which achieves this between two pairs, i.e., % Doict
where |4) is the computational basis for a two-qubits system. We will reserve the symbol |Ey) for such

states.
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(a) (b)

Figure 6: 100000 random generic states to test monogamy of mutual information. (a) Average ratio between
negativity and entropy compared to the values of 13 and 74 (color map), (b) Average 2|2 negativity compared

to 13 and 74 for the same states.

Monogamy of mutual information

For a system of four qubits there are in principle two different kinds of tripartite infor-
mation one can look at, viz., either 13(1|1]|2), or I3(1|1|1) after tracing out a single qubit.
Since we are only working with pure states, in the first case we have 13 = 0, we will instead
focus on the second case. There are in principle four different values of 13 depending on
which qubit we choose to trace out. Nevertheless it is straightforward to check that they
are all equal, there is actually a unique value of I3.

We compare this value to the amount of quantum multipartite entanglement measured
by the tangle and the internal entanglement structure. As a measure of the robustness of
the state we use the average negativity %, the result is shown in Fig. 6a. An evident
result is the observation that statistically the monogamy of mutual information is not a
very restrictive condition. States with low robustness and high values of 74 seem to violate
the monogamy of mutual information (positive 13) more easily.

In Fig. 6b we show instead a similar plot for the average ratio R. Now we note that
the states that violate monogamy and have high value of 74, also have quite a small value
of the ratio. This correlation is rather suggestive, and if true, implies that the specific
robustness measured by R could be a useful diagnostic vis a vis monogamy of mutual
information. However, before we arrive at this conclusion, we should do some more sanity

checks, which we now turn to, by considering a classification of four qubit states.

4.4.2 SLOCC classification of 4 qubit states

For four or more qubits it is known that the number of inequivalent SLOCC classes is
infinite [143]. Nevertheless, motivated by the result for three qubits, one can still look for
special states that maximize mixed internal correlations. These are a higher dimensional
generalization of the W states of three qubits. For states of four qubits [145] gave an

SLOCC classification into eight special classes of this kind, plus an additional class ([Q1]
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in the following) which contains infinitely many SLOCC classes and is related to generic

states (see below). Using the standard computational basis for 4-qubits we can write down

the classes explicitly as26

Q1)) = 2 ;r < (10000)+ |1111)) + %l(|0011>+ 11100)) + ¥(|0101>+ 11010))
+ %(]0110>+ 11001))
11Q2]) = a;b(\OOOOH— 11111)) + ‘ZT_b(\oon)Jr 1100)) + ¢(|0101)+ [1010))+ |0110)

11Q3]) = a(|0000)+ | 1111)) + b(|0101)+ |1010))+ [0110)+ [0011)
1[Q4]) = a(]0000)+ |1111)) + ‘%b(\ 0101)+ |1010)) + GT_b(|011o>+ 11001))

+ —(]0001)+ | 0010)+ [0111)+ |1011))

V2

| [Q5]) = a(|0000)4 [0101)+ |1010)+ [1111)) 4 |0001)+ |0110) — i |1011)

|[Q6]) = a(]0000)+ |1111))+ [0011)+ |0101)+ |0110)

1[Q7]) = |0000)+ |0101)+ |1000)+ |1110)

[Q8]) = |0000)+ |1011)+ [1101)+ |1110)

1[Q9]) = |0000)+ |0111) (4.4.27)

Here a,b,c,d are complex numbers which appear as eigenvalues of an operator used in
constructing the classification scheme. The classification only includes states where all
the qubits are entangled.?” The first class is the “generic class” in the sense that any
generic state of four qubits can be mapped to a state in [Ql] by SLOCC. This class is
not unique under SLOCC; as clarified in [142] it is dense in the space of generic states,
but it actually contains an infinite number of classes. The remaining classes are thus of
measure zero, but contain the maximal amount of internal mixed bipartite or tripartite
entanglement (there are some exceptions which we note below). In the following we will
focus in particular on the classes [Q1]-[Q6] — the last three only contain exceptional states.
The W state of four qubits belongs to [Q4], while the GHZ 4-qubit state is in [Q1] (a = d,

b= c=0), as expected.

Distinguishing the classes: Given a single state one could ask how it is possible to
identify the corresponding class using different measures of entanglement. In principle one
could compute the negativity for each bipartiton of the entire system and all bipartitions
of each possible subsystem. It is natural to expect that the collection of this data allows
some resolution of the classes.

We want instead to ask a different question. As advertised earlier, we are concerned

with knowing to what extent it is possible to distinguish states in different classes if one

26 For simplicity we drop the normalization factor in the definition of the classes.
2" The class [Q9] is an exception as it can be written as | 0)® | GHZ3). This was indeed one of the

motivation for [146] to consider an alternative classification of the four qubits states into eight classes.
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Figure 7: Comparison of the averaged entropy and negativity for the maximal bipartition (50000 random states
per class). The four panels show the same plot with different overlap. The color-class correspondence is as
follows: M = [Q1], W = [Q2], ™ = [Q3], M = [Q4], W = [Q5], M = [Q6]. Note that while generic states can be
mapped into class [Q1] by a SLOCC, picking states in [Q1] according to the ansatz in (4.4.27) does not sample
this genericity. Hence the region covered by B = [Q1] is not the entire domain of the plot above, but only a

subregion thereof.

is restricted to use measures of entanglement for pure states. Our motivation comes from
holography, where at present we only know how to compute the negativity for pure states.
We can then combine information one extracts from both negativity and entropy, and see
how much we can learn about the entanglement structure.

For simplicity, we focus on the maximal bipartitions, i.e., 2|2. One can easily compute
the average negativity and average entropy for random states in the various classes, and
average over the three possible inequivalent bipartitions. The results are shown in Fig. 7.
One can see that even if the combined information extracted from negativity and entropy
is not enough to completely resolve the classes, one can still discriminate them in some

ranges of the values of the two measures.

Disentangling theorem and Araki-Lieb: We repeat the analysis of the previous sub-
section for the disentangling theorem of the negativity and the saturation of AL. In the

previous discussion §4.3 the states were generic and all the possible qubits permutations
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gave the same result. Here we expect the behaviour to be different depending on the spe-
cific set-up that we choose — this is manifest in the fact that the classes are not completely
symmetric under qubits permutations. In principle there are 12 different situations to
consider, but many choices give equivalent results. For each class we report the result for
the most interesting partition in Fig. 8. The full list of possible results for each class and
the corresponding plots can be found in Appendix 4.A. In each class there are states that
get arbitrarily close to saturating AL and respect the conditions for the disentangling the-
orem, with the only exception of [Q5]. This is the class that will be of particular interest
for us in the sequel.

Interestingly, it is worth pointing out that in two classes there are states that saturate
AL even without satisfying the conditions for the disentangling theorem. These states
have (a) high values of multipartite entanglement in [Q1] and (b) a low value in [Q3] (the
color map in the various plots shows the values of 74). The specific states (indicated by
colored dots in Fig. 8) are respectively a product of two Bell pairs |®), and the product
between a Bell pair and two disentangled qubits [¥).?® This means that the hypothesis of
the disentangling theorem would be satisfied for a different permutation of qubits. Indeed
the tangle is sensitive to the factorization inherent in one of the two subsystems.

AL saturation without factorization ought to be a very restrictive condition on the
pattern of internal entanglement. This may exaplain why it hard see the saturation for
generic states. Looking at the results one might be tempted to conjecture that such a state
could exist in [Q2]. A numerical search for such a state showed that states with A4 > 0
and AS ~ 0 approach to the product |0110). The reason why these states may be highly
shifted to the right of the origin is that their entanglement is particularly robust. An
extremely small but non vanishing value of the entropy can produce much higher values
of the negativity. We conclude then that in the case of four qubits the saturation of AL
only happens if there exists a permutation such that the conditions for disentanglement

are matched and factorization actually happens.

Specific robustness R: For generic states we have seen that the most sensible quantity
to the internal structure of entanglement is the negativity across ¥ between a qubit in a

subsystem and the other pair, viz., 4/1/”55

and compare specific robustness (4.2.7) to the negativity JVHEQ The results are shown in
Fig. 9; we keep track of the values of the entropy (color map).

We now repeat the same analysis for the classes

States in [Q1] reproduce the behaviour of generic states; similar patterns are visible
in [Q2]-[Q4] — see Fig. 9a-9d. On the other hand, for a different choice of 3, a different
pattern manifests itself in classes [Q3] and [Q4], see Appendix 4.A, Figs. 20a and 21a. In
this case the highest values of the ratio in the class correspond to states with the highest

entropy and negativity. There are no states with small negativity and high value of the

?® The explicit expressions of these states are: |®) =|¢")as® |¢1)eq and |¥) =|01)c® | ¢+ )pq where
|¢T) is the maximally entangled two qubits state |¢™) =|01)+ |10), i.e., a Bell pair.
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ratio (and small entropy). [Q6] has a similar behaviour as evidenced in Fig. 9f. In contrast,
[Q5] instead is quite peculiar, states with high negativity and entropy correspond both to
the highest and smallest values of the ratio, cf., Fig. 9e. Highly entangled states in [Q5]
are divided in two branches, one with fragile entanglement, the other whose entanglement
is more robust. Note however that the three quantities that characterize the state are
constrained in a small range of values.

While the behaviour of the various classes is more or less similar to the generic class,
the curious feature is the exceptional behaviour in [Q5]. We have previously also seen
that this class of 4-qubit states is also peculiar when we analyzed the consequences of the
disentangling theorem, vis a vis, saturation of the AL inequality. We shall now compare the
ratio to the value of multipartite entanglement and the monogamy of mutual information

and find yet another distinguishing feature of this class.

Monogamy of mutual information: Finally, we compare the value of 13, to the tangle,
and the average ratio over the three maximal bipartitions. The results for the different
classes are shown in Fig. 10. Surprisingly, there is only a single class [Q5] shown in Fig. 10e,
whose states always have a negative value of 3.

This the most interesting aspect of our analysis of the SLOCC classified 4-qubit states.
What it suggests is the following: in all the other classes [Qk] with k # 5, a given state
with a particular value of 13 can always be turned into a state with positive 13 by SLOCC.
Even more strongly, since every generic state of four qubits can be mapped to the first class
by SLOCC, the states in [Q5] are the only one that can never violate the monogamy of
mutual information. In effect, what this suggests is that the subset of 4-qubit states lying
in Class [Q5] are likely to be most holographic. Of course, this statement should be taken
with a large grain of salt, for we are discussing here the structure of entanglement in qubit
systems with no interactions. Furthermore, it is unclear to us that the holographic map
respects the SLOCC operations used to classify states herein.?? Nevertheless we think the
presence of a distinguished class of states suggests that certain patterns of entanglement
are more likely than others to play a role in holographic systems (at least for the purposes
of building semi-classical geometry).3°

It is also interesting to look at the result for the generic class [Q1], cf., Fig. 10a. As
expected from previous results for generic states the value of 13 is generally negative, in
particular for small values of 74. Nevertheless states which are strongly entangled in a
multipartite sense are divided into two branches. One branch minimizes the average ratio
and violates monogamy of mutual information, the other seems to respect monogamy and

maximizes the ratio. The states in the latter case asymptotically approach the state ®

29 We thank Veronika Hubeny for a discussion on this issue.
30 For completeness let us also record the values of I3 for the exceptional states [Q7], [Q8], [Q9]:

13([Q7]) = —0.356135,  13(]Q8]) = —0.477386,  13(|Q9]) = 0.
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Figure 10: Monogamy of mutual information compared to the average ratio for the maximal bipartitions and
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Figure 11: Entanglement across X for a system of 6 qubits (100000 random states). The entangling surface ¥
is fixed and divides the states into two subsystems of three qubits each. The panels show the dependence of the
ratio on the internal negativity. The color map shows the values of the entropy in the range (1.26147,1.84577).

discussed before in the context of AL inequalities.?! A numerical search for the states that
minimizes the value of 13 gives instead the following state

jus

| M) =[0011) + =3

jus

110101) — €37 [0110) — €3° [1001) + e~ 5° |1010)+ |1100) (4.4.28)

This state is interesting in its own right; it appears to be a highly scrambled state. It
has maximal entanglement under all partitionings of the qubits [142]. Preliminary inves-
tigations indicate a similar pattern for higher qubit systems; it would be interesting to
explore this class of states further. A behaviour similar to that of [Q1] is manifest for [Q4]
(Fig. 10d). On the other hand this should be contrasted with the behaviour of [Q2] and
[Q3] (see Fig. 10b and 10c respectively), where the states that maximize the average ratio

contain a small amount of multipartite entanglement and can violate monogamy.

4.5 Large N qubit systems

At present no classification is known for pure states of five or more qubits. As a result any

analysis of larger number of qubits must necessarily be restricted to generic states. We

31 This was checked numerically over 1000000 states that maximize the ratio.
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Figure 12: A slice of Fig. 11, for 50000 states, now with a constraint on the entropy which takes values in the
interval (1.49,1.5) and is shown by the color map.

now explore specific robustness characterized by the ratio R, focusing on its dependence
on internal entanglement. We also look to examining the relations amongst the ratio,
multipartite entanglement and the monogamy of mutual information. We will specifically
focus on states of 6 and 8 qubits, primarily because the tangle is only defined for an even
number of qubits (for N > 3). Much of the other results we derive ought not to change

considerably for an odd number of qubits.

4.5.1 Negativity versus entanglement

As in the case of four qubits we want to investigate the dependence of the specific robust-
ness on the internal pattern of entanglement of the system. As before we are interested
both in the entanglement between qubits inside a single subsystem and entanglement
across the entangling surface . We will choose ¥ such that the size of the subsystems
is maximal, i.e., commit a 3—3 split for the 6 qubits case, which we keep fixed in what
follows.

Let us start by listing all the possible internal negativities we can consider for a pure
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Figure 13: Dependence of the ratio on the average negativity between qubits inside the subsystems specified
by X for pure states of 6-qubits. (a) no constraint on the entropy (color map), for 100000 states, (b) entropy
constrained in the range (1.49,1.5), for 50000 states.

state of 6-qubits.

across X ,/Vzlzg ,/Vllzg JVQI% JV”% ‘/‘/1|21
local: 5 e (4.5.29)

In the above, averages are computed by considering all possible permutations of qubits
(with X held fixed).

Of the set of possibilities listed in (4.5.29), Iﬁ is uninteresting, and so we will ignore
it from now on. In Fig. 11 we show the results for the other cases. The color map indicates

values of the entropy across ¥ for the entire system.

We see that the ratio R clearly increases when Ji/2|2:3 or ‘/1/1|E3 increase. Some dependence
b

is also manifest for J/2|2 while there is no clear dependence on J1/1|22 In addition, note
that the average negativity is well correlated with the entanglement entropy (they both

increase in concert). This should be compared to Fig. 4c for the four qubits case. We
just have to bear in mind the obvious fact that random sampling actually covers a larger
portion of the space in the 4-qubit case. For system of six qubits the Hilbert space is much
larger and random generation only gives access to a small portion of it. We are probably
exploring only a region analogous to the one near the tip of Fig. 4c. This is consistent
with the fact that statistically we get high values of the entropy.?? It is entirely possible
that as in the four qubits case, R is maximized by states in another region, again with a
much smaller value of the entropy.

Bearing this caveat in mind we can still investigate how the specific robustness depends
on internal entanglement for states in this region of the space. In order to understand
whether R increases with the negativity independently of the entropy, we look for random

states with the entropy constrained in some small range of values. The results for the

32 A maximally entangled state of six qubits, in a bipartite 3—3 sense, has entropy S = 2.079, specific
robustness R = 1.683.
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(a)-(b) entanglement across X, (c)-(d) entanglement inside subsystems.

same bipartitions as above are shown in Fig. 12. One can see that the weak dependence

noticed above in the case </V2|22 actually disappears. On the other hand our suspicions are
>

vindicated for Q/V1|E3 and in particular for ,/1/2|3.
states with a fixed value of the .47, the ratio R seems to be statistically maximized by

In the last case we also notice that for

states with a lower value of the entropy.

We can also look at the local entanglement (again ignoring llﬁc).The results for 11|(2’C
are shown in Fig. 13. Quite curiously the ratio seems to slightly decrease as the internal
negativity increases. At the same time the entropy seems to decrease as well. If we look
instead at states with a constrained value of the entropy, the ratio seems to increase as
the negativity increases.

One lesson that we learn is that the specific robustness R is particularly sensible if one
of subsystems coincides with one of the subsystems of the original bipartition. When we
start to trace out qubits, the sensitivity of the ratio progressively fades. Similarly, for the
internal entanglement the sensibility of the ratio seems to be higher when do not trace

out any qubit.



4.5. Large N qubit systems 82

R s

2260 2262 2264 2266 2268 2270

2.38 : C 538

232}
2.30

2.28

2.26 T2.44 2.46 2.48 2.50 2.52

: C )
1.13 1.14 1.15 1.16 117 2 ./V3‘4

(a) (b)

238 . . 238

2.36

Toc
'/VI\S

0.07 0.08 0.09 “yloc 0055 0060 0065 0070 0.075 0080  0.085
(c) (d)

Figure 15: A slice of Fig. 14, now with a constraint on the entropy which takes values in the interval (2.26,2.27)
and is shown by the color map. Plot is for 5000 random states.

We can check this result for an even larger system. For a system of eight qubits the

list of all possible negativities we could look at is the following:

across ;A2 NE N N NE N N N

3l4 2[4 1]4 313 2|3 113 2|2 1]2
. loc loc loc loc
local: JI/1|3 c/VQ‘2 c/Vl‘2 JV1|1 (4.5.30)

Fig. 14 shows the results without a constraint on the entropy, the results for states with

constrained entropy are shown in Fig. 15. Similar comments as for the 6-qubit case hold.3

4.5.2 Exploring multipartite entanglement

We now move to the analysis of multipartite correlations. Consider a pure state of a
system U of N-qubits. We can choose subsystems A, B, C' such that AUBUC = U.
Since the state of U is pure we have 13 = 0. We want instead to look at all the possible
values of 13, for all the possible inequivalent choices of A, B, C' where the total number of
qubits k in AUBUC takes value in {3,4,--- , N — 1}, i.e., subsystems obtained by tracing

out at least one and at most N — 3 qubits of the entire system.

33 A maximally entangled state of eight qubits, in a bipartite 4—4 sense, has entropy S = 2.773, specific
robustness R = 2.705.
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Figure 16: a) Maximal value of 13 for the two inequivalent kinds of partitionings of 4.5.33, from right to left.
The values of 13 are compared to the tangle, 100000 states per class, b) Max value of 13(1]|1]|1) compared to
tangle and the average ratio (color map), 100000 states.

We follow the following canonical algorithm for computing the tripartite mutual infor-
mation. For a given value of k we consider all the possible ways to partition the qubits
into three subsystems (up to qubit permutations), this is given by the list of possible
decompositions of &k into three integers. Fixing k£ and the type of tripartition chosen, we
compute all the possible values of 13 considering the full set of qubits permutations, and
retain the maximal value. The choice is inspired by the fact that its sign clearly tells
us whether there is a violation of the monogamy of mutual information for at least one

permutation of the qubits. To wit,

13(k1[ka|k3) = IgIelr%lXS 13 (G’Oll T Oog, ’b,Bl T bﬁkQ ‘C'Yl e 'a“rk3>

for A= {aai}v B = {bﬂi}v C= {c%}v (4.5.31)
ki +ko+ks=ke{3,4,---,N—3}.
Since the global state is pure, we will find certain equivalences among values of 13 for
different kinds of partitions {k1, ko, k3} and different values of k.
We start with a system of six qubits, where k takes values in {3,4,5}. The possible

kinds of partitions for different values of k are easily listed:

3 13(1)11)
4 13(112) (4.5.32)
5 BALS),  13(1)212)

k
k
k
Moreover, as promised it is simple to check the following equivalence relations:

13(1]1]1) = 13(1]1/3)

(4.5.33)
13(1[1)2) = 13(1/2[2)

We remind the reader that expressions like I3(1]|1|1) here represent the set of values of 13

for a particular tripartition and all the possible choices of the qubits.
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Figure 17: a) Maximal value of 13 for the five inequivalent kinds of partitionings of 4.5.34, from right to left.
The values of 13 are compared to the tangle, 1000 states per class, b) Max value of I3(1|1|1) compared to

tangle and the average ratio (color map), 10000 states.

Fig. 16a shows the maximal value of I3 for these two classes of equivalent partition-
inings, one can notice that I3(1|1]1) is the quantity that get closer to the violation of
monogamy. For such a partitioning we then compare the maximal value of I3 to the value
of the averaged specific robustness and the tangle, see Fig. 16b.

We can repeat this analysis for the eight qubits case. The list of all the equivalence

classes of 13 for different values of k is:

I3(1[1]1) = I3(1[1]5)

I3(1[1]2) = I3(1[1]4) = I3(1|2/4)

I3(1]1)3) = I3(1)3|3) (4.5.34)
13(1)2]2) = I3(1]2]3) = I3(2)2]3)

13(2]2]2)

Fig. 17a shows the results for the five inequivalent values of 13. As for the six qubit case,
we also report the relation with the average ratio and the tangle, see Fig. 17b.

As expected from the results for four qubits, the monogamy of mutual information
appears to be generically satisfied. Thus the monogamy of mutual information in these
systems is not particularly restrictive vis a vis applications to holographic considerations.
We expect the result to be true for larger systems as well.

From the eight qubits case another suggestive pattern appears to emerge. The values
of 13 that get closer to zero correspond to the case where single qubits are involved, eg.,
I3(1]1]1). On the other hand tripartitions into larger subsystems seem to produce the
lowest values of 13, eg., 13(2|2]2). The result seems to suggest that mutual information is
essentially monogamous for large regions and that in search of a violation one should look

at regions of the smallest possible size.
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4.6 Discussion: Lessons for holography

The main message of our discussion has been to demonstrate how several measures of
quantum entanglement (more generally correlations) can be used to investigate the struc-
ture of entanglement of pure states of non-interacting qubits. Specifically, we examined
the properties of this entanglement that are captured by (a) the monogamy of negativity,
(b) the specific robustness, (c) tripartite mutual information, and (d) the tangles. Our
primary interest was to use these measures to delineate the distribution of entanglement
inside a given pure state of N-qubits. For the most part we resorted to random sampling
from the space of states, though in specific circumstances (e.g., 3 and 4 qubit systems) we
did make use of available classification schemes.

Even if the systems under consideration were a vast oversimplification of continuum
QFTs, we believe that they have rather useful message to impart in the context of hologra-
phy. This should in part be attributed to the non-trivial structure entanglement inherent
in them, coupled with their eminent tractability. Let us therefore try to abstract some
general lessons for holographic systems.

Consider a state of a holographic QFT (assuming ceg > 1) which is dual to a classical
bulk geometry. This state can be pure or mixed (eg., the thermal density matrix which
is dual to a black hole). We pick a spatial region A on the background geometry where
the QFT resides, to make up our subsystem. The holographic entanglement entropy
prescriptions of [20,23,39] associate the area of an extremal surface to the von Neumann
entropy S 4.

There are two interpretation of S 4, which are sometimes called objective and subjective
in the literature. The objective interpretation, which is perhaps more physical, relies on
the intuition of entropy as measure of disorder of the system. The subjective point of view,
on the other hand, is typical of information theory. If the entropy of A is thermal there is
still no correlation among degrees of freedom inside A, but the system contains complete
information about some other system, i.e., its purification. It is in this second case that
the von Neumann entropy can be interpreted as a measure of entanglement between the
two parties, namely entanglement entropy. From the point of view of understanding the
structure of quantum entanglement, the subjective viewpoint is more appropriate. We
will therefore focus on pure states of some extended system; e.g., instead of the thermal
density matrix we pick the thermofield double state [121]. Given a subregion A, it should
therefore be borne in mind that the complement A° could include the purifying degrees
of freedom.

Given this configuration, lets say that we are handed an algorithm for reconstructing
the bulk geometry from the information theoretic content of the field theory. To be sure,
such an algorithm does not exist to date, but it has been speculated that the picture
is somewhat akin to tensor networks which encapsulate the entanglement pattern of the
state [26,42]. The closest one gets is the error correction model discussed recently in [28]
(see [11] for the genesis of this set of ideas). In this context, the extremal surface and

spacetime regions associated with it, such as the entanglement wedge are distinguished, in
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that they capture the long range correlations of the degrees of freedom contained in the
subregion A of interest and its complement.

Per se tensor networks or other models are but a tool to characterize the structure of
correlations of a state. We want to analyse the entanglement pattern from a more opera-
tional perspective. Given a global pure state of a system U consider N-parties O;, each of
which has access only to some subregion A; of U (in general Ufil A; C U) and suppose that
all the parties are allowed to perform operations on their subsystems and are also allowed
to communicate through classical channels.?* The entanglement amongst these subregions
is the resource that O;’s can use to implement typical tasks that would not be achievable
if they were restricted to classical correlations. A common intuitive procedure for example
would be the distillation of Bell pairs (for two parties) or GHZ y states (for N > 2) which
can be stored and later used for other purposes. Entanglement measures, both bipartite
and multipartite, are designed to quantify this resource and characterize its properties. As
mentioned earlier, in the case of two parties the logarithmic negativity provides an upper
bound to distillable entanglement.?® Unfortunately this being hard to compute in all but
the simplest cases, we resorted to qubit experiments to gain some intuition; likewise to our
knowledge there is no clean measure of multipartite entanglement defined for continuous
systems. Effectively, we are making the approximation .A; = span{| 0),| 1)}, which is
dramatic but useful truncation.?¢

Alternatively, imagine an external agent that knowns the detailed properties of the
state and wants to disrupt the entanglement for a particular bipartition. As far as only
bipartitions of the entire state are concerned, the minimal amount of noise that she has
to inject into the system is captured by the negativity. A question we want to ask is to
what extent is the dual geometry stable against these operations. Similarly one may also
ask what is the consequence of the distillation procedure on the state. It would be nice
to have a model where one could test the effect of different protocols explicitly. In its
absence, we limited our analysis to the minimal sufficient condition for the disruption of
the state, namely the violation of monogamy of mutual information.

The first lesson one learns from our study of I3 in qubit systems is that the monogamy
constraint for mutual information, which is known to be satisfied by holographic states
[120], is not a particularly restrictive condition. Statistically, random states of four qubits
tend in general to satisfy monogamy; this only strengthens as the number of qubits in-

creases. We discussed how for a given number of qubits, the possible values of 13 for

34 This is a cartoon of the typical quantum information set-up where different parties are allowed to
perform LOCC. We ignore any causal constraint (note that actually these regions live on a time-slice of the
theory). This is somewhat akin to the discussions of [147] who attempt to give an operational definition
to the concept of differential entropy.

35 As explained hitherto we used instead the negativity because of its interpretation for pure states, but
one can map from one quantity to the other.

36 1t would be interesting to upgrade our explorations where we replace a single qubit by a composite

system of many qubits; ramping up the internal dimension could allow exploration of free vector or matrix

like models. We thank Don Marolf for a discussion on this issue.
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different choices of the three subregions are related. When large regions are involved,
I3 becomes more and more negative and, statistically, the matching of the monogamy
restriction becomes even more favoured. This in particular suggests that in search of a
violation of monogamy one should look at the smallest possible regions. This would for
instance suggest that in multiboundary wormhole spacetimes of [117,119], which was an-
alyzed in [50], one should retain the domain of outer communication of the smallest set of
black holes.

Being a linear combination of mutual informations, 13 mixes quantum and classical
correlations. We compared its behaviour to the multipartite entanglement captured by
the tangle. Our results suggest that states with high values of quantum multipartite en-
tanglement have a higher probability to violate monogamy of mutual information. For
the GHZ4 state this is a known result, which was used in [51] to argue that a 4-boundary
state built from many copies of GHZ, cannot be dual to a smooth classical geometry (see
also [50,148]). Our result extends this argument to generic states with a high multipartite
entanglement. We discussed a possible interpretation of multipartite entanglement that re-
lies on the residual entanglement which is left after one takes into account all the (mixed)
bipartite and tripartite entanglement in the state. A small value of 4-partite entangle-
ment then corresponds to strong correlation among internal parties. This may suggest
that special states with high internal correlation are then more suitable for holography.
Nevertheless it is immediate to check that even the W, state violates monogamy. More
generally, the states of 4-qubits with the strongest internal correlations are precisely those
belonging to the special classes [Q2]-[Q6]. Under the effect of SLOCC operations a state
in a class can evolve to a new state that violates monogamy. The one exception are states
in class [Q5] which always respect I3 < 0. This class of 4-qubit states is in a natural sense
most suitable to be “holographic”. In any event it is tempting to conjecture that states
with geometric duals in holography have strong bipartite (or tripartite) correlations.

For larger qubit systems, there isn’t a statistically significant correlation between the
N-partite entanglement and the tripartite mutual information. In fact, in our analysis
it appears that increasing the number of qubits is sufficient to ensure that the 13 < 0.
However, absent a classification, we have been forced to examine generic states in these
systems, so it would be interesting to further analyze if there is a special sub-class of states
with a specific pattern that mimics the class [Q5] of 4-qubits.

We then argued that for pure states with a given bipartitioning, even if the amount of
entanglement is measured by the entropy, other measures can provide further resolution
of the entanglement structure. Negativity is good measure of quantum entanglement
(which can be computed in the continuum) — it allows for some resolution of the pattern
of entanglement inherent in the state. We showed that for 4-qubits states the internal
pattern of negativity allows for a partial resolution of the classes.

In particular, we looked at the ratio between these two quantities for bipartitions of
a pure state, which we called specific robustness. We proposed that this captures the

minimal amount of noise necessary to disentangle Bell pairs in the bipartition. We further
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demonstrated how it is related to the distribution of internal entanglement. When a state
is highly entangled (vis a vis S), the specific robustness is highly constrained. On the
other hand when S is small the behaviour depends on the specific details of the state.
In general one could say that large values of specific robustness correspond to nematic
type order: the local entanglement for the bipartitioning across some entangling surface is
large, but the entanglement entropy for the reduced density matrices themselves is small.

On a slightly different note, holographic states are known to satisfy other interesting
constraints on the distribution of internal correlations. There are situations where the
Araki-Lieb inequality (AL) can be saturated to leading order in cg, leading to the entan-
glement plateaux phenomena [32]. The prototypical example is a thermofield double state
(a pure state in H ® H), where for a subsystem A € H one finds S4 = Sy 4 + Sthermal-
As described there (and further explained in [30,75]), one can visualize this as saying that
the degrees of freedom in A can be decomposed in two groups; one that carries entan-
glement across the entangling surface in H and the other carries the thermal correlations
built into the thermofield state.?” This implies a factorization of the global state into two
components.

We explained how the AL can be interpreted as a constraint on the internal pattern
of entanglement of the state and related its saturation to the disentangling theorem for
the negativity (cf., [30]). When the conditions for the disentangling theorem are matched
then the degrees of freedom satisfy the factorization mentioned above. Curiously, it was
possible to see such behaviour in special states of even small numbers of qubits. Our
analysis demonstrates conclusively that the conditions for the disentangling theorem are
not only sufficient, but also necessary for the saturation of Araki-Lieb, strengthening thus
the entropic results of [76].

All in all, qubit systems appear to provide an excellent playground for understanding
the general properties of entanglement that one might hope to understand in holographic
contexts. While our analysis has been restricted to the simplest of possible scenarios, the
rich structure seen in the qubit states, leads us to believe that one could extract general
lessons from examining them closely. It would be interesting to build in minimal dynamics
and or consider networks of qubits as in graph states or tensor type networks [28], to gain

more insight into the interplay of entanglement and geometry.

37 Geometrically this is realized when the extremal surface associated with a region A splits up into a
disjoint union of a small surface that is anchored on A° = H\.A and the bifurcation surface of a black hole,

see [32] for illustrative examples.
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4.A Four qubit states: Detailed analysis of SLOCC classes

In this appendix we collect the results for the SLOCC classes of 4-qubit states. These
complement the discussion of §4.4.2 in that they encompass the partitions of qubits we

did not consider in the main text.
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(a) The result for the cut Rqq)p. is equivalent. (b) A= {a}, B ={bc}, C = {d}

Figure 18: (a) Specific robustness for different choices of ¥.. (b) Saturation of AL for alternative permutation
of qubits, see Tab. 4.1 for the full list of possible cases.

A={b}, B={cd}, C={a} | A={a}, B={bc}, C={d}
A={a}, B={cd}, C={b} | A={a}, B={bd}, C={c}
A={d}, B={ab}, C={c} | A={b}, B={ac}, C = {d}
A={c}, B={ab}, C={d} | A={b}, B={ad}, C={c}
A={d}, B ={ac}, C = {b}
A={d}, B={bc}, C = {a}
A={c}, B={ad}, C = {b}
A={c}, B=1{bd}, C = {a}

Table 4.1: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The left column shows the choices which give the result shown in the main text, the right
column corresponds to Fig. 18b.
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Figure 19: (a) Specific robustness for different choices of ¥.. (b) Saturation of AL for alternative permutation
of qubits, see Tab. 4.2 for the full list of possible cases.

A={a}, B={cd}, C={b} | A={a}, B={bc}, C={d}
A={b}, B={cd}, C={a} | A={a}, B={bd}, C={c}
A={d}, B={ab}, C={c} | A={b}, B={ac}, C = {d}
A={c}, B={ab}, C={d} | A={b}, B={ad}, C={c}
A={d}, B ={ac}, C = {b}
A={d}, B={bc}, C = {a}
A={c}, B={ad}, C = {b}
A={c}, B={bd}, C = {a}

Table 4.2: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The left column shows the choices which give the result shown in the main text, the right
column corresponds to Fig. 19b.
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Figure 20: (a) Specific robustness for different choices of X. (b)(c)(d) Saturation of AL for alternative permu-
tations of qubits, see Tab. 4.3 for the full list of possible cases.

A={b}, B={ac}, C={d} | A={a}, B={bc}, C ={d}
A={d}, B={ac}, C={b} | A={a}, B={cd}, C = {b}
A={c}, B={ab}, C={d}
A={c}, B={ad}, C={b}
A={a}, B={bd}, C={c} | A={b}, B={ad}, C ={c}
A={c}, B={bd}, C={a} | A={b}, B={cd}, C ={a}
A={d}, B={ab}, C={c}
A={d}, B={bc}, C={a}

Table 4.3: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The top left cases give the result shown in the main text. Top right, Fig. 20b. Bottom left,
Fig. 20c. Bottom right, Fig. 20d.
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Figure 21: (a) Specific robustness for different choices of X. (b) Saturation of AL for alternative permutation

of qubits, see Tab. 4.4 for the full list of possible cases.

A={a}, B=A{bc}, C={d}
A={a}, B={bd}, C={c}
A={b}, B={ac}, C ={d}
A={b}, B={ad}, C={c}
A={d}, B={ac}, C={b}
A={d}, B={bc}, C={a}
A={c}, B={ad}, C={b}
A={c}, B={bd}, C ={a}

A={a}, B={cd}, C={b}
A={b}, B={cd}, C ={a}
A={d}, B={ab}, C={c}
A={c}, B={ab}, C={d}

Table 4.4: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation

of AL inequality. The left column shows the choices which give the result shown in the main text, the right

column corresponds to Fig. 21b.
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Figure 22: (a) Specific robustness for different choices of X. (b)(c) Saturation of AL for alternative permutations

of qubits, see Tab. 4.5 for the full list of possible cases.

A={a}, B={bc}, C={d} | A={a}, B={bd}, C={c} | A={b}, B={ac}, C ={d}
A={a}, B={cd}, C={b} | A={c}, B={bd}, C={a} | A={d}, B={ac}, C ={b}
A={b}, B={ad}, C={c}
A={b}, B={cd}, C={a}
A={d}, B={ab}, C={c}
A={d}, B={bc}, C={a}
A=/{c}, B={ab}, C={d}
A={c}, B={ad}, C ={b}

Table 4.5: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The left column shows the choices which give the result shown in the main text. The center
column corresponds to Fig. 22b, the right one to Fig. 22c.
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Figure 23: Saturation of AL for alternative permutations of qubits, see Tab. 4.6 for the full list of possible cases.

A={a}, B={bc}, C={d} | A={b}, B={ac}, C ={d}
A={a}, B={bd}, C={c} | A={b}, B={ad}, C ={c}
A={a}, B=A{cd}, C={b} | A={d}, B={ab}, C={c}
A={d}, B={ac}, C={b}
A={c}, B={ab}, C={d}
A={c}, B={ad}, C={b}

A={b}, B={cd}, C={a}
A={d}, B={bc}, C ={a}
A={c}, B={bd}, C={a}

Table 4.6: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation

of AL inequality. The left column shows the choices which give the result shown in the main text. The center

column corresponds to Fig. 23a, the right one to Fig. 23b.



Chapter 5

Tripartite information of highly

entangled states

This chapter is a reproduction of the paper Tripartite information of highly entangled
states [149].

The Ryu-Takayanagi prescription for the computation of holographic entanglement en-
tropy implies that for states which have a classical geometric dual the sign of the tripartite
information is non-positive. In the previous chapter the behaviour of the tripartite infor-
mation was analysed for states of systems containing up to eight qubits. In this chapter
this investigation is extended to larger systems for some particular states.

We first look at states with a large amount of multipartite entanglement. We explore
the behaviour of the tripartite information for states obtained in various ways starting
from GHZ states and propose a particular construction that we conjecture generates
global maxima of the tripartite information. The result of this analysis suggests that
4-partite quantum entanglement is an essential ingredient for states with positive value of
the tripartite information.

Next, we look at states with a large amount of bipartite entanglement. States which are
exactly maximally entangled for each possible bipartitions of the system where introduced
recently in the literature and are known as perfect states. They can be built using a
particular kind of tensors, the perfect tensors, as building blocks of a tensor network.
States realized by these networks have been used in [28] as a toy model to sharpen the
connection between AdS/CFT and quantum error correction. We compute the tripartite
information for perfect states of an arbitrary number of qubits and all possible partitionings
of the system.

The results of the previous chapter suggest that from an operational perspective, one
should ask how stable the sign of the tripartite information is under different operations
performed on the constituents of the system. This is particularly interesting in the case
of perfect states, as for some partitionings the tripartite information vanishes exactly. We
can hence look for small perturbations which are able to produce a positive value. Here

we comment on the case of N = 6 qubits, the only possible perfect state for qubits.
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Finally, recent work suggested that the tripartite information can be used as a parame-
ter to detect scrambling of information. Indeed, perfect states are by definition scrambled
states, and they are minimizers of the tripartite information. We comment on this proposal
building some counterexamples explicitly and showing that for the purpose of detecting
scrambling, the tripartite information is a sensible quantity only for states which are sym-
metric under all possible qubits permutations. We argue that the average of the tripartite

information over qubits permutations could be a more sensible quantity.

Notation: throughout this chapter we slightly change the notation for the tripartite
information that we used previously, and keep instead the notation used in the original
paper. While in the previous chapter we wrote I3(A|B|C) we now use the expression
I3(A: B : C) instead.

5.1 Introduction

The tripartite information (I3) was introduced in [150], under the name topological en-
tropy, as a quantity to characterize entanglement in states of many-body systems with
topological order. Given three subsystems A, B, C it is defined by the following expres-
sion: I3(A: B:C) =S4+ S+ Sc —Sap — Sac — Spc + Sapc, where S is the von
Neumann entropy.

For arbitrary states of many-body systems I3 has no definite sign. This is true also in
field theory, cf., [151]. On the contrary, within the context of the gauge gravity duality,
it was shown in [120] that for states of CFTs with a classical holographic dual, I3 is
always non-positive. This sign definiteness is a direct consequence of the Ryu-Takayanagi
prescription [20] for the computation of the von Neumann entropy in holography, and it
implies that the holographic mutual information is monogamous.

As consequence of this constraint imposed by holography, the sign of I3 has been used
in various works to explore what states might be good candidates to encode the properties
of classical geometries. In the framework of the ER=EPR! proposal [29] for example, it
was argued in [51] that black holes obtained by “collapsing” multiple copies of GHZ states
of 4 qubits (for which I3 = 41) cannot be connected by classical Einstein-Rosen bridges.?
The sign of I3 was an important consistency check also in the work of [28], which within
the context of the quantum-error-correction interpretation of AdS/CFT of [11], built a
toy model of holographic states and codes using tensor network constructions.

For qubits systems, the behaviour of I3 was explored in [116], where it was shown

that random states typically have negative value of I3, suggesting that the holographic

! A conjectured equivalence between entanglement (EPR for Einstein-Podolsky-Rosen) and geometric

connectedness (ER for Einstein-Rosen bridges).
2Strictly speaking this was not an holographic argument, as ER=EPR is a general proposal about

quantum gravity, nevertheless one can imagine an analogue version of this argument where the geometry

is dual to the mentioned qubits state.
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constraint is not particularly restrictive. Results also indicated that one has to be careful
about the particular choices of subsystems for which I3 is computed, as some partitionings
might be more suitable than others to detect violation of monogamy. Furthermore having
holography in mind, the authors proposed that we should look not only at the values of
I3 for a specific state, but also at how stable this sign is against small deformations or
operations performed on it. This proposal was motivated by the finding that for states of
4 qubits, there is only one class of states with definite sign of I3.

Another interesting property of I3 which was found in [116] is the fact that its absolute
value seems to be minimized by states which are highly entangled for all bipartitions. In
the case of 4 qubits, a numerical search for the minimum of I3 approaches a state, known
as M-state in the quantum information literature [152], which is the maximally entangled
state of 4 qubits. Indeed it was recently shown in [153] that the “perfect states” of [28]
are the minimizers of I3 and that due to this property I3 can be used as a measure of
information scrambling [8] [154] [155] and quantum chaos [156].

In this chapter we explore the behaviour of I3 for some highly entangled states in a
bipartite or multipartite sense. In §5.2 we review the definition of I3 and discuss some
of its general properties. In §5.3 we focus on qubits systems with maximal multipartite
entanglement. We explore products of GHZ states and their perturbations in arbitrary
directions in Hilbert space, for all possible partitionings of the systems. We move then to
the case of states with maximal bipartite entanglement in §5.4, where we extend the result
of [153] to different partitioning of perfect states and comment about their deformations.
We conclude in §5.5 with a summary and interpretation of the results, together with a

discussion about open questions and future directions.

5.2 General properties

Definitions and notation

To simplify the discussion in the following we will focus on generic pure states for systems
of an arbitrary number of qu-b-its, nevertheless most of the results naturally extend to
systems of qu-d-its. The fact that we are only looking at pure states will not be a restric-
tion, because for any mixed state one can always consider some purification by enlarging
the system.

Pure states of a system U of N qubits live in a 2V dimensional Hilbert space Han)y
with structure 7-[%)\[, where Hy) is the two-dimensional Hilbert space of each individual
qubit. We will consider subsets of U such that AUBUC CU and ANBNC = . The

Hilbert space corresponding to this partitioning then is H 4 ® Hp ® Hc, and the tripartite

3States of 4 qubits can be classified into 9 equivalence classes. States within a class are equivalent
in the sense that they can be mapped to each other using operations known as SLOCC (stochastic local

operations and classical communication). We refer the reader to the original paper for further details.
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information is defined as
I3(A:B:C)=8S4+Sp+Sc— Sap — Sac — Spc + Sasc (5.2.1)

Since we are only considering pure states of U, in the case A U BUC = U one trivially
has I3 = 0, so in the following we will restrict to AUBUC C U. We will use the notation
P = (A: B : C) for a particular partitioning and I3(P) for the tripartite information,
stressing that the latter is not only a function of a state but also of a specific partitioning.

Oftentimes the specific choice of the qubits belonging to the subsets A, B, C' will not
be important and we will only need to consider the cardinality of the subsystems. In
this case we will write P = (a : b : ¢) where a, b, ¢ refer to the cardinalities of A, B,
C' respectively. Ignoring the case a + b+ ¢ = N (for which I3 = 0) we then have the

conditions

1<a<N-3, 1<b<N-3 1<c<N-3
3<a+b+c<N-1 (5.2.2)

We will use the expression I3(a : b : ¢) to denote the set of all values of I3(P), with
P = (A: B: (), that can be obtained by permuting the specific choice of the qubits in
each subset, while keeping a, b and ¢ fixed.

For a given state, or class of states, we want to explore the behaviour of I3(P) for all

possible partitionings P.

Equivalences among partitionings

For each partitioning P = (A : B : C) we will call D the complement of AU BUC in
U. As a consequence of the purity of the state of U, the entropy of each subsystem is
equal to the entropy of the corresponding complementary subsystem. This implies that

the tripartite information has the following symmetry [153]
I3(A:B:C)=13(A:B:D)=13(A:C:D)=13(B:C:D) (5.2.3)

As a consequence of Eq. (5.2.3) then, some of the sets introduced before are actually
equivalent. For example, I3(a:b:¢) =I3(N —(a+b+c):b:c), see also [116]. Notice in
N.N.N

particular that for the case where N is a multiple of 4, the set I3(7 : 4 : ) is unique.

Product states

We now explore the behaviour of the tripartite information for states that are obtained
by taking products of states of smaller systems. Consider two Hilbert spaces Hi, Ho
associated to systems Uy, Us of respectively N1 and N qubits. Starting from the states
| ¥)1 € Hy and | ¢)2 € Ho we build the state | x)12 =| ¥)1® | ¢)2. We choose then a
partitioning P; = (A; : By : C1) of Uy and ask how the values of I3(P) for partitionings
of the joint system depend on I3(P;) and how the subsets of U; in P; are “contaminated”
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by qubits of Us. This means that we will not change the partitioning of the system Uy
but only add qubits of Uy into one or more subsystems of P;.
Due to the additivity of the entropy for product states, one can check that the following

cases are possible

P=(AX:B:C) = I3(P) = I3(Py) for X C Us
P=(AX:BY:C) = I3P)=I3P) for XUY C Uy
P=(A1X:BY:C1Z) = I3(P)=1I3(P1)+I3(P2) for XUY UZ C U,
P=(AX:BY:C1Z) = I3(P)=I3(P) for XUY UZ =U,

(5.2.4)

where Py = (X : Y : Z). In this set-up then, I3(P) is either invariant or additive. We will

come back to this property and some of its consequences in the following sections.

General bounds

We first look at general bounds for I3(P) that are satisfied by all states and partitionings.
In the next sections we will explore further bounds that apply to specific partitionings
for different classes of states. The fact that I3(P) is in general bounded is an obvious
consequence of the bound of the entropy.

A lower bound for the tripartite information was given in [153] and can be found by

rewriting I3(P) as*

I3(A:B:C)=1(A:B)+I(A:C)—1(A: BC) (5.2.5)

where I(X : Y) = Sx + Sy — Sxy is the mutual information. From the non-negativity
of mutual information it follows then that I3(A : B : C') > —I(A : BC). Furthermore
I(A : BC) < 2min(Sa, Spc) which implies I3(A : B : C) > 2min(S4, Spc). One can
then repeat the same argument using the symmetry Eq. (5.2.3), getting

I3(A: B:C) > —2min(Sy4, Sp,Sc, Sp, San, Sac, Sap, Ssc, Sp, Scp) (5.2.6)

Note that the minimal value of I3(P) is attained for states such that Sxy > Sx VX,Y.
In this case the bound is the one reported in [153].

I3(A:B:C) > —2min(S4, Sg,Sc, Sp) (5.2.7)

When N is a multiple of 4, I3(P) is minimized by states such that all the entropies Sx are
maximal and P = (§ : &' : §); in this case I3(P) = —&'. We will analyse the behaviour
of I3(P) for these states in more detail in §5.4. For N = 1,2,3 (mod 4) instead, the bound
would be tighter.

4We thank Beni Yoshida for a clarification about this point.
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To derive an upper bound one could start again from Eq. (5.2.5), but using strong
subadditivity (SSA)® the bound is more restrictive. We can simply rewrite the tripartite

information as

1

1
I3(A:B:C)E (SA—I—SB—SAc—Sgc)—|—§(SA+SB—SA0—530)

_l’_

N =N

(Sa+Sp —Sac — Spc) + Sapc = X apc + Sapc (5.2.8)

SSA implies then ¥ 4pc < 0. Using purity of the global state (which implies Sapc = Sp)
and the symmetry Eq. (5.2.3) one gets

I3(A: B:C) <min(Sy4, Sp,Sc,Sp) (5.2.9)

Similarly to before, when N is a multiple of 4, I 3(% : % : %) is maximal for states with

maximal entropies Sx. In this case I3(P) < &

5.3 States with maximal multipartite entanglement

The GHZ state of N qubits is defined as
1
V2

and it is a well known example of a state for which I3(P) > 0. Ignoring the trivial case

|GHZy) = — (|0...0)+ |1...1)) (5.3.10)

N = 3 for which I3(P) = 0, an immediate calculation shows that for any subsystem X of
the N qubits, the entropy is Sx = 1. This implies that for any partitioning P, one has
I3(P) =1 for any N. For the case N = 4 this immediately implies that the state GHZ4
is the global maximum of I3(P), because it saturates the bound Eq. (5.2.9).

Consider now the state | GHZ4)®*, obtained by taking a tensor product of k copies of
the state GHZ,4. For this state of the new N = 4k qubits system we look at the partitioning
defined as follows: take one qubit for each copy of the GHZ,4 state and put it into the
subsystem A of the larger system, then repeat the same procedure for subsystems B and
C'. For this particular partitioning it follows from Eq. (5.2.4) that I3(P) = k = %. As
before, this value saturates the bound Eq. (5.2.9), implying that these product states are
the global maxima of 13(% : % : %) for 4k qubits.

In this section we discuss how the values of I3(P) depend on the different partitionings
P for deformations of GHZy states. In particular we present an algorithmic construction
that we conjecture can be used to build local maxima of I3(P) for arbitrary N and any
given P. In the particular case N = 4k this construction recovers the previous result for

the state | GHZ4)®* and generates an entire new family of states that saturate the bound.

5For the convenience of the reader we report here the definition of strong subadditivity Sa + Sp <
Sac + Sec.
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Si(€) | both Ix and Ixe are Hom in n )\1:%, )\gzm
2
Sa(€) | Ix is Hom in n and Ixe in 7 Al = (2+|E|2(i25||2|/;§+‘6‘2)
S3(€) | either Ix or Ixc is Hom Alzﬁ, Ao = ;IZQ
2
S4(e) | both Ix and Ixe are not Hom | A\ = ﬁ, Ay = 2+1|6|2, A3 = QJ:"EIQ

Table 5.1: The table shows the four possible configurations of the strings of digits Ix and Ixc and the set
of eigenvalues of the corresponding expression for the reduced density matrix px. The functions S;(€) are the
entropies, for the various cases labelled by i. The parameters 1,77 are mutually exclusive variables, when 1 = 0,

7 =1, and vice versa.

Deformations of GHZy states

We start by considering the following deformation of the GHZ y state

(GHZN) —| %) T (00 [1.1) e[ 1)) if 1) € {0..0),[1..1)}
N) = Yp) =

\/in (]0...0)+ [1..1) + ¢ [I))  otherwise

(5.3.11)

where | I) is an element of the computational basis {|0...0),|0...1),... | 1...1)}. Consider
then a generic bipartition of the system into a subsystem X of size x and its complement
X¢ of size N — . The reduced density matrix px associated to the subsystem X is given

by (up to the normalization factor)

px(6,I) = Tryeps = [0...0)(0...0| + | 1..1)(1...1] +|e|* | Ix)(Ix|
€ 0..0){Ix | +€|Ix)(0...0| if |Ixc) is Homogeneous in 0’s
+ € 1. 1)(Ix]| 4+e|Ix)(1..1| if |Ixe) is Homogeneous in 1’s

0 if | Ixc) is not Homogeneous

(5.3.12)

where | Ix) and | Ixc) are the states of subsystems X and X¢ when the global system is
in the state |I). By the expression “Homogeneous in 0’s” we mean | Ixc) =|0)®N=% (and
similarly for 1’s). | Ixc) instead is not Homogeneous if | Ixc) =|0)%7® |1)%° for any v,
such that v+ = N — z. In the following we will use short expressions like “Ixc is Hom”
to indicate these cases (eventually dropping also the “ket”, as we think about Ixe simply
as a string of digits).

Depending on the homogeneity properties of | [x) we then have four possibilities for
the final expression of the reduced density matrix. We list the possible cases, together
with the corresponding eigenvalues of px (e, I), in Tab. 5.1. This is an exact result, not
only perturbative in e.

The functions S;(€) that give the entropy of px (e, I) depending on its possible struc-

tures, all have vanishing first derivative at ¢ = 0. This shows that in the Hilbert space of
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& Details of 14, Ip, Ic, Ip 13(P)

0 X is not Hom, VX Sa(e)

' X that is Hom S3(€)

5 X,Y are Hom in A Ss3(€)
X is Hom in np and Y is Hom in 7, 253(e) — Sa(e)

5 X is not Hom and X€is Hom S3(€)
X is not Hom and X°€ is not Hom 2S3(e) — Sa(e)

IoUIgUIcUIp=1is Hom Si(e)

4 X is Hom in n and X€¢ is Hom in 7 Sa(€)

XUYis Hominnand (X UY)¢is Hom in 77 | 4S3(e) — 2S54(€) — Sa(e)

Table 5.2: The table lists the possible behaviour of I3(P) for different P and a fixed direction of deformation
| I). The parameter ¢ is the number of strings among I, Ig, Ic, Ip which are Hom in 1's or 0's. Again n and
7 are mutually exclusive variables, when n = 0, 7 = 1, and vice versa.

N qubits, and for any N, the state GHZy is a saddle point of I3(P) for all P.% Further-
more, the functions Si(e), S2(€) and S3(e) are all decreasing, while Sy(¢) is increasing. In
particular S3(€) decreases only at order .

With the set of possible entropies at hand, we now want to classify the possible be-
haviours of the tripartite information of | ¢)7), depending on the partitioning and the
direction of the deformation | I). A natural classification would proceed by first fixing a
partitioning P, and then looking at the behaviour of I3(P) in all possible directions |I).
Nevertheless, due to the nature of the problem, it is more natural to proceed in the oppo-
site way. We first fix a direction |I) of deformation and then derive the behaviour of I3(P)
for all possible P. This is more natural because the behaviour of I3(P) will just depend
on the homogeneity properties of the strings 4, Ip, I¢, Ip derived from |I) under P, and
the analogous properties for their unions.” The possible cases are shown in Tab. 5.2 and
are classified using a parameter ¢ that counts the number of strings X € {Ia,Ip,Ic,Ip}
which are Hom.

The results of Tab. 5.2 show that for a given direction |I), I3(P) of GHZx can increase
only for those P such that all the strings 14, Ip, Ic, Ip are not Hom. Since a string made

of a single digit is always Hom, the following lemma follows

Lemma: For any N, the GHZy state is a local mazimum of I3(P) for any P such that
at least one of the subsystems contains only a single qubit.

Since for N < 7 this always happens, in this case the GHZ y state is a local maximum
of I3(P) for all P.

5This result immediately follows from the fact that for any P the tripartite information is just a linear

combination of entropies.
"Recall that for two Hom strings X,Y the union is not Hom if X is Hom in 1’s (or 0’s) and Y in 0s

(1’s).
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For arbitrary N and P instead, the GHZy states are not local maxima. Nevertheless,
since we know exactly how the value of I3(P) behaves along each direction (not only
perturbatively), for fixed P we can choose a direction |I;) along which I3(P) grows and
follow it until we reach a maximum in that direction. One can check that the function
S4(e€) reaches a maximum along | ;) for |e] = 1. We can then build the new state

1
V3

This new state of course is not guaranteed to be a local maximum of I3(P). To investigate

|GHZy) —| 1) = (|o...o>+ 11...1) + &0 |11>) (5.3.13)

whether this is the case or not, we can again look at deformations along all possible

directions. We then build the new state

1) =) = \/% (10004 [1.1) + € [ 1) + ¢ | o)) (5.3.14)

For an arbitrary bipartition of the system into X and X¢, the reduced density matrix

px (€, 11, Is) will have the following structure (up to normalization factors)
px(e, 11, 1) = px (e, 1)) + px (e, Io) + €1 | T%) (1% | +e e [ 13) (1]  (5.3.15)

In Eq. (5.3.15) the expressions px (€1, I}) and px (e, I5) correspond to matrices of the
form Eq. (5.3.12), with deformations along | I1), | I2) and coefficients respectively ¢t and
e. The last two terms are “interference” terms that survive only when |I%),|1%) (defined
as in Eq. (5.3.12)) are not orthogonal.

We check numerically for many examples that the interference terms reduce the en-
tropy, while the entropy increases if these terms disappear. This observation motivates
the following construction. Given a partitioning P = (A : B : C' : D) for a system of
N qubits, start with the GHZy state. Then pick a direction |I;) with the property that
all the strings I, I, I}, I}, are not Hom, such that I3(P) will grow, and build the new
state Eq. (5.3.13). Then look for a second possible direction |I2) such that 1%, 1%, 12, I3
are again not Hom and (I}|I3) = (I5|I3) = (IL|I3) = (Ip|I3) = 0, and build the new
state Eq. (5.3.14) with e = ¢'%2 . Finally iterate this construction for all possible directions
that satisfy these conditions. This procedure is limited by the subset X € {A, B,C, D}

which has minimal size x, and will stop at some point. We then conjecture the following

Conjecture: All the states that can be built following this algorithmic construction are
local mazima of I3(A: B :C : D).

On can check for example that in the case N = 4k, for specific permutation of the
% : % : % : %), and picking all the phases to be e =1,
the procedure starts with the state | GHZ ) and ends with the state | GHZ)$*, recovering

the result stated before. We leave the general proof of this conjecture as an open problem

qubits in the partitioning P = (

for future work.
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3x, | x| >4 I3(P) =0, VP
X I3 Prnin I3min Prnax I3 max
0 —2« a:b:c:% —% o= —2
X| <&, vX |1 2 |a=b-1=c+1=4| -4 +2 c= —2
2| -N+2a| a-l=b=c=% |-J4+2|a=5-1| -2
3| 2a—-N |a-1=b—-1=c=8 | -F44]|a=5-1| -2

Table 5.3: The table shows the classification of the values of I3(P) for perfect states, for all possible partitionings
of the system. When a subsystem X (possibly also X = D) contains at least half of the qubits, I3(P) vanishes.
The other cases are classified according to the parameter x. For each case the value of I3(P) is given as a

function of (a, b, c). Maximal and minimal values of I3(P) and the corresponding partitionings are also shown

for each case. The parameter « is defined asa=a+ b+ c — %

5.4 States with maximal bipartite entanglement

In this section we focus on bipartite entanglement and investigate the behaviour of the
tripartite information for states that are highly entangled for all possible bipartitions of
the system. The search for this kind of states, usually called MMES (maximal multi-qubit
entangled states),® is an important problem in quantum information theory [157], where
entanglement is a resource for the implementation of many protocols.

A particularly interesting subclass of MMES are the perfect MMES, for which the
entropy of each subsystem is exactly maximal; these are indeed the perfect states of [28]
and [153]. In the case of qubits it is known that they do not exist for N > 8 [158]. For
qudits, examples can be found using stabilizer code [159] techniques [153] [160].

We want to explore the behaviour of I3(P) for different partitionings of these states.
We start with perfect states, for which a classification of the possible values of I3(P) is
possible even without knowing an explicit expression. Next we investigate some examples
of MMES for N = 2,4,6,8 and some other states that can be built from them.

Perfect states

Perfect states are defined as those states for which each subsystem X C U (with | X| = x)
has exactly maximal entropy

x for x <

Sy = (5.4.16)

vlz ol

N —x for x>

Since perfect states are symmetric under permutations of the qubits, we can classify the
behaviour of I3(P) looking at the sets I3(a : b : ¢) with constraints Eq. (5.2.2) on a, b and

8They are sometimes called mazimal multipartite entangled states, but this denomination might be
misleading, suggesting some connection to multipartite entanglement. Instead, “multipartite” here refers
to the fact that we are looking not only at entanglement for one particular bipartition of the system, but

for all bipartitions.
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c. Once the sizes of subsystems are specified, the entropies are given by Eq. (5.4.16) and
we can immediately compute the value of I3(P). For simplicity, in the following we will
assume that IV is a multiple of 4.

When a + b+ ¢ < %, or when any of the subsystems contains % qubits or more,
one has I3(P) = 0. The two cases are equivalent because of Eq. (5.2.3), indeed when
a+b+c< %, it follows that d > % To classify all other possible cases we will use
a parameter y, defined as the number of unions of two subsystems X,Y that contain at
least % qubits, i.e. [ XUY| > % To simplify the notation, and without loss of generality,

we assume that a > b > ¢, such that

for XUY| <4, VXY
for [AUB| > & but [AUC|,|BUC| <
for [AUB|,|JAUC| > & but |[BUC| <

for XUY|>4, VXY

(5.4.17)

w N o= o
NN

The classification of the possible values of I3(P) is summarized in Tab. 5.3, where we also
indicate the specific partionings that maximize or minimize the value of I3(P) in each
case.

Note that the partitioning P = (& : & : &) is the minimizer of I3(P) for perfect
states. Furthermore, since in this case I3(P) =
Eq. (5.2.7) and are absolute minima of I3(P). Indeed, this motivated the proposal of [153]

that I3(P) can be used as a parameter for scrambling.

—%, perfect states saturate the bound

Suppose now that for some value of N (again multiple of 4), a perfect state | Py)
exists. Then we can take two copies of this state and build a new state of a system of
size 2N taking the product | Py)® |Px). This new state would not be a perfect state
any more, nevertheless according to the additivity of I3(P) shown in Eq. (5.2.4), there
is some partitioning that gives I3(Pan) = 2 X I3(Pn) = —@. This simple fact shows
that although it is true that a scrambled state would minimize I3(P) of a partitioning
P = (% : % : %), the converse is not true. Only if we know that the state we are dealing
with is completely symmetric under all permutations, the value of I3(P) is sufficient to
imply scrambling.

Finally, we comment on another interesting property that emerges from the results of
Tab. 5.3. Note that while the lower bound of I3(P) for different partitionings scales with
N, the upper bound does not. In particular there are partitionings for which I3(P) = 0.
In the holographic perspective, these are the ones we should be more careful about, as they
get closer to the violation of monogamy for mutual information. It would be interesting
to study the behaviour of perfect states for such partitionings under the effect of arbitrary
operations performed on the constituents of the system. We leave the general question
for future work, while in the next section we explore the example of N = 6, for which a

perfect state of qubits exists and is known explicitly.
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Some examples of MMES states

We now explore the behaviour of the tripartite information for systems of N = 2,4,6,8
qubits, focusing on highly entangled states and some deformations of them. We also

compare the value of I3(P) to the value obtained for particular product states, suggesting

that the average I3(P) over permutation of the qubits could be a more sensible measure

to evaluate scrambling.

N=2 Obviously I3(P) for states of just 2 qubits is nonsense. Starting with maximally
entangled states | M) of 2 qubits (Bell pairs), we can build maximally entangled states of
an arbitrary even number of qubits by simply taking the product | M>)®*. These states
are indeed maximally entangled but only for certain bipartitions. In particular there is
only one subsystem containing % qubits which has maximal entropy. For the case k = 2
one gets a maximally entangled state of 4 qubits for which I3(P) = 0. As a consequence
of Eq. (5.2.4) when we take a product with a new copy of | M), I3(P) is invariant. By
induction one has I3(P) = 0 for arbitrary k. In other words, any “distilled” state” has
I3(P) = 0 for all P. The converse is obviously not true, a product state for all qubits

contains no entanglement and would equally have 13 = 0.

N=4 The MMES of 4 qubits was found in [152] and is known as M state. It has the

form
| My) =|0011) + e~ 5° |0101) — €57 [0110) — e5° |1001) 4+ e~ 57 [1010)+ [1100) (5.4.18)

Although this is the maximally entangled state of 4 qubits, it is not a perfect state as the
entropies of one and two qubits are respectively Sg1y = 1, Sqay = %logQ 12 =~ 1.79248 < 2.
The tripartite information for this state has value I3(P) = 4 — 3 log, 12 ~ —1.37744. By
deforming the state with a small pertubation in any direction in Hilbert space, one can

check numerically that this state is a local minimum for I3(P).

N=6 In the particular case of 6 qubits the perfect state | Pg) is known explicitly,'® it
was found in [161]. We can then investigate the effect of deformations of the state on the
sign of I3(P). Following the classification of Tab. 5.3, we can look for the partitionings for
which I3(P) = 0. We have the possible cases P = (1:1:1) or P = (3:1:1), but they
are equivalent according to Eq. (5.2.3). Starting with the state | Pg) we can deform it in
the directions labelled by the computational basis: |1¢) =|Pg) + € |I). A numerical check
shows that I3(1: 1 : 1) decreases in all directions; small perturbations cannot change its
sign. We can also explore the effect of measurements performed on some of the qubits of
the system. We can for example measure a single qubit with any of o,,0,,0. or we can

do a Bell measurement and project two qubits onto a maximally entangled state. In both

9Distillation is the process of extraction of Bell pairs from a given state using LOCC operations.
10We refer the reader to the original paper for its expression.
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these cases one can check that for the states obtained under these operations it is still true
that I3(P) < 0 for all P.

N=8 An 8 qubits MMES was found in [162], we will refer to it as the | Mg) state. As
for N = 4, a numerical check shows that this state is a local minimum of I3(2 : 2 : 2)
in Hilbert space. In particular I3(2 : 2 : 2)[Mg] ~ —1.35458, while for a perfect state
of 8 qubits (| Pg) which does not exist) it would have been 13(2 : 2 : 2)[Pg] = —4. We
can now compare this result with the value of I3(2 : 2 : 2) for the state | M4)® | My),
where | My) is the MMES of 4 qubits introduced before. In this case one has I3(2: 2 :
2)[My ® My] ~ —2.75489 < —1.35458. This simple observation suggests again'! that one
should be careful in using I3(P) as a parameter of scrambling. On the other hand, since
this value of I3(2: 2 : 2)[My ® My is only attained for some permutations of the qubits,
one can ask whether the average value I3(2 : 2 : 2) over all permutation is a more sensible
measure. The state | Mg) is completely symmetric under permutations of the qubits, so
that the average tripartite information has the same value obtained before. This is not
true for the state | M4)® |My) in which case, taking into account the combinatorics,? one
gets 13(2:2: 2)[My ® My] &~ —0.62969 > —1.35458. For N = 8 a perfect state does not
exist and it is natural to consider the MMES as the scrambled state in this Hilbert space.
This example then shows that the MMES is not the absolute minimizer for a single value
of I3(P) corresponding to a specific permutation of the qubits . On the other hand the
average I3(P) seems to be minimized by the MMES.

5.5 Discussion

In this chapter we explored the behaviour of the tripartite information for different parti-
tionings of systems in highly entangled states. For simplicity we focused in particular on
systems of qubits, but most of the result can be generalized to constituents that live in a
higher dimensional Hilbert space, i.e. qudits.

After a discussion about general properties of I13(P), we started by looking at states
that maximize multipartite entanglement, namely GHZy states. We showed how I3(P)
changes for deformations of the states in various directions in Hilbert space, depending on
the different partitionings of the system. Then we proposed an algorithmic construction
that we conjectured can be used to build local maxima of I3(P) for arbitrary N and P. We
leave the proof of this conjecture and the extension to higher dimensional generalizations
of GHZy states for future work.

Next we moved to states that manifest a high amount of bipartite entanglement for

all possible bipartitions of the system. We explored the general behaviour of the perfect

1Gee also the discussion about perfect states.
2For the state | M4)® |Ma), the tripartite information is either —2.75489 or 0. There are in general 420

possible qubits permutations corresponding to the partitioning P = (2 : 2 : 2) of the system, 96 of which

give the non vanishing value.
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states of [28] for all possible partitionings and then looked at some examples of qubits
states which although not perfect, are known to be highly entangled for all bipartitions.
Our main motivation for studying the tripartite information came from holography,
where I3(P) has definite non-positive sign and captures the monogamy of mutual infor-
mation [120]. Drawing from the results of the previous sections, we conclude with some
observations which are relevant in the holographic context, posing some open questions

that we leave to future investigations.

The sign of the tripartite information The work of [116] asked the question of
how generic is monogamy of mutual information, and consequently how restrictive is the
constraint imposed by holography. It was found numerically that for random states of
6 and 8 qubits it is extremely difficult to obtain states with positive value of I3(P).
Furthermore, it was observed that when P = (1 : 1 : 1), the values of I3(P) for random
states, although still negative, approach I3(P) = 0. This matches with the behaviour of
perfect states shown in Tab. 5.3, which under the same assumptions for P, have precisely
I3(P) = 0.

This similarity between the distribution of random states for different choices of P and
the values of I3(P) for perfect states, extends to all cases where the size of subsystems in
P is much smaller (or much larger) than half of the size of the entire system. This can
be interpreted as a consequence of Page theorem [163], which precisely under the same
assumptions for the size of subsystems, implies that random states are almost maximally
entangled. It would be interesting to explore further the relation between random and
perfect states. In particular, since as far as entropies are concerned, they generically have
a similar behaviour, one could try to make this connection quantitative by introducing a
notion of “typicality”!? for perfect states.

Next, since for certain partitionings of perfect states one gets I3(P) = 0, it is natural
to ask how stable is the sign definiteness of I3(P) for these particular partitionings when
we deform the states either by some perturbation or by some operation performed on the
constituents. Without a general expression at hand for perfect states, we focused on the
example of the 6 qubits systems, for which the perfect state is known explicitly. We checked
numerically that any deformation in any direction in Hilbert space can only decrease the
value of I3(P), suggesting that in general perfect states are local maxima of I3(P) for
these partitionings. Furthermore we explored the effect of different measurements on one
and two of the qubits of the system, but even in this case we did not get any new state with
positive value of I3(P). It would be interesting to explore these results for larger systems,
higher dimensional generalizations of the constituents and different classes of operations.

Finally, considering also the results from investigations of GHZy states, it seems nat-
ural to expect that some amount of 4-partite quantum entanglement is really crucial for

the violation of monogamy of mutual information. Unfortunately, no measure of 4-partite

'3 Typicality here has to be interpreted in the sense of [164]. According to some measure, the distance

between the behaviour of random and perfect states would be exponentially suppressed for large N.
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quantum entanglement for mixed state is available to investigate this expectation quanti-

tatively.

The tripartite information as a parameter for scrambling Since perfect states
might be thought as the result of scrambling, and they correspond to global minima of
I3(P), it was proposed in [153] that the tripartite information can be used as a parameter
for scrambling. In our analysis of perfect states, we showed that for some permutation of
the constituents of the system, the same value of I3(P) can in principle be attained by
products of perfect states of smaller systems. Since these product states are not perfect
states of the larger system, one can conclude that the value of I3(P) can be an appropriate
measure of scrambling only under the assumption that the state under consideration is
completely symmetric under permutations of the qubits. We propose that in general, as
a measure of scrambling, one should use instead the average of the tripartite information
(I3(P)) over all possible permutations of the qubits.

Furthermore, since perfect states do not always exist, one can ask if for a given value
of N, the state which contain the maximal possible amount of entanglement for all bipar-
titions (MMES) is the minimizer of I3(P). A counterexample to this expectation seems
to derive from the highly entangled state of 8 qubits found in [162], which is conjectured
to be a MMES state. We showed that the value of I3(P) obtained for this state is smaller
than the one obtained from the product of two copies of MMES of 4 qubits. On the con-
trary, when we take the average of I3(P) over all permutations of the qubits, the situation

is reversed. This is a further argument in support of our proposal that I3(P) is a more

appropriate parameter for scrambling.



Chapter 6

Outlook

We conclude this work with some comments about open questions and future possible
directions of investigation towards a deeper understanding of operational aspects of en-

tanglement in holography.

An information theory for quantum fields: as we discussed in the introduction, a
satisfactory operational interpretation of entanglement measures together with a theory of
quantum information along the lines of quantum mechanics still have to be developed for
quantum fields. While field theory is usually viewed as the continuous limit of quantum
mechanics, the Tsirelson problem suggests that the difference in the two formalisms might
have radical implications. Similarly, it is not clear whether the notion of causality in field
theory is fully equivalent to the no-signaling condition defined by PR-boxes and we do
not know if there is a field theory version of the Tsirelson bound, i.e. if the strength of
correlations in field theory is bounded as in quantum mechanics. The situation is even
worst in the case of gauge fields, where even for theories which are regularized on a lattice
one could not expect factorization of the Hilbert space. While a deeper understanding of
these problems in field theory is of great interest on its own right, it could also sharpen
what would be the most appropriate definition of entanglement in that context. This is
crucial for developing an operational interpretation of computable measures. The alge-
braic formulation is perhaps the most natural framework for this kind of investigations,
but it would be desirable to translate to a more practical language, such as that of cor-
relation functions. As in the quantum mechanical case, it would also be interesting to
explore the possibility of manipulating quantum fields for practical purposes. Perhaps the
entanglement of ground states which is evident from the Reeh-Schlieder theorem can be
used to implement teleportation or to run some form of quantum computation. To answer
all these questions, a deeper understanding of the effect of measurements in field theory

will probably be vital.

New measures of entanglement: in our investigations involving qubits systems, we
used negativity to explore in detail all possible entanglement structures and the depen-

dence of the ratio between negativity and entropy on the pattern of entanglement. Next,
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we looked for an interpretation of this ratio in terms of robustness of the entanglement and
explored the relation between the disentangling theorem and the entanglement plateaux
phenomenon. It would be very interesting to extend this analysis to quantum field the-
ory, but new tools are necessary, in particular techniques to compute negativity for mixed
states. Recently there have been some progress in this direction, but only for few special
cases. For mixed states, negativity has been computed for a thermal state, but only for a
single interval in 1+ 1 dimensions [85]. Some progress has also been made towards the cal-
culation of negativity between two intervals, but so far there is no conclusive answer [165].

A particularly interesting situation where such tools could be useful are geometries
with multiple boundaries, such as the eternal black hole geometry. For this geometry the
field theory on a single boundary is in the thermal state and quantum correlations are
expected to decay very quickly when the temperature increases. On the other hand there
are geometries with a different topology behind the horizon that can purify the state on
one boundary. An example is Wheeler’s Bag of Gold, where the geometry behind the
horizon is that of a Friedmann-Robertson-Walker universe. In this case, since the state on
one boundary is excited, but pure, one could expect larger quantum correlations between
subregions. It is then interesting to ask whether a quantity like negativity, measured
between two “small” subregions, would be able to detect some feature of the topology
behind the horizon. In principle this could be difficult, since for highly entangled states
like perfect states, quantum correlations between subregions are very small. Nevertheless
it would be interesting to quantify what is the minimal size of regions which are sensible to
topology behind the horizon and compare the result to what we expect from the entropy.

Finally the state of affairs for measures in field theory is even worst for multipartite
entanglement. As we have seen this is difficult to measure and characterise even in quan-
tum mechanics and so far there is no proposal which could be applied to field theory. On
the other hand investigations presented in chapters 4 and 5 seem for example to suggest
that some form of 4-partite entanglement is crucial for violation of monogamy of mutual
information. It would be interesting to check whether this is true also in field theory and

understand why this pattern of entanglement is not allowed by holographic field theories.

Discrete toy models for holography: given the difficulties described above, one can
follow the strategy of chapter 4 and focus on quantum mechanics. If one could extend
investigations to systems where the number N of qubits is large, it is natural to expect
that the analysis would become sensible to field theory properties. For some special states
this can be done, as in chapter 5, but in general the treatment becomes infeasible for
arbitrary states because the dimension of the Hilbert space grows exponentially with N.
Nevertheless, only a small portion of this huge Hilbert space is of physical interest. Indeed
it was shown in [166] that systems governed by k-body Hamiltonians, if evolved for an
amount of time which scales polynomially with IV, can only explore an exponentially small
region of the Hilbert space. One can then restrict attention to special states of interest.

For a generic state in H the entropy of a subsystem scales with the number of constituents,
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on the other hand for ground states of local field theory entanglement usually satisfies an
area law. This fact justifies the use of tensor networks to investigate the entanglement
structure of holographic states [26] [27] [28] [160]. We explored the behaviour of the
tripartite information for the tensor networks of [28] in chapter 5.

The program of modelling the holographic mapping using tensor networks is still at its
infancy. One limitation is the fact that it is not fully understood which tensor networks
describe “good” candidates for holographic states. In this respect the Ryu-Takayanagi
prescription and in particular the sign definiteness of the tripartite information are an
important consistency check. Interestingly, it has been shown recently [167] that this
constraint is not the only one imposed by holographic entanglement entropy. As the
number of subsystems grows it is known that the von Neumann entropy satisfies additional
inequalities that define what is called an entropy cone. The results of [167] show that
holographic entanglement entropy has to satisfy more restrictive inequalities and that the
holographic entropy cone is contained in the previous one. The investigations of chapter
5 could then in principle be extended to all the inequalities that define this region of
Hilbert space which is of interest for holography. In particular, we could ask what kind of
entanglement structures are typical of states within this cone, and for states on the faces
of the cone, investigate the stability under different classes of operations.

Another limitation of current proposals for “holographic” tensor networks is the inabil-
ity to do time evolution. To this end other special states might be useful and in particular
graph states are particularly appealing. As the name suggests, these are states which
can be identified by a graph structure. The graph can be viewed as a preparation proce-
dure that starting from a product state builds a particular entangled state according to an
Ising-like interaction. Graph states can be evolved more naturally, even under the effect of
measurements, and are a resource for one way quantum computation. Their entanglement
structures have been classified under SLOCC operations as presented in chapter 4 even for
larger systems. Furthermore, graph state are also important for quantum error correction,
which make them interesting for holography also in the perspective of [28]. Finally, the
structure of graph states have been combined to that of tensor networks in [168] to build
a particular variational ansatz that can be used for time evolution.

It would be very interesting to build a discrete toy model of holography using these
quantum mechanical structures. This would be of paramount importance for example
to investigate questions about locality and causality, and in particular to compare the
definitions which are natural in quantum mechanics and gravitational physics. Finally, it
would be interesting to see some feature of geometry emerging from such models. This
would be perhaps a concrete realization of a discrete version of ER=EPR, in particular

one that could be analysed more naturally from an operational perspective.

Foundations of quantum mechanics: as mentioned in the introduction, it is con-
ceivable that the formulation of a theory of quantum gravity will require at some level a

departure from conventional quantum mechanics. This has been noticed in [169], which
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discussed what could be the most general postulates of such a theory. Unitary evolution
of closed systems is a fundamental axiom of the Copenhagen formulation, nevertheless
deformations of quantum theory exist where this fundamental assumption is relaxed to
some extent (see for example the discussion in [170]). Long standing questions of quan-
tum theory have recently entered into discussions concerning quantum gravity. The role
played by measurements for example is discussed in [148]. A possible violation of the Born
rule in the proposal of [171] to reconstruct the black hole interior is presented in [172].
Post-selection, another interesting feature of quantum theory is the mechanism behind the
black hole final state proposal of [10]. It is also in this respect that quantum information

theory could shed new light on important features of quantum gravity.
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