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Abstract

We present a lightweight, flexible, and high-performance framework for inferring the properties of gravitational-
wave events. By combining likelihood heterodyning, automatically differentiable, and accelerator-compatible
waveforms, and gradient-based Markov Chain Monte Carlo sampling enhanced by normalizing flows, we achieve
full Bayesian parameter estimation for real events like GW150914 and GW170817 within a minute of sampling
time. Our framework does not require pretraining or explicit reparameterizations and can be generalized to handle
higher dimensional problems. We present the details of our implementation and discuss trade-offs and future
developments in the context of other proposed strategies for real-time parameter estimation. Our code for running
the analysis is publicly available on GitHub at https://github.com/kazewong/jim.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Markov chain Monte Carlo (1889);
Astronomical methods (1043); Computational methods (1965); Algorithms (1883); Neural networks (1933); GPU
computing (1969)

1. Introduction

Parameter estimation (PE) underpins all of gravitational-
wave physics and astrophysics, and is one of the most
commonly performed tasks in gravitational-wave (GW) data
analysis (Christensen & Meyer 2022; Thrane & Talbot 2019).
The central goal of PE is to infer the parameters of a particular
GW source given the strain data recorded by instruments like
LIGO (Aasi et al. 2015; Abbott et al. 2021a, 2021b), Virgo
(Acernese et al. 2015), and KAGRA (Akutsu et al. 2021). In
the standard compact binary coalescence (CBC) scenario, this
could mean inferring intrinsic parameters such as the masses
and spins of the compact objects, as well as extrinsic
parameters such as their sky localization and distance from
Earth. PE is also applied to test general relativity (GR; Abbott
et al. 2016, 2019a, 2021c), and constrain the properties of
nuclear matter (Abbott et al. 2019b). PE is a crucial step in GW
science, since it translates characteristics of the strain data into
astrophysically relevant quantities that can be used to constrain
astrophysical phenomena, including informing theories of
binary evolution (Abbott et al. 2023).

There exist a number of prominent, community-developed
PE codes, including LALINFERENCE (Veitch et al. 2015),
PYCBC INFERENCE (Biwer et al. 2019), and BILBY (Ashton
et al. 2019; Romero-Shaw et al. 2020). These packages have
been tested by a number of groups and are well regarded as
standard tools. However, while these tools have passed many
robustness tests, they are known to be computationally
intensive. The exact amount of time needed to analyze one
event depends on factors like the duration and frequency of the
signal, as well as features of the specific waveform model.
Typical runtimes for production-level analyses can range from
hours to weeks. This expense precludes iterating quickly on
results, launching large-scale measurement simulations, or

obtaining final parameter estimates in low latency to inform
astronomers for potential follow-up in real time.3

Additionally, in the coming decade, there are planned upgrades
for existing facilities, as well as plans for next-generation detectors
such as the Einstein telescope (ET; Punturo et al. 2010) and the
Cosmic Explorer (CE; Abbott et al. 2017). These upgrades will
increase the instrument’s sensitivity and allow for the detection of
more events with a better signal-to-noise ratio (S/N). The number
of events that will be detected in the coming decade is expected to
grow from around a thousand per year to over a million per year
(Baibhav et al. 2019). This will put a significant strain on the
current PE tools.
In order to address this, there are efforts from multiple

groups to speed up the PE process. This includes methods that
employ techniques such as reduced-order quadrature
(Canizares et al. 2015; Smith et al. 2016), adaptive proposal
distributions in nested sampling (Williams et al. 2021), deep
learning networks pretrained on large collections of waveforms
(Dax et al. 2021, 2022), as well as methods that reduce the
computational expense of classical PE by leveraging our
knowledge of GW signals (Veitch et al. 2015; Ashton &
Talbot 2021; Cornish 2021a; Islam et al. 2022; Roulet et al.
2022; Lee et al. 2022; Lange et al. 2018; Wofford et al. 2022).
While these avenues are promising for standard GW problems,
they rely on assumptions that may not hold for analyses
targeting additional physical effects beyond standard CBCs in
GR, such as matter effects, lensing, and deviations from GR.
In this work, we present a lightweight, flexible, and robust

framework to infer GW event parameters in a fully Bayesian
analysis. Our approach relies on the following techniques to
achieve its performance:

1. likelihood heterodyning,
2. differentiable waveform models,
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3 Although approximate sky maps can currently be produced in low latency,
the same is not true of the final estimate of other parameters, like masses and
spins, which may inform the probability of electromagnetic emission follow-up
strategy and thus affect the follow-up strategy.
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3. a normalizing flow-enhanced Markov Chain Monte Carlo
(MCMC) sampler, and

4. native support for hardware accelerators.

All these components, working jointly, come together into a
high-performance and high-fidelity PE pipeline, which can
achieve 103× speedups relative to traditional tools without
compromising accuracy or generality for efficiency, and
without making limiting assumptions about the target para-
meter space.

The rest of the paper is structured as follows: we review the
basics of PE and introduce our framework in Section 2; we
present benchmarking results on both simulated and real data in
Section 3; and, finally, we discuss the implications of this work
and directions for future development in Section 4. This study
was carried out using the reproducibility software showyour-
work (Luger et al. 2021), which leverages continuous
integration to programmatically download the data from
https://zenodo.org, create the figures, and compile the manu-
script. Each figure caption contains two links: one to the data
set stored on Zenodo used in the corresponding figure, and the
other to the script used to make the figure (at the commit
corresponding to the current build of the manuscript). The
GitHub repository associated with this study is publicly
available at https://github.com/kazewong/TurboPE, and the
release v2.1 allows anyone to rebuild the entire manuscript.
The repository is mirrored and stored at doi:10.5281/
zenodo.8184855, including the data and the scripts used to
produce the figures. The version of FLOWMC used to produce
this work is also stored on Zenodo (Wong et al. 2023).

2. Gravitational-wave Parameter Estimation

2.1. Likelihood Function

The main objective of PE is to obtain a multidimensional
posterior distribution p(θ|d) on parameters θ given strain data
d. This probability density represents our best inference of the
source properties, and encodes all relevant information
contained in the observed data. To compute this object, we
use Bayes’ theorem to write

p d
d

p d
, 1

( ∣ ) ( ∣ ) ( )
( )

( )q
q p q

=

where d( ∣ )q is the likelihood function, π(θ) is the prior
distribution, and p(d) is the evidence. Since the evidence is a
normalization constant that does not depend on the source
parameters, it is often omitted if we are only interested in the
posterior distribution. The prior distribution is often chosen to
be something simple (e.g., uniform in the component masses or
a Gaussian distribution in the spins), or it could directly encode
astrophysical information. Assuming the noise is drawn from a
Gaussian process, the log-likelihood for GW data is given by

d d h d hlog
1

2
, 2( ∣ ) ( )∣ ( ) ( )q qq = - á - - ñ

where d is the observed strain data, and h(θ) is the signal
predicted by a waveform model with a specific set of source
parameters θ. The right-hand side of Equation (2) can be
evaluated in either the time or frequency domains. For
stationary noise, it is computationally cheaper to compute the
likelihood in the frequency domain, with a noise-weighted

inner product given by

*
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where fn ( ) is the one-sided power spectral density (PSD) of
the noise. In practice, the integral becomes a discrete sum over
a finite number of bins determined by the sampling rate of the
detector data and the duration of the observation.
To compute the integral in Equation (3), we need to evaluate

a waveform model h(θ) at a number of frequency bins. This
makes evaluating the likelihood function often the most
computationally intensive part of PE. The most accurate
waveforms are obtained via numerical relativity (NR) simula-
tions (Baumgarte & Shapiro 2010), which directly solve the
Einstein equations numerically for a given system. Unfortu-
nately, such simulations can take anywhere from a day to half a
year, making direct evaluation through NR prohibitively
expensive. To circumvent this, there are several families of
waveform approximants, including the IMRPHENOM family
(Khan et al. 2016; García-Quirós 2020), the SEOB family
(Taracchini et al. 2014), and the NR surrogate family (Varma
et al. 2019a). Since PE requires millions of likelihood
evaluations during sampling, the computational cost in
evaluating the waveform is a major contributor to the long
runtimes of GW PE.

2.2. Heterodyned Likelihood

Since the cost of evaluating a waveform model scales
linearly with the number of time or frequency bins, the
computational burden for longer-duration signals is often quite
large. To mitigate this, there are a number of methods to reduce
the number of basis points needed to compute the likelihood
faithfully (Field et al. 2011, 2014; Smith et al. 2016;
Vinciguerra et al. 2017; Morisaki & Raymond 2020;
Morisaki 2021). In this work, we take advantage of hetero-
dyned likelihood (Cornish 2010, 2021b) (also known as
relative binning (Zackay et al. 2018).
The idea behind the heterodyned likelihood can be

summarized as follows: since the integrand in Equation (3) is
a highly oscillatory function, one has to sample it at a high rate
to compute the integral faithfully; however, the number of
sample points needed would be much smaller if the integrand
was smooth. For a pair of points θ and θ0 that are close to each
other in parameter space, the corresponding waveforms h(θ)
and h(θ0) will necessarily be similar; this means that the ratio
between waveforms is a smooth function of frequency. Given a
reference waveform h(θ0), we can exploit this fact to reduce the
number of frequency bins needed to compute the likelihood for
the set of θ in the neighborhood of θ0.
To do this, we decompose the integrand into two parts: (1) a

highly oscillatory part that depends only on the reference
waveform given by θ0 and the data, and which need only be
evaluated once; and (2) a smoothly varying part that depends
on the target waveform parameters θ, which must be evaluated
for every likelihood computation. Because the part that
depends on the target waveform parameters is smooth, we
can use far fewer frequency samples to compute the integral
with sufficient accuracy.
One may be concerned about the accuracy of this scheme,

especially in the region where the generated waveform is
significantly different from the reference waveform. However,

2

The Astrophysical Journal, 958:129 (12pp), 2023 December 1 Wong, Isi, & Edwards

https://zenodo.org
https://github.com/kazewong/TurboPE
https://doi.org/10.5281/zenodo.8184855
https://doi.org/10.5281/zenodo.8184855


given that we are interested in the most probable set of
parameters, if we choose the reference waveform to be close to
the data, the waveforms that are different from the reference
waveform will necessarily also differ significantly from the
data. This means that the likelihood value for parameters far
from the reference will be significantly smaller than the
likelihood of those close to it, and hence will not be relevant for
the PE result. To ensure that this is the case, we always pick
reference parameters known to lie close to the target, e.g., by
first maximizing the likelihood function using the highest
frequency resolution available, which can be run at a much
lower cost than full PE.

We now give a concise description of the implementation of
this approach in our code; for a more extensive derivation of
heterodyned likelihood, we refer the reader to Zackay et al.
(2018). Let h( f ) and h0( f ) represent the target and reference
waveforms, respectively; then, for a given sparse binning of the
frequency axis, the ratio r( f )= h( f )/h0( f ) can be well
approximated by a linear interpolation over the bin,

r f r h b r h b f f b, , , 4m0 1( ) ( ) ( )( ( )) ( )» + - +

where b is the index of a particular bin, r0(h, b) and r1(h, b) are,
respectively, the value and slope of the ratio at the center of the
bin, and fm(b) is the central frequency of the bin. Since we have
access to both h( f ) and h0( f ), we can compute r0 and r1 by
evaluating r( f ) at the edge of the bin and inverting
Equation (4).

With this definition, the two terms involving h obtained by
expanding Equation (2) can be approximated as
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where A0(b), A1(b), B0(b), and B1(b) are heterodyning
coefficients computed using the data and the reference
waveform. These are defined to be
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where the sums within each bin ( f ä b) should be done with the
same, dense sampling rate as the original data (with thin
frequency bins of width Δf ).

To evaluate Equation (5a), we need to first choose a binning
scheme, then evaluate the coefficients in Equation (6a) given
the data and the reference waveform, and at last the ratio
between the target waveform and the reference waveform at the
center of each bin via Equation (4).

The phasing of an inspiral waveform is denoted by a power
series f fi i i( ) aY = å g , where αi are some coefficients
depending on the waveform parameters and γi are powers

motivated by post-Newtonian theory. For example, for the term
γi=−5/3, αi is related to the chirp mass. The maximum
dephasing one can have within a frequency interval f f,min max[ ]
is

*f f f2 sgn , 7
i

i imax ,

i

) ( ( ) ( )/åd p gY =
g

⎜ ⎟
⎛
⎝

⎞
⎠

where *f fi, max= for γi� 0 and *f fi, min= for γi< 0. Given
the relation shown in Equation (7), we can choose the binning
scheme to divide the entire frequency band of interest into a
set of bins such that the maximum dephasing within each bin
is smaller than a certain threshold ò, i.e., fmax max∣ ( )dY -

fmax min ( )∣dY < .
To obtain a reference waveform, we currently use the

DIFFERENTIAL EVOLUTION algorithm (Storn & Price 1997)
available in the SCIPY package (Virtanen et al. 2020) to find the
waveform parameters that maximize the likelihood. The
reference waveform could also be produced from trigger
parameters precomputed by a search pipeline without addi-
tional computation. Once we have obtained a reference
waveform, we can check the accuracy of the heterodyned
likelihood by comparing its value to the original likelihood at
several points in the parameter space. We can then choose the
number of bins such that the difference between the values of
the two likelihoods is smaller than the chosen tolerance
threshold.

2.3. MCMC with a Gradient-based Sampler

Given Equation (2) and the prior, one can evaluate the
posterior density, Equation (1), over the entire parameter space
of interest to obtain the most probable set of values that are
consistent with the data. However, directly sampling this
posterior quickly becomes intractable as the dimensionality of
the parameter space increases beyond a few dimensions.
MCMC (Gelman et al. 2004) is a common method employed to
generate samples from the target posterior when direct
sampling is not possible.
In MCMC, the posterior distribution is approximated by a

Markov chain that eventually converges to the target distribu-
tion (Tierney 1994). The chain is constructed by iteratively
proposing a new point in the parameter space based on the
current location of the chain. The proposed point is accepted
with a probability that is usually set to be proportional to the
ratio of the posterior density evaluated at the proposed point
and the current point. The chain can either accept the proposal
and move to the new location, or reject the proposal and stay at
the current location. This process is repeated until the chain
converges to the target distribution. The samples generated by
the chain are then used as a fair sample to estimate the
quantities of interest, such as the mean and credible intervals of
the source parameters. In practice, since we do not know the
target distribution ahead of time, the MCMC process is usually
repeated until a certain criterion is met, such as a Gelman–
Rubin convergence statistic (Gelman & Rubin 1992) lower
than a certain threshold, or simply after a fixed number of
iterations.
Compared to direct sampling, MCMC algorithms only

explore regions that are highly probable, thus reducing the
computational cost by not wasting resources on parameters that
are unlikely to generate the observed data. However, MCMC
algorithms come with their own set of issues. To illustrate what
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difficulties MCMC may face, we can examine one of the most
standard MCMC algorithms: the Metropolis–Hastings algo-
rithm with a Gaussian kernel. Starting at some initial point, one
can draw a proposed point from a Gaussian transition kernel,
defined as

x x x x Cq , , , 80 0( ) ( ∣ ) ( )=

where x0 is the current location of the chain, x is the proposed
location, and C is the covariance matrix of the Gaussian. In the
simplest case, we can pick C to be a diagonal matrix with a
constant value, which corresponds to an isotropic Gaussian
center around the current location and with a fixed variance.
The acceptance criterion is defined as

x x
x x x
x x x

p q

p q
, min 1,

,

,
. 90

0

0 0
( ) ( ) ( )

( ) ( )
( )a = ⎜ ⎟

⎛
⎝

⎞
⎠

We can see from Equation (9) that the acceptance rate is
proportional to the fraction of volume where the posterior
density at the proposed location is higher than the current
location within the Gaussian transition kernel. If we choose the
variance of the transition kernel to be too large, this fraction
will be small hence the acceptance rate will be poor. On the
other hand, if one chooses the variance to be too small, nearby
samples will be correlated, and it will take a long time for the
chain to wander. In both cases, the efficiency in constructing a
chain with a target number of independent samples is
suboptimal. Consequently, there is often a tuning process
before we run the MCMC algorithm to find the optimal
sampling settings (in this example, the variance of the
Gaussian) to ensure the best possible performance.

However, as we often deal with high-dimensional problems,
even the optimally tuned Gaussian transition kernel does not
guarantee good performance. In order to have a reasonable
acceptance rate, the variance of the Gaussian has to be smaller
in a higher dimensional space, which means that the transition
kernel will generally make smaller and smaller steps as we
increase the dimensionality of the problem (Betancourt 2017).

Transition kernels that leverage gradient information of the
target distribution can help address this issue of shortening
steps in a high-dimensional space. Instead of proposing a new
point by drawing from a Gaussian, one can use the gradient
evaluated at the current location to propose a new point, so that
the evolution of the chain is preferentially directed to regions of
higher probability. For example, the Metropolis-adjusted
Langevin algorithm (MALA; Grenander & Miller 1994) places
a unit Gaussian at the tip of the gradient vector at the current
position,

x x x Ip Nlog 2 0, , 100 0( ) ( ) ( )t t= +  +

where τ is a step size chosen during the tuning stage.
Compared to a Gaussian centered at the current location, the
MALA transition kernel is more likely to propose a point in the
higher posterior density region because of the gradient term,
which helps boost the acceptance rate. Hamiltonian Monte
Carlo (Betancourt 2017) is another gradient-based algorithm
that has been explored for neutron star inspirals (Bouffanais &
Porter 2019).

While transition kernels that use gradient information can
help improve the acceptance rate, computing the gradient of
the posterior density function introduces an additional

computational cost, which is not necessarily beneficial in terms
of sampling time. If one wants to compute the gradient through
finite differencing, the additional computational cost goes as at
least n2( )~ , where n is the dimension of the problem. On the
other hand, schemes like JAX4 allow us to compute the gradient
of the likelihood function with respect to the parameters
through automatic differentiation, which gives the gradient
information down to machine precision at around the same
order of time compared to evaluating the posterior itself. Thus,
having access to gradient information through automatic
differentiation is crucial to making gradient-based transition
kernels favorable in terms of computing cost.
To leverage automatic differentiation, the entire posterior

function must be implemented within JAX or a similar
framework; this includes the likelihood and, therefore, the
waveform approximant. This means that the development of
differentiable approximants is essential for leveraging gradient-
based sampling in GW applications. We currently make use of
the waveforms implemented in RIPPLE (Edwards et al. 2023).

2.4. Normalizing Flow-enhanced Sampling

While gradient-based samplers have been shown to outperform
gradient-free algorithms in many practical applications, there
remain classes of problems that most gradient-based samplers do
not solve well. For example, first-order gradient-based algorithms
struggle with target distributions that exhibit locally varying
correlations, since they assume a single mass matrix that does not
depend on the location of the chain by construction (Betan-
court 2017).5 Another example is multimodality: if there are
multiple modes in the target distribution, individual chains will
likely be trapped in one mode and take an extremely long time
to transverse between the modes (Mangoubi et al. 2018). This
means that the relative weights between modes will take much
longer to estimate than the shape of each mode.
Moreover, before we can use the sampling chain to estimate

the posterior quantities we care about, the sampler often needs
to first find the most probable region in the target space (known
as the typical set); this is a common process often referred to as
burn-in in the literature. As a consequence, one would discard a
certain amount of data generated from the beginning of the
sampling process, and only use the later part of the chain to
estimate the quantities of interest. The burn-in phase of a
gradient-based sampler is often as long as the sampling phase,
which means that a good portion of the computation is not
directly devoted to estimating the target quantities.
All the above issues can be mitigated by normalizing flows.

Normalizing flows is a technique based on neural networks that
aim at learning a mapping from a simple distribution, such as a
Gaussian, to a complex distribution, often given in the form of
samples (Kobyzev et al. 2019; Papamakarios et al. 2019). Once
the network is trained, one can evaluate the probability density
of the complex distribution and sample from it very efficiently,
by first evaluating the simple distribution and then applying the
learned mapping. The core equation of normalizing flows is the
coordinate transformation of probability distributions via a

4 https://github.com/google/jax.
5 Sampling algorithms that use higher order derivatives such as manifold-
MALA and Riemannian-HMC (Girolami & Calderhead 2011) can in principle
handle local correlations in the target distribution; however, they often
encounter instabilities when used in real-life applications, so their use is a rare
practice.
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Jacobian, as given by

p X p Z
f

z
, 11x z

1

( ) ( ) ( )=
¶
¶

-

where px(X) is the complex target distribution, pz(Z) is the
simple latent distribution, and f is an invertible parameterized
transform that connects the two distributions, x= f (z), to be
learned by the normalizing flow. See Kobyzev et al. (2019) and
Papamakarios et al. (2019) for a detailed discussion of the
algorithm.

Working in tandem, gradient-based MCMC and normalizing
flows can efficiently explore posteriors with local and global
correlations, as well as multiple separate modes. The scheme
relies on iteratively using draws from the gradient-based
MCMC to train a normalizing flow, which is then itself used as
a proposal for another stage of MCMC sampling.

Concretely, we begin by producing initial training data for
the normalizing flow by running multiple independent chains
of the gradient-based algorithm for a fixed number of steps.
From the resulting pool of samples, the normalizing flow can
begin to learn the landscape of the target distribution. However,
since the independent chains contain the same number of
samples, the relative weight assigned to each chain will not
represent the true target distribution (e.g., the relative
importance of separate modes will not be correctly calibrated).
This is mitigated by a second stage of gradient-based MCMC
sampling that uses the distribution learned by the normalizing
flow as a proposal.

Given a trained normalizing flow model, we can generate the
proposed jump in the target space by sampling from the latent
distribution z∼ pz(Z), usually a Gaussian, and then pushing it
through the learned map given by the normalizing flow model
x= f (z). The acceptance criterion is then set to be

*
*

x x
x x

x x
, min 1, , 120

0

0
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r r
r r

= ⎡
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⎤
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where r̂ is the probability density estimated by the normalizing
flow model, ρ* is the probability density evaluated using the
target function, and x0 is the current position.

From Equation (12), we can see that the flow distribution is
the target distribution when the accepting probability is 1.
When the normalizing flow model has not converged to the
target distribution, only a portion of the proposed jumps will be
accepted. This means an MCMC process using the normalizing
flow model as the proposal distribution can adjust the
normalization across different regions of the target parameter
space by rejecting jumps into less likely regions. The training
and sampling are then repeated until certain criteria are met, at
each step combining global and local MCMC sampling, which
respectively do and do not use the normalizing flow as a
proposal.

Note that every time we retrain the network, we break the
Markov properties since we are changing the proposal
distribution. To produce final samples that can be used to
estimate target quantities, one has to freeze the normalizing
flow model and not retrain during the final sampling phase in
order to satisfy the detailed balance condition. We use the
package FLOWMC (Wong et al. 2022; Gabrié et al. 2022), with
MALA as the gradient-based sampler. The pseudocode of the
algorithm is given in Algorithm 1.

Algorithm 1. FLOWMC pseudocode

Input: initial position ip
Parameters: number of training loops nt, number of production loops np
Variables: current chains cc, current position cp, current NF parameters Θ,
chains from local sampler clocal, chains from global sampler cglobal

Result: output chains chains
1 cp ip¬
/* Training loop
2 for i nt< do
3 cc cp LocalSampling cp, ( )¬
4 TuneNF cc( )Q ¬
5 c cp GlobalSampling cp, ,global ( )¬ Q
6 cc Append cc c, global( )¬
/* Production loop
7 for i np< do
8 c cp LocalSampling cp,local ( )¬
9 c cp GlobalSampling cp, ,global ( )¬ Q
10 Append c cchains chains, ,local global( )¬
11 Return: chains

2.5. Accelerators

Modern hardware accelerators, such as graphics processing
units (GPUs) and tensor processing units (TPUs), are designed
to execute large-scale, dense computations. They are often
much more cost-efficient than using many central processing
units (CPUs) when it comes to solving problems that can
benefit from parallelization. The downside of these accelerators
compared to CPUs is that they can only perform a more
restricted set of operations and are often less performant when
dealing with serial problems. Parameter estimation with
MCMC is a serial problem since each new sample generated
from a chain depends on the last sample in the chain. This
means that naively putting the problem on an accelerator is
more likely to reduce performance than increase it.
Yet, in our work, the use of accelerators provides two

independent advantages that tremendously benefit the para-
meter estimation process. First, using accelerators allows us to
run many independent MCMC chains simultaneously, which
benefits the training of the normalizing flow. Since we generate
the data we use to train the normalizing flow on the fly, the
more independent data we can feed to the training process, the
higher the chance the normalizing flow can learn a reasonable
representation of the target distribution. If we only used a small
number of chains, we would be limited to the correlated
samples from each chain and we would have to run more
sequential steps to obtain the same amount of independent
samples in the end—with more chains the problem becomes
parallelizable and we can obtain the same number of training
samples sooner. In other words, being able to use many
independent chains helps the normalizing flow to approximate
the target density in a shorter wall time.
Another benefit of accelerators is the parallel evaluation of

waveforms. Since the waveform model we use can be
evaluated at any given time or frequency independently, this
means computing a waveform can be trivially parallelized over
frequency bins. On an NVIDIA A100 GPU, we can evaluate the
waveform model 109( )~ in a second for different frequencies
or source parameters. Together with the heterodyned like-
lihood, this allows us to run thousands of parallel chains in a
PE run. The high throughput of waveform evaluations unlocks
the potential of the FLOWMC sampling algorithm.
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The interplay between FLOWMC and GPU acceleration is
critical to the performance of the code. A standard PE run using
a nested sampler or standard MCMC requires around 106

waveform evaluations. Assuming 105 frequency bins per
waveform, this corresponds to evaluating the waveform model
at 1011 frequency-parameter points. One would think this can
be achieved within ∼100 s by an A100 GPU given the
benchmark mentioned above. However, typical samplers
require sequential evaluations to accept or reject samples,
whereas what a GPU provides is a parallel evaluation of the
waveform, i.e., in a fixed amount of time it can run many
chains in parallel, but not many sequential steps. This means
one cannot obtain the posterior samples by running the
waveform model on a GPU with a typical sampler. For
example, in the most extreme case, this would mean running
many chains for just one step which would obviously lead to
biased posterior samples. This is precisely why FLOWMC is a
key ingredient in our approach. Since every accepted sample
generated using the normalizing flow as the proposal is nearly
independent, and the sampling from the normalizing flow is an
embarrassingly parallel process, the name of the game then
becomes training the normalizing flow as fast as possible.
Having many chains helps to produce the necessary amount of
samples for training the normalizing flow, which means we can
meaningfully harvest the benefit of having the large throughput
of the GPU.

3. Result

3.1. Injection-recovery Test

To demonstrate the robustness of our pipeline, we use it to
recover the parameters of a set of simulated signals injected
into different instantiations of synthetic stationary Gaussian
noise. Then we run our pipeline on the simulated data, and
determine the credible interval at which the true parameters of
the injected signals are recovered. From the set of credible
values, we can check whether the truth lies within a certain
credible interval at the expected frequency: if our pipeline is
working as expected, we should find that the true parameters lie
within x% credible interval x% of the time, e.g., the true value
should lie within the 50% credible interval 50% of the time. In
other words, the recovered percentiles of the true parameters
should be uniformly distributed. Deviation from this behavior
would suggest the pipeline is either overconfident or too
conservative (Cook et al. 2006; Talts et al. 2018).

We sample 1200 events from the distribution of parameters
detailed in Table 1; the same distributions are used as the prior
in the PE process. We simulate signals over 16 s of data, with a
minimum frequency cutoff of 30 Hz and a sampling rate of
2048 Hz. We draw noise from a set of projected design PSDs
for the LIGO Hanford, LIGO Livingston (SimNoisePSDa-
LIGOZeroDetHighPower) and Virgo (SimNoisePS-
DAdvVirgo) detectors (LIGO Scientific Collaboration 2018;
Shoemaker 2009; Manzotti & Dietz 2012). For both injection
and recovery, we make use of the IMRPHENOMD waveform
(Khan et al. 2016) via the fully differentiable implementation
presented in the RIPPLE package (Edwards et al. 2023). We use
a neural spline flow model (Durkan et al. 2019) with 10 layers,
each with 128 hidden units, and 8 bins per layer as our
normalizing flow model.
We summarize the result of this injection-recovery campaign

in Figure 1. This shows the cumulative distribution over
injections of the quantile at which the true value lies in the
marginalized distribution of each parameter. The shaded band
denotes the 95% confident variation expected from draws from

Table 1
Prior Ranges for Parameters Varied in the Injection-recovery Test, as well as the GW150914 and GW170817 Analyses

Parameter Description Injection GW150914 GW170817

Mc Chirp mass [Me] [10, 50] [10, 80] [1.18, 1.21]
q Mass ratio [0.5, 1] [0.125, 1] [0.125, 1]
χ1 Primary dimensionless spin [−0.5, 0.5] [−1, 1] [−0.05, 0.05]
χ2 Secondary dimensionless spin [−0.5, 0.5] [−1, 1] [−0.05, 0.05]
dL Luminosity distance [Mpc] [300, 2000] [0, 2000]† [1, 75]†

tc Coalescence time [s] [−0.5, 0.5] [−0.1, 0.1] [−0.1, 0.1]
fc Coalescence phase [0, 2π] [0, 2π] [0, 2π]
cos i Cosine of inclination angle [−1, 1] [−1, 1] [−1, 1]
ψ Polarization angle [0, π] [0, π] [0, π]
α R.A. [0, 2π] [0, 2π] [0, 2π]
sin d Sine of decl. [−1, 1] [−1, 1] [−1, 1]

Notes. All priors are uniform over the ranges shown, except for the luminosity distance prior in the GW150914 and GW170817 analyses (†) for which we apply a prior
uniform in comoving volume. The coalescence time refers to a shift relative to the geocenter trigger time, and Mc refers to the redshifted (detector-frame) chirp mass.

Figure 1. Cumulative distribution of the quantile of which the true value lies
for each marginalized distribution. The shadow band denotes the 95% credible
interval drawn from a uniform distribution with the same number of events as
the injection campaign. The legend shows the p-values for each marginalized
distribution, with a combined value of p = 0.70.✎

6

The Astrophysical Journal, 958:129 (12pp), 2023 December 1 Wong, Isi, & Edwards

https://github.com/kazewong/TurboPE/blob/73006dd078743471882fc424693ac712ac4690be/src/scripts/ppplots.py


a uniform distribution with the same number of events. We can
see that most of the measured curves lie within this band,
showing that our inference results agree well with a uniform
distribution.

To further quantify how well our result agrees with a
uniform distribution, we can compute the Kolmogorov–
Smirnov p-values for each marginalized distribution
(Karson 1968). A low p-value (with a threshold often chosen
to be p = 0.05) could indicate that our result is in tension with a
uniform distribution. The p-values obtained for each parameter
are shown in the legend of Figure 1. Most of them are well
above the p= 0.05 threshold, except for ψ, which is close to
the threshold. Once again, assuming these p-values are drawn
from a uniform distribution, given 11 draws (the number of
parameters in our inference), it is not abnormal to have one of
the parameters lying slightly outside the threshold. To assess
whether this is expected, we can compute the combined p-value
for these 11 parameters, and find it to be p= 0.70. This shows
our inference pipeline performs properly on simulated data at a
similar level as standard tools (Veitch et al. 2015; Romero-
Shaw et al. 2020).

3.2. Real Event Parameter Estimation

To demonstrate the performance of our parameter estimation
pipeline, we apply it to two real LIGO-Virgo events:
GW150914 and GW170817. We use the priors shown in
Table 1, and take 4 s of data sampled at 2048 Hz starting at
20 Hz for GW150914, and 128 s of data sampled at 4096 Hz
starting at 23 Hz for GW170817; strain data and PSDs for both
events are fetched from GWOSC (Abbott et al. 2021d). We use
the same normalizing flow model as the injection-recovery
study. For our specific choice of sampler settings, we produce
∼2500 and 3500 effective samples6 for GW150914 and
GW170817, respectively. Running on a node with an NVIDIA
80 GB A100 GPU and 16 Intel Skylake CPUs,7 the wall time
for both events is around 3 minutes. Most of this time is spent
on just-in-time (JIT) compilation of the code; the actual
sampling time is only ∼40 s. We precompute the reference
waveform parameters used to heterodyne the likelihood for the
two events, which is omitted in the wall-time calculation.

We configured our sampler to use 1000 chains for both of
the events. and run both the tuning and production phases for
20 loops each. Within each phase, the global sampler and local
sampler are stepped 200 times, which translates into 1.6× 107

likelihood evaluations in total.8 The acceptance rate of the
global proposal is about 2% and 5% for GW150914 and
GW170817, respectively. The settings are chosen conserva-
tively to run longer than necessary to ensure convergence; we
are currently pursuing tuning studies to understand trade-offs in
the algorithms and improve the efficiency further.

For comparison, we produce equivalent runs with BILBY,
using the same exact data and priors. We use the DYNESTY
sampler (Speagle 2020; Koposov et al. 2022), with 1000 live
points and other settings as in the configurations files available
on GitHub https://github.com/kazewong/TurboPE/tree/
main/src. We carry out these runs using PARALLEL BILBY
(PBILBY; Smith et al. 2020) to distribute the computation over
400 Intel Skylake CPUs for each event. For the specific settings
chosen, the wall-time duration of each run was ∼2 hr for
GW150914 and ∼1 day for GW170817. We have also
benchmarked performance using an ROQ likelihood, which
takes about 30 minutes for GW170817 with our parallelization;
without ROQ, the same analysis would take about 1 week to
complete. This broadly agrees with the ROQ performance
boost reported in the literature (Smith et al. 2016)
Figures 2 and 3 show that our posteriors are consistent with

those produced by BILBY. For a quantitative comparison, we
compute the Jensen–Shannon divergence (JSD) between our
code and BILBY for the marginalized distribution for each
parameter. The JSD is a symmetric measure of the distance
between two probability distributions, with a value of 0
indicating identical distributions and a value of ln 2 nat
representing the maximum possible divergence between two
distributions. The JSD values for the two events are shown in
Table 2. The maximum JSDs for GW150914 and GW170817
are 0.0172 and 0.0026, and the mean JSDs are 0.0031 and
0.0012, respectively. The JSD values are comparable to those
reported in Romero-Shaw et al. (2020), which show our code
agrees with existing tools.

4. Discussion

4.1. Comparison to Other Approaches

There have been several recent efforts to speed up GW
parameter estimation, relying on techniques ranging from
efficient reparameterizations (Islam et al. 2022; Roulet et al.
2022) to deep learning (Dax et al. 2021, 2022). While all of
these methods can achieve minutes-scale parameter estimation
with high fidelity under some conditions, our approach
possesses unique strengths and may complement some of
those other techniques. Additional approaches for speeding up
GW parameter estimation include Canizares et al. (2015),
Smith et al. (2016), Lee et al. (2022), Wofford et al. (2022),
Lange et al. (2018), Williams et al. (2021), and Morisaki
(2021); here we discuss those most relevant in the context of
our work.
In contrast to Dax et al. (2021, 2022), we do not require

pretraining of the neural network on a large collection of
waveforms and noise realizations. This means that our
algorithm can be immediately deployed as soon as new
waveform models and noise models are available. Furthermore,
our method is at its core an MCMC algorithm, meaning it
inherits the merit of convergence measures in MCMC. As we
are only using the normalizing flow as a proposal distribution,
and the normalizing flow is trained jointly with a local sampler,
we do not risk overfitting since our training data is being
generated on the fly and is always approaching the target
distribution. In this sense, we do not introduce potential extra
systematic errors to the inference results.
While our pipeline uses samples generated by the local

sampler for training, one could also supply a pretrained
normalizing flow to our pipeline to bypass the training stage.

6 Effective samples here refers to the number of independent samples, which
is the total number of generated samples divided by their correlation length; we
compute the effective sample size using ARVIZ (Kumar et al. 2019), https://
python.arviz.org/en/stable/api/generated/arviz.ess.html.
7 Note that the CPU time is hard to benchmark in JAX due to JIT compilation
and asynchronous dispatch. Overall, we find four CPUs to be sufficient for our
use case. We chose 16 because of the ease of use of the Local Cluster.
8 While in principle adding more chains makes the algorithm less efficient in
terms of the acceptance/evaluation ratio, since GPUs can evaluate a fixed
number of instructions per cycle, we can keep adding chains without paying
extra computational cost before we saturate the GPU. This results in an
improvement in wall time while being less efficient. We decided to choose a
setting that improves the wall time instead of efficiency.
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This would have the advantage of further reducing the total
runtime; however, it could introduce systematic bias in the
inference result if the pretrained network is not able to capture
the complexity presented in the data.

In contrast to Islam et al. (2022), Roulet et al. (2022), or
other reparameterization schemes, we do not rely on hand-
crafted coordinate systems for sampling. If a useful coordinate
transformation is known ahead of time, it can be trivially
implemented within our pipeline, potentially easing conv-
ergence. However, tailored reparameterizations rely on specific
assumptions about the targeted signal, which cannot always be
generalized beyond specific applications. On the other hand,
within our pipeline, the normalizing flow effectively discovers
reparameterizations that ease sampling automatically without

a priori knowledge of the structure of the problem. In general,
the transformation discovered by the normalizing flow will
only be approximate and hence not as efficient as an explicit
reparameterization of the problem; yet, our approach applies to
a much broader class of problems where clever coordinate
transformations are not known ahead of time, such as
parameter estimation with precessing waveforms, calibration
parameters, testing GR, and multi-event joint inference.
It is always beneficial to reparameterize if a convenient

mapping is known ahead of time. For the class of problems
treated in Islam et al. (2022) and Roulet et al. (2022), we can
incorporate those reparameterizations directly into our MCMC
pipeline to reduce the complexity of the problem, hence
speeding up the training phase. If there are limitations to the

Figure 2. GW150914 posterior computed by our code (blue) and BILBY (gray). ✎
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reparameterization that mean it cannot properly encompass part
of the target posterior, the normalizing flow should still be able
to learn to produce accurate samples efficiently.

The two avenues discussed here (machine learning and
reparameterizations) represent two orthogonal directions one
can take in building next-generation PE tools. On the one hand,
there are modern techniques such as deep learning that are very
flexible and powerful, but rely on having highly robust training
data. On the other hand, there are traditional tools that make
use of our understanding of the underlying physics to ease
sampling, which relies on having good intuition of the problem
and tends to not generalize. Our method achieves the key
advantages of both approaches, without many of their
limitations.

The main difference between methods used in industrial
products and scientific problems is that the latter must address
questions that may not have been answered before, hence
requiring techniques that generalize beyond the current state of
knowledge robustly. Our work leverages both reparameteriza-
tion and machine learning, yet our method can be trivially
extended to problems beyond standard CBC analyses that
would be unsuitable for reparameterizations or deep learning
alone. Beyond efficiency, such flexibility and robustness are
crucial for building scientific tools.

4.2. Future Development

We are currently working on a number of improvements and
extensions to our current infrastructure. While the IMRPHENOMD

Figure 3. GW170817 posterior computed by our code (blue) and BILBY (gray). ✎
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waveform approximant is a reasonable start, it lacks some
qualitative features that other state-of-the-art models have, such
as precession, subdominant moments of the radiation, tides, or
eccentricity. It also has a higher mismatch with reference
numerical relativity waveforms compared to more recent
waveform models. Currently, we are working on building
differentiable implementations of IMRPHENOMXPHM (Pratten
et al. 2021), a precessing successor to IMRPHENOMD, including
subdominant harmonics, as well as the numerical relativity
surrogate waveforms, including NRSUR7DQ4 (Varma et al.
2019b). Going forward, we expect the use of autodifferentiation
environments like JAX to become more prevalent in the
waveform development community, increasing the number of
differentiable waveform models available. This would not only
be beneficial for parameter estimation, but also for a number of
other applications such as Fisher matrix computations, template
placement, and calibrating waveforms to numerical relativity
(Coogan et al. 2022; Iacovelli et al. 2022a, 2022b; Edwards et al.
2023). Another family of waveform models that could benefit
from this approach are the effective-one-body (EOB) models
(Buonanno & Damour 1999; Taracchini et al. 2014). However,
generating waveforms from the EOB family requires one to
solve time-dependent ODEs where the truncation is dynamically
determined at runtime. JIT in JAX requires the computational
graph of a function to be fixed at compile time, which means the
ODEs solving part of EOB is not compatible with JAX. The
models in the EOB family therefore may not benefit as much as
the other families.

While standard CBC analyses go up to 17 dimensions,
nonstandard GW PE problems can have more parameters,
which could potentially lead to more complicated geometries in
the target posterior that are hard to reparameterize. For
example, Abbott et al. (2021c) introduce 10 extra parameters
controlling deviations in the post-Newtonian coefficients
predicted in GR. On top of the increase of dimensionality,
these parameters often introduce nontrivial degeneracies such
as local correlation and multimodality. Therefore, currently
testing GR is limited in practice to varying these modifications
one at a time, partially due to the bottleneck in the sampler.
Given the gradient-based and normalizing flow-enhanced
sampler, our code shows promise in tackling this problem.

Our current code can perform parameter estimation for any
combination of ground-based detectors, under the assumption
that signals are transient and their wavelength is short. The first
condition guarantees that the effect of Earth’s rotation can be

ignored when computing antenna patterns, while the second
means that we can treat the antenna patterns as frequency-
independent constants. These assumptions break for next-
generation detectors, whether on Earth or in space, like CE, ET,
and LISA; differentiable implementations of antenna patterns
for those detectors are works in progress.
Furthermore, our current implementation is minimal and we

do not make use of most standard tricks to accelerate sampling.
In particular, we do not incorporate (semi)analytic margin-
alization schemes over parameters such as time and phase
(Thrane & Talbot 2019). As the performance of our
implementation is not significantly impacted by having two
extra dimensions, time and phase marginalization are not
crucial for us; however, their implementation within our
framework would be trivial.
For simplicity, we did not include calibration uncertainties in

this study, but implementing this is also straightforward.
Additionally, we took the noise PSD as an input for our
analysis, as is the case for most traditional PE pipelines.
However, since we are planning to deploy this pipeline to
perform nearly online PE, we also need to consider estimating
the PSD on the same timescale, for which Cornish (2021a) has
proposed a solution. We are looking into incorporating this, as
well as analytic marginalization schemes and calibration
uncertainties, into our pipeline.
When it comes to wall time, the just-in-time compilation of

our code is the current limiting factor. While JAXʼs JIT
compilation drastically accelerates likelihood evaluations, it
comes with a significant compilation overhead before the first
evaluation. We observe that the compilation time depends on
the device where the code is run; this is expected since JAX
leverages the ACCELERATED LINEAR ALGEBRA (XLA)
compiler to take advantage of hardware accelerators, which
means that JAX needs to compile the code for each specific
device according to its architecture. On an NVIDIA A100 GPU,
the compilation overhead could go up to 3 minutes for our
current waveform. Meanwhile, for the cases we have studied,
the time needed to obtain converging sampling on an A100 is
about ∼40 s. This means the compilation overhead dominates
the wall-clock time of our current PE runs. To maximize the
potential of our code, we are looking into ways to reduce the
compilation overhead or to cache the compilation results to
avoid paying the compilation overhead for every event.
Besides compilation, there is in principle also overhead from

finding the reference waveform used for heterodyning the
likelihood. Since the DIFFERENTIAL EVOLUTION algorithm we
currently use has not been implemented in JAX, and the JAX
waveform we use is not compatible with the parallelization
scheme in the SciPy library, maximizing the likelihood
currently takes us around 1 minute for GW170817. There are
two ways to reduce this time.
First, we can explore a different optimization strategy that

takes full advantage of the strengths of our pipeline, in
particular, the differentiability of our likelihood and the
possibility of evaluating many waveforms in parallel with a
GPU. Particle swarm (Bonyadi & Michalewicz 2017) and
stochastic gradient descent methods (Bottou 1999) are promis-
ing candidates we are investigating.
Second, we may marginalize extrinsic parameters to reduce

the dimensionality of the optimization problem. Currently, we
simultaneously maximize all 11 CBC parameters in our
problem numerically, which is unnecessary. There are long-

Table 2
JSD Values for the Marginalized Distribution of Each Parameter for

GW150914 and GW170817 between Our Code and Bilby

GW150914 GW170817

Mc 0.01716 0.00079
q 0.00361 0.00114
χ1 0.00234 0.00055
χ2 0.00099 0.00088
dL 0.00095 0.00108
fc 0.00032 0.00257
ι 0.00262 0.00155
ψ 0.00056 0.00061
α 0.00073 0.00176
δ 0.00202 0.00150

Note. The bold values indicate the parameters with the largest JSD.
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existing, efficient maximization schemes for extrinsic para-
meters, such as the merger time and phase, which can find the
corresponding maximum likelihood waveform much more
efficiently when compared to differential evolution. We expect
implementing these schemes will reduce the time needed to
find the reference waveform parameters by fixing the extrinsic
parameters and by reducing the dimensionality of the
optimization problem. Furthermore, the search pipeline pro-
vides a subset of the parameters such as the masses, which can
be fixed during the optimization to further reduce the
dimensionality of the problem.

Finally, one important aspect of modern computing is
scalability, meaning it is generally favorable if one can simply
devote more computing units to the same problem in order to
reduce the wall time. In our case, this means that we would like
to use more than one GPU for the same PE process. More
GPUs can help in the following ways: first, we can run more
independent chains at the same time, which can generate more
samples faster; second, and more importantly, as shown in this
work and Wong et al. (2022), more independent chains also
help reduce the burn-in time. Parallelizing over the number of
chains’ dimensions is trivial and does not require much change
to the current infrastructure. Additional GPUs can also help by
enabling faster training of larger flow models. While the
training time is not the biggest bottleneck given the flow model
used in this study, more GPUs mean we can increase the
bandwidth of the flow model by increasing its size while
keeping the training time the same. This would help capture
more complex geometries in the target space, which can lead to
better convergence in general.

5. Conclusion

In this work, we presented a PE pipeline for GW events that
is efficient, flexible, and reliable. Our package brings together a
number of innovations, including differentiable waveform
models, likelihood heterodyning, and normalizing flow-
enhanced gradient-based sampling. We tested the robustness
of our pipeline, currently built upon RIPPLE and FLOWMC, on a
set of 1200 synthetic GW events, showing it is robust,
unbiased, and efficient enough to handle the large catalogs of
detections that will be available in the near future. We also
show that our pipeline can estimate the parameters of
GW150914 and GW170817 within a couple of minutes,
demonstrating the potential of our implementation on real data.
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