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Abstract

We first investigate the consequences of running gravitational coupling on certain
properties of rotating black hole. We are motivated by the functional form of
gravitational coupling previously investigated in the context of infra-red limit of
asymptotically safe gravity theory. In this approach, the involvement of a new
parameter & in this solution makes it different from Schwarzschild black hole. The
Killing horizon, event horizon and singularity of the computed metric is then
discussed. It is noticed that the ergosphere is increased as ¢ increases. Considering
the black hole in equatorial plane, the geodesics of particlesare explored. The
effective potential is computed and graphically analyzed for different values of
parameter ¢. Apart from the changes induced in the space-time structure of
such black holes, we also study the implications to Penrose process and geodetic
precession. The energy extraction from black hole is investigated via Penrose
process. For the same values of spin parameter, the numerical results suggest that
the efficiency of Penrose process is greater in asymptotically safe gravity than in
Kerr Black Hole. At the end, a brief discussion on Lense-Thirring frequency is also

done.

A black hole’s spacetime is remarkably affected by presence of dark matter
around it. We analyze the shadow of a new solution to Einstein Field Equations

and consider the effects of dark matter on it. This solution describe a rotating

iv



black hole in the background of perfect fluid dark matter, along with its extension
to nonzero cosmological constant A. Working in Boyer-Lindquist coordinates, we
consider the effects of the perfect fluid dark matter parameter « on the shadow

cast by a black hole with respect to an observer at position (7o, 6,).

Global monopoles are topological defects which may have been produced
during the phase transitions in the early universe. In fact, global monopoles
are just one type of topological defects. Other types of topological objects are
expected to exist including domain walls and cosmic strings. A metric for rotating
dyonic black hole with global monopole in presence of perfect fluid is computed
in this work. We then discuss its surface topology at the event horizon using
Gauss-Bonnet Theorem and also the ergoregion. We investigate the shadows
of the rotating dyonic black hole. Choosing certain values of parameters, such
asw = —1/3,0,1/3, we observe the effect of dark matter, dust and radiation
on the silhouette of the black hole. Our findings lead us to conclude that the
presence of parameters 7y and «, also deforms the shape of black hole’s shadow.
These results have been depicted through graphical representation. We also
analyze the two observables, radius Rs and distortion J;, related to black hole’s
shadow. Energy emission rate of rotating dyonic black hole with global monopole
surrounded by perfect fluid is also computed and graphically illustrated with

respect to parameters.



List of Publications

As publication is one of the requirements of the Higher Education Commission of

Pakistan, we give here a list of publications from the thesis:

e S. Haroon, M. Jamil, K. Lin, P. Pavlovic, M. Sossich and A. Wang, The effects
of running gravitational coupling on rotating black holes, The European

Physical Journal C, 78 (6) 2018.

e S. Haroon, M. Jamil, K. Jusufi, K. Lin, R. B. Mann, Shadow and deflection
angle of rotating black holes in perfect fluid dark matter with a cosmological

constant, Physical Review D, 99 (4) 2019.

e S. Haroon, K. Jusufi, M. Jamil, Shadow Images of a Rotating Dyonic Black
Hole with a Global Monopole Surrounded by Perfect Fluid, Universe, 6 (4)
2020.

Vi



Contents

[List of Figures| X
[ist of Abbreviations v
[Chapter 1: Introduction| 1
[Chapter 2: Preliminaries| 16
2.1 Geodesic Equations in General Relativity| . . . ... ... ... ... 16
2.1.1 Geodesic Equations|. . . . .. ... ... . ... .. ... 18

2.1.2 Lagrangian Approach for Geodesics| . . . . . ... ... ... 19

2.1.3 Hamiltonian Approach for Geodesics| . . . .. ... ... .. 21

2.1.4 Hamiltonian Jacobi Approach for Geodesics| . . . ... ... 22

R2 KerrBlackHolel . . .. ... ... ... .. ..., 24

2.2.1 Rotating Black Hole in Asymptotically Sate Gravity Theory| 32

2.2.2 Rotating Black Hole in Perfect Fluid Dark Matter|. . . . . . . 35

2.2.3 Rotating Dyonic Black Hole with a Global Monopole in Per-
I tectFluid| .. ... ... ... .. L oo oo 37

2.3 Shadow of a Rotating Black Hole| . . . . ... ... ... ... ... 39

vii



[Chapter 3: Geodesics of a Rotating Black Hole in Asymptotically Safe

| Gravity Theory| 43
8.1 Kerr Metric in the Infra-red limit of Asymptotically Safe Gravity |

| Theory| . . . ... . 44
3.1.1 Event and Killing Horizons| . . . . ... .. ... ....... 44

3.1.2  Curvature Singularity| . . .. ... ... ... .. ....... 49

B.2  Geodesic Equations in Equatorial Plane| . . . . ... ... ... ... 49
2.1 1 sl . 51

B.2.2 Time-like Geodesicsl. . . . . . ... ... ..o 54

B3.2.3 Effective Potentiall . . . . . . ... ... ... .. ... . ... 59

B.3 PenroseProcess| . .. ... ... ... .. ... oo L. 62
3.4 Lense-Thirring Frequency | . . . ... ... .. ... ... ...... 68
[Chapter 4:  Shadow of Rotating Black Holes in Perfect Fluid Dark Mat- |
| ter with a Cosmological Constant| 72
4.1 Black Holes in Perfect Fluid Dark Matter Background| . . . . . . .. 73
4.2 PhotonRegion|. . ... ... ... .. .. ... .. ... . ... 74
4.3 Shadows of the PFDM Black Holel. . . . .. ... .. ... ... ... 76
[Chapter 5:  Shadow Images of a Rotating Dyonic Black Hole with a |
| Global Monopole Surrounded by Perfect Fluid| 82
.1 A SDBH with a Global Monopole in Pertect Fluid| . . . . . ... .. 83
.2 An RDBH with a Global Monopole in Perfect Fluid| . ... ... .. 86
.21 Surface Topology| . . . . ... ... ... ... ... ... 88

©.2.2  Configuration of Ergoregionf. . . . . . .. ... ... ..... 90

0.3 NullGeodesics|. . . ... ... ... oo oo 92



.5 Silhouette of a Black Hole |
[Chapter 6: Conclusion|
DD Cl |

[Appendix A: Newman-Janis Algorithm |

[Bibliography|

ix

103

106

106

111



List of Figures

[Figure 2.1 Schematic diagram showing a Kerr BH. Figure tollows [98]. |

[Figure 2.2 Plot showing the dimensionless spin parameter 7 of a Kerr

BH accreting from a thin disk, see Eq. (2.41). The three dashed

vertical lines indicate when the BH spin reaches the values 4 =

0.99(M/M, ~ 2.03),0.998(M/M, ~ 2.20),and1(M/M, = /6 ~

2.45). Figure follows [136] | . . . . . ... ... ... ... ... ...

[Figure 2.3 Schematic diagram of the coordinates for a distant observer.

[Figure 3.1 Difference between the Killing horizon and outer event hori-

zon, 'S, in the IR limit of quantum corrected gravitational coupling,

tor the BH defined bya =09and M =1.|. . .. ... ... ... ..

[Figure 3.2 Difference between r*'¢ in the IR limit of quantum corrected

gravitational coupling and GR which we label as Ar’S. The BH is

detined bya =09and M =1.[ . . ... ................

[Figure 3.3 Graphs showing change in shape of inner/outer horizons

(Red/Orange) and inner/outer ergo-spheres (Blue/Purple) while

the value of rotational parameter is 4 = 0.52,0.9. Note that ergo-

sphere increases as ¢ increases.| . . . . . . ... ... ... ... ...




[Figure 3.4 The lett panel represents the outgoing trajectory of photons

with respect to time ¢. The solid line represents when ¢ = 0.09 and

dashed line is when ¢ = 0 i.e Kerr case. The values of parameters

are a = 0.1 and M = 0.1 with the initial condition (0) = 10M. On

where again the solid line represents the case when ¢ = 0.09 and

dashed line is when ¢ = 0. The fixed points are getting closer in

I
I
I
| the right panel the phase portret is depicted for the same parameters,
I
I
I

the ASG, as opposed to the GR case where the fixed points are at

| maximumdistance) . . . . . . ... 52

[Figure 3.5 The lett panel represents the outgoing trajectory of photons

with respect to angle ¢. The solid line represents when ¢ = 0.09 and

dashed line is when ¢ = 0 i.e Kerr case for the values of parameters

a = 0.1 and M = 0.1 with the initial condition r(0) = 10M. On the

right panel the phase portrait is depicted for the same parameters,

where again the solid line represents the case when ¢ = 0.09 and

dashed line is the GR case ¢ = 0. The fixed points are again getting

closer in the ASG, 1n the contrast to the GR case where the distance

[Figure 3.6 Phase space portrait, dr/dt on the lett panel and dr/d¢ on

| the right, for different values of ¢, but for fixed parameters M = 1

| and a = 0.9. Clearly, the critical value for { = ¢. represent the

| bifurcation point for which the fixed points do not exist anymore. . 53

xi



[Figure 3.7 The left panel represents the trajectory of a particle r(t),

where the blue line represents the ASG case with ¢ = 0.09 and the

red line represents the GR case ¢ = 0 i.e Kerr case. The values

of parameters are a = 0.1, M = 0.1 and E = 1.1 with the initial

depicted for the same parameters, where the blue line is the phase

diagram for ¢ = 0.09 and the red line is the GR case where ¢ = 0,

the solid line represents the positive square root and dashed line

|
|
|
|
condition 7(0) = 10M. On the right panel the phase portrait is |
|
|
|
|

the negative tor each case. The fixed point is increased in the ASG

(r« ~ 0.285) from the GR case (r. ~ 0.05).|. . . . . ... ... .... 55

[Figure 3.8 Angular velocity of prograde (left panel) and retrograde

(right panel) motion of particles orbiting in the equatorial plane of

|
|
rotating BH in ASG, for the values of the parameters as: M=1, |
¢ = 0.07 (Red), 0.08 (Orange), 0.09 (Blue) and a4 = 0.4. Black |

(DotDashed) line shows ¢ = 0i.eKerrcase| . . . .. ......... 58

[Figure 3.9  Plots showing behaviour of etfective potential, for null geodesics, |

with respect to . Here co-rotating (counter-rotating) particles are |

shown by solid (dot-dashed) lines. | . . . ... ... ...... ..., 60

[Figure 3.10 Behaviour of eftective potential for time-like geodesics, with |

respect to r, when L = aE. Black line shows ¢ = 0 i.e Kerr case.| ... 6l

[Figure 3.11 Behaviour of effective potential for time-like geodesics, with

respect to r, when L # aE. Solid lines show counter-rotating

dashed) line shows ¢ = 0 i.e Kerr case. In left panel L is kept fixed

|
|
while dot-dashed lines show co-rotating particles. Black (solid /dot- |
|
|

(L = —2 and 2 for counter-rotating and co-rotating particles) while

in right panel ¢ = 0.09 for different valuesof L|. . . . . . ... ... 62

xii



[Figure 3.12 Ratio between the efficiency of Penrose process in the IR limit

of quantum corrected gravitational coupling and general relativity,

asafunctionofaand &, with M =1.|. . ... .............

66

[Figure 3.13 Efticiency of Penrose process in the IR limit of quantum

corrected gravitational coupling as a function of a and ¢, with M = 1. | 67

[Figure 3.14 QsyrongLr and yeaxr @s functions of r fora = 1/5,1/2,1,

where ¢ =05 M=1,0=00........... ... ......... 69
[Figure 3.15 OgtrongLr and Oyeair as functions of r for 6 = 71/2,71/4,0, |
where ¢ =05, M=1,a=07 . ... ... ... ... ......... 70
|Figure 3.16 Ogtronglt and Qyearr as functions of r for ¢ = 0,1/2,1, |
wherea =07 M=1,0=0 .. ... .. ... . ... .. . ...... 70
[Figure 4.1 Shadows cast by a rotating BH in PFDM background for |
different values of «; all quantities are in units of M. The observer |
is positioned atrpand 6 = 7t /2. . . . . .. ... oL 78
[Figure 4.2 Variation in shadow of a rotating BH in PFDM background |
w.r.t cosmological constant, when the observer is at position ryp = 50 |
and 6y = 7t/2. All quantitiesareinunitsot M. |. . . . .. ... ... 80
[Figure 5.1  Plots showing shape of ergoregion (red) and horizons (blue) |
in xz-plane for different values of 4, w, and v. We have chosen |
Qr=0Mm=01]. ... .. .. . .. . . 91
[Figure 5.2 Plot showing V¢ of a photon w.r.t its radial motion: w =1/3 |
for radiation, w = 0 for dust and w = —1/3 for dark matter| . . .. 93

xiii



[Figure 5.3 Variation in shape of a rotating dyonic global monopole

surrounded by a perfect fluid. Magnetic and electric charges are

by dotdashed and v = 0.08 by dashed lines. For dark matter

|
|
kept constant such that Qr = 1072 = Qum. In each graph the Kerr |
|
|
|

(w= —1/3) and dust (w = 0) case v = 0.01, whereas v = —0.01 in

I
I
| case i.e. v = 0 and v = 0, is represented by solid line, 7y = 0.05
I
I
I

case of radiation (w =1/3).|. . . .. ... ... ... .. ... 98

[Figure 5.4 Variation in shape of a rotating dyonic black hole with global

monopole surrounded by a perfect fluid, for different values of

|
I |
| perfect fluid parameter v. Magnetic and electric charges along with |
| the global monopole parameter are kept constant such that: O = |
I |

10~% = Qu and v = 0.08 . For dark matter and dust case v = 0

| (Solid), 0.05 (DotDashed) and 0.1 (Dashed). In case of radiation |
| v = 0 (Solid), —0.01 (DotDashed) and —0.05 (Dashed).|. . . . . . .. 99

[Figure 5.5 The quantities Rs and Js with respect to parameter 7|. . . . . 101

[Figure 5.6 The figure shows the energy emission rate when a = 0.46 |

| (upper panel) and a = 0.92 (lower panel).| . . . . ... ... ... .. 102

Xiv



List of Abbreviations

ASG

BBH

BH

DM

EFE

GTR

GW

KBH

PFDM

RBH

RDBH

SBH

Asymptotically Safe Gravity
Binary Black Hole

Black Hole

Dark Matter

Einstein’s field Equations
General Theory of Relativity
Gravitational Wave

Kerr Black Hole

Perfect Fluid Dark Matter
Rotating Black Hole
Rotating Dyonic Black Hole

Schwarzschild Black Hole

XV



Chapter 1

Introduction

Black holes (BHs) are one of the strangest cosmic bodies present in outer space
which have drawn immense attention from scientists due to their fascinating
properties. Interestingly, a BH is formed when a massive star gravitationally
collapses inwardly. Consequently, a region of great density and extremely strong
gravity is formed from whose boundary, called event horizon, not even light can

escape.

Indeed, formation of a BH occurs when an astronomical object having mass M
gravitationally collapses and consequently contracts to a point that its size crosses
gravitational radius ry = 2GM/ c2, also known as Schwarzschild radius, here G is
Newton’s gravitational constant, and c is the speed of light. Further what happens
is that the escape velocity required to break away the boundary of BH gets equals
to c. Since c is the maximum limit on the propagation velocity for physical signals
this leads to an obvious conclusion that neither signals nor particles are able to
escape from a BH. Mass of the gravitating body characterizes as gravitational
charge and vitally participates in the gravitational interaction. The particles, be it

massive or massless, cannot escape from a BH instead the one bypassing it ends



up falling into it thus defining a boundary called the event horizon [1].

Conceptually, the foundations of BH’s study were set by the end of 18th century
when Michell and Laplace gave the possibility of existence of such objects using
Newtonian theory [1,22]. But it was not until the emergence of General Theory of
Relativity (GTR) , formulated by Einstein in 1915, that theorist got solid grounds

to claim the physical existence of such mysterious objects.

The core idea of Einstein’s GTR lies in geometry of four dimensional spacetime.

It features gravitation to be the geometrical entity emerging from a curved four

dimensional spacetime rather than just a force. For Einstein, gravitation was not

a force defined by per square distance but a geometrical curvature of space time.

Einstein defined this geometrical curvature through his famous Einstein’s field
Equations (EFE) :

Ruw — %g,wR + g = 87Z—ETW, (1.1)

where Ricci tensor is R, , Ricci scalar is R, the gravitational field is shown by the

metric tensor g, cosmological constant is A and Ty, is the energy-momentum

tensor. On the left of EFE lies the information about the geometry of spacetime

under study while on right lies the terms having knowledge of matter distribution.

Not even a year had passed to the formulation of GTR, when Einstein received
a letter from his former colleague turned soldier, Karl Schawarzschild, enclosing
first ever exact solution of EFE [3]. Einstein’s response to this solution was “I had
not expected that one could formulate the exact solution of the problem in such a simple
way.” This solution, named after Schwarzschild himself, describes gravitational
field of an uncharged non-spinning spherical body. Little was known that this
solution will explain the structure of chargeless non-rotating BH, thus setting

foundation for a whole new branch of Physics: Black Hole Physics.

To achieve deep understanding of physical aspects of EFE’s solution, it is bene-



ficial to mathematically explore the motion of test particles and light rays in these
spacetimes. Such a study has both observational and fundamental importance.
From observational point of view, matter and light are two observable quantities
which can give clear insight to the physical behavior of a given gravitational field.
From fundamental point of view, the study of motion of light or matter around
some gravitating body can not only help in classifying a given spacetime but also
can highlight its characteristics and thus decode its structure.

With the discovery of Schwarzschild’s solution to these EFE, the next obvious
interest arose in studying motion of massless or massive particles in vicinity of
the static and spherically symmetric background. In 1931, Hagihara was able to
analytically compute geodesic equations in Schwarzschild spacetime [4]. He used
theory of elliptic functions and carried an extensive study on timelike geodesics
as well as null geodesics. In 1918, another exact solution of EFE in presence of an
electrical charge of the gravitating body was derived by Reissner and Nordstrom
[5,6]. The method adopted by Hagihara for the computation of geodesics can be
used to discuss geodesics of Reissner-Nordstrom spacetime.

In 1918, Lense and Thiring [7], working under the framework of GTR, found an
additional effect associated to slight distortion of geodesics of a rotating massive
object. Not hosted by Newtonian Theory, this effect, also known as frame dragging,
solely comes from GTR and is considered to be a prominent feature of rotating
astronomical objects. In 1963, Roy Patrick Kerr was able to figure out the exact
solution of a stationary and axially symmetric spacetime [8]. Later, Carter [9,10]
explored the structure of Kerr solution and was able to establish a fourth constant
of motion, named Carter constant, by determining the separability of the Hamilton-
Jacobi equations. By eighties, extensive studies were done on geodesics of BHs,
especially Kerr BH. In 1983, Chandrasekhar compiled, analyzed and enhanced the

work of many authors in his book [11].



The study of geodesics for null (photon) and time-like (massive) particles, has
always held a significant importance. The analysis of circular motion of particles in
a curved space time exhibits its geometrical behaviour . A detail study of null, time-
like and space-like geodesics is done in [12] for certain BHs. Geodesics of some
BHs spacetimes with cosmological constants is comprehensively investigated by
Hackmann [13]]. Equatorial geodesics are studied in [14}[15].

On theoretical grounds, Einstein’s GTR not only predicted the existence of BHs,
but also provided mathematical tools to directly observe them. Synge was the
tirst to propose the apparent shape of a spherically symmetric BH [16]. Synge
effectively identified that a photon sphere, enclosing a compact spherical body;,
would cast a shadow on the observer’s sky. For a circular shadow having angular

radius p, he computed an expression given by

sinzp = gw (1.2)

where for observer’s radial position r,, p, = 1,/ (2m).

In 1973, the shadow of a KBH was first studied by Bardeen [17]. Bardeen’s
distant observer is suitable for describing the shape of the shadow. According to
his findings, for a rotating black hole (RBH) the shadow is no longer circular but
rather flattened on one side. After that Luminet [18]] discussed the appearance of
a SBH surrounded by an accretion disk. These initial works on shadow images
of BHs not only gave theorists new grounds to extend their investigations but
also arose the interest among astrophysicists to physically explore such compact
objects. After seventies, the astrophysical importance of BHs became inevitable. J.
P. Luminet [19] recalls in detail the struggles faced and steps taken on the road to
imaging a BH, between years 1972 to 2002.

With time, the astrophysical advances also motivated many authors to invest

qualitatively in theoretical analysis of BH shadows. A de Vries [20] investigated

4



the shapes of various Kerr Newmann spacetimes considering the geometry of the
closed photon orbits. Hioki and Maeda [21]] introduced two observables which
characterized the apparent shape of a KBH. In same paper, they also broaden
their technique to study naked singularity. A. Abdujabbarov et. al. [22] studied
the shadow of a spinning BH with gravitomagnetic charge and observed that
apart from angular momentum the presence of gravitomagnetic charge is also
responsible for the deformation in the apparent shape of BH'’s shadow. L. Amarilla
et. al. [23] studied the shadow casted by RBH in Chern Simons modified gravity.
This model is developed by introducing to the Hilbert Einstein action a scalar
field that couples to the first class Pontryagin density. It was concluded in [23]]
that in presence of Chern Simons parameter the shape of the shadow of RBH is
thus deformed. L. Amarilla and E. F. Eiroa [24], in the Randall-Sundrum scenario,
computed the shadow of a rotating braneworld BH. Their observation was that the
tidal charge term does effect the shape of the BH’s shadow such that an enlarged
shape of the shadow is obtained in presence of the negative tidal charge while
the effect is opposite when the tidal charge is positive. The same authors in [25]
considered the shadow for a Kaluza-Klein rotating dilaton BH and concluded
that mass and charge also play role in deforming the shape of the shadow. Wei
and Liu [26] showed that parameters involved in Einstein-Maxwell-Dilaton-Axion
BH significantly effect the shape of its shadow. Not only BHs but also shadow of
Kerr-like wormholes as well as traversable wormholes and many more, have been
of great interest for the researchers too [27-35]. Some authors have also tried to
test theories of gravity by using the observations obtained from shadow of Sgr
A* [36-39]. An effective overview by Cunha and Heidro [40] gives a considerable
insight to the theoretical aspects of shadows of BHs in both GTR and Alternative
Theories of Gravity.

The question that whether dark matter is strong enough to deform the geometry
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of BH is currently revolving among inquisitive minds. The influence of dark matter
halo, particularly Scalar Field Dark Matter and Cold Dark Matter models, around
Sgr A* was investigated by Hou et. al. [47]. The shadow of BH in the presence of
quintessence has been discussed in [48,49]. The characteristic features of the dark
matter— its effective mass and non interaction with electromagnetic field—-were
implied by Konoplya [50]. By a robust analysis, he concluded that for a galactic
BH it is unlikely for a dark matter to affect the shadow’s shape unless it is highly
concentrated near the BH. Another interesting dark model was consider by Jusufi
et. al. [51] in M87 galactic center and images of its shadow were identified. It is
anticipated that the effect of dark matter on the apparent shadow shape can shed
some light in future observations as an indirect way to detect dark matter using
the shadow images [51].

In 1919, Eddington successfully performed the first experiment to test the
correctness of GTR. That time when Einstein was asked about what if the physical
results came against his theoretical findings, Einstein’s promptly replied "I will be
sorry for the good Lord but the theory is correct”. Even after hundred years, on April
10th, 2019, GTR firmly stood its ground when the first image of BH was publicly
announced by Event Horizon Telescope (EHT) Collaboration.

Long had been known that our neighbouring elliptical galaxy M87 accommo-
dates a massive and bright radio source (a BH) at its core. According to GTR, the
presence of a massive body (e.g. a BH) in a spacetime generates curvature, which
bends the paths of photons ultimately forming null geodesics in curved spacetime.
By studying these geodesics around BHs it is observed that photons can be ab-
sorbed or escape from a BH [40]. Simply put, a boundary is defined between these
two categories of light-like geodesics, giving rise to a dark region known as the
shadow. Presence of M87 relatively less distant to our galaxy provided an excellent

opportunity to capture image of BH’s shadow at exquisite resolution [52,53].
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The image observed by EHT [52] was consistent with Kerr BH, as predicted
by GTR. Based on the information collected, the observed BH has mass M =
(6.5+0.7) x 10°(M) and spins away from us i.e. it rotates in clockwise direction.
This data has unlocked new paths and eventually may enable us to test GTR in
strong-field regime.

Another ground breaking discovery to be mentioned here is detection of gravi-
tational wave (GW) signal dubbed GW150914, in 2015 [41]]. This was done by a
United States based observatory named Laser Interferometry Gravitational-Wave
Observatory LIGO. The birth of this wave signal was due to merger of a pair of
stellar mass BHs. The key features of GW150914 were in alliance to numerically
generated simulations of inspiral, merger and ringdown phases of waveform
templates. The data obtained from this marvelous detection acted as a compelling
evidence of binary black hole (BBH) system blending to form a single BH thus
giving rise to GW astronomy as an observational science. These observations not
only play vital role in understanding unique properties of spacetime in strong-
field regime and high velocity regime but also confirms the predictions of GTR
regarding BHs dynamics.

In 2017, the LIGO- Virgo collaboration detected another GW signal(GW170817)
formed by coalescing of a pair of neutron stars [54]. Approximately 1/7th of a
second after the detection of GW170817 followed gamma ray burst (GRB 170817A).
Through extensive observations along electromagnetic spectrum the optical tran-
sient of GRB 170817A was detected [55]. This was the first time that both gravita-
tional and electromagnetic waves were observed from a single source-making it
a first of its kind discovery in the field of multimessenger astronomy. This also
gave another evidence in favour of GTR: the postulate that GW emitting from
their source propagates outwards with speed of light.

Furthermore LIGO-Virgo collaboration observed in total ten GW signals during
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the first two runs. Out of these ten signals, nine were concluded to be compatible
with those generated by BBH system, and the other with binary neutron star
(BNS) merger [56]]. Recently, Advanced LIGO and Advanced Virgo have publicly
released the results collected in the first half of the third observing run (O3a)-
between 1st April 2019 to 1st October 2019 [42]. This current study has reported
39 events as a host to GW emission, showing consistency with the coalescence of
BBHs, BNS and NS-BH binaries.

The images of M87* by EHT collaboration and detection of GW are altogether
a break through in astrophysics. These discoveries have reignited the faith in
GTR as well developed a never ending interest in gravitational physics. The
images of another BH named Sagittarius A*, this time hosted by our very own
galaxy— the Milky way, is expected soon too. This and some other undergoing GW
missions (e.g. KAGRA, LISA and others [57]) make us living on the verge of an
inquisitive yet intriguing new era of highly precise tests related to extreme gravity
and gravitational waves physics.

Mathematically, the methods used for computing shadows of BHs is more
or less the same in all cases. An observer is placed at a very large distance
(effectively infinity) away from the BH, and it is from the viewpoint of this observer
that the shadow is determined; typically celestial coordinates are introduced.
For asymptotically flat BHs these methods are fine, but in the presence of a
cosmological constant there is an additional subtlety in that the position of the
observer needs to be fixed.

Grenzebach et al. [64,65] derived a promising analytical formula to deduce
shadow of a BHs lying in Plebafiski- Demiafiski class. Basically, they assumed
that the observer at finite position having four-velocity as linear combination
of dt and d¢. The shadow can then be calculated using the standard aberration

formula [66] for observers with any other four-velocities. The solution to KBH is

8



considered as a particular case in the work by [67] to compute an approximate
formula that permits extraction of spin of the BH from the shape of its shadow.
By examining the shadow of a BH and naked singularity it is now possible to
distinguish between the two. This was suggested and proved by Hioki and Maeda
in [21] in which they also provided a technique to measure the spin and angle of
inclination by defining two observables.

We intend here to use techniques recently employed in [68] for computing the
shadow of a RBH with cosmological constant. We begin by fixing the location
of the observer in Boyer-Lindquist (BL) coordinates (rg, 6), the respective radial
and polar angular coordinates of the observer. Instead of considering photon
rays coming from past, we follow them from the location (r¢, 8p) to the past. The
behaviour of light-like geodesics can be characterized into two categories: those
that venture so close to the outer horizon r = r of the BH that they are absorbed
by it due to the gravitational pull, and those that ultimately escape to their original
source in the past. Thus a boundary is defined, between these two categories of
light-like geodesics, which encloses a dark region called the shadow.

With all the technological and theoretical development around us, it is now a
golden time to carry on studying shadows of BHs and the effect of their parameters
(especially spin) on them. The astrophysical BHs depends solely on their electrical
charge Q, mass M and angular momentum | = aM (which is particularly in direct
relation with spin a of a BH). Astronomically, a spinning BH has tremendous
importance since its spin stores enormous amount energy with a fossil record
about how the BH formed and grew. For example, it is still a mystery that how
supermassive BHs are formed in the early Universe, by investigating that whether
these BHs are highly spinning or not enables one to differentiate between the
scenarios responsible for the their formation i.e. from BH mergers or coherent disk

accretion [43].



Further, the BH’s spin also acts as the potent source of energy for emission of
relativistic jets [60]. In Newtonian frame work, the Universal Law of Gravitation
contains only mass of a body with no information on the gravitational effects if the
body is spinning. Whereas in GTR, the characteristics of a rotating massive bodies
is somewhat analogous to a rotating charge in electrodynamics. For example, the
spin changes the position of the event horizon [46]. The spin of a BH considerably
affects shape of its shadow too.

In GTR, the geometry of chargeless RBH is described by Kerr metric. The
Kerr BH can be completely specified by its mass M and angular momentum J. By
unlocking these two parameters, all the properties of spacetime geometry can be
known. However it is a difficult task to calculate the spin of a BH since it has no
effect in Newtonian gravity and therefore it is necessary to probe the spacetime
close to the object [46].

BHs are formed due to the gravitational collapse of a star. In our Galaxy, the
expected number of BHs is about 10 Million. However, we know of only 20
stellar mass BH candidates, living in X-ray binaries [136]. BH X-ray binaries are
classified into two categories: Low mass X ray binaries have stellar companion
of only few solar mass (s 3M¢) and High-mass X-ray binaries have massive
stellar companion (2 10M,). Theoretically assuming the BH candidate satisfying
characteristics of a KBH, the spin is measured nearly equal to unity. Black holes
having spin close to 1 are considered a rapidly RBHs. However the reason behind
such a high spin values is still not understood [46]. In [58], the authors conclude
for a low-mass X-ray binary source GRS 1915 + 105 is fast rotating KBH with
minimum spin value a2 > 0.98. In the case of high-mass X-ray binary Cygnus X-1
the lowest spinis a2 > 0.983. The spin of supermassive BHs in active galactic nuclei
evolves somewhat differently since their mass is increased by several orders from

its initial value. In case of random merger of two BHs, the most probable final
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product is a BH with a ~ 0.69 while fast rotating objects with 2 > 0.9 should be
rare [59]. Accretion from a disk can potentially be a very efficient way to spin a
compact object up [60] .

It is usually assumed that Einstein’s GTR is valid only as an effective theory
of gravity. According to this picture, GTR can be taken as a correct description
of gravitational interaction only up to certain scales of energy and characteristic
distances. When they get comparable to Planck scale the theory is expected
to break, and to be replaced with a completely different physical model. This
reasoning seems to be supported by the well known fact that the Einstein-Hilbert
action, leading to the field equations of GTR, is perturbative non-renormalizable
[76]. The problem of finding a consistent theory of quantum gravity remains to
be the central challenge in theoretical physics. During the past decades different
approaches and perspectives on this issue were developed, such as loop quantum
gravity [69,70], string theory [71,72]], and effective approaches of modified gravity
theories [73-75]. These attempts also addressed various problems of cosmology
and astrophysics, including DE and DM problem, the horizon problem, as well
as the singularities of GTR. All of these problems are connected to the potential
limitations of Einstein’s GTR, and are therefore important motivation and reference
in the investigation of quantum gravity.

However, Weinberg proposed a new nonperturbative notion of renormalizibil-
ity which is called “asymptotic safety" [77], based on the existence of a nontrivial
fixed point in renormalization group, which makes the physical couplings of the
theory non-divergent. The basic assumption of Weinberg’s proposal was that
gravity can meet this criteria, and thus its description can be considered as a con-
sistent field theory on all scales. A review and discussion of attempts to prove the
existence of this fixed point for gravity can be found in [78]]. In the perspective of

research on quantum gravity, it is of special interest to consider the consequences
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of the asymptotically safe gravity (ASG) picture on the well known physical sys-
tems, which are in principle also accessible to observations. Black holes are a good
example of such system, where the corrections to standard description of gravity
could be important. Black holes in ASG were previously studied in [79-88].

In this work we continue the investigation of BHs in ASG, considering the RBH
solutions, and focusing on the functional form of gravitational coupling inspired
by the potential infra-red limit of the theory, due to its observational relevance.
Previous to this work the quantum gravity effects in the Kerr spacetime were stud-
ied in [90], where the structure of horizons, the ergosphere, the Penrose process
and the static limit surfaces were investigated considering the generalization of
gravitational constant to a general function of radial coordinate, G(*) — that comes
as a result of quantum effects. In this work we extend the analysis performed
in [90].

A rotational sphere with electric charge generates magnetic field. Similarly,
it is expected that a RBH, or a massive star, also produces “magnetic effect" of
gravity according to modern gravitational theory. Such phenomenon is known as
Lense-Thirring effect which was firstly proposed by Lense and Thirring in 1918 [7].
In this work, we also investigate the Lense-Thirring effect for the RBH considering
the varying Newtonian coupling.

The Standard model of cosmology suggests that our universe is compiled of
27% DM and 68% DE, while the rest is baryonic matter. Though DM has not
been directly detected, observational evidence for its existence can be found in
abundance. Examples include galactic rotation curves [91], the dynamics of galaxy
clusters [92], and the measurements of cosmic microwave background anisotropies
obtained through PLANCK [93]. It is therefore natural to ask how BH solutions
might depend on DM. Recently a generalization of the Kerr-(A)dS solution in the
presence of perfect fluid dark matter (PFDM) was obtained [99]. This solution
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had a number of interesting features. The size of its ergosphere decreased with
increasing |«|, where a parameterizes the strength of the DM contribution to the
metric. Null circular stable orbits were shown to exist, and the dependence of the
rotational velocity on « was determined. However no observational consequences
of this solution were considered. Motivated by the above, we also investigate the
shadow of the rotating BH in presence of PFDM [99].

Global monopoles are topological defects which may have been produced
during the phase transitions in the early universe. In fact, global monopoles are
just one type of topological defects. Other types of topological objects are expected
to exist including domain walls and cosmic strings (e.g. [94]). More precisely, a
global monopole is a heavy object characterized by spherically symmetry and
divergent mass. Such objects which may have been formed during the phase
transition of a system composed of a self-coupling triplet of scalar fields ¢* which
undergoes a spontaneous breaking of global O(3) gauge symmetry down to U(1).
The gravitational field of a static global monopole for the first time was found
by Barriola and Vilenkin and are expected to be stable against spherical as well
as polar perturbations [95]. According to their model, global monopoles are con-
figurations whose energy density decreases with the distance as r~? and whose
spacetimes exhibit a solid angle deficit given by A = 871272, where 7 is the scale of
gauge-symmetry breaking. Among other things, global monopoles are expected
to rotate and to carry magnetic charges. Gravitational lensing by rotating global
monopoles has been investigated in Ref. [96] and more recently in Ref. [97]. Thus

it is worth to explore RBHs with a global monopole.

In this thesis, firstly, some theoretical aspects of varying Newtonian coupling
are analyzed [61]. While focusing on a more specific setting of infra-red limit

of asymptotic safe gravity, we concentrate on a specific form of G(r) function,
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which enables us to obtain the concrete solutions for equatorial geodesics, Penrose
process, and to analyze the Lense-Thiring effect. Secondly, shadows of a RBH
in PFDM with cosmological constant are obtained [62]. Our study provides a
possible tool for observation of DM via shadows, perhaps using the high resolution
imaging of EHT. Lastly, a comprehensive study of the impact of the rotating global
monopole BH surrounded by perfect fluid on its shadow is done. For this a new
metric has been formulated, using Newman-Janis algorithm with an exception
of no complexification [63] (the method is also illustrated in . This new metric
has configuration of a rotating dyonic black hole (RDBH) with global monopole
having perfect fluid around it. A graphical comparison between the shadow of
a new metric and its Kerr counter part and the effect of new parameters on the
apparent shadow shape can shed some light in future observations as an indirect

way to detect characteristics of a BH using the shadow images.

This thesis consists of six Chapters which are separated as follows:

o Chapter two discusses the conceptual foundation of this study. This basic

information come handy in better understanding of rest of the thesis.

o Chapter Two investigates the consequences of running gravitational coupling
on certain properties of an RBH in ASG theory. The horizons structure and
singularity of the metric is then discussed. Considering the BH solution in
equatorial plane, the geodesics of particles, both null and time like cases, are
explored. The effective potential is computed and graphically analyzed for
different values of parameter ¢. The energy extraction from BH is investi-
gated via Penrose process. A brief discussion on Lense-Thirring frequency is

also done in the end.

o Chapter Four is based on studying the effects of DM on the shadow of an RBH
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in the background of PFDM, along with its extension to nonzero cosmological
constant A. Working in BL coordinates, we consider the effects of the PFDM
parameter « on the shadow cast by a BH with respect to an observer at

position (7o, 6,).

Chapter Five mainly covers the computation of shadow of an RDBH with
global monopole in presence of a perfect fluid. Firstly, the surface topology at
the event horizon is deduced using the Gauss-Bonnet Theorem. By choosing
w = —1/3,0,1/3 the effect of DM, dust and radiation on the silhouette of
BH are then investigated. In the end, energy emission rate with respect to

parameters is analyzed.

Chapter Six is on the results obtained. It contains the conclusive remarks

regarding this study.
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Chapter 2

Preliminaries

In this chapter we briefly review some basic concepts of geodesic equations, RBHs

and phenomenon of their imaging.

2.1 Geodesic Equations in General Relativity

One of the most pivotal topics of this thesis is the geodesic equations of motion.
A geodesic is observed as a straight line on a curve manifold. It is the curved-
spacetime version of the notion of straight path in Euclidean space. In this section,
we will formally define a geodesic and derive the geodesic equation for a four
dimensional spacetime, equipped with a metric g,,. Furthermore, we will also
describe the formulation of geodesic equation using Lagrangian and Hamiltonian
approach. Hamiltonian Jacobi approach for computing geodesic equations of

motion will also be discussed in the end of this section.
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Intrinsic Derivative

Let e, (u) be the coordinate basis vectors, on the curve €, corresponding to the
parameter value u [98]. Then the vector field v at any point along the curve is

defined as

v(u) = v'e,(u). (2.1)
On taking the derivative of the above equation, we attain the form

do  do¥

With the use of result de,, /dxP = I'V e, and applying chain rule, lead us to
iz 1o pplymng

do do# dxP

Let us write the term in the parentheses separately as

Dot dot u o, dxf
=7 = = 2.4
Du du o du’ 24

which is the intrinsic derivative of v along the curve €. The intrinsic derivative is

often also referred as absolute derivative.

Parallel Transport

Consider an initial point O on the curve € parametrised by u. Let a vector v is
defined at O with parameter u,. Then vector v is parallel transported throughout

the curve € given that the derivative of v vanishes along the curve i.e.

dv
i 0. (2.5)

As a consequence, we are left with a “parallel” field of vectors at each point along

¢, generated by the parallel transport of v.

Thus, carrying a vector along a path such that the vector remains parallel to itself
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during its transport along the curve all the while, is a concept known as parallel

transport.

2.1.1 Geodesic Equations

In a spacetime, for a general parameter u, a geodesic can be associated with a
curve Y¥ = Y#(u). Let the tangent vector to Y* be x(u). Then geodesic can also

be described as a curve parallel transported along its tangent vector i.e.

dx _
T AMu)x. (2.6)

Here A(u) is a function. Combining (2.4) and (2.5), we see that the components x*
of the tangent vector must satisfy

D" B dxt
Du  du

dxrf
+ rﬁvaﬁ = A(u)x". (2.7)

The components of the tangent vector are given by x* = dx* /du, using this above,

we obtain a set of equations, known as geodesic equations, as

d?xH pu dx¥ dxf dxH

iz P g = MW (28)

Geodesics are categorize as: (i) the ones corresponding to propagation of massless
particles, called null geodesics, (ii) the ones corresponding to propagation of
massive particles, called non-null geodesics.

Equation is valid for both null and non-null geodesics dependent on some
general parameter u. However, if the curve is reparameterised such that A(u)
vanishes then u is termed as an affine parameter [98]. From , we see that this
corresponds to a parameterisation in which the tangent vector is the same at all

points along the curve (i.e. it is parallel-transported), so that

dx _ Dx" _
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The equations satisfied by an affinely parameterised geodesic are thus

d>xt o dxV dxP
—— ————=0. 2.10
duZ T dn (2.10)
Thus, a geodesic can also be defined as a curve whose tangent vector is parallel

transported along itself.

In General Theory of Relativity, the geodesic equations stand among the
most important results to study motion of a particle. But one has to put in a lot of
tedious work to set up these geodesic equations. To solve them would be another
tiring task. Fortunately, it is possible to set up few other, less complicated, ap-
proaches for the computation of geodesic equations. These alternative approaches

are briefly discussed below.

2.1.2 Lagrangian Approach for Geodesics

Another way of driving the geodesic equations (2.10) is through calculus of varia-
tion and Hamilton's principle of least action. For a start, we consider an action S,

for some fixed parameter A, to be
M
S[x*(A)] = / Ldn, 2.11)
Ay

which is the spacetime distance between two fixed endpoints Ay and A,. The
action is invariant under arbitrary reparametrisations of the curve. Fulfilling the
requirement that the variation of the action functional (2.11) vanishes (i.e., §S = 0)

leads to Euler-Lagrange equations of motion

d oL oL
i (w) ~ 3 =0 (212)

This equation gives n second order differential equations for the geodesic motion

of a particle.
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Inserting the Lagrangian

1
L= sguiti, (2.13)

into the Euler Lagrange equations gives geodesic equation of the form (2.10).
Here overdot denotes differentiation with respect to the parameter. This form
of geodesic equations is non-affinely parametrised. By introducing an affine
parameter to the curve, we arrive at the geodesic equations (2.10). Geodesics can
thus be defined as paths in spacetime x*(A), obtained by extrimising the action
(2.11). Another point to mention here is that the Lagrangian (2.13) is not a unique
function in the sense that the geodesic equation would have also be obtained

if, as an example, Lagrangian function

E — »Cl = 1/ |g],[1/xyxv| ’

is chosen and inserted in action
S'[x"(A)] = / L'dA. (2.14)

The former particle Lagrangian is parametrised by the time coordinate while the
second particle Lagrangian is parametrized by the arc-length. Both are easily
tractable. The former equation convinces that the particle will travel along a path
in the shortest time between two points while second equation tells that particle
follows or chooses the shortest path in the spacetime. Naturally, the shortest path
in arc-length or the path with shortest time should be same in the gravitational
field. It depends how one parametrizes the problem which structures the aim of
the problem. Any how, mostly the Lagrangian is preferred since it does not

feature a square root, which makes it more convenient in use.
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2.1.3 Hamiltonian Approach for Geodesics

Another way of defining geodesic equations is through Hamiltonian formulation.
This formulation is somewhat deduced using Lagrangian formulation, by follow-
ing the standard procedure. As a first step, the Hamiltonian function H is defined

in terms of generalized coordinates x* and conjugate momenta p,,, such that

oL

H=H( pu,A) and p, = FYTL

(2.15)

with x# being the velocities.

Since Hamiltonian function # is the Legendre transform of the Lagrangian £, it is

given by
H=itp, - L, (2.16)
The Eq. and (2.16)), when combined, yields
H= 25" pups, 217)
with conjugate momenta as
Py = §uvx’. (2.18)

Evidently, the momenta p, represents the covariant components of the tangent
vector to the geodesic.

Following a standard method [100] leads us to Hamilton’s equations

oH oH
=— Py=——, (2.19)
apy

which are different from Lagrange equation, discussed earlier, in a way that later

xH

are the second order differential equations whereas Hamilton’s equations defines
a system of 2n coupled first order ordinary differential equations for coordinates
x" and their conjugate momenta p,, in n spacetime.

Using the Hamiltonian (2.17), Hamilton’s equations (2.19) become
; , 1
=g py, pu= =584 Pvpo- (2.20)
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The first of these is clearly equivalent to the definition of the conjugate momenta
(2.18). The equations may be combined to give the familiar geodesic equa-
tion p"Vyp, = 0.

A freely falling massive particle follows a timelike geodesics. In this case Hamilto-

nian function H equates to — %mz

, m is particle’s mass. The Hamiltonian vanishes
for light-like geodesics i.e. H = 0, this is also referred as null condition.

The geodesic equations can also be obtained by applying the variational principle
to the integral [[100]

A
/A " (it — H(x, p, A)) dA (2.21)
1

2.14 Hamiltonian Jacobi Approach for Geodesics

Uptill now, the coordinates taken are general. This allows us to write the La-
grangian, previously defined in coordinates {g#, §#}, in a new coordinate system
say {Q#, Q"}. The geodesic equations of motion remain the same in both coordi-
nate systems.

In the new coordinate system the Hamiltonian and Canonical momenta, respec-
tively, now are

oL’
QM

The Lagrangian in new coordinate system is now £’ = £ (Q¥, Q#, A). It should

K=P,Q!—L and P, =

(2.22)

be mentioned here that though K = K(Q¥, P, A) is the same Hamiltonian but
defining it in another coordinate system makes it a distinct function from H =
H(x*, py, A). In this regard, a new system of coordinates assigns new coordinates

to the same point in phase space A set of transformations in phase space, known
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as Canonical transformations preserves the form of Hamilton equations

)\

oK .

= = —Om, (2.24)
K

The variational principle applied to the following integrals should lead to the
same geodesic motion
A2 A2 .
(puit —H)dA =06 | (P,Q"¥—K)dA =0 (2.25)
)\1 /\1

The integrands above are not necessarily equal, though they give same geodesic

equations, but can be equalized if they are expressed by the relation of the form

o (puit —H) = P,Q" — K+ i—i. (2.26)

Here o is a constant and can be set to unity, without any loss of generality [100].
The function F is coordinate dependent function having a continuous second
order derivatives. Interestingly, it may depends on old coordinates {x*,p,} as
well as new coordinates {Q¥, P, } since the variation of any of the coordinates
vanish at the end points, consequently making the third term vanish too.

To make function F works more significantly , it is better to choose half the
variables from old system of coordinates and the other half from new system of
coordinates. This way F implicilty connects the two systems of coordinates as if
like a bridge and thus constitute the name generating function [100].

We further choose the generating function F as
F (x¥,QF,A) =S (x#, Py, A) — QFPy. (2.27)
The Eq. (2.26) then yields
dS dS . dS
— — & — —QF — — = 0. 2.2
(axV py)x +<8PH Q)P;,—F(HJra/\ IC) 0 (2.28)
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Following the Hamilton- Jacobi formulism, the new coordinates (Q¥, P,) must
correspondingly act as constants of motion. This leads to attaining the value of
x#(Q¥, Py, A) and thus a solution to the motion of the particle is obtained.

To fulfill the above requirement, the new Hamiltonian K vanishes identically i.e.

K = 0. Consequently, the new equations of motion becomes

oK .
oK .
— =0Q"'=0. 2.
3P, Q"=0 (2.30)
We then obtain the equation
dS dS
= = i = —. 231
3 +H =0, with p, T (2.31)

It is then possible to write a differential equation for the action function S(x*, P, A)

called Hamilton-Jacobi equation:

3s aS
Ho___ - __—
H (x 5 y,)\) - (2.32)

which is a first order non linear differential equation. The function S is called the
Hamilton’s principle function. This function does not appears separately in the

Hamilton-Jacobi equation, only its derivatives does.

2.2 Kerr Black Hole

A BH is a mysterious cosmic body with strong gravitational field as its dominant
feature. The strength of its gravitational field can be noticed from the fact that not
even light can escape after coming in its influence.

Formation of a BH occurs when an astronomical object having mass M gravitation-

ally collapse consequently contracting to a point that its size crosses gravitational
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radius re =2GM /¢, also known as Schwarzschild radius, here G is Newton’s
gravitational constant, and c is the speed of light. The mass of the BH acts as
gravitational charge and is directly proportional to the total energy of the system.
A null surface, called event horizon, around the BH does not allow any signals to
escape while the physical objects and radiation can fall into it.

The Einstein’s GTR effectively meets the criteria required to describe BHs. The
EFE though appear at first glance to be complicated due to its obvious non-
linearity and complexity. But fortunately, soon after the appearance of EFE, the
first solution to these equations gave theorists an evidence to believe the existence
of BHs. Though its astronomical observations came quite later [53].

All the geometric information of a spacetime is enclosed by metric g;, with n
dimensions. The GTR is a four dimensional theory. Implying summation by
Einstein’s convention, the spacetime geometry of a BH veils itself in the solutions
to EFE. A general form to represent a line element is ds? = g, dx/dx".

In GTR, the unique spherically symmetric vacuum solution is the Schwarzschild

solution given by metric
2 2m\ o 2m\ ™ 2 2302 | 2 s 20702
ds® = — 1—7 dt= + 1—7 dr® 4 r=d6- 4 r~ sin” 0d¢~, (2.33)

where m = GM/c? is mass of gravitating body. This is the first ever solution to
EFE and fully describes the exterior of a spherically symmetric gravitating body
with zero spin. For an observer faraway (r — oo) from the gravitational source ,
interprets the spacetime solution as Minkowski flat spacetime in spherical
polar coordinates. The singularities appears in Schwarzschild solution at r = 0
and r = 2M. The computation of Kretchmann invariant R;opR*"7F = 48 M? / v©
specifies the singularity at r = 0 as essential singularity: this singularity can
not be removed but carries physical significance. The singularity at r = 2M,

on the other hand, is a coordinate singularity and can be avoided by change
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of coordinates. Eddington Finkelstein coordinates or Kruskal coordinates are
some of the coordinates use to remove this singularity. The event horizon of a
Schwarzschild BH exists at r = ry = 2M, which is also a null surface. The interior
of Schwarzschild BH solution lies in the domain re (0,2M] while exterior region
starts from r > 2M.

The gravitational field of a rotating chargeless gravitating source is described
by Kerr spacetime: solution to EFE founded by Roy Kerr in 1963. To get a clear
picture of this let us assume a distant object (be it a star or a BH) rotating in
space about a vertical axis through its center. In four dimensional spacetime this
situation can naturally be described in terms of three spherical coordinates r, 8, ¢
on R® and one time coordinate t on R. Here r is interpreted as the distance to the
centre of the rotating object, 8 as colatitude and ¢ as longitude.

In BL coordinates {t,7,60,¢} , the metric defining a Kerr spacetime has the form

2 _ (1—2mEY a2 — amal sin2 Z 52
ds® = <1 Zmz) dt 4maZ sin Q(jtd(l)—{— Adr
+oYde? + <(r2 +a?) sin® 0 + 2m—a® sin’ 9) d¢?, (2.34)

with the expressions for ¥ and A as

Y = r2+4%cos?0, (2.35)
A = r*—2mr+a° (2.36)

Since components of this metric are independent of t and ¢, this makes Kerr metric
a stationary and axially symmetric solution. The metric above is characterized by

two parameters:

e The parameter m = GM/c?, where M is mass of BH. Interestingly, m has

dimension of a distance.

e If a spinnig BH has ] angular momentum then parameter a = J/(Mc), in the

above metric, relates to the rotation of BH. As can be noticed, parameter a is
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angular momentum per unit mass of BH. Physical importance of parameter a
is its association to the direction and speed of rotation of a spinning BH. For a
positive value of a, the direction of spin is clockwise. For a counter clockwise
spinning BH, the value of a is negative. As for the speed of rotation, since
a is directly proportional to angular momentum | thus greater value of |

indicates faster spin of BH.

Horizons

Mathematically, the horizons of Kerr metric lies in coefficient of third term of
metric i.,e. when ¢'" = 0. The condition A = 0, or equivalently r = 4. =
M+ VM2 — g2 gives rise to two null surfaces r_ and ro, with r_ < ry; the
surface defined by r is commonly called event horizon or outer horizon. The
event horizon r of Kerr BH is a null surface beyond which no event or information
can be observed by an observer, located at distant position. It is a sphere-shaped
surface veiling the intrinsic singularity of BH. Since no information beyond r is
undetectable, the event horizon apparently acts as the boundary of the BH. On the

other hand, r_ is the inner horizon or Cauchy horizon.

Singularities, Symmetries and Killing Vectors

Two singularities arise in Kerr metric: coordinate singularity and curvature sin-
gularity. A coordinate singularity may simply arise due to the failure of the
coordinate system. By replacing the coordiante system with some other more
promising system of coordinates this singularity can be avoided. In an RBH, at
r=rs =M= VM2 — a2 there exists coordinate singularity as A goes to zero and

coefficient of dr? to infinity.

The second singularity which is also an intrinsic singularity of RBH is the
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Figure 2.1: Schematic diagram showing a Kerr BH. Figure follows [98].

curvature singularity. Mathematically, this singularity is detected with the help of
scalar invariant, R, [;R?“’“ﬁ, (also called Kretschmann scalar). The scalar invariant
blows of at curvature singularity. This singularity cannot be removed by any
change of coordinates and it is thus an intrinsic property of the Kerr space-time.
Eq. is sum of two nonnegative quantities. A singularity can only exist here
if both terms in eq.(2.35) vanish or

r=0 and acosf =0, since a#0 thus 0= /2 (2.37)

At a first glance this may seems an absurd result but it should be remember
here that r = 0, § = 71/2 is not a single point but forms a disk: it is rather a ring
of unlimited gravitational forces [133]. Because of its shape curvature singularity

is also called ring singularity (or even ringularity). By passing through the ring
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singularity the observer exits to another realm, completely opposite to the previous
one. The observer now experiences repulsion instead of attraction. The new
spacetime is asymptotically flat too and is described by Kerr metric with r < 0.
For the case of no rotation, a = 0, the ring shrinks into just a point, as in the
Schwarzschild metric.

Physically, a spacetime does not depend on its coordinate system. Indeed,
form of a metric is changed after employing coordinate transformation but its
interpretation remains the same [135]. However, a coordinate transformation
which does not change the form of the metric is called symmetry. Symmetries in a
metric can best be described by Killing vectors.

Particularly, a Lie derivative £ with respect to X* for a metric g,,, given by
Lx8vp = X"0u8up + o X" + gupudp X",
when vanishes give us an equation of the form
VuXy + VX, =0.

The above equation is Killing’s equation and any solutions to it are called Killing vectors

[135]. Two Killing vectors arise in Kerr metric:

5 5
0= ()., o= (), 239

with time and axial coordinate, meaning that it has two symmetries. The pres-
ence of these Killing vectors in a space time also implies that the corresponding
momenta acts as constant of motion. Momenta along time and longitudinal coor-

dinates i.e. p; and py, of a test particle are conserved in the Kerr spacetime.

Static Limit Surfaces and Ergoregion

For a stationary axisymmetric spacetime, static limit surfaces, % and 7%, exist

when the coefficient of dt? vanishes i.e. g;; = 0. In Kerr space time these surfaces
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occur when

r=ry=m+ Vm? — a2 cos2 8, (2.39)

such that 7§ > r° . Some very significant phenomenon, like Penrose process and
superradiance are associated with these surfaces.

The horizons of Kerr BH
r+ =m=+ V/m?—a? (2.40)

lies in the interval [r%,,7° | such that 7, >r, >r_ > . The surface %, coincides
with outer horizon 7 at 6 = 0, 77, other than these points the surface 7% completely
encloses the outer horizon. Similarly, the surface ¥ coincides with inner horizon
r_ at 0 = 0, 7t but at other points it completely confines itself in inner horizon.
The surface 79 is the outer most surface of an RBH and is usually described as
a boundary, outside of which the observer can be static but after crossing it, its
impossible to remain static due to strong frame dragging effect. This outer surface
of an RBH is also called stationary limit surface or static limit surface since the
worldline changes from timelike to spacelike once this limit is crossed.

Inside the stationary limit surface, every observer, particle or photon rotates with
the same direction as the rotation of the BH. The region between the stationary
limit surface and the outer horizon is called the ergoregion (the stationary limit
surface itself is called the ergosurface). This is the region from which particles
can escape. The presence of ergosphere causes various kinds of energy extraction

mechanisms for an RBH e.g Penrose process.

Spin of Kerr Black Hole

Spin of BH can be powered up by presence of a thin accretion disk. As the gas

loses its angular momentum and energy it eventually falls into BH with out any
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loss of considerate emission of additional radiation. This also results in increased
mass and angular momentum of BH. The spin value of BH can be best evaluated
from this mechanism too. In this scenario, a KBH of mass M has the value of its

dimensionless spin parameter @ = a/M as [137]

\/Q% (4— \/18%‘5—2) if M< V6M,,

1 if M>+V6M,,

i= (2.41)
where M, is mass of the initially non-rotating BH. Now if we plot the above
expression (see Figure , it is noticed that as the BH gains mass by the factor v/6'
then the equilibrium value of its spin is 1. As shown in Figure , initially the
spin increases quite fast. Roughly speaking, the BH will have to double its mass to
reach the spin 4 = 0.99. However, a non-negligible amount of gas is required by a

BH to reach spin value 1 [46].

Special Cases:

e If the spin parameter a exceeds mass m of the RBH, a naked singularity
appears: a singularity not veiled by horizon. Physically, such a phenomenon
is not possible since it is like observing a point of infinite density. To avoid

naked singularity, the value of a is restricted to interval [—m, m] or m? > a2,

e For the case |a| = m, BH gains maximum rotation. Such BHs are also named

extremal BHs.

e The condition 8 = {0, 7t} corresponds to the set of points in space-time along
the BH’s axis of rotation and the condition 6 = 77 /2 corresponds to the BH's

equatorial plane.

e Cease the rotation by considering a = 0 and Ker spacetime reverts to

Schwarzschild spacetime. If the mass is also then removed by setting M = 0
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Figure 2.2: Plot showing the dimensionless spin parameter i of a Kerr BH ac-
creting from a thin disk, see Eq. (2.41). The three dashed vertical lines indicate
when the BH spin reaches the values @ = 0.99(M /M, ~ 2.03),0.998(M/M, =~
2.20),and1(M/M, = /6 =~ 2.45). Figure follows [136]

then only Minkowski spacetime is left.

For the remainder of this, and the next chapters, special units are chosen such that

c=1land G = 1.

2.2.1 Rotating Black Hole in Asymptotically Safe Gravity The-

ory

Weinberg proposed a new nonperturbative notion of renormalizibility which is

called “asymptotic safety” [77], based on the existence of a nontrivial fixed point
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in renormalization group, which makes the physical couplings of the theory non-
divergent. The key point to mention here is that when quantum corrections are
applied to BH spacetime, the system is modified, such that the Newton constant

G turns into a r-dependent running Newton coupling G(r) i.e.

G — G(r).

The Running Coupling in Asymptotically Safe Gravity

The solution of the renormalization group (RG) equation for the running Newton
coupling, G(p), of the action (2.43) is computed in [101], using the one-loop

correction:

__ Gn
Glp) = 14 ¢p*Gn’

where Gy is Newton's constant at classical level. For simplicity, the value of Gy

(2.42)

will be equated to unity in rest of our analysis. Here ¢ is also a coupling coefficient.
Cai and Easson broadened the study of BH solution in safe gravity by consider-
ing higher derivative terms in their analysis [79]. They initiated their study by

introducing an effective action
Dlgwl = [y~ [P480(P) +p°81(P)R + 82a(p) R?

+ (P RwR™ + 2c(P) Rjop RMP + O(p *R3) + ...|, (2.43)

where ¢, represents metric tensor with ¢ as its determinant, Ricci scalar, Ricci
tensor and Riemann tensor are denoted by R, R, and Ry, respectively, p is
the momentum cutoff and g; (0,1,24, ...) are dimensionless running couplings
satisfying the renormalization group (RG) equations, for example:

D) = gl 9 = gra i g = Bl

(2.44)
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Further, it was shown that for large values of radial coordinate r, the momentum
cut-off goes asymptotically smalli.e. p ~ 1/7; it may go below the Planck scale.
Under this limit (so-called Infra-red or IR), the running Newton coupling G(r)

takes the form

G(r) ~ (1 — é) , (2.45)

72
for r < Ipjanek, where ¢ differs from & by O(1) and has constant value, less than
unity. For more understanding of this running coupling, it is recommended to
see [79]. Although the main motivation of this form of G(r) comes from the
potential IR limit of asymptotic safe gravity, we note that the analysis performed
in this work can be understood as more general and not only limited to the
asymptotic safety program, since the basic assumption of its validity is only that

the quantum effects can be described by the correction given in (2.45).

RG Improved Kerr Metric

The analysis of RG improved Schwarzschild metric is done in [102], and it was no-
ticed that apart from usual Schwarzschild horizon, the presence of a new horizon
was noticed which, at critical mass, coincides with the outer horizon. To under-
stand the technique used for the computation of RG improved Schwarzschild
metric it is suggested to see [102]. With the help of similar analysis an improved
Kerr metric was suggested by Reuter and Tuiran [90]. In their analysis they consid-
ered Newton's coupling G to be r-dependent i.e. G = G(r). With this assumption
they arrived at the improved Kerr metric form as

L2
ds? = — (1 - %G(r)) dt* — MG(r)dtdqb + %drz

242 Mr sin? 0

2 2
r 4 a® + 3

+ Xd6*+sin’6 G(r) |d¢?, (2.46)
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where A = r2 — 2MrG(r) + a®> and = = r? + a? cos? 6. Here a is defined as rota-

tional parameter.

2.2.2 Rotating Black Hole in Perfect Fluid Dark Matter

There is observational evidence that our Universe is constitute of an invisible
matter called dark matter (DM). Though DM covers about 27% of our Universe, but
still we are unfamiliar about its nature. Some of the evidence supporting existence
of DM include galactic rotation curves [91], the dynamics of galaxy clusters [92],
and the measurements of cosmic microwave background anisotropies obtained
through PLANCK [93]. To understand the nature of this mysterious matter a
whole new physics is required possibly relying on the existence of some new
species of fundamental particles. It is therefore natural to ask how BH solutions

might depend on dark matter.
The action defined for BH surrounded by DM field couple to gravity is given
by
4 R
SZ/d xv/—8 | —=—+Lpm], (2.47)
l6m
where Lpy presents the DM Lagrangian density. Use of variational approach on

the above action S leads to Einstein field equations of the form
Ryw — 28R = —87 (T + TOM) = —8T 2.48
yv_zgyv —_7T<y1/+ uv >—_7Ty1// (2.48)

where the ordinary matter has momentum tensor 7, and DM has momentum
tensor 7;}3M . From current astrophysical observations, the dominance of dark
matter and dark energy in our universe is evident. By assuming that a dark matter
field in background of a BH is a perfect fluid, the energy momentum tensor then

is of the form Ty, = diag[—p, p, p, p] [113]. As a simplest case, it is added that for
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some constant value 9,
p/p=46—1

Amongst the many dark matter models that have been suggested is the perfect
fluid dark matter model, which was initially proposed by Kiselev [112]. An en-
tailed construction of a new class of spherically symmetric BH metrics in the
presence of PFDM was done in [113]. In the spherically symmetric case this class
of BHs was distinguished by a new term in the metric function that grows logarith-
mically with distance from the BH. The logarithmic dependence was introduced
by Kiselev [112] to account for the asymptotic behaviour of the quintessential
matter at large distances, i.e. in the halo dominated region, in order to explain the
asymptotic rotation curves for the dark matter (see also [113]]). The metric is given
by

RN

ds® = —f(r)dt +f(r)

dr? + r?d6? + r? sin? 9d4>2 (2.49)

along with

M « r
=1-2"+"In—.
f(r) r+rn|¢x|

The PFDM’s intensity is shown by parameter a.
Only recently has this class been generalized to include rotation [99]], providing a

PFDM version of the Kerr-(A)dS solution. The metric is given by

A 2 Agsin?6 2
2 _ B 2 0 22
ds® = ZEZZ <d; a sin 9d(,b> t oy <adt (r‘+a )dgb)
2 2
+ _Ardr +—A9d9 (2.50)

where

A
A, = r*—2Mr+a*>— =47 <r2+a2) +ucrlni,

3 ||
A A
Ag = 1+ gaz cos’f, E=1+ §a2, (2.51)
Y = >4 a’cos’6

36



with the mass parameter of the BH being M. The parameter indicating the presence
of perfect fluid dark matter is «. This solution reduces to a rotating BH in a PFDM
background when A = 0, and to the Kerr-(A)dS solution for a = 0.

2.2.3 Rotating Dyonic Black Hole with a Global Monopole in
Perfect Fluid

Global monopoles are topological defects which may have been produced while
the early Universe went through phase transitions. In fact, global monopoles are
just one type of topological defects. Other types of topological objects are expected
to exist including domain walls and cosmic strings (e.g. [94]). More precisely, a
global monopole is a heavy object characterized by spherically symmetry and
divergent mass.

The action, S*M, for Einstein Maxwell gravity along with actions $(P) and S
respectively defining presence of a global monopole and matter distribution, can
be altogether written as

S = SEM 15D 4 g (2.52)
1

- / J—gdtx (— — ;Fw P )

+ / V=g d*x (ngaycbsavcbs —~ % (CIDZ - 72)2> +S.
The quantities ¢, R and F,,, are, respectively, determinant of g, associated to the
gravitational field, scalar invariant and electromagnetic tensor. Also u,v =0,1,2,3.
Now the action S(P) corresponds to the matter having a defect— a global monopole
which is a heavy object formed in the phase transition of a system composed
by a self-coupling scalar triplet field ®°, where s runs from 1 to 3 [95]. The
corresponding EFE read

1
R]/{U - Eg’,“/R - 87TT]41/. (2.53)
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While the corresponding Maxwell equations are
VuF*" =0. (2.54)

With these equations in mind, and without loss of generality we can choose a

spherically symmetric metric written as follows

2
ds? — — F(Nd + T 1 2402 + 2 sin? 0d g, (2.55)
1) Y
where
oM Q3 (Q? v
f(i’):1—87f’)/2—7+r—21—:+r_§4_m, (256)

with the energy density in the form

3wv

T (2.57)

p:

Note that, v is an integration constant related to the perfect fluid parameter. From
the weak energy condition it follows the positivity of the energy density of the
surrounding field, p > 0, which should satisfy the following constraint wv < 0.

Hence the rotating spacetime metric has the form
22 ain2 A — 2 cin2 9 5
e e R e e

A — a?sin” 0
+ sin%0 Z+azsin29<2—%>

de?. (2.58)

For spin a = 0, perfect fluid parameter v = 0 and no charges, the above metric
reduces to Schwarzschild BH with global monopole [128].
The vector potential computed through Newman-Janis formalism for a RDBH is

given by [126]

A (rQE — QZ?M cos

r2 + a2

) dt + (—%QE sin? 6 + Om cos@) de. (2.59)
The detailed derivation of metric (2.58) is given in Chapter
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2.3 Shadow of a Rotating Black Hole

The path followed by light particles (photons) is straight, until they come under
the influence of a strong gravitational compact object, in our case a BH. Photons
are then forced to curve their path and consequently orbit around BH. The study
of such photon’s geodesics (also comes with the name light-like geodesics or null
geodesics) leads us to some interesting optical observations.

The behaviour of null geodesics can be characterized into two categories: those
that venture so close to the outer horizon r = r of the BH that they are absorbed
by it due to the gravitational pull, and those that ultimately escape to their original
source in the past. Thus a boundary is defined, between these two categories of
light-like geodesics, which encloses a dark region called the shadow.

In particular, the boundary of BH’s shadow is composed of set of light rays that
makes null orbits of constant radius around BH [40]. Such orbits are associated
to a finite interval of radial positions which is referred to as a photon region. The
circular orbits lying at the extremal radial positions of photon region stays on the
equatorial plane and are referred to as light rings. More generally, a light ring
is taken to be any planar circular photon orbit, which implies R = 0 = dR/dr.
The existence of unstable photon orbits around compact objects is associated to
multiple images of light sources, and in case of a BH, to a shadow. Thus image of

a photon region is considered as BH’s shadow.

Description of Method

The basic technique to compute shadow of BH was formulated, for example,
in [17]. Another recent discussion was done by [132].
Using Hamiltonian-Jacobi formulasim the null geodesics of Kerr BH can be fully

separated. All four geodesic equations reduce to first order differential equations
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associated with four constants of motion [9]. This considerably simplifies the
problem. The two constants of motion comes from Killing vectors {; and . The
rest mass of photon, which is zero, acts as third constant of motion and the fourth
is Carter’s constant which is generated due to the presence of second order Killing
tensor field.

Photons emitted from a light source opt null geodesics near a BH. Possibly photons

follow three trajectories:

e those absorbed by the BH appear as a dark zone (shadow) to the observer.

e those scattered away to infinity from the BH, these photons appear visible to

observer’s eye.

e those critical null geodesics which separate the first two orbits.

To study shadow of a BH, the observer is considered faraway (r, — o0) from a BH.
The orthonormal basis vectors {e;, ez, € qu} are useful to define the position of a

local observer located faraway from a BH. The expression
ey = egey, (2.60)
relates orthonormal basis to coordinate basis {e;, e/, ey, eq)} of the spacetime
ea-eg = g, (2.61)

with 77, p= (—=1,1,1,1) a Minkowski metric. Let the orthonormal basis satisfying

the above conditions be chosen as

e = Ajer+ Az ey, (2.62)
e = Asey, (2.63)
eg = Asey, (2.64)
ey = Asep, (2.65)



where A1, Ay, A3, As, As are coefficients. These orthonormal basis may differ for
other spacetime metrics.

Since these orthonormal basis vectors satisfy Eq. (2.61), we get

A = (2.66)
8t¢ 8ttgcpcp 8t¢ gttg4>4>

(2.67)
grr \/899 g¢

In the new basis, the locally measured energy and axial angular momentum are

v
-

Black hole

X light source

Figure 2.3: Schematic diagram of the coordinates for a distant observer.
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given by the expressions [11]

p' = AE-— AL, (2.68)
? Pr

- , (2.69)
p \/pg7
6 0

_ 2.70
p T (2.70)
pp = L 2.71)

Ve’
Furthermore, new coordinates (x’, ) are defined for the image plane of an ob-
server. The BH is considered at the origin of the image plane (see Figure(2.3)). The

observer located at {r = r,,0 = 6, } has the coordinates on the image plane as

b
K= —rl (2.72)
P
pB
y = roﬁ. (2.73)

The coordinates x” and i’ are the apparent perpendicular distances of the image as
seen from the axis of symmetry and from its projection on the equatorial plane,
respectively.

In null geodesics, the photon’s motion is significantly expressed in terms of two

independent impact parameters [11]

(2.74)

T &M e

These parameters contains conserved quantities and can be explicitly expressed

using location of the circular photon orbits [134].
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Chapter 3

Geodesics of a Rotating Black Hole in
Asymptotically Safe Gravity Theory

In this chapter we investigate the consequences of running gravitational coupling
on the properties of a rotating BH, previously discussed in section (2.2.1). In
this approach, the involvement of a new parameter ¢ in this solution makes it
different from Schwarzschild BH. Initially, the Killing horizon, event horizon and
singularity of the computed metric is discussed. It is noticed that the ergosphere
is increased as ¢ increases. Considering the BH solution in equatorial plane, the
geodesics of particles, both null and time like cases, are explored. The effective
potential is computed and graphically analyzed for different values of parameter
&. The energy extraction from BH is investigated via Penrose process. For the
same values of spin parameter, the numerical results suggest that the efficiency of
Penrose process is greater in ASG than in KBH. At the end, a brief discussion on

Lense-Thirring frequency is also done.

The outline of this chapter is established as follows. In section I, a BH solution

in IR regime with ASG theory is constructed, following with the comments on
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event horizon and singularity of the computed rotating metric. In section II,
equatorial null and time-like geodesics of this BH are taken into account along
with the discussion on effective potential. Section III is on the study of Penrose

process. Section VI gives a thorough description on Lense-Thirring effect.

3.1 Kerr Metric in the Infra-red limit of Asymptoti-

cally Safe Gravity Theory

Considering the running Newton parameter (2.45) in metric (2.46), we reach to the

form of improved Kerr metric solution in ASG in the infra-red limit. The metric is

thus given by
2Mr & 4aMr sin? 6 & )y
2 . _(q_eMre 6 o XMrsm-v/. 6 i P 2
as? = —(1- =5 r§>>dt 5 (1— % )dtdp + Sdr* + =0
) 2a°Mr . ¢
291,20 2 2 _ S5 2
+ sin 0{1’ + a4+ > sin 9(1 r2>}d¢ , (3.1)

where A = 12 — 2Mr + % + a?. This metric reduces to its static and spherically
symmetric version when a — 0. For reader’s better understanding and to provide
stronger grounds for the results computed in rest of the sections, a detail derivation
of metric (3.I), using the technique in [89], is presented in appendix (A). In next

sections we are going to take into account some other characteristic behaviours of

metric (3.1).

3.1.1 Event and Killing Horizons

Modifications of the Kerr metric, that came as a result of the generalization of
Lagrangian in the framework of ASG, also manifest in the properties of the BH

horizons. In the Boyer-Lindquist coordinates the event horizon, ry, is given by
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the condition that at r = r hypersurface is everywhere null, or g'" = 0. For the
standard GR case it follows that the Kerr BH will have two solutions as long as
M > a, while the case M < a leads to existence of a naked singularity. This is
however changed when one considers the modifications coming from the spatial
dependence of gravitational coupling. Now, the position of horizons is determined
by the cubic equation

3 —2Mr? + a’r + 2M¢E = 0. (3.2)

Although the horizon equation now has three solutions, only two of them can
be positive - so there are no new horizons in this case. When compared to the
horizons in the standard GR it can be checked that Eq. will tend to lead to
smaller separation between the inner and outer horizon. Moreover, the structure
of BH, described by its horizons, will now be changed and will depend on the

value of ¢ - determining if the horizons exist.

For a general polynomial of order three, the number and type of roots is de-
termined by its discriminant, D, so that for D > 0 there exist three real solutions,
in the D = 0 case the solutions are real and two of them are identical, while
for D < 0 one solution is real and two remaining ones are complex conjugated.
The existence of horizons, which should of course be real and positive, is then

determined by & for which D = 0. It follows that &. is given by

c 27 M2

. — (9M2a2 —8M*) + \/ M2 (4M2 — 342)°

. (3.3)
We note that ¢, will be physically viable (real valued) as long as the standard GR
condition M > a is satisfied. Thus, for & > ¢ there will be no horizons, and this
case leads to a naked singularity. For & = &, there will be only one horizon (two

identical positive roots), but this case is unstable since addition of some small
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amount of matter will violate this condition. Finally, for & < & the Kerr BH will
have one inner and one outer horizon. Since ¢ is given in general by theoreti-
cal consideration of asymptotic correction to the GR, this discussion constraints

possible space of parameters for Kerr BH that leads to physically realistic solutions.

The Killing horizon, being defined as the set of points where norm of the Killing
vector becomes null, K¥K;, = 0, in the case of running gravitational coupling is

given by the solution of the following cubic equation
3 — 2Mr?* + a? cos?(8)r + 2ME = 0. (3.4)

The discussion for event horizons structure depending on parameter ¢ given above

can also be applied to the study of Killing horizons, with the replacement

. — (9M2a2cos? 6 — 8M*) + \/ M2 (4M2 — 342 cos? )’
E = e . (3.5)

The ergosphere, being the region between the outer event horizon and Killing
horizon, is a region of particular interest since it is related to potentially observable
processes related to the Kerr BH, such as the extraction of energy via the Penrose
process. It is therefore of special interest to investigate what are the effects of the IR
gravity modifications on the ergosphere surface. It follows that the IR asymptotic
safe modification typically increases the ergosphere region when compared to
the one in the standard GR, as we show in Figure (3.143.3). It can be seen that
the ergosphere surface tends to increase with the increase of parameter ¢. This in
principle means that the region from where it is possible to extract energy from
BH by axial accretion of particles, via Penrose process, is bigger then in the GR for
the equal parameters characterizing the BH. However, the practical significance of

this result is limited by the fact that ¢ needs to be a small parameter.
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Figure 3.1: Difference between the Killing horizon and outer event horizon, r’$,
in the IR limit of quantum corrected gravitational coupling, for the BH defined by

a=09and M = 1.

Figure 3.2: Difference between r“$ in the IR limit of quantum corrected gravita-
tional coupling and GR which we label as Ar’3. The BH is defined by 2 = 0.9 and
M =1.
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3.1.2 Curvature Singularity

An interesting characteristic of a BH is its singularity, which can be defined mathe-
matically when Kretschmann scalar K tends to infinity. For metric given by Eq.

(3.1) the Kretschmann scalar is

B MZZ(r, 0,a, 5)

K
8(re)

(3.6)

where

Z = 384r'2 — 2560r10F — a8& + 5888r8F2 + 4a® (—1440r10 + 4864r8F + a®F% — 1632r652) cos? @
~ 24t (—2880r8 + 1280758 + 3a4& — 64r4§2> cost 0 + 4a° <—96r6 T a2y 96r252> cos’ 6
+ 12748 cos® 6 + aB& sin® 6.

We observe poles at ¥ = 0 and & = 7 + a? cos? § = 0 from where we interpret that

the singularity exists at these points. This further constitutes a ring singularity

analogous to that of Kerr BH [11].

3.2 Geodesic Equations in Equatorial Plane

This section is on equatorial geodesics of rotating BH solution in ASG, including
the effects of corrected gravitational coupling. The Lagrangian, for this metric, in

the equatorial plane (6 = %,60 = 0) is written as [11]

- oM (0 EN o daM (L EN
e - 2 g)]r o)
2 2 z
+ %f2+ lr2+a2+w< —%)} ¢ 3.7)
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The generalized momenta are given by

o Il L
[ e IS
pr:%h (3.10)

where dots over r, t and ¢ denote derivatives with respect to affine parameter 7. It
can be easily seen that Lagrangian does not depend on t and ¢, therefore p; and
py are conserved quantities.

The Hamiltonian is given by
H = pit + ppd + pri — L. (3.11)

It takes the form

w1 £))- 2 (8] oty
r T r
+ { ZHM( —é)t+<r +a +22M( —5) )} 4
r 72 r 2 K A
2
WH = —Ef—i—Lcj)—i—%if:&:constant, (3.13)

where Hamiltonian is constant as it is f independent and § = —1,0, 1 gives timelike,

null and spacelike geodesics respectively. Solving Eq. and Eq. yield:

. 1 2a°M & 2aM &

.1 [2aM & 2M &

b= 3 ( Sev (-2 (1-5)) 1] (3.15)
On substituting Eq. (3.14) and Eq. (3.15) in Eq. (3.13), we get the radial equation of

motion
) .
% = A5+ PE2 + TM ( - r%) (aE — L) + (B2 — 17). (3.16)
In the limit ¢ — 0, Eq. (3.16) takes the form of radial equation in the Kerr BH case.
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3.2.1 Null Geodesics

In equatorial plane, the null geodesics are rendered when ¢ gets zero in Eq. (3.16),

which then becomes

22 = rPE2 + ¥ (1 B r% ) (aE — L) + (B2~ 17). (3.17)

For convenience, introduce an impact parameter D = L/E in Eq. (3.17). Through

this parameter the angular momentum can be expressed in terms of energy. Two

cases may arise here: either D =a or D # a.

CASE (I); when D=a

As a particular case, consider D = a or L = aE. As a result of which Eq. (3.14), Eq.
(3.15) and Eq. (3.17) imply

. r2 + a?
= E 1
t EA , (3.18)
. a
_ 1
¢ A (3.19)
P = +E. (3.20)

Notice here that when A = 0 (at horizon), both f and ¢ go to infinity. This
implies that t and ¢ operate as ‘bad coordinates” in the vicinity of horizon, but this
singularity vanishes in Eq. (3.20), the expression for 7. Using above equations, the

differentials of t and ¢, with respect to r, are computed as

dt (r? +a?)

éi;? S e (3.21)
a

£ - =5 (3.22)

where 4 and — signs in Eq.s (3.20{3.22) stand respectively for the trajectory of
outgoing and ingoing photon. The trajectory for outgoing photon is numerically

solved and plotted in Figure (3.4) and Figure (3.5) where the initial condition

51



r —

18

16

141

12

O S S S S S S H
0.2 0.4 0.6 0.8 10

Figure 3.4: The left panel represents the outgoing trajectory of photons with respect
to time ¢. The solid line represents when ¢ = 0.09 and dashed line is when & = 0
i.e Kerr case. The values of parameters are a = 0.1 and M = 0.1 with the initial
condition 7(0) = 10M. On the right panel the phase portret is depicted for the
same parameters, where again the solid line represents the case when & = 0.09
and dashed line is when ¢ = 0. The fixed points are getting closer in the ASG, as

opposed to the GR case where the fixed points are at maximum distance.

r(0) = 10M is imposed. It can be seen that there are no high deviation from the
GR counterpart in the trajectory 7(t) as expected from small ¢, but from the phase
portrait, when dr/dt is considered as a function of 7, the fixed points are getting
closer to each other by increasing ¢. Same are the results for the photon trajectory
with respect to angle ¢. To get a qualitative description of equations and
one can also easily analyze them in the phase space for different values of
¢. It can be seen that there exists a bifurcation point for which the two real fixed
points vanish, and for this parameters the solution leads to a naked singularity,

the phase spaces are plotted in Figure (3.6).
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Figure 3.5: The left panel represents the outgoing trajectory of photons with respect
to angle ¢. The solid line represents when & = 0.09 and dashed line is when ¢ = 0
i.e Kerr case for the values of parameters 2 = 0.1 and M = 0.1 with the initial
condition 7(0) = 10M. On the right panel the phase portrait is depicted for the
same parameters, where again the solid line represents the case when ¢ = 0.09 and
dashed line is the GR case ¢ = 0. The fixed points are again getting closer in the

ASG, in the contrast to the GR case where the distance between them is maximal.
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Figure 3.6: Phase space portrait, dr/dt on the left panel and dr/d¢ on the right,
for different values of &, but for fixed parameters M = 1 and a = 0.9. Clearly, the
critical value for ¢ = & represent the bifurcation point for which the fixed points

do not exist anymore.
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CASE(I); when D # a

As a general case consider D # a, which consequently gives circular orbit r = r. of
photon. Introduce an impact parameter D, = L./ E.. The radial equation (3.17))

along with its derivative takes the following form

2M &
2 “ove - - 2 2_ 2\
2t (1 rg) (a— Do)+ (a*—D?) =0, (3.23)
M 3¢ 2
- (1 _ E) (a—D.)? =0. (3.24)
Combining above two equations implies the following result
r2 —3Mr. + 5]:45 + 24 \/ Mr. (1 — 3—5) =0. (3.25)
c Cc

The real positive solution of the above equation will give circular photon orbit.

For 5 = 0, it matches with circular photon orbit for Kerr BH.

3.2.2 Time-like Geodesics

To investigate time-like geodesics, take 6 = —1. Notice that equations for ¢ and ¢
remain unchanged, while Eq. (3.16) becomes
) .
P2 = A+ 7PE2 ¢ %4 (1 . r%) (aE —L)* + <a2E2 - L2> , (3.26)
where E is now described as the energy per unit mass of the particle moving in a
trajectory. Two cases arise here, either L = aE, a special case, or L # aE, a general

case which can lead us to circular and associated orbits.

Special Case: when L = aE

Consider L = aE, Eq. (3.20) gives
232 = 12 <E2 — 1) +2Mr (1 — r%) —a?, (3.27)
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Figure 3.7: The left panel represents the trajectory of a particle r(t), where the blue
line represents the ASG case with & = 0.09 and the red line represents the GR case
¢ = 0i.e Kerr case. The values of parameters area = 0.1, M = 0.1 and E = 1.1
with the initial condition 7(0) = 10M. On the right panel the phase portrait is
depicted for the same parameters, where the blue line is the phase diagram for
& = 0.09 and the red line is the GR case where ¢ = 0, the solid line represents the
positive square root and dashed line the negative for each case. The fixed point is

increased in the ASG (7. =~ 0.285) from the GR case (7, ~ 0.05).

while f and ¢ are the same as for null geodesics. Integrate Eq. (3.27)

rdr

T—/ .
\/ 21) +2Mr(1—§;)—a2

(3.28)

The above equation is somewhat hideous to solve analytically. Its numerical
solution is plotted in Figure (3.7). Again, as there are no high deviations from the
GR case it could be more interesting to analyze the phase portrait for each case. It
can be seen that the fixed point is higher in the ASG from the GR counterpart, also
the phase space shows higher deviations near the fixed point but asymptotically
as r — oo the phase spaces coincide in the two cases. The phase space diagram is

also plotted in Figure but on the right panel.
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General Case: when L # aE

To investigate the general case, again take into account the radial Eq. (3.26). By

introducing the reciprocal radius u = 1/7, the equation takes the form

F(u) =u*? = E*42Mu? (1 — §u2> (aE — L)* + (azE2 — L2> u?
- (1 — 2Mu (1 . Euz) n a2u2> ) (3.29)

where u is the independent variable.
The task now is to compute the values of E and L for the circular orbit at the
reciprocal radius u = 1/r. Circular orbits exist when F(u) = 0 and F'(u) = 0

Also, assume x = L — aE in Eq. (3.29), to get

E? — (1 — 2Mu <1 — §u2> + a2u2> + 2Mu® (1 — §u2> X% — (xz + 2xaE> u? = (8.30)

M (1 — 3§u2> — a*u + 3Mu’x? (1 — §§u2> - (xz + 2xaE> u=0. (331
Solve Eq. (3.30) and Eq. (3.31), to reach to the following form

E2 = MuBx> (1 - 35u2) +1— Mu (1 + 5u2> , (3.32)

5. -
2xaEu = 3Mu?x? (1 = §§u2> + M (1 . 3§u2> — x%u — azu.qz (3.33)

Using Eq. (3.32) and Eq. (3.33), E is eradicated and the quadratic equation in x is

obtained as
2
o2 [3Mu (1 . géuz - 1) — 4MaPiP (1 . 35u2>]
— 2x%u [<3Mu(1 - g{fuz) - 1) <a2u — M(1 - 3&u?) 4 2a%u(1 — Mu(1 + ('fuZ))ﬂ

2
+ |- M- 3§u2)] =0. (3.34)
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The discriminant of the above equation is given by
D = 162> Mu®A,?, (3.35)

where A, = 1+ a?u? — 2Mu (1 — ¢u?). The calculations can be eased by consider-

ing
5: 9 2,3 z, 2
1-3Mu(1- géu — 4Ma“u <1 —3Cu > =FiF_,

where

Fi=1-3Mu (1 — géuz) + 20/ Mi® (1 - 38u2) .

The solution of Eq. (3.34) is then simply computed as

AyFy—FLF- N —F
2,2 u + u ¥
— = 3.36
o FF Fr (3.36)
where
—)
Ay —Fr=u [aﬁi \/M(1—3§u2)} :
Finally, we get
a Vi £ /M (1-3Eu2)
X — — . (3.37)
uf:;
Put Eq. (3.37) in Eq. (3.31), to get energy of the circular orbit
1 5 — |
E = 1—2Mu (1 - &u? Mu (1—-3¢u?) |, 3.38
\/ﬁ{ u( {;'u):Fau\/ u ( éu)] (3.38)

where upper and lower signs are respectively interpreted as prograde and retro-

grade orbits. Angular momentum associated to the circular orbit is thus given

by

F /M (1-382) . _, Mu
L= N 1+aui2au<1—§u> W] (3.39)
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Figure 3.8: Angular velocity of prograde (left panel) and retrograde (right panel)
motion of particles orbiting in the equatorial plane of rotating BH in ASG, for the
values of the parameters as: M=1, & = 0.07 (Red), 0.08 (Orange), 0.09 (Blue) and
a = 0.4. Black (DotDashed) line shows ¢ = 0 i.e Kerr case.

The angular velocity is computed using Eq. (3.14) and Eq. (3.15)

RS (R L))
— 7 <r2+a2+@(1_§>>g_@<1_%)[4,

which, by using reciprocal radius, can be reduce to the form

[L —2Mux (1 — ¢u?)] u?
(14 a2u?) E — 2aMu® (1 — u?)’

This can be simplified to the form

Mu3 (1 — £ )
o :F\/ ud (1 —3¢u?)
1:Fau\/Mu(1—3§u2)

1

Thus the angular velocity in terms of r can be written, by using r = U

2 Fa M(r—

as

<&,

-

58



The graphical representation of angular velocity of particles is shown in Figure
(3-8). The value of ), for corotating (prograde) motion, first decreases but it
increases with the increase in ¢ and . But for counter rotating (retrograde) motion,
the particle’s angular velocity declines when ¢ is increased.

The time period is given by

T=""=2n . (3.40)

3.2.3 Effective Potential

To check the stability (or instability) of circular orbit of particles around the rotating
BH in ASG in IR regime, the effective potential is determined. Thus the equation
governing the effective potential of circular orbits, both for photons and time-like
particles, is given by [105]

E2—1 2
> :EJFVeff,

where effective potential is represented by Veg. The extreme value r = 7, of the

effective potential is the solution of the equation

av,
= o =0

There must be present a minimum at the second derivative of effective potential

dzveff

ie —3

> 0 which gives stable circular orbits along with the condition that at
circular orbit » = 7, the particles initial velocity must vanish i.e # = 0. Following

is the discussion on the effective potential of null and time-like geodesics.

For Null Geodesics

For L = aE, the null geodesics is governed by radial equation # = £E, so the case

sufficient to consider here is when L # aE. In this case, the effective potential is
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M=1, a=0.9, E=1

Figure 3.9: Plots showing behaviour of effective potential, for null geodesics,

with respect to . Here co-rotating (counter-rotating) particles are shown by solid

(dot-dashed) lines.

thus given by

Vett = %[—ZMO — r%) <aE — L>2+ <L2 —azEz)r—rﬂ.

This effective potential is graphically presented in Figure (3.9). As one can easily
see the presence of minimum values in these plots which corresponds to the
existence of stable points. Also note that the behavior of V¢ for both co-rotating
and counter-rotating particles is quite different from the Kerr case. Namely, the
effective potential for Kerr BH approaches negative infinity when r — 0, while
the effective potential for the rotating BH with running gravitational coupling
approaches positive infinity when r — 0. This comes as a result of sign change
for the leading order in the potential for small r, which comes as a consequence of
introducing the asymptotic correction parameter ¢. However, it should be stressed
that at very small distances IR will no longer be valid, and the proper description

should now be given using the UV limit of ASG.
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M=1, a=0.8, L=aE

Figure 3.10: Behaviour of effective potential for time-like geodesics, with respect

to r, when L = aE. Black line shows & = 0 i.e Kerr case.

For Time-like Geodesics

By the use of Eq. (3.26)), the effective potential for the time-like geodesics, both

when L = aE and L # aE, is computed respectively as

- 1-4)

ff =22 r2

and

PR VPR 4 VP el il B VA

r3 r? 2r2 r
For time like geodesics, when L = aE, the affect of & on effective potential is shown
in Figure (3.10). These plots show existence of stable points for different values
of £. Figure shows variation of ¢ and angular momentum L in effective
potential. Here it is noted that for co-rotating motion of the particle the depth of
the potential well increases with increase in L while for counter rotating motion, it
decreases for increase in L. These graphs also show the existence of stable points.
As in the case of null geodesics, discussed previously, Kerr and the IR asymptotic
safe solution lead to different qualitative features of the effective potential when

r — 0.
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M=1, a=0.5, E=1 M=1, a=0.8, E=1

Figure 3.11: Behaviour of effective potential for time-like geodesics, with respect
to r, when L # aE. Solid lines show counter-rotating while dot-dashed lines show
co-rotating particles. Black (solid /dot-dashed) line shows & = 0 i.e Kerr case.
In left panel L is kept fixed (L = —2 and 2 for counter-rotating and co-rotating

particles) while in right panel ¢ = 0.09 for different values of L
3.3 Penrose Process

Energy is a conserved quantity on the spacetime of stationary rotating BH, due to
the existence of associated Killing vector, K, = ds, so that E = —K*u*, where ut is
a four-velocity defined on some geodesic. At the asymptotic infinity both K¥ and
ut are timelike, so that energy is always positive. However, Killing vector becomes
null at the Killing horizon, and spacelike inside the region known as ergosphere
— which represents the space between the outer event horizon and the Killing
horizon of a BH. It is therefore possible that energy becomes negative quantity in
the ergosphere of a stationary rotating BH. This fact was used by Penrose, who
proposed a mechanism of extraction of energy from Kerr BH. Starting from a
particle falling into a BH, which is defined by the positive energy, one can consider
the case where it decays in the ergosphere, into one particle carrying positive
energy, and the other particle carrying negative energy. Since the total energy

needs to be conserved, if we assume that the negative energy particle crosses the
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event horizon and the positive energy particle leaves the ergosphere reaching the
observer, its energy will be higher than the energy of the initial particle (since it is

the difference of the initial energy and the negative energy of the second particle).

We now analyze the Penrose process, taking into account the corrections of
ASG. Let us first note, that the modifications coming from the quantum effects
leading to a r-dependent gravitational coupling were previously considered in the
context of the Penrose process in [90], where the running coupling of the following

form was considered
. G()V2
r2 4+ wGy’

G(r)

where Gy is the classical Newton constant, and w a positive constant. In [90]

(3.41)

authors studied the functional dependencies of tangential and dragging velocities
in the Penrose process and concluded that there exists a lowest possible mass for
the Penrose mechanism when such running gravitational coupling is considered.
In our analysis this is related to the mass corresponding to & which enters in
equation (3.3). In this work we will perform a similar analysis of the Penrose
process in the context of varying gravitational coupling, and further extend it by
investigating the efficiency of Penrose process in this setting and comparing it
with the classical limit.

As already discussed, utilizing the fact that energy in the ergoregion can be
negative, it is under suitable conditions possible to extract energy from the rotating
BH. In this discussion we concentrate on the scenario where we have a massive
particle entering the ergosphere, and which moves along a timelike geodesic,
carrying positive energy. This particle then decays into two particles which are
massless, one carrying negative energy, and the second one with positive energy.
The negative energy particle then falls into event horizon, while the particle with

a positive energy eventually leaves the ergosphere and reaches the observer. If
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this decay happened at the turning point of the geodesic, where 7 = 0, then from

the radial equation for equatorial geodesic it follows that

E= ! : [2aM<1—%) Lt
r(r2 4 a?) + 2a2M (1 — r%) r

\/rZALZ — (r (r2 + a?) 4+ 2a°M ( — %)) 57‘ , (3.42)
and alternatively angular momentum can be expressed as
L= ! = [—2aM(1—§>i—
r—2M (1 - %) r2
Jarms (1220 (14 Yoz | 643

where the following identity was used

[rz (rz + a2> + 24> Mr (1 — %)} (1 - ¥ ( — %)) = 12A — 4a* M? <1 — %)2(3.44)

Now we can determine the condition under which energy and angular momentum

will be negative. In order that E < 0, L < 0 it follows

~. 2 ~
40> M? (1 — 5) L>> A [r2L2 — (r (r2 + a2> + 2a°M (1 — r%)) (Sr] (3.45)

r2

Using eq. (3.44) this can be written as

{r (P +a2) +20Mr (1_%)} [(“@( —%))LZ—A(Sr} < 0. (3.46)

It follows that E < 0 <= L < 0 requires the condition

2\ AP
r<2M (1 - r%) - —Lzr , (347)

so we confirm that this can happen only in the ergosphere.

We now come back to discussion of the decay of one initial massive particle to
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two massless particles, carrying the energy of opposite signs. We take that initial

energy is E(?) = 1, and energy of two particles is E(1) and E(?) respectively. Let

then
g M (1-%)+ \/ZMr (1-%)a o s
B F—2M (1 _ %) - '
Tl ) e oY (.49
r—2M (1 — %)
v M) TV e, (350)

r—2M (1 - %)
p
Here a’s are some arbitrary functions relating angular momentum and energy.

According to conservation of energy and momentum
EM L @) = g0 —1q (3.51)
and
LW 412 = fJWEQ) 4 2 ER) = 1(0) = 4(0), (3.52)

Solving these equations we can obtain the energies of two created particles as

£ %[1 _ @( _ %)] (3.53)
E@ = %[1 + g( - r%)] (3.54)

Then, if E® reaches the observer outside the BH, and E(!) crosses the event
horizon, the gain in energy with respect to the original particle, as measured by

the observer is

AE = %[ 2 ——~) —1] = £, (3.55)
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Figure 3.12: Ratio between the efficiency of Penrose process in the IR limit of
quantum corrected gravitational coupling and general relativity, as a function of a

and &, with M = 1.

In order to study the maximal possible efficiency of Penrose process one should
consider the case with respect to which any reasonable physical realization will
lead to smaller values. The gain in energy will be bigger if the radial distance
is smaller, so we consider the extreme case of the event horizon r = ry. For
simplicity, we can use for example BH defined by ry = M = 1. For such BH
from the horizon equation it follows that & = %(1 — a?). We get that the maximal

efficiency of Penrose process in this case is then given by
Eg = E® +AE = 1[1 +1/2(1—=¢&)] < 1.207, (3.56)

max EO  pux 2

so we see that for a given BH with the same fixed parameters ry and M in
general relativity and ASG, the efficiency of Penrose process will be smaller in
ASG. However, as noted earlier, in ASG the outer event horizon tends to be located
at smaller r than in the standard general relativity, for all other parameters staying
the same. This fact can thus compensate the direct loss coming from the corrective
term in Eq. (3.55), and can even increase the efficiency above the one characteristic
for Kerr BH in general relativity. We should stress that, from the astrophysical
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Figure 3.13: Efficiency of Penrose process in the IR limit of quantum corrected

gravitational coupling as a function of a and &, with M = 1.

perspective, a and M should be considered as real independent quantities defining
the BH — actually given as initial conditions during the collapse of matter leading
to BH formation — and that position of event horizon should be considered as
a dependent quantity. Therefore, it is more proper to compare rotating BHs in
ASG and general relativity for the same values of M and a, rather than ry. Taking
M = 1 for simplicity, we show that — in accord with the previous reasoning — for
the same values of a the efficiency of Penrose process will be greater in ASG. This
is demonstrated in Figure where we show the ratio of efficiency of Penrose
process in asymptotically safe gravity and general relativity as a function of a and
¢. However, it can be seen in Figure — where we plot the efficiency of Penrose
process in ASG, that the maximal possible efficiency still basically stays confined

within the region estimated in Eq. (3.56).
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3.4 Lense-Thirring Frequency

The forms of electromagnetic equations and gravitational equations are very
similar, so that the gravito-electromagnetism [106] summarizes the weak field
gravitational equations as the “Maxwell Equations". As we all know, a rotating
sphere with electric charge can produce magnetic field, so it is reasonable to
believe that “magnetic effect”" of gravitational field can be found in spacetime
with rotating massive sphere. In 1918, Lense and Thirring theoretically proposed
Lense-Thirring effect to describe the “magnetic effect" in gravitational field [7].
According to [107-110], the precession frequency vector of rotating BH is given by

Qrr = %% {801',]' (al - %BO> - %go@jal] . (3:57)

From our metric, above result is rewritten as

1 80¢ ) ( 80 ) }
Qir = r— ——900r | 99 — - = or 3.58
N Kgo¢, 2005007 ) 90 = { 80g0 =0 8000 (3.58)

Qir = 0989+Qrar,
2
Ofr = g () + goo (Q") . (3.59)

While in polar coordinates (where 7 is the unit vector of direction r and 8 is angular

coordinate), )t is given by
— A
QLr = /8 Q'F + /30 Q0. (3.60)

Therefore, for our BH spacetime

of — 2aM (r* — &) (a*r — 2Mr? + 13 + 2M¢) cos(6)
r (rz + a2 cos (0)? (15— omp + 2ME + a?r cos (9)2> ,
aM {rz (2 — 3&) sin (8) — a? (r* + &) cos (8)* sin (9)]
o = . 36

r (,,2 + a2 cos (9)2>2 (”3 — 2Mr? +2M(G + a?r cos (9)2>
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Figure 3.14: QgrongLT and Qe as functions of r fora = 1/5,1/2,1, where

{=05M=10=0

Therefore the magnitude of ()r is given by

2 1

\/41'2 (12— 52)2 A cos () + <r4 —3¢r2 —a? (r2 +¢) cos (9)2> sin (0)?

2 (& - a2sin (9)) /2

Qrr = QStrongLT =]

According to [107]], in the weak field limit (which means r > M), we expand
above formula by M, so Q)rr in weak field is:
] N2 . . -
OyeaklT = 5572 {rz cos (6)2 {4 <r3 — r§> + a? <3r4 — 8&r* + 7§2> + a® <r4 — 3§2> cos (20)

+-a* <r2 + 5)2 cos (6)*sin (0)* + r* {(rz — 35)2 + 4a¢ cos (9)21 sin ((9)2}1/2 +0 (Mz)

We show the Q1 = Qp7(r) with various parameters in Figure , Figure
and Figure (3.16).

The Figure shows that Lense-Thirring effect is significantly increased
as a is increased because it is a rotating effect. On the other hand, according to
the Figure , it is interesting that the effect of OgrongLT is more outstanding at
equator 6 = 71/2 than the pole 6 = 0, but the effect of ()yyeqir T is more outstanding
at the pole § = 0 than equator § = 77/2. Finally, from Figure (3.16), we find that

Lense-Thirring effect in our rotating BH spacetime is weaker than Kerr spacetime
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Figure 3.16: QgyrongLr and Oy earrr as functions of r for &=0,1/2,1, wherea = 0.7,

M=1,60=0

70



as 5 increases, so it means that it is more difficult to measure this effect in our
metric, but we can compare the results of experiment to determine the value of ¢,

and rotating spacetime won't be Kerr spacetime if & # 0.
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Chapter 4

Shadow of Rotating Black Holes in
Perfect Fluid Dark Matter with a

Cosmological Constant

The presence of dark matter around a BH remarkably affects its spacetime. In this
chapter we consider the effects of dark matter on the shadow of a new solution
to the EFEs that describes a rotating BH in the background of PFDM, along with
its extension to nonzero cosmological constant A. Working in Boyer-Lindquist
coordinates, we consider the effects of the PFDM parameter « on the shadow cast
by a BH with respect to an observer at position (7,, 6,).

This chapter is separated in three main sections. In first section the BH" metric
under consideration has been briefly reviewed. In second section, null geodesics
have been computed and photon orbits have been discussed. The shadow of the

BH in PFDM are investigated in detail in third section.
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4.1 Black Holes in Perfect Fluid Dark Matter Back-

ground

Amongst the many dark matter models that have been suggested is the perfect
fluid dark matter model, which was initially proposed by Kiselev [112], and
entailed construction of a new class of spherically symmetric BH metrics in the
presence of PFDM [113]. Only recently has this class been generalized to include

rotation [99], providing a PFDM version of the Kerr-AdS solution. The metric is

given by
A, 2 Ag sin” @ 2
ds? = _”22 <dt — asin 9d¢> o (adt —(r +az)d¢>
X0
+ A_rd + Aedg (4.1)
where

A
A = 12 —2Mr+a®— =#? (rz-l—az) +ocr1nL

A 5
Ny = 1+ 311 cos® 6 and E:1+§a, Y = 1?4 a’cos’ 0 (4.2)

with the mass parameter of the BH being M. The parameter indicating the presence
of perfect fluid dark matter is «. This solution reduces to a rotating BH in a PFDM
background when A = 0, and to the Kerr-AdS solution for « = 0. The PDFM
stress-energy tensor in the standard orthogonal basis of the Kerr-AdS metric can

be written in diagonal form [p, p;, ps, py|, Where

ar ar 2
For A # 0, the solution can either be a Kerr-Anti-de Sitter (A < 0) or Kerr-de

Sitter (A > 0) metric. The horizons of the BH are the solutions of A, = 0 i.e.

%r“ + (/3\ 1) 2 +2Mr — a® + arlog (ﬁ) =0. (4.4)
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In general there are inner and outer horizons for Kerr and Kerr anti-de Sitter BHs,
with an additional cosmological horizon for Kerr-de Sitter BHs. Imposing the
requirement that PDFM does not change the number of horizons as compared to
its Kerr counterpart, the parameter « is constrained such that [99]

(=7.18M,0)U (0,2M) if A =0,
x € (4.5)

(“min, O) U (0, amax) lf A i O

where ay,4¢ and a,,;, respectively satisfy

2M
Cuin + tin l0g(———) = 2M + H(A) (4.6)
min
M
max
and
32 2
H(A) = —sgn(A) (3—AM3 - §Aa2) (4.7)

and weseeifa =0that H > 0for A < 0Oand H < 0for A > 0.

4.2 Photon Region

For the spacetime (4.1), geodesic motion is governed by the Hamilton Jacobi
equation [11]:

9 1 ,,0S S

a9t~ 2% axion (4.8)

where T is an affine parameter, x* represents the four-vector (¢,7,0,¢) and S is
Hamilton’s principal function, which can be made separable by introducing an

ansatz such that
1
S= E(ST — Et+ Lo+ S,(r) + Sp(6),

74



where energy E and angular momentum L are constants of motion related to the
associated Killing vectors d/dt and d/9d¢. For timelike geodesics § = 1 and for
null geodesics § = 0. Thus by solving Eq. the resulting equations describing
the propagation of a particle are

o ((**+a?)E—aL) (r*+a®) aE?(aEsin®6 — L)

S = B2 A - A , (49)
$22 = g2 (r +a?) E —aL) — A5 —CA, = R(1), (4.10)
¥202 — Hz (aE sin2 6 — L> —a%5c0s2 0+ CAg = ©(0),  (4.11)

sin“ 0
$p — aZ? ((r* +a*)E—al) E?(aE si%’lzze —L) @12)
Ay Ay sin© 0

for both null and time-like geodesics. In the above equations, besides the two
constants of motion E and L, we also have the Carter constant C [114]. As we are
interested in BH’s shadows, henceforth we consider only null geodesics, for which
5 = 0. To reduce the number of parameters we write ¢ = L/E and 57 = C/E?, and

rescale R/E?> — R and ®/E? — ©. Then Eq. (4.10) and (4.11) respectively yield

2
R = =2 ((r2+a2) —ag) — A (4.13)
and
B2 5 2
© = nhy— (asm 9—5) . (4.14)

The photon region is defined as the region of space where gravity is strong
enough that photons are forced to travel in orbits. Circular photon orbits only
exist in the equatorial plane for rotating Kerr BHs, and there are two such types,
retrograde and prograde. To this end, we note that there are other solutions
such as the rotating dyonic BHs in Kaluza-Klein and Einstein-Maxwell-dilaton
theory, for which circular photon orbits do not exist on the equatorial plane. Note
that Schwarzschild is another counter-example, albeit static, that contains non-

equatorial circular photon orbits due to spherical symmetry. To determine the
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photon region we require that the radial coordinate remains constant such that

r=0="%or

R()=0 and RO _g (4.15)
dr
along with the condition that
@) >0 for 6€]|0,mn]. (4.16)

By solving (4.15) we obtain the value of ¢ and 7 to be

A
al(r) = r*+a*— 4rA—f, (4.17)

r

16r252A,
r) = — = (4.18)
" Ty
By inserting Eqs (4.17) and (4.18) in condition (4.16) we find

(40, — £AL)? < 16a%252A, Mg sin? 6 (4.19)

that describes the photon region. For A = a = 0, eq. (4.19) yields in the equatorial

plane the Kerr result r = 2m (1 + cos (% cos™! (j:—‘) ) ) Photon orbits can be

|a
m
d?R(rs)
dr?

which also defines the boundary of the BH shadow. Thus the positive solution of

R// r A SA//
( S) = 1’3 + 27"SAVSA”SI o 27"? (gl )ré
s

stable or unstable. The unstable photon orbit at » = s exists when > 0,

(4.20)

determines the contour of the shadow. Here we have restored the factor of E and /

denotes the derivative with respect to r.

4.3 Shadows of the PFDM Black Hole

As noted above, in the presence of a cosmological constant the position of the

observer needs to be fixed, employing the technique recently introduced in [68].
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So we fix the observer in Boyer-Lindquist coordinates (7o, 6p), where r is the
radial coordinate and 6 is angular coordinate of observer. We also assume that
the observer is in domain of outer communication i.e. A, > 0 and we consider
the trajectories of light rays sent from position (rg, 6) to the past. We now define

orthonormal tetrads (e, e1, €2, €3) at the observer’s position (rg, 6y) such that

s () o)
ep = r°+a®) oy + ady , (4.21)
Arz (7’0,90)
epr = %89 ’ (4.22)
(70,60)

= (a i 29a> (4.23)

6 = ——— + asin” 60, , .
VApX sin 6 ¢ (r0,60)
e = % 5, , (4.24)
(7’0,90)

where e is observer’s four velocity, ey &+ e3 are tangent to the direction of princi-
pal null congruences and e3 is along the spatial direction pointing towards the
centre of the BH. Let the coordinates of the light ray are described as A(s) =
(r(s),0(s), ¢(s),t(s)), then a vector tangent to A(s) is given by

A = 79, + 09 + 9y + 104 (4.25)

This tangent vector can also be described in terms of orthonormal tetrads and

celestial coordinates p and ¢ as
A= B (—egp + sin p cos oeq 4 sin p sin e, + cos pes) , (4.26)

where the scalar factor f is obtained from Eq. (4.25) and (4.26) such that

. al — E(r* + a?)
B=3(Aeo) =2 S
r (r0.60)

Our next aim is to define the celestial coordinates, p and ¢ in terms of parameters

(4.27)

¢ and 77. To do so we compare the coefficients of d, and d in Eq. (4.25) and (4.26)
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Figure 4.1: Shadows cast by a rotating BH in PFDM background for different
values of a; all quantities are in units of M. The observer is positioned at ry and

90 = 7'L’/2.
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and thus we obtain

252 |
sinp — \/1 - X . (4.28)
B (2 @) E—al) | 0
and
, VAg sin 6 ( XA, ; )
_ _ 4.29
sin o A, sin p B2 ((r2 +a?)E — aL)(P a ot ( )

Using Egs. (4.10) and (4.12), we can present the above two equations in terms of

parameter ¢ and 7 as

£\ /2@ 1) (2 +ad) - ag) + Ay

(1’0,9())
and
. VA, sinf [ a — ¢ csc? }
_ 431
sine = — A sinp |a& — (12 1 a2) ot (4.31)

The boundary of shadow of the BH can be presented graphically by projecting a
stereographic projection from the celestial sphere onto to a plane with the Cartesian

coordinates

x = —2tan (g) sin(0), (4.32)
y = —2tan <‘§> cos(0). (4.33)

Figure4.1allows us to distinguish the silhouette cast by a rotating BH in presence
of perfect fluid dark matter (a # 0) from that of Kerr BH (¢« = 0). Fora < 0
we find that the shadow of the BH gets larger and more circular as a« becomes
increasingly negative. However for & > 0 the effect on the shadow is no longer
monotonic. For small « > 0 the shadow shrinks whilst maintaining its asymmetric
shape. However once a > 0.8, the shadow begins to grow, becoming increasingly

circular and shifting leftward relative to its « = 0 Kerr counterpart.
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Our study thus indicates that presence of perfect fluid dark matter can have
considerable effects on a BH silhouette. The rotational distortion of a Kerr BH is
diminished for sufficiently large |«|, even for large spin (a = 0.84). The next effect

is that the PFDM ‘cancels out’ the rotational distortion of the shadow.

Figure 4.2/ shows the effects of cosmological constant on the shadow for dif-
ferent values of parameter a. We see that for small |A| the shadow maintains its
shape for a given «, increasing for the AdS case A < 0 and decreasing for the dS

case A > 0.
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Chapter 5

Shadow Images of a Rotating Dyonic
Black Hole with a Global Monopole
Surrounded by Perfect Fluid

Global monopoles are topological defects which may have been produced during
the phase transitions in the early universe. In fact, global monopoles are just one
type of topological defects. Other types of topological objects are expected to
exist including domain walls and cosmic strings. A metric for rotating dyonic
black hole (RDBH) with global monopole in presence of perfect fluid is computed
in this work. We then discuss its surface topology at the event horizon using
Gauss-Bonnet Theorem and also the ergoregion. We investigate the shadows of
the RDBH. Choosing certain values of parameters, such as w = —1/3,0,1/3, we
observe the effect of dark matter, dust and radiation on the silhouette of the black
hole. Our findings lead us to conclude that the presence of parameters y and «,
also deforms the shape of BH’s shadow. These results have been depicted through

graphical representation. In the end we analyze the two observables, radius R
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and distortion J;, related to BH’s shadow. Energy emission rate of RDBH with
global monopole surrounded by perfect fluid is also computed and graphically

illustrated with respect to parameters.

In Section (5.1)), we consider the the gravitational field of a static dyonic black
hole (SDBH) with a global monopole surrounded by perfect fluid. In Section
(5-2), by applying a complex coordinate transformation known as the Newman-
Janis method [127] we find the spacetimes of a RDBH with a global monopole
surrounded by perfect fluid. In Section (5.3), we consider the null geodesics using
Hamilton-Jacobi equation. Circular orbits are discussed in (5.4). In Section (5.5)
we study the impact of dark matter, dust and radiation on the shape of global
monopole shadow. The observables, radius distortion, related to shape and size of
shadow and energy emission rate of the BH has also been discussed in this same

section.

5.1 A SDBH with a Global Monopole in Perfect Fluid

The action, SEM, for Einstein Maxwell gravity along with actions SP and S re-
spectively defining presence of a global monopole and matter distribution, can be

altogether written as

§=5EM L 5Pt s (5.1)
The Einstein-Maxwell action S(EM) is given by

R 1

(EM) _ — 4 N2 v
S /\/ gdx(zK L ) (5.2)

The quantities g, R and F,, are, respectively, the determinant of the metric g,
associated to the gravitational field, the scalar invariant and the electromagnetic

tensor. Also y, v =0,1,2,3.

83



The EFE (1.T), with A = 0,G = 1,¢ = 1, now reads

1
Ryy - Egny - 87TT‘M]/. (5.3)

While the corresponding Maxwell equations are
V. F* = 0. (5.4)

Here T),, is the total stress energy tensor which we discuss later in this section.
Since we are considering a dyonic black hole, which means that it is comprise of
both electric charge Qr and magnetic charge Q,, the electromagnetic potential

has two non zero terms i.e. [126]/131]]

QE =Edt — Qurcosbdg. (5.5)

The only non-vanishing components of the electromagnetic tensor

Qk

Ftr:_Prt:r_zz PQ(p:_ (pBZQMSine' (5.6)

Now the action S(P) corresponds to the matter having a defect— a global monopole
which is a heavy object formed in the phase transition of a system composed by
a self-coupling scalar triplet field ®°, where s runs from 1 to 3. Thus the action
in presence of a matter field ®° coupled to gravity that characterizes a global

monopole [95]

/ g ( "9, 0% cps—%(qﬂ 7>2), (5.7)

where ®? = ®5®®, while A is the self-interaction term and 7 is the scale of a

gauge-symmetry breaking. The monopole can be described through the field

configuration ®° = 7h|(x|) ,in which x® = {rsin 6 cos ¢, rsin 6 sin ¢, r cos 6 }, such

that |x| = 72, and h(r) is a function of radial coordinate 7.

84



The field equations for the scalar field ®° reduces to a single equation for h(r)
given as

fomn + |24 ) | 1) ) ayngr) () 1) =o.
(5.8)

With these equations in mind, and without loss of generality we can choose a

spherically symmetric metric written as follows

dr?
ds? = —f(r)df> + ]% + 12d6% + 2 sin? 0d g?. (5.9)
In our case the total energy momentum tensor reads
T = T + T8 + T (5.10)
in which
T~ L (p pe Lo Epe 5.11
W T ar ;wv_zlgyvp(f ’ (5.11)

D any a1 an a8l 2
T = 9,9°0,9" — Sgws™ 0 d” — S5 (2 =17),  (12)

and 7, is the energy momentum tensor of the surrounding matter.
Outside the core h — 1 and the energy momentum tensor of the monopole has
the following components [95]

¢ . hZ W 2 A 2 2
(O — (0 _ 2 L_z L M 1)2] e T )

2 4
708 = () _ 2 [f(r) N L 27 ) - 1)2] S0 (514

The surrounding matter, whose action is denoted by S in Eq. (5.1), can generally
be a dust, radiation, quintessence, cosmological constant, phantom field or even
any combination of them. The energy momentum tensor of the surrounding fluid

has the following components [130]
TY=T'r=—p, (5.15)
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and

1
Tl =T =5(1+3w)p. (5.16)
Thus, the Einstein’s field equations yield

rf'(r)+ f(r) =1 8y Q

> +t— S+ M + 87mp =0, (5.17)
rf"(r)+2f'(r)  Qf Q%A _
o - -4 4tp(3w +1) = 0. (5.18)

Now by solving the set of differential equations (18) and (19) one obtains the

following general solution for the metric

Q3 +Q%4 v

f()—1—87f’)/——+ r—z—m, (519)
with the energy density in the form
3wuv

Note that, v is an integration constant related to the perfect fluid parameter. From
the weak energy condition it follows the positivity of the energy density of the

surrounding field, p > 0, which should satisfy the following constraint wv < 0.

5.2 An RDBH with a Global Monopole in Perfect Fluid

We now extend the study of static global monopole solution and obtain its rotating

counterpart. For this we apply Newman-Janis formalism to the metric (5.9) along

with (5.19), see Appendix (A).

The form of the metric we obtain is

ds> = — (1 — M) dt? — 2asin® 6 (M) dtde + %drz + Xd6?

+ sin’@ de?. (5.21)

X

(r2 + a2)2 — a2A sin? 9]
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where in order to simplify the notation we introduce the following quantity

v

A = r2f(r)+a2:rz+a2—2Mr—87Tr2’yz+Q%+Q%/f—m/ (5.22)

here f(r) is given by Eq. (5.19). In this work, we consider three different cases of
w = —1/3 dark matter dominant, 0 (dust dominant) and 1/3 (radiation dominant).
For spin a = 0, perfect fluid parameter v = 0 and no charges, the above metric
reduces to Schwarzschild BH with global monopole [128].

The electromagnetic field of a BH is defined by its vector potential. As already
mentioned, in case of a static BH the vector potential is given by Eq. (5.5). For the
rotating case, the Newman-Janis method can also be applied on Eq. using a
guage transformation such that g;, = 0 and A, = 0. For the detailed procedure
the authors refers the readers to consider [126]. The vector potential computed

through Newman-Janis formalism for a RDBH is thus given by [126]

4 (rQE — aZQMcose

It has been shown in [89]] that metric similar to (5.21) satisfies the EFE. For the

7’2-|-6l2

) dt + (—%QE sin2 0 + Oum cos@) dg. (5.23)
Einstein tensor G, and energy momentum tensor Ty, the EFE (1.1), with A =
0,G =1,c = 1are givenby G,y = Ry — 1/2gw R = 8nT,,. For simplicity let
f(r) = 1—2F(r)/r?, where F(r) = 4ny*r? + Mr — (Q%2 4+ Q3,) /2 + vrl™3w/2,

then the nonvanishing components of G, are

Gy = % <2F(r) — <(1’2 + a%) + a? sin® 0)) (E(r) —rF'(r)) — i szilzlng”(r),
Gr = o (E() —1F(1),
Goo = %2 (E(r) — rE'(r)) — E"(r), (5.24)
Gip = 52122 (07 + @) F()) (E() — rF' () + o (7 + @) sin? 6P (n)
Gyp = si;i 6 (4a2 sin? 0F(r) — (r* + a?) (2(1/2 + a%) 4 a® sin? 9)) (E(r) —rF'(r))
_ P+ a;) sin 6 ».
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In terms of the orthogonal basis, for the metric (5.21),

1 1
o 2 2 Bo_
e, = r“+a-,0,0,a), e = 0,1,0,0), 5.25
! \/1ZA ( ) 1r V2 ( ) ( )
po_ Bo_ 2
ey, = 7 (0,0,1,0), ey = TN (a sin“ 0,0, 0,1) )

and the Einstein tensor G, the energy momentum tensor is expressed as

1 1
pr = g€ ¢ Gu, pr=g_ere/Gu,
1 1
P = 8—7_[65 eg Guv,  Po = 8—7_[e$ ey G- (5.26)

Using Egs. (5.215.26) gives the components for energy momentum tensor as

1 —
pr = 852 (87’[')/272 — 306()71 3w + (Q% + Q%\/I)) = —pr, (527)
3vw(l —3w)
— 2 .
Po= "Pr ™ gnx (8”7 _W) = Po-

Analogous to KBH, a ring singularity harbors inside the BH defined by metric[5.21]
This can be demonstrated by computing the points at which the Kretschmann
scalar KCs = RyuqpR*7P turns to infinity. For the metric (5.21), the Kretschmann

scalar has the value
Z(T’, a, 6’ QEI QM/ w,v, ,)/)

where Z(r,a,6, Qr, Qum, w, v, 7¥) is a tedious function. From the above expression,

,CS:

(5.28)

we observe that for w = —1/3,0,1/3 the poles are at the ring r2+acos?0 = 0 or
when r = 0 and 6 = 7/2. This leads us to the interpretation that a test particle

moving in an equatorial plane 8 = 7r/2 will hit the singularity at r = 0.

5.2.1 Surface Topology

It is interesting to determine the surface topology of the global monopole spacetime

at the event horizon. At a fixed moment in time ¢, and a constant » = r, the

88



metric (5.21)) reduces to

2 20
ds? = T(ry,0)d0% + | 2Mry + 87202 — Q2 — Q¥ + o o dg?,
The above metric has the following determinant
2
detg? = <2Mr+ +8mrt? — QF — Qi + %) sin?f.  (5.29)
"y

Theorem: Let M be a compact orientable surface with metric g\?), and let K be the
Gaussian curvature with respect to g2) on M. Then, the Gauss-Bonnet theorem states
that

[ kda = 27x(M). (5.30)
M

Note that dA is the surface line element of the 2-dimensional surface and (M) is
the Euler characteristic number. It is convenient to express sometimes the above
theorem in terms of the Ricci scalar, in particular for the 2-dimensional surface
there is a simple relation between the Gaussian curvature and Ricci scalar given
by

IC:

R
5 (5.31)

Yielding the following from

% [ Raa = x(m). (5.32)
M

A straightforward calculation using the metric (42) yields the following result

for the Ricci scalar
2(r% +a?)(r3 — 3a® cos? 0)

R = . (5.33)
(r3 + a2 cos? )
From the GBT we find
27 2 2 0
/ / 23 +a) (3 —30 05 0) | o @ dedg. (5.34)
T an r + a2 cos? 9)
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Finally, solving the integral we find
X(M) =2. (5.35)

Hence the surface topology of the RDBH with global monopole is a 2-sphere at

the event horizon, since we know that x(M)sppere = 2.

5.2.2 Configuration of Ergoregion

Let us now proceed to study the shape of the ergoregion of a RDBH with a global
monopole. We do so by plotting the silhouette of ergoregion in the xz-plane. The

horizons of a BH exists at the solutions of A = 0, which in our case has the form

72+ a® — 2Mr — 87129 + Q% + Q% — rSL — 0. (5.36)

w—1

The static limit, on the other hand, has an inner and outer ergosurface which exists

when

Qu = 2 + a? cos? 0 — 2Mr — 8mrr?o% + Q% + Q%VI — ,,?;L =0. (5.37)

w—1

There is an interesting process which relies on the presence of an ergoregion,
namely from such a RBH energy can be extracted, and this process is known as
the Penrose process. In Figure we plot the shape of ergoregion for different
values of 4, w, 7, and v. One can observe that the event horizon and static limit
surface meet at poles while the region lying between them is the ergoregion which
supports negative energy orbits. Furthermore the shape of ergoregion, depends
on the spin a4, however due to the small values of v we observe small changes

related to the value of w.
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Figure 5.1: Plots showing shape of ergoregion (red) and horizons (blue) in xz-plane
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for different values of a, w, and v. We have chosen Qr = Q) = 0.1.

91




5.3 Null Geodesics

Our main objective is to investigate the shadow casted by the BH defined by
metric (5.21). To do so, we first need to analyze the geodesics structure of photons
moving around the compact gravitational source. This will enable us to detect the
unstable photon orbits. The boundary of the BH’s shadow is defined where the
unstable photon orbits exist.

For the RDBH with global monopole present in perfect fluid, the presence of
null geodesics can be observed by following the Hamilton-Jacobi method. The

Hamilton-Jacobi equation is given by
0 J = —H. (5.38)
In the above equation

On Left Side J is the Jacobi action, defined as the function of affine parameter T

and coordinates x* i.e. J = J (T, x").
On Right Side H is the Hamiltonian of test particle’s motion and is equivalent to

§"ouT 9vJ.

In the spacetime under consideration, along the photon geodesics the energy E
and momentum L, defined respectively by Killing fields ¢; = d; and ¢y = 9y, are
conserved. The mass m = 0 of the photon is also constant. Using these constants

of motion we can thus separate the Jacobi function as
1
J = 5m*T — Et + L + T (r) + Jp(0) (5.39)
where the functions J;(r) and Jy(0) respectively depends on coordinates r and 6.

Combining Eq. (5.38) and Eq. (5.39) yields a set of equations, which describes the
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dynamics of a test particle around the RBH in perfect fluid matter, as:

g—; _r : T E( +a) — aL] — a(aE sin?6 — L), (5.40)
z% = \/R(r), (5.41)
z%) = a @(92), 2 ) (5.42)
a5 = SIEC ) —at] - (a2 - 50, 54)
where R(r) and ©(0) read as
R(r) = [E(r* +a?) — aL)*> — A[m?*r* + (aE — L)* + K], (5.44)
00) =K — (SHL; e aZEz) cos? 6, (5.45)

with IC the Carter constant.

5.4 Circular Orbits

Now we consider a gravitational source placed between a light emitting source
and an observer at infinity. The photons emitted from the light source will form
two kinds of trajectories: the ones which eventually fall into the BH and the ones
which scatter away from it. The region separating these trajectories, contains
unstable circular orbits. These unstable circular orbits form a dark region in sky
thus forming the contour of the shadow. In this section we intend to discuss
the presence of unstable circular orbits around the BH under consideration. For
this we consider photon as a test particle and hence take m = 0. We can express

the radial geodesic equation in terms of effective potential V¢ of photon’s radial

dr\ 2
>2 (E) + Vo = 0.

motion as
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At this point, for mere convenience, we introduce two independent parameters ¢
and 7 [11] as
F=L/E, n=K/E%. (5.46)

The effective potential in terms of these two parameters is then expressed as
Vet =A((a— &) +1) — (P +a* —al)?, (5.47)

where we have replaced V¢ / E? by Veg. Figure shows the variation in effective
potential associated with the radial motion of photons. From the figure we observe
that in all three cases the value of effective potential decreases with increase in
parameter . Now the circular photon orbits exists when at some constant r = 7,

the conditions

A Vg (1)
dr

are satisfied. We then use Eq. (5.47) in Eq. (5.48) and thus obtain

Vo (r) =0, =0 (5.48)

(14 (& —a)?|A — (r? +a* —a&)* =0, (5.49)
4(r* + 0> —ad) — [+ (& — a)?JA(r) = 0, (5.50)

where
M 3w —1 v

A(r) =1—8m9% — —+(— )r1+3w' (5.51)
Combining Egs. (5.4915.50) results in
2A
ﬂé:TZ—i—ﬂZ—M, (552)
4N 1, AN
1= (7 o) 9

It is worth mentioning here that impact parameters, ¢ and 7, will be affected
not just by radial coordinate r, spin parameter a and mass of BH M but also

by electric charge Qp, magnetic charge Q)1, monopole parameter y and perfect
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fluid parameter v. The unstable circular orbits are located at local maxima of the

potential curves i.e. when Ve”ff <Oor

(A’z + 2AA”> 4+ 2AN >0 (5.54)

5.5 Silhouette of a Black Hole

We now extend our calculations to observe shadow of RDBH with global monopole
surrounded by perfect fluid. To gain the optical image we specify the observer at
position (7,,6,), where r, = r — o0 and 6, is the angular coordinate at infinity, on
observer’s sky. The new coordinates, also widely known as celestial coordinates,
« and B are then introduced. These coordinates are selected such that a and
B correspond to the apparent perpendicular distance of the image from axis
of symmetry and its projection on the equatorial plane, respectively.Due to the
presence of global monopole we have asymptotically non flat solutions due to the
global nontrivial topology. Now we obtain the proper celestial coordinates for the

asymptotically non-flat solution by abopting [?]

(¢)
« = lim —rP (5.55)
F—>00 p(l‘)
(0)
— i P
B = }l)rglorp(t) (5.56)

where (p(t), p(r), p(®) p(#)) are the tetrad components of the photon momentum
with respect to locally nonrotating reference frame. So basically one can define
the observeraAZs sky as the usual cases in which the observer bases e}(lv) can be
expanded as a form in the coordinate bases. In the limit r — oo can relate the

above coordinates to parameters ¢ and 7, which then yield

— _J1—snr &
o 1—8my Sind | (5.57)
B = &+ \/1 — 87?2 \/17 + a2 cos2 6 — &2 cot? 0, (5.58)
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for the case w = 0 and w = 1/3. And similarly

¢

— — /1 —-8192 — v 5.59
“ T v | sin 0 | ( )
B = +£/1-8172—v \/y+a2cos?6 — & cot?0 (5.60)
for the case w = —1/3. We observe that in the dark matter case there is a similar

contribution term compared to the global monopole. In the limit y — Oand v — 0
we obtain the usual relations for celestial coordinates for the asymptotically flat

solution.

We expect that the parameters involve in RDGM in presence of a perfect fluid
will effect the shape of its shadow. This can be clearly confirmed through Eq.
as it depends not only on spin parameter a and angular coordinate 6, but also on
v, w and perfect fluid parameter v. Later, we will justify our results also through
graphical interpretations.

As our observer is placed in the equatorial plane (6 = 71/2), « and p reduce to

x = —/1-8mny2 ¢ (5.61)
B = £4/1-8my /7, (5.62)

for the case w = 0and w = 1/3. And

2 = —\/1-8192 -0 ¢ (5.63)
B = :I:\/1—87r'yz—v 1 (5.64)

for the case w = —1/3. Figure and show deformation in shapes of the
shadow with respect to monopole parameter oy and and perfect fluid parameter
v, respectively. It is a well known observation now that the rotational effect in a
black hole distorts its shape. That being said, we notice in Figure that for
small spin parameter, g, the shadow of the black hole maintains a circular shape

along with the increase in its size with the inclination of vy. As for larger spin value,
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Figure 5.3: Variation in shape of a rotating dyonic global monopole surrounded
by a perfect fluid. Magnetic and electric charges are kept constant such that
Qr = 1072 = Qy. In each graph the Kerr casei.e. v = 0 and v = 0, is represented
by solid line, v = 0.05 by dotdashed and = 0.08 by dashed lines. For dark
matter (w = —1/3) and dust (w = 0) case v = 0.01, whereas v = —0.01 in case of

radiation (w = 1/3).

the shadow is clearly distorted and matches with its Kerr counter part in perfect

fluid [125] for v = 0. Figure (5.4) shows the effect of parameter v on the rotating
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Figure 5.4: Variation in shape of a rotating dyonic black hole with global monopole
surrounded by a perfect fluid, for different values of perfect fluid parameter v.
Magnetic and electric charges along with the global monopole parameter are kept
constant such that: Qg = 1072 = Qp; and y = 0.08 . For dark matter and dust
case v = 0 (Solid), 0.05 (DotDashed) and 0.1 (Dashed). In case of radiation v = 0
(Solid), —0.01 (DotDashed) and —0.05 (Dashed).

dyonic black hole with a global monopole present in perfect fluid. It is noticed in

figure 5.4/ that as perfect fluid parameter, v, increases the size of the shadow also
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increases. A distortion is noticed in shape of the shadow when the spin parameter
a is increased. Also, in case of dark matter and dust, there is significant change in
the size of the shadow with respect to v. On the other hand, in case of radiation
we do not observe any significant effect of perfect fluid parameter v, in fact the
effect is negligibly small.

In [21], the authors introduces two observables, radius Rs and distortion J, to
analyze the size and form of the shadow. The first observable R; is the approximate
radius of the shadow. It is defined by considering a reference circle passing through
three points on the boundary of the shadow, such that (atp, Btp) is the top most
point on the shadow, (&p, Bpm) is the bottom most point on the shadow and
(ar, 0) is the point corresponding to unstable circular orbit seen by an observer on
reference frame. Thus

R, = (“tp - “7)2 + :B%p

5.65
2]atp — ay| (565)

The second observable J; is the distortion parameter. Let Dcg be the difference
between the contour of shadow and reference circle. Then for the point (&,,0)
lying on the reference circle and the point («,,0) lying on the contour of the
shadow, Dcs = |&y — ap|. Thus

Ay — o
o = T X, z,

For our case, we consider the points (&,,0) and («, 0) to be on the equatorial plane,
opposite to the point (ay, 0). The variations in these observables with respect to
monopole parameter 7 are graphically presented in Figure (5.5). The dependence
of Rs; on parameter 7 is such that as 7y increases the radius R; also increases. Thus
the size of the shadow increases with increase in monopole parameter y. Whereas
the distortion J; decreases monotonically with an increase in -y. This tells us that

with respect to circumference of reference circle, the shadow of the rotating black

hole is significantly distorted for o € [0,0.1] but for v > 0 it may not show any
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distortion and thus we may obtain a perfect circle. As we have considered our
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Figure 5.5: The quantities Ry and J; with respect to parameter <y

observer to be at infinity so in this case the area of the black hole shadow will be
approximately equal to high energy absorption cross section as discussed in [26].
For a spherically symmetric black hole the absorption cross section oscillates
around I1;;,,, a limiting constant value. For a black hole shadow with radius Rs,

we adopt the value of I1;;,, as calculated by [26]
Hipm = NRE‘

The energy emission rate of the black hole is thus defined by
d’E(0) 2 lim 3

dodt e/ 17

where ¢ is the frequency of the photon and T represents the temperature of the

black hole at outer horizon i.e. 7, given by

. O /8t
T(ry) = 711{2—27'[\/87
= (22 (F() =) +r(? +a))f ()

r
471 (12 + a2)?
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For all three cases, radiation, dust and dark matter, the energy emission rate is
graphically presented in Figure where we notice that the energy emission
rate decreases with increase in parameter <. A slight shift to the lower frequency
is also observed while 7 increases. The spin parameter a also effects the shape of
the energy emission rate as an abrupt decrease in energy emisiion rate is noticed

for higher spin value.
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Figure 5.6: The figure shows the energy emission rate when a = 0.46 (upper panel)

and a = 0.92 (lower panel).
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Chapter 6

Conclusion

The detection of gravitational waves and BH images obtained by EHT are alto-
gether a break through in astrophysics. These discoveries have just not reignited
the faith in Einstein’s GTR but also opened doors to test other theories of gravity
too. Certainly we are living in an intriguing new era of research and development

regarding both theoretical and astrophysical aspects.

From astrophysical point of view, RBHs are of significant importance. Since
the spin of a BH carries all the information about its formation and growth. It
is also potent source of energy to power relativistic jets. As per finding of EHT
collaboration, the BHs hosted by our neighbor galaxy (M87) and our own galaxy
are spinning. All these reasons set a path for an intriguing mind to look into
dynamics of these mysterious objects not only in GTR but also in its alternatives.
The recent interest in studying particle (particularly photon) motion around a BH

to eventually obtain its image is a motivation for us to play our part.

To conclude this study we now summarize the results obtained in previous

chapters.

In Chapter TWO we have discussed in detail the properties of a RBH solution
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considering the variation of gravitational coupling. This new metric is charac-
terized by three parameters: rotational parameter 4, mass of BH M and constant
parameter ¢, describing the quantum corrections. We have first discussed the con-
sequences of the asymptotically safe gravity correction on the structure of event
and Killing horizons. While doing so we noted that ergosphere is significantly
increased when ¢ increases, which also depicts that the region of the BH from
which energy can be extracted, through Penrose process, is bigger as compared to
standard GR. Further, particle’s motion is investigated by studying geodesics for
both null and time-like particles. For the case L = aE, the equations for outgoing
photon trajectory are numerically solved. By plotting these results, it is observed
that,for small ¢, the photon trajectory with respect to both time t and angle ¢
shows no high deviation from its GR counterpart. The presence of a bifurcation
point is also numerically analyzed, which leads us to existence of naked singularity.
Expressions of energy and angular momentum for time-like geodesics, depending
on r, are derived. Angular velocity () is computed and it is observed that for
prograde motion Q) increases when ¢ is increased but for retrograde motion it
decreases with ¢. A detailed discussion is made on effective potential also. It is
graphically shown that the shape of potential barrier is changed for different val-
ues of ¢. The extraction of energy is discussed by taking into account the Penrose
process. We have demonstrated that for the same values of a the efficiency of
Penrose process will be greater in asymptotically safe gravity, while the maximum
possible efficiency of Penrose process will not be significantly changed. In the
end, another effect called Lense-Thirring effect is also explored. It is noted that
this effect, being a rotational effect, depends on the rotational parameter a. With
the increase in the value of a4 Lense-Thirring effect shows notable change when
plotted. It should be kept in mind here that to avoid the whole system to get

strongly coupled, Cai and Easson [79] considered the value of coupling parameter
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¢ to be less than unity, which limitized the practical significance of our result.

The existence of dark matter around BHs located at the centers of most of large
galaxies plays an important role in many astrophysical phenomena. Motivated
by this fact, in Chapter THREE we have studied the effects of perfect fluid dark
matter and a cosmological constant on the shadow of a RBH. Our work provides a
possible tool for observation of dark matter via shadows, perhaps using the high

resolution imaging of the Event Horizon Telescope.

We have shown that the different shadow shapes are found by varying the
PFDM parameter, mass, spin parameter, and the cosmological constant. Through
graphs we have demonstrated that size of shadow of our BH decreases for « < 1

but after that we see an increase in its size.

In Chapter FOUR we have used the complex transformations pointed out by
Newman and Janis to obtain an RDGM solution in presence of a perfect fluid dark
matter. Using the Gauss-Bonnet theorem we have shown that the surface topology
of a RDBH with a global monopole is indeed a 2-sphere. Furthermore by choosing
w = —1/3,0,1/3 we have explored the impact of dark matter, dust, radiation, as
well as the global monopole parameter 7, and perfect fluid parameters «, on the
silhouette of BH. We have found that a RDBH with a global monopole retains a
circular shape for small spin parameter. Whereas for high spin like 2 = 0.98M the
shadow of RDBH with global monopole is distorted. Also as monopole parameter
7 increases, a slight shift towards the right is also noticed in shape of shadow of
BH under consideration. The two observables, Rs and J;, are also being discussed.
In the end we analyze energy emission rate of RDBH with global monopole

surrounded by perfect fluid with respect to parameters.
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Appendix A

Newman-Janis Algorithm

The method given in [89] is subsequently being adapted here. We first consider a
static and spherically symmetric metric as

dr?

ds?> = —Ai(r)df® +
O 20

+ h(r) <r2d92 + 12 sin? 9d¢2) , (A.1)

The algorithm, for metric’s computation, begins by transforming BL to EF coor-
dinates i.e. (t,7,6,¢) — (u,r,0,¢). So with the use of the following coordinate

transformation, in Eq. (A.1),

dt = du+ dr ,
Aq(r)Az(r)
a line element of the form
ds? = —Ai(r)du®>—2 A1) dudr 4 h(r)dQ?,
Ax(r)

is obtained. This metric in terms of null tetrads is written as

g = —I'n¥ — IVnt + mtm’ + mUmb, (A.2)
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where null tetrads are

ro= d,
e

mt = %(r) (5g+siﬁ5$> ,
mt = % (5g—si;05$>.

The first two null tetrads, | and m, are real vectors while m is complex and 7 is
conjugate of vector m. These vectors are orthogonal, isotropic and normalized i.e

they satisfy the following conditions

Mmy, = My, = nt'my = ntm, =0,

Hop  — by —
lny— mtimy, = 1.

Introducing complex coordinate transformations

u — u—iacosb,

¥ — r+iacos9,

where 7 is the rotational parameter. It is also assumed that due to these transfor-
mations the functions A1(r), Ax(r) and h(r) shift to F; = Fy(r,a,60), F, = F(r,a,0)
and X = X.(r,a,0) respectively.

This leads to new null tetrads (dropping primes) as

"= 4,

nt = %zsz — %55‘,
mt = \/% [((55 —6)') iasin® + d)) + sii@ég] , (A.3)
mh = \/% {— (6 — o) Zasin9+§g—si;95$} .

107



With the help of Eq. (A.2) and Eq. (A.3), contravariant components of new metric

are computed as

i a®sin” 0 gib _ O g F,  a*sin26
r ) F 7
¢

a g9 _ 1
Z /g Z’g _Z/

o — -
§ Y. sinZ 0

Using the above contravariant components, the non-zero covariant components

are

| F . | F
Suu = —F, Sur = — F_;’ gu¢:ﬂ81n29<F1— F_l>,
/B o .2 2 Fi). o
S = 4 F—zsm 0, oo =%, gpp =sin"0 | X —a" | F —2 5 sin“ 6| .

So new metric is

ds*> = —Fdu*-2 B guar 4 oasinzo (P |1 dud¢ + 2a sin h drd¢ + £d6?
3 k %)

Y —a? (F—Z ?) sin29] dg?.

2

+ sin%6

Finally, the EF coordinates are transformed back to BL coordinates. For this

purpose the following transformation is being used

du = dt+ A(r)dr,
dp = dgl + x(r)dr,

where
_ @ —k(r) B —a Ay
Alr) = Ayx(r)h(r) +a?’ x(r) = Ay (r)h(r) + a2’ k(r) = Aj(r) h(r),
with

2 2
F = Ao (r)h(r) + a* cos 92 (Ad)

(k(r) + a2 cos? 0)*

108



and

Ao (P)h(r) + a? cos? 6
E - 2(7) ()Z . (A.5)

Thus an RBH solution in BL coordinates turns out to be

2 2
a2 = A T a7eos By yn | ) gn2g A2 ZK g gy, + S
(k(r) + a2 cos?0) (k(r) + a2 cos? 0)* Ap(r)h(r) +a

2k(r) — Aa(r)h(r) + a? cos® 6 40?

(k(r) + a2 cos? 0)*

Since A1 (r) = Ax(r), so k(r) = h(r). Comparison of Eq. (A.4) and Eq. (A.5) gives

Y = 2 + a2 cos? 6. Hence the rotational solution of a black hole is obtained.

+ XsinZ0 |1+ a%sin?0

In Asymptotically Safe Gravity Theory

For the case taken in section (2.2.T), we have

and the metric obtained from using Newman-Janis algorithm is given by

@sp = —(1- 27 _§)>dtz M0 (1 £ Yarag + Kt + v
2

+ sin 9{1’ +a +2 29( g)}dcp

where A = 2 — 2Mr + 2M¢ + a2. This metric reduces to its static and sphericall
7 P y

symmetric version when a — 0.

An RDBH with Global Monopole in Perfect Fluid

For the case taken in section (5.2), we have A;(r), A2(r) — f(r) where

M 2 2
f()—1—8’y——+Q +%—WLH. (A.6)
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The metric thus obtained from the Newman-Janis algorithm is given by

s> = — (1 _r—f) _zf () ) d? — 2asin”6 <—r2(1 _zf (r))) dtdg + %drz + 2de?

2 1 22\2 _ 24 gin2
+ sin26 (r* 4+ a*)* —a*Asin 9] do?.

- (A7)

where in order to simplify the notation we introduce the following quantity

[

N = Pf(r)+a*=r>+a*—2Mr —8mr*y* + Q% + Q3 — pIw—1’

(A.8)

For a = 0, the above metric is reduced to its static and spherically symmetric

counter part.
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