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Abstract

We first investigate the consequences of running gravitational coupling on certain

properties of rotating black hole. We are motivated by the functional form of

gravitational coupling previously investigated in the context of infra-red limit of

asymptotically safe gravity theory. In this approach, the involvement of a new

parameter ξ̃ in this solution makes it different from Schwarzschild black hole. The

Killing horizon, event horizon and singularity of the computed metric is then

discussed. It is noticed that the ergosphere is increased as ξ̃ increases. Considering

the black hole in equatorial plane, the geodesics of particlesare explored. The

effective potential is computed and graphically analyzed for different values of

parameter ξ̃. Apart from the changes induced in the space-time structure of

such black holes, we also study the implications to Penrose process and geodetic

precession. The energy extraction from black hole is investigated via Penrose

process. For the same values of spin parameter, the numerical results suggest that

the efficiency of Penrose process is greater in asymptotically safe gravity than in

Kerr Black Hole. At the end, a brief discussion on Lense-Thirring frequency is also

done.

A black hole’s spacetime is remarkably affected by presence of dark matter

around it. We analyze the shadow of a new solution to Einstein Field Equations

and consider the effects of dark matter on it. This solution describe a rotating
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black hole in the background of perfect fluid dark matter, along with its extension

to nonzero cosmological constant Λ. Working in Boyer-Lindquist coordinates, we

consider the effects of the perfect fluid dark matter parameter α on the shadow

cast by a black hole with respect to an observer at position (ro, θo).

Global monopoles are topological defects which may have been produced

during the phase transitions in the early universe. In fact, global monopoles

are just one type of topological defects. Other types of topological objects are

expected to exist including domain walls and cosmic strings. A metric for rotating

dyonic black hole with global monopole in presence of perfect fluid is computed

in this work. We then discuss its surface topology at the event horizon using

Gauss-Bonnet Theorem and also the ergoregion. We investigate the shadows

of the rotating dyonic black hole. Choosing certain values of parameters, such

as ω = −1/3, 0, 1/3, we observe the effect of dark matter, dust and radiation

on the silhouette of the black hole. Our findings lead us to conclude that the

presence of parameters γ and α, also deforms the shape of black hole’s shadow.

These results have been depicted through graphical representation. We also

analyze the two observables, radius Rs and distortion δs, related to black hole’s

shadow. Energy emission rate of rotating dyonic black hole with global monopole

surrounded by perfect fluid is also computed and graphically illustrated with

respect to parameters.
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Chapter 1

Introduction

Black holes (BHs) are one of the strangest cosmic bodies present in outer space

which have drawn immense attention from scientists due to their fascinating

properties. Interestingly, a BH is formed when a massive star gravitationally

collapses inwardly. Consequently, a region of great density and extremely strong

gravity is formed from whose boundary, called event horizon, not even light can

escape.

Indeed, formation of a BH occurs when an astronomical object having mass M

gravitationally collapses and consequently contracts to a point that its size crosses

gravitational radius rg = 2GM/c2 , also known as Schwarzschild radius, here G is

Newton’s gravitational constant, and c is the speed of light. Further what happens

is that the escape velocity required to break away the boundary of BH gets equals

to c. Since c is the maximum limit on the propagation velocity for physical signals

this leads to an obvious conclusion that neither signals nor particles are able to

escape from a BH. Mass of the gravitating body characterizes as gravitational

charge and vitally participates in the gravitational interaction. The particles, be it

massive or massless, cannot escape from a BH instead the one bypassing it ends
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up falling into it thus defining a boundary called the event horizon [1].

Conceptually, the foundations of BH’s study were set by the end of 18th century

when Michell and Laplace gave the possibility of existence of such objects using

Newtonian theory [1, 2]. But it was not until the emergence of General Theory of

Relativity (GTR) , formulated by Einstein in 1915, that theorist got solid grounds

to claim the physical existence of such mysterious objects.

The core idea of Einstein’s GTR lies in geometry of four dimensional spacetime.

It features gravitation to be the geometrical entity emerging from a curved four

dimensional spacetime rather than just a force. For Einstein, gravitation was not

a force defined by per square distance but a geometrical curvature of space time.

Einstein defined this geometrical curvature through his famous Einstein’s field

Equations (EFE) :

Rµν −
1
2

gµνR+ gµνΛ = 8
πG
c4 Tµν, (1.1)

where Ricci tensor isRµν , Ricci scalar isR, the gravitational field is shown by the

metric tensor gµν, cosmological constant is Λ and Tµν is the energy-momentum

tensor. On the left of EFE lies the information about the geometry of spacetime

under study while on right lies the terms having knowledge of matter distribution.

Not even a year had passed to the formulation of GTR, when Einstein received

a letter from his former colleague turned soldier, Karl Schawarzschild, enclosing

first ever exact solution of EFE [3]. Einstein’s response to this solution was “I had

not expected that one could formulate the exact solution of the problem in such a simple

way." This solution, named after Schwarzschild himself, describes gravitational

field of an uncharged non-spinning spherical body. Little was known that this

solution will explain the structure of chargeless non-rotating BH, thus setting

foundation for a whole new branch of Physics: Black Hole Physics.

To achieve deep understanding of physical aspects of EFE’s solution, it is bene-
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ficial to mathematically explore the motion of test particles and light rays in these

spacetimes. Such a study has both observational and fundamental importance.

From observational point of view, matter and light are two observable quantities

which can give clear insight to the physical behavior of a given gravitational field.

From fundamental point of view, the study of motion of light or matter around

some gravitating body can not only help in classifying a given spacetime but also

can highlight its characteristics and thus decode its structure.

With the discovery of Schwarzschild’s solution to these EFE, the next obvious

interest arose in studying motion of massless or massive particles in vicinity of

the static and spherically symmetric background. In 1931, Hagihara was able to

analytically compute geodesic equations in Schwarzschild spacetime [4]. He used

theory of elliptic functions and carried an extensive study on timelike geodesics

as well as null geodesics. In 1918, another exact solution of EFE in presence of an

electrical charge of the gravitating body was derived by Reissner and Nordström

[5, 6]. The method adopted by Hagihara for the computation of geodesics can be

used to discuss geodesics of Reissner-Nordström spacetime.

In 1918, Lense and Thiring [7], working under the framework of GTR, found an

additional effect associated to slight distortion of geodesics of a rotating massive

object. Not hosted by Newtonian Theory, this effect, also known as frame dragging,

solely comes from GTR and is considered to be a prominent feature of rotating

astronomical objects. In 1963, Roy Patrick Kerr was able to figure out the exact

solution of a stationary and axially symmetric spacetime [8]. Later, Carter [9, 10]

explored the structure of Kerr solution and was able to establish a fourth constant

of motion, named Carter constant, by determining the separability of the Hamilton-

Jacobi equations. By eighties, extensive studies were done on geodesics of BHs,

especially Kerr BH. In 1983, Chandrasekhar compiled, analyzed and enhanced the

work of many authors in his book [11].
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The study of geodesics for null (photon) and time-like (massive) particles, has

always held a significant importance. The analysis of circular motion of particles in

a curved space time exhibits its geometrical behaviour . A detail study of null, time-

like and space-like geodesics is done in [12] for certain BHs. Geodesics of some

BHs spacetimes with cosmological constants is comprehensively investigated by

Hackmann [13]. Equatorial geodesics are studied in [14, 15].

On theoretical grounds, Einstein’s GTR not only predicted the existence of BHs,

but also provided mathematical tools to directly observe them. Synge was the

first to propose the apparent shape of a spherically symmetric BH [16]. Synge

effectively identified that a photon sphere, enclosing a compact spherical body,

would cast a shadow on the observer’s sky. For a circular shadow having angular

radius ρ, he computed an expression given by

sin2 ρ =
27
4
(ρo − 1)

ρ3
o

(1.2)

where for observer’s radial position ro, ρo = ro/(2m).

In 1973, the shadow of a KBH was first studied by Bardeen [17]. Bardeen’s

distant observer is suitable for describing the shape of the shadow. According to

his findings, for a rotating black hole (RBH) the shadow is no longer circular but

rather flattened on one side. After that Luminet [18] discussed the appearance of

a SBH surrounded by an accretion disk. These initial works on shadow images

of BHs not only gave theorists new grounds to extend their investigations but

also arose the interest among astrophysicists to physically explore such compact

objects. After seventies, the astrophysical importance of BHs became inevitable. J.

P. Luminet [19] recalls in detail the struggles faced and steps taken on the road to

imaging a BH, between years 1972 to 2002.

With time, the astrophysical advances also motivated many authors to invest

qualitatively in theoretical analysis of BH shadows. A de Vries [20] investigated
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the shapes of various Kerr Newmann spacetimes considering the geometry of the

closed photon orbits. Hioki and Maeda [21] introduced two observables which

characterized the apparent shape of a KBH. In same paper, they also broaden

their technique to study naked singularity. A. Abdujabbarov et. al. [22] studied

the shadow of a spinning BH with gravitomagnetic charge and observed that

apart from angular momentum the presence of gravitomagnetic charge is also

responsible for the deformation in the apparent shape of BH’s shadow. L. Amarilla

et. al. [23] studied the shadow casted by RBH in Chern Simons modified gravity.

This model is developed by introducing to the Hilbert Einstein action a scalar

field that couples to the first class Pontryagin density. It was concluded in [23]

that in presence of Chern Simons parameter the shape of the shadow of RBH is

thus deformed. L. Amarilla and E. F. Eiroa [24], in the Randall-Sundrum scenario,

computed the shadow of a rotating braneworld BH. Their observation was that the

tidal charge term does effect the shape of the BH’s shadow such that an enlarged

shape of the shadow is obtained in presence of the negative tidal charge while

the effect is opposite when the tidal charge is positive. The same authors in [25]

considered the shadow for a Kaluza-Klein rotating dilaton BH and concluded

that mass and charge also play role in deforming the shape of the shadow. Wei

and Liu [26] showed that parameters involved in Einstein-Maxwell-Dilaton-Axion

BH significantly effect the shape of its shadow. Not only BHs but also shadow of

Kerr-like wormholes as well as traversable wormholes and many more, have been

of great interest for the researchers too [27–35]. Some authors have also tried to

test theories of gravity by using the observations obtained from shadow of Sgr

A* [36–39]. An effective overview by Cunha and Heidro [40] gives a considerable

insight to the theoretical aspects of shadows of BHs in both GTR and Alternative

Theories of Gravity.

The question that whether dark matter is strong enough to deform the geometry
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of BH is currently revolving among inquisitive minds. The influence of dark matter

halo, particularly Scalar Field Dark Matter and Cold Dark Matter models, around

Sgr A* was investigated by Hou et. al. [47]. The shadow of BH in the presence of

quintessence has been discussed in [48, 49]. The characteristic features of the dark

matter– its effective mass and non interaction with electromagnetic field–were

implied by Konoplya [50]. By a robust analysis, he concluded that for a galactic

BH it is unlikely for a dark matter to affect the shadow’s shape unless it is highly

concentrated near the BH. Another interesting dark model was consider by Jusufi

et. al. [51] in M87 galactic center and images of its shadow were identified. It is

anticipated that the effect of dark matter on the apparent shadow shape can shed

some light in future observations as an indirect way to detect dark matter using

the shadow images [51].

In 1919, Eddington successfully performed the first experiment to test the

correctness of GTR. That time when Einstein was asked about what if the physical

results came against his theoretical findings, Einstein’s promptly replied "I will be

sorry for the good Lord but the theory is correct“. Even after hundred years, on April

10th, 2019, GTR firmly stood its ground when the first image of BH was publicly

announced by Event Horizon Telescope (EHT) Collaboration.

Long had been known that our neighbouring elliptical galaxy M87 accommo-

dates a massive and bright radio source (a BH) at its core. According to GTR, the

presence of a massive body (e.g. a BH) in a spacetime generates curvature, which

bends the paths of photons ultimately forming null geodesics in curved spacetime.

By studying these geodesics around BHs it is observed that photons can be ab-

sorbed or escape from a BH [40]. Simply put, a boundary is defined between these

two categories of light-like geodesics, giving rise to a dark region known as the

shadow. Presence of M87 relatively less distant to our galaxy provided an excellent

opportunity to capture image of BH’s shadow at exquisite resolution [52, 53].
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The image observed by EHT [52] was consistent with Kerr BH, as predicted

by GTR. Based on the information collected, the observed BH has mass M =

(6.5± 0.7)× 109(M�) and spins away from us i.e. it rotates in clockwise direction.

This data has unlocked new paths and eventually may enable us to test GTR in

strong-field regime.

Another ground breaking discovery to be mentioned here is detection of gravi-

tational wave (GW) signal dubbed GW150914, in 2015 [41]. This was done by a

United States based observatory named Laser Interferometry Gravitational-Wave

Observatory LIGO. The birth of this wave signal was due to merger of a pair of

stellar mass BHs. The key features of GW150914 were in alliance to numerically

generated simulations of inspiral, merger and ringdown phases of waveform

templates. The data obtained from this marvelous detection acted as a compelling

evidence of binary black hole (BBH) system blending to form a single BH thus

giving rise to GW astronomy as an observational science. These observations not

only play vital role in understanding unique properties of spacetime in strong-

field regime and high velocity regime but also confirms the predictions of GTR

regarding BHs dynamics.

In 2017, the LIGO- Virgo collaboration detected another GW signal(GW170817)

formed by coalescing of a pair of neutron stars [54]. Approximately 1/7th of a

second after the detection of GW170817 followed gamma ray burst (GRB 170817A).

Through extensive observations along electromagnetic spectrum the optical tran-

sient of GRB 170817A was detected [55]. This was the first time that both gravita-

tional and electromagnetic waves were observed from a single source-making it

a first of its kind discovery in the field of multimessenger astronomy. This also

gave another evidence in favour of GTR: the postulate that GW emitting from

their source propagates outwards with speed of light.

Furthermore LIGO-Virgo collaboration observed in total ten GW signals during

7



the first two runs. Out of these ten signals, nine were concluded to be compatible

with those generated by BBH system, and the other with binary neutron star

(BNS) merger [56]. Recently, Advanced LIGO and Advanced Virgo have publicly

released the results collected in the first half of the third observing run (O3a)–

between 1st April 2019 to 1st October 2019 [42]. This current study has reported

39 events as a host to GW emission, showing consistency with the coalescence of

BBHs, BNS and NS-BH binaries.

The images of M87∗ by EHT collaboration and detection of GW are altogether

a break through in astrophysics. These discoveries have reignited the faith in

GTR as well developed a never ending interest in gravitational physics. The

images of another BH named Sagittarius A∗, this time hosted by our very own

galaxy– the Milky way, is expected soon too. This and some other undergoing GW

missions (e.g. KAGRA, LISA and others [57]) make us living on the verge of an

inquisitive yet intriguing new era of highly precise tests related to extreme gravity

and gravitational waves physics.

Mathematically, the methods used for computing shadows of BHs is more

or less the same in all cases. An observer is placed at a very large distance

(effectively infinity) away from the BH, and it is from the viewpoint of this observer

that the shadow is determined; typically celestial coordinates are introduced.

For asymptotically flat BHs these methods are fine, but in the presence of a

cosmological constant there is an additional subtlety in that the position of the

observer needs to be fixed.

Grenzebach et al. [64, 65] derived a promising analytical formula to deduce

shadow of a BHs lying in Plebañski- Demiañski class. Basically, they assumed

that the observer at finite position having four-velocity as linear combination

of ∂t and ∂φ. The shadow can then be calculated using the standard aberration

formula [66] for observers with any other four-velocities. The solution to KBH is
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considered as a particular case in the work by [67] to compute an approximate

formula that permits extraction of spin of the BH from the shape of its shadow.

By examining the shadow of a BH and naked singularity it is now possible to

distinguish between the two. This was suggested and proved by Hioki and Maeda

in [21] in which they also provided a technique to measure the spin and angle of

inclination by defining two observables.

We intend here to use techniques recently employed in [68] for computing the

shadow of a RBH with cosmological constant. We begin by fixing the location

of the observer in Boyer-Lindquist (BL) coordinates (r0, θ0), the respective radial

and polar angular coordinates of the observer. Instead of considering photon

rays coming from past, we follow them from the location (r0, θ0) to the past. The

behaviour of light-like geodesics can be characterized into two categories: those

that venture so close to the outer horizon r = r+ of the BH that they are absorbed

by it due to the gravitational pull, and those that ultimately escape to their original

source in the past. Thus a boundary is defined, between these two categories of

light-like geodesics, which encloses a dark region called the shadow.

With all the technological and theoretical development around us, it is now a

golden time to carry on studying shadows of BHs and the effect of their parameters

(especially spin) on them. The astrophysical BHs depends solely on their electrical

charge Q, mass M and angular momentum J = aM (which is particularly in direct

relation with spin a of a BH). Astronomically, a spinning BH has tremendous

importance since its spin stores enormous amount energy with a fossil record

about how the BH formed and grew. For example, it is still a mystery that how

supermassive BHs are formed in the early Universe, by investigating that whether

these BHs are highly spinning or not enables one to differentiate between the

scenarios responsible for the their formation i.e. from BH mergers or coherent disk

accretion [43].
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Further, the BH’s spin also acts as the potent source of energy for emission of

relativistic jets [60]. In Newtonian frame work, the Universal Law of Gravitation

contains only mass of a body with no information on the gravitational effects if the

body is spinning. Whereas in GTR, the characteristics of a rotating massive bodies

is somewhat analogous to a rotating charge in electrodynamics. For example, the

spin changes the position of the event horizon [46]. The spin of a BH considerably

affects shape of its shadow too.

In GTR, the geometry of chargeless RBH is described by Kerr metric. The

Kerr BH can be completely specified by its mass M and angular momentum J. By

unlocking these two parameters, all the properties of spacetime geometry can be

known. However it is a difficult task to calculate the spin of a BH since it has no

effect in Newtonian gravity and therefore it is necessary to probe the spacetime

close to the object [46].

BHs are formed due to the gravitational collapse of a star. In our Galaxy, the

expected number of BHs is about 10 Million. However, we know of only 20

stellar mass BH candidates, living in X-ray binaries [136]. BH X-ray binaries are

classified into two categories: Low mass X ray binaries have stellar companion

of only few solar mass (. 3M�) and High-mass X-ray binaries have massive

stellar companion (& 10M�). Theoretically assuming the BH candidate satisfying

characteristics of a KBH, the spin is measured nearly equal to unity. Black holes

having spin close to 1 are considered a rapidly RBHs. However the reason behind

such a high spin values is still not understood [46]. In [58], the authors conclude

for a low-mass X-ray binary source GRS 1915 + 105 is fast rotating KBH with

minimum spin value a > 0.98. In the case of high-mass X-ray binary Cygnus X-1

the lowest spin is a > 0.983. The spin of supermassive BHs in active galactic nuclei

evolves somewhat differently since their mass is increased by several orders from

its initial value. In case of random merger of two BHs, the most probable final
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product is a BH with a ≈ 0.69 while fast rotating objects with a > 0.9 should be

rare [59]. Accretion from a disk can potentially be a very efficient way to spin a

compact object up [60] .

It is usually assumed that Einstein’s GTR is valid only as an effective theory

of gravity. According to this picture, GTR can be taken as a correct description

of gravitational interaction only up to certain scales of energy and characteristic

distances. When they get comparable to Planck scale the theory is expected

to break, and to be replaced with a completely different physical model. This

reasoning seems to be supported by the well known fact that the Einstein-Hilbert

action, leading to the field equations of GTR, is perturbative non-renormalizable

[76]. The problem of finding a consistent theory of quantum gravity remains to

be the central challenge in theoretical physics. During the past decades different

approaches and perspectives on this issue were developed, such as loop quantum

gravity [69, 70], string theory [71, 72], and effective approaches of modified gravity

theories [73–75]. These attempts also addressed various problems of cosmology

and astrophysics, including DE and DM problem, the horizon problem, as well

as the singularities of GTR. All of these problems are connected to the potential

limitations of Einstein’s GTR, and are therefore important motivation and reference

in the investigation of quantum gravity.

However, Weinberg proposed a new nonperturbative notion of renormalizibil-

ity which is called “asymptotic safety" [77], based on the existence of a nontrivial

fixed point in renormalization group, which makes the physical couplings of the

theory non-divergent. The basic assumption of Weinberg’s proposal was that

gravity can meet this criteria, and thus its description can be considered as a con-

sistent field theory on all scales. A review and discussion of attempts to prove the

existence of this fixed point for gravity can be found in [78]. In the perspective of

research on quantum gravity, it is of special interest to consider the consequences
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of the asymptotically safe gravity (ASG) picture on the well known physical sys-

tems, which are in principle also accessible to observations. Black holes are a good

example of such system, where the corrections to standard description of gravity

could be important. Black holes in ASG were previously studied in [79–88].

In this work we continue the investigation of BHs in ASG, considering the RBH

solutions, and focusing on the functional form of gravitational coupling inspired

by the potential infra-red limit of the theory, due to its observational relevance.

Previous to this work the quantum gravity effects in the Kerr spacetime were stud-

ied in [90], where the structure of horizons, the ergosphere, the Penrose process

and the static limit surfaces were investigated considering the generalization of

gravitational constant to a general function of radial coordinate, G(r) – that comes

as a result of quantum effects. In this work we extend the analysis performed

in [90].

A rotational sphere with electric charge generates magnetic field. Similarly,

it is expected that a RBH, or a massive star, also produces “magnetic effect" of

gravity according to modern gravitational theory. Such phenomenon is known as

Lense-Thirring effect which was firstly proposed by Lense and Thirring in 1918 [7].

In this work, we also investigate the Lense-Thirring effect for the RBH considering

the varying Newtonian coupling.

The Standard model of cosmology suggests that our universe is compiled of

27% DM and 68% DE, while the rest is baryonic matter. Though DM has not

been directly detected, observational evidence for its existence can be found in

abundance. Examples include galactic rotation curves [91], the dynamics of galaxy

clusters [92], and the measurements of cosmic microwave background anisotropies

obtained through PLANCK [93]. It is therefore natural to ask how BH solutions

might depend on DM. Recently a generalization of the Kerr-(A)dS solution in the

presence of perfect fluid dark matter (PFDM) was obtained [99]. This solution
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had a number of interesting features. The size of its ergosphere decreased with

increasing |α|, where α parameterizes the strength of the DM contribution to the

metric. Null circular stable orbits were shown to exist, and the dependence of the

rotational velocity on α was determined. However no observational consequences

of this solution were considered. Motivated by the above, we also investigate the

shadow of the rotating BH in presence of PFDM [99].

Global monopoles are topological defects which may have been produced

during the phase transitions in the early universe. In fact, global monopoles are

just one type of topological defects. Other types of topological objects are expected

to exist including domain walls and cosmic strings (e.g. [94]). More precisely, a

global monopole is a heavy object characterized by spherically symmetry and

divergent mass. Such objects which may have been formed during the phase

transition of a system composed of a self-coupling triplet of scalar fields φa which

undergoes a spontaneous breaking of global O(3) gauge symmetry down to U(1).

The gravitational field of a static global monopole for the first time was found

by Barriola and Vilenkin and are expected to be stable against spherical as well

as polar perturbations [95]. According to their model, global monopoles are con-

figurations whose energy density decreases with the distance as r−2 and whose

spacetimes exhibit a solid angle deficit given by ∆ = 8π2γ2, where γ is the scale of

gauge-symmetry breaking. Among other things, global monopoles are expected

to rotate and to carry magnetic charges. Gravitational lensing by rotating global

monopoles has been investigated in Ref. [96] and more recently in Ref. [97]. Thus

it is worth to explore RBHs with a global monopole.

In this thesis, firstly, some theoretical aspects of varying Newtonian coupling

are analyzed [61]. While focusing on a more specific setting of infra-red limit

of asymptotic safe gravity, we concentrate on a specific form of G(r) function,
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which enables us to obtain the concrete solutions for equatorial geodesics, Penrose

process, and to analyze the Lense-Thiring effect. Secondly, shadows of a RBH

in PFDM with cosmological constant are obtained [62]. Our study provides a

possible tool for observation of DM via shadows, perhaps using the high resolution

imaging of EHT. Lastly, a comprehensive study of the impact of the rotating global

monopole BH surrounded by perfect fluid on its shadow is done. For this a new

metric has been formulated, using Newman-Janis algorithm with an exception

of no complexification [63] (the method is also illustrated in A). This new metric

has configuration of a rotating dyonic black hole (RDBH) with global monopole

having perfect fluid around it. A graphical comparison between the shadow of

a new metric and its Kerr counter part and the effect of new parameters on the

apparent shadow shape can shed some light in future observations as an indirect

way to detect characteristics of a BH using the shadow images.

This thesis consists of six Chapters which are separated as follows:

• Chapter two discusses the conceptual foundation of this study. This basic

information come handy in better understanding of rest of the thesis.

• Chapter Two investigates the consequences of running gravitational coupling

on certain properties of an RBH in ASG theory. The horizons structure and

singularity of the metric is then discussed. Considering the BH solution in

equatorial plane, the geodesics of particles, both null and time like cases, are

explored. The effective potential is computed and graphically analyzed for

different values of parameter ξ̃. The energy extraction from BH is investi-

gated via Penrose process. A brief discussion on Lense-Thirring frequency is

also done in the end.

• Chapter Four is based on studying the effects of DM on the shadow of an RBH
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in the background of PFDM, along with its extension to nonzero cosmological

constant Λ. Working in BL coordinates, we consider the effects of the PFDM

parameter α on the shadow cast by a BH with respect to an observer at

position (ro, θo).

• Chapter Five mainly covers the computation of shadow of an RDBH with

global monopole in presence of a perfect fluid. Firstly, the surface topology at

the event horizon is deduced using the Gauss-Bonnet Theorem. By choosing

ω = −1/3, 0, 1/3 the effect of DM, dust and radiation on the silhouette of

BH are then investigated. In the end, energy emission rate with respect to

parameters is analyzed.

• Chapter Six is on the results obtained. It contains the conclusive remarks

regarding this study.
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Chapter 2

Preliminaries

In this chapter we briefly review some basic concepts of geodesic equations, RBHs

and phenomenon of their imaging.

2.1 Geodesic Equations in General Relativity

One of the most pivotal topics of this thesis is the geodesic equations of motion.

A geodesic is observed as a straight line on a curve manifold. It is the curved-

spacetime version of the notion of straight path in Euclidean space. In this section,

we will formally define a geodesic and derive the geodesic equation for a four

dimensional spacetime, equipped with a metric gµν. Furthermore, we will also

describe the formulation of geodesic equation using Lagrangian and Hamiltonian

approach. Hamiltonian Jacobi approach for computing geodesic equations of

motion will also be discussed in the end of this section.
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Intrinsic Derivative

Let eµ(u) be the coordinate basis vectors, on the curve C, corresponding to the

parameter value u [98]. Then the vector field v at any point along the curve is

defined as

v(u) = vµeµ(u). (2.1)

On taking the derivative of the above equation, we attain the form

dv
du

=
dvµ

du
eµ + v

µ deµ

du
. (2.2)

With the use of result ∂eµ/∂xρ = Γν
µρeν and applying chain rule, lead us to

dv
du

=

(
dvµ

du
+ Γµ

νρv
ν dxρ

du

)
eµ. (2.3)

Let us write the term in the parentheses separately as

Dvµ

Du
=

dvµ

du
+ Γµ

νρvν dxρ

du
, (2.4)

which is the intrinsic derivative of v along the curve C. The intrinsic derivative is

often also referred as absolute derivative.

Parallel Transport

Consider an initial point O on the curve C parametrised by u. Let a vector v is

defined at O with parameter uo. Then vector v is parallel transported throughout

the curve C given that the derivative of v vanishes along the curve i.e.

dv
du

= 0. (2.5)

As a consequence, we are left with a “parallel” field of vectors at each point along

C, generated by the parallel transport of v.

Thus, carrying a vector along a path such that the vector remains parallel to itself
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during its transport along the curve all the while, is a concept known as parallel

transport.

2.1.1 Geodesic Equations

In a spacetime, for a general parameter u, a geodesic can be associated with a

curve Υµ = Υµ(u). Let the tangent vector to Υµ be χ(u). Then geodesic can also

be described as a curve parallel transported along its tangent vector i.e.

dχ

du
= λ(u)χ. (2.6)

Here λ(u) is a function. Combining (2.4) and (2.5), we see that the components χµ

of the tangent vector must satisfy

Dχµ

Du
=

dχµ

du
+ Γµ

νρχν dxρ

du
= λ(u)χµ. (2.7)

The components of the tangent vector are given by χµ = dxµ/du, using this above,

we obtain a set of equations, known as geodesic equations, as

d2xµ

du2 + Γµ
νρ

dxν

du
dxρ

du
= λ(u)

dxµ

du
. (2.8)

Geodesics are categorize as: (i) the ones corresponding to propagation of massless

particles, called null geodesics, (ii) the ones corresponding to propagation of

massive particles, called non-null geodesics.

Equation (2.8) is valid for both null and non-null geodesics dependent on some

general parameter u. However, if the curve is reparameterised such that λ(u)

vanishes then u is termed as an affine parameter [98]. From (2.6), we see that this

corresponds to a parameterisation in which the tangent vector is the same at all

points along the curve (i.e. it is parallel-transported), so that

dχ

du
= 0 =⇒ Dχµ

Du
= 0. (2.9)
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The equations satisfied by an affinely parameterised geodesic are thus

d2xµ

du2 + Γµ
νρ

dxν

du
dxρ

du
= 0. (2.10)

Thus, a geodesic can also be defined as a curve whose tangent vector is parallel

transported along itself.

In General Theory of Relativity, the geodesic equations (2.10) stand among the

most important results to study motion of a particle. But one has to put in a lot of

tedious work to set up these geodesic equations. To solve them would be another

tiring task. Fortunately, it is possible to set up few other, less complicated, ap-

proaches for the computation of geodesic equations. These alternative approaches

are briefly discussed below.

2.1.2 Lagrangian Approach for Geodesics

Another way of driving the geodesic equations (2.10) is through calculus of varia-

tion and Hamilton’s principle of least action. For a start, we consider an action S,

for some fixed parameter λ, to be

S[xµ(λ)] =
∫ λ1

λ2

Ldλ, (2.11)

which is the spacetime distance between two fixed endpoints λ1 and λ2. The

action is invariant under arbitrary reparametrisations of the curve. Fulfilling the

requirement that the variation of the action functional (2.11) vanishes (i.e., δS = 0)

leads to Euler-Lagrange equations of motion

d
dλ

(
∂L
∂ẋµ

)
− ∂L

∂xµ = 0 (2.12)

This equation gives n second order differential equations for the geodesic motion

of a particle.
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Inserting the Lagrangian

L =
1
2

gµν ẋµ ẋν, (2.13)

into the Euler Lagrange equations gives geodesic equation of the form (2.10).

Here overdot denotes differentiation with respect to the parameter. This form

of geodesic equations is non-affinely parametrised. By introducing an affine

parameter to the curve, we arrive at the geodesic equations (2.10). Geodesics can

thus be defined as paths in spacetime xµ(λ), obtained by extrimising the action

(2.11). Another point to mention here is that the Lagrangian (2.13) is not a unique

function in the sense that the geodesic equation (2.10) would have also be obtained

if, as an example, Lagrangian function

L → L′ =
√
|gµν ẋµ ẋν| ,

is chosen and inserted in action

S′[xµ(λ)] =
∫
L′dλ. (2.14)

The former particle Lagrangian is parametrised by the time coordinate while the

second particle Lagrangian is parametrized by the arc-length. Both are easily

tractable. The former equation convinces that the particle will travel along a path

in the shortest time between two points while second equation tells that particle

follows or chooses the shortest path in the spacetime. Naturally, the shortest path

in arc-length or the path with shortest time should be same in the gravitational

field. It depends how one parametrizes the problem which structures the aim of

the problem. Any how, mostly the Lagrangian (2.13) is preferred since it does not

feature a square root, which makes it more convenient in use.
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2.1.3 Hamiltonian Approach for Geodesics

Another way of defining geodesic equations is through Hamiltonian formulation.

This formulation is somewhat deduced using Lagrangian formulation, by follow-

ing the standard procedure. As a first step, the Hamiltonian functionH is defined

in terms of generalized coordinates xµ and conjugate momenta pµ, such that

H = H(xµ, pµ, λ) and pµ =
∂L
∂ẋµ , (2.15)

with ẋµ being the velocities.

Since Hamiltonian functionH is the Legendre transform of the Lagrangian L, it is

given by

H = ẋµ pµ −L, (2.16)

The Eq. (2.13) and (2.16), when combined, yields

H =
1
2

gµν pµ pν, (2.17)

with conjugate momenta as

pµ = gµν ẋν. (2.18)

Evidently, the momenta pµ represents the covariant components of the tangent

vector to the geodesic.

Following a standard method [100] leads us to Hamilton’s equations

ẋµ =
∂H
∂pµ

, ṗµ = − ∂H
∂xµ , (2.19)

which are different from Lagrange equation, discussed earlier, in a way that later

are the second order differential equations whereas Hamilton’s equations defines

a system of 2n coupled first order ordinary differential equations for coordinates

xµ and their conjugate momenta pµ in n spacetime.

Using the Hamiltonian (2.17), Hamilton’s equations (2.19) become

ẋµ = gµν pν, ṗµ = −1
2

gνσ
,µ pν pσ. (2.20)
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The first of these is clearly equivalent to the definition of the conjugate momenta

(2.18). The equations (2.20) may be combined to give the familiar geodesic equa-

tion pµ∇ν pµ = 0.

A freely falling massive particle follows a timelike geodesics. In this case Hamilto-

nian functionH equates to −1
2 m2, m is particle’s mass. The Hamiltonian vanishes

for light-like geodesics i.e. H = 0, this is also referred as null condition.

The geodesic equations can also be obtained by applying the variational principle

to the integral [100] ∫ λ2

λ1

(
pµ ẋµ −H(xµ, pµ, λ)

)
dλ (2.21)

2.1.4 Hamiltonian Jacobi Approach for Geodesics

Uptill now, the coordinates taken are general. This allows us to write the La-

grangian, previously defined in coordinates {qµ, q̇µ}, in a new coordinate system

say {Qµ, Q̇µ}. The geodesic equations of motion remain the same in both coordi-

nate systems.

In the new coordinate system the Hamiltonian and Canonical momenta, respec-

tively, now are

K = PµQ̇µ −L′ and Pµ =
∂L′

∂Q̇µ
. (2.22)

The Lagrangian in new coordinate system is now L′ = L′
(
Qµ, Q̇µ, λ

)
. It should

be mentioned here that though K = K(Qµ, Pµ, λ) is the same Hamiltonian but

defining it in another coordinate system makes it a distinct function from H =

H(xµ, pµ, λ). In this regard, a new system of coordinates assigns new coordinates

to the same point in phase space A set of transformations in phase space, known
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as Canonical transformations preserves the form of Hamilton equations

∂K
∂Qµ = −Ṗµ, (2.23)

∂K
∂Pµ

= −Q̇µ. (2.24)

The variational principle applied to the following integrals should lead to the

same geodesic motion

δ
∫ λ2

λ1

(
pµ ẋµ −H

)
dλ = δ

∫ λ2

λ1

(
PµQ̇µ −K

)
dλ = 0 (2.25)

The integrands above are not necessarily equal, though they give same geodesic

equations, but can be equalized if they are expressed by the relation of the form

σ
(

pµ ẋµ −H
)
= PµQ̇µ −K+

dF
dλ

. (2.26)

Here σ is a constant and can be set to unity, without any loss of generality [100].

The function F is coordinate dependent function having a continuous second

order derivatives. Interestingly, it may depends on old coordinates {xµ, pµ} as

well as new coordinates {Qµ, Pµ} since the variation of any of the coordinates

vanish at the end points, consequently making the third term vanish too.

To make function F works more significantly , it is better to choose half the

variables from old system of coordinates and the other half from new system of

coordinates. This way F implicilty connects the two systems of coordinates as if

like a bridge and thus constitute the name generating function [100].

We further choose the generating function F as

F (xµ, Qµ, λ) = S
(
xµ, Pµ, λ

)
−QµPµ. (2.27)

The Eq. (2.26) then yields(
∂S
∂xµ − pµ

)
ẋµ +

(
∂S
∂Pµ
−Qµ

)
Ṗµ +

(
H+

∂S
∂λ
−K

)
= 0. (2.28)
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Following the Hamilton- Jacobi formulism, the new coordinates (Qµ, Pµ) must

correspondingly act as constants of motion. This leads to attaining the value of

xµ(Qµ, Pµ, λ) and thus a solution to the motion of the particle is obtained.

To fulfill the above requirement, the new Hamiltonian K vanishes identically i.e.

K = 0. Consequently, the new equations of motion becomes

∂K
∂Qµ = −Ṗµ = 0, (2.29)

∂K
∂Pµ

= Q̇µ = 0. (2.30)

We then obtain the equation

∂S
∂λ

+H = 0, with pµ =
∂S
∂xµ . (2.31)

It is then possible to write a differential equation for the action function S(xµ, Pµ, λ)

called Hamilton-Jacobi equation:

H
(

xµ,
∂S
∂xµ , λ

)
= − ∂S

∂λ
(2.32)

which is a first order non linear differential equation. The function S is called the

Hamilton’s principle function. This function does not appears separately in the

Hamilton-Jacobi equation, only its derivatives does.

2.2 Kerr Black Hole

A BH is a mysterious cosmic body with strong gravitational field as its dominant

feature. The strength of its gravitational field can be noticed from the fact that not

even light can escape after coming in its influence.

Formation of a BH occurs when an astronomical object having mass M gravitation-

ally collapse consequently contracting to a point that its size crosses gravitational
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radius rg = 2GM/c2 , also known as Schwarzschild radius, here G is Newton’s

gravitational constant, and c is the speed of light. The mass of the BH acts as

gravitational charge and is directly proportional to the total energy of the system.

A null surface, called event horizon, around the BH does not allow any signals to

escape while the physical objects and radiation can fall into it.

The Einstein’s GTR effectively meets the criteria required to describe BHs. The

EFE (1.1) though appear at first glance to be complicated due to its obvious non-

linearity and complexity. But fortunately, soon after the appearance of EFE, the

first solution to these equations gave theorists an evidence to believe the existence

of BHs. Though its astronomical observations came quite later [53].

All the geometric information of a spacetime is enclosed by metric gµν with n

dimensions. The GTR is a four dimensional theory. Implying summation by

Einstein’s convention, the spacetime geometry of a BH veils itself in the solutions

to EFE. A general form to represent a line element is ds2 = gµνdxµdxν.

In GTR, the unique spherically symmetric vacuum solution is the Schwarzschild

solution given by metric

ds2 = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2, (2.33)

where m = GM/c2 is mass of gravitating body. This is the first ever solution to

EFE and fully describes the exterior of a spherically symmetric gravitating body

with zero spin. For an observer faraway (r → ∞) from the gravitational source ,

interprets the spacetime solution (2.33) as Minkowski flat spacetime in spherical

polar coordinates. The singularities appears in Schwarzschild solution at r = 0

and r = 2M. The computation of Kretchmann invariant RµνσρRµνσρ = 48M2/r6

specifies the singularity at r = 0 as essential singularity: this singularity can

not be removed but carries physical significance. The singularity at r = 2M,

on the other hand, is a coordinate singularity and can be avoided by change
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of coordinates. Eddington Finkelstein coordinates or Kruskal coordinates are

some of the coordinates use to remove this singularity. The event horizon of a

Schwarzschild BH exists at r = rH = 2M, which is also a null surface. The interior

of Schwarzschild BH solution lies in the domain rε
(
0, 2M] while exterior region

starts from r > 2M.

The gravitational field of a rotating chargeless gravitating source is described

by Kerr spacetime: solution to EFE founded by Roy Kerr in 1963. To get a clear

picture of this let us assume a distant object (be it a star or a BH) rotating in

space about a vertical axis through its center. In four dimensional spacetime this

situation can naturally be described in terms of three spherical coordinates r, θ, φ

on R3 and one time coordinate t on R. Here r is interpreted as the distance to the

centre of the rotating object, θ as colatitude and φ as longitude.

In BL coordinates {t, r, θ, φ} , the metric defining a Kerr spacetime has the form

ds2 = −
(

1− 2m
r
Σ

)
dt2 − 4ma

r
Σ

sin2 θdtdφ +
Σ
∆

dr2

+ Σdθ2 +
(
(r2 + a2) sin2 θ + 2m

r
Σ

a2 sin2 θ
)

dφ2, (2.34)

with the expressions for Σ and ∆ as

Σ = r2 + a2 cos2 θ, (2.35)

∆ = r2 − 2mr + a2. (2.36)

Since components of this metric are independent of t and φ, this makes Kerr metric

a stationary and axially symmetric solution. The metric above is characterized by

two parameters:

• The parameter m = GM/c2, where M is mass of BH. Interestingly, m has

dimension of a distance.

• If a spinnig BH has J angular momentum then parameter a = J/(Mc), in the

above metric, relates to the rotation of BH. As can be noticed, parameter a is
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angular momentum per unit mass of BH. Physical importance of parameter a

is its association to the direction and speed of rotation of a spinning BH. For a

positive value of a, the direction of spin is clockwise. For a counter clockwise

spinning BH, the value of a is negative. As for the speed of rotation, since

a is directly proportional to angular momentum J thus greater value of J

indicates faster spin of BH.

Horizons

Mathematically, the horizons of Kerr metric lies in coefficient of third term of

metric (2.34) i.e. when grr = 0. The condition ∆ = 0, or equivalently r = r± =

M ±
√

M2 − a2 gives rise to two null surfaces r− and r+, with r− ≤ r+; the

surface defined by r+ is commonly called event horizon or outer horizon. The

event horizon r+ of Kerr BH is a null surface beyond which no event or information

can be observed by an observer, located at distant position. It is a sphere-shaped

surface veiling the intrinsic singularity of BH. Since no information beyond r+ is

undetectable, the event horizon apparently acts as the boundary of the BH. On the

other hand, r− is the inner horizon or Cauchy horizon.

Singularities, Symmetries and Killing Vectors

Two singularities arise in Kerr metric: coordinate singularity and curvature sin-

gularity. A coordinate singularity may simply arise due to the failure of the

coordinate system. By replacing the coordiante system with some other more

promising system of coordinates this singularity can be avoided. In an RBH, at

r = r± = M±
√

M2 − a2 there exists coordinate singularity as ∆ goes to zero and

coefficient of dr2 to infinity.

The second singularity which is also an intrinsic singularity of RBH is the
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Figure 2.1: Schematic diagram showing a Kerr BH. Figure follows [98].

curvature singularity. Mathematically, this singularity is detected with the help of

scalar invariant, RµναβRµναβ, (also called Kretschmann scalar). The scalar invariant

blows of at curvature singularity. This singularity cannot be removed by any

change of coordinates and it is thus an intrinsic property of the Kerr space-time.

Eq. (2.35) is sum of two nonnegative quantities. A singularity can only exist here

if both terms in eq.(2.35) vanish or

r = 0 and a cos θ = 0, since a , 0 thus θ = π/2. (2.37)

At a first glance this may seems an absurd result but it should be remember

here that r = 0, θ = π/2 is not a single point but forms a disk: it is rather a ring

of unlimited gravitational forces [133]. Because of its shape curvature singularity

is also called ring singularity (or even ringularity). By passing through the ring
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singularity the observer exits to another realm, completely opposite to the previous

one. The observer now experiences repulsion instead of attraction. The new

spacetime is asymptotically flat too and is described by Kerr metric with r < 0.

For the case of no rotation, a = 0, the ring shrinks into just a point, as in the

Schwarzschild metric.

Physically, a spacetime does not depend on its coordinate system. Indeed,

form of a metric is changed after employing coordinate transformation but its

interpretation remains the same [135]. However, a coordinate transformation

which does not change the form of the metric is called symmetry. Symmetries in a

metric can best be described by Killing vectors.

Particularly, a Lie derivative Lwith respect to Xµ for a metric gνρ, given by

LXgνρ = Xµ∂µgνρ + gµρ∂νXµ + gνµ∂ρXµ,

when vanishes give us an equation of the form

∇µXν +∇νXµ = 0.

The above equation is Killing’s equation and any solutions to it are called Killing vectors

[135]. Two Killing vectors arise in Kerr metric:

ξt =

(
∂

∂t

)
r,θ,φ

and ξφ =

(
∂

∂φ

)
t,r,θ

, (2.38)

with time and axial coordinate, meaning that it has two symmetries. The pres-

ence of these Killing vectors in a space time also implies that the corresponding

momenta acts as constant of motion. Momenta along time and longitudinal coor-

dinates i.e. pt and pφ, of a test particle are conserved in the Kerr spacetime.

Static Limit Surfaces and Ergoregion

For a stationary axisymmetric spacetime, static limit surfaces, rs
+ and rs

−, exist

when the coefficient of dt2 vanishes i.e. gtt = 0. In Kerr space time these surfaces
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occur when

r = rs
± = m±

√
m2 − a2 cos2 θ , (2.39)

such that rs
+ > rs

−. Some very significant phenomenon, like Penrose process and

superradiance are associated with these surfaces.

The horizons of Kerr BH

r± = m±
√

m2 − a2 (2.40)

lies in the interval [rs
+, rs
−] such that rs

+ > r+ > r− > rs
−. The surface rs

+ coincides

with outer horizon r+ at θ = 0, π, other than these points the surface rs
+ completely

encloses the outer horizon. Similarly, the surface rs
− coincides with inner horizon

r− at θ = 0, π but at other points it completely confines itself in inner horizon.

The surface rs
+ is the outer most surface of an RBH and is usually described as

a boundary, outside of which the observer can be static but after crossing it, its

impossible to remain static due to strong frame dragging effect. This outer surface

of an RBH is also called stationary limit surface or static limit surface since the

worldline changes from timelike to spacelike once this limit is crossed.

Inside the stationary limit surface, every observer, particle or photon rotates with

the same direction as the rotation of the BH. The region between the stationary

limit surface and the outer horizon is called the ergoregion (the stationary limit

surface itself is called the ergosurface). This is the region from which particles

can escape. The presence of ergosphere causes various kinds of energy extraction

mechanisms for an RBH e.g Penrose process.

Spin of Kerr Black Hole

Spin of BH can be powered up by presence of a thin accretion disk. As the gas

loses its angular momentum and energy it eventually falls into BH with out any
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loss of considerate emission of additional radiation. This also results in increased

mass and angular momentum of BH. The spin value of BH can be best evaluated

from this mechanism too. In this scenario, a KBH of mass M has the value of its

dimensionless spin parameter ã = a/M as [137]

ã =


√

2
3

Mo
M

(
4−

√
18 M2

o
M2 − 2

)
if M ≤

√
6 Mo,

1 if M >
√

6 Mo,
(2.41)

where Mo is mass of the initially non-rotating BH. Now if we plot the above

expression (see Figure 2.2), it is noticed that as the BH gains mass by the factor
√

6

then the equilibrium value of its spin is 1. As shown in Figure (2.2), initially the

spin increases quite fast. Roughly speaking, the BH will have to double its mass to

reach the spin ã = 0.99. However, a non-negligible amount of gas is required by a

BH to reach spin value 1 [46].

Special Cases:

• If the spin parameter a exceeds mass m of the RBH, a naked singularity

appears: a singularity not veiled by horizon. Physically, such a phenomenon

is not possible since it is like observing a point of infinite density. To avoid

naked singularity, the value of a is restricted to interval [−m, m] or m2 ≥ a2.

• For the case |a| = m, BH gains maximum rotation. Such BHs are also named

extremal BHs.

• The condition θ = {0, π} corresponds to the set of points in space-time along

the BH’s axis of rotation and the condition θ = π/2 corresponds to the BH’s

equatorial plane.

• Cease the rotation by considering a = 0 and Ker spacetime reverts to

Schwarzschild spacetime. If the mass is also then removed by setting M = 0
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Figure 2.2: Plot showing the dimensionless spin parameter ã of a Kerr BH ac-

creting from a thin disk, see Eq. (2.41). The three dashed vertical lines indicate

when the BH spin reaches the values ã = 0.99(M/Mo ≈ 2.03), 0.998(M/Mo ≈

2.20), and1(M/Mo =
√

6 ≈ 2.45). Figure follows [136]

then only Minkowski spacetime is left.

For the remainder of this, and the next chapters, special units are chosen such that

c = 1 and G = 1.

2.2.1 Rotating Black Hole in Asymptotically Safe Gravity The-

ory

Weinberg proposed a new nonperturbative notion of renormalizibility which is

called “asymptotic safety” [77], based on the existence of a nontrivial fixed point
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in renormalization group, which makes the physical couplings of the theory non-

divergent. The key point to mention here is that when quantum corrections are

applied to BH spacetime, the system is modified, such that the Newton constant

G turns into a r-dependent running Newton coupling G(r) i.e.

G → G(r).

The Running Coupling in Asymptotically Safe Gravity

The solution of the renormalization group (RG) equation for the running Newton

coupling, G(p), of the action (2.43) is computed in [101], using the one-loop

correction:

G(p) =
GN

1 + ξ p2GN
, (2.42)

where GN is Newton’s constant at classical level. For simplicity, the value of GN

will be equated to unity in rest of our analysis. Here ξ is also a coupling coefficient.

Cai and Easson broadened the study of BH solution in safe gravity by consider-

ing higher derivative terms in their analysis [79]. They initiated their study by

introducing an effective action

Γp[gµν] =
∫

d4x
√
−g

[
p4go(p) + p2g1(p)R+ g2a(p)R2

+ g2b(p)RµνRµν + g2c(p)RµνσρRµνσρ +O(p−2R3) + ...

]
, (2.43)

where gµν represents metric tensor with g as its determinant, Ricci scalar, Ricci

tensor and Riemann tensor are denoted by R, Rµν and Rµνσρ, respectively, p is

the momentum cutoff and gi (0, 1, 2a, ...) are dimensionless running couplings

satisfying the renormalization group (RG) equations, for example:

g0(p) = − Λ(p)
8πGN(p)

p−4, g1(p) =
1

8πGN(p)
p−2,

d
d ln p

gi(p) = βi(g).

(2.44)
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Further, it was shown that for large values of radial coordinate r, the momentum

cut-off goes asymptotically small i.e. p ∼ 1/r; it may go below the Planck scale.

Under this limit (so-called Infra-red or IR), the running Newton coupling G(r)

takes the form

G(r) '
(

1− ξ̃

r2

)
, (2.45)

for r � lPlanck, where ξ̃ differs from ξ by O(1) and has constant value, less than

unity. For more understanding of this running coupling, it is recommended to

see [79]. Although the main motivation of this form of G(r) comes from the

potential IR limit of asymptotic safe gravity, we note that the analysis performed

in this work can be understood as more general and not only limited to the

asymptotic safety program, since the basic assumption of its validity is only that

the quantum effects can be described by the correction given in (2.45).

RG Improved Kerr Metric

The analysis of RG improved Schwarzschild metric is done in [102], and it was no-

ticed that apart from usual Schwarzschild horizon, the presence of a new horizon

was noticed which, at critical mass, coincides with the outer horizon. To under-

stand the technique used for the computation of RG improved Schwarzschild

metric it is suggested to see [102]. With the help of similar analysis an improved

Kerr metric was suggested by Reuter and Tuiran [90]. In their analysis they consid-

ered Newton’s coupling G to be r-dependent i.e. G = G(r). With this assumption

they arrived at the improved Kerr metric form as

ds2 = −
(

1− 2Mr
Σ

G(r)
)

dt2 − 4aMr sin2 θ

Σ
G(r)dtdφ +

Σ
∆

dr2

+ Σdθ2 + sin2 θ

[
r2 + a2 +

2a2Mr sin2 θ

Σ
G(r)

]
dφ2, (2.46)
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where ∆ = r2 − 2MrG(r) + a2 and Σ = r2 + a2 cos2 θ. Here a is defined as rota-

tional parameter.

2.2.2 Rotating Black Hole in Perfect Fluid Dark Matter

There is observational evidence that our Universe is constitute of an invisible

matter called dark matter (DM). Though DM covers about 27% of our Universe, but

still we are unfamiliar about its nature. Some of the evidence supporting existence

of DM include galactic rotation curves [91], the dynamics of galaxy clusters [92],

and the measurements of cosmic microwave background anisotropies obtained

through PLANCK [93]. To understand the nature of this mysterious matter a

whole new physics is required possibly relying on the existence of some new

species of fundamental particles. It is therefore natural to ask how BH solutions

might depend on dark matter.

The action defined for BH surrounded by DM field couple to gravity is given

by

S =
∫

d4x
√
−g

(
R

16π
+ LDM

)
, (2.47)

where LDM presents the DM Lagrangian density. Use of variational approach on

the above action S leads to Einstein field equations of the form

Rµν −
1
2

gµνR = −8π
(
T̄µν + T DM

µν

)
= −8πTµν, (2.48)

where the ordinary matter has momentum tensor T̄µν and DM has momentum

tensor T DM
µν . From current astrophysical observations, the dominance of dark

matter and dark energy in our universe is evident. By assuming that a dark matter

field in background of a BH is a perfect fluid, the energy momentum tensor then

is of the form Tµν = diag[−ρ, p, p, p] [113]. As a simplest case, it is added that for
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some constant value δ,

p/ρ = δ− 1.

Amongst the many dark matter models that have been suggested is the perfect

fluid dark matter model, which was initially proposed by Kiselev [112]. An en-

tailed construction of a new class of spherically symmetric BH metrics in the

presence of PFDM was done in [113]. In the spherically symmetric case this class

of BHs was distinguished by a new term in the metric function that grows logarith-

mically with distance from the BH. The logarithmic dependence was introduced

by Kiselev [112] to account for the asymptotic behaviour of the quintessential

matter at large distances, i.e. in the halo dominated region, in order to explain the

asymptotic rotation curves for the dark matter (see also [113]). The metric is given

by

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2dθ2 + r2 sin2 θdφ2 (2.49)

along with

f (r) = 1− 2
M
r
+

α

r
ln

r
|α| .

The PFDM’s intensity is shown by parameter α.

Only recently has this class been generalized to include rotation [99], providing a

PFDM version of the Kerr-(A)dS solution. The metric is given by

ds2 = − ∆r

Ξ2Σ

(
dt− a sin2 θdφ

)2
+

∆θ sin2 θ

Ξ2Σ

(
adt− (r2 + a2)dφ

)2

+
Σ
∆r

dr2 +
Σ
∆θ

dθ2 (2.50)

where

∆r = r2 − 2Mr + a2 − Λ
3

r2
(

r2 + a2
)
+ αr ln

r
|α| ,

∆θ = 1 +
Λ
3

a2 cos2 θ, Ξ = 1 +
Λ
3

a2, (2.51)

Σ = r2 + a2 cos2 θ
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with the mass parameter of the BH being M. The parameter indicating the presence

of perfect fluid dark matter is α. This solution reduces to a rotating BH in a PFDM

background when Λ = 0, and to the Kerr-(A)dS solution for α = 0.

2.2.3 Rotating Dyonic Black Hole with a Global Monopole in

Perfect Fluid

Global monopoles are topological defects which may have been produced while

the early Universe went through phase transitions. In fact, global monopoles are

just one type of topological defects. Other types of topological objects are expected

to exist including domain walls and cosmic strings (e.g. [94]). More precisely, a

global monopole is a heavy object characterized by spherically symmetry and

divergent mass.

The action, SEM, for Einstein Maxwell gravity along with actions S(D) and S

respectively defining presence of a global monopole and matter distribution, can

be altogether written as

S = S(EM) + S(D) + S (2.52)

=
∫ √

−g d4x
(
R
2κ
− 1

4
FµνFµν

)
+

∫ √
−g d4x

(
1
2

gµν∂µΦs∂νΦs − λ

4

(
Φ2 − γ2

)2
)
+ S .

The quantities g,R and Fµν are, respectively, determinant of gµν associated to the

gravitational field, scalar invariant and electromagnetic tensor. Also µ, ν = 0, 1, 2, 3.

Now the action S(D) corresponds to the matter having a defect– a global monopole

which is a heavy object formed in the phase transition of a system composed

by a self-coupling scalar triplet field Φs, where s runs from 1 to 3 [95]. The

corresponding EFE read

Rµν −
1
2

gµνR = 8πTµν. (2.53)
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While the corresponding Maxwell equations are

∇µFµν = 0. (2.54)

With these equations in mind, and without loss of generality we can choose a

spherically symmetric metric written as follows

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dθ2 + r2 sin2 θdϕ2. (2.55)

where

f (r) = 1− 8πγ2 − 2M
r

+
Q2

E
r2 +

Q2
M

r2 −
υ

r1+3ω
, (2.56)

with the energy density in the form

ρ = − 3 ω υ

8πr3(1+ω)
. (2.57)

Note that, υ is an integration constant related to the perfect fluid parameter. From

the weak energy condition it follows the positivity of the energy density of the

surrounding field, ρ ≥ 0, which should satisfy the following constraint ωυ ≤ 0.

Hence the rotating spacetime metric has the form

ds2 = −
(

∆− a2 sin2 θ

Σ

)
dt2 − 2a sin2 θ

(
1− ∆− a2 sin2 θ

Σ

)
dtdϕ +

Σ
∆

dr2 + Σdθ2

+ sin2 θ

[
Σ + a2 sin2 θ

(
2− ∆− a2 sin2 θ

Σ

)]
dϕ2. (2.58)

For spin a = 0, perfect fluid parameter υ = 0 and no charges, the above metric

reduces to Schwarzschild BH with global monopole [128].

The vector potential computed through Newman-Janis formalism for a RDBH is

given by [126]

A =

(
rQE − aQM cos θ

Σ

)
dt +

(
−ra

Σ
QE sin2 θ +

r2 + a2

Σ
QM cos θ

)
dϕ. (2.59)

The detailed derivation of metric (2.58) is given in Chapter 5.
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2.3 Shadow of a Rotating Black Hole

The path followed by light particles (photons) is straight, until they come under

the influence of a strong gravitational compact object, in our case a BH. Photons

are then forced to curve their path and consequently orbit around BH. The study

of such photon’s geodesics (also comes with the name light-like geodesics or null

geodesics) leads us to some interesting optical observations.

The behaviour of null geodesics can be characterized into two categories: those

that venture so close to the outer horizon r = r+ of the BH that they are absorbed

by it due to the gravitational pull, and those that ultimately escape to their original

source in the past. Thus a boundary is defined, between these two categories of

light-like geodesics, which encloses a dark region called the shadow.

In particular, the boundary of BH’s shadow is composed of set of light rays that

makes null orbits of constant radius around BH [40]. Such orbits are associated

to a finite interval of radial positions which is referred to as a photon region. The

circular orbits lying at the extremal radial positions of photon region stays on the

equatorial plane and are referred to as light rings. More generally, a light ring

is taken to be any planar circular photon orbit, which implies R = 0 = dR/dr.

The existence of unstable photon orbits around compact objects is associated to

multiple images of light sources, and in case of a BH, to a shadow. Thus image of

a photon region is considered as BH’s shadow.

Description of Method

The basic technique to compute shadow of BH was formulated, for example,

in [17]. Another recent discussion was done by [132].

Using Hamiltonian-Jacobi formulasim the null geodesics of Kerr BH can be fully

separated. All four geodesic equations reduce to first order differential equations
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associated with four constants of motion [9]. This considerably simplifies the

problem. The two constants of motion comes from Killing vectors ξt and ξφ. The

rest mass of photon, which is zero, acts as third constant of motion and the fourth

is Carter’s constant which is generated due to the presence of second order Killing

tensor field.

Photons emitted from a light source opt null geodesics near a BH. Possibly photons

follow three trajectories:

• those absorbed by the BH appear as a dark zone (shadow) to the observer.

• those scattered away to infinity from the BH, these photons appear visible to

observer’s eye.

• those critical null geodesics which separate the first two orbits.

To study shadow of a BH, the observer is considered faraway (ro → ∞) from a BH.

The orthonormal basis vectors {et̂, er̂, eθ̂, eφ̂} are useful to define the position of a

local observer located faraway from a BH. The expression

eα̂ = eµ
α̂ eµ, (2.60)

relates orthonormal basis to coordinate basis {et, er, eθ, eφ} of the spacetime

eα̂.eβ̂ = ηα̂β̂, (2.61)

with ηα̂β̂ = (−1, 1, 1, 1) a Minkowski metric. Let the orthonormal basis satisfying

the above conditions be chosen as

et̂ = A1 et + A2 eφ, (2.62)

er̂ = A3 er, (2.63)

eθ̂ = A4 eθ, (2.64)

eφ̂ = A5 eφ, (2.65)
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where A1, A2, A3, A4, A5 are coefficients. These orthonormal basis may differ for

other spacetime metrics.

Since these orthonormal basis vectors satisfy Eq. (2.61), we get

A1 =

√
gφφ

g2
tφ − gttgφφ

, A2 = −
gtφ

gφφ

√
gφφ

g2
tφ − gttgφφ

(2.66)

A3 =
1
√

grr
, A4 =

1
√

gθθ
, A5 =

1
√gφφ

. (2.67)

In the new basis, the locally measured energy and axial angular momentum are

Figure 2.3: Schematic diagram of the coordinates for a distant observer.
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given by the expressions [11]

pt̂ = A1E− A2Lz, (2.68)

pr̂ =
pr√
grr

, (2.69)

pθ̂ =
pθ√
gθθ

(2.70)

pφ̂ =
Lz√gφφ

, (2.71)

Furthermore, new coordinates (x′, y′) are defined for the image plane of an ob-

server. The BH is considered at the origin of the image plane (see Figure(2.3)). The

observer located at {r = ro, θ = θo} has the coordinates on the image plane as

x′ = −ro
pφ̂

pt̂
, (2.72)

y′ = ro
pθ̂

pt̂
. (2.73)

The coordinates x′ and y′ are the apparent perpendicular distances of the image as

seen from the axis of symmetry and from its projection on the equatorial plane,

respectively.

In null geodesics, the photon’s motion is significantly expressed in terms of two

independent impact parameters [11]

η =
L
E

, (2.74)

ξ =
K
E2 .

These parameters contains conserved quantities and can be explicitly expressed

using location of the circular photon orbits [134].
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Chapter 3

Geodesics of a Rotating Black Hole in

Asymptotically Safe Gravity Theory

In this chapter we investigate the consequences of running gravitational coupling

on the properties of a rotating BH, previously discussed in section (2.2.1). In

this approach, the involvement of a new parameter ξ̃ in this solution makes it

different from Schwarzschild BH. Initially, the Killing horizon, event horizon and

singularity of the computed metric is discussed. It is noticed that the ergosphere

is increased as ξ̃ increases. Considering the BH solution in equatorial plane, the

geodesics of particles, both null and time like cases, are explored. The effective

potential is computed and graphically analyzed for different values of parameter

ξ̃. The energy extraction from BH is investigated via Penrose process. For the

same values of spin parameter, the numerical results suggest that the efficiency of

Penrose process is greater in ASG than in KBH. At the end, a brief discussion on

Lense-Thirring frequency is also done.

The outline of this chapter is established as follows. In section I, a BH solution

in IR regime with ASG theory is constructed, following with the comments on
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event horizon and singularity of the computed rotating metric. In section II,

equatorial null and time-like geodesics of this BH are taken into account along

with the discussion on effective potential. Section III is on the study of Penrose

process. Section VI gives a thorough description on Lense-Thirring effect.

3.1 Kerr Metric in the Infra-red limit of Asymptoti-

cally Safe Gravity Theory

Considering the running Newton parameter (2.45) in metric (2.46), we reach to the

form of improved Kerr metric solution in ASG in the infra-red limit. The metric is

thus given by

ds2 = −
(

1− 2Mr
Σ

(
1− ξ̃

r2

))
dt2 − 4aMr sin2 θ

Σ

(
1− ξ̃

r2

)
dtdφ +

Σ
∆

dr2 + Σdθ2

+ sin2 θ

[
r2 + a2 +

2a2Mr
Σ

sin2 θ
(

1− ξ̃

r2

)]
dφ2, (3.1)

where ∆ = r2 − 2Mr + 2Mξ̃
r + a2. This metric reduces to its static and spherically

symmetric version when a→ 0. For reader’s better understanding and to provide

stronger grounds for the results computed in rest of the sections, a detail derivation

of metric (3.1), using the technique in [89], is presented in appendix (A). In next

sections we are going to take into account some other characteristic behaviours of

metric (3.1).

3.1.1 Event and Killing Horizons

Modifications of the Kerr metric, that came as a result of the generalization of

Lagrangian in the framework of ASG, also manifest in the properties of the BH

horizons. In the Boyer-Lindquist coordinates the event horizon, rH, is given by
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the condition that at r = rH hypersurface is everywhere null, or grr = 0. For the

standard GR case it follows that the Kerr BH will have two solutions as long as

M > a, while the case M < a leads to existence of a naked singularity. This is

however changed when one considers the modifications coming from the spatial

dependence of gravitational coupling. Now, the position of horizons is determined

by the cubic equation

r3 − 2Mr2 + a2r + 2Mξ̃ = 0. (3.2)

Although the horizon equation now has three solutions, only two of them can

be positive - so there are no new horizons in this case. When compared to the

horizons in the standard GR it can be checked that Eq. (3.2) will tend to lead to

smaller separation between the inner and outer horizon. Moreover, the structure

of BH, described by its horizons, will now be changed and will depend on the

value of ξ̃ - determining if the horizons exist.

For a general polynomial of order three, the number and type of roots is de-

termined by its discriminant, D, so that for D > 0 there exist three real solutions,

in the D = 0 case the solutions are real and two of them are identical, while

for D < 0 one solution is real and two remaining ones are complex conjugated.

The existence of horizons, which should of course be real and positive, is then

determined by ξ̃c for which D = 0. It follows that ξ̃c is given by

ξ̃c =
−
(
9M2a2 − 8M4)± √M2 (4M2 − 3a2)

3

27M2 . (3.3)

We note that ξ̃c will be physically viable (real valued) as long as the standard GR

condition M > a is satisfied. Thus, for ξ̃ > ξ̃c there will be no horizons, and this

case leads to a naked singularity. For ξ̃ = ξ̃c there will be only one horizon (two

identical positive roots), but this case is unstable since addition of some small
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amount of matter will violate this condition. Finally, for ξ̃ < ξ̃c the Kerr BH will

have one inner and one outer horizon. Since ξ̃c is given in general by theoreti-

cal consideration of asymptotic correction to the GR, this discussion constraints

possible space of parameters for Kerr BH that leads to physically realistic solutions.

The Killing horizon, being defined as the set of points where norm of the Killing

vector becomes null, KµKµ = 0, in the case of running gravitational coupling is

given by the solution of the following cubic equation

r3 − 2Mr2 + a2 cos2(θ)r + 2Mξ̃ = 0. (3.4)

The discussion for event horizons structure depending on parameter ξ̃ given above

can also be applied to the study of Killing horizons, with the replacement

ξ̃c =
−
(
9M2a2 cos2 θ − 8M4)± √M2 (4M2 − 3a2 cos2 θ)

3

27M2 . (3.5)

The ergosphere, being the region between the outer event horizon and Killing

horizon, is a region of particular interest since it is related to potentially observable

processes related to the Kerr BH, such as the extraction of energy via the Penrose

process. It is therefore of special interest to investigate what are the effects of the IR

gravity modifications on the ergosphere surface. It follows that the IR asymptotic

safe modification typically increases the ergosphere region when compared to

the one in the standard GR, as we show in Figure (3.1–3.3). It can be seen that

the ergosphere surface tends to increase with the increase of parameter ξ̃. This in

principle means that the region from where it is possible to extract energy from

BH by axial accretion of particles, via Penrose process, is bigger then in the GR for

the equal parameters characterizing the BH. However, the practical significance of

this result is limited by the fact that ξ̃ needs to be a small parameter.
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Figure 3.1: Difference between the Killing horizon and outer event horizon, rerg,

in the IR limit of quantum corrected gravitational coupling, for the BH defined by

a = 0.9 and M = 1.

Figure 3.2: Difference between rerg in the IR limit of quantum corrected gravita-

tional coupling and GR which we label as ∆rerg. The BH is defined by a = 0.9 and

M = 1.
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Figure 3.3: Graphs showing change in shape of inner/outer horizons

(Red/Orange) and inner/outer ergo-spheres (Blue/Purple) while the value of

rotational parameter is a = 0.52, 0.9. Note that ergosphere increases as ξ̃ increases.
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3.1.2 Curvature Singularity

An interesting characteristic of a BH is its singularity, which can be defined mathe-

matically when Kretschmann scalar K tends to infinity. For metric given by Eq.

(3.1) the Kretschmann scalar is

K =
M2Z(r, θ, a, ξ̃)

8(rΣ)6 , (3.6)

where

Z = 384r12 − 2560r10ξ̃ − a8ξ̃2 + 5888r8ξ̃2 + 4a2
(
−1440r10 + 4864r8ξ̃ + a6ξ̃2 − 1632r6ξ̃2

)
cos2 θ

− 2a4
(
−2880r8 + 1280r6ξ̃ + 3a4ξ̃2 − 64r4ξ̃2

)
cos4 θ + 4a6

(
−96r6 + a2ξ̃2 + 96r2ξ̃2

)
cos6 θ

+ 127a8ξ̃2 cos8 θ + a8ξ̃2 sin8 θ.

We observe poles at r = 0 and Σ = r2 + a2 cos2 θ = 0 from where we interpret that

the singularity exists at these points. This further constitutes a ring singularity

analogous to that of Kerr BH [11].

3.2 Geodesic Equations in Equatorial Plane

This section is on equatorial geodesics of rotating BH solution in ASG, including

the effects of corrected gravitational coupling. The Lagrangian, for this metric, in

the equatorial plane (θ = π
2 , θ̇ = 0) is written as [11]

2L = −
[

1− 2M
r

(
1− ξ̃

r2

)]
ṫ2 − 4aM

r

(
1− ξ̃

r2

)
ṫφ̇

+
r2

∆
ṙ2 +

[
r2 + a2 +

2a2M
r

(
1− ξ̃

r2

)]
φ̇2. (3.7)
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The generalized momenta are given by

pt = −
[

1− 2M
r

(
1− ξ̃

r2

)]
ṫ− 2aM

r

(
1− ξ̃

r2

)
φ̇ = −E, (3.8)

pφ = −2aM
r

(
1− ξ̃

r2

)
ṫ +
[

r2 + a2 +
2a2M

r

(
1− ξ̃

r2

)]
φ̇ = L, (3.9)

pr =
r2

∆
ṙ, (3.10)

where dots over r, t and φ denote derivatives with respect to affine parameter τ. It

can be easily seen that Lagrangian does not depend on t and φ, therefore pt and

pφ are conserved quantities.

The Hamiltonian is given by

H = pt ṫ + pφφ̇ + pr ṙ−L. (3.11)

It takes the form

2H =

[
−
(

1− 2M
r

(
1− ξ̃

r2

))
ṫ− 2aM

r

(
1− ξ̇

r2

)
φ̇

]
ṫ (3.12)

+

[
−2aM

r

(
1− ξ̃

r2

)
ṫ +
(

r2 + a2 +
2a2M

r

(
1− ξ̃

r2

)
φ̇

)]
φ̇ +

r2

∆
ṙ2,

2H = −Eṫ + Lφ̇ +
r2

∆
ṙ = δ = constant, (3.13)

where Hamiltonian is constant as it is t independent and δ = −1, 0, 1 gives timelike,

null and spacelike geodesics respectively. Solving Eq. (3.8) and Eq. (3.9) yield:

ṫ =
1
∆

[(
r2 + a2 +

2a2M
r

(
1− ξ̃

r2

))
E− 2aM

r

(
1− ξ̃

r2

)
L
]

, (3.14)

φ̇ =
1
∆

[
2aM

r

(
1− ξ̃

r2

)
E +

(
1− 2M

r

(
1− ξ̃

r2

))
L
]

. (3.15)

On substituting Eq. (3.14) and Eq. (3.15) in Eq. (3.13), we get the radial equation of

motion

r2ṙ2 = ∆δ + r2E2 +
2M

r

(
1− ξ̃

r2

)
(aE− L)2 +

(
a2E2 − L2

)
. (3.16)

In the limit ξ̃ → 0, Eq. (3.16) takes the form of radial equation in the Kerr BH case.
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3.2.1 Null Geodesics

In equatorial plane, the null geodesics are rendered when δ gets zero in Eq. (3.16),

which then becomes

r2ṙ2 = r2E2 +
2M

r

(
1− ξ̃

r2

)
(aE− L)2 +

(
a2E2 − L2

)
. (3.17)

For convenience, introduce an impact parameter D = L/E in Eq. (3.17). Through

this parameter the angular momentum can be expressed in terms of energy. Two

cases may arise here: either D = a or D , a.

CASE (I); when D=a

As a particular case, consider D = a or L = aE. As a result of which Eq. (3.14), Eq.

(3.15) and Eq. (3.17) imply

ṫ =
r2 + a2

∆
E, (3.18)

φ̇ =
aE
∆

, (3.19)

ṙ = ±E. (3.20)

Notice here that when ∆ = 0 (at horizon), both ṫ and φ̇ go to infinity. This

implies that t and φ operate as ‘bad coordinates’ in the vicinity of horizon, but this

singularity vanishes in Eq. (3.20), the expression for ṙ. Using above equations, the

differentials of t and φ, with respect to r, are computed as

dt
dr

= ±
(
r2 + a2)

∆
, (3.21)

dφ

dr
= ± a

∆
, (3.22)

where + and − signs in Eq.s (3.20-3.22) stand respectively for the trajectory of

outgoing and ingoing photon. The trajectory for outgoing photon is numerically

solved and plotted in Figure (3.4) and Figure (3.5) where the initial condition
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Figure 3.4: The left panel represents the outgoing trajectory of photons with respect

to time t. The solid line represents when ξ̃ = 0.09 and dashed line is when ξ̃ = 0

i.e Kerr case. The values of parameters are a = 0.1 and M = 0.1 with the initial

condition r(0) = 10M. On the right panel the phase portret is depicted for the

same parameters, where again the solid line represents the case when ξ̃ = 0.09

and dashed line is when ξ̃ = 0. The fixed points are getting closer in the ASG, as

opposed to the GR case where the fixed points are at maximum distance.

r(0) = 10M is imposed. It can be seen that there are no high deviation from the

GR counterpart in the trajectory r(t) as expected from small ξ̃, but from the phase

portrait, when dr/dt is considered as a function of r, the fixed points are getting

closer to each other by increasing ξ̃. Same are the results for the photon trajectory

with respect to angle φ. To get a qualitative description of equations (3.21) and

(3.22) one can also easily analyze them in the phase space for different values of

ξ̃. It can be seen that there exists a bifurcation point for which the two real fixed

points vanish, and for this parameters the solution leads to a naked singularity,

the phase spaces are plotted in Figure (3.6).
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Figure 3.5: The left panel represents the outgoing trajectory of photons with respect

to angle φ. The solid line represents when ξ̃ = 0.09 and dashed line is when ξ̃ = 0

i.e Kerr case for the values of parameters a = 0.1 and M = 0.1 with the initial

condition r(0) = 10M. On the right panel the phase portrait is depicted for the

same parameters, where again the solid line represents the case when ξ̃ = 0.09 and

dashed line is the GR case ξ̃ = 0. The fixed points are again getting closer in the

ASG, in the contrast to the GR case where the distance between them is maximal.
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Figure 3.6: Phase space portrait, dr/dt on the left panel and dr/dφ on the right,

for different values of ξ̃, but for fixed parameters M = 1 and a = 0.9. Clearly, the

critical value for ξ̃ = ξ̃c represent the bifurcation point for which the fixed points

do not exist anymore.
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CASE(II); when D , a

As a general case consider D , a, which consequently gives circular orbit r = rc of

photon. Introduce an impact parameter Dc = Lc/Ec. The radial equation (3.17)

along with its derivative takes the following form

r2
c +

2M
rc

(
1− ξ̃

r2
c

)
(a− Dc)

2 +
(

a2 − D2
c

)
= 0, (3.23)

rc −
M
r2

c

(
1− 3ξ̃

r2
c

)
(a− Dc)

2 = 0. (3.24)

Combining above two equations implies the following result

r2
c − 3Mrc +

5Mξ̃

rc
± 2a

√
Mrc

(
1− 3ξ̃

r2
c

)
= 0. (3.25)

The real positive solution of the above equation will give circular photon orbit.

For ξ̃ = 0, it matches with circular photon orbit for Kerr BH.

3.2.2 Time-like Geodesics

To investigate time-like geodesics, take δ = −1. Notice that equations for φ̇ and ṫ

remain unchanged, while Eq. (3.16) becomes

r2ṙ2 = −∆ + r2E2 +
2M

r

(
1− ξ̃

r2

)
(aE− L)2 +

(
a2E2 − L2

)
, (3.26)

where E is now described as the energy per unit mass of the particle moving in a

trajectory. Two cases arise here, either L = aE, a special case, or L , aE, a general

case which can lead us to circular and associated orbits.

Special Case: when L = aE

Consider L = aE, Eq. (3.26) gives

r2ṙ2 = r2
(

E2 − 1
)
+ 2Mr

(
1− ξ̃

r2

)
− a2, (3.27)
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Figure 3.7: The left panel represents the trajectory of a particle r(t), where the blue

line represents the ASG case with ξ̃ = 0.09 and the red line represents the GR case

ξ̃ = 0 i.e Kerr case. The values of parameters are a = 0.1, M = 0.1 and E = 1.1

with the initial condition r(0) = 10M. On the right panel the phase portrait is

depicted for the same parameters, where the blue line is the phase diagram for

ξ̃ = 0.09 and the red line is the GR case where ξ̃ = 0, the solid line represents the

positive square root and dashed line the negative for each case. The fixed point is

increased in the ASG (r∗ ≈ 0.285) from the GR case (r∗ ≈ 0.05).

while ṫ and φ̇ are the same as for null geodesics. Integrate Eq. (3.27)

τ =
∫ rdr√

r2 (E2 − 1) + 2Mr
(

1− ξ̃
r2

)
− a2

. (3.28)

The above equation is somewhat hideous to solve analytically. Its numerical

solution is plotted in Figure (3.7). Again, as there are no high deviations from the

GR case it could be more interesting to analyze the phase portrait for each case. It

can be seen that the fixed point is higher in the ASG from the GR counterpart, also

the phase space shows higher deviations near the fixed point but asymptotically

as r → ∞ the phase spaces coincide in the two cases. The phase space diagram is

also plotted in Figure (3.7) but on the right panel.
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General Case: when L , aE

To investigate the general case, again take into account the radial Eq. (3.26). By

introducing the reciprocal radius u = 1/r, the equation takes the form

F (u) = u−4u̇2 = E2 + 2Mu3
(

1− ξ̃u2
)
(aE− L)2 +

(
a2E2 − L2

)
u2

−
(

1− 2Mu
(

1− ξ̃u2
)
+ a2u2

)
, (3.29)

where u is the independent variable.

The task now is to compute the values of E and L for the circular orbit at the

reciprocal radius u = 1/r. Circular orbits exist when F (u) = 0 and F ′(u) = 0.

Also, assume x = L− aE in Eq. (3.29), to get

E2 −
(

1− 2Mu
(

1− ξ̃u2
)
+ a2u2

)
+ 2Mu3

(
1− ξ̃u2

)
x2 −

(
x2 + 2xaE

)
u2 = 0,(3.30)

M
(

1− 3ξ̃u2
)
− a2u + 3Mu2x2

(
1− 5

3
ξ̃u2
)
−
(

x2 + 2xaE
)

u = 0. (3.31)

Solve Eq. (3.30) and Eq. (3.31), to reach to the following form

E2 = Mu3x2
(

1− 3ξ̃u2
)
+ 1−Mu

(
1 + ξ̃u2

)
, (3.32)

2xaEu = 3Mu2x2
(

1− 5
3

ξ̃u2
)
+ M

(
1− 3ξ̃u2

)
− x2u− a2u.qz (3.33)

Using Eq. (3.32) and Eq. (3.33), E is eradicated and the quadratic equation in x is

obtained as

x4 u2

[
3Mu

(
1− 5

3
ξ̃u2 − 1

)2

− 4Ma2u3
(

1− 3ξ̃u2
)]

− 2x2u
[(

3Mu(1− 5
3

ξ̃u2)− 1
)(

a2u−M(1− 3ξ̃u2) + 2a2u(1−Mu(1 + ξ̃u2))
)]

+

[
a2 −M(1− 3ξ̃u2)

]2

= 0. (3.34)
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The discriminant of the above equation is given by

D = 16a2Mu3∆u
2, (3.35)

where ∆u = 1 + a2u2 − 2Mu
(
1− ξ̃u2). The calculations can be eased by consider-

ing

1− 3Mu
(

1− 5
3

ξ̃u2
)
− 4Ma2u3

(
1− 3ξ̃u2

)
= F+F−,

where

F± = 1− 3Mu
(

1− 5
3

ξ̃u2
)
± 2a

√
Mu3

(
1− 3ξ̃u2

)
.

The solution of Eq. (3.34) is then simply computed as

x2u2 =
∆uF± −F+F−
F+F−

=
∆u −F∓
F∓

, (3.36)

where

∆u −F∓ = u
[

a
√

u ±
√

M
(
1− 3ξ̃u2

) ]2

.

Finally, we get

x = −
a
√

u ±
√

M
(
1− 3ξ̃u2

)
uF∓

. (3.37)

Put Eq. (3.37) in Eq. (3.31), to get energy of the circular orbit

E =
1√
F∓

[
1− 2Mu

(
1− ξ̃u2

)
∓ au

√
Mu

(
1− 3ξ̃u2

) ]
, (3.38)

where upper and lower signs are respectively interpreted as prograde and retro-

grade orbits. Angular momentum associated to the circular orbit is thus given

by

L =
∓
√

M
(
1− 3ξ̃u2

)
√

uF∓

[
1 + a2u2±2au

(
1− ξ̃u2

) √ Mu(
1− 3ξ̃u2

) ] . (3.39)
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Figure 3.8: Angular velocity of prograde (left panel) and retrograde (right panel)

motion of particles orbiting in the equatorial plane of rotating BH in ASG, for the

values of the parameters as: M=1, ξ̃ = 0.07 (Red), 0.08 (Orange), 0.09 (Blue) and

a = 0.4. Black (DotDashed) line shows ξ̃ = 0 i.e Kerr case.

The angular velocity is computed using Eq. (3.14) and Eq. (3.15)

Ω =
φ̇

ṫ
=

2aM
r

(
1− ξ̃

r2

)
E +

(
1− 2M

r

(
1− ξ̃

r2

))
L(

r2 + a2 + 2a2 M
r

(
1− ξ̃

r2

))
E− 2aM

r

(
1− ξ̃

r2

)
L

,

which, by using reciprocal radius, can be reduce to the form

Ω =

[
L− 2Mux

(
1− ξ̃u2)] u2

(1 + a2u2) E− 2aMu3
(
1− ξ̃u2

) .

This can be simplified to the form

Ω =
∓
√

Mu3
(
1− 3ξ̃u2

)
1∓ au

√
Mu

(
1− 3ξ̃u2

) .

Thus the angular velocity in terms of r can be written, by using r = 1
u , as

Ω =
∓
√

M
(

r− 3ξ̃
r

)
r2 ∓ a

√
M
(

r− 3ξ̃
r

) .
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The graphical representation of angular velocity of particles is shown in Figure

(3.8). The value of Ω, for corotating (prograde) motion, first decreases but it

increases with the increase in ξ̃ and r. But for counter rotating (retrograde) motion,

the particle’s angular velocity declines when ξ̃ is increased.

The time period is given by

T =
2π

Ω
= 2π

r2 ∓ a
√

M
(

r− 3ξ̃
r

)
∓
√

M
(

r− 3ξ̃
r

) . (3.40)

3.2.3 Effective Potential

To check the stability (or instability) of circular orbit of particles around the rotating

BH in ASG in IR regime, the effective potential is determined. Thus the equation

governing the effective potential of circular orbits, both for photons and time-like

particles, is given by [105]

E2 − 1
2

=
ṙ2

2
+ Veff,

where effective potential is represented by Veff. The extreme value r = ro of the

effective potential is the solution of the equation

dVeff

dr
|r=ro = 0.

There must be present a minimum at the second derivative of effective potential

i.e
d2Ve f f

dr2 > 0 which gives stable circular orbits along with the condition that at

circular orbit r = ro the particles initial velocity must vanish i.e ṙ = 0. Following

is the discussion on the effective potential of null and time-like geodesics.

For Null Geodesics

For L = aE, the null geodesics is governed by radial equation ṙ = ±E, so the case

sufficient to consider here is when L , aE. In this case, the effective potential is
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Figure 3.9: Plots showing behaviour of effective potential, for null geodesics,

with respect to r. Here co-rotating (counter-rotating) particles are shown by solid

(dot-dashed) lines.

thus given by

Veff =
1

2r3

[
− 2M

(
1− ξ̃

r2

)(
aE− L

)2
+
(

L2 − a2E2
)

r− r3
]
.

This effective potential is graphically presented in Figure (3.9). As one can easily

see the presence of minimum values in these plots which corresponds to the

existence of stable points. Also note that the behavior of Veff for both co-rotating

and counter-rotating particles is quite different from the Kerr case. Namely, the

effective potential for Kerr BH approaches negative infinity when r → 0, while

the effective potential for the rotating BH with running gravitational coupling

approaches positive infinity when r → 0. This comes as a result of sign change

for the leading order in the potential for small r, which comes as a consequence of

introducing the asymptotic correction parameter ξ̃. However, it should be stressed

that at very small distances IR will no longer be valid, and the proper description

should now be given using the UV limit of ASG.
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to r, when L = aE. Black line shows ξ̃ = 0 i.e Kerr case.

For Time-like Geodesics

By the use of Eq. (3.26), the effective potential for the time-like geodesics, both

when L = aE and L , aE, is computed respectively as

Veff =
a2

2r2 −
M
r

(
1− ξ̃

r2

)
and

Veff =
−M

r3

(
1− ξ̃

r2

)(
aE− L

)2
+

L2 − a2
(

E2 − 1
)

2r2 − M
r

(
1− ξ̃

r2

)
.

For time like geodesics, when L = aE, the affect of ξ̃ on effective potential is shown

in Figure (3.10). These plots show existence of stable points for different values

of ξ̃. Figure (3.11) shows variation of ξ̃ and angular momentum L in effective

potential. Here it is noted that for co-rotating motion of the particle the depth of

the potential well increases with increase in L while for counter rotating motion, it

decreases for increase in L. These graphs also show the existence of stable points.

As in the case of null geodesics, discussed previously, Kerr and the IR asymptotic

safe solution lead to different qualitative features of the effective potential when

r → 0.
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Figure 3.11: Behaviour of effective potential for time-like geodesics, with respect
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3.3 Penrose Process

Energy is a conserved quantity on the spacetime of stationary rotating BH, due to

the existence of associated Killing vector, Kµ = ∂t, so that E = −Kµuµ, where uµ is

a four-velocity defined on some geodesic. At the asymptotic infinity both Kµ and

uµ are timelike, so that energy is always positive. However, Killing vector becomes

null at the Killing horizon, and spacelike inside the region known as ergosphere

– which represents the space between the outer event horizon and the Killing

horizon of a BH. It is therefore possible that energy becomes negative quantity in

the ergosphere of a stationary rotating BH. This fact was used by Penrose, who

proposed a mechanism of extraction of energy from Kerr BH. Starting from a

particle falling into a BH, which is defined by the positive energy, one can consider

the case where it decays in the ergosphere, into one particle carrying positive

energy, and the other particle carrying negative energy. Since the total energy

needs to be conserved, if we assume that the negative energy particle crosses the
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event horizon and the positive energy particle leaves the ergosphere reaching the

observer, its energy will be higher than the energy of the initial particle (since it is

the difference of the initial energy and the negative energy of the second particle).

We now analyze the Penrose process, taking into account the corrections of

ASG. Let us first note, that the modifications coming from the quantum effects

leading to a r-dependent gravitational coupling were previously considered in the

context of the Penrose process in [90], where the running coupling of the following

form was considered

G(r) =
G0r2

r2 + ωG0
, (3.41)

where G0 is the classical Newton constant, and ω a positive constant. In [90]

authors studied the functional dependencies of tangential and dragging velocities

in the Penrose process and concluded that there exists a lowest possible mass for

the Penrose mechanism when such running gravitational coupling is considered.

In our analysis this is related to the mass corresponding to ξ̃c which enters in

equation (3.3). In this work we will perform a similar analysis of the Penrose

process in the context of varying gravitational coupling, and further extend it by

investigating the efficiency of Penrose process in this setting and comparing it

with the classical limit.

As already discussed, utilizing the fact that energy in the ergoregion can be

negative, it is under suitable conditions possible to extract energy from the rotating

BH. In this discussion we concentrate on the scenario where we have a massive

particle entering the ergosphere, and which moves along a timelike geodesic,

carrying positive energy. This particle then decays into two particles which are

massless, one carrying negative energy, and the second one with positive energy.

The negative energy particle then falls into event horizon, while the particle with

a positive energy eventually leaves the ergosphere and reaches the observer. If
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this decay happened at the turning point of the geodesic, where ṙ = 0, then from

the radial equation for equatorial geodesic it follows that

E =
1

r (r2 + a2) + 2a2M
(

1− ξ̃
r2

)[2aM
(

1− ξ̃

r2

)
L±√

r2∆L2 −
(

r (r2 + a2) + 2a2M
(

1− ξ̃

r2

))
δr

]
, (3.42)

and alternatively angular momentum can be expressed as

L =
1

r− 2M
(

1− ξ̃
r2

)[− 2aM
(

1− ξ̃

r2

)
±√

∆r2E2 +

(
1− 2M

r

(
1− ξ̃

r2

))
∆δr2

]
, (3.43)

where the following identity was used[
r2
(

r2 + a2
)
+ 2a2Mr

(
1− ξ̃

r2

)](
1− 2M

r

(
1− ξ̃

r2

))
= r2∆− 4a2M2

(
1− ξ̃

r2

)2

.(3.44)

Now we can determine the condition under which energy and angular momentum

will be negative. In order that E < 0, L < 0 it follows

4a2M2
(

1− ξ̃

r2

)2

L2 > ∆
[

r2L2 −
(

r
(

r2 + a2
)
+ 2a2M

(
1− ξ̃

r2

))
δr
]

(3.45)

Using eq. (3.44) this can be written as[
r
(

r2 + a2
)
+ 2a2Mr

(
1− ξ̃

r2

)] [(
1− 2M

r

(
1− ξ̃

r2

))
L2 − ∆δr

]
< 0. (3.46)

It follows that E < 0⇐⇒ L < 0 requires the condition

r ≤ 2M
(

1− ξ̃

r2

)
+

∆δr2

L2 , (3.47)

so we confirm that this can happen only in the ergosphere.

We now come back to discussion of the decay of one initial massive particle to
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two massless particles, carrying the energy of opposite signs. We take that initial

energy is E(0) = 1, and energy of two particles is E(1) and E(2) respectively. Let

then

L(0) =
−2aM

(
1− ξ̃

r2

)
+

√
2Mr

(
1− ξ̃

r2

)
∆

r− 2M
(

1− ξ̃
r2

) = α(0), (3.48)

L(1) =
−2aM

(
1− ξ̃

r2

)
−
√

r2∆

r− 2M
(

1− ξ̃
r2

) E(1) = α(1)E(1), (3.49)

L(2) =
−2aM

(
1− ξ̃

r2

)
+
√

r2∆

r− 2M
(

1− ξ̃
r2

) E(2) = α(2)E(2). (3.50)

Here α’s are some arbitrary functions relating angular momentum and energy.

According to conservation of energy and momentum

E(1) + E(2) = E(0) = 1 (3.51)

and

L(1) + L(2) = α(1)E(1) + α(2)E(2) = L(0) = α(0). (3.52)

Solving these equations we can obtain the energies of two created particles as

E(1) =
1
2

[
1−

√
2M

r
(1− ξ̃

r2 )
]

(3.53)

E(2) =
1
2

[
1 +

√
2M

r
(1− ξ̃

r2 )
]
. (3.54)

Then, if E(2) reaches the observer outside the BH, and E(1) crosses the event

horizon, the gain in energy with respect to the original particle, as measured by

the observer is

∆E =
1
2

[√2M
r

(1− ξ̃

r2 ) − 1
]
= −E(1). (3.55)

65



Figure 3.12: Ratio between the efficiency of Penrose process in the IR limit of

quantum corrected gravitational coupling and general relativity, as a function of a

and ξ̃, with M = 1.

In order to study the maximal possible efficiency of Penrose process one should

consider the case with respect to which any reasonable physical realization will

lead to smaller values. The gain in energy will be bigger if the radial distance

is smaller, so we consider the extreme case of the event horizon r = rH. For

simplicity, we can use for example BH defined by rH = M = 1 . For such BH

from the horizon equation it follows that ξ̃ = 1
2(1− a2). We get that the maximal

efficiency of Penrose process in this case is then given by

Effmax =
E(0) + ∆E

E(0) max
=

1
2
[1 +

√
2(1− ξ̃) ] < 1.207, (3.56)

so we see that for a given BH with the same fixed parameters rH and M in

general relativity and ASG, the efficiency of Penrose process will be smaller in

ASG. However, as noted earlier, in ASG the outer event horizon tends to be located

at smaller r than in the standard general relativity, for all other parameters staying

the same. This fact can thus compensate the direct loss coming from the corrective

term in Eq. (3.55), and can even increase the efficiency above the one characteristic

for Kerr BH in general relativity. We should stress that, from the astrophysical

66



Figure 3.13: Efficiency of Penrose process in the IR limit of quantum corrected

gravitational coupling as a function of a and ξ̃, with M = 1.

perspective, a and M should be considered as real independent quantities defining

the BH – actually given as initial conditions during the collapse of matter leading

to BH formation – and that position of event horizon should be considered as

a dependent quantity. Therefore, it is more proper to compare rotating BHs in

ASG and general relativity for the same values of M and a, rather than rH. Taking

M = 1 for simplicity, we show that – in accord with the previous reasoning – for

the same values of a the efficiency of Penrose process will be greater in ASG. This

is demonstrated in Figure 3.12 where we show the ratio of efficiency of Penrose

process in asymptotically safe gravity and general relativity as a function of a and

ξ̃. However, it can be seen in Figure 3.13 – where we plot the efficiency of Penrose

process in ASG, that the maximal possible efficiency still basically stays confined

within the region estimated in Eq. (3.56).
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3.4 Lense-Thirring Frequency

The forms of electromagnetic equations and gravitational equations are very

similar, so that the gravito-electromagnetism [106] summarizes the weak field

gravitational equations as the “Maxwell Equations". As we all know, a rotating

sphere with electric charge can produce magnetic field, so it is reasonable to

believe that “magnetic effect" of gravitational field can be found in spacetime

with rotating massive sphere. In 1918, Lense and Thirring theoretically proposed

Lense-Thirring effect to describe the “magnetic effect" in gravitational field [7].

According to [107–110], the precession frequency vector of rotating BH is given by

ΩLT =
1
2

εijl√−g

[
g0i,j

(
∂l −

g0l
g00

∂0

)
− g0i

g00
g00,j∂l

]
. (3.57)

From our metric, above result is rewritten as

ΩLT =
1

2
√−g

[(
g0φ,r −

g0φ

g00
g00,r

)
∂θ −

(
g0φ,θ −

g0φ

g00
g00,θ

)
∂r

]
(3.58)

ΩLT = Ωθ∂θ + Ωr∂r,

Ω2
LT = grr (Ωr)2 + gθθ

(
Ωθ
)2

. (3.59)

While in polar coordinates (where r̂ is the unit vector of direction r and θ̂ is angular

coordinate), ΩLT is given by

→
ΩLT =

√
grr Ωr r̂ +

√
gθθ Ωθ θ̂. (3.60)

Therefore, for our BH spacetime

Ωθ =
2aM

(
r2 − ξ̃

) (
a2r− 2Mr2 + r3 + 2Mξ̃

)
cos(θ)

r
(

r2 + a2 cos (θ)2
)2 (

r3 − 2Mr2 + 2Mξ̃ + a2r cos (θ)2
) ,

Ωr =
aM

[
r2 (r2 − 3ξ̃

)
sin (θ)− a2 (r2 + ξ̃

)
cos (θ)2 sin (θ)

]
r
(

r2 + a2 cos (θ)2
)2 (

r3 − 2Mr2 + 2Mξ̃ + a2r cos (θ)2
) . (3.61)
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Figure 3.14: ΩstrongLT and ΩweakLT as functions of r for a = 1/5, 1/2, 1, where

ξ̃ = 0.5, M = 1, θ = 0

Therefore the magnitude of ΩLT is given by

ΩLT = ΩStrongLT = J

√
4r2
(
r2 − ξ̃2

)2 ∆ cos (θ)2 +
(

r4 − 3ξ̃r2 − a2
(
r2 + ξ̃

)
cos (θ)2

)2
sin (θ)2

r2
(

∆− a2 sin (θ)2
)

Σ3/2

According to [107], in the weak field limit (which means r � M), we expand

above formula by M, so ΩLT in weak field is:

ΩweakLT =
J

r2Σ5/2

{
r2 cos (θ)2

[
4
(

r3 − rξ̃
)2

+ a2
(

3r4 − 8ξ̃r2 + 7ξ̃2
)
+ a2

(
r4 − 3ξ̃2

)
cos (2θ)

]
+a4

(
r2 + ξ̃

)2
cos (θ)4 sin (θ)2 + r4

[(
r2 − 3ξ̃

)2
+ 4a2ξ̃ cos (θ)2

]
sin (θ)2

}1/2

+O
(

M2
)

We show the ΩLT = ΩLT(r) with various parameters in Figure (3.14), Figure (3.15)

and Figure (3.16).

The Figure (3.14) shows that Lense-Thirring effect is significantly increased

as a is increased because it is a rotating effect. On the other hand, according to

the Figure (3.15), it is interesting that the effect of ΩstrongLT is more outstanding at

equator θ = π/2 than the pole θ = 0, but the effect of ΩweakLT is more outstanding

at the pole θ = 0 than equator θ = π/2. Finally, from Figure (3.16), we find that

Lense-Thirring effect in our rotating BH spacetime is weaker than Kerr spacetime
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as ξ̃ increases, so it means that it is more difficult to measure this effect in our

metric, but we can compare the results of experiment to determine the value of ξ̃,

and rotating spacetime won’t be Kerr spacetime if ξ̃ , 0.
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Chapter 4

Shadow of Rotating Black Holes in

Perfect Fluid Dark Matter with a

Cosmological Constant

The presence of dark matter around a BH remarkably affects its spacetime. In this

chapter we consider the effects of dark matter on the shadow of a new solution

to the EFEs that describes a rotating BH in the background of PFDM, along with

its extension to nonzero cosmological constant Λ. Working in Boyer-Lindquist

coordinates, we consider the effects of the PFDM parameter α on the shadow cast

by a BH with respect to an observer at position (ro, θo).

This chapter is separated in three main sections. In first section the BH’ metric

under consideration has been briefly reviewed. In second section, null geodesics

have been computed and photon orbits have been discussed. The shadow of the

BH in PFDM are investigated in detail in third section.
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4.1 Black Holes in Perfect Fluid Dark Matter Back-

ground

Amongst the many dark matter models that have been suggested is the perfect

fluid dark matter model, which was initially proposed by Kiselev [112], and

entailed construction of a new class of spherically symmetric BH metrics in the

presence of PFDM [113]. Only recently has this class been generalized to include

rotation [99], providing a PFDM version of the Kerr-AdS solution. The metric is

given by

ds2 = − ∆r

Ξ2Σ

(
dt− a sin2 θdφ

)2
+

∆θ sin2 θ

Ξ2Σ

(
adt− (r2 + a2)dφ

)2

+
Σ
∆r

dr2 +
Σ
∆θ

dθ2 (4.1)

where

∆r = r2 − 2Mr + a2 − Λ
3

r2
(

r2 + a2
)
+ αr ln

r
|α| ,

∆θ = 1 +
Λ
3

a2 cos2 θ and Ξ = 1 +
Λ
3

a2, Σ = r2 + a2 cos2 θ (4.2)

with the mass parameter of the BH being M. The parameter indicating the presence

of perfect fluid dark matter is α. This solution reduces to a rotating BH in a PFDM

background when Λ = 0, and to the Kerr-AdS solution for α = 0. The PDFM

stress-energy tensor in the standard orthogonal basis of the Kerr-AdS metric can

be written in diagonal form [ρ, pr, pθ, pφ], where

ρ = −pr =
αr

8πΣ2 pθ = pφ =
αr

8πΣ2

(
r− Σ

2r

)
(4.3)

For Λ , 0, the solution can either be a Kerr-Anti-de Sitter (Λ < 0) or Kerr-de

Sitter (Λ > 0) metric. The horizons of the BH are the solutions of ∆r = 0 i.e.

Λ
3

r4 +

(
Λ
3

a2 − 1
)

r2 + 2Mr− a2 + αr log
(

r
| α |

)
= 0. (4.4)
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In general there are inner and outer horizons for Kerr and Kerr anti-de Sitter BHs,

with an additional cosmological horizon for Kerr-de Sitter BHs. Imposing the

requirement that PDFM does not change the number of horizons as compared to

its Kerr counterpart, the parameter α is constrained such that [99]

α ∈


(−7.18M, 0) ∪ (0, 2M) if Λ = 0,

(αmin, 0) ∪ (0, αmax) if Λ , 0
(4.5)

where αmax and αmin respectively satisfy

αmin + αmin log(
2M
−αmin

) = 2M + H(Λ) (4.6)

αmax + αmax log(
2M
αmax

) = 2M + H(Λ)

and

H(Λ) = −sgn(Λ)

(
32
3Λ

M3 +
2
3

Λa2
)

(4.7)

and we see if a = 0 that H > 0 for Λ < 0 and H < 0 for Λ > 0.

4.2 Photon Region

For the spacetime (4.1), geodesic motion is governed by the Hamilton Jacobi

equation [11]:

−∂S
∂τ

=
1
2

gµν ∂S
∂xµ

∂S
∂xν

, (4.8)

where τ is an affine parameter, xµ represents the four-vector (t, r, θ, φ) and S is

Hamilton’s principal function, which can be made separable by introducing an

ansatz such that

S =
1
2

δτ − Et + Lφ + Sr(r) + Sθ(θ),
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where energy E and angular momentum L are constants of motion related to the

associated Killing vectors ∂/∂t and ∂/∂φ. For timelike geodesics δ = 1 and for

null geodesics δ = 0. Thus by solving Eq. (4.8) the resulting equations describing

the propagation of a particle are

Σṫ = Ξ2
(
(r2 + a2)E− aL

)
(r2 + a2)

∆r
−

aΞ2 (aE sin2 θ − L
)

∆θ
, (4.9)

Σ2ṙ2 = Ξ2
((

r2 + a2
)

E− aL
)2
− ∆rr2δ− C∆r = R(r), (4.10)

Σ2θ̇2 = − Ξ2

sin2 θ

(
aE sin2 θ − L

)2
− a2δ cos2 θ + C∆θ = Θ(θ), (4.11)

Σφ̇ =
aΞ2 ((r2 + a2)E− aL

)
∆r

−
Ξ2 (aE sin2 θ − L

)
∆θ sin2 θ

(4.12)

for both null and time-like geodesics. In the above equations, besides the two

constants of motion E and L, we also have the Carter constant C [114]. As we are

interested in BH’s shadows, henceforth we consider only null geodesics, for which

δ = 0. To reduce the number of parameters we write ξ = L/E and η = C/E2, and

rescale R/E2 → R and Θ/E2 → Θ. Then Eq. (4.10) and (4.11) respectively yield

R = Ξ2
(
(r2 + a2)− aξ

)2
− ∆rη (4.13)

and

Θ = η∆θ −
Ξ2

sin2 θ

(
a sin2 θ − ξ

)2
. (4.14)

The photon region is defined as the region of space where gravity is strong

enough that photons are forced to travel in orbits. Circular photon orbits only

exist in the equatorial plane for rotating Kerr BHs, and there are two such types,

retrograde and prograde. To this end, we note that there are other solutions

such as the rotating dyonic BHs in Kaluza-Klein and Einstein-Maxwell-dilaton

theory, for which circular photon orbits do not exist on the equatorial plane. Note

that Schwarzschild is another counter-example, albeit static, that contains non-

equatorial circular photon orbits due to spherical symmetry. To determine the
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photon region we require that the radial coordinate remains constant such that

ṙ = 0 = r̈ or

R(r) = 0 and
dR(r)

dr
= 0, (4.15)

along with the condition that

Θ(θ) ≥ 0 for θ ∈ [0, π]. (4.16)

By solving (4.15) we obtain the value of ξ and η to be

aξ(r) = r2 + a2 − 4r
∆r

∆′r
, (4.17)

η(r) =
16r2Ξ2∆r

(∆′r)
2 . (4.18)

By inserting Eqs (4.17) and (4.18) in condition (4.16) we find

(
4r∆r − Σ∆′r

)2 ≤ 16a2r2Ξ2∆r∆θ sin2 θ (4.19)

that describes the photon region. For Λ = α = 0, eq. (4.19) yields in the equatorial

plane the Kerr result r = 2m
(

1 + cos
(

2
3 cos−1

(
± |a|m

)))
. Photon orbits can be

stable or unstable. The unstable photon orbit at r = rs exists when d2R(rs)
dr2 > 0,

which also defines the boundary of the BH shadow. Thus the positive solution of

R′′(rs)

8E2Ξ2 = r2
s + 2rs∆rs ∆rs

′ − 2r2
s

∆rs ∆
′′
rs

(∆′rs)
2 (4.20)

determines the contour of the shadow. Here we have restored the factor of E and ′

denotes the derivative with respect to r.

4.3 Shadows of the PFDM Black Hole

As noted above, in the presence of a cosmological constant the position of the

observer needs to be fixed, employing the technique recently introduced in [68].
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So we fix the observer in Boyer-Lindquist coordinates (r0, θ0), where r0 is the

radial coordinate and θ0 is angular coordinate of observer. We also assume that

the observer is in domain of outer communication i.e. ∆r > 0 and we consider

the trajectories of light rays sent from position (r0, θ0) to the past. We now define

orthonormal tetrads (e0, e1, e2, e3) at the observer’s position (r0, θ0) such that

e0 =
Ξ2
√

∆rΣ

((
r2 + a2

)
∂t + a∂φ

)∣∣∣∣
(r0,θ0)

, (4.21)

e1 =

√
∆θ

Σ
∂θ

∣∣∣∣
(r0,θ0)

, (4.22)

e2 = − Ξ2
√

∆θΣ sin θ

(
∂φ + a sin2 θ∂t

)∣∣∣∣
(r0,θ0)

, (4.23)

e3 = −
√

∆r

Σ
∂r

∣∣∣∣
(r0,θ0)

, (4.24)

where e0 is observer’s four velocity, e0 ± e3 are tangent to the direction of princi-

pal null congruences and e3 is along the spatial direction pointing towards the

centre of the BH. Let the coordinates of the light ray are described as λ(s) =

(r(s), θ(s), φ(s), t(s)), then a vector tangent to λ(s) is given by

λ̇ = ṙ∂r + θ̇∂θ + φ̇∂φ + ṫ∂t. (4.25)

This tangent vector can also be described in terms of orthonormal tetrads and

celestial coordinates ρ and σ as

λ̇ = β (−e0 + sin ρ cos σe1 + sin ρ sin σe2 + cos ρe3) , (4.26)

where the scalar factor β is obtained from Eq. (4.25) and (4.26) such that

β = g(λ̇, e0) = Ξ2 aL− E(r2 + a2)√
∆rΣ

∣∣∣∣
(r0,θ0)

(4.27)

Our next aim is to define the celestial coordinates, ρ and σ in terms of parameters

ξ and η. To do so we compare the coefficients of ∂r and ∂φ in Eq. (4.25) and (4.26)
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Figure 4.1: Shadows cast by a rotating BH in PFDM background for different

values of α; all quantities are in units of M. The observer is positioned at r0 and

θ0 = π/2.
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and thus we obtain

sin ρ =

√
1− ṙ2Σ2

Ξ4 ((r2 + a2) E− aL)2

∣∣∣∣∣
(r0,θ0)

. (4.28)

and

sin σ =

√
∆θ sin θ√
∆r sin ρ

(
Σ∆r

Ξ2 ((r2 + a2) E− aL)
φ̇− a

)∣∣∣∣
(r0,θ0)

(4.29)

Using Eqs. (4.10) and (4.12), we can present the above two equations in terms of

parameter ξ and η as

sin ρ =
±
√

Ξ2 (Ξ2 − 1) ((r2 + a2)− aξ)
2 + ∆rη

Ξ2 (r2 + a2 − aξ)

∣∣∣∣∣∣
(r0,θ0)

(4.30)

and

sin σ =

√
∆r sin θ

Ξ2
√

∆θ sin ρ

[
a− ξ csc2

aξ − (r2 + a2)

]∣∣∣∣
(r0,θ0)

. (4.31)

The boundary of shadow of the BH can be presented graphically by projecting a

stereographic projection from the celestial sphere onto to a plane with the Cartesian

coordinates

x = −2 tan
(ρ

2

)
sin(σ), (4.32)

y = −2 tan
(ρ

2

)
cos(σ). (4.33)

Figure 4.1 allows us to distinguish the silhouette cast by a rotating BH in presence

of perfect fluid dark matter (α , 0) from that of Kerr BH (α = 0). For α < 0

we find that the shadow of the BH gets larger and more circular as α becomes

increasingly negative. However for α > 0 the effect on the shadow is no longer

monotonic. For small α > 0 the shadow shrinks whilst maintaining its asymmetric

shape. However once α & 0.8, the shadow begins to grow, becoming increasingly

circular and shifting leftward relative to its α = 0 Kerr counterpart.
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Figure 4.2: Variation in shadow of a rotating BH in PFDM background w.r.t

cosmological constant, when the observer is at position r0 = 50 and θ0 = π/2. All

quantities are in units of M. 80



Our study thus indicates that presence of perfect fluid dark matter can have

considerable effects on a BH silhouette. The rotational distortion of a Kerr BH is

diminished for sufficiently large |α|, even for large spin (a = 0.84). The next effect

is that the PFDM ‘cancels out’ the rotational distortion of the shadow.

Figure 4.2 shows the effects of cosmological constant on the shadow for dif-

ferent values of parameter α. We see that for small |Λ| the shadow maintains its

shape for a given α, increasing for the AdS case Λ < 0 and decreasing for the dS

case Λ > 0.
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Chapter 5

Shadow Images of a Rotating Dyonic

Black Hole with a Global Monopole

Surrounded by Perfect Fluid

Global monopoles are topological defects which may have been produced during

the phase transitions in the early universe. In fact, global monopoles are just one

type of topological defects. Other types of topological objects are expected to

exist including domain walls and cosmic strings. A metric for rotating dyonic

black hole (RDBH) with global monopole in presence of perfect fluid is computed

in this work. We then discuss its surface topology at the event horizon using

Gauss-Bonnet Theorem and also the ergoregion. We investigate the shadows of

the RDBH. Choosing certain values of parameters, such as ω = −1/3, 0, 1/3, we

observe the effect of dark matter, dust and radiation on the silhouette of the black

hole. Our findings lead us to conclude that the presence of parameters γ and α,

also deforms the shape of BH’s shadow. These results have been depicted through

graphical representation. In the end we analyze the two observables, radius Rs
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and distortion δs, related to BH’s shadow. Energy emission rate of RDBH with

global monopole surrounded by perfect fluid is also computed and graphically

illustrated with respect to parameters.

In Section (5.1), we consider the the gravitational field of a static dyonic black

hole (SDBH) with a global monopole surrounded by perfect fluid. In Section

(5.2), by applying a complex coordinate transformation known as the Newman-

Janis method [127] we find the spacetimes of a RDBH with a global monopole

surrounded by perfect fluid. In Section (5.3), we consider the null geodesics using

Hamilton-Jacobi equation. Circular orbits are discussed in (5.4). In Section (5.5)

we study the impact of dark matter, dust and radiation on the shape of global

monopole shadow. The observables, radius distortion, related to shape and size of

shadow and energy emission rate of the BH has also been discussed in this same

section.

5.1 A SDBH with a Global Monopole in Perfect Fluid

The action, SEM, for Einstein Maxwell gravity along with actions SD and S re-

spectively defining presence of a global monopole and matter distribution, can be

altogether written as

S = S(EM) + S(D) + S . (5.1)

The Einstein-Maxwell action S(EM) is given by

S(EM) =
∫ √

−g d4x
(
R
2κ
− 1

4
FµνFµν

)
. (5.2)

The quantities g, R and Fµν are, respectively, the determinant of the metric gµν

associated to the gravitational field, the scalar invariant and the electromagnetic

tensor. Also µ, ν = 0, 1, 2, 3.
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The EFE (1.1), with Λ = 0, G = 1, c = 1, now reads

Rµν −
1
2

gµνR = 8πTµν. (5.3)

While the corresponding Maxwell equations are

∇µFµν = 0. (5.4)

Here Tµν is the total stress energy tensor which we discuss later in this section.

Since we are considering a dyonic black hole, which means that it is comprise of

both electric charge QE and magnetic charge QM, the electromagnetic potential

has two non zero terms i.e. [126, 131]

A =
QE

r
dt−QM cos θdϕ. (5.5)

The only non-vanishing components of the electromagnetic tensor

Ftr = −Frt =
QE

r2 , Fθϕ = −Fϕθ = QM sin θ. (5.6)

Now the action S(D) corresponds to the matter having a defect– a global monopole

which is a heavy object formed in the phase transition of a system composed by

a self-coupling scalar triplet field Φs, where s runs from 1 to 3. Thus the action

in presence of a matter field Φs coupled to gravity that characterizes a global

monopole [95]

SD =
∫ √

−g d4x
(

1
2

gµν∂µΦs∂νΦs − λ

4

(
Φ2 − γ2

)2
)

, (5.7)

where Φ2 = ΦsΦs, while λ is the self-interaction term and γ is the scale of a

gauge-symmetry breaking. The monopole can be described through the field

configuration Φs = γh(r)xs

|x̄| , in which xs = {r sin θ cos ϕ, r sin θ sin ϕ, r cos θ }, such

that |x̄| = r2, and h(r) is a function of radial coordinate r.
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The field equations for the scalar field Φs reduces to a single equation for h(r)

given as

f (r)h′′(r) +
[

2 f (r)
r

+
1

2 f (r)
( f 2(r))′

]
h′(r)− 2h(r)

r2 − λγ2h(r)
(

h2(r)− 1
)
= 0.

(5.8)

With these equations in mind, and without loss of generality we can choose a

spherically symmetric metric written as follows

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dθ2 + r2 sin2 θdϕ2. (5.9)

In our case the total energy momentum tensor reads

Tµν = T(EM)
µν + T(D)

µν + Tµν (5.10)

in which

T(EM)
µν =

1
4π

(
FµσFν

σ − 1
4

gµνFρσFρσ

)
, (5.11)

T(D)
µν = ∂µφa∂νφa − 1

2
gµνgρσ∂ρφa∂σφa −

gµνλ

4

(
φ2 − γ2

)2
, (5.12)

and Tµν is the energy momentum tensor of the surrounding matter.

Outside the core h → 1 and the energy momentum tensor of the monopole has

the following components [95]

T(D)t
t = T(D)r

r = −γ2
[

h2

r2 + f (r)
(h′)2

2
+

λγ2

4
(h2 − 1)2

]
→ −γ2

r2 , (5.13)

T(D)θ

θ = T(D)ϕ

ϕ = −γ2
[

f (r)
(h′(r))2

2
+

λγ2

4
(h2(r)− 1)2

]
→ 0. (5.14)

The surrounding matter, whose action is denoted by S in Eq. (5.1), can generally

be a dust, radiation, quintessence, cosmological constant, phantom field or even

any combination of them. The energy momentum tensor of the surrounding fluid

has the following components [130]

T t
t = T r

r = −ρ, (5.15)
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and

T θ
θ = T ϕ

ϕ =
1
2
(1 + 3ω)ρ. (5.16)

Thus, the Einstein’s field equations yield

r f ′(r) + f (r)− 1
r2 +

8πγ2

r2 +
Q2

E
r4 +

Q2
M

r4 + 8πρ = 0, (5.17)

r f ′′(r) + 2 f ′(r)
2r

−
Q2

E
r4 −

Q2
M

r4 − 4πρ(3ω + 1) = 0. (5.18)

Now by solving the set of differential equations (18) and (19) one obtains the

following general solution for the metric

f (r) = 1− 8πγ2 − 2M
r

+
Q2

E
r2 +

Q2
M

r2 −
υ

r1+3ω
, (5.19)

with the energy density in the form

ρ = − 3 ω υ

8πr3(1+ω)
. (5.20)

Note that, υ is an integration constant related to the perfect fluid parameter. From

the weak energy condition it follows the positivity of the energy density of the

surrounding field, ρ ≥ 0, which should satisfy the following constraint ωυ ≤ 0.

5.2 An RDBH with a Global Monopole in Perfect Fluid

We now extend the study of static global monopole solution and obtain its rotating

counterpart. For this we apply Newman-Janis formalism to the metric (5.9) along

with (5.19), see Appendix (A).

The form of the metric we obtain is

ds2 = −
(

1− r2(1− f (r))
Σ

)
dt2 − 2a sin2 θ

(
r2(1− f (r))

Σ

)
dtdϕ +

Σ
∆

dr2 + Σdθ2

+ sin2 θ

[
(r2 + a2)2 − a2∆ sin2 θ

Σ

]
dϕ2. (5.21)
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where in order to simplify the notation we introduce the following quantity

∆ = r2 f (r) + a2 = r2 + a2 − 2Mr− 8πr2γ2 + Q2
E + Q2

M −
υ

r3ω−1 , (5.22)

here f (r) is given by Eq. (5.19). In this work, we consider three different cases of

ω = −1/3 dark matter dominant, 0 (dust dominant) and 1/3 (radiation dominant).

For spin a = 0, perfect fluid parameter υ = 0 and no charges, the above metric

reduces to Schwarzschild BH with global monopole [128].

The electromagnetic field of a BH is defined by its vector potential. As already

mentioned, in case of a static BH the vector potential is given by Eq. (5.5). For the

rotating case, the Newman-Janis method can also be applied on Eq. (5.5) using a

guage transformation such that grr = 0 and Ar = 0. For the detailed procedure

the authors refers the readers to consider [126]. The vector potential computed

through Newman-Janis formalism for a RDBH is thus given by [126]

A =

(
rQE − aQM cos θ

Σ

)
dt +

(
−ra

Σ
QE sin2 θ +

r2 + a2

Σ
QM cos θ

)
dϕ. (5.23)

It has been shown in [89] that metric similar to (5.21) satisfies the EFE. For the

Einstein tensor Gµν and energy momentum tensor Tµν, the EFE (1.1), with Λ =

0, G = 1, c = 1 are given by Gµν = Rµν − 1/2gµνR = 8πTµν. For simplicity let

f (r) = 1− 2F(r)/r2, where F(r) = 4πγ2r2 + Mr − (Q2
E + Q2

M)/2 + υ r1−3ω/2,

then the nonvanishing components of Gµν are

Gtt =
2

Σ3

(
2F(r)−

(
(r2 + a2) + a2 sin2 θ

)) (
F(r)− rF′(r)

)
− a2 sin2 θ

Σ2 F′′(r),

Grr =
2

Σ∆
(

F(r)− rF′(r)
)

,

Gθθ =
−2
Σ
(

F(r)− rF′(r)
)
− F′′(r), (5.24)

Gtϕ =
4a sin2 θ

Σ3

(
(r2 + a2)− F(r)

) (
F(r)− rF′(r)

)
+

a
Σ2

(
r2 + a2

)
sin2 θF′′(r),

Gϕϕ =
sin2 θ

Σ3

(
4a2 sin2 θF(r)− (r2 + a2)

(
2(r2 + a2) + a2 sin2 θ

)) (
F(r)− rF′(r)

)
− (r2 + a2) sin2 θ

Σ2 F′′(r).

87



In terms of the orthogonal basis, for the metric (5.21),

eµ
t =

1√
Σ∆

(
r2 + a2, 0, 0, a

)
, eµ

r =
1√
Σ

(0, 1, 0, 0) , (5.25)

eµ
θ =

1√
Σ

(0, 0, 1, 0) , eµ
ϕ =

1√
Σ∆

(
a sin2 θ, 0, 0, 1

)
.

and the Einstein tensor Gµν, the energy momentum tensor is expressed as

pt =
1

8π
eµ

t eν
t Gµν, pr =

1
8π

eµ
r eν

r Gµν,

pθ =
1

8π
eµ

θ eν
θ Gµν, pϕ =

1
8π

eµ
ϕ eν

ϕ Gµν. (5.26)

Using Eqs. (5.21-5.26) gives the components for energy momentum tensor as

pt =
1

8πΣ2

(
8πγ2r2 − 3υωr1−3ω + (Q2

E + Q2
M)
)
= −pr, (5.27)

pθ = −pr −
1

8πΣ

(
8πγ2 − 3υω(1− 3ω)

2r1+3ω

)
= pϕ.

Analogous to KBH, a ring singularity harbors inside the BH defined by metric 5.21.

This can be demonstrated by computing the points at which the Kretschmann

scalar Ks = RµνσρRµνσρ turns to infinity. For the metric (5.21), the Kretschmann

scalar has the value

Ks =
Z(r, a, θ, QE, QM, ω, υ, γ)

r2(1+3ω)(r2 + a2 cos2 θ)2
. (5.28)

where Z(r, a, θ, QE, QM, ω, υ, γ) is a tedious function. From the above expression,

we observe that for ω = −1/3, 0, 1/3 the poles are at the ring r2 + a cos2 θ = 0 or

when r = 0 and θ = π/2. This leads us to the interpretation that a test particle

moving in an equatorial plane θ = π/2 will hit the singularity at r = 0.

5.2.1 Surface Topology

It is interesting to determine the surface topology of the global monopole spacetime

at the event horizon. At a fixed moment in time t, and a constant r = r+, the
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metric (5.21) reduces to

ds2 = Σ(r+, θ)dθ2 +

(
2Mr+ + 8πr2

+γ2 −Q2
E −Q2

M +
υ

r3ω−1
+

)2
sin2 θ

Σ(r+, θ)
dϕ2,

The above metric has the following determinant

det g(2) =

(
2Mr+ + 8πr2

+γ2 −Q2
E −Q2

M +
υ

r3ω−1
+

)2

sin2 θ. (5.29)

Theorem: LetM be a compact orientable surface with metric g(2), and let K be the

Gaussian curvature with respect to g(2) onM. Then, the Gauss-Bonnet theorem states

that
x

M
KdA = 2πχ(M). (5.30)

Note that dA is the surface line element of the 2-dimensional surface and χ(M) is

the Euler characteristic number. It is convenient to express sometimes the above

theorem in terms of the Ricci scalar, in particular for the 2-dimensional surface

there is a simple relation between the Gaussian curvature and Ricci scalar given

by

K =
R
2

. (5.31)

Yielding the following from

1
4π

x

M
RdA = χ(M). (5.32)

A straightforward calculation using the metric (42) yields the following result

for the Ricci scalar

R =
2(r2

+ + a2)(r2
+ − 3a2 cos2 θ)(

r2
+ + a2 cos2 θ

)3 (5.33)

From the GBT we find

χ(M) =
1

4π

∫ 2π

0

∫ π

0

[
2(r2

+ + a2)(r2
+ − 3a2 cos2 θ)(

r2
+ + a2 cos2 θ

)3

] √
det g(2) dθdϕ. (5.34)
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Finally, solving the integral we find

χ(M) = 2. (5.35)

Hence the surface topology of the RDBH with global monopole is a 2-sphere at

the event horizon, since we know that χ(M)sphere = 2.

5.2.2 Configuration of Ergoregion

Let us now proceed to study the shape of the ergoregion of a RDBH with a global

monopole. We do so by plotting the silhouette of ergoregion in the xz-plane. The

horizons of a BH exists at the solutions of ∆ = 0, which in our case has the form

r2 + a2 − 2Mr− 8πr2γ2 + Q2
E + Q2

M −
υ

r3ω−1 = 0. (5.36)

The static limit, on the other hand, has an inner and outer ergosurface which exists

when

gtt = r2 + a2 cos2 θ − 2Mr− 8πr2γ2 + Q2
E + Q2

M −
υ

r3ω−1 = 0. (5.37)

There is an interesting process which relies on the presence of an ergoregion,

namely from such a RBH energy can be extracted, and this process is known as

the Penrose process. In Figure (5.1) we plot the shape of ergoregion for different

values of a, ω, γ, and υ. One can observe that the event horizon and static limit

surface meet at poles while the region lying between them is the ergoregion which

supports negative energy orbits. Furthermore the shape of ergoregion, depends

on the spin a, however due to the small values of υ we observe small changes

related to the value of ω.
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Figure 5.1: Plots showing shape of ergoregion (red) and horizons (blue) in xz-plane

for different values of a, ω, and υ. We have chosen QE = QM = 0.1.
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5.3 Null Geodesics

Our main objective is to investigate the shadow casted by the BH defined by

metric (5.21). To do so, we first need to analyze the geodesics structure of photons

moving around the compact gravitational source. This will enable us to detect the

unstable photon orbits. The boundary of the BH’s shadow is defined where the

unstable photon orbits exist.

For the RDBH with global monopole present in perfect fluid, the presence of

null geodesics can be observed by following the Hamilton-Jacobi method. The

Hamilton-Jacobi equation is given by

∂τJ = −H. (5.38)

In the above equation

On Left Side J is the Jacobi action, defined as the function of affine parameter τ

and coordinates xµ i.e. J = J (τ, xµ).

On Right Side H is the Hamiltonian of test particle’s motion and is equivalent to

gµν∂µJ ∂νJ .

In the spacetime under consideration, along the photon geodesics the energy E

and momentum L, defined respectively by Killing fields ξt = ∂t and ξφ = ∂φ, are

conserved. The mass m = 0 of the photon is also constant. Using these constants

of motion we can thus separate the Jacobi function as

J =
1
2

m2τ − Et + Lφ + Jr(r) + Jθ(θ) (5.39)

where the functions Jr(r) and Jθ(θ) respectively depends on coordinates r and θ.

Combining Eq. (5.38) and Eq. (5.39) yields a set of equations, which describes the
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Figure 5.2: Plot showing Veff of a photon w.r.t its radial motion: ω = 1/3 for

radiation, ω = 0 for dust and ω = −1/3 for dark matter.
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dynamics of a test particle around the RBH in perfect fluid matter, as:

Σ
dt
dτ

=
r2 + a2

∆
[E(r2 + a2)− aL]− a(aE sin2 θ − L), (5.40)

Σ
dr
dτ

=
√
R(r) , (5.41)

Σ
dθ

dτ
=
√

Θ(θ) , (5.42)

Σ
dϕ

dτ
=

a
∆
[E(r2 + a2)− aL]−

(
aE− L

sin2 θ

)
, (5.43)

whereR(r) and Θ(θ) read as

R(r) = [E(r2 + a2)− aL]2 − ∆[m2r2 + (aE− L)2 +K], (5.44)

Θ(θ) = K−
(

L2

sin2 θ
− a2E2

)
cos2 θ, (5.45)

with K the Carter constant.

5.4 Circular Orbits

Now we consider a gravitational source placed between a light emitting source

and an observer at infinity. The photons emitted from the light source will form

two kinds of trajectories: the ones which eventually fall into the BH and the ones

which scatter away from it. The region separating these trajectories, contains

unstable circular orbits. These unstable circular orbits form a dark region in sky

thus forming the contour of the shadow. In this section we intend to discuss

the presence of unstable circular orbits around the BH under consideration. For

this we consider photon as a test particle and hence take m = 0. We can express

the radial geodesic equation in terms of effective potential Veff of photon’s radial

motion as

Σ2
(

dr
dτ

)2

+ Veff = 0.
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At this point, for mere convenience, we introduce two independent parameters ξ

and η [11] as

ξ = L/E, η = K/E2. (5.46)

The effective potential in terms of these two parameters is then expressed as

Veff = ∆((a− ξ)2 + η)− (r2 + a2 − a ξ)2, (5.47)

where we have replaced Veff/E2 by Veff. Figure (5.2) shows the variation in effective

potential associated with the radial motion of photons. From the figure we observe

that in all three cases the value of effective potential decreases with increase in

parameter γ. Now the circular photon orbits exists when at some constant r = rc

the conditions

Veff(r) = 0,
dVeff(r)

dr
= 0 (5.48)

are satisfied. We then use Eq. (5.47) in Eq. (5.48) and thus obtain

[η + (ξ − a)2]∆− (r2 + a2 − aξ)2 = 0, (5.49)

4(r2 + a2 − aξ)− [η + (ξ − a)2]A(r) = 0, (5.50)

where

A(r) = 1− 8πγ2 − M
r
+ (

3ω− 1
2

)
υ

r1+3ω
. (5.51)

Combining Eqs. (5.49-5.50) results in

a ξ = r2 + a2 − 2 ∆
A(r) , (5.52)

η =
4∆
A(r)2 −

1
a2

(
r2 − ∆

A(r)2

)2

(5.53)

It is worth mentioning here that impact parameters, ξ and η, will be affected

not just by radial coordinate r, spin parameter a and mass of BH M but also

by electric charge QE, magnetic charge QM, monopole parameter γ and perfect
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fluid parameter υ. The unstable circular orbits are located at local maxima of the

potential curves i.e. when V
′′
eff < 0 or(
∆′2 + 2∆∆′′

)
r + 2∆∆′ > 0 (5.54)

5.5 Silhouette of a Black Hole

We now extend our calculations to observe shadow of RDBH with global monopole

surrounded by perfect fluid. To gain the optical image we specify the observer at

position (ro, θo), where ro = r → ∞ and θo is the angular coordinate at infinity, on

observer’s sky. The new coordinates, also widely known as celestial coordinates,

α and β are then introduced. These coordinates are selected such that α and

β correspond to the apparent perpendicular distance of the image from axis

of symmetry and its projection on the equatorial plane, respectively.Due to the

presence of global monopole we have asymptotically non flat solutions due to the

global nontrivial topology. Now we obtain the proper celestial coordinates for the

asymptotically non-flat solution by abopting [?]

α = lim
r→∞
−r

p(φ)

p(t)
(5.55)

β = lim
r→∞

r
p(θ)

p(t)
(5.56)

where (p(t), p(r), p(θ), p(φ)) are the tetrad components of the photon momentum

with respect to locally nonrotating reference frame. So basically one can define

the observerâĂŹs sky as the usual cases in which the observer bases eµ

(ν)
can be

expanded as a form in the coordinate bases. In the limit r → ∞ can relate the

above coordinates to parameters ξ and η, which then yield

α = −
√

1− 8πγ2 ξ

sin θ
(5.57)

β = ±
√

1− 8πγ2
√

η + a2 cos2 θ − ξ2 cot2 θ , (5.58)
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for the case ω = 0 and ω = 1/3. And similarly

α = −
√

1− 8πγ2 − υ
ξ

sin θ
(5.59)

β = ±
√

1− 8πγ2 − υ
√

η + a2 cos2 θ − ξ2 cot2 θ (5.60)

for the case ω = −1/3. We observe that in the dark matter case there is a similar

contribution term compared to the global monopole. In the limit γ→ 0 and υ→ 0

we obtain the usual relations for celestial coordinates for the asymptotically flat

solution.

We expect that the parameters involve in RDGM in presence of a perfect fluid

will effect the shape of its shadow. This can be clearly confirmed through Eq. 5.60

as it depends not only on spin parameter a and angular coordinate θo but also on

γ, ω and perfect fluid parameter υ. Later, we will justify our results also through

graphical interpretations.

As our observer is placed in the equatorial plane (θ = π/2), α and β reduce to

α = −
√

1− 8πγ2 ξ (5.61)

β = ±
√

1− 8πγ2 √η , (5.62)

for the case ω = 0 and ω = 1/3. And

α = −
√

1− 8πγ2 − υ ξ (5.63)

β = ±
√

1− 8πγ2 − υ
√

η (5.64)

for the case ω = −1/3. Figure (5.3) and (5.4) show deformation in shapes of the

shadow with respect to monopole parameter γ and and perfect fluid parameter

υ, respectively. It is a well known observation now that the rotational effect in a

black hole distorts its shape. That being said, we notice in Figure (5.3) that for

small spin parameter, a, the shadow of the black hole maintains a circular shape

along with the increase in its size with the inclination of γ. As for larger spin value,
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Figure 5.3: Variation in shape of a rotating dyonic global monopole surrounded

by a perfect fluid. Magnetic and electric charges are kept constant such that

QE = 10−2 = QM. In each graph the Kerr case i.e. γ = 0 and υ = 0, is represented

by solid line, γ = 0.05 by dotdashed and γ = 0.08 by dashed lines. For dark

matter (ω = −1/3) and dust (ω = 0) case υ = 0.01, whereas υ = −0.01 in case of

radiation (ω = 1/3).

the shadow is clearly distorted and matches with its Kerr counter part in perfect

fluid [125] for γ = 0. Figure (5.4) shows the effect of parameter υ on the rotating
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Figure 5.4: Variation in shape of a rotating dyonic black hole with global monopole

surrounded by a perfect fluid, for different values of perfect fluid parameter υ.

Magnetic and electric charges along with the global monopole parameter are kept

constant such that: QE = 10−2 = QM and γ = 0.08 . For dark matter and dust

case υ = 0 (Solid), 0.05 (DotDashed) and 0.1 (Dashed). In case of radiation υ = 0

(Solid), −0.01 (DotDashed) and −0.05 (Dashed).

dyonic black hole with a global monopole present in perfect fluid. It is noticed in

figure 5.4 that as perfect fluid parameter, υ, increases the size of the shadow also
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increases. A distortion is noticed in shape of the shadow when the spin parameter

a is increased. Also, in case of dark matter and dust, there is significant change in

the size of the shadow with respect to υ. On the other hand, in case of radiation

we do not observe any significant effect of perfect fluid parameter υ, in fact the

effect is negligibly small.

In [21], the authors introduces two observables, radius Rs and distortion δs, to

analyze the size and form of the shadow. The first observable Rs is the approximate

radius of the shadow. It is defined by considering a reference circle passing through

three points on the boundary of the shadow, such that (αtp, βtp) is the top most

point on the shadow, (αbm, βbm) is the bottom most point on the shadow and

(αr, 0) is the point corresponding to unstable circular orbit seen by an observer on

reference frame. Thus

Rs =
(αtp − αr)2 + β2

tp

2|αtp − αr|
. (5.65)

The second observable δs is the distortion parameter. Let DCS be the difference

between the contour of shadow and reference circle. Then for the point (α̃p, 0)

lying on the reference circle and the point (αp, 0) lying on the contour of the

shadow, DCS = |α̃p − αp|. Thus

δs =
α̃p − αp

Rs
.

For our case, we consider the points (α̃p, 0) and (αp, 0) to be on the equatorial plane,

opposite to the point (αr, 0). The variations in these observables with respect to

monopole parameter γ are graphically presented in Figure (5.5). The dependence

of Rs on parameter γ is such that as γ increases the radius Rs also increases. Thus

the size of the shadow increases with increase in monopole parameter γ. Whereas

the distortion δs decreases monotonically with an increase in γ. This tells us that

with respect to circumference of reference circle, the shadow of the rotating black

hole is significantly distorted for γ ∈ [0, 0.1] but for γ > 0 it may not show any
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distortion and thus we may obtain a perfect circle. As we have considered our
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Figure 5.5: The quantities Rs and δs with respect to parameter γ

observer to be at infinity so in this case the area of the black hole shadow will be

approximately equal to high energy absorption cross section as discussed in [26].

For a spherically symmetric black hole the absorption cross section oscillates

around Πilm, a limiting constant value. For a black hole shadow with radius Rs,

we adopt the value of Πilm as calculated by [26]

Πilm u πR2
s .

The energy emission rate of the black hole is thus defined by

d2E(σ)
dσdt

= 2π2 Πilm

eσ/T − 1
σ3,

where σ is the frequency of the photon and T represents the temperature of the

black hole at outer horizon i.e. r+, given by

T(r+) = lim
r→r+

∂r
√

gtt

2π
√

grr

=
(

2a2 ( f (r)− 1) + r(r2 + a2) f
′
(r)
) r

4π (r2 + a2)
2
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For all three cases, radiation, dust and dark matter, the energy emission rate is

graphically presented in Figure (5.6) where we notice that the energy emission

rate decreases with increase in parameter γ. A slight shift to the lower frequency

is also observed while γ increases. The spin parameter a also effects the shape of

the energy emission rate as an abrupt decrease in energy emisiion rate is noticed

for higher spin value.
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Figure 5.6: The figure shows the energy emission rate when a = 0.46 (upper panel)

and a = 0.92 (lower panel).
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Chapter 6

Conclusion

The detection of gravitational waves and BH images obtained by EHT are alto-

gether a break through in astrophysics. These discoveries have just not reignited

the faith in Einstein’s GTR but also opened doors to test other theories of gravity

too. Certainly we are living in an intriguing new era of research and development

regarding both theoretical and astrophysical aspects.

From astrophysical point of view, RBHs are of significant importance. Since

the spin of a BH carries all the information about its formation and growth. It

is also potent source of energy to power relativistic jets. As per finding of EHT

collaboration, the BHs hosted by our neighbor galaxy (M87) and our own galaxy

are spinning. All these reasons set a path for an intriguing mind to look into

dynamics of these mysterious objects not only in GTR but also in its alternatives.

The recent interest in studying particle (particularly photon) motion around a BH

to eventually obtain its image is a motivation for us to play our part.

To conclude this study we now summarize the results obtained in previous

chapters.

In Chapter TWO we have discussed in detail the properties of a RBH solution

103



considering the variation of gravitational coupling. This new metric is charac-

terized by three parameters: rotational parameter a, mass of BH M and constant

parameter ξ̃, describing the quantum corrections. We have first discussed the con-

sequences of the asymptotically safe gravity correction on the structure of event

and Killing horizons. While doing so we noted that ergosphere is significantly

increased when ξ̃ increases, which also depicts that the region of the BH from

which energy can be extracted, through Penrose process, is bigger as compared to

standard GR. Further, particle’s motion is investigated by studying geodesics for

both null and time-like particles. For the case L = aE, the equations for outgoing

photon trajectory are numerically solved. By plotting these results, it is observed

that,for small ξ̃, the photon trajectory with respect to both time t and angle φ

shows no high deviation from its GR counterpart. The presence of a bifurcation

point is also numerically analyzed, which leads us to existence of naked singularity.

Expressions of energy and angular momentum for time-like geodesics, depending

on r, are derived. Angular velocity Ω is computed and it is observed that for

prograde motion Ω increases when ξ̃ is increased but for retrograde motion it

decreases with ξ̃. A detailed discussion is made on effective potential also. It is

graphically shown that the shape of potential barrier is changed for different val-

ues of ξ̃. The extraction of energy is discussed by taking into account the Penrose

process. We have demonstrated that for the same values of a the efficiency of

Penrose process will be greater in asymptotically safe gravity, while the maximum

possible efficiency of Penrose process will not be significantly changed. In the

end, another effect called Lense-Thirring effect is also explored. It is noted that

this effect, being a rotational effect, depends on the rotational parameter a. With

the increase in the value of a Lense-Thirring effect shows notable change when

plotted. It should be kept in mind here that to avoid the whole system to get

strongly coupled, Cai and Easson [79] considered the value of coupling parameter
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ξ̃ to be less than unity, which limitized the practical significance of our result.

The existence of dark matter around BHs located at the centers of most of large

galaxies plays an important role in many astrophysical phenomena. Motivated

by this fact, in Chapter THREE we have studied the effects of perfect fluid dark

matter and a cosmological constant on the shadow of a RBH. Our work provides a

possible tool for observation of dark matter via shadows, perhaps using the high

resolution imaging of the Event Horizon Telescope.

We have shown that the different shadow shapes are found by varying the

PFDM parameter, mass, spin parameter, and the cosmological constant. Through

graphs we have demonstrated that size of shadow of our BH decreases for α < 1

but after that we see an increase in its size.

In Chapter FOUR we have used the complex transformations pointed out by

Newman and Janis to obtain an RDGM solution in presence of a perfect fluid dark

matter. Using the Gauss-Bonnet theorem we have shown that the surface topology

of a RDBH with a global monopole is indeed a 2-sphere. Furthermore by choosing

ω = −1/3, 0, 1/3 we have explored the impact of dark matter, dust, radiation, as

well as the global monopole parameter γ, and perfect fluid parameters α, on the

silhouette of BH. We have found that a RDBH with a global monopole retains a

circular shape for small spin parameter. Whereas for high spin like a = 0.98M the

shadow of RDBH with global monopole is distorted. Also as monopole parameter

γ increases, a slight shift towards the right is also noticed in shape of shadow of

BH under consideration. The two observables, Rs and δs, are also being discussed.

In the end we analyze energy emission rate of RDBH with global monopole

surrounded by perfect fluid with respect to parameters.
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Appendix A

Newman-Janis Algorithm

The method given in [89] is subsequently being adapted here. We first consider a

static and spherically symmetric metric as

ds2 = −A1(r)dt2 +
dr2

A2(r)
+ h(r)

(
r2dθ2 + r2 sin2 θdφ2

)
, (A.1)

The algorithm, for metric’s computation, begins by transforming BL to EF coor-

dinates i.e. (t, r, θ, φ) → (u, r, θ, φ). So with the use of the following coordinate

transformation, in Eq. (A.1),

dt = du +
dr√

A1(r)A2(r)
,

a line element of the form

ds2 = −A1(r)du2 − 2

√
A1(r)
A2(r)

dudr + h(r)dΩ2,

is obtained. This metric in terms of null tetrads is written as

gµν = −lµnν − lνnµ + mµm̄ν + mνm̄µ, (A.2)

106



where null tetrads are

lµ = δ
µ
r ,

nµ =

√
A2(r)
A1(r)

δ
µ
u −

A2(r)
2

δ
µ
r ,

mµ =
1√

2h(r)

(
δ

µ
θ +

ι̇

sin θ
δ

µ
φ

)
,

m̄µ =
1√

2h(r)

(
δ

µ
θ −

ι̇

sin θ
δ

µ
φ

)
.

The first two null tetrads, l and m, are real vectors while m is complex and m̄ is

conjugate of vector m. These vectors are orthogonal, isotropic and normalized i.e

they satisfy the following conditions

lµlµ = nµnµ = mµmµ = m̄µm̄µ = 0,

lµmµ = lµm̄µ = nµmµ = nµm̄µ = 0,

lµnµ = −mµm̄µ = 1.

Introducing complex coordinate transformations

u′ → u− ι̇a cos θ,

r′ → r + ι̇a cos θ,

where a is the rotational parameter. It is also assumed that due to these transfor-

mations the functions A1(r), A2(r) and h(r) shift to F1 = F1(r, a, θ), F2 = F2(r, a, θ)

and Σ = Σ(r, a, θ) respectively.

This leads to new null tetrads (dropping primes) as

lµ = δ
µ
r ,

nµ =

√
F2

F1
δ

µ
u −

F2

2
δ

µ
r ,

mµ =
1√
2Σ

[(
δ

µ
u − δ

µ
r
)

ι̇a sin θ + δ
µ
θ +

ι̇

sin θ
δ

µ
φ

]
, (A.3)

m̄µ =
1√
2Σ

[
−
(
δ

µ
u − δ

µ
r
)

ι̇a sin θ + δ
µ
θ −

ι̇

sin θ
δ

µ
φ

]
.

107



With the help of Eq. (A.2) and Eq. (A.3), contravariant components of new metric

are computed as

guu =
a2 sin2 θ

Σ
, guφ =

a
Σ

, gur = −

√
F2

F1
− a2 sin 2θ

Σ
,

grr = F2 +
a2 sin2 θ

Σ
, grφ = − a

Σ
, gθθ =

1
Σ

,

gφφ =
1

Σ sin2 θ
.

Using the above contravariant components, the non-zero covariant components

are

guu = −F1, gur = −

√
F1

F2
, guφ = a sin2 θ

(
F1 −

√
F1

F2

)
,

grφ = a

√
F1

F2
sin2 θ, gθθ = Σ, gφφ = sin2 θ

[
Σ− a2

(
F1 − 2

√
F1

F2

)
sin2 θ

]
.

So new metric is

ds2 = −F1du2 − 2

√
F1

F2
dudr + 2a sin2 θ

(
F−

√
F1

F2

)
dudφ + 2a sin2

√
F1

F2
drdφ + Σdθ2

+ sin2 θ

[
Σ− a2

(
F− 2

√
F1

F2

)
sin2 θ

]
dφ2.

Finally, the EF coordinates are transformed back to BL coordinates. For this

purpose the following transformation is being used

du = dt + λ(r)dr,

dφ = dφ′ + χ(r)dr,

where

λ(r) =
−a2 − k(r)

A2(r)h(r) + a2 , χ(r) =
−a

A2(r)h(r) + a2 , k(r) =

√
A2(r)
A1(r)

h(r),

with

F1 =
A2(r)h(r) + a2 cos2 θ

(k(r) + a2 cos2 θ)
2 Σ (A.4)
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and

F2 =
A2(r)h(r) + a2 cos2 θ

Σ
. (A.5)

Thus an RBH solution in BL coordinates turns out to be

ds2 = −A2(r)h(r) + a2 cos2 θ

(k(r) + a2 cos2 θ)
2 Σdt2 + 2a sin2 θ

A2(r)h(r)− k

(k(r) + a2 cos2 θ)
2 Σdtdφ +

Σ
A2(r)h(r) + a2 dr2 + Σdθ2

+ Σ sin2 θ

[
1 + a2 sin2 θ

2k(r)− A2(r)h(r) + a2 cos2 θ

(k(r) + a2 cos2 θ)
2

]
dφ2.

Since A1(r) = A2(r), so k(r) = h(r). Comparison of Eq. (A.4) and Eq. (A.5) gives

Σ = r2 + a2 cos2 θ. Hence the rotational solution of a black hole is obtained.

In Asymptotically Safe Gravity Theory

For the case taken in section (2.2.1), we have

A1(r) = A2(r) ' 1− 2M
r

(
1− ξ̃

r2

)
and h(r) = r2.

and the metric obtained from using Newman-Janis algorithm is given by

(ds)2 = −
(

1− 2Mr
Σ

(
1− ξ̃

r2

))
dt2 − 4aMr sin2 θ

Σ

(
1− ξ̃

r2

)
dtdφ +

Σ
∆

dr2 + Σdθ2

+ sin2 θ

[
r2 + a2 +

2a2Mr
Σ

sin2 θ
(

1− ξ̃

r2

)]
dφ2,

where ∆ = r2 − 2Mr + 2Mξ̃
r + a2. This metric reduces to its static and spherically

symmetric version when a→ 0.

An RDBH with Global Monopole in Perfect Fluid

For the case taken in section (5.2), we have A1(r), A2(r)→ f (r) where

f (r) = 1− 8πγ2 − 2M
r

+
Q2

E
r2 +

Q2
M

r2 −
υ

r3ω+1 . (A.6)
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The metric thus obtained from the Newman-Janis algorithm is given by

ds2 = −
(

1− r2(1− f (r))
Σ

)
dt2 − 2a sin2 θ

(
r2(1− f (r))

Σ

)
dtdϕ +

Σ
∆

dr2 + Σdθ2

+ sin2 θ

[
(r2 + a2)2 − a2∆ sin2 θ

Σ

]
dϕ2. (A.7)

where in order to simplify the notation we introduce the following quantity

∆ = r2 f (r) + a2 = r2 + a2 − 2Mr− 8πr2γ2 + Q2
E + Q2

M −
υ

r3ω−1 , (A.8)

For a = 0, the above metric is reduced to its static and spherically symmetric

counter part.
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