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Introduction

The subject of this thesis is the theoretical analysis of the giant monopole (EO)
resonance in spherical and deformed nuclei using the separable version of the
random-phase approximation (SRPA) starting with the Skyrme effective inter-
action between nucleons. The SRPA method was developed in the IPNP MFF
UK in the collaboration with the LTP JINR Dubna and University of Erlangen
[T]. This approach involves the solution of the Hartree-Fock equations together
with the Bardeen-Cooper-Schrieffer (BCS) equations and in the next step the
obtained quasiparticle basis is used for the construction of the separable (fac-
torized) residual interaction. The separable form of the residual interaction is
obtained in terms of the multi-dimensional response function method when the
nucleus is excited by the set of external single particle operators (fields). The
separable residual interaction enables to rewrite the RPA equations into the sim-
ple form of the algebraic system equations of very low dimension and in such a
way to avoid the construction and diagonalization of huge matrices which is the
case in the standard nonseparable RPA. This is important especially for heav-
ier nuclei where the dimensions of the configuration basis are high. The SRPA
approach was successfully used in the last decade for the systematic analysis of
the giant electric E1 and magnetic M1 dipole resonances (see e.g. [2, B]) and for
the analysis of the toroidal nature of low-lying E1 excitations in nuclei [4, [5]. Tt
should be pointed out that the SRPA method is fully self-consistent, that means
the separable residual interaction has not brought any new free model parame-
ters and the only parameters of the approach are those of the effective Skyrme
nucleon-nucleon interaction.

The main aim of this work is the systematic analysis of the isoscalar giant
monopole resonance (GMR). During last decades the GMR was a subject of
intense studies, see e.g. [0, [7] (and citations therein) for recent reviews and
discussions. The reason is that the GMR provides a valuable information on
the nuclear incompressibility [8, 0] because the energy centroid of the GMR can
be directly related to the incompressibility modulus K4 [9] and this modulus
belongs to the bulk properties used for the determination of the energy functional
(or effective nucleon-nucleon interaction) parameters. For the infinite nuclear
matter the commonly accepted value for the incompressibility is K = 230 — 240
MeV, confirmed by relativistic as well as non-relativistic mean field models [10].
However, despite many efforts, the description of the GMR still suffers from some
persisting problems. For example, the mean field models with K = 230—240 MeV
reproduce the GMR experimental data in heavy and medium nuclei like 2°Pb and
1448m [T1],[12] but fail to describe more recent GMR experiments for lighter nuclei
like Sn and Cd isotopes [13], 14}, 15, [16}, 17], which request a lower incompressibility
(see e.g. discussion in [0 [7, I8, 19]. In other words, none of the modern self-
consistent models, relativistic or non-relativistic, can simultaneously describe the
GMR in all mass regions. This problem has been already analyzed from different
sides. It was shown that GMR centroids can be somewhat changed by varying the
symmetry energy at constant K [20]. Different Skyrme forces and pairing options
(surface, volume and mixed) were inspected [7, 18, [19]. Hartree-Fock-Bogoliubov
(HFB) and HF+BCS methods were compared [2I]. All these attempts have



partly conformed the description but not solved the problem completely.

The other problem of the GMR is the experimental data themselves. The
modern experimental data are mainly delivered by two groups: Texas A&M Uni-
versity (TAMU) [I1), 13, 22] and Research Center for Nuclear Physics (RCNP)
at Osaka University [12] 14 15, [16, I7]. Both groups use (a,a’) reaction and
multipole decomposition prescription to extract the EO contribution from the
cross section. However, these groups provide noticeably different results and this
should be also taken into account in the analysis of the above problem [7, 23].

The situation with the GMR in deformed nuclei is even more vague. Though
there is an evident progress in experiment studies, e.g. soft Mo [24] and deformed
Sm [12, 22] isotopes, the self-consistent mean field+RPA models are yet at very
beginning, which is explained by a need to deal with a huge configuration space.
So the theoretical results on GMR in deformed nuclei are now mainly reduced
to early inconsistent studies based on phenomenological mean field [25, 26] 27].
More than three decades ago, two main deformation effects have been predicted
[25], 26], 27] and observed [28, 29] in the GMR: i) broadening the resonance and
ii) onset of two-peak structure due to a coupling of the GMR with the p = 0
branch of the giant quadrupole resonance (GQR). In this thesis these results are
revisited by using a modern Skyrme+RPA approach [23].

Another problem and question concerning the comparison of the theoretical
results with the experimental data is connected with the fact that this comparison
has been performed only with respect to the GMR centroids (see e.g. [7]). In this
thesis not only centroids but the whole energy distribution of the E0O strength in
the GMR are compared with the experimental data.

All the problems mentioned above and the aspects of the GMR are analyzed
in this thesis using the self-consistent BCS+SRPA method. We study the influ-
ence of different Skyrme parametrizations (with different incompressibilities K,
different isoscalar masses) on the position and (mainly) the shape of the GMR.

The thesis is organized as follows: short introduction into the topic is followed
by theoretical introduction, in which we will explain the main features of the
Skyrme HF-BCS method and separable RPA. Introduction into giant resonances
will be followed by a brief discussion of experimental methods used to determine
GMR strengths. In the results section will be presented a methodological study
of GMR within HF-BCS+SRPA model intertwined with study of a new SV set

of Skyrme functional parametrizations.



1. Theoretical outline

The starting point of our BCS+SRPA approach is the Skyrme effective interaction
between nucleons in the nuclear medium. This effective interaction belongs to the
family of so called realistic semi-phenomenological effective interactions where the
form of these interactions is justified by theoretical consideration but the corre-
sponding expressions involve free parameters. These parameters are usually fixed
by fitting the bulk properties (usually bind energy, radius, incompressibility) of
selected double-magic nuclei to their experimental values (see e.g. [30]). Besides
the Skyrme interaction [31, B2] Gogny interaction [33] and relativistic mean field
theory [34] are widely used. During the last decades there were determined many
parametrizations for each effective interaction. Each such parametrization had
to fit to the above mentioned bulk properties of selected nuclei and besides that,
it was fitted to other additional nuclear properties characteristic for a given pa-
per where it was introduced. Therefore, for instance, for the Skyrme effective
interaction nowadays we have several tens of parametrizations (see e.g. [35] 30]).
The Skyrme effective interaction was introduced in 1959 [31]. The leading
terms of this interaction were obtained as the coordinate representation of the
simplest contact non-local potential written in the linear momentum space as
follows
V(p;,p;) = Vo + Vi(p} +p3) + Vap; - p, (1.1)
where Vg, Vi and V5 are free parameters. We obtain a leading Skyrme inter-
action term if we transform this interaction into coordinate representation and
add a spin dependence through the spin-exchange operator P, = %(1 +0,0j).
In the original papers with the Skyrme interaction (see e.g. [31, B2]) the spin-
orbital term and three-body contact interaction (to reproduce nuclear saturation
effect) were also added. Later (e.g. [30]) it was shown that a three-body con-
tact interaction can be substituted by a two-body density dependent interaction
Viens(Ti,75) = Vid(r;—7;) p® (r’;rj), where p(7) is the local density. The modern
version of the Skyrme effective interaction in the coordinate representation, used
in the RPA calculations is following

Vb =Vsi(ri, 7)) =

)

A\ 55 — 1 - i
+ 1y (1 + /ﬁng) K -o(ri—r;)k + 6253 <1 + /-£3Pa> dr; —r;)p” <r ;TJ
¢ -
-+ 1t4(0’l -+ O'j) -k x 5(Tz — ’l"j) k.
(1.2)
7 “— 5,
In (2)) the derivative k = @ acts on the right and k = — ﬁzﬁ] acts on

the left. The constants tg, t1, ta, t3, t4, Ko, K1, K2, K3, @ are arbitrary parameters
adjusted to reproduce experimental data. The way of their determination will be
discussed later. In the coordinate representation the non-locality of the Skyrme
. . P <~ . . .

interaction is caused by the derivatives k and £’. Skyrme interaction (L2]) is
always used only in the particle-hole channel. There were attempts in the past
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to use it also for the particle-particle channel (see [37]) but it lead to unrealistic
pairing properties. Therefore the particle-particle part of the effective interac-
tion is usually added phenomenologically by an additional term, which will be
described later.

Instead of using the direct application of the effective interaction ([L2)) in the
HFB or BCS method, the so-called energy functional methods are applied in the
current nuclear physics for the determination of the mean field and the residual
interaction.

1.1 Nuclear Energy Density Functional

Energy functional is defined as an expectation value of the total Hamiltonian in
the Slater determinant

E = (V|H|V) =

3 3 3 * (13)
= [ drdro . dTAY], o (P15 T a) HYoy g an (T, 4)

with Slater determinant in coordinate basis

¢041 (7"1) ¢o¢2 (7”‘1) tee QbaA(T‘l)
wahaz,...,aA (7'1; s 77'A> = <T‘1 . ’I"A|\I/> = L det

VAl : :
¢a1 (TA) ¢Oz2 (TA> e ¢04A (TA)

(1.4)
where ¢,,(r) are single-particle wave functions.
In (C3) H is the total Hamiltonian
H=T+V (1.5)

where T is a kinetic energy operator and V is an interaction operator. If the
interaction operator 1% depends only on the coordinates of individual nucleons
(i.e., it does not depend on spins of nucleons or on the derivatives of their co-
ordinates), the functional ([3]) is dependent only on the local density p(r) and
the Hartree-Fock single-particle basis can be obtained using the Hohenberg-Kohn
theorem [38] by minimizing the E[p| with respect to the local density p(r) (us-
ing the local density approximation one usually obtains Kohn-Sham equation (see
[39]) which is in the case of the contact interaction equivalent to the HF equation).

Since the Skyrme interaction (L2)) depends on the Pauli spin matrices and
on the derivatives of the coordinates, it is obvious that the final Skyrme energy
functional is not a simple function of the local density p(r), but it also depends
on its derivatives and on the densities of the spin variables.

In order to construct the full Skyrme energy functional we introduce a set of
non-local densities



Density p(r,r") = Z(@]@Laam\\m
Spin-density s(r,r') = Z(ll/]ai,a/aw\\lf><a'|&|a> (1.6)

oo’

where al,_, a,, are creation and annihilation operators of a nucleon in the space
coordinate r, with the spin projection o. The remaining non-local densities are

defined as derivatives of the densities (L.G))

Kinetic density (r,v") =V -V'p(r,r')
Spin-kinetic density T(r,v')=V -V's(r,r)
1
Current density jr,r') = % (V =V p(r,r")
i
1
Tensor density Jij(r,r') = 5 (Vi = Vi) sj(r,r") (1.7)
i

where the derivative V acts on = and the derivative V' acts on . The corre-
sponding local densities are then

p(’l") = p(’l", r,)|r:r’ = p(r,'r) (18>

and accordingly for other densities.

For the subsequent considerations it is important to determine the symme-
tries of all the densities above with respect to the time-reversion. Since the space
coordinates do not change and the spin and momentum operators do change sign

with respect to the inversion of time, we can easily find the symmetries given in
the Table [[L11

| J | T7'JT | time-even/odd |
P + even
S - odd
T + even
T - odd
7 - odd
J + even

Table 1.1: Time-reversion symmetries of the Skyrme densities

The energy functional of the total Hamiltonian

H = T + VSkz + VCoul + ‘A/pair (19)

consists of the kinetic energy, Skyrme interaction, Coulomb interaction among
protons and the pairing term



E = Ekm + ESk + ECoul + Epair (110)

The kinetic term of the energy functional is

Ejin, = \II|Z (——A) W) = %/dE‘TT(T) (1.11)

the Coulomb interaction gives

2 ’ 1/2
Ecou = %/d3rd3r' Pr(r)pp(r') 3 <§) 62/d37’ Pﬁ/g( ) (1.12)

lr — 7’| 4\«

where p,(r) is the proton local density. The derivation of the Skyrme part is
described in the paper of Vautherin and Brink [32] so we give only the final
expression

Eg, = (0] Y VEV|w) =

i<j

1
= 5 /d3r1d3r2 p(r1)Vsi(ri, r2)p(re) —

1
~ d3<—t
/T2°

2

(1+%1€0)p2—(ﬁo+ ) > ol

q=n.p

+to

q=n.p

16 2

q=n,p

1
- / PridPry p(re, 71)Ver(r1, m2)p(r1, 72) ~

—/108 —%Zs

|-

1 1 : 1 1 .
- —t (1 + —m) [3pAp — 4(pr — §7)] + el (5 + m) Z 3042y — 4(pyq — 52)] —

1 3 1 3
- gl {isAs —2(s-T— JQ)] o > [Equsq —2 (84 Ty — Jg)] +

q=n.p

16

q=n,p

1 1 . 1 1 .
+ —ty (1 + §/<ag> [pAp + 4(pt —JQ)} EtQ (5 + ff2) Z [Pquq —4 (quq - JqQ)} +

itg/{',g Fs As+2(s-T— JQ] T > [ Sq-Asg+2(sq Ty — JQ)]

16
q=n,p
1 1 1 1
+ Etg <1 + 5%3) p2 — <I<L3 + ) Z pq p + —t3 5:‘4}382 — 5 Z 82] pa—
q=n,p q=n,p
1 1 )
— tal(V x4) s+ 9V - J] - E’”‘EP[(V Xja) 80+ 0oV ) ). (1.13)

The densities without the lower index ¢ denote the total nuclear density, e.g.

p(r) = pp(T) + pu(T) (1.14)
In the equation ([LI3)) we also introduced the following notations for the tensor
density



2(r) = Z Jij(r)J,

ijk

The last part of the energy functional (LI0) is the pairing functional E,,;,
which comes from the particle-particle channel. As we have already mentioned,
the particle-particle channel has to be treated separately of the Skyrme interaction
(which acts in the particle-hole channel). Therefore we have to introduce also the
pairing part of the functional E,,; independently of the Skyrme part Egj. Firstly
we introduce the pairing density

k(r) = Z (O|alal Z(b, oa( (1.16)

1€0cc 1€0cc

The index i goes through all occupied states and 7 denotes the time-reversion of
the state i. The pairing potential is then introduced as following (see e.g. [35])

Epair = Z Vp“”’)/d?’rn (r) (1.17)

g n.p
This energy corresponds to the particle-particle channel of the zero-range (delta)
interaction. The constants V, are fitted to the nuclear pairing properties (exper-
imental values of the pairing gap energies) uniquely for each parametrization of
the set tg, t1, to, t3, ta, Ko, K1, K2, K3,

The expressions (LIT)), (LI2), (LI3), (LI7) determine the total energy func-
tional (LIQ) - E(p,7,s,7,J,T, k) as a functional of the densities p, 7, s, 7, J,
T and x and from these expressions we can see that the total Skyrme energy
functional can be written as the spatial integral of the energy density H(r):

Ep,7.8,5,J,T, ) = / & H(p.r, 8.4, T, T, ) (1.18)

1.2 HF and BCS

The HF (or HF+BCS) single-particle basis, which is a set of eigen-states of the
hamiltonian A (mean field Hamiltionian), can be obtained by searching for the
minimum of the energy functional E (see (L3), (LI8)) with respect to the vari-
ations of the single-particle function ¢;(r). This variational principle can be
expressed as following

§ (E =Y ey ¢ o)p(r, a)> =0 (1.19)

% o+l

where E is the energy functional (LI8) and the second term in (I.I9) represents
the additional normalization condition of the single-particle wave functions. In
(CI9) we add the index o = +1 for a single-particle spin projection variable.



It is known that the Lagrange multiplier e; represents the single-particle energy
corresponding to the single-particle state i. In our case the energy functional
(CLI8) depends on the single-particle wave functions ¢;(r, o) through the densi-
ties Jo(r) =p, 7, 8, j, T, k (index o enumerates these densities).

Variational principle (LT9)) yields the following HF equations

H(r) 9Ja(r)
Ja(1) 0¢i(T,0)

<r> L)
('P) 3¢*(T 0') 1@( ’ ) (1'20)

= e’L(b;,k (Ta U)

or R
(ilhur|j) = eidij

Bt = / dr Xa: ( - Jf(r) / d3r’3{(r’)) Jo(r) (1.21)

where ja('r') for different o are the corresponding density operators:

with

Z ol (r) Jal i@
#r) = Z (wkr)) (Vo5(r)) ala,

3(r) = =3 3 [610) (V% 0)6,0) = (9 x 0) 6111 ()] ala,
j(r) = gz [(V6ir) 5(r) — 61(r) (V,(r)] ala,

Z(bT r)og;(r aaj

T(r) = Z (Volir) o (Voy(r)) ala, (1:22)

expressed in terms of the single-particle creation and annihilation operators aj,

Q;.
The substitution of ([L22) and (LI8) into (L2I) gives the HF equations in
the following form

/d3 S (Um)oulr) + Byr)ig(r) + Wo(r) - Fy()) i) = i) (123)

q=n,p



with the Dirac ket notation ¢;(r) = (r|i), where

Ug(r) =bop(r) = bopg(7) + b17(1) — bi7g(r) — boAp(r) + Do Ap, (1) +

Ol—|—2 (e% 2 / Q / o—
+ by p () = SO (r)pg(r) — SV (r) D pp(r)—
q¢'=n,p
, , pa(r) (BN
— 04V - I (1) = U,V - Ty () + €20, [/ d’r ‘rq_—r’| B (%) pcl/?’(?“) ;
(1.24)
h2
By(r) =1 4 bip(r) — byo, (). (1.25)
W, (r) =b,Vp(r) + b,V p,(r) — B4J('r) — l;ﬁqu('r) (1.26)

Where we introduced a new set of Skyrme parameters, which are related to the
previous set of parameters to, t1, to, t3, t4, Ko, K1, Ko, k3, a by the following
relations:

by = to (1 + %xo) by = %toxo
by = to (% + xo> by = %to
by = i :tl (1 + %xl) +t (1 + %xQ)} by = é [gtlxl — %tm}
v, 1 -tl (1+x1> —t, (1+x2)} b, = ! Ftl—i—ltg]
4 \2 2 8127 2
by = é _3t1 (1 + %xl) — 1y <1 + %:@)} by = %tgxg
b, = % :3t1 (% +x1) +ty G +!E2)} 5& = %tg
by = it3 (1 + %ZB:&) by = %(h% + toxs)
by, = itg (% + :133) b, = —é(tl — 1)
by = %u b, = %m. (1.27)

We can see that the time-odd densities do not contribute to the HF equation
([L23]), which is consistent with the fact that the single-particle mean field Hamil-
tonian is time-even.

In the derivation of the expression (L23) we did not treat the pairing cor-
relations. Since in this work we study mainly the axially deformed open-shell
nuclei, in which the pairing correlations are important, we should take them in-
to account. As was already mentioned, within the Skyrme functional we treat
the particle-hole and the particle-particle parts of the interaction independently.
This enables us to solve the HF equations (L23)) first and then in the second step
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to use the standard BCS method with the pairing interaction corresponding to
(CTD). Actually to take into account the pairing part of the energy functional we
used the modified BCS method. The modification consists in the fact that in the
each iteration during solving the HF equation the BCS equations are also solved.
After this iteration process we obtain the BCS solution: the single-particle states
and energies as well as the Bogoliubov amplitudes U; and V;, the Fermi energies
{tq and the corresponding gap energies A;

1 e; — I 1 e — I
2 _ 2 _
Ui_E 1+ 5 RSVE V. —5[1— 5 TP (1.28)
((61—,&) +Ai) ((ei_ﬂ) +Ai)
1 Vz

A=Y 1] (1.29)
v 2 1/2
LT (e — ) + A7)
with the quasiparticle creation and annihilation operators given by Bogoliubov
transformation

ozz = U; aZT + Via;
In the quasiparticle formalism the BCS mean field Hamiltonian has the diag-

onal form (see e.g. [30])

hpos = <BCS!IEUBCS) + Z E, (Oz,T,Oé,, + a;ozp) (1.31)

v>0

where E, = /(e; — )2 + A? is the quasiparticle energy.

Since most of the isotopes studied in this work are deformed, it should be
explained, what is meant by "nuclear deformation”. From the point of view of the
microscopic models there is no such thing as a sharp edge of the nucleus. However,
in the models based on the density functional techniques (e.g. Skyrme Hartree-
Fock), we can introduce the equipotential surfaces of the static mean field, and
the nuclear deformation means the deformation of these equipotential surfaces.
A general surface can be expressed in the form of Dirichlet decomposition

R(0,¢) = Ry (1 + i i Y (0, ¢)> (1.32)

=1 m=-—I
where R(0, ¢) is the distance between the origin of the coordinate system (center
of mass of the nucleus) and the point on the mean field equipotential surface in
the direction given by angles 6, ¢ in spherical coordinates. In (L32]) Y}, (60, ¢) are
the spherical harmonics, R is the mean radius and the ay,, are the deformation
parameters. In this work we focus only on the nuclei axially quadrupole deformed
(or rather we look at them as if they were deformed only axially), which means
agy = B # 0 and all other oy, (I > 0) are zer(El. This quadrupole deforma-
tion parameter 3 is unambiguously connected with the mass quadrupole moment

Tt is possible to prove that all ary,,, values are zero because they are related to the translations
of the nucleus as a whole. The parameter agg specifies the compressibility of the nucleus but
since it is possible to include it in the value of the mean radius Ry, we do not discuss it in more
detail.
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(BOS| M| BCS) (Mg = 3711 r2Yao(i7))-

Since there is a problem in solving the HF selfconsistent equations (L23]) if
the solution has different symmetry from the initial single particle basis (see e.g.
[30]), instead of the standard HF variational principle (I.I9), we use the so called
constrained HF method. This method is based on the fact that in addition to the
normalization condition (second term in (LI9)) we also use a constraint which
requires that in each step the quadrupole moment (BC'S|May|BCS) is given a
fixed value Qg. That means that instead of (LIJ) we use the constrained HF
condition

5 (E -S> diro)gir.o) — C ((BCS]M20|BCS> - Q0)> —0 (1.33)
i o+1

where C'is a constant, a value of which is given by a requirement to fulfill the

condition Qg = (BCS|My|BC'S) (given by the deformation parameter ) dur-

ing the iteration process. In practice we find the deformation of the nucleus by

solving the HF equation (I33]) on a grid of 8 parameter values in some interval

B €< Bmins Bmaz > and the equiljbrium deformation corresponds to the minimum
of the total energy F = (BCS|H|BC'S) in this grid.

As we mentioned above, nowadays there are many Skyrme interaction parametriza-
tions (see e.g. [35]). Corresponding parameters were obtained by fitting the global
properties of selected nuclei to experimental data. Usually these properties are:
binding energy per nucleon, compressibility of the nuclear matter, nuclear radii.
This fitting was practically always performed for doubly magic spherical nuclei.
During the last two decades the original parametrizations were (see [35]) modified
many times in order to describe a concrete nuclear property (with subsequent re-
fitting to global properties of double-magic nuclei). In this way we have today a
lot of parametrizations describing the global characteristics of double magic nu-
clei approximately on the same level. One of the tasks of current nuclear physics
is to find the parametrization of Skyrme (or Gogny or relativistic mean field)
interaction (or a parametrization of the corresponding energy functional) which
is able to describe a broad variety of nuclear properties (not only the bulk proper-
ties of double-magic nuclei). The greatest deal of nuclear properties is, however,
connected with the residual interaction and in order to describe these properties
we have to go beyond the mean field. In the next section we discuss random
phase approximation (RPA) and time dependent Hartree-Fock approach as two
examples of methods going beyond the mean field.

1.3 Random phase approximation

The method, which is mostly used for the description of the excited states of the
nucleons, is the random phase approximation (see e.g. [30]). It is the method
intended to go beyond the mean field approximation and to include into calcu-
lations residual interaction. If we have a mean field, i.e., a single particle states
and corresponding energies: alT and ¢;, we can construct an ansatz for the full
hamiltonian simply as
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lv) = (Z cfm)ainaZ + gm)njajnazaT a; + ) |BC'S), (1.34)
mi mnij

that is, all one-particle, two-particle, etc., excitations of the mean-field ground
state. In the notation of [30] indices denote: m, n - states over Fermi level, and i, ]
- states below Fermi level. This should cover whole Hilbert space of the problem,
and solving Schroedinger equation with residual interaction and the ansatz ([L34))
would yield the spectrum of full Hamiltonian. This problem is, however, unsolv-
able. We can consider the first approximation, where we take only one-particle
excitations. This is called the Tamm-Dancoff approximation (TDA) and its main
drawback is, that it does not make correlations of the ground state. This problem
is solved within the RPA method. The RPA method involves approximatively
the correlations in the ground state. Its ansatz is a linear combination of the
particle-hole creation as well as annihilation operator

lv) = Z <¢1(7:i)afnai - qbgll)alam) |RPA) (1.35)

me
where a! and a; are single-quasiparticle creation and annihilation operators, so-
lutions of the HF problem. [|v) form an RPA spectrum, with an RPA ground
state |RPA) which will be defined later. In the case when the pairing correla-
tions are taken into account and quasiparticle creation and annihilation operators
are introduced then the expression (L30) can be equivalently written as

-y ¥ ( (G- ”q)i;w) IRPA) (1.36)
q=n,p W

where bj], bjj, bJr are two-quasiparticle quasi-boson operators

bT =af ; b% = aga; b;rj = aia; (1.37)

In the quasi-boson approximation they fulfill the commutation relations

<RPA| [ 7 l] ’RPA> ~ 5ii/6jj/ — 6ij’5jz"
<RPA| [ZF b]L _ |RPA> ~ 6ii’5jj’ - 5,~j/5ﬁ/

v 2y

(RPA| [bﬁ,bj,j,: IRPA) ~ 8,0, (1.38)

which are the same, as would be in the BCS ground state |BCS).
For the RPA state |v) we can define the so-called phonon operator (which
creates the lowest excitations)

O) = 37 3~ (bl - o) (1.39)

with
OZ|RPA> =|v) ﬁ|y> = hw,|v) (1.40)
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and O,|RPA) = 0 for Vv, which defines the RPA ground state. The RPA equa-
tions of motion are given by the oscillator approximation

[Iff, O;} IRPA) = fiw,Of|RPA) (1.41)

where we set the energy of the RPA ground state for convenience equal to 0. Now
we multiply this equation by arbitrary bra, in the form (RPA|JO. This yields
equation (due to the properties of annihilation operators on the RPA ground
state)

(RPA| {50, [ﬁ,@;” IRPA) = hw, (RPA {50, O;} IRPA) (1.42)

Finally from the equation (L.42) and its complex conjugate with the right choice
of the operator 00O we get the RPA equations

[ﬁ, oﬂ = i, 0} [ﬁ,oy] = 1,0, [oy, 01,] — 5, (1.43)
The phonon amplitudes ¢:*"?, ¢&? and phonon energies hw, can be found
from the RPA equation (ILZ3) where H is the total Hamiltonian (in our case (L9)).
These RPA equations can be transformed (see [30]) into the diagonalization of
large matrices, whose dimensions are given by the number of two-quasiparticle
states involved in the configuration space. However, this number is huge for
heavier nuclei, mainly if we wish to calculate RPA spectra for deformed nuclei.
Hence the standard RPA approach is rarely used for heavier deformed nuclei.
Therefore in the IPNP MFF UK (in collaboration with University of Erlangen
and JINR Dubna) the so-called separable random phase approximation (SRPA)
was developed. The brief description of this method follows .

1.4 Separable RPA

We start with the response theory ansatz. This assumes that the excitations of
the nucleus can be produced by the action of a set of external hermitian single
particle operators (Q, P) (k=1,..., N) where

al=a at=q0  P=h
Po=i[.0.] Pt =-P  Qu=i[HA] (1.44)

where T is the time-reverse transformation. As a result of the action of these ex-

citing operators (Q, P), the system (nucleus) vibrates around its ground state
|BC'S).

Vibrations of the nucleus, caused by the external modes ([L44]), are described
by the time-dependent BCS vacuum |BC'S(t)) which is related to the equilibrium
BCS vacuum |BC'S) (see (L3T])) by the time-dependent shift transformation (see

e.g. [40]):
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N
|BCS(t)> _ H H e*i(qch(t)*(%q»que*ipkq(t)qu’Bcfs> (1.45)

q=n,p k=1

where qg,(t) — (qr-) and pg.(t) are periodical vibration amplitudes

Gg(t) = (Gg) = (BCS(8)|Quy| BCS(t)) — (BCS|Qy,| BCS) =
= Qrq cOSWI (1.46)
Prq(t) = (BOS(t)| Pey| BCS(t)) = By, sinwt

The SRPA supposes vibrations with small amplitudes. Therefore we can use
the Taylor expansion of (45 up to the linear order in amplitudes qxq(t) — (qrq) -

Piq(t), and we obtain for time-dependent densities and currents Jﬁa)(r,t) (see
(L22)) the following expressions

J(rt) = (BCS|J¥(r)|BCS) + 6] (r,t) =
= Jr)+6J (r, t) (1.47)

with

0J(r 1) = (BCS(H)]J)(r)| BCS(t)) — (BCS|J) (r)| BCS) ~
~ —iz <(qk;q(t) — (qrq) ) (BCS| [ﬁkq, j{;a)(r)} IBCS) +

qk

+ D (O(BCS| [Qug, J(r)] 1BCS)) (1.48)

Similarly for the time-dependent (vibrating) BCS mean field (see (L2I])) up to
the linear order in qu,(t) — (qkr), Dre(t) we have

. h )
(Sths(’l",t) = Z%(;Jé?)(r/?t):

e (@) ()70 () —
fe Z[an Py JM" e
¥ (<qkq<t> (1)) Xia(r) + 6 (r)

qk

5[?305(15) = /dgrdiLBcs(T,t) (1.49)

where we introduced following operators
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X (T Z Xy

2 ’ A
/ a3 Z O A (BCS| qu,,Jq(f“”(r’)] |BCS)J) ()
= 2[00 (r)a g ()

Vig (7 Z Y,gq

; 9°€ o
/ 3 |y | B8 (@ @ 1B )
o 1000 ()05 ()

q

(1.50)

where oy enumerates T-even densities (Tﬁlj () = J (@+)) and o enumerates
T-odd densities (77!J@)T = —J©@)). Finally we gain

X = / &r Xy (1) PR T = Xy
Vig = / A7 Vg () TV T = Vi, (1.51)

For time-dependent variations of operators X kg and qu we have (similarly as

in (LZR) for §J5(r,1))
(0 Xkq(t)) = (BOS(t )\qu!BCS( t)) — (BOS| Xy, |BCS) =
- Z qk’/ / qu )'%I;ql,k’q’

(Y3 (1)) = <BCS( )|Yig| BCS(t)) — (BOS|Yig| BOS) =

- Z Prq (t)nlzq{k’q’
k/q/

(1.52)

: : -1 —1
where we introduced the so-called strength matrices xy /., and ng /.
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Ko = Kb oo = 1(BCS| [Pk,q,, qu] |BCS) =

2¢
/ & / &S (BCsS| [qu,J(a+( )] BOS) | —— -
0. (r)a ] ()

a+a+

(BCS| [ﬁk/q/, Je (ﬂ)} IBC'S)

771;117,{/(1/ = T]k_’tlj’,kq = 1<BCS| [Qk’q’y qu] |BCS> —

/ 5 %€
= / d*r / d*r Z (BCS| [qu,Jé"*)(fr)] |BCS) ;

07 ()] (1)

(BCS| [Quy, Iy ()] 1BCS)
(1.53)
For the determination of the vibration amplitudes g, and p, (see (L48)
and corresponding vibration frequencies w we use the time-dependent-Hartree-

Fock-Bogoliubov (TDHFB) method starting from the Thouless theorem for the
vibrating |H F'B(t)) (or in our case |BC'S(t))) vacuum:

)
|BCS(t)), = ea=irin |BCS <1+ S >|BCS) (1.54)

w=1j,23,i]

where

cg)(t) _ g)-i'eiw,,t _i_cg)—efiwyt

and where b;, bL, bjj are two-quasiparticle quasi-boson operators (see (L37))

Using TDHFB equation

d . .
1hE]BCS(t)>,, = |hpes + d0hpes(t)| |BOS(t)), (1.55)

we express amplitudes ¢ in terms of 1, and Py, and then, substituting into ([L54)

we determine ,(BCS|0X,,|BCS), and ,(BCS|0Yi,|BCS),. By comparison of
these expectation values with the previous ones (see (L52)) we finally obtain the
system of equations for unknown amplitudes Gy, Dy,

—(v) (XX) — —(v) XY
Z |:qk/ |:Fk’ ' kq K/k/;/,kq] +pl(c’q’Fk(’q/,k)q] =0
q/k/
(V) Yx) | =) (YY) -1 _
Z [ Fk/ ! kq +pk/q/ [Fk/q/’k:q nk/ ! kq} ] - 0 (1.56)
q/k/

where we introduced following matrices
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wIAq/ N @1ALD

15:141?’ ’ Z Z — h202

qu
o @il p@ary 0
(AB) BA) kg’ kq
Fk’ ! kq(hw) kq K'q ’ Z Z 2 _ 202
g=n,p wWEq i
w=1j,13,1]

where A, B = X, or Yi,. In (L5D) (@|A,|) (@ = 7,7, 7)) are two-quasiparticle
matrix elements of given operator A, and ez are two-quasiparticle energies:

Ei+E; form=ij
= LEi+E; foro=1j (1.58)
B+ B forw=7)

It should be noted that the matrix of the equation system ([L56]) is hermitian
(real and symmetric). The dimension of the equation system (L.5G) is 4N where
N is the number of excited fields (Qx, Py) (k=1,...,N) - see (I.44)). The index
v in ([L30) enumerates all solutions of the equation system (L56]). The condition

of solvability of the equation system (LE0) is that the determinant of its matrix
1S zero

det F(w,) =0 (1.59)

where F'is the matrix of the system ([56). Equation (L59) gives energies hw,
of all TDHFB solutions.

It can be shown that the equation system (L56]) for unknown @(:T) and ]_9,(5) is

the same as the one obtained from the standard static RPA equations ([L43)) if
we take the RPA Hamiltonian in the form

ﬁRpA = }ALBCS -+ ‘/res;RPA) (160)

where hpcg is the BCS mean field (TZI) and VSEPA) is the separable residual
RPA interaction

VERED — Z Z ('fk;qk' fX,ﬁq)X( + Mgk’ /Yk(q)Y(,l),> (1.61)

k/ !
kK _1, SN
where X ,g;), f/k(; )is a two-quasiparticle part of the corresponding operators qu

and f/kq (parts involving only afa’ and aa terms in their quasiparticle represen-
tation expressions).

Two-quasiparticle amplitudes w(; D and gzﬁg @) (see (L39)) in the phonon cre-

ation operator Q! (see (I3J)) are related to the solutions Gy, and Py, in the
TDHFB equation system (L5@) by following relations
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S @I X)) — 15 e @]V

E/,q) — AL q'k K

- - o — o, (1.62)
> g @ X ) +1 X P @YD)
(pg/ﬂ]) _ 457 q/k/ q/k/
w w e i hw
where

L oforw=1ij
=41 forw=7 (1.63)

L forw=1j

So, practical recipe for the description of nuclear excitations in the framework
of our HF-BCS + SRPA approach is following

e At first we solve the HF variational problem (L33]) self-consistently with
BCS problem (L28). As a result we obtain HF single-particle basis (i.e.
single-particle states |i) = a!|) with corresponding single-particle energies
e;) with the corresponding occupation quasiparticle amplitudes U; and V;
and quasiparticle energies F; (see (L28)).

e In the next step we choose the exciting modes ( Qr, P, J(k=1,...,N)
adequately to the type and multipolarity of the investigated excitations.

e Then we construct the matrix F' of the RPA system of equations (L50))
and by solving this equation system we obtain the unknown q’(“;? , ﬁ]gg) with

corresponding g)honon energies fw,. The structure, that means amplitudes
& and 7 (see (39)), of each one-phonon state ) = Of|RPA) is

w w

then given by (LG2).

It should be pointed out here that the SRPA phonons obtained by solving the
equation system ((L50) with (L59) and (L62]) should be the same as the solution
of the standard RPA equations if the appropriate choice of the set of exciting field
(Qr, Py) (k=1,...,N) is used. Not good choice of these operators can cause
that some of the standard RPA solutions is not obtained by the SRPA approach,
or more precisely, some of the standard RPA solutions are not sufficiently excited

to be seen in the excitation transition of given type and multipolarity described
by the SRPA.

1.5 Strength function

For the transitions (corresponding to the electromagnetic transition operators

ij) of the type Z (Z = el, mag) of the nucleus from ground state to the excited
states |v) we define energy weighted strength function:
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Si(Z\; E) = Z B(ZAu; |[RPA) — 1)) (hw, )*6(E — hw,)

=2 (e

In the framework of the RPA the strength function Sy(ZAp; E) can be further
modified using |v) = Q|RPA) and Q,|RPA) = 0 as follows

(| |RPA>‘ §(hw, — E). (1.64)

S(E) = 3 (ha ) [(RPAIQ., M RPA)[ 5(w, — B)

) (1.65)
~ Z | (BCSIQ., M|BCS)| 3(w, - E)

The reason why the strength functions Si(F) are introduced is the fact that
we are often interested in the energy distribution of the transition probability
instead of the probability of transitions into particular RPA states. Particularly
this is the case of higher excitation energies where the density of states is very
high (e.g., giant resonance energy region). The density of states is so big that
individual states cannot be experimentally distinguished in any way.

In order to do the comparison with experimental excitation probabilities
which are usually energetically smeared by the finite experimental resolution the
strength functions (LL63]), (LG4]) are also "smeared” by the substitution of the
delta function by the averaging Lorentz function

1 A/2
7 (B — hw,)? + (B/2)°"
where A is the energy averaging interval and the normalization of the Lorentz
function is chosen so that

lim 1 A/2

A=0 T (B — hw,)? + (A)2)?

which preserves the integral properties of the strength function.

Such averaging was found to be optimal for the comparison with experiments
and a simulation of broadening effects beyond the RPA, namely, escape widths
(escape to the continuum) and coupling with complex configuration (two- and
more phonon components in the wave functions). The square of the transition
matrix elements, (BC'S|[Q,, /\f)]BCS> in (L65) can be further expressed in
terms of the /phonon energy hw, and two-quasiparticle matrix elements of the

= §(hw, — E) (1.67)

operators X, 1y and quq as follows (see e.g. [41])

2

‘(RPA| [Q Mz } |RPA>’2 - (1.68)

v Y)(Ap
Z [ ( )Al(vqc)u( + kq)Agequ 1)}
kq

where M iff 1) s the two-quasiparticle part of the transition operator responsible
for a given transition of the type Z with the multipolarity A\ and the projection
p. In ([L68) we introduced the following symbols:
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% w|qu )@ M2

kq,wuZM) =2 Z Z h%ﬂ

¢ ”vp,fe.fz, _
oV ) @ M) (169
V) (Za) g2 (@ qu w M
kqwu =2 Z Z h2w2
q =n,p weq
wW=15,17,1)

where g1 = eg, o = hw, if M)(\i) is the electric transition operator (Z = el)

and g1 = hw,, go = ez if ]\}[g) is the magnetic transition operator (Z = mag).
Reduced transition probability (LGS) can be further rewritten as follows (see

A2, @1])

—1
B(MMp; |RPA) — |v)) = ZZAZH (Wy) Frq kg ’Ak’ (w )] {%thF}
kq k¢ wW=wy
(1.70)
where
](CX)(ZM)
A q;w

Al(ﬁq)(m - (V) (Z)
Akqw g

(1.71)

XX XX
R FO)

qu,k’q’ =
RS, O,

The expression ([[L68]) is connected with the probability of the transition to
the one particular RPA one-phonon state |v). In this thesis we are interested in
giant resonances and, as it was mentioned above, giant resonances are formed by
thousands of RPA states. Based on the mathematical Cauchy theorem in the
paper [4I] the method was developed which enables us to determine the strength
function S, (Z A\u; E) without solving the SRPA equations for each individual state
|v). The final expression for the strength function for electromagnetic excitation
of the type Z = el, mag and multipolarity A with its projection p reads

7 A
SPPY AT (2) Frgaog (2) AT (2)
q k'q’

Sp(ZAp; E) = Im

mdet F(z)

A k(G| M : ! - !
+ - zw: e |( |MZ)\M|>‘ ((E_Sw)2+(%)2 (E+€w)2+(%)2> (1.72)

©=ij13.i7

21



where the first term is a contribution coming from the residual interaction and
the second term is the contribution from the quasiparticle mean field.

For further statistical analysis of the strength functions Sy(ZAy; E) the mo-
ments of these are introduced. The moment my(ZAp) is defined as the integral of
the energy weighted strength function Si(Z\u; E) over the whole energy interval

(see e.g. [43]) N
my(Z ) :/ dE Sk(ZAp; E) (1.73)

These moments are known in the literature as so called sum rules. Knowledge
of an infinite set of such moments determines, in principle, the strength function
So(ZAp; E). However, this possibility is limited by the convergence of the moment
expansion (see [44]). In practice it is is possible to calculate only a few moments.
A method for the determination of Sy(E) based on moments my is practically
useful only when a few moments are able to characterize the whole strength
function (e.g. if a resonant phenomena is presented). Using moments ([[L73) it is
possible to define a set of energies

myg myg

By p—o = or Ejp1=

1.74
Mo Mmi—1 ( )

which characterize the energy distribution of Sy(FE). If this distribution is sharply
peaked at a certain energy then all energies Fj _o and Ej ,—; coincide. The
degree to which they are different reflects the width of the distribution.

The expression ([L73]) with & = 1 for the general single-particle transition
operator M and for the general system of the eigen states |) of the Hamiltonian
H can be also rewritten as (see (I64))

ma(i0) = [ Y (B - ) |1 31 o) 68 - )

= & (Ol [3T, [, 3] o (1.75)

where |0) is the ground state, H |0) = Ej|0). It can be shown (see e.g. [43])
that in the case, when the local single-particle operator M commutes with the
interaction part of the Hamiltonian, the L.h.s. of (IL7H]) is model independent.
That means, for instance, that (L70) does not change if the expectation value
of the double commutator in the Lh.s. of (L7H) is calculated in the |[BCS) or
|RPA) vacuum.

In the case of the strength functions of electromagnetic transition reduced
probabilities So(ZAu; E) the so called giant resonances are observed for EO,
E1l, E2, M1, ... transitions, which are characterized by a broad peak in the
corresponding energy intervals (e.g. in the case of isoscalar GMR this interval is
10-20 MeV for all nuclei). The centroids of these resonances can be estimated
by energies Ej ,_o or Ej 1. Usually energies £, £y 1, E5; are used for this
purpose. For instance, the analysis and discussion of the GMR performed recently
in the paper [7] was based only on the centroid defined as

m1(E0)

However, as it was already mentioned, it is not sufficient for the relevant analysis
of the whole distribution of the EO strength in the GMR.

Erseumr = (1.76)
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2. Giant monopole resonances

2.1 Theoretical description of the GMR in nu-
clei

This thesis is devoted to the analyses of the GMR in spherical and deformed
nuclei. Particular attention is given to the shape of the GMR because this feature
of the GMR has not been investigated theoretically up to now. Practically all
theoretical analyses of the GMR in the past concerned only the centroids of
the monopole resonance which were determined by (LTG) (see e.g. [7, I8, 19,
20]). The theoretical investigation of the GMR in deformed nuclei using self-
consistent models has not been performed at all. Therefore in our papers [45] 23]
46] the nowadays GMR data are analyzed using the self-consistent Skyrme+SRPA
approach discussed in the previous section. This approach allows to study the
shape of giant resonances in the both spherical and axially deformed nuclei.
The GMR, which represents the energy distribution of the isoscalar excitation
reduced probability, can be visualized from macroscopic point of view as a radial
vibration of the nucleus surface (so called collective breathing mode). Microscop-
ically it is connected with the EQ transition operator > 7?Yy,. The interest of
theoretical nuclear physics in the GMR is connected not only with the demand
of theoretical interpretation of new experimental data on GMR but mainly with
the fact that the GMR is closely related to the incompressibility of the infinite
nuclear matter which is one of the basic bulk nuclear properties used fot the
determination of parameters of the effective nucleon-nucleon interaction in the
nuclear medium. Based on the simple assumption that the GMR in the spheri-
cal nuclei can be approximated by one harmonic oscillator radial collective state
in the paper [47, O] the simple direct relationship between the incompressibility
modulus K4 of a finite nucleus with a mass A and the energy centroid Ersgar:

K 4

m (r?)

Eeent = (2.1)

where m is the nucleon mass and (r?) the mean square radius of the nucleus.
This expression allows us to extract the incompressibility K4 of a finite nucleus
if we know the GMR centroid energy Ersgur (from experimental data on the
GMR). Systematic study of the incompressibility K4 enables to obtain the in-
compressibility modulus K, for the infinite nuclear matter which is one of the
bulk nuclear quantities used for the fitting of the effective nucleon-nucleon inter-
action parameters. This can be done, for instance, from the liquid-drop model
Weizsécker-like formula for nuclear incompressibility [9] [19]

(N - 2)? Z?
A2 + KCA4/3

Ky= Ky + KgA™3 + (K, + Kg,A™'/?) (2.2)

with volume, surface, symmetry, symmetry-surface and coulomb terms, re-
spectively, where the volume term can be naturally identified with the infinite
nuclear matter incompressibility Ky ~ K. So, knowing the finite nucleus in-
compressibility K4 we can obtain from (Z2) (e.g. by the least square fitting)
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the value of K., = Ky. This can be done either for K4 determined before from
the experimental data on the GMR or for K4 obtained from the analysis of the
theoretical GMR centroids (determined by (L70) and (IL75) or directly from the
shape of the theoretical GMR energy distribution).

For the determination of the effective nucleon-nucleon interaction parameters
usually the experimental value of the modulus K, is compared with the theoret-
ical one calculated on the level of the mean field using directly the definition of
the K (see e.g. [9])

0% (Egxr/A)

J k%

where kp is the Fermi linear momentum and (Eyp/A) is the total mean field
energy per nucleon obtained in the framework of the HF approach with the given
effective nucleon-nucleon interaction. For instance in the case of the Skyrme ef-
fective interaction the expression (2.3]) allows to connect the modulus K, directly
with the parameters t, t1, to, t3 (see (L2)) [32]

K. = k% (2.3)

6 h? 9 15 3
Ky = = o k + Ztop + §t302 + Z(3t1 + 5ta) pki (2.4)

In the case of the GMR the moment m;(E0) (the energy weighted sum rule
EWSR) (see (L73) is usually compared with the simple estimation
(B0) = 1 4 ) (25)
mq = om r .
where (r?) = (BCS|r? |BC'S). This estimation was obtained from ([L75) when
the EO transition operator 3 r2Yp, is used as the operator M and if the inter-
action part of the Hamiltonian H is neglected in the calculation of the double
commutator in the rel. (L75]) - see [43, [48]. However, one should realize that the
Skyrme effective interaction is velocity dependent and it cannot be neglected in
the calculation of the double commutator in ([L75]). Therefore the sum rule (2.5)
gives only some rough estimation of the moment m;(FE0). It is used for a simple
estimation if the used configuration space is sufficiently big.

2.2 Experimental data on the GMR

The first experimental results for GMR date to 70’s, using the (q, a/) reaction
with energy of a particles around 150 MeV. Although « particles were appropriate
for these experiments because of their well defined parity and momentum 0%
(first excited state is beyond separation energy), there still remained the big
problem, how to distinguish between GMR and GQR. This problem was solved,
at least partially, by using beams with higher energy 240 MeV and cross section
measurements at extremely low angles. Then measurements at various angles
allowed to distinguish various giant resonance from isoscalar EOQ up to isoscalar
E3 using so-called multipole decomposition analysis [12].

Currently there are two main groups, which measure GMR: one is at Texas
A&M University (TAMU) and the other at Research Center for Nuclear Physics at
Osaka University (RCNP). Even though they use the same experimental method,
there is still difference in the strength functions of both these experiments, as
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Figure 2.1: Comparison of data from TAMU and RCNP experiments for various
spherical nuclei. The data are taken from: RCNP data for Cd[17], Sn[49], TAMU
data for Cd[50], 16Sn[22], 1?Sn, *4Sn[13]

it can be seen from the mutual comparison of the experimental EO strength
functions for various nuclei, for which the data from both experiments exist. The
comparison of experimental EO strength function distribution obtained by these
groups are shown in Fig. 2] for selected spherical nuclei. Similar discrepancies
can be observed in deformed nuclei as it will be discussed later. The source of
discrepancies between both these experimental groups is not known.

Element | Isotopes Data with references
Zr W=7y TAMU, [51]
Mo 92Mo, 9~100\Mo | TAMU, [51]
Cd H0Cd, 1eCd TAMU, [50]
106Cd, 110—11(J'Cd RCNP, m
Sn 1685y TAMU, [22]
1128n, 1248n TAMU, [13]
11271248Il RCNP, m
Sm 144Sm, 154Sm TAMU, [49]
TS, I5-1515 | RCNP, [12]
Pb 208ph TAMU, [22]

Table 2.1: An overview of data with references for isotopes used in this thesis.

It should be also noted that units in which experimental EQ strength functions
are presented in both exp. groups are not same. The RCNP data of the strength
function Sy(E0; E) are given in the absolute units: fm* MeV ! while the data of
the TAMU group are given relatively with respect to the EO EWSR value, that
means in the fraction of EWSR MeV . Since we want to present the comparison
of calculated EO strength functions with corresponding experimental values from
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both these groups we renormalized the TAMU data to absolute units fm*MeV 1
using the following formula

So(E0, E; fm*MeV ™) = S1(E0, E; fraction of EWSR MeV ') x EWSRx E~*
(2.6)
where EWSR value for each nucleus is given by the moment m,(£0) in (2.5]).
In the table 2.1] we present an overview of the experimental data with refer-
ences for nuclei, used in this thesis.
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3. Numerical application of the
SRPA

For the numerical application of the BCS+RPA method for the calculation of
energies and structure of excited states in the spherical and deformed nuclei
including giant resonances described in the previous chapter the chain of codes
was made in the IPNP MFF in the collaboration with the University of Erlangen
and JINR Dubna. Starting with the Skyrme effective interaction with given
parametrization and with the properly chosen set of external exciting single-
particle operators (Qp, Py) (k =1,..., N) (see (LZ4)) the SRPA equations ([50),
(CE9), ([C62) are numerically solved. As a result we obtain the structure (that

means amplitudes wfj'/ ) and ¢£;’q) (see (LG2)) and corresponding energies w, of
the phonon creation (Q;) and annihilation (@), operators of phonons (see (L39)).
The other option is the direct determination of the strength function Sk(ZAu; E)
(see (LT2) for a given Z = el, mg and multipolarity A with its projection p. The
individual codes of the above mentioned chain of calculations is described in the
Section [B.1]

Since the Hartree-Fock mean field is supposed to be axially symmetric the
projection of the angular momentum onto the symmetry axis (the 3-d axis) is a
good quantum number (together with parity) for the eigen states of the nuclear
Hamiltonian. Therefore solving of the SRPA equation and a subsequent calcula-
tion of the strength function can be done separately for each value of the angular
momentum projection K = p and a parity m = . The multipolarity projection
(. and the parity 7 of the starting operators (Qk, Pk) should be equal to the
given K and 7 for which the SRPA equation is solved. For instance for the case
of EO transitions (excitations) the angular (multipolarity) projection and parity
of all exciting operators are always = 0 and m = +1, respectively, and therefore
the character of the exciting operators should corresponds to p =0 and 7 = +1,
e.g. operators Q) = > i D ()Y u=0(0igi) with A, =0, 2, 4, ... and with differ-
ent radial dependencies fy, (r). More detailed discussion of the exciting (input)
operators, used for the GMR analysis, is presented in the Subsection B.2.1]

Since for a practical reason we should cut a number of HF single-particle states
and to the configuration space for a subsequent SRPA calculation the influence
of the configuration space size on the shape of the GMR is discussed in the
Subsection BZ2

In the Subsection the Lorentz averaging energy interval A (see ([LGA))
is debated from the point of view of the GMR shape. The Subsection B.2.4 is
devoted to the influence of different choices of the pairing regimes used in the
solving of the BCS equations on the EO strength distribution. The choice of
the Skyrme parametrizations used in this thesis is discussed in the Subsection
and the effect of taking into account the time-odd densities and currents in
the Skyrme energy functional is analyzed in the Subsection Finally in the
Subsection B.2.7 the comparison of the SRPA results with ones obtained by the
standard (full) RPA is presented.
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3.1 Chain of the SRPA codes

The numeric solution of the Skyrme HF+SRPA is in practice carried out in terms
of the chain of these subsequent codes:

e Skyax
e Skyax._me
e Skyax_srpa

Since we study, in general, the axially deformed nuclei all the codes mentioned
above work with the axial basis of the single-particle wave functions ¢;(7) =
oir; (p, 2, @), where the coordinate vector 7’is written in the cylindrical coordinate
frame 7 = p, z,¢ and the angular momentum projection K; is a good quan-
tum number for each single-particle state i. For each single-particle state i the
corresponding wave function is represented on the 2D mesh of points (p;, 2;)
(7 = 1,...,Nnesn) (because of the axially symmetry the angle ¢; is irrelevant
for the single-particle scheme and in the calculation of all matrix elements it is
possible to integrate explicitly over these angles ;).

3.1.1 Skyax code

The first step of calculation - provided by the code Skyax - is a numeric imple-
mentation of the Skyrme HF+BCS equations described in the Section [[L2 The
only physical inputs for the Skyax code are the Skyrme functional parameters
to, t1, ta, ts, t4, Ko, K1, K2, K3, a - see (LI3J)) , and the parameters V},(pair), y{pain)
(see (ILIT)) of the pairing part of the functional. The Skyax code enables us to
use a variety of pairing regimes. The ones used in our calculations are either

volume pairing, which is given as:

V})air(ra 'r,) = ‘/;37n5(r - T/) (31)
or surface pairing, which is given as:
Va1, ) = Vialt = (C20 o = ) (32
0

where py is the additional pairing parameter (usually its value is equal to
the mean nucleon density py ~ 0.166, whereas in the SV parametrization set
it is determined within the fitting procedure, which determines also the pairing
constants V,**") and V,P*")).

The output of the HF+BCS calculation are single-particle wave functions
Gir; (p, 2, ¢) in the HF basis and the Bogoliubov amplitudes U; and V; (see (L30])).
Also the total energy of the ground state, £ = (BCS\FHBCS), is computed for
a given deformation f (see (L33]) and the text below it).

3.1.2 Skyax me code

After solving the HF+BCS problem with the Skyax code and finding the equilibri-
um deformation f (see the text below (L33])) in the second step of the calculation
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- provided by the code Skyax me - we evaluate the matrix elements of operators

Qrs Pr, Xi,»
tors (Qk, f’k) (k=1,...,N) used for the subsequent calculation of the transition
probabilities and strength functions. The code Skyax me determines also matrix
elements of the corresponding transition operator M (see (IL64) - [75)).

The input in the Skyax me code is the output from the Skyax code, and
furthermore we have to specify the transition operator M and the input exciting

operators Qk and Py.

f/qu in the HF-BCS basis corresponding to the set of the input opera-

3.1.3 Skyax_srpa code

In the last step - provided by the code Skyax_srpa - the SRPA matrix (L50),
(LX) is completed. Subsequently we find directly the transition spectrum in the
form of the strength function (L64]). Optionally we can also calculate the eigen
energies and wave functions of the particular RPA states by the direct solution

of the SRPA equation (L50]).

The code Skyax was developed by the group of prof. P.-G. Reinhard in the
University of Erlangen and was adopted by our group as a starting tool for our cal-
culations. Our group constructed the subsequent codes Skyax me and Skyax_srpa
which numerically solve the SRPA equations.

The main contribution of this thesis into the system of above mentioned codes
was to correct the implementation of the pairing in the codes, to modify the
determination of the strength functions by adding the possibility to use energy
dependent Lorentz averaging interval A(E) (see ([L6A])) - so called double folding
- which is discussed in the Subsection B.2.3 The other contribution consists in
the modification of the codes and tuning of inputs for EO transitions and the
GMR. This is discussed in details in the next section.

3.2 Tuning of the SRPA codes

The BCS+SRPA method described in the Chapter [l is self-consistent method in
the sense that the single-particle (or single quasiparticle) mean field and corre-
sponding residual interactions are obtained from the same given Skyrme effective
nucleon-nucleon interaction without introducing any new free parameters. The
only parameters which are involved in the method are parameters of the effec-
tive interaction (which were determined independently before their application
in the BCS+SRPA method). However one can find implicitly hidden ”parame-
ters” in the numerical application of this method. These are connected with the
choice of the exciting (input) operators (Qr, Py) (k= 1,...,N) (1), the size of
the configuration space used (2), the size and the form of the Lorentz averaging
interval A (3), the choice of the pairing regime used in the pairing part of the
Skyrme energy functional (4), the choice of the parametrization of the Skyrme
interaction (Skyrme energy functional) (5), the importance or unimportance of
the taking into account the terms in the Skyrme energy functional involving the
time-odd densities and currents (6). Finally it is also necessary to check the SR~
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PA method by comparing it with the standard RPA approach. All these features
are discussed in the next subsections.
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Figure 3.1: EO strength function with increasing number of input operators in SR-
PA for 12°Sn, 208ph, 1900\ o, 11Cd. Skyrme parametrization used was SLy6, with
Lorentz widening parameter A = 1 MeV. The increasing sets of input operators
are, in this order:

1208n: 3> 1r2Y 0, - j0(0.52) Yoo, > 7Yoo, Y. jo(1.02) Yoo,

28Ph: S r* Yoo, > jo(1.12) Yoo, D jo(1.32) Yoo, D 7Y 0,

1001\/101 ZTQYO(), Z’f’gYQ(), Zj0(0.62)Y00, ZT’gYoo, Zj0(0.7Z)Y00,

116Cd1 ZT’2Y00, ZT3Y207 Zjo(O.E)Z)Ygo, ng(O.?Z)YOQ, ZT2Y20,

3.2.1 The choice of the input operators

As it was described in the Section [[.4] the starting point of the SRPA method is
the choice of the exciting operators (Qk, f’k) (k=1,...,N) for the given type
and multipolarity of the transition we want to investigate. We should decide the
form and a number of these external fields. In the standard RPA approach such
exciting operators are not present and in this sense the SRPA method seems to
be more approximate than the standard RPA. However, as it will be shown in the
Subsection B.2.7] for the case of EQ transitions, for each type and multipolarity
of transition it is possible to find a set of exciting operators which enables us to
obtain a good agreement of the corresponding strength function calculated by
the SRPA with that obtained with the standard RPA. One should bear in mind
the fact already mentioned in the Chapter [, that the SRPA approach need not
construct huge matrices as it is the case with the standard RPA. Thus, the SRPA
approach is suitable for heavy nuclei where configuration spaces of large size are
necessary and therefore huge matrices are needed.

The first choice for the input operator for electric transitions would be equal
to the form of the transition operator, which in a long-wave approximation of the
corresponding electric multipole operator is following:
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Q1 =1 (Yo, + Y3, (3.3)

for given multipolarity and projections A and p. The obvious choices for fur-
ther input operators would be the following, non-leading terms in the long-wave
approximation:

Qr = fe(m) (Y, + Y3,) (3.4)

where fi(r) = r The corresponding generalized momentum operator
P, can be then taken from the condition P, = 1[1:1 ,Qk] Of course, the power
function fi(r) = r*2*=1 is not the only choice, any reasonable function could be
used. The SRPA programs allow, besides the power function, use of the spherical
Bessel functions:

A2(k—1)

fu(r) = jr(d5r) (3.5)

2 where z, is the first root of the spherical Bessel function

Raiys
Ja(zx) = 0 and Ryify is a diffraction radius of the given nucleus, taken as Ry;rr =
0.93A'/3fm. The parameter aj, then takes usually the values of the order of tenths,
for EO transitions it is usually a; = 0.4 and a, = 0.6.

with ¢§ = ay

250+ 500

120 208 — physical input
Sn Pb operators
2004 B=00 4004 B=0.0 — systematical input
operators

150

1004

504

>
(]
=
‘E 0 T T T 2 T
£ 1207 10004 160
@ B =027 1601 3 = 0.20
& 90
120
60
80
301 401
0 T T T 7 0 T T T J
10 15 20 25 30 10 15 20 25 30
E (MeV)

Figure 3.2: Comparison of strengths functions for four different nuclei and two
sets of SRPA input operators. The first set is based on intuitive physical argu-
ments, the second set is determined systematically. The first set for spherical
nuclei is equal to: ZTQYgo, ZT4Y00, Zj0(0.4Z>Y00, ZJO(O62)YOO The first
set for deformed nuclei is the same, with added quadrupole operator > %Y.
The systematically determined sets are listed in the figure Fig. Bl The Skyrme
parametrization used in the calculations was SLy6, the Lorentz widening param-
eter was A =1 MeV.

The basic notion is, that the first operator affects mainly the surface of the
nucleus, where most of the collective motion takes part. The following power
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operators have more and more effect in the interior of the nucleus. And lastly
the spherical Bessel operators are used for more fine-tuned effect on the interior.

The choice of the input operators is generally made more or less intuitively
on qualitative basis, choosing the input operators, that we know will be relevant
from the long-wave approximation, and excluding those that we know will not
be relevant, based on multipolarity or parity exclusion rules, as it was described
in the previous paragraphs. However, the next part of this subsection provides
a systematic study, which was made to show, that this choice is indeed correct.
It also shows, that the SRPA is internally consistent for the small number of
input operators - that is, that the strength function saturates after a few input
operators are taken into account, and thus, that these give the full information,
that we can get from the SRPA.
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Figure 3.4: Convergence of the KO

Figure 3.3: Convergence of the EO
strength function for ?°Sn. The upper
figure has wider range of the parame-
ter DEOCC. The lower figure has val-
ues of DEOCC close to the maximum

strength function for 2°®Sn. The in-
put operators used for the calculation
are: ZT’QYOQ, ZT4Y00, ng(O.4Z>Y00,
> 30(0.62)Ygo. The results are compared
with experimental data from TAMU

value 8. The input operators used for
the calculation are: > 72Yqo, > 74Y 0,
ZjO(O-4Z)YOOa ZJQ(OGZ)YOQ The re-
sults are compared with experimental
data from RCNP experiment[49]

experiment [52]

The systematic study worked as follows: we increased gradually number of
operators, choosing respectively the one operator, out of a set of all conceivable
operators, which made the biggest change with respect to smaller number of op-
erators. The change was determined from the strength functions by the means of
x-square distance. We choose two spherical nuclei - double magic 2°*Pb and ?°Sn
and two axially deformed nuclei with different deformations: ““Mo and 1°Cd.
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The convergence of the strength functions is showed in Fig. Bl Comparison of
the final strength functions with the strength functions determined with input
operators based on heuristical physical arguments, described in previous para-
graphs, is in Fig. One can see that only a few input operators are sufficient
to obtain a convergence.

3.2.2 Influence of the configuration space size

As it was mentioned in the Section Bl the Hartree-Fock single-particle wave
functions ¢;(r) = ¥ (p, z, ) are provided by the Skyax code in the form of their
values in the mesh of points (pg, zx) (k= 1,..., Nesn) together with their single-
particle energies e;. Generally the HF (or BCS) method gives the infinite number
of single-paricle (or single-quasiparticle) states. In practice, certainly, we should
cut off the number of single-particle (or single-quasiparticle) states i to some
finite value N (i = 1,..., N). In the Skyax code this cutting off the configuration
space is done by the upper energy limit (cut off energy) of the single-particle
energies. That means only HF single-particle states with energies e; up to the
cut off energy are provided by the HF calculation and are taking into account in
the subsequent SRPA calculation.

The cut-off energy is in the program Skyax represented by a parameter DE-
OCC, in such a way, that

energy of s.p. states < (1.4AY3 + DEOCC) * 41 x A~'/*MeV. (3.6)

In the figures Fig. and Fig. 3.4 the convergence trend can be observed with
increasing cut-off energy for '2°Sn and 2°*Pb nuclei. We see clear convergence
within the numerical limits of the Skyax and SRPA programs. In the figures
are also included experimental results for comparison. Although enlargement
of the configuration space improves agreement of the theoretical results with
experiment, it is not possible to reach the agreement entirely. Particularly for the
soft 129Sn isotope, for which the 'hard” SV-bas parametrization (with K., = 234
MeV) is expected to give worse agreement, we see, that even after convergence,
the predicted peak is shifted at least 1 MeV to higher energies, compared to the
experimental result, and no further increase in configuration space would change
this. Similar convergence was obtained also for other nuclei investigated in this
thesis.

The discretization of the wave functions is in the program Skyax done by
defining the wave functions on the points of the rectangular mesh in the (p, 2)
space. The spacing of the mesh, and the number of mesh points is determined in
the Skyax input separately for p and 2z coordinate. In our calculations we choose
the default setting of the Skyax program, i.e., 0.7 fm for both p and z spacing,
and the number of mesh points on the p and z axis 35 and 61 respectively. Studies
of other multipolarities within our approach showed, that these values provide
reliable outputs, and, because their choice does not have as such an impact on
the strength function as the choice of the cut-off energy, they present a good
compromise between accuracy and the computation time.
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3.2.3 Influence of the Lorentz averaging interval

A typical nuclear excitation spectrum for a given type and multipolarity (for in-
stance the excitation in terms of the photoabsorption reaction which is closely
connected with the E1 transitions) consists from well separated discrete states
(levels) with energies up to first particle emission threshold energies (usually 8-10
MeV). Above the emission threshold energy the density of states becomes higher
and higher. Finally the energy density of states is so big that the finite experimen-
tal energy resolution makes impossible to see individual levels in the spectrum or
in the energy dependence of the strength functions Si(ZAu; E) (see (L64)) of the
excitations of given type Z = el, mag and multipolarity A with the projection
(. In the Section [[4] it was already presented that the experimental smearing
of individual levels is in the calculations of the strength function Sk (ZAu; E)
obtained by the substitution of the Dirac’s d-function involved in (LG4) by the
Lorentz function £ (see (LGG)) which effectively averages the strength function
Si(ZAp; E) for each energy E in the interval of the width J.
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Figure 3.5: GMR strength function for different values of the Lorentz averag-
ing interval A and various values of the parameter a in double-folding method
for a spherical 2°Sn, and deformed '“Mo. Deformation of '“Mo is 8 = 0.27.
The calculation was done for the parametrization SV-bas, with input operators
ST Y00, S0, D01 Yo, > j0(0.42) Yoo, > jo(0.62)Ygo. The experimental
data are taken from: Sn[49], Mo[51].

From theoretical point of view the substitution, 6(hw, — E) — &a(hw, — E), in
(CE4) or (LBH) simulates some effects not involved in used theoretical approach,
in our case the BCS+RPA approach. This approach is restricted to one-phonon
states only and it means, as it can be seen from the phonon operator (see (L39])),
the restriction to two-quasi particle configurations only. However it is known (see
e.g. [B3]) that more complex configuration components in the nucleus excited
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states, like two-phonon ones, play an important role in giant resonances (sometime
even in low-lying part of the spectrum). The Lorentz averaging of the strength
functions Sk (Y, A\u; E) simulates to some extend the taking into account these
complex configurations.

The other effect simulated by the Lorentz averaging is connected with so called
escape-widths. It is known that in each experiment using the given reaction with
given initial channel for obtaining the particular nuclear spectrum always there
are open final channels which do not provide information about the investigated
spectrum (so called escape channels). Since these escape channels are not usually
taken into account by the theory approach used for the description of the spectrum
the inaccuracy caused by this leads to additional smearing of the theoretical
spectrum. Usually the role of these escape channels increases with the increasing
of the excitation energy and therefore the Lorentz averaging width A can be
expected to increase with the energy as well.

Taking into account both above mentioned effects connected with the complex
configurations and with the escape width one can expect the energy dependence
of the Lorentz averaging energy interval A(F) in the following form

A(E) = Ag + a(E — Eipreshold)) (3.7)

and the strength distribution Sy (FE) is calculated in two steps. First we calculate
the strength function (LGH) with a small but fixed value of Ay. This gives the
strength function S'(E") very closed to the actual RPA one (IL64) but for the
equidistant energy grid. In the next step, the strength is additionally folded by
using the energy dependent A(E):

Sk(E) = / dE' Sy(E') éap)(E — E) (38)

where A(E) is given by (B7). In our paper [54] this double folding method
of the calculation of Si(F) was used for the dipole E1 strength in the neutron
rich tin isotopes. In the case of E1 strength the double folding method improved
substantially the agreement of calculated and experimental photoabsorption cross
sections. In the case of the EO strength discussed in this thesis the improvement
obtained by the double folding is not so good as it can be seen from the Fig.
where the dependence of the strength function distribution S(E0) for °Sm and
100Mo is presented for different values of A.

3.2.4 Influence of pairing regimes

In the recent articles there was discussed a possibility of GMR being effected in
a major way by pairing correlations. So in this section we will study the effect of
volume and surface pairing, compared to a calculation without any pairing. The
pairing parameters were fitted for other data, so we will not change these, and
we will alter only the pairing modes.

In the figure Fig. we compare different pairing settings for a spherical and
a deformed nuclei 2°Pb and 1°Cd. 2°*Pb, besides being spherical, is also doubly
closed-shell, so we would expect no pairing effects at all, which is, to a high
accuracy confirmed by our results for both parametrizations SV-bas and SLy6.
There is no difference whether we include pairing in our calculations or not. For
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a deformed °Cd, we would expect, based on previous studies of relationship
of GMR and pairing effects, a noticeable difference between surface and volume
pairing. This, however, was not confirmed, and differences between these two
modes are very small, as are differences between any pairing and no pairing at
all. Here it should be noted that the inclusion of the pairing for deformed nuclei
on the level of the mean field is certainly very important because it gives single-
quasiparticle spectrum and in such a way it is important mainly for low lying
excitations. However in the giant resonance regions inclusion of the pairing in
the residual interaction is not so important which is demonstrated by the figure
Fig. .
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Figure 3.6: Comparison of different pairing settings for spherical 2*Pb and de-
formed ''°Cd and for two Skyrme parametrizations: SLy6 and SV-bas. The
TAMU data for lead are taken from [52], for cadmium the TAMU data are taken
from [50], the RCNP data are taken from [I7]. The input operators in both cas-
es were > 7Yoo, Y. 7 Y00, D 1% Y90, > j0(0.42) Yoo, > jo(0.62)Yge. The Lorentz
averaging interval is A = 1 MeV. The deformation of 6Cd is 5 = 0.20.

3.2.5 Influence of the Skyrme effective parametrizations

In this thesis the Skyrme effective interaction is used, which comes with various
parametrizations, that had arisen during last 2-3 decades. The original Skyrme
interaction parametrizations were obtained by the fitting procedure in order to
obtain a good agreement between calculated and experimental values of bulk
nuclear properties, like binding energy, nuclear radius, incompressibility, for se-
lected double magic nuclei (see e.g. [32]). Then, in the connection with the
effort to describe another different nuclear properties by theoretical approaches
with the Skyrme mean field, a lot of additional parametrizations appeared in the
literature. Each of these additional parametrizations preserves an agreement in
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the above mentioned bulk properties and tries to improve it in the particular
property, which is a matter of interest in the given paper. As a result we now
have several tens of Skyrme interaction parametrizations giving different values of
the nuclear matter characteristics like the effective masses m*, incompressibility
modulus Ko, symmetry energy sy, [36).
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Figure 3.7: Comparison of GMR results for various parametrizations with ex-
perimental data. The TAMU data for lead are taken from [52], for cadmium
the TAMU data are taken from [50], the RCNP data are taken from [I7]. The
input operators in both cases were > %Yo, > 7Yoo, > %Yo, > j0(0.42) Y0,
> j0(0.62)Ygo. The Lorentz averaging interval is A = 1 MeV. The deformation
of 116Cd is 3 = 0.20.

From the point of view of the GMR the most important Skyrme interac-
tion characteristics is the incompressibility modulus K, as it follows from the
character of EQ vibration. In the paper [7] (and also in other papers) the im-
possibility to describe experimental GMR centroids in lighter nuclei (like Sn or
Cd) and heavy nuclei (like Sm or Pb) simultaneously in the framework of one
theoretical approach with the same Skyrme parametrization was suggested to
explain by different need for the incompressibility K, in the heavier and lighter
regions of isotopes. The lighter nuclei (Cd-Sn region) prefer the parametrizations
with the lower K, while the parametrizations with the higher K, are better for
heavier nuclei (Pb-Sm region). Therefore in this thesis we used different Skyrme
parametrizations covering a broad interval of K, (from values K., ~ 200 MeV
up to K ~ 250 MeV) in order to check this suggestion.

In the figure Fig. B.7 we see comparison of the GMR given by various standard
Skyrme parametrizations, and experimental data. The parametrizations are SGII
(Ks = 230 MeV) [55], SKI3 (K, = 258 MeV) [56], SkM* (K., = 218 MeV) [57],
SkT6 (K, = 258 MeV) [58], SLy6 (K. = 230 MeV) [59], SV-bas (K. = 258
MeV) [36] and SkP (K, = 202 MeV) [37]. We can see, that dispersion of
the result is quite big so without a comparison with experimental results we
would not be able to determine, solely on the basis of the Skyrme interaction
calculations, what is the most probable shape or even position of the GMR peak.
Moreover, even though for the lead isotope, there are parametrizations, that could
reproduce the experimental results quite satisfactorily, for the cadmium isotope,
although the SkP parametrization is closest, it is still not downshifted enough

37



to reproduce the experimental results. So there is no parametrization in the set,
which could reproduce the cadmium GMR data, and, consequently, there is no
unique parametrization, that could reproduce the GMR data for all nuclei.

Another important finding from the Fig. B.7 is that no parametrization was
able to reproduce even the shape of the strength function for the deformed nucle-
us. The experimental data reveal the deformation effect only as a widening of the
main peak to the width 1-2 MeV. On the other hand the two-peak structure of
the strength function is quite dominant for all parametrizations, and even though
we know from Fig. that this is to some extent dependent on the settings of
the Lorentz averaging, and we can flatten out the two-peak structure using the
double folding method, we see in Fig. 3.5 that although double folding flattens
the strength function, it preserves the distance of the two peaks as the width
of the resulting peak. In our case we can see, that even with double folding,
we would get a peak with width about 4-5 MeV, way beyond the experimental
results.

In spite of the facts concerning not good description of the GMR using differ-
ent Skyrme parametrizations given above one can extract two conclusions from
the comparison given in the Fig. B (1) the theory predicts two peak char-
acter of the GMR for deformed nuclei (*'®Cd has the equilibrium deformation
B = 0.20), (2) the GMR in the lighter nucleus "°Cd is better described by the
parametrization SkP with the lower value K, = 202 MeV while the heavier nu-
cleus 2%Pb need the parametrizations with K., ~ 220 — 230 MeV. Both these
conclusions are described in more details in the Chapter [
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Figure 3.8: GMR results for 2°Pb and '2°Sn for SV-bas parametrization with or
without including the time-odd terms in Skyrme functional. The input operators
in both cases were > 7Yoo, > 74 Y00, > jo(0.42) Y00, D jo(0.62)Y. The Lorentz
averaging interval is A =1 MeV.

3.2.6 Skyrme time-odd densities and currents

The Skyrme functional in its most general form includes terms with both time-
even and time-odd densities (see (LI3)) and the Table [[7) . The terms with
time-odd densities and currents, however, are added by hand following symmetry
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arguments, because they do not have any effect on the ground state properties,
ground state itself being time-even, and Skyrme parametrizations are fitted for
the main part from the ground state properties. In this subsection we have a brief
look at how time-odd terms actually influence systems with excited states. In
the figure Fig. B.8 we see GMR strength functions for 2°Pb and 2°Sn for SV-bas
parametrization with/without including time-odd terms in Skyrme functional.
We can see, that the effect of the time-odd terms is discernible but not very
significant. The inclusion of the terms with time-odd densities and currents shifts
the strength function towards smaller energies and this improves the agreement
with experimental data a little bit but the effect is very small.
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Figure 3.9: Comparison of SRPA and full RPA GMR strength functions for 12*Sn
for the parametrizations SV-bas and SLy6. The Lorentz averaging interval in
SRPA calculations is A = 1 MeV. Excitation input operators used in SRPA
calculations are: > 7Yoo, > 7Yoo, > j0(0.42) Y0, > jo(0.62)Ygo. Experimental
data are taken from RCNP[49] and TAMUJ[L3].

3.2.7 SRPA vs RPA

In order to show the relevancy of the SRPA method, in this subsection we compare
the results obtained for SRPA using the parameters which were fine tuned in
the previous subsections with results obtained from the full (standard) RPA.
In our group we developed the full RPA code for spherical nuclei therefore the
comparison of the GMR obtained by the SRPA are compared with one obtained
by the full RPA is done for spherical nuclei only. Some preliminary comparison
of the SRPA GMR with the full RPA GMR shows that we would get a similar
dis/agreement also for axially deformed nuclei. This will serve as a basis for
considering correctness of SRPA approximation as compared to RPA.

In the graph Fig. we can see a comparison between a SRPA calculation
and a full RPA calculation for 'Sn. We can see, that in the resonance region
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there is a very good agreement between the two approaches. And even for SV-bas,
where the agreement is worse, it is far below the difference between two different
Skyrme parametrizations, calculated within the same approach. We conclude,
that if done properly, the SRPA method, which is more effective from technical
point of view, is a good replacement for full RPA method for GMR numerical
calculations.
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4. Results

In this chapter the results of BCS+SRPA calculations of the GMR are discussed
and compared with available experimental data for spherical as well as deformed
nuclei. However, as it was mentioned in the Section 2.2 in this comparison
one should have in mind that available experimental GMR data come from two
experimental groups, TAMU and RCNP groups, and in some cases (mainly for
deformed nuclei) the data from both these groups differ considerably.

In the first section of this chapter some criticism of up to date theoretical
analyses of the GMR based only on the GMR centroids is given. Then, in the
Section 2] we focus on the comparison of calculated GMR with experimental
values for spherical nuclei, namely for the chains of lead, tin, zirconium isotopes
and '*Sm nucleus. Unlike other theoretical groups we compare mainly strength
functions because we believe that these functions offer more relevant information
for the comparison with experiments than only energy centroids of the GMR.
From this point of view the data of both experimental groups mentioned above
are mutually compared as well.

Finally in the Section we analyze the GMR in deformed nuclei, namely
in the chains of molybdenum, cadmium and samarium isotopes. As it was al-
ready mentioned in the Introduction, our study of the GMR in deformed nuclei
represents the first analysis of deformation effects of the GMR performed in the
framework of a microscopic self-consistent approach. It is clearly shown that
these deformation effects are connected with the coupling of E0 and E2 modes in
deformed nuclei.

4.1 Energy centroids and sum rules

Up to now theoretical analyses of the GMR have been reduced to the GMR
centroids only and only in spherical nuclei. Practically in all theoretical pa-
pers concerning the GMR, the centroids are calculated using the expr. (70,
Ersaur = mi(E0)/mo(E0), where moments mo(E£0) and m4(E0) are given by
(C73)). To be more precise, in practice in the literature, the integral in (L73))
is not taken in the limits (bounds) from 0 to co but the integration goes over
a finite energy interval containing the GMR, usually energies from the lowest
particle emission threshold (8-10 MeV) up to 20-30 MeV (see e.g. [7]). In order
to compare the calculated GMR centroid with experimental data the experimen-
tal GMR centroid is calculated from the experimental EO energy distribution
again using exprs. (LT70) and (L73). According to the experimental papers (see
e.g. [I7]) one should be careful and take the same energy interval for integrals
in (L73) for both the experimental and theoretical determination of the GMR
centroid energy. However this can give some misleadings as it is discussed below.

In RCNP and TAMU (see the Section2.2)) experiments the experimental GMR
centroids were determined using different upper integration limits in (IL73]). This
can be seen from the experimental data presented for both experimental groups
in the Fig. 211 The RCNP GMR data for spherical nuclei involved in the Fig. 2.1
show the high-energy tail going up to 30-35 MeV. In the TAMU data such tail is
not observed and experimental values of S(E0) are almost zero above the energies
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20-25 MeV. Nevertheless in the GMR analyses presented in practically all papers
(see e.g. [7 [10]) the energy integration interval for the calculation of the GMR
centroid was reduced to 10.5-20.5 MeV for both RCNP and TAMU experimental
groups and for all theoretical calculations (in spite of the fact that theoretical EO
strength functions are usually nonzero above the energy 20.5 MeV). So the limits
for the integration in (L’73) are questionable for both the experiment and theory.
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Figure 4.2: Dependence of the energy
Figure 4.1: Dependence of the energy  centroid on the upper limit of the in-

centroid on the Lorentz averaging inter-
val A for lead isotopes. The energy cen-
troids are calculated from the strength
function as my/mg on the interval 10-55

terval 10-X MeV, over which is calculat-
ed the energy centroid as a fraction of
the strength function moments ms /my.
The Lorentz averaging interval is A =1

MeV. MeV.

The other question connected with the determination of the GMR centroid is
the Lorentz averaging energy interval A (see ([L.66])) used for the strength function
Sk(E0; E) involved in the expression ([L73]) for moments mq(£0) and m;(FE0).

Lorentz averaging interval A and the choice of the integration interval, over
which the the strength function moments my(EQ) are calculated, influence the
value of the energy centroid as it can be seen in the Figs. [L]] and where the
GMR centroids are shown in the dependence on A and on the upper limit of the
integral in (L73). The choice of A moves the EO energy centroid for lead isotopes
in the range of 100-200 KeV. The choice of the energy interval in the integral
([C3) has similar effect with the GMR centroid shift of the order 200-300 KeV
if the upper integration limit changes from 20 MeV to 50 MeV.

The difference of 200-300 KeV of the GMR centroid energies, if we change
Lorentz parameter A and upper integration limit in (IL73]) in quite big intervals,
seems to be not very big. However, one should realize that the GMR peak for
lead isotopes (which are treated in Figs. Il and E3) is well centered in the
energy interval 10-20 MeV, as we will see later. We can expect this difference
to be bigger for nuclei with broader peaks, like tin isotopes, or for the GMR
strength functions with the tail in higher energies, like the experimental strength
functions obtained by the RCNP experiment (see Fig. 2]). In the RCNP exper-
iment papers it is always pointed out that it is crucial in the comparison of the
experimental centroid energies with theoretically calculated one to keep the same
integration energy interval in (L'73) for the determination of the centroid energy
interval in (73] for the determination of the centroid energy (see e.g. [I7]).
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However, we cannot agree with this statement. If we compare experimental and
calculated energy centroids for lighter nuclei, like Sn, or Cd isotopes, for which
the theoretical strength function is shifted to higher energies, and if we use the
same interval as experimentalists than we inevitably cut off high energy tails of
our strength function and distort results. For this reason we argue that analyses
of the GMR only on the base of the comparison of experimental and calculated
energy centroids are not sufficient and are misleading. The respectable analysis
should involve mainly the comparison of the whole GMR energy distributions
(the GMR shape). It is even more important in the case of deformed nuclei.
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Figure 4.3: Energy centroid results for three chains of spherical nuclei - Zr, Sn, Pb.
Comparison between theoretical results with/without pairing and experimental
results. Skyrme parametrization used: SV-bas, the Lorentz averaging interval
A =1 MeV. The energy ranges for the energy centroids calculation were chosen
in accordance with the experimental data (Zr - 9.8-36 MeV, Sn - 8.5-31.5 MeV,
Pb - 10-55 MeV). The experimental data were taken from Zr[5I], Sn[49] and

Pb7].

In the Fig. we demonstrate values of energy GMR centroids calculated
using (L76) for the chains of isotopes Zr, Sn and Pb with the SV-bas Skyrme
interaction parametrization and with the surface pairing or without any pairing.
In the Table LIl we add the information about the exhaustion of the GMR EWSR,
that means the percentage of the EWSR value given by exp. (2.0) exhausted by
the moment m,(E0) determined by (see (L7H) and (LT72)):

m (E0) = / dES,(E0; E) E (4.1)

for different Pb-, Sn- and Zr-nuclei. The percentage of the exhaustion of the
EWSR for giant resonances serves as a test if the used configuration space is
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sufficient for the analysis of the given giant resonance. From the Table [L.I] one
can see that in our calculation of the GMR we exhaust more than 90% of the
corresponding EWSR. This means sufficiently big configuration space. Another
independent test of the size of the configuration space is the convergence of the
strength function with the increasing size of the configuration space which was
already discussed in the Subsection

Pb | EWSR % | Sn | EWSR % | Zr | EWSR %

204 95 x5 [100| 93 x5 |8 | 95 %5
206 955 |[112| 95 x5 |8 ] 95 %5
2080 935 |[114] 95£5 |90| 95 £5
210 935 [116| 955 |92] 95 %5
212 915 [118| 955 |94 ] 95 £5

120 95 £ 5
122 95 £ 5
1241 95 £5
134 93 £5

Table 4.1: Exhaustion of the EWSR by our calculations for the chains Pb, Sn
and Zr. The EWSR was calculated using the mean value < 7? > calculated using
the HF-BCS ground state determined by Skyax program.

From the graph of centroids given in the Fig. we can see, as it is expected,
that for double-magic nuclei the inclusion of the pairing has not any influence on
the position of the GMR centroid. In the case of nuclei farther from the double-
magic region the inclusion of the pairing tends to push the centroid a little bit
lower in the energy in most cases (with respect to experimental data), but, as it
was already discussed in the Subsection [B.2.4] and it was also found in the [7], the
effect of the pairing inclusion on the GMR is almost negligible.

4.2 Spherical nuclei

In this section the GMR in spherical nuclei is analyzed. For this aim we use
a relatively new set of the Skyrme interaction parametrization, so called SV
parametrization set, which was introduced in [36]. Individual parametrizations
in the set were obtained by the fitting procedure where, in addition to standard
properties of double-magic nuclei (bind energy, radius), other nuclear matter
properties were taken into account, namely the incompressibility modulus K., of
the infinite nuclear matter, isoscalar effective mass m*, the symmetry energy agym,
and Thomas-Reiche-Kuhn classical energy weighted sum rule EWSR k. The basic
parametrization is SV-bas with the parameters obtained by usual fitting on the
bulk properties. Then the subset of parametrizations SV-K, SV-mas, SV-sym,
SV-kap are obtained from the basic SV-bas parametrization by the additional
fitting in order to have the particular value of the corresponding nuclear matter
property, Ko, m*, asym, and &, respectively - see [36] for details. In the Table
the list of SV parametrizations is given together with corresponding values of
the incompressibility K, effective mass ratios m*/m and the symmetry energy
Qsym for each parametrization.
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force K m*/m Qsym
SV-bas 234 0.9 30

SV-K218 | 218 | 0.9 30
SV-K226 | 226 | 0.9 30
SV-K241 | 241 0.9 30

SV-mas07 | 234 | 0.7 30
SV-mas08 | 234 | 0.8 30
SV-mas10 | 234 | 1.0 30

SV-sym28 | 234 | 0.9 28
SV-sym32 | 234 | 0.9 32
SV-sym34 | 234 | 0.9 34

Table 4.2: Table of SV parametrizations with the corresponding fitted nucle-
ar properties: incompressibility modulus K, (in MeV), isoscalar effective mass
(relatively to the nucleon mass), and symmetry energy asy,, (in MeV).
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Figure 4.4: Comparison and trends of GMR energy centroids for parametrizations
from Skyrme SV set.
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In the Fig. B4 we compare GMR energy for SV parametrizations, always
grouped into three row panels according to three properties (Ko, asym and m*/m)
which given parametrizations were fitted to. The calculations were done for
208Ph and 24Sn. From this figure it is clear that the most important nuclear
property, on which the position of the GMR centroid is most dependent, is the
incompressibility mudulus. Particularly, the decreasing of K, leads to the shift of
the EO centroid to the lower energies. The changing of other quantities, isoscalar
effective mass ratio m*/m or symmetry energy as,,, does not give substantial
change of the position of the GMR centroid.

1200

208p, i m exp. TAMU ] . m exp. TAMU
10004 5 -99 — SV-K218 i — SV-mas07
. — SV-K226 —SV-mas08
8004 ' — SV-bas ] * —SV-bas

— SV-K241 —— 8V-mas10

600

N

=]

t=]
L

J/

! L
. ' 10 15 20 25
E (MeV)

N

(=]

t=]
!

1000 m exp. TAMU
— SV-sym28
— SV-bas
— SV-sym32
—— SV-sym34

S (E0) (fm* MeV™)
3
2

®

=1

=]
L

600

4004

200

t L
10 15 20 25
E (MeV)

Figure 4.5: Comparison of GMR strength functions for 2®Pb for Skyrme
parametrizations from SV parametrization set. The input operators used in the
SRPA calculations are ZT2Y00, ZT4Y00, ng(O.4Z>Y00, ZJO(06Z)YOO The
Lorentz averaging interval is A = 1 MeV. The experimental data are taken from
TAMU[52].

In the next figures Fig. and Fig. we compare the GMR energy
distribution for 2°®Pb and '?Sn isotopes calculated with the parametrization
sets SV-K (with K, = 218, 226, 234, and 241 MeV), SV-mas (with m*/m =
0.7, 0.8, 0.8, and 1.0), and SV-sym (with asy, = 28, 30, 32, and 34) with the ex-
perimental GMR distributions taken from the TAMU [52] 13] and RCNP [49] ex-
periments. Again we can see that changing the incompressibility from K., = 241
MeV to 218 MeV causes the decrease in the GMR maximum energy from 15 MeV
to 13.5 MeV in 2%Pb and from 17.5 MeV to 16.5 MeV in ?*Sn. On the other
side the changing of the effective mass m* and of the symmetry energy ay,, do
not change the position of the GMR maximum in both analyzed nuclei.

Figs. E4) and demonstrate also the fact that SV-K parametrizations,
especially the SV-bas, give relatively good description of the GMR centroid posi-
tion and partly also of the shape of the GMR for 2*Pb while in the case of 24Sn
these parametrizations overestimate in energy the position of the GMR. Taking
into account the trend of the GMR position in the dependence on K., shown in
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Figure 4.6: Comparison of GMR strength functions for '?!Sn for Skyrme

parametrizations from SV parametrization set. The input operators used in the
SRPA calculations are > %Yo, > 7Yoo, > jo(0.42)Yoo, D j0(0.62)Yg. The
Lorentz averaging interval is A = 1 MeV. The experimental data are taken from
TAMU[I3] and RCNP[49].

the upper panels of the Fig. 4] (decreasing of K., tends to decrease the ener-
gy of the GMR) one can expect that the lighter nuclei, like '?*Sn, demand the
parametrizations with a lower value of K, (around 200 MeV) than K, = 218
MeV (the parametrization SV-K218 with the lowest K., in the Figs. EAHLGI).
This will be discussed also in the next section in the connection with deformed
nuclei.

Further we compare E0O strength functions calculated with the BCS+SRPA
approach with the available experimental values for other spherical Pb, Sn, and
Zr isotopes. At first, for each isotope chain we check if the given isotopes are
really spherical. This is done by plotting the total BCS energy as a function
of the quadrupole deformation parameter  and the equilibrium deformation
corresponds to the position of the minimum of this plot. Then the BCS single-
quasiparticle states corresponding to the equilibrium deformation are used for the
subsequent SRPA calculation of the EO strength function. The Skyrme interaction
parametrization SV-bas or SLy6 (with the incompressibility modulus K,,=234
MeV and 230 MeV, respectively) are used for these calculations. Simultaneously
we look at the changes of the EO strength function caused by switching on the
surface pairing.

From the Fig. 7 we sce that all analyzed 2°4~2!2Pb isotopes are spherical for
both the SLy6 and SV-bas parametrizations. Since all these Pb isotopes are close
to the double-magic 2°*Pb nucleus, for which the binding energy was used for
the fitting of Skyrme interaction parameters, the values of the BCS total energies
are relatively close to the experimental values of the binding energy (red dashed
horizontal line in the figure).
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Figure 4.7: Total BCS binding energy as a function of the quadrupole deforma-
tion B for SV-bas and SLy6 Skyrme parametrizations. The red horizontal line
corresponds to the experimental binding energy obtained from the nucleus mass
measurements (taken from [60]). Positions of the minima of the total BCS ener-
gies for all studied Pb isotopes correspond to the spherical symmetry (8 = 0) for
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Figure 4.8: GMR strength functions for lead isotopes, for SV-bas parametrization,
with/without pairing and SLy6 parametrization.Comparison to the experimental
data, which were taken form RCNP[49] and TAMU([I3] and [22]) experiments.
Deformation for all nuclei was 5 = 0, and the Lorentz averaging interval was A =
1 MeV. The input operators are > 72Yqo, > Y0, > jo(0.42) Yoo, Y jo(0.62)Yoo.
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Fig. shows the EO strength functions for the chain of the Pb isotopes. The
only experimental data are available for 2°*Pb. The theoretical GMRs slightly
overestimate in energy the experimental values but the agreement is quite good.
The difference of EO strength functions calculated with and without the paring
is very small.
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Figure 4.11: Zirconium isotopes, determination of the equilibrium deformation
for the SLy6 parametrization, from the binding energy. Comparison with the
experimental binding energy [60].

Similar results as those for Pb isotopes were obtained for the chain of Sn
isotopes %1328 isotopes as it can be seen from Figs. and ELI0L All these
isotopes are spherical with § = 0, as it follows from the Fig. However, in
some cases the minimum of the total BCS function is quite shallow which indicates
the softness of the corresponding isotope. Fig. shows the comparison of
calculated EO strength functions with the corresponding experimental TAMU
and RCNP data. Unlike the Pb isotope case in the Fig. L8 the agreement of
calculated EO strength with the experimental one is worse for Sn isotopes. As it
can be seen from the Fig. an overestimation of the theoretical GMR with
respect to the experimental one in energy is much bigger than in the case of the
Pb isotopes. This is in accordance with the trend shown in the Fig. [.4] that the
Skyrme parametrizations with K, ~ 220 — 230 MeV do not suit lighter nuclei as
Sn isotopes.

Figs. A1 and show the similar analysis for Zr isotopes. As it can be
seen from the Fig. EIT all 8-%4Zr isotopes are spherical but there is a shallow
minimum of the total BCS energy for **Zr. The Fig. demonstrates EO
strength functions in Zr isotopes. Similarly as in the case of the Sn isotopes
one can see quite big overestimation in the energy of the calculated EO strength
function with respect to the experimental ones in 292947y isotopes for which only
TAMU experimental data exist.

In the Fig. there is a comparison of the EO strength in the spherical
1449m calculated in the framework of the SRPA and full RPA approaches with
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Figure 4.12: Zirconium isotopes, EO strength function for SV-bas parametriza-
tion. Comparison to the available experimental data, which were taken form
TAMU[5]]. Deformation for all nuclei was 8 = 0, and the Lorentz averaging in-
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Figure 4.13: EO strengths for 1*4Sm for SV-bas parametrization, with surface pair-
ing. Comparison between full RPA and SRPA calculation, and two value of the
Lorentz averaging interval A = 1 MeV and A = 2 MeV. Excitation input oper-
ators used in SRPA calculation are: > %Yo, > 7Yoo, > 7*Yag, > j0(0.42) Y0,
> j0(0.62)Ygo. Experimental data are taken from RCNP[12] and TAMU[22].
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the corresponding RCNP and TAMU experimental data. The calculation was
done with the SV-bas parametrization. The comparison of results obtained with
the Lorentz averaging interval A = 1 and 2 MeV is done as well. One can see
that the SV-bas parametrization gives better agreement of the calculated GMR
with the experimental one than in the case of Sn and Zr isotopes. It is again in
accordance with the trend given in the Fig. 4] that from the point of view of
the GMR the Skyrme parametrizations with K., ~ 220 — 230 MeV are good for
heavier nuclei (like Pb or Sm isotopes). This is contrary to lighter nuclei (like
Sn and Zr isotopes) for which parametrizations with the lower values of K, are
better.
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4.3 Deformed nuclei

In the analysis of the GMR in deformed nuclei we restrict ourselves to three iso-
tope chains: 9296:98100\[o 106,=116Cd and '1:148:150.154Gm  The Mo and Sm chains
involve isotopes going from the spherical shape (**Mo and '*Sm) to the well-
deformed shape (100Mo and '%*Sm). The equilibrium quadrupole deformation /3
for all above mentioned isotopes was obtained by looking for the minimum of the
total BCS energy taken as a function of /3 for each isotope.
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Figure 4.14: Molybdenum, cadmium and samarium isotopes, determination of the
equilibrium deformation for the SLy6 parametrization, from the binding energy.
Comparison with the experimental binding energy[60).

In the Fig. (T4 there are dependencies of the total BCS energies on the
deformation [ for all nuclei involved in the Mo-, Cd-, and Sm- chains, respectively.
From this figure one can see for spherical nuclei (“*Mo and '#Sm) calculated
equilibrium BCS binding energy (the value of the minimum) agrees with the
experimental value (corresponding to the red dashed horizontal line). In the case
of the nuclei with the nonzero [ the agreement is not perfect but we should
realize that the Skyrme interaction parameters were obtained by the fitting to
binding energies (besides other quantities) of the selected spherical double-magic
nuclei. In this fitting procedure no deformed nuclei were involved. Obtained
equilibrium deformations were used in the subsequent SRPA calculations for all
isotopes mentioned above.

The GMR energy distribution, discussed in the previous section and devoted
to the spherical nuclei, was characterized by a one-peak character (in the both
theoretical and experimental cases). From theoretical point of view it is well-
known that the spherical mean field corresponds to the preserving of the angular
momentum for nuclear states. As a result there is not any coupling between
excitations with different multipolarities (for instance between E2 and E0 modes).
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In the case of the axially deformed mean field the intrinsic angular momentum
is not a good quantum number for intrinsic nuclear state, only its projection
to the symmetry axis is preserved and therefore only the projection is a good
quantum number for each intrinsic state. In this case the intrinsic total angular
momenta are mixed and it allows to have a coupling between E0 and E2 modes.
Since the EO and E2 isoscalar resonances in the spherical nuclei occur for different
energies one can expect that their mixing due to nonzero deformation in deformed
nuclei can cause a double peak structure of the GMR (or at least its substantial
broadening). This idea was suggested in the paper [29] for the first time but only
qualitatively. Further this idea is checked by our SRPA calculations.

The advantage of the special form of the SRPA approach in comparison with
the full RPA method is not only in its short computing time but also in our
ability to do the analysis of the coupling between different modes (EO and E2
in our case). We can analyze the influence of the E0-E2 coupling on the GMR
simply by the switching on and off the quadrupole operator > r*Y5q in the set of
the exciting (input) operators in the SRPA.

In the Fig. B8l the effect of the exclusion or inclusion of the quadrupole oper-
ator Y r?Ys into the set of the input operators is demonstrated for all above men-
tioned isotopic chains (for Mo, Cd, and Sm isotopes). In all panels in this figure
the black curve corresponds to the situation when the set of the input operators
involves only the monopole type operators: > 7?Yqo, > 7Yoo, > jo(0.47)Y 0,
> 30(0.67)Y oo without any quadrupole type operator. The red curve is connected
with the set of input operators involving besides the monopole operators also
quadrupole one : > r?Yy. In such a way the red curve corresponds to the case
when the EO-E2 coupling is switched on while for the black curve this coupling is
switched off. The double peak structure of the red curve is formed more sharply
with the increasing deformation. In the spherical case (*Mo and 'Sm) there is
only one peak in the GMR structure.

The mechanism of the E0-E2 coupling can be seen well from the Fig. 10l
In the upper and middle panels the EO strength function calculated with the
SV-bas parametrization for **Sm is compared with the experimental RCNP
and TAMU EO strength distributions. The red solid curves correspond to the
Lorentz averaging parameter A = 2 MeV and red dashed curves to A = 1 MeV,
both (solid and dashed) red curves are connected with the volume pairing, while
analogous black lines corresponds to surface pairing. The curves in the upper
panel were obtain by the SRPA calculation with five input operators: > r7?Y o,
ST r* Y00, 2jo(0.47) Yoo, > jo(0.67) Yo, > 1r%jag while for curves in the middle
panel only four monopole input operators (without the quadrupole one) were
used. The lower panel involves the isoscalar quadrupole E2 strength function
with the quadrupole multipolarity projection K = 0 obtained by the SRPA cal-
culations with five input operators involving the quadrupole one (the same input
operator set as in the upper panel) and with the volume pairing. The double
peak structure of the calculated EO strength can be clearly seen in the upper
panel (involving the E0-E2 coupling) while in the middle panel (where the E0-E2
coupling is switched off) one peak character of the E0Q strength was obtained. The
calculated double peak structure of the EO strength is in the agreement with the
TAMU experiment while the RCNP data provide only one peak. The important
fact is that the position of the first peak in the EO distribution agrees very well
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with the position of the E2 (K=0) strength function peak shown in the lower
panel. The Fig. [A.16] demonstrates again the negligible effect of the choice of the
pairing type (volume or surface) on the calculated EO strength function.
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Figure 4.17: Comparison of GMR strength functions for °Cd for Skyrme
parametrizations from SV parametrization set. The input operators used
in the SRPA calculations are > 7?Yqo, > 7Y, D 72Yag, > j0(0.42)Y0,
> 30(0.62)Ygo. The Lorentz averaging interval is A = 1 MeV. The experimental
data are taken from TAMU[50] and RCNP[I7].

In the Figs. .11 and the GMR energy distribution for deformed °Cd
and '*Sm nuclei calculated with the parametrization sets SV-K (with K, =
218, 226, 234, and 241 MeV), SV-mas (with m*/m = 0.7, 0.8, 0.8, and 1.0),
and SV-sym (with agy, = 28, 30, 32, and 34) are compared with the TAMU and
RCNP experimental EO strength functions. As for the agreement with the exper-
imental values, all theoretical EQ strength functions are shifted to higher energies
in the comparison with experimental ones. One can notice a small dependence of
the position of the second peak on the incompressibility modulus K., in *¢Cd:
decreasing of K, from 241 MeV to 218 MeV gives the shift of the position of the
second GMR maximum of about 1 MeV to lower energies. However it is not suf-
ficient to reach the position of the experimental EO strength function maximum.
In the heavier 1**Sm such dependence on K, is not observed. The position of
the first (smaller) EO strength peak depends on the effective mass in the both
16Cd and '*Sm nuclei: decreasing of m*/m from 1.0 to 0.7 gives the shift to
higher energies by about 1.5 MeV. This is connected with the similar shift of the
isoscalar E2 (K=0) strength function because, as we saw in the Fig. [£10 the
position of the first GMR peak is connected with the isoscalar E2 (K=0) peak.

If we compare Figs. A7 and 418 for deformed nuclei with analogous Figs.
and for spherical nuclei the different trend can be seen. For spherical nuclei
the trend is that GMR for heavier nuclei is better reproduced by the Skyrme
interaction parametrizations with the higher K., while for lighter nuclei these
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Figure 4.18: Comparison of GMR strength functions for '**Sm for Skyrme
parametrizations from SV parametrization set. The input operators used
in the SRPA calculations are > 7?Ygo, Y70, D 7?Yag, > j0(0.42)Y0,
> 30(0.62)Ygo. The Lorentz averaging interval is A = 1 MeV. The experimental
data are taken from TAMU[22] and RCNP[12].

parametrizations overestimate the peak position. In the deformed nucleus case
all SV parametrizations overestimate GMR positions both for heavier and lighter
nuclei.

In the figure Fig. T3] the results obtained with the force SV-bas are com-
pared with TAMU [22] and RCNP [12] data for the set of Sm isotopes. The
equilibrium quadrupole deformations § were determined from the minimum of
the nuclear energy (see Fig. EI4) and show that only '#4Sm is spherical while
the other isotopes are soft (*¥Sm) or well deformed (***~1**Sm. The E0 strength
is calculated within the SRPA method with 4 (black curves) or 5 input operators
involving the quadrupole one (red curves). It is seen that our calculations clearly
demonstrate the broadening of the GMR due to the quadrupole input operator
>"72Y3 and the onset of the GMR. two-peak structure in going from the spher-
ical *4Sm to the deformed '%*Sm. The latter effect is caused by the coupling
of EO and E2 modes in deformed nuclei explained in the Fig. Note that
the two-peak structure in '* is observed in TAMU [22] but not in RCNP [12]
experiments, which once more signals on the essential discrepancy between the
two experiments. Further, in contrast to our predictions, the RNCP data do not
show any double-peak structure in deformed %!52Sm. Taking into account the
RCONP/TAMU disagreement for **Sm, the corroboration of the RNCP data for
1301528 is desirable.

In the Fig. the GMR energy distribution calculated with the Skyrme
parametrization SV-bas for Mo isotope chain going from the spherical *>Mo to well
deformed Mo is compared with the TAMU experimental EO strength function.
Two calculation for Lorentz averaging interval ( A = 1 and 2 MeV ) were done
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Figure 4.19: EO strengths for samarium isotopes for SV-bas parametrization.
The Lorentz averaging interval is A = 1 MeV. Comparison for two sets of input

operators: with or without the quadrupole operator Y r*Y5y. Experimental data
are taken from RCNP[12] and TAMU[22].
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Figure 4.20: EO strengths for molybdenum isotopes for SV-bas parametrization.
Comparison between different values of the Lorentz averaging interval A = 1
MeV and A = 2 MeV. Excitation input operators used are: > 72Yg, > 7Y,
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MeV. Experimental data are taken from TAMU[5I].
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for each nucleus. In the well deformed °*Mo the double peak structure obtained
in the theoretical calculation is not observed in the experiment. Nevertheless one
can see the broadening of the experimental GMR in the deformed Mo with
respect to the spherical “2Mo. In the case of the Mo chain one should bear in
mind also the known fact that nuclei *%*Mo are transitional soft nuclei with
a possible quadrupole triaxiality v (see [61]) and their description by one axial
quadrupole deformation [ is only an approximation.
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Figure 4.21: EO strengths for cadmium isotopes for SV-bas parametrization,
with volume or surface pairing. Excitation input operators used are: > r*Yy,
STt Y00, D% Yao, 3 j0(0.42) Yoo, D jo(0.62)Ygo. The Lorentz averaging interval
is A =1 MeV. Experimental data are taken from RCNP[I7] and TAMU[50].

Chain of cadmium °°Cd — 16Cd offers other axially symmetric nuclei. The
comparison of EQ strength functions with available TAMU[50] and RCNP[I7]
data are in the Fig. 2T We can see that cadmium isotopes, like tin isotopes,
are softer than lead. Although cadmium nuclei are deformed, and in our strength
function we can observe typical double-peak structure of the resonance, in the
experimental results from both experiments, there is present only slight widening
of the main peak.
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Conclusion

The systematic study of the isoscalar giant monopole resonances (GMR) in spher-
ical and deformed nuclei has been performed within the self-consistent separable
Skyrme RPA (SRPA) approach. The analysis was based not only on the compar-
ison of calculated and experimental GMR centroids, as it was performed practi-
cally in all up to date papers, but the shape of the GMR (its energy distribution)
was involved in our analysis as well.

The main result of this thesis concerns the double peak structure of the GMR
in deformed nuclei. The prediction of it, given in the eighties in the paper [29],
was based only on the simple phenomenological considerations. In contrast, we
analyzed the GMR using the microscopic model. The self-consistent SRPA ap-
proach, used in the thesis, gives an especially good possibility to demonstrate
the mechanism of the formation of the double peak structure of the GMR as we
go from the spherical to deformed nuclei simply by the switching on (or switch-
ing off) the E0-E2 coupling as a result of the inclusion (or not inclusion) of the
quadrupole E2 operator into the set of the external exciting operators (see Figs.
10 A16). It was shown in this way that the double peak structure of the GMR
in deformed nuclei is a deformation effect connected with the coupling of electric
monopole EO and quadrupole E2 modes which is allowed only in the deformed
systems.

For both spherical and deformed nuclei analyzed in this thesis the Skyrme
interaction parametrizations with smaller value of the incompressibility modulus
K, give a lower position of the GMR in the spectrum (see Fig. A4]). In the heav-
ier spherical nuclei, like 2%Pb (see Fig. EE8) or 4Sm (see Fig. ET3)), the Skyrme
parametrizations with K, ~ 230 MeV (e.g. SV-bas or SLy6) give more or less
a good position of the calculated GMR in the comparison with experiments and
the parametrizations with a lower value of K, give a very small GMR shift in
the energy. In the case of lighter spherical nuclei, like Sn (see Fig. L6 or Zr (see
Fig. L12) isotopes, the calculated GMRs are shifted by ~ 3 MeV to the higher
energies with respect to the experimental values and the use of parametrizations
with lower values of K, (e.g. SV-mass218 with K., = 118 MeV or SkP? with
K, = 202 MeV) does not help to obtain an agreement with experiments. In
the case of deformed nuclei the situation is more complicated because available
experimental data from TAMU and RCNP experiments do not agree with each
other (see Fig. for 1%Sm). Therefore, not only theoretical GMR but al-
so experimental data are under the question. The TAMU experimental energy
GMR distribution shows a clear double peak structure which is confirmed by our
calculation (see Fig. for '4Sm). However, such a clear double peak structure
is not observed in either **Sm or other deformed nuclei in RCNP experiments
and we can in the data recognize only broadening of the single GMR peak. Our
calculations give double peak structure of GMR in all deformed nuclei with de-
formations 8 > 0.2 (see Fig. MIH) and substantial broadening of GMR peak
for § > 0.1. In this sense our calculations are in the qualitative agreement with
the shape of GMR in available experiments. However, the calculated GMR for
all Skyrme parametrizations overestimate GMR energies in the comparison with
experimental data by about 2-3 MeV in deformed nuclei (see Figs. LTGHL20]).
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In order to do more reliable comparison with experimental data more experi-
ments providing information on GMR in spherical and particularly in deformed
nuclei are desirable. From the point of view of the theory it is a question if
the Skyrme effective interaction with all its nowadays parametrizations can give
more precise agreement with all details of experimental data on GMR in spherical
and deformed nuclei. Analyses of the GMR with other effective nucleon-nucleon
interactions are desirable as well.
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