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RESUMO

SILVA, P. MICHEL L. T. Cosmologia de Branas e Teorias Modificadas da Gravitagao em
Dimensoes Arbitrarias. 90 f. Tese (Doutorado em Fisica) - Faculdade de Engenharia do

Campus de Guaratinguetd, Universidade Estadual Paulista, Guaratinguetd, 2017.

Este trabalho contém duas abordagens concernentes as dimensoes extras. Na primeira
abordagem, investigamos duas teorias modificadas da gravitacao em dimensoes arbi-
trarias, f(R)-Einstein-Palatini e a teoria de Brans-Dicke. Mostramos que a consideragao
das condicoes de consisténcia de mundos brana dentro da estrutura da teoria de Brans-
Dicke no bulk permite a existéncia de branas suaves no caso de cinco dimensoes com uma
dimensao extra compacta. Ao estudar as regras de soma na teoria de Brans-Dicke e f(R)-
Einstein-Palatini, pudemos mostrar que a brana que gera o potencial de campo escalar é
relevante para relaxar as restrigoes gravitacionais. Ja para a segunda abordagem, estu-
damos a evolucao cosmoldgica com branas nao-singulares geradas por um campo escalar
no bulk acoplado & gravidade. A configuragao especifica investigada leva & branas com um
warp factor dependente do tempo. Calculamos o pardmetro efetivo de Hubble advindo do
fator de escala efetivo para as solugoes de Friedmann-Lemaitre-Robertson-Walker obtidas.

As solucoes de branas espacialmente dependentes também foram encontradas.

PALAVRAS-CHAVE: Branas. Cosmologia. Dimensoes Extras.



ABSTRACT

SILVA, P. MICHEL L. T. Braneworld Cosmology and Modified Theories of Gravitation
in Arbitrary Dimensions. 90f. Thesis (Ph.D. in Physics) - Faculty Engineering of Campus

Guaratinguetd, Sao Paulo State University, Guaratinguetd, 2017.

This work contains two approaches concerning extra dimensions. In the first approach, we
investigate two modified theories of gravitation in arbitrary dimensions, f(R)-Einstein-
Palatini and the Brans-Dicke theory. We have shown that the consideration of the brane
world consistency conditions within the structure of the Brans-Dicke theory in bulk allows
the existence of soft branes in the case of five dimensions with an extra compact dimension.
When studying the rules of addition in the Brans-Dicke and f(R)-Einstein-Palatini theory,
we could show that the brane that generates scalar field potential is relevant to relax the
gravitational constraints. For the second approach, we study the cosmological evolution
with non-singular branes generated by a scalar field in the bulk coupled to gravity. The
specific configuration investigated leads to branes with a warp dependent factor. We
calculated the effective Hubble parameter and the effective scale factor for the Friedmann-
Lemaitre-Robertson-Walker-solutions obtained. Spatially-dependent brane solutions have

also been found.

KEY WORDS: Branes. Cosmology. Extra Dimensions.
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Capitulo 1

Introducao

Sabemos que o cendrio da teoria das supercordas exige um ambiente com dez di-
mensdes. A partir dessas teorias de supercordas (14-9-dimensionais), relacionadas com a
teoria de supergravidade (1+10-dimensionais), emerge uma conjectura, a qual foi desen-
volvida por Horava e Witten [1, 2], popularmente conhecida como Teoria M. A luz da
teoria M, também foram descobertas as p-branas, as quais sao entendidas como objetos
estendidos das cordas. Posteriormente, Dai, Leigh e Polchinski em (1989)(3, 4] reportaram
que no cendrio da teoria das supercordas, manifesta-se um caso particular das p-branas,
as chamadas D-branas (D indica as condigdes de contorno de Dirichlet) com N-branas
que possuem N dimensoes espaciais.

Na teoria de Horava-Witten os campos de calibre estao confinados em duas (1 + 9)-
branas localizadas nos pontos fixos de uma topologia dita ser do tipo orbifold, denotada
por S*/Z,. Esse espago-tempo ¢ denotado por My x Yg x S'/Z,, onde My é o espago-
tempo de Minkowski e Y é um espaco (6D) de Calabi-Yau.

A supressao do espago de Calabi-Yau nos fornece um cendrio de (143)-branas. Tal
mecanismo nos dé uma teoria efetiva da conjectura de Horava-Witten. Deste modo, nosso
Universo de quatro dimensoes pode ser representado por tais branas e, essencialmente,
podemos imaginar que o nosso Universo é descrito por um espago-tempo 4D que estd
mergulhado em outro espago-tempo 5D (bulk). Tal cendrio é conhecido como modelo de
mundos branas.

No final do século XX, Lisa Randall e Raman Sundrum propuseram um mecanismo
para elucidar o problema da hierarquia, onde surge uma métrica nao fatorizavel, com uma

dimensao extra. A existéncia de um warp factor exponencial que multiplica a porgao



4-dimensional da métrica é responsdvel por um tipo de hierarquia exponencial. Nesse
ambiente sdo consideradas duas (3+1)-branas com o raio do orbifold compacto (Modelo
Randall-Sundrum I). Quando o raio de compactifica¢ao tende ao infinito, uma das (143)-
branas ¢ suprimida, temos o segundo modelo de Randall-Sundrum (RS-IT), mais detalhes
podem ser encontrados em [5, 6, 8.

Contrariamente aos modelos de Randall-Sundrum, onde as branas sao ditas serem
do tipo singulares, neste trabalho, investigamos duas teorias modificadas da gravitacgao,
Brans-Dicke e f(R)-Einstein-Palatini para cendrios de mundo branas suaves geradas por
um campo escalar. Neste contexto, aplicamos as chamadas regras de soma para tais
teorias. Estas regras foram formuladas na referéncia [7] para o caso de cinco dimensoes
na Relatividade Geral e extendida para um nimero de dimensoes arbitrarias na referéncia
[9]. O principal objetivo desta primeira parte de nosso trabalho é generalizar as regras de
soma em mundo branas para teoria de Brans-Dicke e f(R)-Einstein-Palatini.

Este texto estd organizado na seguinte ordem. No capitulo 2, exibimos os obje-
tos matematicos essenciais utilizados na Relatidade Geral e descrevemos a formulagao
Lagrangeana a partir do principio variacional tradicional (métrico). No Capitulo 3 ap-
resentamos algumas secoes para a Cosmologia Relativistica, expondo o cendrio geral dos
Universos de Friedmann. No Capitulo 4 descrevemos modelos que envolvem dimensoes ex-
tras, tais como, modelo de Randall-Sundrum, modelo ADD (Modelo Arkani-Dimopoulos-
Dvali) e o modelo DGP (Dvali-Gabadadze-Porrati. Também, neste capitulo, elaboramos
detalhadamente o formalismo de Shiromizu-Maeda-Sasaki, no qual permite a projecao
das equagoes de campo do bulk na brana (branas singulares). Nos Capitulos 5 e 6, os
quais sao o foco deste trabalho, apresentamos nossa contibuicao original. No Capitulo
5 exibimos as regras de soma para cendrios de mundo branas, apresentamos a agao e as
equacoes de campo da teoria de Brans-Dicke e aplicamos as regras de soma a teoria de
Brans-Dicke. Também derivamos as equagoes de campo no formalismo f(R)-Einstein-
Palatini em dimensoes arbitrdrias, onde mostramos o mecanismo de cédlculo das regras
de soma para branas suaves quando aplicadas ao formalismo f(R)-Einstein-Palatini. O
Capitulo 6 ¢ dedicado & Cosmologia de Branas Suaves (versao distinta da Cosmologia de
Branas singulares). A partir do Ansatz para a métrica no bulk, resolvemos as equagoes
de campo dependentes do tempo e dependentes do espaco (dimensdo extra) através do
método de separacao das variaveis da funcao warp factor. Diferentemente da maioria

de alguns trabalhos, onde a funcao warp factor ja é dada, nossa funcao warp factor foi



encontrada a partir do conjunto de equagoes da parte espacial. Investigamos os casos em
que a constante de separagao das varidveis, pode adquirir valor nulo e nao nulo, ou seja,
A =0eA # 0. Os casos em que a curvatura espacial pode assumir valores nulo e nao
nulo, também foram tratados, isto é, para k =0 e k # 0. A partir das solugoes advindas
da parte temporal das equagoes de campo, nés calculamos o fator de escala efetivo e o

parametro de Hubble efetivo. No Capitulo 7, sao tracadas nossas conclusoes.



Capitulo 2

Relatividade Geral

A teoria da relatividade formulada por Albert Einstein subdivide-se em duas teorias:
Teoria da Relatividade Especial e a Teoria da Relatividade Geral. A relatividade especial
tem sua simetria composta pelo grupo de Poincaré, o qual inclui translagoes no espaco-
tempo, rotagoes e os boosts. Essencialmente, a teoria da relatividade especial ¢ uma
teoria de medida, ou seja, correlacoes observacionais entre observadores em referenciais
inerciais. Tais correlacoes sao implementadas através das transformacoes de Lorentz. O
espaco vetorial que compoe os eventos relativisticos dessa teoria é o chamado espaco
de Minkowski. Podemos dizer que tais eventos, como por exemplo contracao do espaco,
dilatacao do tempo e relatividade da simultaneidade, mudaram drasticamente nosso senso
comum com relagao ao espago e ao tempo.

Mais tarde, publicada em 1915, a teoria da relatividade geral trouxe algo ainda mais
impactante, a manifestacao da gravitacao dever-se-ia dar sob a forma da curvatura do
espaco-tempo. A geometria de fundo passa a ser modelada por uma variedade pseudo-
Riemanniana livre de torcao. Se a variedade em questao possui uma conexao com uma
parte antissimétrica, a variedade é dita ser do tipo Riemann-Cartan e a teoria que descreve
o campo gravitacional é chamada teoria de Einstein-Cartan.

Aqui ha uma generalizacao no que diz respeito aos referencias inerciais. Estes, agora,
passam a ser considerados nao inerciais. Tais impactos trouxeram previsoes importantes
concernentes aos fendomenos gravitacionais, dentre eles podemos citar as previsoes de ondas
gravitacionais, buracos negros, redshift gravitacional, etc.

A Teoria da Relatividade Geral (TRG) ¢é a generalizagao da Teoria da Relatividade

Especial (TRE). O contexto Minkowskiano é ampliado para o contexto de espagos-tempo



curvos. Um dos fundamentos da TRG é o Principio de FEquivaléncia, o qual estabelece
que localmente um referencial inercial nao acelerado na presenga de um campo gravitaci-
onal e um referencial acelerado, mas agora sem um campo gravitacional, sao fisicamente
equivalentes.

Dentre as consequéncias mais importantes da TRG, podemos citar a deflexao da luz
em um campo gravitacional, o redshift gravitacional, a precessao do periélio de Merctirio
e a previsao de ondas gravitacionais. O redshift gravitacional faz com que o comprimento
de onda dos fétons diminua nas proximidades de um campo gravitacional suficientemente
forte. O fenémeno da precessao do periélio de Merciirio, ja era estudado pela mecénica
cldssica, a qual computava um valor discrepante ao observado [11]. As elipses que de-
signam o movimento dos corpos celestes nao sao fechadas em virtude das perturbacoes
de outros planetas, as quais alteram o ponto do periélio (ponto mais préximo do sol),
fazendo assim o periélio precessionar. Mas a questao é que ainda restavam 43" por século
nas previsoes da Mecénica Cldssica, o que foi interpretado por Einstein como modifi-
cagoes do espago-tempo para tal situagao. Conceitos mais avangados como singularidades
e estrutura causal [12], também ocorrem como previsoes da TRG.

Por volta de 1919, Arthur Stanley Eddington, teve a oportunidade de confirmar a
teoria da relatividade geral de Einstein a partir de duas expedi¢oes, uma em Sao Tomé e
Principe e outra na cidade de Sobral, no Brasil. Vamos nos enderegar agora aos objetos

matemdaticos basicos necessarios ao estabelecimento da TRG.

2.1 Tensor de Curvatura

O tensor de curvatura, também chamado tensor de Riemann-Christoffel é de grande
importancia na TRG. Quando vetores sao transportados paralelamente em um circuito
fechado em uma variedade, eles geralmente sofrem transformacoes, estas, sendo rela-
cionadas com a curvatura da variedade em questao. O mapeamento local da curvatura é
feito pelo tensor de Riemann.

Seja a derivada covariante de um vetor contravariante
vV, VP =09,VP+T,,° V* (2.1)

onde
1
F,uz/A - §g>\p(au Gup + Ou Gup — apgl“’) (2:2)



sao os simbolos de Christoffel. Aplicando novamente a derivada covariante na equagao
(2.1), temos

ViV VP =0,(0,V’ +T,,'V) + T, (0,V° +T,,°V*) =T, °(0,V" +T,,”V?), (2.3)
tal que efetuando-se uma permutacao indicial 1 < v fornece como resultado
VoV VP =0,(0,VP +T,,°V) +T,,7(0,V° +T,,°VY) =T,,7(0,V* +T,,°V?"). (2.4)

Subtraindo a equagao (2.4) da equagao (2.3), bem como efetuando as substituigoes

indiciais necessarias e levando-se em consideracao a comutatividade das derivadas parciais

bem como a simetria dos indices inferiores do simbolos de Christoffel, isto é, FWA =T W)‘,
a expressao rearranjada para o comutador torna-se
Vi, Vi JV?P = (aquAp - auru,\p + Fo‘,uprl//\o - FUVPF;L)\U) V2 (2.5)
onde o termo entre parenteses é identificado como o tensor de Riemann
RW/\’) =9,I,," — GZ,FW\p + 0,107 =T, T % (2.6)

Como podemos notar, o tensor de Riemann aparece como um tensor de quatro indices
(rank-4) e, portanto, de 256 componentes. Mas, devido as propriedades de simetria e
antissimetria, suas componentes se reduzem a 20. Vejamos algumas das propriedades

algébricas do tensor de curvatura
_ P, .
Ruroe = R\ "Gpo

(A) Simetria:

Ruvre = Raopw- (2.7)
(B) Antissimetria:
Rixne = —Rupne = —Buvor = Rupon (2.8)
(C) Ciclicidade:
Ruro + Ruoun + Ruror = 0. (2.9)

Podemos agora, por uma contragao do tensor de Riemann, obter um tensor de se-
gunda ordem que porta um nimero de 10 componentes independentes no caso mais geral,
chamado tensor de Ricci

Ran=R, ,". (2.10)



A propriedade de simetria em (A) mostra que o tensor de Ricci é simétrico, isto é,
R\ = Ry, (2.11)
tal que, em termos das componentes da conexao, temos

Rin=R, " =0,,"—9,,"+1,,T 7 ~T, *T,". (2.12)

P
HpA op T pA

A propriedade de antissimetria em (B) assegura-nos que R, € o unico tensor de rank
2 que pode ser formado a partir do tensor de Riemann, a menos de um sinal arbitrario.
Também, podemos contrair o tensor de Ricci R,, e construir o escalar de Ricci, também

denominado escalar de curvatura, dado por
R = g"R,x. (2.13)

O escalar de Ricci especifica um nimero real em cada ponto da variedade sob consideracao,
determinando a curvatura intrinseca da variedade nesse ponto.

O tensor de curvatura também obedece algumas identidades diferenciais, a saber

10 azgu)\ 62guz\ aQQMU 829ua
e = — — — — ) 2.14
Vel 2 0x¢ (8x‘78x" Jzo0zt  Jxroxv  Ox Oxt (2.14)
Permutando-se (, 4 e v ciclicamente, obtemos as identidades de Bianchi
VCRAW)\U + V/J,RI/C)\O' + VVRCW\U = 0. (2.15)

Agora, posto que a conexao é compativel com a métrica, isto é, V,¢"? = 0, e fazendo a

contracao de v com o (2.15), chegamos a
VeRn—VuRoa+ VR " =0. (2.16)
Por fim, efetuando-se a contragao de . com A, temos
ViR-V,R."=V,R. "=0, (2.17)

de modo que, realizando substituicoes indiciais adequadas, e apds simples manipulagoes

obtemos as identidades contraidas de Bianchi

1
V. <RW - 59“”}2) — 0. (2.18)



Dada uma fenomenologia gravitacional com fontes, as equagoes de campo da TRG re-
querem um objeto matematico que carrega informagoes sobre matéria e energia englobadas
em um determinado espaco-tempo. O fluxo de quadrimomento P* que atravessa uma su-
perficie ¥ constante é representado pelo tensor energia-momento (denotado por TH).
Outra definicao do tensor energia-momento serd dada em termos da derivada funcional
da agdo para a matéria com respeito a métrica, dada pela equagao (2.36).

De um modo geral, o tensor energia-momento contém, por exemplo, componentes
de um fluido que pode produzir pressao, entropia, viscosidade, etc. O fluido perfeito
com densidade de energia p, pressao p e quadrivetor velocidade u* = dz* /dT que em um

sistema de coordenadas coméveis é dado por u* = (1,0,0,0), é representado por
" = (p + p)u*u” + pg"”, (2.19)

onde a componente T é a densidade de energia, T% representa a densidade de momento
e T sao as componentes do fluxo de momento. O tensor energia-momento é simétrico e

obedece a seguinte lei de conservacao:

v, " = 0. (2.20)

2.2 Formulacao lagrangiana e equacoes de campo

O desenvolvimento formal que leva as equagoes de campo de Einstein pode ser elabo-
rado através de uma formulacao lagrangiana. Dai, tradicionalmente, iniciam-se os proce-
dimentos com uma ac¢ao apropriada a fim de extrair as equagoes de campo que descrevem
a dinamica da teoria em questao.

No caso da gravitacao de Einstein, o funcional adotado é o de Einstein-Hilbert. Em

adicao a agao gravitacional, temos a agao para a matéria, de modo que a acao total é
S = Sgu + Su. (2.21)

Agora, consideramos uma regiao espaco-temporal 4-dimensional limitada €2 onde os cam-
pos de interesse sao definidos, e reescrevemos S em termos das densidades de lagrangianas
individuais

1
S = 5 /Q V—gRd*x + /Q L.V, g )/ —gd 'z, (2.22)



onde k = 871G, ¢ = 1 e \/—gd*z é o elemento invariante de volume e £,, ¢ a densidade de
lagrangiana da matéria. Segundo o principio da minima acao, S possui um extremo, isto
¢S =0.

Primeiramente, iremos efetuar as variacoes na acao de Einstein-Hilbert, ou seja no

primeiro termo da expressao (2.22). Temos

1
0Spn = 5 / (vV=gg"d*zdR,, + d*z\/—gR,,09" + d*xR5\/=g). (2.23)
Kk Ja
A variagao do tensor de Ricci 012, em termos das conexoes ¢ dada por
6R, = 0,60,," — 0,06 ,,° 4+ 6T 0T, + T ppP0T,,0 — 0T\ T, — ToaP0T,, . (2.24)

Esta tltima expressao pode ser reescrita em termos de derivadas covariantes, pois a vari-
acao 0I',,” ¢ a diferenca de duas conexoes. Tal diferenca possui um cardter tensorial, e

podemos implementar sua derivada covariante como segue
V,(0T,,") = 0,0T,,° + T, 60, — T, FoTy,» — T, 0T,.°. (2.25)
Assim, a variacao 6 R, pode ser rearranjada como
OR,, = V,(6T,,°) — V,(6T,.°), (2.26)
e a variagao J,/—g ¢ obtida a partir da seguinte propriedade:

1
V=g = ~ 9/ =909"". (2.27)

Inserindo-se (2.26) e (2.27) na expressao (2.23), vem

e = - [ (V=0 a19,00,7) = D00, + [ oy =gig (R~ Ra),
(2.28)

tal que rearranjando-se o primeiro termo de (2.28) e levando-se em conta que V,g,, = 0,

obtem-se

0SEn = i /Q(\/—_gd‘lx[vp(g“’jépr)—V,,(g“”deup)]—i—/ﬂ d*z/—gog"” <RW — %ng) :
(2.29)

Ap6s realizar-se uma troca indicial p «<» v no segundo termo da primeira integral acima,

obtemos

1 1
0Spy = o /Q(\/—gd‘lxvp(g"”cwwp —g"r,,") + /Q d*z\/—gd g <RW — §Rg,w)
(2.30)



A primeira integral de (2.30) pode ser calculada a partir do seguinte teorema de Gauss

covariante:
/d4x\/—gV5u€ :7{ dre/—gud, (2.31)
Q on

onde 99 é a fronteira de Q, e \/—gd®z¢ ¢ um elemento de hipersuperficie covariante.

Portanto,

1 1 1
0Spy = —v/—g(g"ol,," — g’“’(SFw”)d?’mp + —/ d*z\/—gdgH” R, — -Rg,. | .
90 2/€ 2/4/ Q 2
(2.32)

Posto que a integral de superficie se anula na fronteira, a expressao (2.32) se reduz a

1 1
0SEn = —/ (RW — —Rg#,,) d*z\/—gdgH”. (2.33)
2K Q 2
Consideramos, a seguir, a variacao da acao para a matéria

6Sy = /Q d*x6(Lm/—g), (2.34)

= / d'z (aﬁ—még‘“’\/—g + Em&/—g) :
Q g
oL 1
— 4 — m - jn
/Qd x\/—¢g (89“” 2£mgm,) dgh”. (2.35)

Como usualmente, define-se o tensor energia-momento

oL, 2 0Su

T,=2———Lngw = — , 2.36
= g T I T =g agn (239
tal que .
oSy = 5/ d*z —9T,,0g9"" . (2.37)
Q
Entao, aplicando agora o principio da minima agao para a acao total
0S =0Sgy + 0S5y =0, (238)
escrevemos
1 1 4 v 1 4 v
— Ry, — zRgu | d&o\/—gdg"" + = | d*x\/—9T,,09"" = 0. (2.39)
2k Jo 2 2 Jq
Para variagbes arbitrarias (0g*"), finalmente obtemos as equagoes de Einstein
1
Gw/ = R,uu - éRg;w = _K/T}LVJ (240)
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onde G, ¢ o tensor de Einstein e 7}, é o tensor energia-momento, como antes.

As equagdes dadas em (2.40) representam quantitativamente o efeito da gravitagao.
A geometria do espago-tempo é determinada pela distribuicao de matéria-energia. O
tensor métrico g,,, na sua forma mais geral, possui dez componentes independentes, o
que proporciona um nimero de dez equagoes diferenciais parciais de segunda ordem (néo-

lineares e hiperbdlicas) para a solucdo dos potenciais gravitacionais g, .
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Capitulo 3
Cosmologia Relativistica

O desenvolvimento da cosmologia é sem divida um dos maiores triunfos cientificos
do século XXI. Inicialmente, a cosmologia nao era tratada cientificamente. Mais tarde,
com o advento fervoroso da teoria do Big Bang, ji tinhamos um cendrio seguro para a
descrigao coésmica. Os telescépios ultra modernos, como o Telescépio Espacial Hubble,
sao capazes de medir a luz de galdxias distantes o suficiente a ponto de incluir a maior
parte da vida do Universo. A radiacdao césmica de fundo, entendida como nosso féssil
cosmico, quando o universo era quente, denso e aleatério, é exaustivamente detectada e
suas propriedades sao rigorosamente analisadas. Atualmente, nosso Universo encontra-se
em uma fase de violenta expansao acelerada. Com a evolugao da precisao do aparato
observacional, conseguimos elaborar o Modelo Cosmolégico Padrao, um consenso quase
universal entre os cosmoélogos.

No campos da cosmologia tedrica e observacional, sao estudadas as propriedades
fisicas do Universo, como por exemplo, luminosidade, densidade, temperatura, estru-
tura quimica de objetos césmicos, tais como estrelas, galdxias, quasares e suas interagoes
através do meio interestelar, abrangendo mecéanica, mecénica estatistica, termodinamica,
eletromagnetismo, relatividade, fisica de particulas, fisica de altas energias, fisica nuclear,
etc, onde a relatividade geral possui em grande parte o capital matematico (tensorial)
para descrever o Universo como um todo, ou seja, sua origem, passado, evolucao, es-
trutura e, audaciosamente, seu futuro. Portanto, é esse arcabouco tedrico que contém
algumas respostas para elucidar-nos sobre os mistérios do Universo. Em grandes escalas,
nosso universo é aproximadamente plano, essa vastidao do espaco e do tempo, nos permite

desprezar interagoes eletromagnéticas e considerarmos apenas as interagoes gravitacionais,
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daf o papel central da relatividade geral.

A formulacao do estudo tedrico e observacional do Universo desenvolvem-se sob
um principio que nos traz fortes impactos, eis o principio: Em escalas suficientementes
grandes, as propriedades do universo sao as mesmas para todos os observadores, isto é, o
universo ¢ homogéneo e isotrépico. Basicamente, os trés pilares em que a cosmologia estd
assentada sao consubstanciados através do modelo de Friedmann-Lemaitre-Robertson-
Walker (FLRW), no qual incluem-se os Universos de Friedmann, Equagoes de Friedmann
e a Lei de Hubble-Lemaitre.

Os gregos antigos, em um modelo desenvolvido por Ptolemeu de Alexandria, acredi-
tavam que a localizagao da Terra poderia ocupar o centro do cosmos, a qual seria circun-
dada pela Lua, o Sol e os planetas. As estrelas "fixas"estariam ainda mais longiquas. Uma
complexa combinagao de movimentos circulares, os chamados Epiciclos de Ptolomeu, foi
concebida para explicar os movimentos dos planetas. Esse modelo nao foi até o fnicio dos
anos de 1500, quando Copérnico declarou vigorosamente a visao, iniciada ha quase dois
mil anos por Aristarco, na qual acreditava-se que a Terra e os outros planetas se moviam
em torno do Sol. Embora Copérnico seja creditado por remover a visao antropocéntrica
do Universo, que colocou a Terra no seu centro, ele de fato acreditava que o Sol estava no
centro.

A teoria da gravidade de Newton colocou o que tinha sido uma ciéncia empirica
sobre uma base sélida, tal base foi a descoberta de Kepler, onde os planetas moviam-
se em Orbitas elipticas. Acreditava que as estrelas também eram séis muito parecidos
aos nossos, distribuidos uniformemente por toda parte em um espago infinito, em uma
configuracao estética.

Em 1785, tornou-se cada vez mais compreendido que as estrelas nao sao distribui-
das uniformemente, mas estao localizadas em uma montagem em forma de disco, agora
conhecida como a Via Léctea, nossa galdxia. Herschel foi capaz de identificar a estrutura
do disco, [13], mas suas observagoes nao eram perfeitas e ele erroneamente concluiu que
o sistema solar estava no centro da via ldctea. Somente no inicio dos anos 1900 foi este
convincentemente refutado por Shapley, que percebeu que estamos a dois tercos do raio
longe do centro da galdxia. Mesmo assim, ele aparentemente ainda acreditava que nossa
galdxia estava no centro do Universo [14].

Nas préximas secoes vamos nos enderecar a diversos elementos introdutoérios, e im-

prescindiveis, no estudo de cosmologia.

13



3.1 Radiacao Césmica de Fundo

Prevista inicialmente por Ralph Alpher, Robert Herman e George Gamow em 1948
e detectada pela primeira vez quase que por acidente em 1965 por Arno Penzias e Robert
Woodrow Wilson do Bell Telephone Laboratory em New Jersey [15], a radiagdo césmica
de fundo em microondas (RCFM) teve papel fundamental na sustentagdo da teoria do
Big Bang. Robert Dicke e Dave Wilkinson da equipe WMAP reportaram o significado
cosmolégico da (RCFM) [16].

A observagao crucial que influenciou o debate conflituoso entre a teoria do Big Bang
e o Universo Estacionédrio, foi a detecgao da radiacao césmica de fundo de microondas,
esta, manter-se-ia a favor da teoria do Big Bang. Esta radiacao atinge a Terra em todas

as diregoes, e agora é conhecida por assumir a forma de um corpo negro com temperatura

Th = 2.725 £ 0.001 K.

Embora essa radiacao, apresente alto grau isotrépico no espaco, algumas anisotropias
foram detectadas em temperaturas da ordem de 10pK [17, 18, 19]. Combinando a Lei de
Stefan-Boltzmann .

— o _ TkRT
€rad = PrqdC = W> (31)
com a equagio p,,, o a~ %, obtemos
1

T « o (3.2)

Isto significa que o Universo esfria-se & medida que se expande. Hoje, ele possui uma
temperatura de cerca de 3K, logo, em épocas anteriores, o Universo deve ter sido muito
mais quente.

A medida que o Universo esfriava, os fétons j& ndo portavam energia suficiente para
ionizar os atomos. Assim, os primeiros dtomos de hidrogénio foram se formando. En-
quanto o universo se expandia, cessava-se a interacao de fétons com a matéria, deste
modo, os fétons passaram a se propagar livremente pelo espago, processo que denomina-
se desacoplamento. Recombinacao refere-se & época em que os elétrons juntaram-se aos

nicleos para a formacao dos dtomos.
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3.2 Parametro de Hubble e parametro de desaceler-
acao

Em uma notagao comum, podemos escrever o presente momento césmico, ou época
atual, como ty. Dessa forma, os fétons recebidos hoje de galdxias distantes sao recebidos
em ty. Se a galdxia emissora é préxima e emite um féton no tempo césmico ¢, podemos
escrever t =ty — 0t, onde 6t < ty. Entao, podemos expandir o fator de escala a(t) como

uma série de poténcias em torno da época atual ¢y e obter
a(t) = alto — (to — t)]
= alto) = (to — )a(t) + 3 (to — ?ilto) — ..
= a(to)[L — (fo — t)H(to) — %(to — t)*q(to) H*(to) — ..], (3-3)

onde H(t) é o parametro de Hubble e ¢(t) é o parametro de desaceleragao e, sdo dados

através das seguintes relagoes

_a(t)
H(t) = a(0)’
_ a(t)a(?)
q(t) = ) (3.4)

onde o ponto corresponde a uma diferenciacao com respeito ao tempo césmico t. Deve-se

notar que essas definicoes sao vilidas para qualquer tempo césmico. Os valores para a

época atual destes parametros sdo usualmente denotados por Hy = H (ty) e qo = q(to).
Usando as definigoes dadas em (3.4) , podemos escrever o redshift em termos de t —t

(lookback time)' como

1 1
r=——1= —1 (3.5)

alt) a(to) |1 — (to — £)Ho — %(to — a0 Hg — .

Vamos encontrar a série 1/a(t) considerando que a série possui termos até segunda

ordem

— = Ol + Cg(tg — t) + O3(t0 — t)2, (36)

1
a(t)

desse modo
1=~ (l(t) [Cl + Cg(to — t) + Og(to — t)2] N (37)

L “lookback time”, tempo que a luz viajou desde o momento que foi emitida até o momento da deteccao.

15



e, substituindo a(t) na expressao (3.7), tem-se

1 alte)[1 — (to — t)H (to) — %(to () H2(t) — .1

X [Cl + Cg(t() — t) + Cg(to — t)ﬂ . (38)

Realizando as operacoes de multiplicacao adequadas e desprezando os termos de ordem

maior que (ty — t)? obtemos
i
1=~ a(ty)[C1+ (Co+CrH (to))(t—to) + (03 + CyH (tg) — 7q(to)lﬁﬁ(to)) (to—1)?]. (3.9)

Comparando os termos da equagao (3.9)

Cy =1,
(Cy+ C1H(ty)) =0 = Cy = —H (ty),
Cs + CyH (tg) — %q(to)HQ(to) =0= Cs = H*(tg) + Q(;())Hz(to). (3.10)

Dai, finamente obtemos a expressao para 1/a(t) :

1
a(t)

Inserindo a equacao (3.11) em (3.5), chega-se a uma expressao para o redshift

~1— H(to)(t —to) + (1 + %q(to)) H?(to)(to — t)*. (3.11)

1
z=(to—t)Ho + (to — t)? <1 + §q0> H§ + ... (3.12)

No entanto, o lookback time nao é uma quantidade observavel, entao é mais 1til inverter
a série de poténcia acima para obter o termo (to — t), j& que o red shift é uma grandeza

mensurgvel

1
to—t=Hy'z — Hy* (1 + §q0) 24 (3.13)

3.3 Modelo de Friedmann-Robertson-Walker-Lemaitre

Os dois principios bésicos utilizados para descrever a Cosmologia sao: (i) a dis-
tribuicdo de matéria no Universo é homogénea e isotrépica em grande escala; (ii) em
grande escala, a estrutura geométrica do universo é determinada por fenémenos gravita-

cionais, os quais sao explicados pela teoria da gravitacao Einsteiniana, segundo a qual,
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o principio cosmoldgico descrito em (i) descreve a cinemdtica do universo enquanto que,
em (i1), determina a dinadmica.

No modelo de Friedmann-Robertson-Walker-Lemaitre (FRWL) utiliza-se uma métrica
que é uma solugao exata das equagoes de Einstein (2.40), e que descreve um Universo ho-
mogéneo e isotrépico num estdgio de expansao ou contracao. Consideremos o elemento
de linha

ds® = g, dxtdx”. (3.14)

A métrica mais geral que satisfaz as condigdes de um universo homogéneo e isotrépico é

da forma )

1 — kr?

a qual é escrita em um sistema de coordenadas coméveis (sistema de coordenadas que

ds® = —dt* + a*(t)

+ r2(d6? + sen®0d¢?)| (3.15)

acompanha a expansao ou contra¢do do universo). As componentes espaciais também
dependem do tempo césmico ¢t devido ao fato de o fator de escala a(t) é uma fungao
arbitraria de t. O pardmetro k pode assumir os valores £k = 0, 1. Se k£ = 0, a métrica
representa um espaco plano, para k > 0 o espaco ¢é esférico e se k < 0 o espaco ¢ dito ser
hiperbdlico. Tal métrica, ainda pode ser escrita de uma maneira conveniente da seguinte

forma

ds® = —dt* + a®(t) [dx* + fE(X)(dO® + sen®0d¢?)] (3.16)

onde
seny, k=-+1,

senhy, k= —1.

3.4 Equacoes de Friedmann

As componentes nao-nulas do simbolo de Christoffel, computadas a partir de (2.2) e

com auxilio de (3.15), sao

T, '=aa/l - kr? L' = aar’sen?0, F0¢¢ = F9¢¢ = cot gf.
r,’= Fwd) =1/r F¢¢9 = —senf cos 0 Lpp" = —r(1 —kr?),
r, =T,%= T, ®=a/a, Ly, = —r(1—kr*)sen®0, Tgy' = aar®. (3.18)
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A computacao dos objetos geométricos nos da

Ry =3°,
a
aa2a + 2k
Firr = 1—Fkr2 ’
Rog = r*(ad + 2a + 2k)
Ryp = r*(ad + 2a + 2k)sen’0, (3.19)

com o correspondente escalar de Ricci sendo expresso por
.. .2
a a k
R=6|-+—4+—]. 3.20
(a a? a2> ( )
Iremos considerar um fluido perfeito como fonte nas equagoes de campo. Tal consid-

eracgao é sustentada pelo principio cosmolégico mencionado em (7). Neste caso, o tensor

energia-momento tem a seguinte representacao:

—-p 0 0 0
0 00
T = b , (3.21)
0 0p O
0 00 p
com o traco dado por
T = guT" =T", = —p+3p, (3.22)

onde p e p sao a densidade de energia e pressao do fluido, respectivamente. Entao,

reescrevendo a equacgao de Einstein como

1
R, = 8nG (TW — 59WT) , (3.23)
a equagao v = 00 fornece )
3% — 4nG (p—3p) (3.24)
a
enquanto que as equacoes uv = ij leva a
i A
-—4+2( - 2— =4nG (p —p). 3.25
a+<a>+a2 G (p —p) (3.25)
Podemos utilizar a equagao (3.24) para eliminar a derivada segunda em (3.25). Desse
modo,
a ArG
-—=—— 3 3.26
2T o+ 3p) (3.26)

18



a 3 a2’
que sao conhecidas como equagoes de Friedmann, onde H = a/a é o parametro de Hubble.
O valor atual de H [20] ¢ dado por

S\ 2
H? = <9> _ 8nGp K (3.27)

Hy =100 h Kmsec™ Mpc™' =2,1332 h x 107*2GeV, (3.28)

sendo h = 0,72 4+ 0,08 a medida da incerteza de Hj.
O tensor energia-momento é conservado devido as identidades de Bianchi, o que nos

leva & equacao da continuidade
p+3H(p+p) =0. (3.29)
Eliminando o termo k/a? das equagoes (3.27) e (3.26) e, com auxilio de (3.29), obtemos

a A7G
A 3p).
" 3 (p+ 3p)

Podemos notar que a expansao acelerada ocorre para p+ 3p < 0. Reescrevemos a equacao

(3.27) na forma
k

Qt)—1=—— 3.30
() ~1= (330

onde Q(t) é o parametro de densidade, dado por

p(t)
e p. é a densidade critica (k = 0), a qual é expressa pela seguinte equagcao:

3H?
0o_ 2o
Pe = 8ni”

(3.32)

A distribuigdo de matéria determina a geometria espacial de nosso Universo. Por-

tanto, podemos estabelecer as seguintes relagoes:

Q>1oup>p.— k=1,
Q=1loup=p,— k=0,
Q<loup<p.—k=-1. (3.33)

Algumas observagoes tem mostrado que em grande escala, o Universo possui uma geome-

tria espacialmente plana (2 ~ 1) [21].
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Outro parametro importante em cosmologia é o chamado pardmetro de desaceleragao

q(t), definido por
1 a aa

Um valor negativo de ¢ era previsto devido a expansao desacelerada do Universo, domi-

q(t) =

nada apenas pela matéria. Atualmente o valor de ¢ é positivo, indicando uma expansao
acelerada do Universo.

Pela conservacao do tensor energia-momento
VT, =0=—0op — SS(p +p), (3.35)
e considerando uma equacao de estado do tipo barotrépica
D =wp, (3.36)
na qual w é uma constante, podemos encontrar facilmente a equagdo do fluido
g — 3(1+ w)g, (3.37)
que é uma equacao diferencial ordindria para p a qual, por integracao, resulta em

p oc g 30Fw), (3.38)

Exemplos tradicionais para o fluido césmico sao matéria, radiacao e energia escura. Para
w = 0 a era do Universo ¢ dominada por matéria. De acordo com a equacdo (3.38), a

densidade de energia da matéria é

Pt € 075 (3.39)
Para o caso w = 1/3 e, a densidade de energia da radiagao é expressa por

Prag € a 2. (3.40)

O caso w = —1 representa a fase atual acelerada de nosso Universo, dominada pela energia

escura. Logo, tém-se p,,. = cte.
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3.5 Idade do Universo

As equagoOes cosmolégicas permitem derivar uma expressao muito ttil para estimar a
idade ty de nosso Universo com o parametro de Hubble Hj e os pardmetros de densidade
Qm e () A-

Primeiramente, vamos reescrever a equagao de componente 00 da solugao de FRWL

(9>zz_ﬁ_% _A (3.41)

2

k &G a?  Ad?

4y oL @ _2e 3.42
(2) =& - G- 35 (3.42)

onde p,, = p,.0 (a0/a)’ € p, = p,o (ag/a)*. Também podemos reescrever os termos do lado

direito da equacao da sequinte maneira

G
TG = HO

87G A k
. = HQ, . D= HX, - = H2, (3.43)

3 3 ag

lembrando que o parametro de densidade dos constituintes é expresso pela relacao

Q (t) = piT(t) (3.44)

com p, = 3HZ2/87G sendo a densidade critica do Universo. Desse modo a equagao (3.42)

torna-se )
: 2 2
a ao a a
— ) = Hi% + HiQm — + H3Q, —2 + HiQr— 3.45
<a0> 08k + M a+ 0 a,2+ OAa% ( )
e ainda usando as relacoes
a 1 a z
- — A 3.46
ag  z+1 © ag (2 4+1)% (3:46)
vem
d
—d—’j = (24 1)2Ho[Q + (2 4+ D + (2 +1)%Q, + (24 1)72Q,] Y2 (3.47)

Nés resolvemos a equagao (3.47) para dt e depois integramos, logo

1 dz

to= FO/O (14 2)2[Q + (1 + 2)3Q, + (1 + 2)2Q, + Q]2

(3.48)
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No caso de um universo critico com 2y, =0e 2, < ,, =1, temos

1 [~ dz 12 * 2
tn = — = |——(1 —3/2 = — 349
0 HO/(; <1+Z>5/2 |:H03( +Z) :|0 3H0 ( )

Outra maneira de levar a cabo tal calculo sobre a idade do Universo é calcular a
integral com auxilio dos dados observacionais. Note que 2, + ,, + €, +Qy = 1 e
Q, ~ 107% ¢ muito pequeno para influenciar o resultado. Uma boa aproximacao consiste

na seguinte expressao

o dz
Hytg = . 3.50
0% /0 1+2)[1+2) 1= Qm — Q)+ (1+2)3Q, + Qa2 (3:50)
Com os valores experimentais do WMAP [22] para ,,, e Q) em 3.48, obtemos
Hotg = 0,995 + 0, 15, (3.51)

com Hy = h/(0,97776 x 10%anos), o qual fornece uma idade para nosso Universo de
to = 1,37 4+ 10 anos, isto é, ~ 13,7 bilhoes de anos.

3.6 Oscilacoes Actisticas de Barions

Antes da recombinacao e desacoplamento, nosso Universo era constituido de um
plasma quente composto basicamente por fétons e barions, os quais estavam fortemente
acoplados em um tnico fluido. Se considerarmos uma tnica densidade de perturbacao
esférica ao longo da direcao radial desse acoplamento, ela ird se propagar como uma onda

acustica com uma velocidade dada por

cs = ¢ , (3.52)

3 (1 n %>
4p,

onde p, ¢ a densidade de bérions e p, ¢ a densidade de f6tons.

Na recombinagao o cosmo se torna neutro. Deste modo, os fétons nao possuem
mais energia suficiente para ionizar os atomos e, portanto, a pressao de radiacao nos
bérions é removida. A onda barionica é estaciondria, enquanto os fétons propagam-se
livremente representando o que hoje conhecemos por radiacao césmica de fundo. O raio
caracteristico da casca esférica formado quando a onda barioénica é congelada é dado na

distribuigao dos bérions como um excesso de densidade (sobredensidade). Os bdrions e
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matéria escura interagem através da gravidade e entao a matéria escura também ird se
aglomerar nesta escala. Portanto, existe um aumento da probabilidade de uma galédxia
se formar em algum ponto de alta densidade da onda barionica congelada para ambos os
lados da casca esférica.

A Figura 1 [23] mostra o perfil de massa radial em func@o do raio comével, as per-
turbacOes na matéria escura (curva preta), barions (curva azul), f6tons (curva vermelha)
e neutrinos (curva verde) evoluem a partir do inicio dos tempos (z = 6824) até um longo
periodo ap6s o desacoplamento (z = 10).

Inicialmente a perturbacao de densidade se propaga através dos fétons e barions
como um pulso tinico, conforme a expansao e resfriamento do Universo, os neutrinos sao
os primeiros a se desacoplarem devido a sua baixa interagao gravitacional bem como sua
baixa se¢ao de choque.

Como sabemos, a matéria escura interage apenas gravitacionalmente e, portanto sua
perturbacao fica atrds do plasma fortemente acoplado. Dizemos entao que o perfil de
matéria escura é congelado. Nesse processo, mais matéria escura se agrega ao centro da
perturbacao aumentando o perfil de massa da matéria escura. Com a diminuigao da tem-
peratura, a pressao de radiacao que existia sobre os barions é suprimida. Deste modo, a
perturbacao sobre os bérions é estacionada. Apds certo tempo, restam duas sobredensi-
dades, matéria escura e matéria barionica, uma ao redor do centro da perturbacao inicial
e outra a um raio de ~ 150 Mpc (1 parsec ~ 3,08 x 10" km), respectivamente.

Depois de um longo tempo as duas regioes de sobredensidade tendem a se misturar
devido a interagao do setor gravitacional. Podemos ver como essa interacao afeta o pico,
isto é, enquanto a matéria escura arrasta os barions préximo ao pico de origem, os barions
continuam puxando a matéria escura proximo ao pico enderegado em 150Mpc. Esta
distancia também é chamada de horizonte actstico.

A escala s é geralmente préoxima do horizonte acistico, a distancia comével que uma
onda sonora poderia ter viajado no fluido foton-baridnico até o desacoplamento, depende

da densidade de béarions e f6tons via

5 — /oo Cs _ 1 2c In \Y 1+ Rrec + Rrec + Req
0 H(’Z) \/QmHg \/3ZrecRrec 1+ V Rrec ,

onde R = p,/p., o QDh(1 + 2), Zree = Qn/Qraa € 0 redshift da equiparticio matéria-

(3.53)

radiacao e "rec"refere-se a recombinacao. Os fortes vinculos das medidas de radiacao

cosmica de fundo entre as densidades de béarions e fétons no desacoplamento nos possibilita
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calcular o horizonte acustico, 146.8 + 1.8 Mpc [24]. Por conseguinte, esta escala ¢, em si
mesma, uma excelente régua padronizédvel, desde que se possa medir €2, com alta precisao
bem como os componentes de radiagao exética no inicio do Universo, ou seja, o redshift
de equiparticao.

Naturalmente, o universo primitivo foi permeado por muitas dessas ondas acusticas
esféricas e, portanto, a distribuicao de densidade é uma superposicao linear das ondas

sonoras de pequena amplitude.

3.7 Aceleracao Césmica

Uma componente de energia escura é provavelmente responsavel pela atual fase de
aceleragao do nosso Universo [25, 26]. A candidata mais simples para a energia escura ¢
a chamada constante cosmolégica A cuja equacao de estado é wpgy = —1. Se a constante
cosmoldgica origina-se de uma energia do vacuo da fisica de particulas, a sua escala de
energia ¢é significativamente maior do que a densidade de energia escura atualmente, ou
seja, p%p =~ 107%GeV. Deste modo, devemos encontrar algum mecanismo para obter
um valor pequeno para A que seja coerente com as observacoes. Possivelmente, um outro
candidato mais atraente do que a constante cosmoldgica para a energia escura, ¢ um
campo escalar (quintesséncia), que pode ser um particula fundamental ou uma particula
composta. Dentro do contexto da teoria de campos e fisica de particulas é interessante
interpretar a energia escura como algum tipo de particula que interage com as particulas
do modelo padrao muito fracamente. A fraqueza da interacao é necessédria, uma vez que
as particulas de energia escura nao foram produzidas nos aceleradores e também, porque
a energia escura nao se decompos em campos mais leves, por exemplo campos sem massa,
tais como o féton.

Dentre outros modelos que envolvem campo escalar para descrever energia escura, sao
considerados a K-esséncia [27, 28], campos taquidnicos [29, 30, 31, 32], campos fantasmas
(campo escalar com sinal negativo no termo cinético) [33, 34, 35|, gds de Chaplying [36, 37|
ou a combinacao de quintesséncia com um campo fantasma em um modelo unificado
chamado quintom [38, 39, 40, 41].

A dark energy (enegia escura), como foi denomidada, revela uma nova fisica exdtica.
A energia escura distingui-se da matéria ordindria, no que diz respeito a uma pressao

negativa que emerge em tal cendrio, cuja equagao de estado obedece wpp = —1.
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Dados observacionais independentes como, SN TA, CMB (Cosmic Microwave Back-
ground) e oscilagbes actsticas de Barions tém confirmado que cerca de 70 % da densidade

de energia atual do Universo consiste de energia escura.
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3.8 Distancia de Luminosidade

Para investigar o comportamento de supernovas, utilizamos um parametro impor-
tante em cosmologia, chamado redshift (desvio para o vermelho). A emissao de luz de
um objeto estelar é desviada para o vermelho, devido a expansao do Universo. O com-
primento de onda A aumenta proporcionalmente ao fator de escala a, cujo efeito pode ser
relacionado com o redshift

)\0 Qo

1 = = 3.54
tr=r=— (3.54)

onde z = (A9 — A\) /A e os subesctritos zero denota as quantidades dadas na epéca atual.

Outro conceito importante relacionado com as ferramentas observacionas é a defini¢ao
de distancias cosmoldgicas. Existem muitas maneiras de se medir distancias em um Uni-
verso em expansao, por exemplo, distdncia comével, a qual se mantém inalterada com a
evolucao do Universo.

Uma forma alternativa para se definir uma distancia é através da luminosidade de
um objeto estelar, a distancia dj, conhecida como uma distdncia luminosidade. Tal
quantidade desempenha uma papel um crucial nas observacao de supernovas.

Em um espago-tempo de Minkowski, a luminosidade absoluta L da fonte e o fluxo
de energia F a uma distancia d da fonte, estao relacionados através da seguinte expressao:

_ Ly
And?’

(3.55)

a qual podemos generalizar para um Universo em expansao, obtendo a distancia de lumi-
nosidade expressa por
da = L. (3.56)

As fontes sao conhecidas como Velas Padronizaveis, cujos exemplos mais conhecidos destas
sao as chamadas Cefeidas e Supernovas tipo IA, com luminosidades de alta magnitude.
Vamos considerar um objeto com luminosidade absoluta Ly localizado em uma dis-
tancia de coordenada x; de um observador em x, . A energia da luz emitida de um objeto
com o intervalo de tempo At; é denotado como AFE;, enquanto que a energia que chega
para a esfera com raio y, é escrita como AFy. Podemos notar que AE; e AEj, sao pro-
porcionais as frequéncias da luz em y = x; e x = 0, respectivamente, isto &, AE; o« vy e

AEjy o« vy. Deste modo, as luminosidades Ly e Ly sao dadas por

AFE, AFEy

L;= - :
F— At 7 At

(3.57)
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A velocidade da luz é dada por ¢ = v1 A = vg)g , onde A\ e \g sdo os comprimentos

de onda em x = x; e x = 0. Entdo a partir da equacio (3.54), temos

)\0 141 Ato AEl
)\1 Vo Atl AE() * “ (3 58)

onde usamos vyAty = v1At;. Combinando a equagao (3.57) e (3.58), obtemos
Ly = Lo(1 + 2)% (3.59)

Os fétons viajam sobre geodésicas radiais nulas (ds* = dt? — a*(t)dx* = 0).Entao

Xy o dt
— dy = —_ 3.60
w= [ o= (3:60)

Por outro lado, a partir da equagao (3.54) vemos que

dz
= —HL+ ). (3.61)

Entao, substituindo dt = —dz/H (1 + z) da equagao (3.61) na equacao (3.60) chegamos a

1 *dz
= — | — .62
Xf aOHOA ]’L(Z)7 (3 0 )

onde h(z) = H(z)/Hy.
A partir da métrica dada em (3.15) podemos encontrar que a édrea da esfera em ¢ = ¢

é dada por S = 47 (ao fx(xs))*. Dai, o fluxo de energia observado &

Lo
d _47r(a0fK(Xf)>2' (3:63)

Utilizando as equagoes (3.55), (3.59) e (3.63) na equagao (3.56)

dr, = aofx(xs)(1+2) (3.64)

em uma solu¢ao de FRWL espacialmente plana com fx(x) = x , e fazendo uso da equagao

(3.62) fica-se com
1+2z [7 dz
dp = — [ —. 3.65
e 30

Entao a taxa de Hubble H(z) pode ser expressa em termos de dp(z) :

H(z) = {dilz (‘fLT(Zg) }_1. (3.66)
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Portanto, se medirmos a distadncia luminosidade observacionalmente, podemos estimar a
taxa de expansao do Universo.

A densidade de energia p no lado direito da equagao (3.27) inclui todos os compo-
nentes presentes no Universo, a saber, particulas nao relativisticas, particulas relativisti-

cas, constante cosmolégica, etc.
3(14w;)
p =" (afag) 0T = B (142) (3.67)
onde w; e p, denotam o pardmetro da equagao de estado e a densidade de energia para
cada constituinte, respectivamente. Da equagao (3.27), o pardmetro de Hubble tem a

seguinte forma:
H? = HENO(1 + 2)30+wi), (3.68)

onde Q0 = 87Gp,/3H2 = p\”/pt”) & o parametro de densidade para algum constituinte
individual na época atual. Entao a distancia luminosidade em uma geometria plana é

dada por
dz

d - 1 +z/z
L H(] 0 \/Ez Q?(l + Z)?)(l-'r’wi)

. (3.69)
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Capitulo 4

Dimensoes Extras

4.1 Introducao

A idéia de dimensodes extras foi proposta no inicio do século XX por Nordstrom [42]
e alguns anos mais tarde por Kaluza [43] e Klein [44, 45]. Em meados da década de 1920
Theodor Kaluza e Oskar Klein com o propdsito de unificar os campos eletromagnéticos
e gravitacionais, introduziram uma dimensao extra para unificar tais campos em tnico
campo de maior dimensao, isto é, uma teoria 5D-dimensional, com uma dimensao extra
periédica. Este procedimento ¢ chamado de compactificagao toroidal [46]. O espago obtido
¢ o produto do espaco 4D tradicional de Minkowski com um cfrculo, denotado por M*®S*,
o qual pode se pensar como um cilindro de 5D de raio R. Desenvolvimentos recentes na
teoria das supercordas e sua extensao (Teoria M) sugeriram uma outra abordagem para
compactificar dimensoes extras. Existem cinco teorias distintas das supercordas em 1+ 9-
dimensional, todas elas descrevem teorias quanticas da gravitacao.

Descobertas em meados dos anos 1990, as transformacoes de dualidade que se rela-
cionam com essas teorias de supercordas e a teoria de supergravidade em 1+ 10-dimensoes,
levaram para uma conjectura de que todas estas teorias surgem como diferentes limites de
uma tnica teoria, conhecida como teoria M. A 11* dimensao na teoria M estd relacionada
com a forca de acoplamento das cordas, onde o tamanho desta dimensao cresce & medida
que o acoplamento se torna forte. Em baixas energias, a teoria M pode ser aproximada
pela teoria de supergravidade em 1 4+ 10-dimensoes.

Na solucao de Horava-Witten [47], os campos de gauge do modelo padrao estao

confinados em uma hipersuperficie (1 4+ 9)-branas, as quais estao localizadas nos pontos
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fixos de um orbifold S'/Z,, onde S* ¢ uma esfera de dimensao 1, isto é, um circulo,
e Zy é o grupo de simetria (simetria de espelho). A topologia de tal cendrio pode ser
denotada por MM = M* @ S'/Z, @ Y®. As duas variedades de (1 + 9)-branas estao
mergulhadas em um espago-tempo de maior dimensao, chamado bulk. As seis dimensoes
extras nas branas sao compactificadas em uma escala muito pequena sendo préxima a
escala fundamental. Logo depois, Witten descobriu que 6 das 11 dimensoes podem ser
consistentemente compactificadas em uma variedade do tipo Calabi-Yau, cujo tamanho
da variedade pode ser menor do que a distancia de tais branas [48].

Também foram descobertos objetos extendidos de maior dimensao que a das cordas
(1-brana), as chamadas p-branas. Um caso particular das p-branas, sdo D-branas. De
uma maneira sucinta, pode-se dizer que cordas abertas, as quais descrevem o setor de
gauge, possuem suas extremidades fixas na brana, enquanto que as cordas fechadas, que
representam o setor gravitacional, podem se mover livremente no bulk.

Diante deste cendrio, emergiram alguns modelos de mundo branas de tal modo que
podemos considerar a conjectura de Horava-Witten como uma teoria efetiva em 5 dimen-

soes. Nas proximas secoes iremos discutir alguns modelos.
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4.2 Modelo de Randall-Sundrum (RS)

O primeiro modelo de Randall-Sundrum (RS1) foi desenvolvido com o propdsito de
solucionar o problema da hierarquia. Tal problema surge com a diferencga entre os valores
da escala de energia do setor eletrofraco e o setor gravitacional. O modelo RS1 implementa
uma dimensao extra compacta entre duas branas localizadas nos pontos fixos do orbifold
S1/Z,. O dominio da dimensao extra estd no intervalo 0 < y < 7r,, sendo r. chamado
de raio de compactificacao da dimensao extra. Nesse cendrio, nossa brana, ou seja, nosso
universo, estaria localizada em y = 7r. e a segunda brana isto ¢, um universo o qual nao
temos acesso, estaria localizado em y = 0.

A acgao para o modelo é dada por
S = Spuik + Svisivel + Socuitas (4.1)
explicitamente
Sputk = /d%/dy [\/W (PR - 2/\5)} M2,
Svisivel = / A2/ =Guis (Lvis — Avis) »
Swats: = [ 403/ (Lo = D). (42)

Onde M3 é a massa 5-dimensional, \,;s ¢ a tensdao na brana visivel e \,., é a tensao na
brana oculta. As branas sao 4-superficies singulares segundo o formalismo de Israel, deste
modo, podemos escrever as densidades de lagrangianas da matéria nas branas em termos

da distribuicao delta de Dirac

£m’s - )\m's =V _gm’s)\vis(s(y - WTC)
ﬁocu - )\ocu =V _gocu)\ocué(y) (43)

Aplicando-se o cédlculo variacional na acao total (4.2) tem-se
58 = / d*z / dyo <\/—g(5)) (IR — 2A5) M2 + /=G I M35 () R)
+ /d4$ [5 (\/—gocu)\ocué(y))] + /d4x [5 (\/—gm»s)\visé(y — WTC))} , (4.4)
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onde

1
6/ —g®) = oV —9®gadg™,
1 vzs
5\/ —Gvis — 2 aV gmsg ’U’LS’
/ 1 / ocu §
6 —YJocu = T3 gocug ocua

5R = —Ra”agab — ™Ry, (4.5)
tal que, utilizando as propriedades dadas em (4.5) e a equacao de Palatini
(SRab = vc(érabc> - vb((sl_‘acc)u (46)

temos

1
59 — /d4x/dy -5 /_9(5)gabdgab ((S)R _ 2A5) M53 + A /_9(5)]\/[535 (—(5)R5gab)
1 1
+ /d4l‘ |:_§59gcvugz(;uv _gocu)\ocué(y):| + /d4$ |:_§5951ngzlys\/ _gvisAvis(S(y - 7T"ﬂc)
(4.7)

Para variacoes arbitrarias de gq, gﬁz’; e gh¥ . obtemos as equacoes de Einstein 5D

1 5
_9(5) (Rab - §gabR> = 4M3 <A5 _g( Gab + )\ms V gmsg:i;/s(sgéy ( - WTC)
+)\ocu V gocugzziuégéy ( )) (48)

O Ansatz de Randall-Sundrum para a solugao da equacao acima é a métrica 5-

dimensional da forma
ds? = e7 AW wdrtda’ 4 rldy?. (4.9)

A partir deste Ansatz, as equagoes de Einstein tornam-se

6A A
_ A 4.10
r2 4M3 ( )
¢ 3A" A A
oo o g VS _§(y — 7). 4.11
12 AMEr? (y)+4M§>rg (y —mre) (4.11)

Integrando diretamente a equagao (4.10), a solucao consistente com a simetria do orbifold
y—-—ye
—A

Aly) =xr.|y| A3 (4.12)
5
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Note que o espago-tempo entre as duas branas é simplesmente uma porcao de uma geome-
tria AdSs (anti de Sitter), deste modo, A < 0.

Considerando que a métrica é uma fungao periédica em y, a equagao (4.11) pode ser

A=, /ff@ 5(5) — 8y — 7)) (4.13)

A partir deste resultado podemos observar que a unica solugao para a equagao (4.11) é

escrita como

se Auis, Aocu € A sao relacionadas através da seguinte relacao
Mvis = —Noew = 24M2k, A = —24M3k. (4.14)
A solucgao final para métrica no bulk é entao
ds® = e’%”‘wnwdx“d:c” + r2dy?. (4.15)

onde k£ ¢ uma grandeza de escala.
Ja no modelo de RS-II, utiliza-se a mesma geometria AdSs, mas com tnica brana
com tensao positiva onde a dimensao extra ji nao é mais compacta, portanto, o raio de

compactificagao r. — oo.

4.3 Modelo Arkani-Dimopoulos-Dvali (ADD)

Essencialmente, a idéia do modelo proposto por Arkani-Hamed, Dimopoulos e Dvali
(ADD) é fazer com que a escala de Planck Mp = M, diminua. Considerando que a
gravitagao se dilua em um volume da dimensao extra compacta.

Considera-se uma geometria do bulk flat em (4+d)-dimensoes, em que as d dimensoes
sdo compactas com raio R (topologia toroidal). A massa de Planck Mp 4-dimensional, a
massa fundamental de Planck My (4 + d)-dimensional e a escala gravitacional da teoria

dimensional extra estao relacionadas via relagao abaixo
M2 = MZR? (4.16)

A agado de Einstein-Hilbert em (4 + d)-dimensoes para o modelo ADD ¢é dada por

1

211%4+d)

S =

/ d*zd"y/— gD [FDR — 20w ] (4.17)
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e as equacao de campo dadas por

1
), = Urdp . ; DR g n = Ny T Dgap + 1y “TVTup, (4.18)

onde X4 = (2,4t ...,y?) e Ii%4 +a) € & constante de acoplamento gravitacional

8

W. (4.19)

Karay = 87Gara) =

O limite de campo fraco da equagao (4.18) leva a equacao de Poisson (4 + d)-dimensional

cuja solucao é o potencial gravitacional

2
_ Flata

V(r)= i (4.20)

Vamos analisar a influéncia do tamando das dimensoes extras no potencial acima;
se o comprimento da escala da dimensao extra é L, entdao em escalas r = L o potencial
¢ (4 4+ d )-dimensional , V ~ r~(+9) Em contrapartida, com r > L, ou seja onde as
dimensoes extras nao contribuem para variacoes no potencial, V' comporta-se como um
potencial 4-dimensional. No caso r ~ L nas d dimensoes extras emerge um potencial do
tipo V' ~ L~ ~1. Isso nos fornece um quadro onde a escala usual de Planck torna-se uma
constante de acoplamento efetiva, a qual descreve a gravitacao em escalas muito maiores
do que as dimensoes extras. Desse modo sua relacao com a escala fundamental e com o

volume das dimensoes extras é dada por
M} = MZHL? (4.21)

onde foram utilizadas as equagoes (4.19) e (4.20).

Se o volume da dimensao extra é préximo da escala de Planck, isto é, L ~ M, L
entao Mp = My, 4, mas se o volume da dimensao extra é maior que a escala de Planck,
entao a escala fundamental M,,, deve ser suficientemente menor que a escala efetiva
Mp = 10Y¥GeV. Com isto, podemos estimar o comprimento L da dimensao extra, fazendo
de My, 4 um valor da ordem do setor da escala eletrofraca M, 4 = 103GeV. Da relacao
(4.21) temos
MY 10%¥/4GeV

L = =
2/d+1 6/d
VT 105GV

1073 (GeV) ' = 10°%4(TeV) ™t = 103 1Tem (4.22)

onde 10'(TeV)™! = 1em.
Caso d = 1, ocorre uma violagao da gravitacao Newtoniana; ja para d = 2 temos um
valor de L = 1mm [50].
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4.4 Modelo Dvali-Gabadadze-Porrati (DGP)

No modelo DGP [49] os autores sugeriram um mecanismo pelo qual a gravidade
newtoniana de quatro dimensoes em uma 3-brana estd mergulhada no espago 5D de
Minkowski com uma dimensao extra de tamanho infinito. A acao adotada no modelo é

dada por

3 2
S =— M; / d®x/—gRs — Mpy / d*zv/—hRy + / d*xN—hL,, + Scu, (4.23)

onde g,, ¢ a métrica no bulk, h,, ¢ a métrica induzida na brana e L,, ¢ a densidade de
lagrangiana de matéria cofinada na brana. O segundo termo contendo o escalar de Ricci 4-
dimensional na brana é o termo adicional que aparece no modelo DGP, em contraste com
o cendrio de Randall-Sundrum. Tal termo pode ser induzido através de efeitos quanticos
no setor de matéria na brana. O ultimo termo Sgg é o termo de fronteira de Gibbons-
Hawking, necessédrio para a consisténcia do procedimento do principio variacional e levar
as condigoes de juncao de Israel.

A razao entre as duas escalas a saber, a massa de Planck Mp;, 4-dimensional e a
massa M5 no bulk 5-dimensional, define uma escala de distancia

M

—. 4.24

rq =

Para escalas de comprimento muito menores que 7, a gravidade se manifesta como uma
teoria de quatro dimensoes, enquanto que para grandes distancias a gravidade escapa para
o bulk levando efeitos importantes em altas dimensoes. Através da escala de distancia rg,

o potencial gravitacional de campo fraco comporta-se como

O~ { r~! para r < ry, } ' (4.25)
r—

2 para r > 4.

Vamos considerar uma situacao cosmolégica para o modelo DGP de tal sorte que

poderemos relacionar a escala ry com a taxa atual de Hubble H; ', a qual corresponde a
uma escolha My = 10 — 100M eV .

No modelo de brana-FRLW obtemos a seguinte equacao de Friedmann modificada

2
k p 1 1
7 A oy B S 4.26

+ a? ( 3M32, + 472 + 627‘d) ’ (4.26)
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onde p é a densidade do fluido césmico total na brana satisfazendo a equacao de con-
servacao usual. Para uma geometria plana, isto ¢, £ = 0, apés a extracao das raizes de

ambos os lados da equagao (4.26), temos

€ P
H?— —H=—"+, 4.27
Td 3M 123l ( )
onde € = +1.Quando o comprimento de Hubble H~! é muito menor do que a escala
de distancia ry, ou seja, H~! < ry4, 0 segundo termo do lado esquerdo da equagao (4.27)
torna-se insignificante em relacao ao primeiro termo. Deste modo a equacao de Friedmann

¢ exibida da seguinte maneira
P
H? = —. 4.28
3M3, (4.28)
O segundo termo na equacao (4.27) torna-se importante quando comparado com a
distancia de escala (H~! > r4). O sinal de € contribui para dois regimes no modelo DGP.
Quando € = 1 a equagao (4.27) mostra que no modelo Cold Dark Matter, caracterizado

por uma situacao em que p o< a~3, o Universo aproxima-se da solucao do tipo de Sitter

1
H— Hy=—. (4.29)

Trq

Portanto, podemos ter uma expansao acelerada nos 1iltimos tempos sem envolver a energia
escura. Para explicar a aceleracao precisamos que Hj seja da ordem H.,, o que significa
que a escala de distancia corresponde aproximadamente ao valor atual de Hubble (ry ~
H;"). Pode-se dizer que ¢ devido ao enfraquecimento da gravidade na brana e nao devido
a presenca de um fluido com pressao negativa. Quando ¢ = —1 e H~! > ry, o segundo

termo da equacao (4.27) domina o primeiro termo, o que nos fornece

2

2 4.30
36M8 (4.30)

Isto é semelhante as equagoes modificadas de FLRW na cosmologia de Randall-Sundrum
em altas energias.

A equagao de Friedmann (4.26) pode ser reescrita em termos do red-shift do seguinte
modo

2

H*(2) = HZ S Q(1+2)2+ |/, + \/\/Qrd + ) (14 2)30Hwa) , (4.31)
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onde a soma é sobre todas as componentes do fluido césmico. Na equagao (4.31), €2, é

definido como .

Pa
S 32

enquanto () é dado por

—k
O = —— 4.
€
Q, = o (4.34)
= L2 |

4.5 Formulacao de Shiromizu-Maeda-Sasaki
Para se deduzir as equagoes de campo na brana, iniciamos com a equagao de Gauss

@WpRa _ (G)pA BB B k7 4 K%K — KK, (4.35)

uBv dpo

e a equacao de Codazzi
DyKP — D K = ®R,,n"h’, (4.36)

onde a curvatura extrinseca de M ¢é denotada por K, = h"‘uhﬁ wVang, K = KV, & seu
trago, hag = gap — Manp ¢ a métrica na brana e D, ¢ a derivada covariante com relagao

a hy,. Contraindo a equacao de Gauss com « e 3 temos

DR, = ORY W1 b B, + KKy — KK, (4.37)
logo
@R, = Ry W\ 0P 1, + KKy — KK . (4.38)
Como
ha)\ — gaA _ n}\na e h/’a — g/’a _ nanﬂ (439)

podemos escrever a equagao (4.38) da seguinte maneira
@R, =6 R, (g% — nan®)(¢°y — nan®)h’ b7, + KK,y — KK q. (4.40)
Manipulando os termos entre parénteses, obtemos

@R, = (5)RA5W (900" — (h%\ + nan®) nan” — (B%) + nan®) nyn® + nyn®nen’ (héuhay)}

+KK,, — K°K 4 (4.41)
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Fazendo validas as identidades abaixo

wo_

nynt = 1,
noo_

hnt = 0,

gunt'n” = 1,

finalmente obtemos o tensor de Ricci projetado na brana
WR.w = PRk 0, — PRS in b’ b, + KK, — K% Ko,
Contraindo o tensor de Ricci acima com a métrica h*¥, isto é
Wp= @ Rwh’“’,
obtemos o escalar de Ricci projetado na brana

WR= OR,, h*" — CIR} nyh® nh? W + K* — KM K 0.

(4.42)

(4.43)

(4.44)

(4.45)

Note que os objetos geométricos rotulados pelo superescrito (5), ou seja, objetos no espago

do bulk, sao manipulados indicialmente pela métrica induzida g,,,, enquanto que os objetos

rotulados pelo superescrito (4), estdo sob a responsabilidade exclusiva da métrica h,,,.

Uma vez que o tensor de Einstein é dado por

1

(4)GMV B CY) R, — 3 h/w (4) R,

a expressao nos leva ao tensor de Einstein na brana

(4)GNV — (5)Rpahﬂ'uhUV _ (5 g’y(snahﬁun"{h(sy + KK;U/ _ K(ZKOLV

1
= St [P Ry 07— O RG i 07 W 4+ K = KK ]
Apés alguma simples manipulacao, ainda temos

1
@G, = (5)Rf"fhpuhay ~-O'R,, h”"ﬁhuu — B+ KKy — K5 Ko,
1

= P [— OR} jnah® nPh? W + K? — KM K],

onde
— o 0
E. = PRY snoh’ n0h’ .
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(4.47)
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(4.49)



Agora iremos manipular o segundo termo do lado direito da equacao (4.48)

) -1 1 o o
— Rpe h” §hwf = = (5 R,e W7 hpa) hpuh v
- - |:§ Rpo (.QPU - npncr)(gp —n’n )hpuh v
16) 1)
- 2 Rﬂa gpffgpghpuhav + 92 RPU gpa”pnghpuhau
1) 1(5)
+5 Rh? h7 npng — 5 Ryonpngn’n’h? b7, (4.50)

O segundo e o quarto termo da equagao acima podem ser acoplados em um termo do tipo

1) 1)
3 Rpy gponn’h” ,h%, — 3 Rpenponenn’h? h%,
1)
= 3 Ryoh? b7 01 (gpe — npne)
1 5] o o 1 ) o
= 3 Rpoh” 17 hpenn® = 3 R,n nhy,,. (4.51)

Ja o terceiro termo, %(5)Rh”ﬂh"ynpng, é aniquilado, pois h” n, = 0.Logo

1 1) 1)
~OR,, W7 Shu = 5 Rpgnnhyy = o R gph” 17, (4.52)

Portanto, substituindo o termo acima na expressao (4.48), obtemos o seguinte tensor
de Einstein 4D

1 1
(4)Guv — (5)Rpghp“hay -5 G)R gpghpuhoy + 3 (5)Rpanpnohw — B,
1
K Ky = K Ko = Sy [— ORY; nah® nPh? B + K? — KM K], (4.53)

apés alguma manipulacao algébrica fica

(5
@a,, = ( R, %

_ %hw [~ OR,nfn” — GR

)
R g,w) W B, = By + KKy — K% Ko,

nah® nPhe W+ K? — KK, . (4.54)

dpo

O termo entre parenteses é o tensor de Einstein 5D, (5)GPU, isto é

)
Oa,, = DR, — -

5 1t Yo, (4.55)
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portanto

DG, = <5>Gpghpuhay — B+ KKy — K Ko,
1

— 5w [— ORonn” — ORY nn’h® + K* — K'K,,] . (4.56)

Desmembrando o segundo termo entre colchetes da equacao acima temos

(5) RA(;pan,\nphJU — (5 R)\(Spg-n/\np (g50 . n5n0>
= (5)R’\5mg‘san,\n"’ — (5)R’\5pgn,\npn5n”

= OR e, (4.57)

pois
(5)R’\6[pg}n(”n")n5nA =0 (4.58)

Portanto

(4)GW — (5)Gpghpuhoy -E,+KK,, — K‘j‘LKa,,
1

= 5l [ OR,onn” + OR\nyn? + K2 — KM K,,] . (4.59)

Rearranjando a equacao acima, finalmente o tensor de Einstein fica expresso por
WG, = OGeh” 17, + O Ronnhy, — By + KK,
« 1 2 feY
—K Koy — §hw [K — K* Kw} : (4.60)

O préximo passo é obter uma relagao entre o tensor (4)GW e o tensor energia-
momento na brana. Para isso, precisaremos da equacao de campo em 5D
1)

©Gpr = Ry~ 5 R gpo = ke OT,,. (4.61)

A decomposicao do tensor de Riemann em termos dos objetos de Ricci e no tensor de

curvatura de Weyl, C,3,5, fornece

1 1
P Rass = gy (e Boja = 9ot Ba) = 75—y =gy o910 B+ Cas
(4.62)
Reesecrevndo £, com auxilio de (4.62), temos
1 03
Euw = 310097 Ryp = 905 Rop — 9577 Roa + 955™ Ryan™n 7 1,
1
—E[gmg(;,g — gm;gw](‘r’)Rno‘n'yhﬂ“héy +(5) Cag75nan7hﬁuhéy. (4.63)
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Note que, o segundo, o terceiro e o sexto termos da equacao acima produzem elementos

do tipo nsh® , = nghﬁu = 0, portanto
1

El“’ = 5[(5)R55hﬁuh61/+gﬁ5(5)R’Yanan’yhB,uh5u]
1® 815 4 0 appB o
_E Rg(;ﬁh ,uh y—|— Caﬁwsn n’h #h v (464)

Tomando o trago da equagao de Einstein 5D (4.61)

2 2
OR=-Z0TR o  OR,= %5 B3O, — OT g, (4.65)
Definindo
Ew = O Cogyen®n b’ 10, (4.66)

e substituindo as expressoes (4.65) e (4.66) para E,, chegamos a

2

1 2
E., = 5[%5 (3 OTys — OT gsp)h” 0%, + g,%%” (30T — OT g o)nn™h? b )]
1 4 ) 5 1
que apés alguma manipulacao leva a
K3 (5) B 16 K3 (5) K3 (5) o,y
E,, = 5 Tsgh” ,h°, — ?hw T + Y Tyan®n"hy, + €. (4.68)

Substituindo este resultado na expressao para o tensor de Einstein 4D obtemos

2
WG, = k2 OT, 0 17, — %5 T g,onnh,,

2 2
+12 O onPnhy, — %5 O T55h” 10, + %)huu ®1
2
1
_%5 (S)Twnanvhuu = G+ KKy — K9 Koy — §hﬂw [KQ - KWKW] : (4.69)

Efetuando-se uma substituicao indicial e agrupando os termos adequadamente temos

2 . o1
(4)G/w = g,k;g (S)Tpahpuh R, ((5)Tpanpn - (5)T>}
a 1 N
+ KKMV - KMKO(V - ihl/“’<K2 _ K“ Kua) — SMV’ (470)
onde,
£ = OCapron™m W17, (@.1)
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¢ a chamada "parte elétrica"do tensor de Weyl.

Agora, utilizando a equacdo de Codazzi juntamente com (4.65) chegamos a
DsK,” — DoK = k2 OT,onn? (4.72)
O tensor energia-momento no bulk é dado por
T = —Asgu +0(y)Sw, (4.73)

onde
S = =Ny + T, (4.74)

com 7,,n" = 0, pois nao ha fluxo de matéria-energia na dimensao extra. A5 ¢ a constante
cosmoldgica no espaco-tempo do bulk, A a tensao na brana e 7,, € o tensor energia-
momento na brana, o qual carrega informacoes dos campos confinados na mesma. O
comportamento singular no tensor energia-momento devido a uma descontinuidade entre

o bulk e a brana pode ser contornado através das condig¢oes de juncao de Israel

[hMV] = Oa
1
[KMV] = _'l{'g (Suu - §Sh;u/) ) (475)
onde [Y] = lim, , oY —lim,, (Y = Y+ — Y. Impondo a simetria Z, ao longo da

dimensao extra, com a brana em um ponto fixo dessa dimensao, podemos quantificar
objetos em ambos os lados da brana. Deste modo, a curvatura extrinseca em termos do

tensor enegia-momento é dada por

nv

_ 1 1
KMV = K:V =-K = —5/{% (Sl“/ - gS huy) s (476)
Tomando o traco de S, e substituindo-o na equagao acima, obtemos
1, 1
K#V = —5,%5 T#V+§(A_T)h/~ll/ (4'77)

Esta expressao tem por finalidade nos auxiliar para encontrar os seguintes objetos dados
em (4.60):

5 1
“AThy =TT + gTQhW} , (4.78)

1 4
KK, = —kKs {zw,w + g/\QhW -3

12
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1 2 1
K, Koy = ~Kg {70‘ Tov+ A =7)7T0 + 5()\2 o 2)\T)hu,,:| , (4.79)

4 K 3
1
K? = %Hg [16A% + 72 — 8A7] (4.80)
1 2 4
KM K, = ZLH?’ [TWTW + g()\ —T)T + 5()\2 + 7% — 2)\7)} : (4.81)

Por outro lado, as fontes podem ser vinculadas da seguinte maneira

O h? b7, = —Ashp,
1 1
(5)Tp0npna - Z_l (5)T = ZAE} (482)
Substituindo as expressoes (4.76)-(4.82) em (4.70), obtemos as equagodes gravitacionais
efetivas
DG, = —Ashyy + 8TGNT w + Kt Ty — Ey (4.83)
onde
L, IRV
A4 = §Ii5 A5 + 6%&5 A 3 (484)
Ka A
Gy = > 4.85
AT ( )
1.1 1 a1
7Tp,1/ — _ZTMQT v + ETT,U«V + gh/»ll/TOéﬁT P — ﬂh#VTQ' (486)
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Capitulo 5

Regras de soma para cenarios de

mundos brana

5.1 Introducao

Como dito anteriormente, partindo do ponto de vista que o nosso universo pode
ser representado por uma brana mergulhada em um espago-tempo de maior dimensao,
muitas vezes torna-se dificil fazer uma andlise precisa dos modelos de mundos brana.
Deste modo, seria vantajoso obter um conjunto de regras gerais, as quais nos permitam
testar novos modelos. Gibbons, Kallosh e Linde, derivaram um conjunto de condigoes de
consisténcia [7], chamado regras de soma. Eles encontraram um resultado importante, um
tipo de teorema no-go que diz respeito a possibilidade da construcao de cendrios mundos
brana suaves com espacos internos compactos. Essencialmente, o teorema no-go nos diz
que, “generalizagoes suaves do cendrio de Randall-Sundrum, sem fontes singulares, sao

imcompativeis com dimensoes extras compactas”, isto é

j[cb’ P =0. (5.1)

onde ® é o campo escalar que gera a brana. A integral é tomada no espaco interno e
a "linha'representa a derivada do campo escalar com relagao as coordenadas do espaco
interno.

Vamos analisar o espago-tempo D-dimensional no bulk com uma métrica dada por

ds® = gABdXAdXB = WQ(T)ngx“dm” + gab(r)dradrb, (5.2)
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onde W2(r) é o warp factor, X* denota as coordenadas do espago-tempo D-dimensional,
x* sdo as coordenadas do espago-tempo nao compacto de dimensao (p+ 1) e r* denota as
coordenadas do espago interno compacto com dimensoes (D — p — 1).

As expressoes para o tensor energia-momento do espaco-tempo nao compacto e para

0 espago compacto sao as seguintes, respectivamente

1
T = -W?g,, <§V<I> Vo + V(q>)) : (5.3)

1
Tab = Vaq)qu) — Gab (§V<I> -Vo —+ V(q))) . (54)

Podemos relacionar o tensor de Ricci do espaco-tempo D-dimensional com o tensor

de Ricci na brana bem como com o tensor de Ricci no espaco interno através das equagoes

(D) _ or)p G gyl
R, R~ o i VW (5.5)
¢ 1
g, — wp0p P ;Ir/ ). v (5.6)

onde Ry, V, e V2 sdo respectivamente o tensor de Ricci, a derivada covariante e operador
Laplaciano construido com a métrica g, do espaco interno. R,, é o tensor de Ricci
orlundo de g,,. Denotando os trés escalares de curvatura por R = g*PRap, R = g R,e

R= g“bRab, e ainda tomando os tracos das equagoes (5.5) e (5.6) tem-se

— v — VTS W ) Vgu
W 2g"R,, — W 32g"R,, = —WWWW (5.7)

Desenvolvendo a derivada V2W?*!, temos

W2g" R, — W 2g" R, = =W PTHW 2 (p+ 1) [pWVW - VW + WPVW],  (5.8)

portanto .
25 _ pu) _ -2 ) —12
p+1<W R RM> pW VW - VW + WV, (5.9)
Agora, tomando o trago da equagao (5.6)
~ 1
gabRab = Rabgab (p;[_/ )VaV W (510)
vem que .
R— R* =W 'V?W, (5.11)
(p+1)



onde R} = W=2g"R,, e Rt = g®Ry, com R = R+ Ry . Agora, seja a derivada total

com « sendo uma constante arbitraria, temos
V- (WOVW) = Wt [aW VW - VW + W'V (5.12)

Combinando as equagoes (5.9), (5.11) e (5.12), chegamos a

Wa+1
p(p+1)

Essa tltima equacao engendra um caminho para se buscar condigoes de consisténcia. O

V- (WOVW) = [mw-?zﬁz —R")+(p—a)(R - Rg)} . (5.13)

lado esquerdo da equagao (5.13) se anula sobre uma integragao no espago interno compacto
e periédico, enquanto que o seu lado direito propoe algumas possibilidades para investigar
algumas teorias. Tal procedimento pode ser feito expressando as quantidades geométricas
dadas em (5.13) em termos das parcelas do tensor energia-momento.

As equacoes de Einstein no bulk D-dimensional podem ser escritas da seguinte forma

Rap =87Gp (TAB - gABTJ\]\f) ; (5.14)

1
(D —2)
onde Gp é a constante de acoplamento gravitacional D-dimensional. Os tragos parciais

das componentes do tensor de Ricci sao dados por

87TGD a
Rl = D_Q[(D—p—B)T[j —(p+1T?, (5.15)
onde T} =W2g"T,, e
87TGD
@ — D—p-—3)TF — T . 1
R = 52 D~ -3y — (1) (5,10

Substituindo (5.15) e (5.16) na equagao (5.13), obtemos

V.- (WeVW) = pgfm [ %ﬂfg ( [(p—2a)(D —p—1)+2a] TV +
+p2a—p+ 1)T§> +(p—a)R+ aW2R] : (5.17)

Se o espaco interno é compacto e periédico, a relacao ]{ V- (WeVW) = 0 deve
ser satisfeita. Deste modo, o pardmetro a pode nos trazer uma familia de condigoes de

consisténcia, onde para cada escolha de o emerge uma condigao de consisténcia para o
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esquema de compactificacao:

fwen [ (<p —20)(D—p—1)+ 2a)Tzf + p2a—p+ DI+

D—2 . _
+ ((p )R+ aW‘2R> —0. (5.18)
87TGD
Vamos considerar o caso D =5 e p = 3, deste modo que leva a
?{Wa“ T+ 2(a — DT} + —W 2R | =0, (5.19)
H 8’/TG5

neste caso R = 0, pois esse escalar de curvatura do espaco interno possui uma tinica

dimensao. Usando as equagoes (5.3) e (5.4) encontramos

1 1

Inserindo o resultado acima na expressao (5.19), obtemos
J(I{W"‘“ (@ —3)® - & —2(a+ 1)V (P) + ——W2R) = 0. (5.21)

87TG5
Escolhendo o = —1, o potencial V(®) é exaurido na equagao acima, restando apenas
R

PP =— w2 5.22
% 327TG5 % ( )
Se queremos uma descricio do nosso Universo, entdo R = 0 com uma precisio de

107202, Portanto

j[qf-cb’:o,

o qual é o resultado obtido através da equagao (5.1).

Nas préximas sub-segoes, iremos aplicar a expressao (5.13) na teoria de Brans-Dicke
e na teoria de f(R)-Einstein-Palatini. Outros trabalhos abordando a teoria geral escalar-
tensorial e a teoria de Brans-Dicke para mundo branas singulares, podem ser encontrados
em [51, 52, 53], enquanto que uma abordagem na teoria f(R)-Einstein-métrica para branas

suaves, pode ser vista em [55].

5.2 Teoria de Brans-Dicke: Acao e equacoes de campo

As teorias escalares-tensoriais da gravidade sao algumas das teorias alternativas mais

bem estabelecidas e estudadas na literatura. A densidade de lagrangiana que responde
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por uma teoria escalar-tensorial geral apresenta-se da seguinte forma

L= V=g [[(O)R = g(9)VasV"d = 2M()] + L (1), h(®)gurn) (5.23)

onde f, g e h sao fungodes arbitrarias do campo escalar e L,,, a densidade de lagrangiana dos
campos de matéria. A fungao h(¢) pode ser absorvida na métrica por uma transformagao

conforme da seguinte forma

h($)gmn — gun- (5.24)

Podemos redefinir o campo escalar, escolhendo f(¢) — ¢. Entado, a densidade de la-

grangiana (5.23) pode ser escrita como

L= i@ R — %vmv% —2M(¢) | + L (¥, grrw), (5.25)

onde w(¢) é uma funcado arbitraria, também chamada de paramétro de acoplamento e
A(¢) é uma generalizacao da constante cosmoldgica. A teoria descrita em (5.25), se reduz
a bem conhecida teoria de Brans-Dicke quando adotado o limite de w = constante e
A — 0. Por outro lado, no limite de w — oo (¢ — 1/Gx) e A = constante, recupera-se o
cendrio da relatividade geral.

Seja a acao de Brans-Dicke no bulk

S = /dD$\/—_g [CbR - %(VquVNqb)} +Su(¥,,, guN), (5.26)

a variacao da agao com respeito a gy nos dé as equagoes de campo

1 8 w

Run — zgunR = —Tyun+ —
2 ¢ ¢’

8

1

enquanto que a variagao da agdo com respeito ao incremento variacional d¢, nos fornece

(wwm - %vmv%gm)

a equacao de movimento do campo escalar

¢ L o
(b — — _ 2
6= 5 R~ 55" 6Vo (5.28)
8T o . ~
O termo T , substituiu o termo ¢ a partir do traco da equagao

(D-1)+ (D -2)w
(5.28).
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5.3 Regras de soma para mundo branas na teoria de

Brans-Dicke

A partir da equagao (5.27), o escalar de Ricci pode ser escrito da seguinte maneira

2 8w (D—-2)T 2—-D)w A
R_Q—D[qﬁ D-D+D—-2w 2 ?vmv 4‘ (5:29)
Substituindo a Eq. (5.29) em (5.27),
_ 8 (1+w) (1+w) -
Run = s |:TMN gMN(D—l)—I—(D—Z)w 4 _gMN(D_1)+(D_2>me }
+%VM¢VN¢ + %vaNqs (5.30)

Aplicando os tragos parciais em (5.30), e chamando T} = W=2g"T,, (T =T n+ Ty,

é possivel expressar R/, e R, respectivamente, por

L 8 1 u m
R, = E[(D—l)—i—(D—Q)w]([(D_p_2)+(D_p_3)w]T“ —(p+1)(1+w)Tm>
N G 6+ W;vuvw (5.31)
m 8T 1 m u
Rm - ?[(D—l)—l—(D—Q)w]<[w(p_1)+(p+1)]Tm —}—[—(D—p—Z)—(D—p—l)w]TM)

w 1
NGV, b — - W
Ty Vmt g

Substituindo as equagdes (5.31) e (5.32) em (5.13) tem-se o andlogo de (5.17) para

vV, V. (5.32)

0 caso em questao

Wweatt - - 8 1
V.- (WeVW) = {on_zR +(p—a)R+ =

plp+1) ¢ [(D—=1)+ (D - 2)w]
X (T [=a(D=p—=2) —a(D —p—3)w+(p—a)(D—p—2)

+(p—a)(D—p— 1w+ T [a(p+ 1) + a(p + 1)w)
—(p—a)p—Dw—(p—a)p+1)]

—%[awwww +(p— )V ¢V o] —

200 — p

WZV“quﬁ} . (5.33)
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Agora, inserindo os tragos parciais do tensor energia-momento fornecidos pelas ex-

pressoes (5.3) e (5.4) e integrando sobre o espago interno, temos

a+l ) W2 F Y- 8 1 R T,
]{W {W R+(p )R+¢[(D—1)+(D—2)w]( WY,
W[A(p—1)+ B(D—p—1)] — %vacwacpm(p +1)+ B(D—p—3)

V@) A(p+ 1)+ BD - p 1)1)

=W EVGY,0 + (0= 0) V0V ] - QﬂT‘pwﬂww} _0 (5.34)
onde
A= D-p=-2)p—20)—a(D=p=3w+(p—a)(D—-p-1w,
B = (p+1)(w+1)2a—p), (5.35)

sao pardmetros constantes. Impondo um caso padrao D = 5 e p = 3, encontramos

jfwa“{ sm_1 <1<1>' LB12(1 + w) — 8a — bw(ar — 1)] + V(®)[12(=1 + w)

q§ 443w\ 2
+ 8 + 6w (v — 1)]) — %(3 —a)¢ - ¢'} =0. (5.36)
Existem duas escolhas importantes para o pardmetro a. Note que, para a = —1,
noés temos (546 )
+ 6w @ w Y]
= — Q¢ - 5.37
4+ 3w ]{gb 4+3w gb 47?]{¢2¢ ¢ (5:37)

A partir da expressao (5.1) dada na Secao 2, notavelmente, encontramos uma relaxacao do
teorema no-go na expressao (5.37). Em teorias f(R)-métrica e relatividade geral, quando
submetidas & escolha de o = —1 nas condigoes de consisténcia, o potencial do campo
escalar é sempre suprimido, no entanto, aqui no presente caso, o potencial do campo es-
calar se manifesta com tal escolha feita para o parametro a. O resultado que encontramos
traz algo novo no cendrio de mundo branas quando consideramos a teoria de Brans-Dicke.
Dentre intimeros modelos de branas mundo encontrados na literatura, sabemos que a
principal dificuldade é obter solugoes através das equacoes de campo quando acoplados
campos escalares, vetoriais, etc. Por exemplo, em um contexto cosmolégico, onde uma

funcao warp factor possui uma dependéncia temporal, as equagoes tornam-se ainda mais
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extensas em seu nimero de varidveis. Um modelo de branas mundo suaves, o qual imple-
menta a teoria de Brans-Dicke com uma métrica contendo a parte de FLRW poder-se-ia
amenizar tal dificuldade através da equagao (5.37). Note que a expressao (5.37) restringe
a faixa de potenciais a serem escolhidos. O potencial escalar de Brans-Dicke ¢, também
estd sujeito a tal restrigao.

Perceba que, quando w — oo (¢ — constante) na expressao (5.37), recupera-se o
resultado do modelo de Randall-Sundrum quando é adotada a Relatividade Geral apre-
sentado na referéncia [7].

Também podemos notar que, quando é posta a escolha @ = 3, o potencial ainda se

manifesta, mas sem a contribuicao do termo ¢’ - ¢, deste modo,

W4 / ! W
7{?q> D = (4 +2)7{V(<I>). (5.38)

5.4 Formalismo f(R)-Einstein-Palatini em dimensoes

arbitrarias

No formalismo de Palatini, as equacoes de campo sao obtidas a partir da variacao
da acao de Einstein-Hilbert com relagao a métrica e a conexao, mas levando-se em conta
a independéncia destes objetos. Lembramos que agora o tensor de Ricci e o tensor de
Riemann sao objetos construidos a partir de uma conexao afim geral, porém, sem torcao

A agao total em teorias de gravidade no formalismo de Palatini é dada por

1
167TGD

SPalatini -

/dD:E\/—_gf(R)—i—/dDmL'M(gAB,LDM). (5.39)

Como j4 ¢ sabido, a definicio Tap = 2/1/—gdSy/6g*2, quando implementada em
conjungao com o principio de minima agao para (5.39), faz com que as equagdes de campo
no formalismo de Palatini em gravidade f(R), tornem-se

F/(RYRoap — 5 f(R)gan = 87T, (5.40)

—Ve(V=af' (R)g*?) + V(v =gf (R)g"N)s2) = 0. (5.41)

Analogamente ao formalismo métrico, temos que, se f(R) = R, o formalismo de Palatini

reestabelece as equacgoes da relatividade geral.
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Reescrevendo a equagao (5.41), temos

_ 1 r— _
~Ve(V=gf (R)g*") + 5 [VD<V —g/"(R)g"")6¢ + V(v —gf’(R)gDB)(Sé] =0
(5.42)
e contraindo os indices C' e B da equacao acima temos simplesmente
Ve(vV=9/'(R)g"?) = 0. (5.43)
Assim, definindo uma meétrica conforme
hap = f(R)P2gap,  h*B = f(R)7pg"B (5.44)
onde ) ) AB
gap=— —g=——— e g —— (5.45)
f'(R)P= f'(R)P= f'(R)>=»

e, substituindo (5.45) em (5.43), chega-se a
Vo (V=RRAE) <o, (5.46)

que é a equacao da conexao escrita formalmente. Deste modo, a conexao independente

torna-se-4 expressa como
_ c 1 oD
Lyp = ih (0a hpp + 0B hap — Ophag). (5.47)

Escrevendo a expressao (5.47) em termos de g4p tem-se

Cin = 56 {0u( (R gm0) + 05 (F'(R)7g.0)
2 pi(R)
~0p(f'(R) 72 g.n) } (5.48)

De onde finalmente, obtemos

_ 1 2 2
Lo = )+ oz {950u5 (R)7 + 650 (R
—~9apg "0 [ (R)P2 } | (5.49)

onde { A BC} sao os simbolos de Christoffel. Chamando o segundo termo da expressao

(5.49) de A 4;F e ap6s algumas manipulagoes algébricas, chegamos a

_ cC 1
Tap = {apf b+ ——5ALF. (5.50)
AB {AB } QfI(R)% AB
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O tensor de Ricci generalizado é dado por
_C _ ¢ _ C_. E _ C_ E

Deste modo, o tensor de Ricci generalizado descrito explicitamente sob uma transformagao

conforme, isto é, via relacoes (5.44) e (5.51), é dado por

D — ]<VAf’( )D-2 )(VBf( )72 ) 1 1 s
Rap = Rap+ 5 —— - — | VaVp + §QABD f'(R)P==.
f(R)?" J(R)7
(5.52)
Agora, tomando o trago da expressao acima, obtém-se
D—1 1 2 1 D 2
R =l (R (VAR (1) oy
J'(R)P== f'(R)P==
(5.53)
No formalismo de Palatini, as equacoes de campo sao dadas por
f(R) 87TGDTAB (554)

Rup — 2 g =
TR T TR
Inserindo a equacao (5.52) na equagao (5.54) e, adicionando em ambos os lados o termo

—gapR/2, obtemos

7GpTan f D — 1] (Vaf'(R) Vpf(R)p-=2
RAB_ggAB = 8f,(7§) _2f,(R)gAB_ D2 ( f’(7>2)<D42 >+
< (Ver®)w) (VO Ry )+W(§+1) 0f/(R)743.(5.55)

Apés algumas manipulagoes na equacao acima, finalmente encontramos as equacgoes de

campo no formalismo f(R)-Einstein-Palatini em dimensoes arbitrarias

87GpTap _94B
F(R) 2

Rap = 5Rgap = (f’(R) - ﬂR)) i F( (Va5 — gapD) F(R) 7

ﬁ [(VAF(R) ) (VBF<R) - ) — gA;BVcF(R)%VcF(R)% . (5.56)

onde F(R) =df(R)/dR e R ¢é o escalar de Ricci construido a partir de Rp.
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5.4.1 Regras de soma para mundo branas no formalismo f(R)-

Einstein-Palatini

Tomando o trago da equagao (5.56), podemos ver que o escalar Ricci é dado por

. 2 87TGD _2 _@ _ _ 1 %
R—<2_D){F(R)T 2(R F(R)) (D —1) —OF(R)

_% {(vAFm)Dz—z) (VAF(R)7=) - §VCF<R>D2—2VCF<R>D“‘—2] } (5.57)
Inserindo (5.57) em (5.56), nés obtemos
1 B pF(R)P—2 B
Fas = iy (3360 (Tan = 52557 VAZ(R)(ZE—Z “ o2 (- Fm)
DF(R)T - VCF(R)D?zZCF(R)}  (D-1(D- 32 (VAF(R)%)
F(R)D= 2F(R) D=2 2D — 2)F(R)D=
x (VBF(R)%) (5.58)

Tomando o trago parcial da equagao (5.58) com relacao ao espago-tempo nao compacto e
com relagao ao espago compacto, encontramos os respectivos escalares de Ricci,

R: = L {&GD ((D —p=3)T'—(p+ 1)T5>} + (D(?;);j(;lz

(D - 2)F(R)
('R — @) + vavaF<R>ﬂ

(p+1)

(W2V,VFF(R)7°2) +

(D —=2) F(R) F(R)7
1 —2 % A % % . %
_W<(W VAF(R)P=2V*F(R)?—2 + V.F(R)?=2V°F(R) )>]
(D —1)(D - 3) .
2(D — z)F(R)ﬁW (V F(R)P= ) (V F(R)P= ) (5.59)

a 1 T o a S " (2D —DP—- 3)
R e O LR |

2o i . PP [ (1 JR) | (VVE(R)7)
(W2V,V'F(R)p-2) + D) [(R )+ PR

TR 1) (W2VAF(R)P 2V F(R) P2 + ch<R)DQ—2VCF(R>DQ—2>]
D=V =3) (o pryoS) (verpR) s 5.60
30 o pi s (VPR (T ER)) (5:60)
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Agora, substituindo as equagoes (5.59) e (5.60) na equagao (5.13), chega-se a
Wa+1
p(p+1)(D =2

+ 81Gp (a(p +1)—(p—a)(p— 1))Tc‘f + (D —2) (OzW_QR
_F e W2V, V“F(R)P=

= R) PR - o |

xaD+p-1)+p-a)2D—p=3)]—[ap+1)+(p—a)D—p—1)

R | (VVUER)TE) » PN
x(n F(R))+ R F(R)ﬁ(W VAF(R)7 2V F(R)

V- (WeVW) =

TFR) {87TGD ((p —a)D—p—1)—a(D-p— 3))T5+

(D-1)(D-3)
2F(R)7-2

+(p— ) (VaF(R)77) (VAF(R)77) } (5.61)

2

+ V. F(R)P2VF(R)72) +

a(W 2V, F(R) 72V F(R)72)

Novamente, sendo o espago interno compacto, obrigatoriamente temos que ¢ V-(WeVIW) =

0 e deste modo

oY (D—Q)ijwa—l+(p—a)(D—2)j§Wa+1R = 8WGD]§%{<a(D—p—3)—

- p-a)-p- 1)1+ (G- a)p- -+ 1)) 72}

- ) 2D —p— W'V, VFF(R)P
tlaD+p—1)+(p—a)2D—p 3)]7{ o
(e nono=pn) for (o f5) - R
1 [ e ot L W o 2
3 i T RTEERT e VRV ER) ]
(D=DD =3 [ f W e ) o
+[ 2 } 7{ Pryrs FRIPEVIRR)

+p— o) 7{ % (VaF(R)P2) (Vo F(R)7) (5.62)

Para extrairmos informagao relevante com respeito a cendrios envolvendo branas
quadridimensionais, recorremos novamente & D = 5 e p = 3. Adotando o referido bulk

com uma unica dimensao extra (R = 0) e, considerando um vinculo fisico para o nosso
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Universo, R é aproximadamente nulo em grandes escalas. Apds essas consideragoes e,

utilizando as expressoes (5.3) e (5.4) para as fontes, chegamos a seguinte condi¢ao geral

0= 87Gs f %{(3 —a)® - P +2(a+ 1)V(<I>)}

o+ 1){47{ WOV ERPE fW““ KR _ f(R)) n (VaV“F(R)Q/?’)}

F(R)P F(R) F(R)?P
1 wa-l 2/3wu 2/3 1 wet 2/3a 2/3
—6 % WVHF(R) V F(R) + 6 % anF(R) V F(R)

4 [ owe!
+-«

4 a+1
. WVHF(R)Q/?’V“F(R)Q/?’ +-(3—-0) 7{ ——_V.F(R)**V*F(R)¥3.

3 F(RY3 ¥ °
(5.63)

Uma escolha interessante para investigar a possibilidade de branas suaves é fazendo
a = —1, isso traz como consequéncia a eliminacao do warp factor na expressao acima,

deste modo, temos

P! 2/3v7a 2/3
j“) i) 1 ]{VQF(R) VeF(R) 0. (5.64)

FR) T 67Gs FR)

2/3

onde consideramos V,F(R)*°® = 0. Reescrevendo a expressao (5.64) de uma maneira

mais apropriada, obtemos

% q;(ﬁq)), * 2%1(;5 j{ (In|F(R)]) - (In|F(R)]) = 0. (5.65)

Note que, se F/(R) é positiva, torna-se impossivel encontrar uma generalizagao para mundo
branas suaves, no entanto, se F'(R) < 0, é possivel uma generaliza¢ao suave do cenério de
Randall-Sundrum com uma dimensao extra compacta no contexto do formalismo f(R)-

Einstein-Palatini.
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Capitulo 6

Cosmologia de Branas

6.1 Introducao

Neste capfitulo faremos uma descricao da contribuicao original de nosso trabalho
no contexto cosmolégico. Vdrios autores tentaram construir modelos compativeis com
a cosmologia Friedmann-Lemaitre-Robertson-Walker (FLRW). De fato, a modelagem de
cendrios braneworld realistas do ponto de vista da fisica em larga escala deve incluir, pelo
menos em algum nivel, a geometria de fundo do modelo padrao cosmolégico. As tentati-
vas apresentadas para este programa podem ser divididas em duas categorias: uma que
trata de branas infinitamente finas, nas quais os efeitos extra dimensionais entram como
correcoes das equagoes de Einstein através da presenca do tensor de Weyl e contribuicoes
quadréticas para o tensor energia-momento, e outra, cuja modelagem chega as branas
espessas descritas por um ou mais campos escalares no bulk. Na primeira abordagem, as
correcoes das equagoes gravitacionais vém a partir das equagoes de Gauss e Codazzi via
formalismo Shiromizu-Maeda-Sasaki, como descrevemos no Capitulo 4, e, potencialmente,
todos os aspectos relevantes da cosmologia de quatro dimensoes sao revisitados. Acontece,
no entanto, que uma brana infinitamente fina parece ser apenas uma aproximagao do caso
mais realista, na melhor das hipdteses.

Infelizmente, no contexto de brana espessa, nao é possivel, aplicar o formalismo
de Gauss-Codazzi. A razao é que, as condigoes de juncao de Israel-Darmois em um
contexto de brana espessa nao estao bem estabelecidas. As condic¢oes de juncao estao
no centro do procedimento de projecao e sua auséncia faz com que todo o programa se

desintegre. Nesse sentido, a investigacao de uma configuracao de mundos brana de cinco
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dimensoes, cuja parte de quatro dimensoes descreve um universo €, de fato, relevante. A
principal caracteristica em mundo branas reside na manipulagao do warp factor, o qual
¢ implementado nas solugoes. Como um procedimento geral, usaremos uma fungao warp
factor separavel. Parte das solucbes obtidas através de um dado Ansatz nas obras de

[56, 57] sdo aqui recuperados como casos particulares.

6.2 Solucoes Cosmolégicas de Branas nao singulares

Vamos propor uma métrica no bulk 5D, dada por

dr?
1—kr?

ds* = a*(t,y) {—dt2 +u?(t) [ + % (df* + sen20dx2)} } +V2(t,y)dy?, (6.1

com a métrica de fundo 4D de Friedmann-Robertson-Walker-Lemaitre, onde k = 0, £1
denota a curvatura espacial do espago-tempo 4D homogéneo e isotrépico para o espaco
de Minkowski, de Sitter e anti-de Sitter respectivamente. A assinatura métrica é dada
por (—+ 4+ + +). A funcdo a(t,y) € um warp factor com dependéncia do tempo t e
da dimensao extra y', enquanto que u(t) é o fator de escala usual para um universo
homogéneo e isotrépico. A funcdo b(t¢,y) nos mostra a dindmica da dimens@o extra em
diferentes tempos e em diferentes posicoes no bulk.

A agdo 5D com um campo escalar minimamente acoplado ao setor gravitacional tem

a seguinte forma

S = / d’z\/—g {ZM?’R — %gMNVMgbVNgb —Vi(g)|, (6.2)

onde M representa a massa de Planck da teoria fundamental 5D e R é o escalar 5D de
Ricci. O campo escalar ¢ depende do tempo e da dimensao extra y .

Seja a equagao de Einstein oriunda da agao (6.2)

1 1
Ryn — zgunR = Tyun 6.3
59 IE : (6.3)
e o tensor energia-momento T);y para o campo escalar ¢(t,y)
¢ L 4s
Ty = VuoVn¢ — gun | 5977 VadVpd + Vi(g) |- (6.4)
10s indices romanos se referem a objetos 5D, ou seja, M, N, - - - = 0,1,2,3,5 e os indices gregos
representam objetos 4D, ou seja, u,v, - - - = 0,1,2,3, ao passo que os indices romanos em minisculas ¢, j,

-+ - =1,2,3 representam as coordenadas espaciais em 3D.
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As equagoes de campo, em componentes, sao

1a> 1 /d a2 1ad 1 (. au ab o bu k
s pl ot )t ottt

aa? b2\ a a? b2ab a2 au ab u? bu u?
1 1 -
55?5 HV(9) (6.5)
1 a a ab au b b U U k
— @0 48 o2 2
a2[a a?  ab au b +b+ + 2+u2
3 [a" a? db 1, 1 5
NI PR EE O (6:6)
da db d 1,
e ee fr_2 6.7
[aa ab a] 3¢¢ (6.7)
3 a? 1 al_dzll_u 1_u1_k’
a?2b? aa? aua? w?a? wa? a?u?
1l L

‘o a a ab au 1bu 1b u wu k
oo 0 ez et 2on Co u v, R 6.9
¢ [a2 a+ab au 2bu 2b w u?  wu? (6:9)
Por outro lado, somando-se as equagdes (6.5) e (6.6) obtemos
1 1 [d® 4 _auw  _ab i
3?21V = =4 L5t 000 ol
21)2¢ +V(9) aQ{a2+a+ au+ ab+ u?
5bu 2k 1b u 3 (a" a” 3adt
T LA (I 6.10
2bu  u? 2b+u} b2<a+a2>+b2ab (6.10)
Ainda, usando (6.10) na equagao (6.8) temos
1 ., a? 1 il a1l au 1
— ¢ V(p)=6—— —2 =+ 1052 =
2b2 (¢) a? b? (a a? + a? a? aua?
u 1 u 1 4k 1ab 1 bu 1 b
VIS e e e 6.11
u? a? wa?  a*u?  a?ab 2a’bu * 2a2% b (6.11)
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Somando as equagoes (6.10) e (6.11) chega-se a

, 1{ a & 2 ab _bu @ i b
2o | (4oL = 2-— —5—— —2— — — 4 -
¢ a? a a? —i_OLbjL bu 5au u? u+b
12 " /b/
-3 <—— +o %3) (6.12)

1fa 2k @ au b i @ ba
2‘/(@ _ a?’\a u? 2 ab 2 bu (6.13)
’ 3a? 1ld’ 1d¥
Ra? Ba  Rab
Dada a densidade de lagrangiana do campo escalar
1
L=+—g [igMNVMcbVNCb - V(Cb)} ; (6.14)
e utilizando a equagao de Euler-Lagrange
(i) S8y, (6.15)
d(0c9) O
obtemos o1
() = 0. (6.16)

1 CcD
\/_—gac [V=99""0po(t,y)] 96
Efetuando a soma indicial na equacao acima, obtemos
—1 Vi oV
== 1% [V=ad™000(t. )] + 05 [V=ag™050(t )]} - 852:25) =0

onde /—g = a*(t,y)b(t,y)ud(t)r’send/+/(1 — kr?). Finalmente, temos a equagao de

movimento do campo escalar.

2 1b. 3 1y, dv
a, Y -2y (6.17)

1 i g
¢ ¢ azb a2ugZS b2 b do

2
onde o ponto denota uma derivada com a relacao a t, enquanto que a linha representa

uma derivacao com respeito a dimensao extra .
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6.2.1 Solugao Temporal com b(t,y) =1 e ¢ = ¢(y)

Da equagao (6.7) temos
-/
) (6.18)

Assumiremos a fungao a(t,y) como separdvel, isto é a(y,t) = a(y)5(t). Utilizando essa

solugao, podemos ver que a equacao (6.18) torna-se uma identidade.
B\ (aB) B _ (o' (B o\ (BY _
(57 (@) 5= (%) (E) (%) <B> -0 (619
Assumindo as consideragbes acima, a equacao (6.9) torna-se
& 3\* (j 3\ /i i\ i\: [k
77 (5) - (5) ¥ (5) () - () () ()| =0 o
enquanto que para a equagao (6.12) tem-se
. N2 . ) N - .
L0000
a?f3 B B B U U U u?
o o 2 A o o 2
- [(E) -(%) ] T [(;) -(%) ] ' (020
Ainda, para a equagao (6.13) temos
. -\ 2 . . N2 ..
2 1 15} 2k 15} 15} U U U
3/ g [(5) tet (B) ° (5) (5)2(0) (a)]
o 2 o » o 2 o
-(5) - (0)-5-(5) - (%) (6:22)

enquanto a equagao de movimento para o campo escalar tem a seguinte forma

a’ dVv
"r4—¢ — — =0. 6.23
" +4—¢ i (6.23)

Caso A=X=0e k=0:

Diante das equacgoes (6.21) e (6.22) e, se A = 3 = 0, temos o seguinte conjunto de
equagoes para (6.20), (6.21) e (6.22)
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(5)-2() -G D-C)-( -G o
ONOROIORURORORSEIE
(5 () ()2 () (B o

Podemos observar que a equagao (6.26) se torna redundante com a relagdo a equagao

(6.25). Somando e subtraindo as equagdes (6.24) e (6.25), tem-se respectivamente

() () () () (B)0 o
(Y ()0 @ 6)-0) )

A equagao (6.27) juntamente com a equagao (6.28) leva a

ERORCEIE

u2
e temos um conjunto de duas equagoes para resolver.

. (5) -0 o

u?

Primeiramente, iremos checar se das equagoes (6.27) e (6.29), emerge alguma iden-
tidade. Para isso, partindo da equagao (6.29) temos
: _ —
b__ (“) + Y=

u u

(6.30)

Derivando a expressao acima com relagao ao tempo chega-se a

(02 (-Q s
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Inserindo a expressao (6.30) para 3/ em (6.31) obtemos

L) (o)

B u u _E—i_ u wr
au k
o) g3V, k(U (6.32)
U u2 u2 U

e substituindo (6.32) em (6.27) ficamos com

2 (3) =5 () = () =] ()

-l [:Fw——k% - uﬁ] + (9> LI (6.33)

U 22

que apds uma simples manipulagao, nos traz uma identidade

3V—-k. | 3V—-k.
U+ ———u =0. (6.34)
u u

:F

Desse modo, a solugao geral do conjunto das equagoes (6.27) e (6.29) para £ = 0 ao

tratamento de (6.30), cuja solucdo é dada por

C
B(t) = m , k=0, (6.35)
onde C' é uma constante arbitrdria de integragao.Considerando agora a equacao (6.30)
para o caso em que k # 0 e u = 1, recuperamos o resultado obtido por na referéncia [57],
cuja solucao é
B(t) = BoeV . (6.36)
Por outro lado, para o caso em que e k # 0 e u # 1, e usando a redefinicao abaixo

na equacao (6.30)

u(t) = f()B() = a(t) = [B+ [B, (6.37)
w_f P
w7 + 3 (6.38)
chegamos a
1(f v—k
B+§(?>6¢7_0, (6.39)
com a seguinte solugao
T P A oy k0. (6.40)

SR T0h VIO
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Caso A = - # 0 para k = 0:

Nesse caso as equacoes de campo podem ser escritas na forma

()

(-

() () ()66

o que implica A = —X.

Subtraindo a equagao

!

a qual pode escrita como

de onde

i (1)

deste modo,

(6.41) da equagao (6.43) temos

) ()6 (- (5
DIOEORONE

_2) = _AB )
) -z

) () )Y o

B DAY
[<3)+(5) —gﬁa
u > p
T NE R

i (u\ . [ |B
i (3) -+ 5[5

e ainda substituindo a equagao (6.46) na equacao (6.48), vem

i

. 2 .
48 %—g] iﬁ\/g—ng(
64
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B

)2.

~—~

6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)



Inserindo as equagdes (6.46) e (6.49) em (6.41), (6.42) e (6.43), obtemos uma iden-

tidade para cada uma das equagoes. Portanto, resta-nos apenas uma equagao para ser

resolvida: . )
I5; U X
Geol-e
Fazendo .
_ . .
B(t) = 1/o(t) = 3 = —% e 5= —%, (6.51)
temos
- %o— =+ % (6.52)

cuja solucao é dada por

Y [tar
Ch + g/O m] . (6.53)

Como o(t) = 1/5(t), a solucao para [3(t) torna-se

B(t) = [u(t) (Cli \/g /0 ;E;)] k=0 (6.54)

Caso A = - # 0 para k # 0:

Subtraindo a equacdo (6.41) da equagao (6.43) temos

) . . 2
3 (g) +6 (g) (%) +3 (%) + (i—f) — 32 (6.55)
a qual pode escrita como
. . 2
[(g) N (%) + o= 2p (6.56)

Deste modo, a equacao acima, juntamente com

(§> + (§>2+5 <§> (B2 (B) (2)+ (2) -5 om
] \/k:+ktan2 [Cl\@_ﬁ/ot J

produz a seguinte solugao
1 /3 Lt t
10 = i) ot [cnER - VR [ o)
(6.58)
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E simples ver que

B(t) = —%\/%cot {01@ - \/E/Otuc(li:)} \/k:se(:2 [01\/3_/@ - \/E/Ot%}

_ﬁ\/iﬁ;k : dt’ >

sin <Cl\/ﬁ— \/E/Otm

pt) =

que apo6s algumas simplificagoes, leva a
1 /[3k ¢
)= ——\/ = k
B(t) a0V T sec (\/—/O

+sinz = £ cos(n/2 — z)

)

dt’
u(t')

onde utilizamos

t /
Comx:—\/E/ d e C1V/3k = /2.
0

t
u(t’)
6.2.2 Solucao Espacial com b(t,y) =1 e ¢ = ¢(y)

Seja agora para a parte espacial das equagoes (6.21), (6.22) e (6.23)

r5[)- ()]

2 P o'\ 2 o
‘v - = _3(=) - (=
V(o) =2 (a) (a)
! dVv
" 4 2 r_%y
v (a> i
Definindo
aly) = W,
suas derivadas sao
o'(y) = Alafy),

o(y) = A"+ (4] aly).
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(6.59)

(6.60)

(6.61)

(6.62)

~—~

6.63)

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)



Caso A=Y =0:

Neste caso, as equagoes (6.63), (6.64) e (6.65) tornam-se
1 2
: — A
¢t =

V() = AT - (A,

av
¢//+4A/¢/:d_¢‘
Supondo que
¢ =1rWy(9)
A = sW(9).

O conjunto de equagoes de (6.72) em (6.69), (6.70) e (6.71) temos

8 f— _1
=-3
e o potencial tem a forma
2 |1 2 2 2
V(g) =115 (W)~ gW(@ :
Derivando (6.74) com respeito a ¢, temos
9 4
Vo =17 | WoWs — s W (9)

(D58

considerando que

para r = 1.

Resta apenas resolver as equagoes de (6.72), isto é,

¢ = Wy(9),
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(6.69)

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)



A=) (6.78)

3
Aty =3 [ W ot dy (6.79)
Caso A = —-X #0:

Inserindo as expressoes (6.66), (6.67) e (6.68) nas equagoes (6.63), (6.64) e (6.65),

temos

¢ = Xe 24 — 34", (6.80)
§V(¢) = e 24— 4(A) - A, (6.81)
dv

" 4A Y = —. 6.82
0"+ 449 = 3 (6.82)

Subtraindo a equacao (6.81) de (6.80)

3
V() =3[4" = 2(A)] + 50" (6.83)
e impondo

¢ = aWiy() , ¢" = a*WigsWhy, (6.84)
A, = ng(QS) s A” = CLbWQ¢W1¢, (685)

e inserindo em (6.83), a expressao para o potencial torna-se
3
V(¢) = 3[abWau W14 — 26°Ws] + §a2W12¢. (6.86)

Derivando com rela¢do ao campo ¢ esta tltima expressao dada em (6.86), temos

dV
% = 3[abWz¢¢W1¢ + abW1¢¢W2¢ — 4b2W2W2¢] + 3G2W1¢W1¢¢, (687)

portanto, utilizando (6.87) com o auxilio de (6.84) e (6.85), chega-se a

a[4bW2 — 3bW2¢¢ — 2(1W1¢¢] Wld’ = 3b[CLW1¢¢ — 4bW2]W2¢. (688)
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Se agora definirmos
Wi=W+ X2 e We=W+0oZ, (6.89)

e agruparmos os termos que se adequam a uma derivada total, a equagao (6.88) toma a

forma
d |2 1 2 A 4 4
— [ SW? 4 W2 = SN Z% 4+ 220 = NZ2 4 0 2% + oW,y Zy + oW Z
i |3 +2¢ A +2(0 )¢+30 +0¢¢+30
4
—1—5(0 - MWZ,=0. (6.90)
Supondo que
W - Cl + CQZ + CgZ¢¢, (691)

onde (1, Cy e C5 sao constantes arbitrarias, e substituindo na equagao (6.90), temos
2 2
3

3 3
C2 203\ N 2
+Z¢2)(—2——3——+020'+5030'+)\0')

4 1
CF — Cu+ -C1CsZgy + - C5 23, + §C§Z§,¢¢, + ZyZgps(C2C3 + Cs)
2 3 2

e (2_022 2052 2\ 402)

2 _ /L
3 3+0203+3

40102 401)\ 8010 40203 4030'
- Z =0.
3 5 73 ¢¢( 5 3 ﬂ 0

+Z [ (6.92)

Modelo a la Gremm

Tomando como solucao
Z(9) = Zycos(vp + s), (6.93)

para a equagao (6.92) e, agrupando os termos em 7, Z e Z;, temos

3 3 3 3 3 2

2051 N2 20!
— 33 -G+ Gt =

202/\ 2\o 40'2 2 40203 4030'
9 T = 0.
5 +2C50 3 + 5 Y ( 3 + 3

2 4C1Cy 40, C 4Ch\ 8C C2  Csvt
g01—C4+Z( A 1U)+Z§,{—2+ 3

2 4
+ Ao — U2<0203 +030'):| -+ Z2 {% + QCSU

(6.94)

Zerando o coeficiente de Z, temos

40102 40103 2 401)\ n 8010'

3 3 " 3 3

— 0. (6.95)
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A solucao para v fica dada por

Cg —)\+20
U—'\IT, (696)

onde Cy = £ 3C4/2, com Cy = + C3+ A — 20 se v = 1. Deste modo, a expressao para W
torna-se

W = Cy + (A —20) cos ¢, (6.97)
com a escolha Zy = 1 e s = 0 na equagao (6.93). Utilizando (6.97) em (6.84) e (6.85),

obtemos

¢ = (o — \)seng. (6.98)

A= _é[cl +(A—0)cos ] (6.99)

Portanto, as solugoes para ¢ e A, sao respectivamente dadas por

d(y) = 2 arccot[e?* )], (6.100)
e
1 1
Aly) = 39(Cr = A+ 0) + cln(1 + o)), (6.101)
Usando as equagoes (6.100) e (6.101) para a expressao (6.83), obtemos o seguinte
potencial

V(o) =

2\ —0)’(1 - G(¢)[14 + G(9)])
3 (6.102)

1+G(9)) ’
onde, G(¢) = [arctan(¢/2)]2(’\_a)2.

Nas figuras (2)-(4) da segao 6.7 descrevemos os perfis de ¢(y), A(y) e V(¢) na faixa
relevante onde o campo escalar também estd variando. Apesar da forma funcional nao
trivial das solucoes obtidas, o espaco-tempo resultante é bem comportado. De fato, todos
os escalares de Kretschmann associados as solugoes sao finitos. O comportamento dos

escalares de Kretschmann é mostrado nas figuras (11)-(13).

6.3 Parametro de Hubble Efetivo

Seja a nossa métrica dada por

dr?
1—kr?

ds® = o?(y) B2 (t) {dt2 — u?(t) { + % (df? + sen29dx2)] } — V(t,y)dy?, (6.103)
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onde dt? é o tempo conforme, de tal forma que o tempo préprio seja dado pela relacao
dr? = B*(t)dt?. (6.104)
Logo
dr = B(t)dt — 7 — / B(t)dt (6.105)
Utilizando a regra da cadeia para d/dr, temos

d dt d 1 d

FT G IO® (6.106)

onde em (6.106) utilizamos a relagao dada em (6.105). A parte espacial da distancia ds?

e A . -2,
e a distancia proépria ds”, é dada por

2
ds® = B2(t)u(t) [%} , considerando apenas a parte radial. (6.107)
— kr
Logo
ds = B(t)u(t) [L} (6.108)
B V1—kr2]’ ‘
Integrando a expressao acima, chegamos a
dr
s =pB)u(t) | —, 6.109
st [ =2 (6.109)
onde B(t)u(t) = acss(t) € o fator de escala da cosmologia convencional, portanto
dr
5=a, S — 6.110
ff( ) m ( )
cujo resultado da integral acima é entao
s B (6.111)
e . .
& sen(VEr)Vk
Agora utilizando (6.103) e (6.108), temos
ds 1 d 1
— = ——[f)u(t)] —————=. 6.112
& = B AP (6.112)
Desenvolvendo a expressao acima somos levados a
1ds 1 1 1 1 1
ds dpg du dpg du (6.113)

sdr Pty dt | Bult) dt B [BO At u() dt |
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A velocidade de afastamento entre as galdxias é dada por v = Hd , por outro lado, a

nossa velocidade v é dada por

ds 1 [ 1d3 1 du]_

"= =50 s e al ™ (6.114)
Podemos reescrever a expressio (6.114) da seguinte maneira
14 ]
= iy g B (6.115)
onde usamos
L b L dul dy a0y D) = Lin(s@u). (6.116)

B a Tumar] T @

Comparando a expressao (6.115) com a lei de Hubble dada por v = Hd, nosso H.ss é

dado por

. Li . 1 daefe . defe
Heje = 505 ~In(B(t)u(t)] = e d T a (6.117)

6.4 Resultados

Nesta segao, a partir das solugoes encontradas para 3(t) e com auxilio da equagao
(6.117), iremos encontrar o parametro de Hubble efetivo bem como o fator de escala

efetivo. Sejaocasoem que k=0e A =X =0:
C
t) = —; A1
8(0) = 2o (6.118)
aqui obtemos
Hepe(T) =0 e aepre =0, (6.119)

ou seja, temos um parametro de Hubble que descreve um Universo estatico (universo de
Einstein). Ainda para o caso em que A = ¥ = 0, mas agora com k # 0, a solugao é dada

por

p(t) =

! lo Vok [ ] (6.120)

Vo |© T Vind Vi

dr = B(t)dt =

dt V—k [t dt
- |c+ = dz[C + V—kz], 6.121
N/iD) [ Nl w(m] | | (6-121)
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com dz = dt// f(t). Encontramos assim uma expressao para o tempo césmico 7

T=Cz+2*V-k/2. (6.122)
se C' =0 e, escolhendo f(t) = e ¥, temos 2z = (1/a) ™, entao
V—Fk 1 2at
portanto
1 2a%T
t=—In|+ : 124
2a n< \/—k) (6.124)
Retomando a expressao para [3(t)
vV—k
B(t) = £——e**, (6.125)
a
substituindo as expressoes (6.125) e (6.124) em (6.117), temos
1
Heff(T) = —. (6126)
T
Ja para a.r(t) = B(t)u(t), temos
Gefe(T) = 2V —kT, (6.127)
onde, também, foram utilizadas as expressoes (6.125) e (6.124).
Agora, sejam os casos em que A = —XY # 0 para k = 0 e k # 0. Primeiramente,
vamos analisar a curvatura £ = (. Temos
1 1
t) = 6.128
() = = (6.129
Cr+4/—=
3Jo u(t)
Da equagao (6.105)
dr — B(t)dt dt L in(cy +b2) (6.129)
T = =—————— 5 7=F-In 2z .
w(t)(Cy = b2) T

t

onde b = /3 /3e z = / dt' /u(t"). Inserindo as equagdes (6.128) e (6.129) na expressao
1

(6.117), temos

Haops(t) = ult)(Cy + bz)% {m ((C’l—:li:bz))] _

= () (Cy £ b2) L (£br) = u(t)(Cy £ b2) £ h- !

it (B(Cy % b2) (6.130)

==+b

73



Entao

z
Heps(1) = £/ 3 (6.131)
Por outro lado, o fator de escala efetivo é relacionado com H.¢(7) pela seguinte relagao
' eje E
Hepp(r) = =48 = 24/ (6.132)
Qefe 3

Deste modo chegamos a

efe(T) X €Xp (:i:\/§7'> : (6.133)

Podemos notar, que a solucao acima para a.s. com k = 0, é similar a solugao encontrada

para um Universo sem brana, dominado pela energia de vicuo e com k& = 0, ou seja

a(t) o< exp <:|: %t) , (6.134)

onde A > 0 é a constante cosmoldgica. Logo, podemos concluir que > = A. A solugao
dada em (6.133) representa a fase atual da expansao acelerada de nosso Universo.

Finalmente, temos para o caso em que k # 0 e lembrando que

B(t) = —ﬁ\/% sec (\/Ez) , (6.135)

t dt,
onde z = / . Seja
o u(t’)

dr = p(t)dt = —\/;Esec <\/Ez> dz, (6.136)

onde dz = dt/u(t). Integrando a expressao acima, obtemos

T = —\/%hl ‘sec <\/Ez) + tan (\/Ez)

Invertendo (6.137) para z em funcdo do tempo 7, obtemos

9 [1 + eXp(T\/E_/?))} 2

Z = —= arccos : (6.138)

vk V2

. (6.137)

Ja para H,ge, temos

H.po = %%[ln(ﬂ(t)u(t)] - % [ln <—\/%sec (\/Ez))] (6.139)



onde na primeira igualdade substituimos dr = [(t)dt. Substituindo (6.138) em (6.139)

ficamos com

1/2
efel\T) = ar n S5 sec \/E arccos \/5 , .

Hepe(T) = \/gtanh [ %7’] . (6.141)

Usando a definicao para a funcao de Hubble

ege [T )y
Hepo(r) = =¢ = /S tanh [/ 27|, 6.142
7e(T) here 5 tan [ 371 (6.142)

e integrando a expressao (6.142), o fator de escala efetivo é dado por

Aepe(T) = In [cosh \/%T] : (6.143)

A seguir é mostrada a tabela com os resultados para o fator de escala efetivo bem

e temos que

como para o parametro de Hubble efetivo:

Curvatura Caso H.. (1) acse(T)
k=0 A=XY=0 0

kE#0 A=Y =0 2V =kt

D (6.144)
exp | %4/ 37 Y=A
kE#0 A=-% \/§tanh [\/§T] In cosh\/§7']
3 3 3

A partir dos dados estabelecidos na tabela acima, podemos ver que, para o caso

k=20 =) +

m\]li—‘o

em que k = 0e A =% =0 os valores de Hp.(7) € a.s.(7T) sado nulos, ou seja, uma
solucao que descreve um Universo estdtico. No caso em que £ # 0 e A = ¥ = 0 e,
naturalmente para £ = —1, torna-se impossivel haver um regime de aceleracao de nosso
Universo, pois a.f.(7) = 0, no entanto tem-se um regime de expansdo do Universo. O
caso em que k =0 e A = —3, nos fornece uma solucao para fase atual de nosso universo
(tipo exponencial). Nossa constante de separagao X foi identificada com a constante

cosmolégica, neste caso obtivemos uma solucao que descreve um Universo em expansao
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acelerada, pois a.f.(T) x eeret Jg para o caso em que k # 0 e A = —3 a solugao para
a.f.(T) nos fornece fases de desaceleragiao césmica. a.s. < 0

O comportamento da fungao Hubble e do fator de escala efetivo sao mostrados nas
figuras (5)-(10).
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Capitulo 7
Conclusoes

Na primeira parte da contribuigao original deste trabalho, derivamos as equacoes de
campo no formalismo f(R)-Einstein-Palatini em dimensdes arbitrarias e apresentamos o
estudo das condicoes de consisténcia aplicados aos modelos de branas.

Revisitando as regras de soma para duas teorias modificadas da gravitagao, Brans-
Dicke e f(R)-Einstein-Palatini, verificamos que para ambos os casos é possivel relaxar as
condigbes de consisténcia e branas suaves a la Randall-Sundrum (nao singulares) tornam-
se possiveis em tais teorias. Em particular, para o caso de Brans-Dicke, nota-se um resul-
tado interessante, o qual engloba a presenca do potencial do campo escalar contribuindo
para as regras de soma. Isso é exclusivo para a formulacao da teoria de Brans-Dicke
em cendrios 5D, pois, sempre que a escolha do pardmetro o = —1 é feita, o potencial é
eliminado dessa condicao de consisténcia quando estamos no palco da Relatividade Geral,
teoria f(R) e f(R)-Einstein-Palatini.

Concernente a Cosmologia de Branas, contida na segunda parte deste trabalho, nés
encontramos solugoes dependentes do tempo para o modelo FLRW-branas, isto é, a parte
temporal das equacoes para é, ¢ and V(¢). Neste caso, consideramos duas possibilidades
para o mecanismo de separagao de varidveis, ou seja, A =¥ =0e A = =¥ # 0. Para
cada possibilidade de A e 3, resolvemos as equagoes de campo no que se refere a curvatura
espacial da brana (Universo), ou seja, k = 0 e k # 0. Considerando o mesmo conjunto de
equacoes governadas por q5, ¢’ e V(¢), resolvemos a parte espacial do nosso problema, a
qual envolve solucoes com uma dimensao extra. Obtivemos solucao para o campo escalar,
potencial do campo escalar e warp factor. Os casos em que A =X =0e A =-3#0

também foram considerados. Para efeitos de aplicagao cosmoldgica, apresentamos nossos
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resultados a partir das solugoes encontradas para ((t), e calculamos o parametro de
Hubble efetivo bem como o fator de escala efetivo para todas as possibilidades de A, X
e k, discutidas na Secao 6.2. Especificamente, emerge um resultado interessante para o
caso em que k = 0 e A # —X. A constante de separacao X faz o papel de A (constante
cosmoldgica) para a solugao do tipo de-Sitter, cuja solugao engloba o parametro de Hubble.

Na primeira investigacao deste trabalho, a qual pode ser entendida como uma parte
mais formal no tratamento de modelos de mundos brana suaves, verificamos quais possi-
bilidades permitem tal cendrio. Na teoria de Brans-Dicke é interessante notarmos que o
potencial do campo escalar nao é suprimido quando aplicadas as regras de soma. Isso abre
novas possibilidades para a modelagem de branas com uma dimensao extra compacta no
contexto da teoria de Brans-Dicke, ao contrario da Relatividade Geral, a qual nao permite
branas suaves em cinco dimensoes com a presenca do potencial do campo escalar. Para
o formalismo f(R)-Einstein-Palatini, também apresentamos um forte viculo a partir das
regras de soma; Em nosso resultado, a fungdo f(R) sofre uma restri¢cdo, sua primeira
derivada deve ser negativa, isto é, df(R)/dR < 0. O formalismo de Palatini nos d4 a van-
tagem de possuir derivadas de segunda ordem na métrica, enquanto no que formalismo
métrico, as equagoes sao de quarta ordem na métrica, devido as derivadas superiores no
escalar de Ricci nas equacoes de campo. Algumas extensoes das regras de soma podem
ser tratadas, por exemplo; considerar o warp factor com uma dependéncia temporal, isto
seria de grande interesse para uma aplicacao cosmoldgica. Também poderiamos investigar
as regras de soma no formalismo métrico-afim, onde estao presentes os objetos de tor¢ao
do espaco-tempo. Essas sao algumas de nossas perspectivas quanto a essa primeira parte
do trabalho.

J4 para a segunda investigagao, nossas perspectivas incluem os casos em que podemos
utilizar dois campos escalares; um campo dependente do tempo e um campo dependente
da dimensao extra com seus respectivos potenciais. Atualmente estamos na fase inicial da
construcao das equacoes de campo para este problema. Em uma outra abordargem nota-
mos interessante incluir uma constante cosmoldgica no bulk a partir da acao de Einstein-
Hilbert 5D. Talvez, isso nos forneceria um andlogo a relacao entre essas constantes cos-
moldgicas 4D e 5D no cendrio de branas finas. Estas abordagens se fazem presentes em

nossas perspectivas.
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Figura 1. Perfil de massa como uma funcdo do raio comdvel para uma sobredensidade
localizada na origem.
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Figura 2. Campo escalar como fun¢do da dimensdo extra y.
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Figura 3. Exponencial da fungdo warp factor como fungéo da dimensdo extra y.
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Figura 4. Potencial do campo escalar como uma fun¢do do campo escalar.
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Figura 5. Parametro de Hubble efetivo como uma funcéo do tempo c6smico para o caso
A=X=0ek=#0.

85



a[7]
20 +

10

—10 -5 . 3) 10

—10

—20+

Figura 6. Fator de escala efetivo com uma fun¢do do tempo cdsmico para o caso
A=X=0ek+#0.
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Figura 7. Fator de escala efetivo como uma funcéo do tempo cosmico para o caso
A#X#0ek=0.
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Figura. 8. Fator de escala efetivo como uma funcéo do tempo c6smico para o caso
A#X#0ek=0.
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Figura 9. Parametro de Hubble efetivo como uma funcéo do tempo c6smico para o caso
AL +#0ek+#0.
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Figura 10. Fator de escala efetivo como uma fungdo do tempo cdsmico para o caso
A#XL+#0ek+#0.
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Figura 11. Escalar de Kretschmann (K;) como fun¢éo da dimenséo extra y.
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Figura 12. Escalar de Kretschmann (K,) como fun¢do da dimensdo extra y.
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Figura 13. Escalar de Kretschmann (K,) como funcdo da dimens&o extra y
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