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RESUMO

SILVA, P. MICHEL L. T. Cosmologia de Branas e Teorias Modi�cadas da Gravitação em

Dimensões Arbitrárias. 90 f. Tese (Doutorado em Física) - Faculdade de Engenharia do

Campus de Guaratinguetá, Universidade Estadual Paulista, Guaratinguetá, 2017.

Este trabalho contém duas abordagens concernentes às dimensões extras. Na primeira

abordagem, investigamos duas teorias modi�cadas da gravitação em dimensões arbi-

trárias, f(R)-Einstein-Palatini e a teoria de Brans-Dicke. Mostramos que a consideração
das condições de consistência de mundos brana dentro da estrutura da teoria de Brans-

Dicke no bulk permite a existência de branas suaves no caso de cinco dimensões com uma

dimensão extra compacta. Ao estudar as regras de soma na teoria de Brans-Dicke e f(R)-
Einstein-Palatini, pudemos mostrar que a brana que gera o potencial de campo escalar é

relevante para relaxar as restrições gravitacionais. Já para a segunda abordagem, estu-

damos a evolução cosmológica com branas não-singulares geradas por um campo escalar

no bulk acoplado à gravidade. A con�guração especí�ca investigada leva à branas com um

warp factor dependente do tempo. Calculamos o parâmetro efetivo de Hubble advindo do

fator de escala efetivo para as soluções de Friedmann-Lemaître-Robertson-Walker obtidas.

As soluções de branas espacialmente dependentes também foram encontradas.

PALAVRAS-CHAVE: Branas. Cosmologia. Dimensões Extras.
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ABSTRACT

SILVA, P. MICHEL L. T. Braneworld Cosmology and Modi�ed Theories of Gravitation

in Arbitrary Dimensions. 90f. Thesis (Ph.D. in Physics) - Faculty Engineering of Campus

Guaratinguetá, São Paulo State University, Guaratinguetá, 2017.

This work contains two approaches concerning extra dimensions. In the �rst approach, we

investigate two modi�ed theories of gravitation in arbitrary dimensions, f(R)-Einstein-
Palatini and the Brans-Dicke theory. We have shown that the consideration of the brane

world consistency conditions within the structure of the Brans-Dicke theory in bulk allows

the existence of soft branes in the case of �ve dimensions with an extra compact dimension.

When studying the rules of addition in the Brans-Dicke and f(R)-Einstein-Palatini theory,
we could show that the brane that generates scalar �eld potential is relevant to relax the

gravitational constraints. For the second approach, we study the cosmological evolution

with non-singular branes generated by a scalar �eld in the bulk coupled to gravity. The

speci�c con�guration investigated leads to branes with a warp dependent factor. We

calculated the e¤ective Hubble parameter and the e¤ective scale factor for the Friedmann-

Lemaître-Robertson-Walker-solutions obtained. Spatially-dependent brane solutions have

also been found.

KEY WORDS: Branes. Cosmology. Extra Dimensions.
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Capítulo 1

Introdução

Sabemos que o cenário da teoria das supercordas exige um ambiente com dez di-

mensões. A partir dessas teorias de supercordas (1+9-dimensionais), relacionadas com a

teoria de supergravidade (1+10-dimensionais), emerge uma conjectura, a qual foi desen-

volvida por Horava e Witten [1, 2], popularmente conhecida como Teoria M. À luz da

teoria M, também foram descobertas as p-branas, as quais são entendidas como objetos

estendidos das cordas. Posteriormente, Dai, Leigh e Polchinski em (1989)[3, 4] reportaram

que no cenário da teoria das supercordas, manifesta-se um caso particular das p-branas,

as chamadas D-branas (D indica as condições de contorno de Dirichlet) com N-branas

que possuem N dimensões espaciais.

Na teoria de Horava-Witten os campos de calibre estão con�nados em duas (1 + 9)-

branas localizadas nos pontos �xos de uma topologia dita ser do tipo orbifold, denotada

por S1=Z2. Esse espaço-tempo é denotado por M4 � Y6 � S1=Z2; onde M4 é o espaço-

tempo de Minkowski e Y6 é um espaço (6D) de Calabi-Yau.

A supressão do espaço de Calabi-Yau nos fornece um cenário de (1+3)-branas. Tal

mecanismo nos dá uma teoria efetiva da conjectura de Horava-Witten. Deste modo, nosso

Universo de quatro dimensões pode ser representado por tais branas e, essencialmente,

podemos imaginar que o nosso Universo é descrito por um espaço-tempo 4D que está

mergulhado em outro espaço-tempo 5D (bulk). Tal cenário é conhecido como modelo de

mundos branas.

No �nal do século XX, Lisa Randall e Raman Sundrum propuseram um mecanismo

para elucidar o problema da hierarquia, onde surge uma métrica não fatorizável, com uma

dimensão extra. A existência de um warp factor exponencial que multiplica a porção
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4-dimensional da métrica é responsável por um tipo de hierarquia exponencial. Nesse

ambiente são consideradas duas (3+1)-branas com o raio do orbifold compacto (Modelo

Randall-Sundrum I). Quando o raio de compacti�cação tende ao in�nito, uma das (1+3)-

branas é suprimida, temos o segundo modelo de Randall-Sundrum (RS-II), mais detalhes

podem ser encontrados em [5, 6, 8].

Contrariamente aos modelos de Randall-Sundrum, onde as branas são ditas serem

do tipo singulares, neste trabalho, investigamos duas teorias modi�cadas da gravitação,

Brans-Dicke e f(R)-Einstein-Palatini para cenários de mundo branas suaves geradas por
um campo escalar. Neste contexto, aplicamos as chamadas regras de soma para tais

teorias. Estas regras foram formuladas na referência [7] para o caso de cinco dimensões

na Relatividade Geral e extendida para um número de dimensões arbitrárias na referência

[9]. O principal objetivo desta primeira parte de nosso trabalho é generalizar as regras de

soma em mundo branas para teoria de Brans-Dicke e f(R)-Einstein-Palatini.
Este texto está organizado na seguinte ordem. No capítulo 2, exibimos os obje-

tos matemáticos essenciais utilizados na Relatidade Geral e descrevemos a formulação

Lagrangeana a partir do princípio variacional tradicional (métrico). No Capítulo 3 ap-

resentamos algumas seções para a Cosmologia Relativística, expondo o cenário geral dos

Universos de Friedmann. No Capítulo 4 descrevemos modelos que envolvem dimensões ex-

tras, tais como, modelo de Randall-Sundrum, modelo ADD (Modelo Arkani-Dimopoulos-

Dvali) e o modelo DGP (Dvali-Gabadadze-Porrati. Também, neste capítulo, elaboramos

detalhadamente o formalismo de Shiromizu-Maeda-Sasaki, no qual permite a projeção

das equações de campo do bulk na brana (branas singulares). Nos Capítulos 5 e 6, os

quais são o foco deste trabalho, apresentamos nossa contibuição original. No Capítulo

5 exibimos as regras de soma para cenários de mundo branas, apresentamos a ação e as

equações de campo da teoria de Brans-Dicke e aplicamos as regras de soma à teoria de

Brans-Dicke. Também derivamos as equações de campo no formalismo f(R)-Einstein-
Palatini em dimensões arbitrárias, onde mostramos o mecanismo de cálculo das regras

de soma para branas suaves quando aplicadas ao formalismo f(R)-Einstein-Palatini. O
Capítulo 6 é dedicado à Cosmologia de Branas Suaves (versão distinta da Cosmologia de

Branas singulares). A partir do Ansatz para a métrica no bulk, resolvemos as equações

de campo dependentes do tempo e dependentes do espaço (dimensão extra) através do

método de separação das váriaveis da função warp factor. Diferentemente da maioria

de alguns trabalhos, onde a função warp factor já é dada, nossa função warp factor foi
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encontrada a partir do conjunto de equações da parte espacial. Investigamos os casos em

que a constante de separação das variáveis, pode adquirir valor nulo e não nulo, ou seja,

� = 0 e � 6= 0: Os casos em que a curvatura espacial pode assumir valores nulo e não

nulo, também foram tratados, isto é, para k = 0 e k 6= 0: A partir das soluções advindas
da parte temporal das equações de campo, nós calculamos o fator de escala efetivo e o

parâmetro de Hubble efetivo. No Capítulo 7, são traçadas nossas conclusões.
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Capítulo 2

Relatividade Geral

A teoria da relatividade formulada por Albert Einstein subdivide-se em duas teorias:

Teoria da Relatividade Especial e a Teoria da Relatividade Geral. A relatividade especial

tem sua simetria composta pelo grupo de Poincaré, o qual inclui translações no espaço-

tempo, rotações e os boosts. Essencialmente, a teoria da relatividade especial é uma

teoria de medida, ou seja, correlações observacionais entre observadores em referenciais

inerciais. Tais correlações são implementadas através das transformações de Lorentz. O

espaço vetorial que compõe os eventos relativísticos dessa teoria é o chamado espaço

de Minkowski. Podemos dizer que tais eventos, como por exemplo contração do espaço,

dilatação do tempo e relatividade da simultaneidade, mudaram drasticamente nosso senso

comum com relação ao espaço e ao tempo.

Mais tarde, publicada em 1915, a teoria da relatividade geral trouxe algo ainda mais

impactante, a manifestação da gravitação dever-se-ia dar sob a forma da curvatura do

espaço-tempo. A geometria de fundo passa a ser modelada por uma variedade pseudo-

Riemanniana livre de torção. Se a variedade em questão possui uma conexão com uma

parte antissimétrica, a variedade é dita ser do tipo Riemann-Cartan e a teoria que descreve

o campo gravitacional é chamada teoria de Einstein-Cartan.

Aqui há uma generalização no que diz respeito aos referencias inerciais. Estes, agora,

passam a ser considerados não inerciais. Tais impactos trouxeram previsões importantes

concernentes aos fenômenos gravitacionais, dentre eles podemos citar as previsões de ondas

gravitacionais, buracos negros, redshift gravitacional, etc.

A Teoria da Relatividade Geral (TRG) é a generalização da Teoria da Relatividade

Especial (TRE). O contexto Minkowskiano é ampliado para o contexto de espaços-tempo
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curvos. Um dos fundamentos da TRG é o Princípio de Equivalência, o qual estabelece

que localmente um referencial inercial não acelerado na presença de um campo gravitaci-

onal e um referencial acelerado, mas agora sem um campo gravitacional, são �sicamente

equivalentes.

Dentre as consequências mais importantes da TRG, podemos citar a de�exão da luz

em um campo gravitacional, o redshift gravitacional, a precessão do periélio de Mercúrio

e a previsão de ondas gravitacionais. O redshift gravitacional faz com que o comprimento

de onda dos fótons diminua nas proximidades de um campo gravitacional su�cientemente

forte. O fenômeno da precessão do periélio de Mercúrio, já era estudado pela mecânica

clássica, a qual computava um valor discrepante ao observado [11]. As elipses que de-

signam o movimento dos corpos celestes não são fechadas em virtude das perturbações

de outros planetas, as quais alteram o ponto do periélio (ponto mais próximo do sol),

fazendo assim o periélio precessionar. Mas a questão é que ainda restavam 43" por século

nas previsões da Mecânica Clássica, o que foi interpretado por Einstein como modi�-

cações do espaço-tempo para tal situação. Conceitos mais avançados como singularidades

e estrutura causal [12], também ocorrem como previsões da TRG.

Por volta de 1919, Arthur Stanley Eddington, teve a oportunidade de con�rmar a

teoria da relatividade geral de Einstein a partir de duas expedições, uma em São Tomé e

Príncipe e outra na cidade de Sobral, no Brasil. Vamos nos endereçar agora aos objetos

matemáticos básicos necessários ao estabelecimento da TRG.

2.1 Tensor de Curvatura

O tensor de curvatura, também chamado tensor de Riemann-Christo¤el é de grande

importância na TRG. Quando vetores são transportados paralelamente em um circuito

fechado em uma variedade, eles geralmente sofrem transformações, estas, sendo rela-

cionadas com a curvatura da variedade em questão. O mapeamento local da curvatura é

feito pelo tensor de Riemann.

Seja a derivada covariante de um vetor contravariante

r�V
� = @�V

� + � �
�� V �; (2.1)

onde

� �
�� =

1

2
g��(@� g�� + @� g�� � @�g��) (2.2)
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são os símbolos de Christo¤el. Aplicando novamente a derivada covariante na equação

(2.1), temos

r�r�V
� = @�(@�V

� + � �
�� V �) + � �

�� (@�V
� + � �

�� V �)� � �
�� (@�V

� + � �
�� V �); (2.3)

tal que efetuando-se uma permutação indicial �� � fornece como resultado

r�r�V
� = @�(@�V

� + � �
�� V �) + � �

�� (@�V
� + � �

�� V �)� � �
�� (@�V

� + � �
�� V �): (2.4)

Subtraindo a equação (2.4) da equação (2.3), bem como efetuando as substituições

indiciais necessárias e levando-se em consideração a comutatividade das derivadas parciais

bem como a simetria dos índices inferiores do símbolos de Christo¤el, isto é, � �
�� = � �

�� ,

a expressão rearranjada para o comutador torna-se

[r�;r� ]V
� =

�
@��

�
�� � @��

�
�� + � �

�� �
�

�� � � �
�� �

�
��

�
V �; (2.5)

onde o termo entre parenteses é identi�cado como o tensor de Riemann

R �
��� = @��

�
�� � @��

�
�� + � �

�� �
�

�� � � �
�� �

�
�� : (2.6)

Como podemos notar, o tensor de Riemann aparece como um tensor de quatro índices

(rank-4) e, portanto, de 256 componentes. Mas, devido às propriedades de simetria e

antissimetria, suas componentes se reduzem a 20. Vejamos algumas das propriedades

algébricas do tensor de curvatura

R���� = R �
��� g�� :

(A) Simetria:

R���� = R���� : (2.7)

(B) Antissimetria:

R���� = �R���� = �R���� = R����: (2.8)

(C) Ciclicidade:

R���� +R���� +R���� = 0: (2.9)

Podemos agora, por uma contração do tensor de Riemann, obter um tensor de se-

gunda ordem que porta um número de 10 componentes independentes no caso mais geral,

chamado tensor de Ricci

R�� = R �
��� : (2.10)
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A propriedade de simetria em (A) mostra que o tensor de Ricci é simétrico, isto é,

R�� = R��; (2.11)

tal que, em termos das componentes da conexão, temos

R�� = R �
��� = @��

�
�� � @��

�
�� + � �

�� �
�

�� � � �
�� �

�
�� : (2.12)

A propriedade de antissimetria em (B) assegura-nos que R�� é o único tensor de rank

2 que pode ser formado a partir do tensor de Riemann, a menos de um sinal arbitrário.

Também, podemos contrair o tensor de Ricci R�� e construir o escalar de Ricci, também

denominado escalar de curvatura, dado por

R = g��R��: (2.13)

O escalar de Ricci especi�ca um número real em cada ponto da variedade sob consideração,

determinando a curvatura intrínseca da variedade nesse ponto.

O tensor de curvatura também obedece algumas identidades diferenciais, a saber

r�R���� =
1

2

@

@x�

�
@2g��
@x�@x�

� @2g��
@x�@x�

� @2g��
@x�@x�

� @2g��
@x�@x�

�
: (2.14)

Permutando-se �; � e � ciclicamente, obtemos as identidades de Bianchi

r�R���� +r�R���� +r�R���� = 0: (2.15)

Agora, posto que a conexão é compatível com a métrica, isto é, r�g
�� = 0; e fazendo a

contração de � com � (2.15), chegamos a

r�R�� �r�R�� +r�R
�

��� = 0: (2.16)

Por �m, efetuando-se a contração de � com �, temos

r�R�r�R
�

� �r�R
�

� = 0; (2.17)

de modo que, realizando substituições indiciais adequadas, e após simples manipulações

obtemos as identidades contraídas de Bianchi

r�

�
R�� � 1

2
g��R

�
= 0: (2.18)
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Dada uma fenomenologia gravitacional com fontes, as equações de campo da TRG re-

querem um objeto matemático que carrega informações sobre matéria e energia englobadas

em um determinado espaço-tempo. O �uxo de quadrimomento P � que atravessa uma su-

perfície x� constante é representado pelo tensor energia-momento (denotado por T ��).

Outra de�nição do tensor energia-momento será dada em termos da derivada funcional

da ação para a matéria com respeito a métrica, dada pela equação (2.36).

De um modo geral, o tensor energia-momento contém, por exemplo, componentes

de um �uido que pode produzir pressão, entropia, viscosidade, etc. O �uido perfeito

com densidade de energia �, pressão p e quadrivetor velocidade u� = dx�=d� que em um

sistema de coordenadas comóveis é dado por u� = (1; 0; 0; 0), é representado por

T �� = (�+ p)u�u� + pg�� ; (2.19)

onde a componente T 00 é a densidade de energia, T 0i representa a densidade de momento

e T ij são as componentes do �uxo de momento. O tensor energia-momento é simétrico e

obedece a seguinte lei de conservação:

r�T
�� = 0: (2.20)

2.2 Formulação lagrangiana e equações de campo

O desenvolvimento formal que leva às equações de campo de Einstein pode ser elabo-

rado através de uma formulação lagrangiana. Daí, tradicionalmente, iniciam-se os proce-

dimentos com uma ação apropriada a �m de extrair as equações de campo que descrevem

a dinâmica da teoria em questão.

No caso da gravitação de Einstein, o funcional adotado é o de Einstein-Hilbert. Em

adição à ação gravitacional, temos a ação para a matéria, de modo que a ação total é

S = SEH + SM : (2.21)

Agora, consideramos uma região espaço-temporal 4-dimensional limitada 
 onde os cam-

pos de interesse são de�nidos, e reescrevemos S em termos das densidades de lagrangianas

individuais

S =
1

2�

Z



p
�gRd4x+

Z



Lm( ; g��)
p
�gd4x; (2.22)
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onde � = 8�G, c = 1 e
p�gd4x é o elemento invariante de volume e Lm é a densidade de

lagrangiana da matéria. Segundo o princípio da mínima ação, S possui um extremo, isto

é �S = 0:

Primeiramente, iremos efetuar as variações na ação de Einstein-Hilbert, ou seja no

primeiro termo da expressão (2.22). Temos

�SEH =
1

2�

Z



(
p
�gg��d4x�R�� + d4x

p
�gR���g�� + d4xR�

p
�g): (2.23)

A variação do tensor de Ricci �R�� em termos das conexões é dada por

�R�� = @�����
� � @�����

� + ����
����

� + ���
�����

� � ����
����

� � ���������: (2.24)

Esta última expressão pode ser reescrita em termos de derivadas covariantes, pois a vari-

ação ����� é a diferença de duas conexões. Tal diferença possui um caráter tensorial, e

podemos implementar sua derivada covariante como segue

r�(����
�) = @�����

� + �k�
�����

k � ���k��k�� � ���k���k�: (2.25)

Assim, a variação �R�� pode ser rearranjada como

�R�� = r�(����
�)�r�(����

�); (2.26)

e a variação �
p�g é obtida a partir da seguinte propriedade:

�
p
�g = �1

2
g��
p
�g�g�� : (2.27)

Inserindo-se (2.26) e (2.27) na expressão (2.23), vem

�SEH =
1

2�

Z



(
p
�gg��d4x[r�(����

�)�r�(����
�)] +

Z



d4x
p
�g�g��

�
R�� �

1

2
Rg��

�
;

(2.28)

tal que rearranjando-se o primeiro termo de (2.28) e levando-se em conta que r�g�� = 0,

obtem-se

�SEH =
1

2�

Z



(
p
�gd4x[r�(g

������
�)�r�(g

������
�)]+

Z



d4x
p
�g�g��

�
R�� �

1

2
Rg��

�
:

(2.29)

Após realizar-se uma troca indicial �$ � no segundo termo da primeira integral acima,

obtemos

�SEH =
1

2�

Z



(
p
�gd4xr�(g

������
� � g������

�) +

Z



d4x
p
�g�g��

�
R�� �

1

2
Rg��

�
:

(2.30)
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A primeira integral de (2.30) pode ser calculada a partir do seguinte teorema de Gauss

covariante: Z



d4x
p
�gr�u

� =

I
@


d3x�
p
�gu�; (2.31)

onde @
 é a fronteira de 
, e
p�gd3x� é um elemento de hipersuperfície covariante.

Portanto,

�SEH =

I
@


1

2�

p
�g(g������� � g������

�)d3x� +
1

2�

Z



d4x
p
�g�g��

�
R�� �

1

2
Rg��

�
:

(2.32)

Posto que a integral de superfície se anula na fronteira, a expressão (2.32) se reduz a

�SEH =
1

2�

Z



�
R�� �

1

2
Rg��

�
d4x
p
�g�g�� : (2.33)

Consideramos, a seguir, a variação da ação para a matéria

�SM =

Z



d4x�(Lm
p
�g); (2.34)

=

Z



d4x

�
@Lm
@g��

�g��
p
�g + Lm�

p
�g
�
;

=

Z



d4x
p
�g
�
@Lm
@g��

� 1
2
Lmg��

�
�g�� : (2.35)

Como usualmente, de�ne-se o tensor energia-momento

T�� � 2
@Lm
@g��

� Lmg�� =
2p�g

�SM
�g��

; (2.36)

tal que

�SM =
1

2

Z



d4x
p
�gT���g�� : (2.37)

Então, aplicando agora o princípio da mínima ação para a ação total

�S = �SEH + �SM = 0; (2.38)

escrevemos

1

2�

Z



�
R�� �

1

2
Rg��

�
d4x
p
�g�g�� + 1

2

Z



d4x
p
�gT���g�� = 0: (2.39)

Para variações arbitrárias (�g��), �nalmente obtemos as equações de Einstein

G�� � R�� �
1

2
Rg�� = ��T�� ; (2.40)
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onde G�� é o tensor de Einstein e T�� é o tensor energia-momento, como antes.

As equações dadas em (2.40) representam quantitativamente o efeito da gravitação.

A geometria do espaço-tempo é determinada pela distribuição de matéria-energia. O

tensor métrico g�� , na sua forma mais geral, possui dez componentes independentes, o

que proporciona um número de dez equações diferenciais parciais de segunda ordem (não-

lineares e hiperbólicas) para a solução dos potenciais gravitacionais g�� .
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Capítulo 3

Cosmologia Relativística

O desenvolvimento da cosmologia é sem dúvida um dos maiores triunfos cientí�cos

do século XXI. Inicialmente, a cosmologia não era tratada cientí�camente. Mais tarde,

com o advento fervoroso da teoria do Big Bang, já tinhamos um cenário seguro para a

descrição cósmica. Os telescópios ultra modernos, como o Telescópio Espacial Hubble,

são capazes de medir a luz de galáxias distantes o su�ciente a ponto de incluir a maior

parte da vida do Universo. A radiação cósmica de fundo, entendida como nosso fóssil

cósmico, quando o universo era quente, denso e aleatório, é exaustivamente detectada e

suas propriedades são rigorosamente analisadas. Atualmente, nosso Universo encontra-se

em uma fase de violenta expansão acelerada. Com a evolução da precisão do aparato

observacional, conseguimos elaborar o Modelo Cosmológico Padrão, um consenso quase

universal entre os cosmólogos.

No campos da cosmologia teórica e observacional, são estudadas as propriedades

físicas do Universo, como por exemplo, luminosidade, densidade, temperatura, estru-

tura química de objetos cósmicos, tais como estrelas, galáxias, quasares e suas interações

através do meio interestelar, abrangendo mecânica, mecânica estatística, termodinâmica,

eletromagnetismo, relatividade, física de partículas, física de altas energias, física nuclear,

etc, onde a relatividade geral possui em grande parte o capital matemático (tensorial)

para descrever o Universo como um todo, ou seja, sua origem, passado, evolução, es-

trutura e, audaciosamente, seu futuro. Portanto, é esse arcabouço teórico que contém

algumas respostas para elucidar-nos sobre os mistérios do Universo. Em grandes escalas,

nosso universo é aproximadamente plano, essa vastidão do espaço e do tempo, nos permite

desprezar interações eletromagnéticas e considerarmos apenas às interações gravitacionais,
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daí o papel central da relatividade geral.

A formulação do estudo teórico e observacional do Universo desenvolvem-se sob

um princípio que nos traz fortes impactos, eis o príncipio: Em escalas su�cientementes

grandes, as propriedades do universo são as mesmas para todos os observadores, isto é, o

universo é homogêneo e isotrópico. Basicamente, os três pilares em que a cosmologia está

assentada são consubstanciados através do modelo de Friedmann-Lemaître-Robertson-

Walker (FLRW), no qual incluem-se os Universos de Friedmann, Equações de Friedmann

e a Lei de Hubble-Lemaître.

Os gregos antigos, em um modelo desenvolvido por Ptolemeu de Alexandria, acredi-

tavam que a localização da Terra poderia ocupar o centro do cosmos, a qual seria circun-

dada pela Lua, o Sol e os planetas. As estrelas "�xas"estariam ainda mais longíquas. Uma

complexa combinação de movimentos circulares, os chamados Epiciclos de Ptolomeu, foi

concebida para explicar os movimentos dos planetas. Esse modelo não foi até o ínicio dos

anos de 1500, quando Copérnico declarou vigorosamente a visão, iniciada há quase dois

mil anos por Aristarco, na qual acreditava-se que a Terra e os outros planetas se moviam

em torno do Sol. Embora Copérnico seja creditado por remover a visão antropocêntrica

do Universo, que colocou a Terra no seu centro, ele de fato acreditava que o Sol estava no

centro.

A teoria da gravidade de Newton colocou o que tinha sido uma ciência empírica

sobre uma base sólida, tal base foi a descoberta de Kepler, onde os planetas moviam-

se em órbitas elípticas. Acreditava que as estrelas também eram sóis muito parecidos

aos nossos, distribuídos uniformemente por toda parte em um espaço in�nito, em uma

con�guração estática.

Em 1785, tornou-se cada vez mais compreendido que as estrelas não são distribuí-

das uniformemente, mas estão localizadas em uma montagem em forma de disco, agora

conhecida como a Via Láctea, nossa galáxia. Herschel foi capaz de identi�car a estrutura

do disco, [13], mas suas observações não eram perfeitas e ele erroneamente concluíu que

o sistema solar estava no centro da via láctea. Somente no início dos anos 1900 foi este

convincentemente refutado por Shapley, que percebeu que estamos a dois terços do raio

longe do centro da galáxia. Mesmo assim, ele aparentemente ainda acreditava que nossa

galáxia estava no centro do Universo [14].

Nas próximas seções vamos nos endereçar a diversos elementos introdutórios, e im-

prescindíveis, no estudo de cosmologia.
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3.1 Radiação Cósmica de Fundo

Prevista inicialmente por Ralph Alpher, Robert Herman e George Gamow em 1948

e detectada pela primeira vez quase que por acidente em 1965 por Arno Penzias e Robert

Woodrow Wilson do Bell Telephone Laboratory em New Jersey [15], a radiação cósmica

de fundo em microondas (RCFM) teve papel fundamental na sustentação da teoria do

Big Bang. Robert Dicke e Dave Wilkinson da equipe WMAP reportaram o signi�cado

cosmológico da (RCFM) [16].

A observação crucial que in�uenciou o debate con�ituoso entre a teoria do Big Bang

e o Universo Estacionário, foi a detecção da radiação cósmica de fundo de microondas,

esta, manter-se-ia a favor da teoria do Big Bang. Esta radiação atinge a Terra em todas

as direções, e agora é conhecida por assumir a forma de um corpo negro com temperatura

T0 = 2:725� 0:001 K:

Embora essa radiação, apresente alto grau isotrópico no espaço, algumas anisotropias

foram detectadas em temperaturas da ordem de 10�K [17, 18, 19]. Combinando a Lei de

Stefan-Boltzmann

�rad � �radc
2 =

�2k4BT
4

15~
; (3.1)

com a equação �rad _ a�4, obtemos

T _ 1

a
: (3.2)

Isto signi�ca que o Universo esfria-se à medida que se expande. Hoje, ele possui uma

temperatura de cerca de 3K, logo, em épocas anteriores, o Universo deve ter sido muito

mais quente.

À medida que o Universo esfriava, os fótons já não portavam energia su�ciente para

ionizar os átomos. Assim, os primeiros átomos de hidrogênio foram se formando. En-

quanto o universo se expandia, cessava-se a interação de fótons com a matéria, deste

modo, os fótons passaram a se propagar livremente pelo espaço, processo que denomina-

se desacoplamento. Recombinação refere-se à época em que os elétrons juntaram-se aos

núcleos para a formação dos átomos.
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3.2 Parâmetro de Hubble e parâmetro de desaceler-

ação

Em uma notação comum, podemos escrever o presente momento cósmico, ou época

atual, como t0. Dessa forma, os fótons recebidos hoje de galáxias distantes são recebidos

em t0. Se a galáxia emissora é próxima e emite um fóton no tempo cósmico t, podemos

escrever t = t0 � �t, onde �t� t0. Então, podemos expandir o fator de escala a(t) como

uma série de potências em torno da época atual t0 e obter

a(t) = a[t0 � (t0 � t)]

= a(t0)� (t0 � t)
:
a(t) +

1

2
(t0 � t)2

::
a(t0)� :::

= a(t0)[1� (t0 � t)H(t0)�
1

2
(t0 � t)2q(t0)H

2(t0)� :::]; (3.3)

onde H(t) é o parâmetro de Hubble e q(t) é o parâmetro de desaceleração e, são dados

através das seguintes relações

H(t) �
:
a(t)

a(t)
;

q(t) �
::
a(t)a(t)
:
a
2
(t)

; (3.4)

onde o ponto corresponde a uma diferenciação com respeito ao tempo cósmico t. Deve-se

notar que essas de�nições são válidas para qualquer tempo cósmico. Os valores para a

época atual destes parâmetros são usualmente denotados por H0 = H(t0) e q0 = q(t0):

Usando as de�nições dadas em (3.4) , podemos escrever o redshift em termos de t�t0
(lookback time)1 como

z =
1

a(t)
� 1 = 1

a(t0)

�
1� (t0 � t)H0 �

1

2
(t0 � t)2q0H2

0 � :::

� � 1 (3.5)

Vamos encontrar a série 1=a(t) considerando que a série possui termos até segunda

ordem
1

a(t)
� C1 + C2(t0 � t) + C3(t0 � t)2; (3.6)

desse modo

1 � a(t)
�
C1 + C2(t0 � t) + C3(t0 � t)2

�
; (3.7)

1�lookback time�, tempo que a luz viajou desde o momento que foi emitida até o momento da detecção.
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e, substituindo a(t) na expressão (3.7), tem-se

1 � a(t0)[1� (t0 � t)H(t0)�
1

2
(t0 � t)2q(t0)H

2(t0)� :::]

�
�
C1 + C2(t0 � t) + C3(t0 � t)2

�
: (3.8)

Realizando as operações de multiplicação adequadas e desprezando os termos de ordem

maior que (t0 � t)2 obtemos

1 � a(t0)[C1+(C2+C1H(t0))(t� t0)+
�
C3 + C2H(t0)�

C1
2
q(t0)H

2(t0)

�
(t0� t)2]: (3.9)

Comparando os termos da equação (3.9)

C1 = 1;

(C2 + C1H(t0)) = 0 =) C2 = �H(t0);

C3 + C2H(t0)�
C1
2
q(t0)H

2(t0) = 0 =) C3 = H2(t0) +
q(t0)

2
H2(t0): (3.10)

Daí, �namente obtemos a expressão para 1=a(t) :

1

a(t)
� 1�H(t0)(t� t0) +

�
1 +

1

2
q(t0)

�
H2(t0)(t0 � t)2: (3.11)

Inserindo a equação (3.11) em (3.5), chega-se a uma expressão para o redshift

z = (t0 � t)H0 + (t0 � t)2
�
1 +

1

2
q0

�
H2
0 + ::: (3.12)

No entanto, o lookback time não é uma quantidade observável, então é mais útil inverter

a série de potência acima para obter o termo (t0 � t), já que o red shift é uma grandeza

mensurável

t0 � t = H�1
0 z �H�1

0

�
1 +

1

2
q0

�
z2 + ::: . (3.13)

3.3 Modelo de Friedmann-Robertson-Walker-Lemaître

Os dois princípios básicos utilizados para descrever a Cosmologia são: (i) a dis-

tribuição de matéria no Universo é homogênea e isotrópica em grande escala; (ii) em

grande escala, a estrutura geométrica do universo é determinada por fenômenos gravita-

cionais, os quais são explicados pela teoria da gravitação Einsteiniana, segundo a qual,
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o princípio cosmológico descrito em (i) descreve a cinemática do universo enquanto que,

em (ii), determina a dinâmica.

No modelo de Friedmann-Robertson-Walker-Lemaître (FRWL) utiliza-se umamétrica

que é uma solução exata das equações de Einstein (2.40), e que descreve um Universo ho-

mogêneo e isotrópico num estágio de expansão ou contração. Consideremos o elemento

de linha

ds2 = g��dx
�dx� : (3.14)

A métrica mais geral que satisfaz as condições de um universo homogêneo e isotrópico é

da forma

ds2 = �dt2 + a2(t)

�
dr2

1� kr2
+ r2(d�2 + sen2�d�2)

�
; (3.15)

a qual é escrita em um sistema de coordenadas comóveis (sistema de coordenadas que

acompanha a expansão ou contração do universo). As componentes espaciais também

dependem do tempo cósmico t devido ao fato de o fator de escala a(t) é uma função

arbitrária de t. O parâmetro k pode assumir os valores k = 0; �1. Se k = 0, a métrica
representa um espaço plano, para k > 0 o espaço é esférico e se k < 0 o espaço é dito ser

hiperbólico. Tal métrica, ainda pode ser escrita de uma maneira conveniente da seguinte

forma

ds2 = �dt2 + a2(t)
�
d�2 + f 2k (�)(d�

2 + sen2�d�2)
�
; (3.16)

onde 8>><>>:
sen�; k = +1;

fk(�) = �; k = 0;

senh�; k = �1:

9>>=>>; : (3.17)

3.4 Equações de Friedmann

As componentes não-nulas do símbolo de Christo¤el, computadas a partir de (2.2) e

com auxílio de (3.15), são

� t
rr = a

:
a=1� kr2; � t

�� = a
:
ar2sen2�; � �

�� = � �
�� = cot g�:

� �
r� = � �

r� = 1=r; � �
�� = �sen� cos � � r

�� = �r(1� kr2);

� r
rt = � �

t� = � �
t� =

:
a=a; � r

�� = �r(1� kr2)sen2�; � t
�� = a

:
ar2: (3.18)

17



A computação dos objetos geométricos nos dá

Rtt = 3

::
a

a
;

Rrr =
a
::
a2

:
a+ 2k

1� kr2
;

R�� = r2(a
::
a+ 2

:
a+ 2k)

R�� = r2(a
::
a+ 2

:
a+ 2k)sen2�; (3.19)

com o correspondente escalar de Ricci sendo expresso por

R = 6

 
::
a

a
+

:
a
2

a2
+
k

a2

!
: (3.20)

Iremos considerar um �uido perfeito como fonte nas equações de campo. Tal consid-

eração é sustentada pelo princípio cosmológico mencionado em (i). Neste caso, o tensor

energia-momento tem a seguinte representação:

T �� =

0BBBB@
�� 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

1CCCCA ; (3.21)

com o traço dado por

T = g��T
�� = T �� = ��+ 3p; (3.22)

onde � e p são a densidade de energia e pressão do �uido, respectivamente. Então,

reescrevendo a equação de Einstein como

R�� = 8�G

�
T�� �

1

2
g��T

�
; (3.23)

a equação �� = 00 fornece

�3
::
a

a
= 4�G (�� 3p) (3.24)

enquanto que as equações �� = ij leva a
::
a

a
+ 2

� :
a

a

�2
+ 2

k

a2
= 4�G (�� p) : (3.25)

Podemos utilizar a equação (3.24) para eliminar a derivada segunda em (3.25). Desse

modo,
::
a

a
= �4�G

3
(�+ 3p) (3.26)
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e

H2 �
� :
a

a

�2
=
8�G�

3
� k

a2
; (3.27)

que são conhecidas como equações de Friedmann, ondeH =
:
a=a é o parâmetro de Hubble.

O valor atual de H [20] é dado por

H0 = 100 h Km sec
�1Mpc�1 = 2; 1332 h � 10�42GeV; (3.28)

sendo h = 0; 72� 0; 08 a medida da incerteza de H0.

O tensor energia-momento é conservado devido às identidades de Bianchi, o que nos

leva à equação da continuidade

:
�+ 3H(p+ �) = 0: (3.29)

Eliminando o termo k=a2 das equações (3.27) e (3.26) e, com auxílio de (3.29), obtemos

::
a

a
= �4�G

3
(�+ 3p) :

Podemos notar que a expansão acelerada ocorre para �+3p < 0: Reescrevemos a equação

(3.27) na forma


(t)� 1 = k

(aH0)2
; (3.30)

onde 
(t) é o parâmetro de densidade, dado por


(t) =
�(t)

�0c
; (3.31)

e �c é a densidade crítica (k = 0), a qual é expressa pela seguinte equação:

�0c =
3H2

0

8�G
: (3.32)

A distribuição de matéria determina a geometria espacial de nosso Universo. Por-

tanto, podemos estabelecer as seguintes relações:


 > 1 ou � > �c ! k = +1;


 = 1 ou � = �c ! k = 0;


 < 1 ou � < �c ! k = �1: (3.33)

Algumas observações tem mostrado que em grande escala, o Universo possui uma geome-

tria espacialmente plana (
 ' 1) [21].
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Outro parâmetro importante em cosmologia é o chamado parâmetro de desaceleração

q(t), de�nido por

q(t) = � 1

H2

::
a

a
= �a

::
a
:
a
2 : (3.34)

Um valor negativo de q era previsto devido a expansão desacelerada do Universo, domi-

nada apenas pela matéria. Atualmente o valor de q é positivo, indicando uma expansão

acelerada do Universo.

Pela conservação do tensor energia-momento

r�T�� = 0 = �@0�� 3
:
a

a
(�+ p); (3.35)

e considerando uma equação de estado do tipo barotrópica

p = w�; (3.36)

na qual w é uma constante, podemos encontrar facilmente a equação do �uido

:
�

�
= �3(1 + w)

:
a

a
; (3.37)

que é uma equação diferencial ordinária para � a qual, por integração, resulta em

� _ a�3(1+w): (3.38)

Exemplos tradicionais para o �uido cósmico são matéria, radiação e energia escura. Para

w = 0 a era do Universo é dominada por matéria. De acordo com a equação (3.38), a

densidade de energia da matéria é

�mat _ a�3: (3.39)

Para o caso w = 1=3 e, a densidade de energia da radiação é expressa por

�rad _ a�4: (3.40)

O caso w = �1 representa a fase atual acelerada de nosso Universo, dominada pela energia
escura. Logo, têm-se �vac = cte.
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3.5 Idade do Universo

As equações cosmológicas permitem derivar uma expressão muito útil para estimar a

idade t0 de nosso Universo com o parâmetro de Hubble H0 e os parâmetros de densidade


m e 
�:

Primeiramente, vamos reescrever a equação de componente 00 da solução de FRWL� :
a

a

�2
= � k

a2
� 8�G

3
�� �

3
: (3.41)

Multiplicando a equação acima de ambos os lados por (a=a0)
2 �camos com� :

a

a0

�2
= � k

a20
� 8�G

3
(�m + �r)

a2

a20
� �
3

a2

a20
; (3.42)

onde �m = �m0 (a0=a)
3 e �r = �r0 (a0=a)

4. Também podemos reescrever os termos do lado

direito da equação da sequinte maneira

�8�G
3
�m0 = H2

0
m ; � 8�G
3
�r0 = H2

0
r ;
�

3
= H2

0
�; � k

a20
= H2

0
k; (3.43)

lembrando que o parâmetro de densidade dos constituintes é expresso pela relação


i (t) =
�i(t)

�c
(3.44)

com �c = 3H
2
0=8�G sendo a densidade crítica do Universo. Desse modo a equação (3.42)

torna-se � :
a

a0

�2
= H2

0
k +H2
0
m

a0
a
+H2

0
r
a20
a2
+H2

0
�
a2

a20
(3.45)

e ainda usando as relações

a

a0
=

1

z + 1
e

:
a

a0
= �

:
z

(z + 1)2
; (3.46)

vem

�dz
dt
= (z + 1)2H0[
k + (z + 1)
m + (z + 1)2
r + (z + 1)�2
�]

�1=2: (3.47)

Nós resolvemos a equação (3.47) para dt e depois integramos, logo

t0 =
1

H0

Z 1

0

dz

(1 + z)2[
k + (1 + z)3
m + (1 + z)4
r + 
�]1=2
: (3.48)
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No caso de um universo crítico com 
� = 0 e 
r � 
m = 1 , temos

t0 =
1

H0

Z 1

0

dz

(1 + z)5=2
=

�
1

H0

2

3
(1 + z)�3=2

�1
0

=
2

3H0

: (3.49)

Outra maneira de levar a cabo tal cálculo sobre a idade do Universo é calcular a

integral com auxílio dos dados observacionais. Note que 
k + 
m + 
r + 
� = 1 e


r � 10�5 é muito pequeno para in�uenciar o resultado. Uma boa aproximação consiste
na seguinte expressão

H0t0 =

Z 1

0

dz

(1 + z)[(1 + z)(1� 
m � 
�) + (1 + z)3
m + 
�]1=2
: (3.50)

Com os valores experimentais do WMAP [22] para 
m e 
� em 3.48, obtemos

H0t0 = 0; 995� 0; 15; (3.51)

com H0 = h= (0; 97776� 1010anos), o qual fornece uma idade para nosso Universo de
t0 = 1; 37� 1010 anos, isto é, ' 13; 7 bilhões de anos.

3.6 Oscilações Acústicas de Bárions

Antes da recombinação e desacoplamento, nosso Universo era constituído de um

plasma quente composto basicamente por fótons e bárions, os quais estavam fortemente

acoplados em um único �uido. Se considerarmos uma única densidade de perturbação

esférica ao longo da direção radial desse acoplamento, ela irá se propagar como uma onda

acústica com uma velocidade dada por

cs =
cs

3

�
1 +

3�b
4�


� ; (3.52)

onde �b é a densidade de bárions e �
 é a densidade de fótons.

Na recombinação o cosmo se torna neutro. Deste modo, os fótons não possuem

mais energia su�ciente para ionizar os átomos e, portanto, a pressão de radiação nos

bárions é removida. A onda bariônica é estacionária, enquanto os fótons propagam-se

livremente representando o que hoje conhecemos por radiação cósmica de fundo. O raio

característico da casca esférica formado quando a onda bariônica é congelada é dado na

distribuição dos bárions como um excesso de densidade (sobredensidade). Os bárions e
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matéria escura interagem através da gravidade e então a matéria escura também irá se

aglomerar nesta escala. Portanto, existe um aumento da probabilidade de uma galáxia

se formar em algum ponto de alta densidade da onda bariônica congelada para ambos os

lados da casca esférica.

A Figura 1 [23] mostra o per�l de massa radial em função do raio comóvel, as per-

turbações na matéria escura (curva preta), bárions (curva azul), fótons (curva vermelha)

e neutrinos (curva verde) evoluem a partir do início dos tempos (z = 6824) até um longo

período após o desacoplamento (z = 10).

Inicialmente a perturbação de densidade se propaga através dos fótons e bárions

como um pulso único, conforme a expansão e resfriamento do Universo, os neutrinos são

os primeiros a se desacoplarem devido a sua baixa interação gravitacional bem como sua

baixa seção de choque.

Como sabemos, a matéria escura interage apenas gravitacionalmente e, portanto sua

perturbação �ca atrás do plasma fortemente acoplado. Dizemos então que o per�l de

matéria escura é congelado. Nesse processo, mais matéria escura se agrega ao centro da

perturbação aumentando o per�l de massa da matéria escura. Com a diminuição da tem-

peratura, a pressão de radiação que existia sobre os bárions é suprimida. Deste modo, a

perturbação sobre os bárions é estacionada. Após certo tempo, restam duas sobredensi-

dades, matéria escura e matéria barionica, uma ao redor do centro da perturbação inicial

e outra a um raio de � 150 Mpc (1 parsec � 3; 08� 1013 km), respectivamente.
Depois de um longo tempo as duas regiões de sobredensidade tendem a se misturar

devido a interação do setor gravitacional. Podemos ver como essa interação afeta o pico,

isto é, enquanto a matéria escura arrasta os bárions próximo ao pico de origem, os bárions

continuam puxando a matéria escura próximo ao pico endereçado em 150Mpc. Esta

distância também é chamada de horizonte acústico.

A escala s é geralmente próxima do horizonte acústico, a distância comóvel que uma

onda sonora poderia ter viajado no �uido fotôn-bariônico até o desacoplamento, depende

da densidade de bárions e fótons via

s =

Z 1

0

cs
H(z)

=
1p

mH2

0

2cp
3zrecRrec

ln

"p
1 +Rrec +

p
Rrec +Req

1 +
p
Rrec

#
; (3.53)

onde R = �b=�
 / 
2bh(1 + z), zrec = 
m=
rad é o redshift da equipartição matéria-

radiação e "rec"refere-se à recombinação. Os fortes vínculos das medidas de radiação

cósmica de fundo entre as densidades de bárions e fótons no desacoplamento nos possibilita
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calcular o horizonte acústico, 146:8 � 1:8Mpc [24]. Por conseguinte, esta escala é, em si

mesma, uma excelente régua padronizável, desde que se possa medir 
b com alta precisão

bem como os componentes de radiação exótica no ínicio do Universo, ou seja, o redshift

de equipartição.

Naturalmente, o universo primitivo foi permeado por muitas dessas ondas acústicas

esféricas e, portanto, a distribuição de densidade é uma superposição linear das ondas

sonoras de pequena amplitude.

3.7 Aceleração Cósmica

Uma componente de energia escura é provavelmente responsável pela atual fase de

aceleração do nosso Universo [25, 26]. A candidata mais simples para a energia escura é

a chamada constante cosmológica � cuja equação de estado é wDE = �1. Se a constante
cosmológica origina-se de uma energia do vácuo da física de partículas, a sua escala de

energia é signi�cativamente maior do que a densidade de energia escura atualmente, ou

seja, �0DE ' 10�47GeV . Deste modo, devemos encontrar algum mecanismo para obter

um valor pequeno para � que seja coerente com as observações. Possivelmente, um outro

candidato mais atraente do que a constante cosmológica para a energia escura, é um

campo escalar (quintessência), que pode ser um partícula fundamental ou uma partícula

composta. Dentro do contexto da teoria de campos e física de partículas é interessante

interpretar a energia escura como algum tipo de partícula que interage com as partículas

do modelo padrão muito fracamente. A fraqueza da interação é necessária, uma vez que

as partículas de energia escura não foram produzidas nos aceleradores e também, porque

a energia escura não se decompôs em campos mais leves, por exemplo campos sem massa,

tais como o fóton.

Dentre outros modelos que envolvem campo escalar para descrever energia escura, são

considerados a K-essência [27, 28], campos taquiônicos [29, 30, 31, 32], campos fantasmas

(campo escalar com sinal negativo no termo cinético) [33, 34, 35], gás de Chaplying [36, 37]

ou a combinação de quintessência com um campo fantasma em um modelo uni�cado

chamado quintom [38, 39, 40, 41].

A dark energy (enegia escura), como foi denomidada, revela uma nova física exótica.

A energia escura distingui-se da matéria ordinária, no que diz respeito a uma pressão

negativa que emerge em tal cenário, cuja equação de estado obedece wDE = �1.
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Dados observacionais independentes como, SN IA, CMB (Cosmic Microwave Back-

ground) e oscilações acústicas de Bárions têm con�rmado que cerca de 70 % da densidade

de energia atual do Universo consiste de energia escura.
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3.8 Distância de Luminosidade

Para investigar o comportamento de supernovas, utilizamos um parametro impor-

tante em cosmologia, chamado redshift (desvio para o vermelho). A emissão de luz de

um objeto estelar é desviada para o vermelho, devido a expansão do Universo. O com-

primento de onda � aumenta proporcionalmente ao fator de escala a, cujo efeito pode ser

relacionado com o redshift

1 + z =
�0
�
=
a0
a
; (3.54)

onde z = (�0 � �) =� e os subesctritos zero denota as quantidades dadas na epóca atual.

Outro conceito importante relacionado com as ferramentas observacionas é a de�nição

de distâncias cosmológicas. Existem muitas maneiras de se medir distâncias em um Uni-

verso em expansão, por exemplo, distância comóvel, a qual se mantém inalterada com a

evolução do Universo.

Uma forma alternativa para se de�nir uma distância é através da luminosidade de

um objeto estelar, a distância dL, conhecida como uma distância luminosidade. Tal

quantidade desempenha uma papel um crucial nas observação de supernovas.

Em um espaço-tempo de Minkowski, a luminosidade absoluta Lf da fonte e o �uxo

de energia F a uma distância d da fonte, estão relacionados através da seguinte expressão:

F = Lf
4�d2

; (3.55)

a qual podemos generalizar para um Universo em expansão, obtendo a distância de lumi-

nosidade expressa por

d2L =
Lf
4�F : (3.56)

As fontes são conhecidas como Velas Padronizáveis, cujos exemplos mais conhecidos destas

são as chamadas Cefeidas e Supernovas tipo IA, com luminosidades de alta magnitude.

Vamos considerar um objeto com luminosidade absoluta Lf localizado em uma dis-

tância de coordenada �f de um observador em �0 : A energia da luz emitida de um objeto

com o intervalo de tempo �t1 é denotado como �E1, enquanto que a energia que chega

para a esfera com raio �s é escrita como �E0. Podemos notar que �E1 e �E0 são pro-

porcionais às frequências da luz em � = �f e � = 0, respectivamente, isto é, �E1 _ �1 e

�E0 _ �0. Deste modo, as luminosidades Lf e L0 são dadas por

Lf =
�E1
�t1

; L0 =
�E0
�t0

: (3.57)
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A velocidade da luz é dada por c = �1�1 = �0�0 , onde �1 e �0 são os comprimentos

de onda em � = �f e � = 0: Então a partir da equação (3.54), temos

�0
�1
=
�1
�0
=
�t0
�t1

=
�E1
�E0

= 1 + z; (3.58)

onde usamos �0�t0 = �1�t1: Combinando a equação (3.57) e (3.58), obtemos

Lf = L0(1 + z)
2: (3.59)

Os fótons viajam sobre geodésicas radiais nulas (ds2 = dt2 � a2(t)d�2 = 0):Então

�f =

Z �f

0

d� =

Z t0

t1

dt

a(t)
: (3.60)

Por outro lado, a partir da equação (3.54) vemos que

dz

dt
= �H(1 + z): (3.61)

Então, substituindo dt = �dz=H(1 + z) da equação (3.61) na equação (3.60) chegamos a

�f =
1

a0H0

Z z

0

dz

h(z)
; (3.62)

onde h(z) = H(z)=H0:

A partir da métrica dada em (3.15) podemos encontrar que a área da esfera em t = t0

é dada por S = 4�(a0fK(�f ))
2. Daí, o �uxo de energia observado é

F = L0
4�(a0fK(�f ))

2
: (3.63)

Utilizando as equações (3.55), (3.59) e (3.63) na equação (3.56)

dL = a0fK(�f )(1 + z) (3.64)

em uma solução de FRWL espacialmente plana com fK(�) = � , e fazendo uso da equação

(3.62) �ca-se com

dL =
1 + z

H0

Z z

0

dz

h(z)
: (3.65)

Então a taxa de Hubble H(z) pode ser expressa em termos de dL(z) :

H(z) =

�
d

dz

�
dL(z)

1 + z

���1
: (3.66)
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Portanto, se medirmos a distância luminosidade observacionalmente, podemos estimar a

taxa de expansão do Universo.

A densidade de energia � no lado direito da equação (3.27) inclui todos os compo-

nentes presentes no Universo, a saber, partículas não relativísticas, partículas relativísti-

cas, constante cosmológica, etc.

� = �
i
�
(0)
i (a=a0)

�3(1+wi) = �
i
�
(0)
i (1 + z)

3(1+wi)

; (3.67)

onde wi e �i denotam o parâmetro da equação de estado e a densidade de energia para

cada constituinte, respectivamente. Da equação (3.27), o parâmetro de Hubble tem a

seguinte forma:

H2 = H2
0�
i

0i (1 + z)

3(1+wi); (3.68)

onde 
0i � 8�G�i=3H
2
0 = �

(0)
i =�

(0)
c é o parâmetro de densidade para algum constituinte

individual na época atual. Então a distância luminosidade em uma geometria plana é

dada por

dL =
1 + z

H0

Z z

0

dzp
�i 
0i (1 + z)

3(1+wi)
: (3.69)
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Capítulo 4

Dimensões Extras

4.1 Introdução

A idéia de dimensões extras foi proposta no início do século XX por Nordström [42]

e alguns anos mais tarde por Kaluza [43] e Klein [44, 45]. Em meados da década de 1920

Theodor Kaluza e Oskar Klein com o propósito de uni�car os campos eletromagnéticos

e gravitacionais, introduziram uma dimensão extra para uni�car tais campos em único

campo de maior dimensão, isto é, uma teoria 5D-dimensional, com uma dimensão extra

periódica. Este procedimento é chamado de compacti�cação toroidal [46]. O espaço obtido

é o produto do espaço 4D tradicional de Minkowski com um círculo, denotado porM4
S1,
o qual pode se pensar como um cilindro de 5D de raio R. Desenvolvimentos recentes na

teoria das supercordas e sua extensão (Teoria M) sugeriram uma outra abordagem para

compacti�car dimensões extras. Existem cinco teorias distintas das supercordas em 1+9-

dimensional, todas elas descrevem teorias quânticas da gravitação.

Descobertas em meados dos anos 1990, as transformações de dualidade que se rela-

cionam com essas teorias de supercordas e a teoria de supergravidade em 1+10-dimensões,

levaram para uma conjectura de que todas estas teorias surgem como diferentes limites de

uma única teoria, conhecida como teoriaM . A 11a dimensão na teoriaM está relacionada

com a força de acoplamento das cordas, onde o tamanho desta dimensão cresce à medida

que o acoplamento se torna forte. Em baixas energias, a teoria M pode ser aproximada

pela teoria de supergravidade em 1 + 10-dimensões.

Na solução de Horava-Witten [47], os campos de gauge do modelo padrão estão

con�nados em uma hipersuperfície (1 + 9)-branas, as quais estão localizadas nos pontos
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�xos de um orbifold S1=Z2, onde S1 é uma esfera de dimensão 1, isto é, um círculo,

e Z2 é o grupo de simetria (simetria de espelho). A topologia de tal cenário pode ser

denotada por M11 = M4 
 S1=Z2 
 Y 6. As duas variedades de (1 + 9)-branas estão

mergulhadas em um espaço-tempo de maior dimensão, chamado bulk. As seis dimensões

extras nas branas são compacti�cadas em uma escala muito pequena sendo próxima a

escala fundamental. Logo depois, Witten descobriu que 6 das 11 dimensões podem ser

consistentemente compacti�cadas em uma variedade do tipo Calabi-Yau, cujo tamanho

da variedade pode ser menor do que a distância de tais branas [48].

Também foram descobertos objetos extendidos de maior dimensão que a das cordas

(1-brana), as chamadas p-branas. Um caso particular das p-branas, são D-branas. De

uma maneira sucinta, pode-se dizer que cordas abertas, as quais descrevem o setor de

gauge, possuem suas extremidades �xas na brana, enquanto que as cordas fechadas, que

representam o setor gravitacional, podem se mover livremente no bulk.

Diante deste cenário, emergiram alguns modelos de mundo branas de tal modo que

podemos considerar a conjectura de Horava-Witten como uma teoria efetiva em 5 dimen-

sões. Nas próximas seções iremos discutir alguns modelos.
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4.2 Modelo de Randall-Sundrum (RS)

O primeiro modelo de Randall-Sundrum (RS1) foi desenvolvido com o propósito de

solucionar o problema da hierarquia. Tal problema surge com a diferença entre os valores

da escala de energia do setor eletrofraco e o setor gravitacional. O modelo RS1 implementa

uma dimensão extra compacta entre duas branas localizadas nos pontos �xos do orbifold

S1=Z2. O domínio da dimensão extra está no intervalo 0 < y < �rc, sendo rc chamado

de raio de compacti�cação da dimensão extra. Nesse cenário, nossa brana, ou seja, nosso

universo, estaria localizada em y = �rc e a segunda brana isto é, um universo o qual não

temos acesso, estaria localizado em y = 0:

A ação para o modelo é dada por

S = Sbulk + Sv�{sivel + Soculta; (4.1)

explicitamente

Sbulk =

Z
d4x

Z
dy
hp
�g(5)

�
(5)R� 2�5

�i
M3
5 ;

Sv�{sivel =

Z
d4x
p
�gvis (Lvis � �vis) ;

Soculta =

Z
d4x
p
�gocu (Locu � �ocu) : (4.2)

Onde M3
5 é a massa 5-dimensional, �vis é a tensão na brana visível e �ocu é a tensão na

brana oculta. As branas são 4-superfícies singulares segundo o formalismo de Israel, deste

modo, podemos escrever as densidades de lagrangianas da matéria nas branas em termos

da distribuição delta de Dirac

Lvis � �vis =
p
�gvis�vis�(y � �rc)

Locu � �ocu =
p
�gocu�ocu�(y) (4.3)

Aplicando-se o cálculo variacional na ação total (4.2) tem-se

�S =

Z
d4x

Z
dy�

�p
�g(5)

� �
(5)R� 2�5

�
M3
5 +

p
�g(5)M3

5 �
�
(5)R

�
+

Z
d4x

�
�
�p
�gocu�ocu�(y)

��
+

Z
d4x

�
�
�p
�gvis�vis�(y � �rc)

��
; (4.4)

31



onde

�
p
�g(5) = �1

2

p
�g(5)gab�gab;

�
p
�gvis = �

1

2

p
�gvisgvis�� �g

��
vis;

�
p
�gocu = �

1

2

p
�gocugocu�� �g��ocu;

�R = �Rab�gab � gab�Rab; (4.5)

tal que, utilizando as propriedades dadas em (4.5) e a equação de Palatini

�Rab = rc(��ab
c)�rb(��ac

c); (4.6)

temos

�S =

Z
d4x

Z
dy � 1

2

p
�g(5)gab�gab

�
(5)R� 2�5

�
M3
5 +

p
�g(5)M3

5 �
�
�(5)R�gab

�
+

Z
d4x

�
�1
2
�g��ocug

ocu
��

p
�gocu�ocu�(y)

�
+

Z
d4x

�
�1
2
�g��visg

vis
��

p
�gvis�vis�(y � �rc)

�
:

(4.7)

Para variações arbitrárias de gab, g
��
vis e g

��
ocu, obtemos as equações de Einstein 5Dp

�g(5)
�
Rab �

1

2
gabR

�
=

1

4M3
5

�
�5
p
�g(5)gab + �vis

p
�gvisgvis�� ��a��b�(y � �rc)

+�ocu
p
�gocugocu�� ��a��b�(y)

�
: (4.8)

O Ansatz de Randall-Sundrum para a solução da equação acima é a métrica 5-

dimensional da forma

ds2 = e�2A(y)���dx
�dx� + r2cdy

2: (4.9)

A partir deste Ansatz, as equações de Einstein tornam-se

6A
0

r2c
= � �

4M3
5

(4.10)

e
3A

00

r2c
=

�ocu
4M3

5 r
2
c

�(y) +
�vis
4M3

5 r
2
c

�(y � �rc): (4.11)

Integrando diretamente a equação (4.10), a solução consistente com a simetria do orbifold

y ! �y é

A(y) = � rc j y j

s
��
24M3

5

: (4.12)
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Note que o espaço-tempo entre as duas branas é simplesmente uma porção de uma geome-

tria AdS5 (anti de Sitter), deste modo, � < 0.

Considerando que a métrica é uma função periódica em y, a equação (4.11) pode ser

escrita como

A
00
= 2rc

s
��
24M3

5

[�(y)� �(y � �rc)] : (4.13)

A partir deste resultado podemos observar que a única solução para a equação (4.11) é

se �vis, �ocu e � são relacionadas através da seguinte relação

�vis = ��ocu = 24M3
5k, � = �24M3

5k: (4.14)

A solução �nal para métrica no bulk é então

ds2 = e�2krcjyj���dx
�dx� + r2cdy

2: (4.15)

onde k é uma grandeza de escala.

Já no modelo de RS-II, utiliza-se a mesma geometria AdS5, mas com única brana

com tensão positiva onde a dimensão extra já não é mais compacta, portanto, o raio de

compacti�cação rc !1.

4.3 Modelo Arkani-Dimopoulos-Dvali (ADD)

Essencialmente, a idéia do modelo proposto por Arkani-Hamed, Dimopoulos e Dvali

(ADD) é fazer com que a escala de Planck MP � M4 diminua. Considerando que a

gravitação se dilua em um volume da dimensão extra compacta.

Considera-se uma geometria do bulk�at em (4+d)-dimensões, em que as d dimensões

são compactas com raio R (topologia toroidal). A massa de Planck MP 4-dimensional, a

massa fundamental de Planck MF (4 + d)-dimensional e a escala gravitacional da teoria

dimensional extra estão relacionadas via relação abaixo

M2
P =M2

FR
d (4.16)

A ação de Einstein-Hilbert em (4 + d)-dimensões para o modelo ADD é dada por

S =
1

2�2(4+d)

Z
d4xddy

p
�g(4+d)

�
(4+d)R� 2�(4+d)

�
; (4.17)
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e as equação de campo dadas por

(4+d)GAB � (4+d)RAB �
1

2
(4+d)R (4+d)gAB = ��(4+d) (4+d)gAB + �2(4+d)

(4+d)TAB; (4.18)

onde XA = (x�; y1; :::; yd) e �2(4+d) é a constante de acoplamento gravitacional

�2(4+d) = 8�G(4+d) =
8�

M2+d
4+d

: (4.19)

O limite de campo fraco da equação (4.18) leva à equação de Poisson (4 + d)-dimensional

cuja solução é o potencial gravitacional

V (r) =
�2(4+d)
r1+d

: (4.20)

Vamos analisar a in�uência do tamando das dimensões extras no potencial acima;

se o comprimento da escala da dimensão extra é L, então em escalas r & L o potencial

é (4 + d )-dimensional , V � r�(1+d): Em contrapartida, com r � L, ou seja onde as

dimensões extras não contribuem para variações no potencial, V comporta-se como um

potencial 4-dimensional. No caso r � L nas d dimensões extras emerge um potencial do

tipo V � L�dr�1. Isso nos fornece um quadro onde a escala usual de Planck torna-se uma

constante de acoplamento efetiva, a qual descreve a gravitação em escalas muito maiores

do que as dimensões extras. Desse modo sua relação com a escala fundamental e com o

volume das dimensões extras é dada por

M2
P =M2+d

4+dL
d (4.21)

onde foram utilizadas as equações (4.19) e (4.20).

Se o volume da dimensão extra é próximo da escala de Planck, isto é, L � M�1
P ,

então MP = M4+d, mas se o volume da dimensão extra é maior que a escala de Planck,

então a escala fundamental M4+d deve ser su�cientemente menor que a escala efetiva

MP = 10
19GeV . Com isto, podemos estimar o comprimento L da dimensão extra, fazendo

de M4+d um valor da ordem do setor da escala eletrofraca M4+d = 10
3GeV . Da relação

(4.21) temos

L =
M

2=d
P

M
2=d+1
4+d

=
1038=dGeV

106=dGeV
10�3 (GeV )�1 = 1032=d(TeV )�1 = 1032=d�17cm (4.22)

onde 1017(TeV )�1 = 1cm:

Caso d = 1, ocorre uma violação da gravitação Newtoniana; já para d = 2 temos um

valor de L = 1mm [50].
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4.4 Modelo Dvali-Gabadadze-Porrati (DGP)

No modelo DGP [49] os autores sugeriram um mecanismo pelo qual a gravidade

newtoniana de quatro dimensões em uma 3-brana está mergulhada no espaço 5D de

Minkowski com uma dimensão extra de tamanho in�nito. A ação adotada no modelo é

dada por

S = �M
3
5

2

Z
d5x
p
�gR5 �

M2
Pl

2

Z
d4x
p
�hR4 +

Z
d4x
p
�hLm + SGH ; (4.23)

onde g�� é a métrica no bulk, h�� é a métrica induzida na brana e Lm é a densidade de
lagrangiana de matéria co�nada na brana. O segundo termo contendo o escalar de Ricci 4-

dimensional na brana é o termo adicional que aparece no modelo DGP, em contraste com

o cenário de Randall-Sundrum. Tal termo pode ser induzido através de efeitos quânticos

no setor de matéria na brana. O último termo SGH é o termo de fronteira de Gibbons-

Hawking, necessário para a consistência do procedimento do princípio variacional e levar

às condições de junção de Israel.

A razão entre as duas escalas a saber, a massa de Planck MPl 4-dimensional e a

massa M5 no bulk 5-dimensional, de�ne uma escala de distância

rd =
M2
Pl

M3
5

: (4.24)

Para escalas de comprimento muito menores que rd a gravidade se manifesta como uma

teoria de quatro dimensões, enquanto que para grandes distâncias a gravidade escapa para

o bulk levando efeitos importantes em altas dimensões. Através da escala de distância rd,

o potencial gravitacional de campo fraco comporta-se como

� �
(
r�1 para r < rd;

r�2 para r > rd:

)
: (4.25)

Vamos considerar uma situação cosmológica para o modelo DGP de tal sorte que

poderemos relacionar a escala rd com a taxa atual de Hubble H�1
0 , a qual corresponde a

uma escolha M5 = 10� 100MeV .

No modelo de brana-FRLW obtemos a seguinte equação de Friedmann modi�cada

H2 +
k

a2
=

 s
�

3M2
Pl

+
1

4r2d
+ �

1

2rd

!2
; (4.26)
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onde � é a densidade do �uido cósmico total na brana satisfazendo a equação de con-

servação usual. Para uma geometria plana, isto é, k = 0; após a extração das raízes de

ambos os lados da equação (4.26), temos

H2 � �

rd
H =

�

3M2
Pl

; (4.27)

onde � = �1:Quando o comprimento de Hubble H�1 é muito menor do que a escala

de distância rd, ou seja, H�1 � rd, o segundo termo do lado esquerdo da equação (4.27)

torna-se insigni�cante em relação ao primeiro termo. Deste modo a equação de Friedmann

é exibida da seguinte maneira

H2 =
�

3M2
Pl

: (4.28)

O segundo termo na equação (4.27) torna-se importante quando comparado com a

distância de escala (H�1 & rd). O sinal de � contribui para dois regimes no modelo DGP.

Quando � = 1 a equação (4.27) mostra que no modelo Cold Dark Matter, caracterizado

por uma situação em que � / a�3, o Universo aproxima-se da solução do tipo de Sitter

H ! H1 =
1

rd
: (4.29)

Portanto, podemos ter uma expansão acelerada nos últimos tempos sem envolver a energia

escura. Para explicar a aceleração precisamos que H0 seja da ordem H1, o que signi�ca

que a escala de distância corresponde aproximadamente ao valor atual de Hubble (rd �
H�1
0 ). Pode-se dizer que é devido ao enfraquecimento da gravidade na brana e não devido

a presença de um �uido com pressão negativa. Quando � = �1 e H�1 � rd, o segundo

termo da equação (4.27) domina o primeiro termo, o que nos fornece

H2 =
�2

36M6
5

: (4.30)

Isto é semelhante às equações modi�cadas de FLRW na cosmologia de Randall-Sundrum

em altas energias.

A equação de Friedmann (4.26) pode ser reescrita em termos do red-shift do seguinte

modo

H2(z) = H2
0

8<: 
k(1 + z)
2 +

0@p
rd +sp
rd +X
�


�(1 + z)3(1+w�)

1A29=; ; (4.31)
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onde a soma é sobre todas as componentes do �uido cósmico. Na equação (4.31), 
� é

de�nido como


� �
�0�

3M2
PlH

2
0a
3(1+w�)
0

; (4.32)

enquanto 
k é dado por


k �
�k
H2
0a
2
0

; (4.33)

e


rd �
1

4r2dH
2
0

: (4.34)

4.5 Formulação de Shiromizu-Maeda-Sasaki

Para se deduzir as equações de campo na brana, iniciamos com a equação de Gauss

(4)R���� =
(5)R����h

�
�h

�
�h

�
�h

�
� +K�

�K�� �K�
�K��; (4.35)

e a equação de Codazzi

D�K
�
� �D�K = (5)R��n

�h �
� ; (4.36)

onde a curvatura extrínseca de M é denotada por K�� = h��h
�
�r�n�, K = K�

� é seu

traço, h�� = g�� � n�n� é a métrica na brana e D� é a derivada covariante com relação

a h�� : Contraindo a equação de Gauss com � e � temos

(4)R�� =
(5)R����h

�
�h

�
�h

�
�h

�
� +K�

�K�� �K�
�K��; (4.37)

logo
(4)R�� =

(5) R����h
�
�h

�
�h

�
�h

�
� +KK�� �K�

�K��: (4.38)

Como

h�� = g�� � n�n
� e h�� = g�� � n�n

� (4.39)

podemos escrever a equação (4.38) da seguinte maneira

(4)R�� =
(5) R����(g

�
� � n�n

�)(g�� � n�n
�)h� �h

�
� +KK�� �K�

�K��: (4.40)

Manipulando os termos entre parênteses, obtemos

(4)R�� = (5)R����
�
g��g

�
� � (h�� + n�n

�)n�n
� � (h�� + n�n

�)n�n
� + n�n

�n�n
�
�
h� �h

�
�

��
+KK�� �K�

�K�� (4.41)
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Fazendo válidas as identidades abaixo

n�n
� = 1;

h��n
� = 0;

g��n
�n� = 1; (4.42)

�nalmente obtemos o tensor de Ricci projetado na brana

(4)R�� =
(5)R��h

�
�h

�
� � (5)R��
�n�h

�
�n


h� � +KK�� �K�
�K�� : (4.43)

Contraindo o tensor de Ricci acima com a métrica h�� , isto é

(4)R = (4)R��h
�� ; (4.44)

obtemos o escalar de Ricci projetado na brana

(4)R = (5)R�� h
�� � (5)R����n�h

�
�n

�h��h
�� +K2 �K��K��: (4.45)

Note que os objetos geométricos rotulados pelo superescrito (5), ou seja, objetos no espaço

do bulk, são manipulados indicialmente pela métrica induzida g�� , enquanto que os objetos

rotulados pelo superescrito (4); estão sob a responsabilidade exclusiva da métrica h�� :

Uma vez que o tensor de Einstein é dado por

(4)G�� =
(4)R�� �

1

2
h��

(4)R; (4.46)

a expressão nos leva ao tensor de Einstein na brana

(4)G�� =
(5)R��h

�
�h

�
� � (5)R��
�n�h

�
�n


h� � +KK�� �K�
�K��

� 1
2
h��

�
(5)R�� h

�� � (5)R����n�h
�
�n

�h��h
�� +K2 �K��K��

�
: (4.47)

Após alguma simples manipulação, ainda temos

(4)G�� =
(5)R��h

�
�h

�
� �(5) R�� h��

1

2
h�� � E�� +KK�� �K�

�K��

� 1
2
h��

�
� (5)R����n�h

�
�n

�h��h
�� +K2 �K��K��

�
; (4.48)

onde

E�� � (5)R��
�n�h
�
�n


h� � : (4.49)
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Agora iremos manipular o segundo termo do lado direito da equação (4.48)

�(5)R�� h��
1

2
h�� = �

�
1

2

(5)

R�� h
��h��

�
h��h

�
�

= �
�
1

2

(5)

R�� (g�� � n�n�)(g
�� � n�n�)h��h

�
�

�
= �1

2

(5)

R�� g��g
��h��h

�
� +

1

2

(5)

R�� g��n
�n�h��h

�
�

+
1

2

(5)

Rh��h
�
�n�n� �

1

2

(5)

R��n�n�n
�n�h��h

�
� : (4.50)

O segundo e o quarto termo da equação acima podem ser acoplados em um termo do tipo

1

2

(5)

R�� g��n
�n�h��h

�
� �

1

2

(5)

R��n�n�n
�n�h��h

�
�

=
1

2

(5)

R��h
�
�h

�
�n

�n�(g�� � n�n�)

=
1

2

(5)

R��h
�
�h

�
�h��n

�n� =
1

2

(5)

R��n
�n�h�� : (4.51)

Já o terceiro termo, 1
2

(5)
Rh��h

�
�n�n�, é aniquilado, pois h

�
�n� = 0:Logo

�(5)R�� h��
1

2
h�� =

1

2

(5)

R��n
�n�h�� �

1

2

(5)

R g��h
�
�h

�
� : (4.52)

Portanto, substituindo o termo acima na expressão (4.48), obtemos o seguinte tensor

de Einstein 4D

(4)G�� =
(5)R��h

�
�h

�
� �

1

2
(5)R g��h

�
�h

�
� +

1

2
(5)R��n

�n�h�� � E��

+KK�� �K�
�K�� �

1

2
h��

�
� (5)R����n�h

�
�n

�h��h
�� +K2 �K��K��

�
; (4.53)

após alguma manipulação algébrica �ca

(4)G�� =

�
(5)R�� �

1

2

(5)

R g��

�
h��h

�
� � E�� +KK�� �K�

�K��

� 1
2
h��

�
� (5)R��n

�n� � (5)R����n�h
�
�n

�h��h
�� +K2 �K��K��

�
: (4.54)

O termo entre parenteses é o tensor de Einstein 5D, (5)G��, isto é

(5)G�� =
(5)R�� �

1

2

(5)

R g��; (4.55)
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portanto

(4)G�� =
(5)G��h

�
�h

�
� � E�� +KK�� �K�

�K��

� 1
2
h��

�
� (5)R��n

�n� � (5)R����n�n
�h�� +K2 �K��K��

�
: (4.56)

Desmembrando o segundo termo entre colchetes da equação acima temos

(5)R����n�n
�h�� = (5)R����n�n

�(g�� � n�n�)

= (5)R����g
��n�n

� � (5)R����n�n
�n�n�

= (5)R��n�n
�; (4.57)

pois
(5)R��[��]n

(�n�)n�n� = 0 (4.58)

Portanto

(4)G�� =
(5)G��h

�
�h

�
� � E�� +KK�� �K�

�K��

� 1
2
h��

�
� (5)R��n

�n� + (5)R��n�n
� +K2 �K��K��

�
: (4.59)

Rearranjando a equação acima, �nalmente o tensor de Einstein �ca expresso por

(4)G�� =
(5)G��h

�
�h

�
� +

(5)R��n
�n�h�� � E�� +KK��

�K�
�K�� �

1

2
h��

�
K2 �K��K��

�
: (4.60)

O próximo passo é obter uma relação entre o tensor (4)G�� e o tensor energia-

momento na brana. Para isso, precisaremos da equação de campo em 5D

(5)G�� =
(5)R�� �

1

2

(5)

R g�� = �
2 (5)
5 T��: (4.61)

A decomposição do tensor de Riemann em termos dos objetos de Ricci e no tensor de

curvatura de Weyl, C��
�, fornece

(5)R��
� =
1

(D � 2)
�
g�[�

(5)R�]� � g�[�
(5)R�]�

�
� 1

(D � 1)(D � 2)g�[�g�]�
(5)R +(5) C��
�:

(4.62)

Reesecrevndo E�� com auxílio de (4.62), temos

E�� =
1

3
[g�


(5)R
� � g��
(5)R
� � g�


(5)R�� + g��
(5)R
�]n

�n
h��h
�
�

� 1
12
[g�
g�� � g��g
�]

(5)Rn�n
h��h
�
� +

(5) C��
�n
�n
h��h

�
� : (4.63)
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Note que, o segundo, o terceiro e o sexto termos da equação acima produzem elementos

do tipo n�h� � = n�h
�
� = 0, portanto

E�� =
1

3
[(5)R��h

�
�h

�
� + g��

(5)R
�n
�n
h��h

�
� ]

� 1
12

(5)

Rg��h
�
�h

�
� +

(5)C��
�n
�n
h��h

�
� : (4.64)

Tomando o traço da equação de Einstein 5D ( 4.61)

(5)R = �2
3
(5)T �25 e (5)R�� =

�25
3
(3 (5)T�� � (5)T g��): (4.65)

De�nindo

E�� � (5)C��
�n
�n
h��h

�
� ; (4.66)

e substituindo as expressões (4.65) e (4.66) para E�� chegamos a

E�� =
1

3
[
�25
3
(3 (5)T�� � (5)T g��)h

�
�h

�
� + g��

�25
3
(3 (5)T
� � (5)T g
�)n

�n
h��h
�
� ]

+
1

18

(5)

T �25 g��h
�
�h

�
� + E�� ; (4.67)

que após alguma manipulação leva a

E�� =
�25
3

(5)T��h
�
�h

�
� �

�25
6
h��

(5)T +
�25
3

(5)T
�n
�n
h�� + E�� : (4.68)

Substituindo este resultado na expressão para o tensor de Einstein 4D obtemos

(4)G�� = �25
(5)T��h

�
�h

�
� �

�25
3

(5)T g��n
�n�h��

+�
2 (5)
5 T��n

�n�h�� �
�25
3

(5)T��h
�
�h

�
� +

�25
6
h��

(5)T

��
2
5

3
(5)T
�n

�n
h�� � E�� +KK�� �K�
�K�� �

1

2
h��

�
K2 �K��K��

�
: (4.69)

Efetuando-se uma substituição indicial e agrupando os termos adequadamente temos

(4)G�� =
2

3
�25

�
(5)T��h

�
�h

�
� + h��

�
(5)T��n

�n� � 1
4
(5)T

��
+KK�� �K�

�K�� �
1

2
h��(K

2 �K��K��)� E�� ; (4.70)

onde,

E�� � (5)C��
�n
�n
h��h

�
� (4.71)
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é a chamada "parte elétrica"do tensor de Weyl.

Agora, utilizando a equação de Codazzi juntamente com (4.65) chegamos a

D�K
�
� �D�K = �

2 (5)
5 T��n

�h �
� (4.72)

O tensor energia-momento no bulk é dado por

T�� = ��5g�� + �(y)S�� ; (4.73)

onde

S�� = ��h�� + ��� ; (4.74)

com ���n
� = 0, pois não há �uxo de matéria-energia na dimensão extra. �5 é a constante

cosmológica no espaço-tempo do bulk, � a tensão na brana e ��� é o tensor energia-

momento na brana, o qual carrega informações dos campos con�nados na mesma. O

comportamento singular no tensor energia-momento devido a uma descontinuidade entre

o bulk e a brana pode ser contornado através das condições de junção de Israel

[h�� ] = 0;

[K�� ] = ��25
�
S�� �

1

3
Sh��

�
; (4.75)

onde [Y ] = limy!+0 Y � limy!�0 Y = Y + � Y �. Impondo a simetria Z2 ao longo da

dimensão extra, com a brana em um ponto �xo dessa dimensão, podemos quanti�car

objetos em ambos os lados da brana. Deste modo, a curvatura extrínseca em termos do

tensor enegia-momento é dada por

K�� = K+
�� = �K�

�� = �
1

2
�25

�
S�� �

1

3
S h��

�
; (4.76)

Tomando o traço de S�� e substituindo-o na equação acima, obtemos

K�� = �
1

2
�25

�
��� +

1

3
(�� �)h��

�
(4.77)

Esta expressão tem por �nalidade nos auxiliar para encontrar os seguintes objetos dados

em (4.60):

KK�� =
1

12
�45

�
4���� +

4

3
�2h�� �

5

3
��h�� � ���� +

1

3
� 2h��

�
; (4.78)
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K�
�K�� =

1

4
�45

�
������ +

2

3
(�� �)��� +

1

9
(�2 + � 2 � 2��)h��

�
; (4.79)

K2 =
1

36
�25
�
16�2 + � 2 � 8��

�
; (4.80)

K��K�� =
1

4
�25

�
����

�� +
2

3
(�� �)� +

4

9
(�2 + � 2 � 2��)

�
: (4.81)

Por outro lado, as fontes podem ser vinculadas da seguinte maneira

(5)T��h
�
�h

�
� = ��5h�� ;

(5)T��n
�n� � 1

4
(5)T =

1

4
�5: (4.82)

Substituindo as expressões (4.76)-(4.82) em (4.70), obtemos as equações gravitacionais

efetivas
(4)G�� = ��4h�� + 8�GN��� + �45 ��� � E�� ; (4.83)

onde

�4 =
1

2
�25

�
�5 +

1

6
�25 �

2

�
; (4.84)

GN =
�45 �

48�
; (4.85)

��� = �
1

4
����

�
� +

1

12
���� +

1

8
h������

�� � 1

24
h���

2: (4.86)
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Capítulo 5

Regras de soma para cenários de

mundos brana

5.1 Introdução

Como dito anteriormente, partindo do ponto de vista que o nosso universo pode

ser representado por uma brana mergulhada em um espaço-tempo de maior dimensão,

muitas vezes torna-se difícil fazer uma análise precisa dos modelos de mundos brana.

Deste modo, seria vantajoso obter um conjunto de regras gerais, as quais nos permitam

testar novos modelos. Gibbons, Kallosh e Linde, derivaram um conjunto de condições de

consistência [7], chamado regras de soma. Eles encontraram um resultado importante, um

tipo de teorema no-go que diz respeito à possibilidade da construção de cenários mundos

brana suaves com espaços internos compactos. Essencialmente, o teorema no-go nos diz

que,�generalizações suaves do cenário de Randall-Sundrum, sem fontes singulares, são

incompatíveis com dimensões extras compactas�, isto éI
�0 � �0 = 0: (5.1)

onde � é o campo escalar que gera a brana. A integral é tomada no espaço interno e

a "linha"representa a derivada do campo escalar com relação às coordenadas do espaço

interno.

Vamos analisar o espaço-tempo D-dimensional no bulk com uma métrica dada por

ds2 = gABdX
AdXB = W 2(r)g��dx

�dx� + gab(r)dr
adrb; (5.2)
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onde W 2(r) é o warp factor, XA denota as coordenadas do espaço-tempo D-dimensional,

x� são as coordenadas do espaço-tempo não compacto de dimensão (p+1) e ra denota as

coordenadas do espaço interno compacto com dimensões (D � p� 1).
As expressões para o tensor energia-momento do espaço-tempo não compacto e para

o espaço compacto são as seguintes, respectivamente

T�� = �W 2g��

�
1

2
r� � r� + V (�)

�
; (5.3)

e

Tab = ra�rb�� gab

�
1

2
r� � r� + V (�)

�
: (5.4)

Podemos relacionar o tensor de Ricci do espaço-tempo D-dimensional com o tensor

de Ricci na brana bem como com o tensor de Ricci no espaço interno através das equações

(D)R�� =
(p+1)

_

R�� �
g��

(p+ 1)W p+1
r2W p+1 (5.5)

e
(D)Rab =

(D�p�1)
�
Rab �

(p+ 1)

W
rarbW ; (5.6)

onde
�
Rab; ra e r2 são respectivamente o tensor de Ricci, a derivada covariante e operador

Laplaciano construído com a métrica gab do espaço interno.
_

R�� é o tensor de Ricci

oriundo de g�� : Denotando os três escalares de curvatura por R = gABRAB;
_

R = g��
_

R��e
�
R = gab

�
Rab, e ainda tomando os traços das equações (5.5) e (5.6) tem-se

W�2g��R�� �W�2g��
_

R�� = �
W�2g��g

��

(p+ 1)W p�1r
2W p+1: (5.7)

Desenvolvendo a derivada r2W p+1; temos

W�2g��R�� �W�2g��
_

R�� = �W�p+1W�2(p+ 1)
�
pWrW � rW +W pr2W

�
; (5.8)

portanto
1

p+ 1

�
W�2

_

R�R��

�
= pW�2rW � rW +W�1r2W: (5.9)

Agora, tomando o traço da equação (5.6)

gabRab =
�
Rabg

ab � (p+ 1)
W

raraW; (5.10)

vem que
1

(p+ 1)

�
R� Raa = W�1r2W; (5.11)
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onde R�� � W�2g��R�� e Raa � gabRab com R = R�� + Raa . Agora, seja a derivada total

com � sendo uma constante arbitrária, temos

r � (W �rW ) =W �+1
�
�W�2rW � rW +W�1r2W

�
: (5.12)

Combinando as equações (5.9), (5.11) e (5.12), chegamos a

r � (W �rW ) = W�+1

p(p+ 1)

h
(�W�2

_

R�R��) + (p� �)(
�
R�Raa)

i
: (5.13)

Essa última equação engendra um caminho para se buscar condições de consistência. O

lado esquerdo da equação (5.13) se anula sobre uma integração no espaço interno compacto

e periódico, enquanto que o seu lado direito propõe algumas possibilidades para investigar

algumas teorias. Tal procedimento pode ser feito expressando as quantidades geométricas

dadas em (5.13) em termos das parcelas do tensor energia-momento.

As equações de Einstein no bulk D-dimensional podem ser escritas da seguinte forma

RAB = 8�GD

�
TAB �

1

(D � 2)gABT
M
M

�
; (5.14)

onde GD é a constante de acoplamento gravitacional D-dimensional. Os traços parciais

das componentes do tensor de Ricci são dados por

R�� =
8�GD
D � 2[(D � p� 3)T �� � (p+ 1)T aa ; (5.15)

onde T �� � W�2g��T�� e

Raa =
8�GD
D � 2[(D � p� 3)T �� � (p+ 1)T aa : (5.16)

Substituindo (5.15) e (5.16) na equação (5.13), obtemos

r � (W �rW ) =
W�+1

p(p+ 1)

�
8�GD
D � 2

�
[(p� 2�)(D � p� 1) + 2�]T �� +

+ p(2�� p+ 1)T aa

�
+ (p� �) ~R + �W�2 �R

�
: (5.17)

Se o espaço interno é compacto e periódico, a relação
I
r � (W�rW ) = 0 deve

ser satisfeita. Deste modo, o parâmetro � pode nos trazer uma família de condições de

consistência, onde para cada escolha de � emerge uma condição de consistência para o
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esquema de compacti�cação:I
W�+1

��
(p� 2�)(D � p� 1) + 2�

�
T �� + p(2�� p+ 1)T aa+

+
D � 2
8�GD

�
(p� �) ~R + �W�2 �R

� �
= 0: (5.18)

Vamos considerar o caso D = 5 e p = 3, deste modo que leva aI
W�+1

�
T �� + 2(�� 1)T 44 +

�

8�G5
W�2 �R

�
= 0; (5.19)

neste caso ~R = 0; pois esse escalar de curvatura do espaço interno possui uma única

dimensão. Usando as equações (5.3) e (5.4) encontramos

T �� = �4
�
1

2
�0 � �0 + V (�)

�
e T 44 =

1

2
�0 � �0 � V (�): (5.20)

Inserindo o resultado acima na expressão (5.19), obtemosI
W�+1

�
(�� 3)�0 � �0 � 2(�+ 1)V (�) + �

8�G5
W�2 �R

�
= 0: (5.21)

Escolhendo � = �1, o potencial V (�) é exaurido na equação acima, restando apenasI
�0 � �0 = �

�R

32�G5

I
W�2: (5.22)

Se queremos uma descrição do nosso Universo, então �R = 0 com uma precisão de

10�120M2
Pl. Portanto I

�0 � �0 = 0;

o qual é o resultado obtido através da equação (5.1).

Nas próximas sub-seções, iremos aplicar a expressão (5.13) na teoria de Brans-Dicke

e na teoria de f(R)-Einstein-Palatini. Outros trabalhos abordando a teoria geral escalar-
tensorial e a teoria de Brans-Dicke para mundo branas singulares, podem ser encontrados

em [51, 52, 53], enquanto que uma abordagem na teoria f(R)-Einstein-métrica para branas

suaves, pode ser vista em [55].

5.2 Teoria de Brans-Dicke: Ação e equações de campo

As teorias escalares-tensoriais da gravidade são algumas das teorias alternativas mais

bem estabelecidas e estudadas na literatura. A densidade de lagrangiana que responde
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por uma teoria escalar-tensorial geral apresenta-se da seguinte forma

L = 1

2�

p
�g
�
f(�)R� g(�)rA�rA�� 2�(�)

�
+ Lm( ; h(�)gMN) (5.23)

onde f; g e h são funções arbitrárias do campo escalar e Lm a densidade de lagrangiana dos
campos de matéria. A função h(�) pode ser absorvida na métrica por uma transformação

conforme da seguinte forma

h(�)gMN ! gMN : (5.24)

Podemos rede�nir o campo escalar, escolhendo f(�) ! �. Então, a densidade de la-

grangiana (5.23) pode ser escrita como

L = 1

2�

p
�g
�
�R� !(�)

�
rA�rA�� 2�(�)

�
+ Lm( ; gMN); (5.25)

onde !(�) é uma função arbitrária, também chamada de paramêtro de acoplamento e

�(�) é uma generalização da constante cosmológica. A teoria descrita em (5.25), se reduz

à bem conhecida teoria de Brans-Dicke quando adotado o limite de ! = constante e

�! 0. Por outro lado, no limite de ! !1 (�! 1=GN) e � = constante, recupera-se o

cenário da relatividade geral.

Seja a ação de Brans-Dicke no bulk

S =

Z
dDx

p
�g
�
�R� !

�
(rM�rN�)

�
+ SM( M

; gMN); (5.26)

a variação da ação com respeito a gMN nos dá as equações de campo

RMN �
1

2
gMNR =

8�

�
TMN +

!

�2

�
rM�rN��

1

2
rA�rA�gMN

�
+
1

�

�
rMrN��

8�

(D � 1) + (D � 2)!TgMN

�
; (5.27)

enquanto que a variação da ação com respeito ao incremento variacional ��, nos fornece

a equação de movimento do campo escalar

�� = � �

2!
R� 1

2�
rM�rM�; (5.28)

O termo
8�

(D � 1) + (D � 2)!T , substituiu o termo �� a partir do traço da equação
(5.28).
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5.3 Regras de soma para mundo branas na teoria de

Brans-Dicke

A partir da equação (5.27), o escalar de Ricci pode ser escrito da seguinte maneira

R =
2

2�D

�
8�!

�

(D � 2)T
(D � 1) + (D � 2)! +

(2�D)

2

!

�2
rA�rA�

�
: (5.29)

Substituindo a Eq. (5.29) em (5.27),

RMN =
8�

�

�
TMN � gMN

(1 + !)

(D � 1) + (D � 2)!T
�
� � gMN

(1 + !)

(D � 1) + (D � 2)!T
m
m

�
+
!

�2
rM�rN�+

1

�
rMrN� (5.30)

Aplicando os traços parciais em (5.30), e chamando T �� � W�2g��T�� (T = T �� + Tmm );

é possível expressar R�� e R
m
m, respectivamente, por

R�� =
8�

�

1

[(D � 1) + (D � 2)!]

 
[(D � p� 2) + (D � p� 3)!]T �� � (p+ 1)(1 + !)Tmm

!

+
!W�2

�2
r��r��+

W�2

�
r�r�� (5.31)

e

Rmm =
8�

�

1

[(D � 1) + (D � 2)!]

 
[!(p� 1) + (p+ 1)]Tmm + [�(D � p� 2)� (D � p� 1)!]T ��

!
+
!

�2
rm�rm��

1

�
W�2r�r��: (5.32)

Substituindo as equações (5.31) e (5.32) em (5.13) tem-se o análogo de (5.17) para

o caso em questão

r � (W �rW ) = W�+1

p(p+ 1)

�
�W�2

_

R + (p� �) ~R +
8�

�

1

[(D � 1) + (D � 2)!]
�
�
T �� [��(D � p� 2)� �(D � p� 3)! + (p� �)(D � p� 2)

+(p� �)(D � p� 1)!] + Tmm [�(p+ 1) + �(p+ 1)!)

� (p� �)(p� 1)! � (p� �)(p+ 1)]

� !

�2
[�W�2r��r��+ (p� �)rm�rm�]�

2�� p

�
W�2r�r��

�
: (5.33)
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Agora, inserindo os traços parciais do tensor energia-momento fornecidos pelas ex-

pressões (5.3) e (5.4) e integrando sobre o espaço interno, temosI
W �+1

�
�W�2

_

R + (p� �) ~R +
8�

�

1

[(D � 1) + (D � 2)!]

�
�1
2
W�2r��r��

�[A(p� 1) +B(D � p� 1)]� 1
2
ra�ra�[A(p+ 1) +B(D � p� 3)]

�V (�)[A(p+ 1) +B(D � p� 1)]
�

� !

�2
[�W�2r��r��+ (p� �)rm�rm�]�

2�� p

�
W�2r�r��

�
= 0 (5.34)

onde

A � (D � p� 2)(p� 2�)� �(D � p� 3)! + (p� �)(D � p� 1)!;

B � (p+ 1)(! + 1)(2�� p); (5.35)

são parâmetros constantes. Impondo um caso padrão D = 5 e p = 3; encontramosI
W �+1

(
� 8�

�

1

4 + 3!

 
1

2
�0 � �0[12(1 + !)� 8�� 6!(�� 1)] + V (�)[12(�1 + !)

+ 8�+ 6!(�� 1)]
!
� !

�2
(3� �)�0 � �0

)
= 0: (5.36)

Existem duas escolhas importantes para o parâmetro �. Note que, para � = �1,
nós temos

(5 + 6!)

4 + 3!

I
1

�
�0 � �0 = 10

4 + 3!

I
1

�
V (�) +

!

4�

I
1

�2
�0 � �0; (5.37)

A partir da expressão (5.1) dada na Seção 2, notavelmente, encontramos uma relaxação do

teorema no-go na expressão (5.37). Em teorias f(R)-métrica e relatividade geral, quando

submetidas à escolha de � = �1 nas condições de consistência, o potencial do campo
escalar é sempre suprimido, no entanto, aqui no presente caso, o potencial do campo es-

calar se manifesta com tal escolha feita para o parâmetro �. O resultado que encontramos

traz algo novo no cenário de mundo branas quando consideramos a teoria de Brans-Dicke.

Dentre inúmeros modelos de branas mundo encontrados na literatura, sabemos que a

principal di�culdade é obter soluções através das equações de campo quando acoplados

campos escalares, vetoriais, etc. Por exemplo, em um contexto cosmológico, onde uma

função warp factor possui uma dependência temporal, as equações tornam-se ainda mais
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extensas em seu número de variáveis. Um modelo de branas mundo suaves, o qual imple-

menta a teoria de Brans-Dicke com uma métrica contendo a parte de FLRW poder-se-ia

amenizar tal di�culdade através da equação (5.37). Note que a expressão (5.37) restringe

a faixa de potenciais a serem escolhidos. O potencial escalar de Brans-Dicke �, também

está sujeito a tal restrição.

Perceba que, quando ! ! 1 (� ! constante) na expressão (5.37), recupera-se o

resultado do modelo de Randall-Sundrum quando é adotada a Relatividade Geral apre-

sentado na referência [7].

Também podemos notar que, quando é posta a escolha � = 3, o potencial ainda se

manifesta, mas sem a contribuição do termo �0 � �0, deste modo,I
W 4

�
�0 � �0 = (4! + 2)

I
V (�): (5.38)

5.4 Formalismo f (R)-Einstein-Palatini em dimensões

arbitrárias

No formalismo de Palatini, as equações de campo são obtidas a partir da variação

da ação de Einstein-Hilbert com relação a métrica e a conexão, mas levando-se em conta

a independência destes objetos. Lembramos que agora o tensor de Ricci e o tensor de

Riemann são objetos construídos a partir de uma conexão a�m geral, porém, sem torçao

A ação total em teorias de gravidade no formalismo de Palatini é dada por

SPalatini =
1

16�GD

Z
dDx

p
�gf(R) +

Z
dDxLM(gAB;  M

): (5.39)

Como já é sábido, a de�nição TAB � 2=
p�g�SM=�gAB, quando implementada em

conjunção com o princípio de mínima ação para (5.39), faz com que as equações de campo

no formalismo de Palatini em gravidade f(R), tornem-se

f 0(R)RAB �
1

2
f(R)gAB = 8�GDTAB; (5.40)

�
_

rC(
p
�gf 0(R)gAB) +

_

rD(
p
�gf 0(R)gD(A)�B)C = 0: (5.41)

Analogamente ao formalismo métrico, temos que, se f(R) = R, o formalismo de Palatini
reestabelece as equações da relatividade geral.
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Reescrevendo a equação (5.41), temos

�
_

rC(
p
�gf 0(R)gAB) + 1

2

h_
rD(

p
�gf 0(R)gDA)�BC +

_

rD(
p
�gf 0(R)gDB)�AC

i
= 0

(5.42)

e contraindo os índices C e B da equação acima temos simplesmente

_

rC(
p
�gf 0(R)gAB) = 0: (5.43)

Assim, de�nindo uma métrica conforme

hAB � f 0(R)
2

D�2 gAB; hAB � f 0(R)
2

2�D gAB , (5.44)

onde

gAB =
hAB

f 0(R)
2

D�2
! g =

h

f 0(R)
2D
D�2

e gAB =
hAB

f 0(R)
2

2�D
; (5.45)

e, substituindo (5.45) em (5.43), chega-se a

_

rC

�p
�hhAB

�
= 0: (5.46)

que é a equação da conexão escrita formalmente. Deste modo, a conexão independente

torna-se-á expressa como

_

�
C

AB =
1

2
hCD(@A hBD + @B hAD � @DhAB): (5.47)

Escrevendo a expressão (5.47) em termos de gAB tem-se

_

�
C

AB =
1

2

1

f 0(R)
2

D�2
gCD

n
@A(f

0(R)
2

D�2 gBD) + @B (f
0(R)

2
D�2 gAD)

�@D(f 0(R)
2

D�2 gAB)
o
: (5.48)

De onde �nalmente, obtemos

_

�
C

AB =
�

C
AB

	
+

1

2f 0(R)
2

D�2

n
�CB@Af

0(R)
2

D�2 + �CA@Bf
0(R)

2
D�2

�gABgCD@D f 0(R)
2

D�2

o
; (5.49)

onde
�

C
AB

	
são os símbolos de Christo¤el. Chamando o segundo termo da expressão

(5.49) de � C
AB e após algumas manipulações algébricas, chegamos a

_

�
C

AB =
�

C
AB

	
+

1

2f 0(R)
2

D�2
� C
AB : (5.50)

52



O tensor de Ricci generalizado é dado por

RAB = @C
_

�
C

AB � @B
_

�
C

AC +
_

�
C

CE

_

�
E

AB �
_

�
C

BE

_

�
E

AC : (5.51)

Deste modo, o tensor de Ricci generalizado descrito explicitamente sob uma transformação

conforme, isto é, via relações (5.44) e (5.51), é dado por

RAB = RAB+
[D � 1]
2

�
rAf

0(R)
2

D�2

��
rBf

0(R)
2

D�2

�
f 0(R)

4
D�2

� 1

f 0(R)
2

D�2

�
rArB +

1

2
gAB�

�
f 0(R)

2
D�2 :

(5.52)

Agora, tomando o traço da expressão acima, obtém-se

R = R+
[D � 1]
2

1

f 0(R)
4

D�2

�
rAf

0(R)
2

D�2

��
rAf 0(R)

2
D�2

�
� 1

f 0(R)
2

D�2

�
D

2
+ 1

�
�f 0(R) 2

D�2 :

(5.53)

No formalismo de Palatini, as equações de campo são dadas por

RAB �
f(R)
2f 0(R)gAB =

8�GDTAB
f 0(R) : (5.54)

Inserindo a equação (5.52) na equação (5.54) e, adicionando em ambos os lados o termo

�gABR=2, obtemos

RAB �
R

2
gAB =

8�GDTAB
f 0(R) � f

2f 0(R)gAB �
[D � 1]
2

�
rAf

0(R)
2

D�2

��
rBf

0(R)
2

D�2

�
f 0(R)

4
D�2

+

1

f 0(R)
2

D�2

��
rArB +

1

2
gAB�

�
f 0(R)

2
D�2

�
� gAB

2

"
R� [D � 1]

2

1

f 0(R)
4

D�2

�
�
rCf

0(R)
2

D�2

��
rCf 0(R)

2
D�2

�
+

1

f 0(R)
2

D�2

�
D

2
+ 1

�
�f 0(R) 2

D�2 :(5.55)

Após algumas manipulações na equação acima, �nalmente encontramos as equações de

campo no formalismo f(R)-Einstein-Palatini em dimensões arbitrárias

RAB �
1

2
RgAB =

8�GDTAB
F (R) � gAB

2

�
f 0(R)� f(R)

F (R)

�
+

1

F (R)
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2
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i
; (5.56)

onde F (R) = df(R)=dR e R é o escalar de Ricci construído a partir de RAB.
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5.4.1 Regras de soma para mundo branas no formalismo f(R)-
Einstein-Palatini

Tomando o traço da equação (5.56), podemos ver que o escalar Ricci é dado por

R =
2

(2�D)

(
8�GD
F (R)T �
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Inserindo (5.57) em (5.56), nós obtemos
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Tomando o traço parcial da equação (5.58) com relação ao espaço-tempo não compacto e

com relação ao espaço compacto, encontramos os respectivos escalares de Ricci,
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e
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Agora, substituindo as equações (5.59) e (5.60) na equação (5.13), chega-se a
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Novamente, sendo o espaço interno compacto, obrigatoriamente temos que
H
r�(W �rW ) =

0 e deste modo
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Para extrairmos informação relevante com respeito a cenários envolvendo branas

quadridimensionais, recorremos novamente à D = 5 e p = 3. Adotando o referido bulk

com uma única dimensão extra ( ~R = 0) e, considerando um vínculo físico para o nosso
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Universo, �R é aproximadamente nulo em grandes escalas. Após essas considerações e,

utilizando as expressões (5.3) e (5.4) para as fontes, chegamos à seguinte condição geral

0 = 8�G5
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I
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F (R)4=3raF (R)2=3raF (R)2=3:

(5.63)

Uma escolha interessante para investigar a possibilidade de branas suaves é fazendo

� = �1, isso traz como consequência a eliminação do warp factor na expressão acima,
deste modo, temos I

�0 � �0
F (R) +

1

6�G5

I raF (R)2=3raF (R)2=3
F (R)4=3 = 0; (5.64)

onde consideramos r�F (R)2=3 = 0. Reescrevendo a expressão (5.64) de uma maneira

mais apropriada, obtemosI
�0 � �0
F (R) +

1

27�G5

I
(ln jF (R)j)0 � (ln jF (R)j)0 = 0: (5.65)

Note que, se F (R) é positiva, torna-se impossível encontrar uma generalização para mundo
branas suaves, no entanto, se F (R) < 0, é possível uma generalização suave do cenário de
Randall-Sundrum com uma dimensão extra compacta no contexto do formalismo f(R)-
Einstein-Palatini.
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Capítulo 6

Cosmologia de Branas

6.1 Introdução

Neste capítulo faremos uma descrição da contribuição original de nosso trabalho

no contexto cosmológico. Vários autores tentaram construir modelos compatíveis com

a cosmologia Friedmann-Lemaître-Robertson-Walker (FLRW). De fato, a modelagem de

cenários braneworld realistas do ponto de vista da física em larga escala deve incluir, pelo

menos em algum nível, a geometria de fundo do modelo padrão cosmológico. As tentati-

vas apresentadas para este programa podem ser divididas em duas categorias: uma que

trata de branas in�nitamente �nas, nas quais os efeitos extra dimensionais entram como

correções das equações de Einstein através da presença do tensor de Weyl e contribuições

quadráticas para o tensor energia-momento, e outra, cuja modelagem chega às branas

espessas descritas por um ou mais campos escalares no bulk. Na primeira abordagem, as

correções das equações gravitacionais vêm a partir das equações de Gauss e Codazzi via

formalismo Shiromizu-Maeda-Sasaki, como descrevemos no Capítulo 4, e, potencialmente,

todos os aspectos relevantes da cosmologia de quatro dimensões são revisitados. Acontece,

no entanto, que uma brana in�nitamente �na parece ser apenas uma aproximação do caso

mais realista, na melhor das hipóteses.

Infelizmente, no contexto de brana espessa, não é possível, aplicar o formalismo

de Gauss-Codazzi. A razão é que, as condições de junção de Israel-Darmois em um

contexto de brana espessa não estão bem estabelecidas. As condições de junção estão

no centro do procedimento de projeção e sua ausência faz com que todo o programa se

desintegre. Nesse sentido, a investigação de uma con�guração de mundos brana de cinco
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dimensões, cuja parte de quatro dimensões descreve um universo é, de fato, relevante. A

principal característica em mundo branas reside na manipulação do warp factor, o qual

é implementado nas soluções. Como um procedimento geral, usaremos uma função warp

factor separável. Parte das soluções obtidas através de um dado Ansatz nas obras de

[56, 57] são aqui recuperados como casos particulares.

6.2 Soluções Cosmológicas de Branas não singulares

Vamos propor uma métrica no bulk 5D, dada por

ds2 = a2(t; y)

�
�dt2 + u2(t)

�
dr2

1� kr2
+ r2(d�2 + sen2�d�2)

��
+ b2(t; y)dy2; (6.1)

com a métrica de fundo 4D de Friedmann-Robertson-Walker-Lemaître, onde k = 0; �1
denota a curvatura espacial do espaço-tempo 4D homogêneo e isotrópico para o espaço

de Minkowski, de Sitter e anti-de Sitter respectivamente. A assinatura métrica é dada

por (� + + + +). A função a(t; y) é um warp factor com dependência do tempo t e

da dimensão extra y1, enquanto que u(t) é o fator de escala usual para um universo

homogêneo e isotrópico. A função b(t; y) nos mostra a dinâmica da dimensão extra em

diferentes tempos e em diferentes posições no bulk.

A ação 5D com um campo escalar minimamente acoplado ao setor gravitacional tem

a seguinte forma

S =

Z
d5x
p
�g
�
2M3R� 1

2
gMNrM�rN�� V (�)

�
; (6.2)

onde M representa a massa de Planck da teoria fundamental 5D e R é o escalar 5D de

Ricci. O campo escalar � depende do tempo e da dimensão extra y .

Seja a equação de Einstein oriunda da ação (6.2)

RMN �
1

2
gMNR =

1

4M3
TMN , (6.3)

e o tensor energia-momento TMN para o campo escalar �(t; y)

T �MN = rM�rN�� gMN

�
1

2
gABrA�rB�+ V (�)

�
: (6.4)

1Os índices romanos se referem a objetos 5D, ou seja, M;N , � � � = 0; 1; 2; 3; 5 e os índices gregos

representam objetos 4D, ou seja, �,�, � � � = 0; 1; 2; 3, ao passo que os índices romanos em minúsculas i; j;

� � � = 1; 2; 3 representam as coordenadas espaciais em 3D.

58



As equações de campo, em componentes, são
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Subtraindo a equação (6.6) de (6.5) temos
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Por outro lado, somando-se as equações (6.5) e (6.6) obtemos
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Ainda, usando (6.10) na equação (6.8) temos

1

2b2
�
02 � V (�) = 6

a02

a2
1

b2
� 2

 
::
a

a

1

a2
+

:
a
2

a2
1

a2

!
� 10

:
a

a

:
u

u

1

a2

�4
:
u
2

u2
1

a2
� 2

::
u

u

1

a2
� 4k

a2u2
� 1

a2

:
a

a

:

b

b
� 1

2a2

:

b

b

:
u

u
+

1

2a2

::

b

b
: (6.11)

59



Somando as equações (6.10) e (6.11) chega-se a
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enquanto subtraindo a eq. (6.11) de (6.10) somos levados a
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Dada a densidade de lagrangiana do campo escalar
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p
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; (6.14)

e utilizando a equação de Euler�Lagrange
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obtemos
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Efetuando a soma indicial na equação acima, obtemos
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onde
p�g = a4(t; y)b(t; y)u3(t)r2sen�=

p
(1� kr2). Finalmente, temos a equação de

movimento do campo escalar:
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onde o ponto denota uma derivada com a relação a t, enquanto que a linha representa

uma derivação com respeito a dimensão extra y.
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6.2.1 Solução Temporal com b(t; y) = 1 e � = �(y)

Da equação (6.7) temos
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Assumiremos a função a(t; y) como separável, isto é a(y; t) � �(y)�(t). Utilizando essa
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Assumindo as considerações acima, a equação (6.9) torna-se
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enquanto que para a equação (6.12) tem-se
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Ainda, para a equação (6.13) temos
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enquanto a equação de movimento para o campo escalar tem a seguinte forma

�00 + 4
a0

a
�0 � dV

d�
= 0: (6.23)

Caso � � � � 0 e k = 0:

Diante das equações (6.21) e (6.22) e, se � � � � 0, temos o seguinte conjunto de
equações para (6.20), (6.21) e (6.22)
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 ::

�

�

!
� 2

 :

�

�

!2
�
 :

�

�

!� :
u

u

�
+

� ::
u

u

�
�
� :
u

u

�2
�
�
k

u2

�
= 0; (6.24)

 ::

�

�

!
+

 :

�

�

!2
+ 5

 :

�

�

!� :
u

u

�
+ 2

� :
u

u

�2
+

� ::
u

u

�
+

�
2k

u2

�
= ���2 = 0; (6.25)

 ::

�

�

!
+

 :

�

�

!2
+ 5

 :

�

�

!� :
u

u

�
+ 2

� :
u

u

�2
+

� ::
u

u

�
+

�
2k

u2

�
= ��2 = 0: (6.26)

Podemos observar que a equação (6.26) se torna redundante com a relação à equação

(6.25). Somando e subtraindo as equações (6.24) e (6.25), tem-se respectivamente

2

 ::

�

�

!
�
 :

�

�

!2
+ 4

 :

�

�

!� :
u

u

�
+ 2

� ::
u

u

�
+

� :
u

u

�2
+

�
k

u2

�
= 0 (6.27)

e :

�

�

!2
+ 2

 :

�

�

!� :
u

u

�
+

� :
u

u

�2
+

�
k

u2

�
=

" :

�

�

!
+

� :
u

u

�#2
+

�
k

u2

�
= 0: (6.28)

A equação (6.27) juntamente com a equação (6.28) leva a" :

�

�

!
+

� :
u

u

�#2
+

�
k

u2

�
= 0 (6.29)

e temos um conjunto de duas equações para resolver.

Primeiramente, iremos checar se das equações (6.27) e (6.29), emerge alguma iden-

tidade. Para isso, partindo da equação (6.29) temos

:

�

�
= �

� :
u

u

�
�
p
�k
u

: (6.30)

Derivando a expressão acima com relação ao tempo chega-se a

d

dt

 :

�

�

!
=

::

�

�
�
 :

�

�

!2
=

� ::
u

u

�
+

� :
u

u

�2
�
p
�k
u2

:
u: (6.31)
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Inserindo a expressão (6.30) para
:

�=� em (6.31) obtemos
::

�

�
=

�
�
� :
u

u

�
�
p
�k
u

�2
�

::
u

u
+

� :
u

u

�2
�
p
�k
u2

:
u

= 2

� :
u

u

�2
� 3

p
�k
u2

:
u� k

u2
�
� ::
u

u

�
(6.32)

e substituindo (6.32) em (6.27) �camos com

2

� :
u

u

�2
� 3

p
�k
u2

:
u� k

u2
�
� ::
u

u

�
+ 2

�
�
� :
u

u

�
�
p
�k
u

�� :
u

u

�
�1
2

�
�2
p
�k

:
u

u2
� k

u2

�
+

� ::
u

u

�
+

k

2u2
= 0 (6.33)

que após uma simples manipulação, nos traz uma identidade

�3
p
�k
u2

:
u � 3

p
�k
u2

:
u = 0: (6.34)

Desse modo, a solução geral do conjunto das equações (6.27) e (6.29) para k = 0 ao

tratamento de (6.30), cuja solução é dada por

�(t) =
C

u(t)
, k = 0; (6.35)

onde C é uma constante arbitrária de integração.Considerando agora a equação (6.30)

para o caso em que k 6= 0 e u = 1, recuperamos o resultado obtido por na referência [57],
cuja solução é

�(t) = �0e
�
p
�kt: (6.36)

Por outro lado, para o caso em que e k 6= 0 e u 6= 1, e usando a rede�nição abaixo
na equação (6.30)

u(t) = f(t)�(t)) :
u(t) =

:

f� + f
:

�; (6.37)

:
u

u
=

:

f

f
+

:

�

�
; (6.38)

chegamos a
:

� +
1

2

 :

f

f

!
� �

p
�k
2f

= 0; (6.39)

com a seguinte solução

�(t) =
Cp
f(t)

�
p
�kp
f(t)

Z t

0

dt
0p

f(t0)
, k 6= 0: (6.40)
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Caso � = �� 6= 0 para k = 0:

Nesse caso as equações de campo podem ser escritas na forma ::

�

�

!
� 2

 :

�

�

!2
�
 :

�

�

!� :
u

u

�
+

� ::
u

u

�
�
� :
u

u

�2
�
�
k

u2

�
= 0; (6.41)

 ::

�

�

!
+

 :

�

�

!2
+ 5

 :

�

�

!� :
u

u

�
+ 2

� :
u

u

�2
+

� ::
u

u

�
+

�
2k

u2

�
= ���2; (6.42)

 ::

�

�

!
+

 :

�

�

!2
+ 5

 :

�

�

!� :
u

u

�
+ 2

� :
u

u

�2
+

� ::
u

u

�
+

�
2k

u2

�
= ��2; (6.43)

o que implica � = ��.
Subtraindo a equação (6.41) da equação (6.43) temos

3

 :

�

�

!2
+ 6

 :

�

�

!� :
u

u

�
+ 3

� :
u

u

�2
= ��2; (6.44)

a qual pode escrita como " :

�

�

!
+

� :
u

u

�#2
=
�

3
�2; (6.45)

de onde
:
u

u
= ��

r
�

3
�

:

�

�
: (6.46)

Derivando a expressão acima com relação ao tempo, temos

d

dt

� :
u

u

�
=

::
u

u
�
� :
u

u

�2
= �

:

�

r
�

3
�

24 ::

�

�
�
 :

�

�

!235 ; (6.47)

deste modo,
::
u

u
=

� :
u

u

�2
�

:

�

r
�

3
�

::

�

�
+

 :

�

�

!2
; (6.48)

e ainda substituindo a equação (6.46) na equação (6.48), vem

::
u

u
=

"
��
r
�

3
�

:

�

�

#2
�

:

�

r
�

3
�

::

�

�
+

 :

�

�

!2
: (6.49)
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Inserindo as equações (6.46) e (6.49) em (6.41), (6.42) e (6.43), obtemos uma iden-

tidade para cada uma das equações. Portanto, resta-nos apenas uma equação para ser

resolvida: " :

�

�

!
+

� :
u

u

�#2
=
�

3
�2: (6.50)

Fazendo

�(t) = 1=�(t) =)
:

� = �
:
�

�2
e

:

�

�
= �

:
�

�
; (6.51)

temos
:
� �

:
u

u
� = �

r
�

3
; (6.52)

cuja solução é dada por

�(t) = u(t)

"
C1 �

r
�

3

Z t

0

dt0

u(t0)

#
: (6.53)

Como �(t) = 1=�(t), a solução para �(t) torna-se

�(t) =

"
u(t)

 
C1 �

r
�

3

Z t

0

dt0

u(t0)

!#�1
, k = 0: (6.54)

Caso � = �� 6= 0 para k 6= 0:

Subtraindo a equação (6.41) da equação (6.43) temos

3

 :

�

�

!2
+ 6

 :

�

�

!� :
u

u

�
+ 3

� :
u

u

�2
+

�
3k

u2

�
= ��2; (6.55)

a qual pode escrita como " :

�

�

!
+

� :
u

u

�#2
+

k

u2
=
�

3
�2: (6.56)

Deste modo, a equação acima, juntamente com ::

�

�

!
+

 :

�

�

!2
+ 5

 :

�

�

!� :
u

u

�
+ 2

� :
u

u

�2
+

� ::
u

u

�
+

�
2k

u2

�
= ��2; (6.57)

produz a seguinte solução

�(t) = � 1

u(t)

r
3

�
cot

�
C1
p
3k �

p
k

Z t

0

dt0

u(t0)

�s
k + k tan2

�
C1
p
3k �

p
k

Z t

0

dt0

u(t0)

�
:

(6.58)
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É simples ver que

�(t) = � 1

u(t)

r
3

�
cot

�
C1
p
3k �

p
k

Z t

0

dt0

u(t0)

�s
k sec2

�
C1
p
3k �

p
k

Z t

0

dt0

u(t0)

�
; (6.59)

logo

�(t) = � 1

u(t)

r
3k

�

1

sin

�
C1
p
3k �

p
k

Z t

0

dt0

u(t0)

� ; (6.60)

que após algumas simpli�cações, leva a

�(t) = � 1

u(t)

r
3k

�
sec

�p
k

Z t

0

dt0

u(t0)

�
; (6.61)

onde utilizamos

� sin x = � cos(�=2� x) (6.62)

com x = �
p
k

Z t

0

dt0

u(t0)
e C1

p
3k = �=2:

6.2.2 Solução Espacial com b(t; y) = 1 e � = �(y)

Seja agora para a parte espacial das equações (6.21), (6.22) e (6.23)

�02 = ��
�2
� 3

"�
�00

�

�
�
�
�0

�

�2#
; (6.63)

2

3
V (�) =

�

�2
� 3

�
�0

�

�2
�
�
�00

�

�
; (6.64)

�00 + 4

�
�0

�

�
�0 � dV

d�
= 0: (6.65)

De�nindo

�(y) = eA(y); (6.66)

suas derivadas são

�0(y) = A0�(y); (6.67)

�00(y) =
h
A00 + (A0)

2
i
�(y): (6.68)
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Caso � = � = 0 :

Neste caso, as equações (6.63), (6.64) e (6.65) tornam-se

1

3
�02 = �A00; (6.69)

2

3
V (�) = �A00 � 4 (A0)2 ; (6.70)

�00 + 4A0�0 =
dV

d�
: (6.71)

Supondo que

�0 = rW�(�)

A0 = sW (�): (6.72)

O conjunto de equações de (6.72) em (6.69), (6.70) e (6.71) temos

s = �1
3
; (6.73)

e o potencial tem a forma

V (�) = r2
�
1

2
(W�)

2 � 2
3
W (�)2

�
: (6.74)

Derivando (6.74) com respeito a �; temos

V� = r2
�
W��W� �

4

3
W�W (�)

�
= r2

�
d

d�

�
W 2
�

2

�
� 4
3

d

d�

�
W (�)2

2

��
=

d

d�

�
r2
�
W 2
�

2
� 2
3
W (�)2

��
; (6.75)

considerando que

V (�) =
W 2
�

2
� 2
3
W (�)2; (6.76)

para r = 1:

Resta apenas resolver as equações de (6.72), isto é,

�0 = W�(�); (6.77)
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A0 = �1
3
W (�); (6.78)

com

A(y) = �1
3

Z
W [�(y)] dy: (6.79)

Caso � = �� 6= 0:

Inserindo as expressões (6.66), (6.67) e (6.68) nas equações (6.63), (6.64) e (6.65),

temos

�02 = �e�2A � 3A00; (6.80)

2

3
V (�) = �e�2A � 4 (A0)2 � A00; (6.81)

�00 + 4A0�0 =
dV

d�
: (6.82)

Subtraindo a equação (6.81) de (6.80)

V (�) = 3[A00 � 2 (A0)2] + 3
2
�02 (6.83)

e impondo

�0 = aW1�(�) , �
00 = a2W1��W1�; (6.84)

A0 = bW2(�) , A00 = abW2�W1�; (6.85)

e inserindo em (6.83), a expressão para o potencial torna-se

V (�) = 3[abW2�W1� � 2b2W2] +
3

2
a2W 2

1�: (6.86)

Derivando com relação ao campo � esta última expressão dada em (6.86), temos

dV

d�
= 3[abW2��W1� + abW1��W2� � 4b2W2W2�] + 3a

2W1�W1��; (6.87)

portanto, utilizando (6.87) com o auxílio de (6.84) e (6.85), chega-se a

a[4bW2 � 3bW2�� � 2aW1��]W1� = 3b[aW1�� � 4bW2]W2�: (6.88)
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Se agora de�nirmos

W1 = W + �Z e W2 = W + �Z; (6.89)

e agruparmos os termos que se adequam a uma derivada total, a equação (6.88) toma a

forma

d

d�

�
2

3
W 2 +

1

2
W 2
� �

2

3
��Z2 +

�

2
(2� � �)Z2� +

4

3
�2Z2 + �W�Z� +

4

3
�WZ

�
+
4

3
(� � �)WZ� = 0: (6.90)

Supondo que

W = C1 + C2Z + C3Z��; (6.91)

onde C1, C2 e C3 são constantes arbitrárias, e substituindo na equação (6.90), temos

2

3
C21 � C4 +

4

3
C1C3Z�� +

2

3
C3Z

2
�� +

1

2
C23Z

2
��� + Z�Z���(C2C3 + C3�)

+ Z2�

�
C22
2
� 2C3�

3
� �2

2
+ C2� +

2

3
C3� + ��

�
+ Z2

�
2C22
3
� 2C2�

3
+ 2C2� �

2��

3
+
4�2

3

�
+ Z

�
4C1C2
3

� 4C1�
3

+
8C1�

3
+ Z��

�
4C2C3
3

+
4C3�

3

��
= 0: (6.92)

Modelo a la Gremm

Tomando como solução

Z(�) = Z0 cos(v�+ s); (6.93)

para a equação (6.92) e, agrupando os termos em Z, Z�2e Z2�, temos

2

3
C1 � C4 + Z

�
4C1C2
3

� 4C1C3
3

v2 � 4C1�
3

+
8C1�

3

�
+ Z2�

�
C22
3
+
C3v

4

2

�2C3�
3

� �2

2
+ C2� +

2C3�

3
+ �� � v2(C2C3 + C3�)

�
+ Z2

�
2C22
3
+
2C3v

4

3

�2C2�
3

+ 2C2� �
2��

3
+
4�2

3
� v2

�
4C2C3
3

+
4C3�

3

��
= 0: (6.94)

Zerando o coe�ciente de Z, temos

4C1C2
3

� 4C1C3
3

v2 � 4C1�
3

+
8C1�

3
= 0: (6.95)
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A solução para v �ca dada por

v =

r
C2 � �+ 2�

C3
; (6.96)

onde C1 = � 3C4=2; com C2 = � C3+ �� 2� se v = 1: Deste modo, a expressão para W
torna-se

W = C1 + (�� 2�) cos�; (6.97)

com a escolha Z0 = 1 e s = 0 na equação (6.93). Utilizando (6.97) em (6.84) e (6.85),

obtemos

�0 = (� � �)sen�: (6.98)

e

A0 = �1
3
[C1 + (�� �) cos�] (6.99)

Portanto, as soluções para � e A, são respectivamente dadas por

�(y) = 2 arccot[e2y(���)]; (6.100)

e

A(y) =
1

3
y(C1 � �+ �) +

1

6
ln(1 + e4y(���)): (6.101)

Usando as equações (6.100) e (6.101) para a expressão (6.83), obtemos o seguinte

potencial

V (�) =
2(�� �)2(1�G(�)[14 +G(�)])

3(1 +G(�))2
; (6.102)

onde, G(�) � [arctan(�=2)]2(���)
2

.

Nas �guras (2)-(4) da seção 6.7 descrevemos os per�s de �(y); A(y) e V (�) na faixa

relevante onde o campo escalar também está variando. Apesar da forma funcional não

trivial das soluções obtidas, o espaço-tempo resultante é bem comportado. De fato, todos

os escalares de Kretschmann associados às soluções são �nitos. O comportamento dos

escalares de Kretschmann é mostrado nas �guras (11)-(13).

6.3 Parâmetro de Hubble Efetivo

Seja a nossa métrica dada por

ds2 = �2(y)�2(t)

�
dt2 � u2(t)

�
dr2

1� kr2
+ r2(d�2 + sen2�d�2)

��
� b2(t; y)dy2; (6.103)
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onde dt2 é o tempo conforme, de tal forma que o tempo próprio seja dado pela relação

d� 2 = �2(t)dt2: (6.104)

Logo

d� = �(t)dt! � =

Z
�(t)dt (6.105)

Utilizando a regra da cadeia para d=d� , temos

d

d�
=
dt

d�

d

dt
=

1

�(t)

d

dt
; (6.106)

onde em (6.106) utilizamos a relação dada em (6.105). A parte espacial da distância ds2

e a distância própria d
_
s
2, é dada por

d
_
s
2
= �2(t)u2(t)

�
dr2

1� kr2

�
; considerando apenas a parte radial. (6.107)

Logo

d
_
s = �(t)u(t)

�
drp
1� kr2

�
: (6.108)

Integrando a expressão acima, chegamos a

_
s = �(t)u(t)

Z
drp
1� kr2

; (6.109)

onde �(t)u(t) = aeff (t) é o fator de escala da cosmologia convencional, portanto

_
s = aeff (t)

Z
drp
1� kr2

; (6.110)

cujo resultado da integral acima é então

_
s = aeff (t)

1

sen(
p
kr)
p
k
: (6.111)

Agora utilizando (6.103) e (6.108), temos

d
_
s

d�
=

1

�(t)

d

dt
[�(t)u(t)]

1

sen(
p
kr)
p
k
: (6.112)

Desenvolvendo a expressão acima somos levados a

1
_
s

d
_
s

d�
=

1

�2(t)

d�

dt
+

1

�(t)u(t)

du

dt
=

1

�(t)

�
1

�(t)

d�

dt
+

1

u(t)

du

dt

�
: (6.113)
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A velocidade de afastamento entre as galáxias é dada por v = Hd , por outro lado, a

nossa velocidade
_
v é dada por

_
v =

d
_
s

d�
=

1

�(t)

�
1

�(t)

d�

dt
+

1

u(t)

du

dt

�
_
s: (6.114)

Podemos reescrever a expressão (6.114) da seguinte maneira

_
v =

1

�(t)

d

dt
[ln(�(t)u(t)]

_
s; (6.115)

onde usamos�
1

�(t)

d�

dt
+

1

u(t)

du

dt

�
=

d

dt
ln(�(t) +

d

dt
ln(u(t) =

d

dt
[ln(�(t)u(t)]: (6.116)

Comparando a expressão (6.115) com a lei de Hubble dada por v = Hd, nosso Heff é

dado por

Hefe =
1

�(t)

d

dt
[ln(�(t)u(t)] =

1

aefe

daefe
d�

=

:
aefe
aefe

: (6.117)

6.4 Resultados

Nesta seção, a partir das soluções encontradas para �(t) e com auxílio da equação

(6.117), iremos encontrar o parâmetro de Hubble efetivo bem como o fator de escala

efetivo. Seja o caso em que k = 0 e � = � = 0 :

�(t) =
C

u(t)
; (6.118)

aqui obtemos

Hefe(�) = 0 e aefe = 0, (6.119)

ou seja, temos um parâmetro de Hubble que descreve um Universo estático (universo de

Einstein). Ainda para o caso em que � = � = 0, mas agora com k 6= 0, a solução é dada
por

�(t) =
1p
f(t)

"
C �

p
�kp
f(t)

Z t

0

dt
0p

f(t0)

#
; (6.120)

e

d� = �(t)dt =
dtp
f(t)

"
C �

p
�kp
f(t)

Z t

0

dt
0p

f(t0)

#
= dz[C �

p
�kz]; (6.121)
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com dz = dt=
p
f(t). Encontramos assim uma expressão para o tempo cósmico �

� = Cz � z2
p
�k=2: (6.122)

se C = 0 e, escolhendo f(t) � e�2at, temos z = (1=a) eat, então

� = �
p
�k
2

1

a2
e2at; (6.123)

portanto

t =
1

2a
ln

�
� 2a

2�p
�k

�
: (6.124)

Retomando a expressão para �(t)

�(t) = �
p
�k
a

e2at; (6.125)

substituindo as expressões (6.125) e (6.124) em (6.117), temos

Heff (�) =
1

�
: (6.126)

Já para aefe(t) = �(t)u(t), temos

aefe(�) = 2
p
�k� ; (6.127)

onde, também, foram utilizadas as expressões (6.125) e (6.124).

Agora, sejam os casos em que � = �� 6= 0 para k = 0 e k 6= 0. Primeiramente,

vamos analisar a curvatura k = 0. Temos

�(t) =
1

u(t)

1

C1 �
r
�

3

Z t

0

dt0

u(t0)

(6.128)

Da equação (6.105)

d� = �(t)dt =
dt

u(t)(C1 � bz)
! � = �1

b
ln(C1 � bz) (6.129)

onde b =
p
�=3e z =

Z t

1

dt0=u(t0). Inserindo as equações (6.128) e (6.129) na expressão

(6.117), temos

Heff (t) = u(t)(C1 � bz)
d

dt

�
ln

�
1

(C1 � bz)

��
=

= u(t)(C1 � bz)
d

dt
(�b�) = u(t)(C1 � bz)� b

1

u(t)(C1 � bz)
(6.130)

= �b
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Então

Heff (�) = �
r
�

3
: (6.131)

Por outro lado, o fator de escala efetivo é relacionado com Heff (�) pela seguinte relação

Heff (�) =

:
aefe
aefe

= �
r
�

3
: (6.132)

Deste modo chegamos a

aefe(�) / exp
 
�
r
�

3
�

!
: (6.133)

Podemos notar, que a solução acima para aefe com k = 0, é similar a solução encontrada

para um Universo sem brana, dominado pela energia de vácuo e com k = 0; ou seja

a(t) / exp
 
�
r
�

3
t

!
; (6.134)

onde � > 0 é a constante cosmológica. Logo, podemos concluir que � = �. A solução

dada em (6.133) representa a fase atual da expansão acelerada de nosso Universo.

Finalmente, temos para o caso em que k 6= 0 e lembrando que

�(t) = � 1

u(t)

r
3k

�
sec
�p

kz
�
; (6.135)

onde z �
Z t

0

dt0

u(t0)
. Seja

d� = �(t)dt = �
r
3k

�
sec
�p

kz
�
dz; (6.136)

onde dz = dt=u(t): Integrando a expressão acima, obtemos

� = �
r
3k

�
ln
���sec�pkz�+ tan�pkz���� : (6.137)

Invertendo (6.137) para z em função do tempo � , obtemos

z =
2p
k
arccos

8><>:
h
1 + exp(�

p
�=3)

i1=2
p
2

9>=>; : (6.138)

Já para Hefe, temos

Hefe =
1

�(t)

d

dt
[ln(�(t)u(t)] =

d

d�

"
ln

 
�
r
3k

�
sec
�p

kz
�!#

(6.139)

74



onde na primeira igualdade substituimos d� = �(t)dt. Substituindo (6.138) em (6.139)

�camos com

Hefe(�) =
d

d�

264ln
0B@�r3k

�
sec

0B@pk 2p
k
arccos

8><>:
h
1 + exp(�

p
�=3)

i1=2
p
2

9>=>;
1CA
1CA
375 ; (6.140)

e temos que

Hefe(�) =

r
�

3
tanh

"r
�

3
�

#
: (6.141)

Usando a de�nição para a função de Hubble

Hefe(�) =

:
aefe
aefe

=

r
�

3
tanh

"r
�

3
�

#
; (6.142)

e integrando a expressão (6.142), o fator de escala efetivo é dado por

aefe(�) = ln

"
cosh

r
�

3
�

#
: (6.143)

A seguir é mostrada a tabela com os resultados para o fator de escala efetivo bem

como para o parâmetro de Hubble efetivo:

Curvatura Caso Hefe(� ) aefe(� )

k = 0 � � � � 0 0 0

k 6= 0 � � � � 0 1

�
2
p
�k�

k = 0 � � �� �
r
�

3
exp

 
�
r
�

3
�

!
; � � �

k 6= 0 � � ��
r
�

3
tanh

"r
�

3
�

#
ln

"
cosh

r
�

3
�

#
(6.144)

A partir dos dados estabelecidos na tabela acima, podemos ver que, para o caso

em que k = 0 e � � � � 0 os valores de Hefe(� ) e aefe(� ) são nulos, ou seja, uma

solução que descreve um Universo estático. No caso em que k 6= 0 e � � � � 0 e,

naturalmente para k = �1, torna-se impossível haver um regime de aceleração de nosso

Universo, pois
::
aefe(� ) = 0; no entanto tem-se um regime de expansão do Universo. O

caso em que k = 0 e � � ��, nos fornece uma solução para fase atual de nosso universo
(tipo exponencial). Nossa constante de separação � foi identi�cada com a constante

cosmológica, neste caso obtivemos uma solução que descreve um Universo em expansão
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acelerada, pois
::
aefe(� ) / eHefe t: Já para o caso em que k 6= 0 e � � �� a solução para

::
aefe(� ) nos fornece fases de desaceleração cósmica.

::
aefe < 0

O comportamento da função Hubble e do fator de escala efetivo são mostrados nas

�guras (5)-(10).
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Capítulo 7

Conclusões

Na primeira parte da contribuição original deste trabalho, derivamos as equações de

campo no formalismo f(R)-Einstein-Palatini em dimensões arbitrárias e apresentamos o

estudo das condições de consistência aplicados aos modelos de branas.

Revisitando as regras de soma para duas teorias modi�cadas da gravitação, Brans-

Dicke e f(R)-Einstein-Palatini, veri�camos que para ambos os casos é possível relaxar as
condições de consistência e branas suaves a la Randall-Sundrum (não singulares) tornam-

se possíveis em tais teorias. Em particular, para o caso de Brans-Dicke, nota-se um resul-

tado interessante, o qual engloba a presença do potencial do campo escalar contribuindo

para as regras de soma. Isso é exclusivo para a formulação da teoria de Brans-Dicke

em cenários 5D, pois, sempre que a escolha do parâmetro � = �1 é feita, o potencial é
eliminado dessa condição de consistência quando estamos no palco da Relatividade Geral,

teoria f(R) e f(R)-Einstein-Palatini.
Concernente à Cosmologia de Branas, contida na segunda parte deste trabalho, nós

encontramos soluções dependentes do tempo para o modelo FLRW-branas, isto é, a parte

temporal das equações para
:

�, �0 and V (�). Neste caso, consideramos duas possibilidades

para o mecanismo de separação de variáveis, ou seja, � = � = 0 e � = �� 6= 0: Para
cada possibilidade de� e �; resolvemos as equações de campo no que se refere à curvatura

espacial da brana (Universo), ou seja, k = 0 e k 6= 0. Considerando o mesmo conjunto de
equações governadas por

:

�, �0 e V (�), resolvemos a parte espacial do nosso problema, a

qual envolve soluções com uma dimensão extra. Obtivemos solução para o campo escalar,

potencial do campo escalar e warp factor. Os casos em que � = � = 0 e � = �� 6= 0
também foram considerados. Para efeitos de aplicação cosmológica, apresentamos nossos
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resultados a partir das soluções encontradas para �(t), e calculamos o parâmetro de

Hubble efetivo bem como o fator de escala efetivo para todas as possibilidades de �; �

e k, discutidas na Seção 6.2. Especi�camente, emerge um resultado interessante para o

caso em que k = 0 e � 6= ��. A constante de separação � faz o papel de � (constante
cosmológica) para a solução do tipo de-Sitter, cuja solução engloba o parâmetro de Hubble.

Na primeira investigação deste trabalho, a qual pode ser entendida como uma parte

mais formal no tratamento de modelos de mundos brana suaves, veri�camos quais possi-

bilidades permitem tal cenário. Na teoria de Brans-Dicke é interessante notarmos que o

potencial do campo escalar não é suprimido quando aplicadas as regras de soma. Isso abre

novas possibilidades para a modelagem de branas com uma dimensão extra compacta no

contexto da teoria de Brans-Dicke, ao contrário da Relatividade Geral, a qual não permite

branas suaves em cinco dimensões com a presença do potencial do campo escalar. Para

o formalismo f(R)-Einstein-Palatini, também apresentamos um forte vículo a partir das

regras de soma; Em nosso resultado, a função f(R) sofre uma restrição, sua primeira
derivada deve ser negativa, isto é, df(R)=dR < 0. O formalismo de Palatini nos dá a van-

tagem de possuir derivadas de segunda ordem na métrica, enquanto no que formalismo

métrico, as equações são de quarta ordem na métrica, devido às derivadas superiores no

escalar de Ricci nas equações de campo. Algumas extensões das regras de soma podem

ser tratadas, por exemplo; considerar o warp factor com uma dependência temporal, isto

seria de grande interesse para uma aplicação cosmológica. Também poderíamos investigar

as regras de soma no formalismo métrico-a�m, onde estão presentes os objetos de torção

do espaço-tempo. Essas são algumas de nossas perspectivas quanto à essa primeira parte

do trabalho.

Já para a segunda investigação, nossas perspectivas incluem os casos em que podemos

utilizar dois campos escalares; um campo dependente do tempo e um campo dependente

da dimensão extra com seus respectivos potenciais. Atualmente estamos na fase inicial da

construção das equações de campo para este problema. Em uma outra abordargem nota-

mos interessante incluir uma constante cosmológica no bulk a partir da ação de Einstein-

Hilbert 5D: Talvez, isso nos forneceria um análogo à relação entre essas constantes cos-

mológicas 4D e 5D no cenário de branas �nas. Estas abordagens se fazem presentes em

nossas perspectivas.
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Figura 1. Perfil de massa como uma função do raio comóvel para uma sobredensidade 

localizada na origem. 
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Figura 2. Campo escalar como função da dimensão extra y. 

 

 

Figura 3. Exponencial da função warp factor como função da dimensão extra y. 
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Figura 4. Potencial do campo escalar como uma função do campo escalar. 

 

 

 

Figura 5. Parâmetro de Hubble efetivo como uma função do tempo cósmico para o caso 

Δ = Σ = 0 e k ≠ 0. 
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Figura 6. Fator de escala efetivo com uma função do tempo cósmico para o caso 

Δ = Σ = 0 e k ≠ 0. 

 

Figura 7. Fator de escala efetivo como uma função do tempo cósmico para o caso 

Δ ≠ Σ ≠ 0 e k = 0. 
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Figura. 8. Fator de escala efetivo como uma função do tempo cósmico para o caso 

Δ ≠ Σ ≠ 0 e k = 0. 

 

Figura 9. Parâmetro de Hubble efetivo como uma função do tempo cósmico para o caso 

Δ ≠ Σ ≠ 0 e k ≠ 0. 

 

87 

2 4 6 8 10


0.2

0.4

0.6

0.8

1.0

a

2 4 6 8 10


0.05

0.10

0.15

0.20

0.25

H



Figura 10. Fator de escala efetivo como uma função do tempo cósmico para o caso 

Δ ≠ Σ ≠ 0 e k ≠ 0. 

 

Figura 11. Escalar de Kretschmann (K1) como função da dimensão extra y. 
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Figura 12. Escalar de Kretschmann (K2) como função da dimensão extra y. 

 

Figura 13. Escalar de Kretschmann (K2) como função da dimensão extra y 
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