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Introduccion

Los dos logros mas importantes de la Fisica del siglo pasado son la
formulacién del Modelo Estandar (ME) y la Relatividad General (RG).
El primero es, quizas, la mds importante Teorfa de Campo Cuéntico
(TCC) jamaés formulada y predice todas las particulas fundamentales
descubiertas hasta la fecha. Ha sido comprobado experimentalmente
durante décadas y la tltima particula necesaria para completarlo, el
bosén de Higgs, fue descubierta en el 2012 al CERN y no hay otras
particulas elementales presentes en el modelo.

El ME es también una TCC que involucra solo tres de las interacciones
fundamentales conocidas: la interaccién fuerte, débil y electromagnética
(estds ultimas dos se unifican a energfas superiores de la masa del bosén
de Higgs en la interaccién electro-débil). Sin embargo, la interaccién
gravitatoria se queda fuera, asi el ME es una TCC en la que la gravedad
estd desacoplada.

Por otro lado, la gravedad tiene una descripcién como teorfa de campo
clasica en la RG, en la que se asocia a la dindmica del espacio-tiempo. La
RG también estd muy bien comprobada experimentalmente y es respons-
able de la explicacién de la dindmica de las galaxias y de la evolucién
del Universo. Una de las dltimas confirmaciones de las predicciones de
la RG son las ondas gravitacionales, detectadas en el 2016, uno de los
primeros resultados teéricos de la RG.

ME y GR ofrecen muchos resultados interesantes, pero no son impeca-
bles.

El ME, por ejemplo, no contiene una explicacién para las oscilaciones de
los neutrinos (que se entienden mediante las masas de los neutrinos),
0 no explica por qué la masa del bosén de Higgs es tan pequefia en
comparacién con la escala donde los efectos gravitatorios se convierten
relevantes, la escala de Planck. Este tltimo problema puede solucionarse
mediante una complecién ultravioleta (UV) del ME, considerado en-
tonces una teoria de campo efectiva (TCE), valida hasta una determinada
energfa limite.

Una extension natural del ME es el Modelo Estdndar con Minima Super-
simetria (MEMS), donde se teoriza que cada particula conocida tiene un
compafiero supersimétrico que difiere solo 1/2 en el espin, y se relacionan
mediante transformaciones supersimétricas. La supersimetria soluciona
el problema de jerarquia descrito arriba, pero también impone una de-
generacién entre las masas de las particulas y sus supercomparieros.
Puesto que no se ha observado degeneracién alguna hasta ahora, si la
supersimetria existe, se rompe a una determinada escala.

Otra razon para creer que el ME es una TCE es el ntimero de pardmetros
libres presentes en la teoria y que tienen que ser fijados por los exper-
imentos. Hay 18 parametros libres, no predichos por el ME, y, en el
lenguaje moderno de las TsCE, la presencia de un pardmetro en una
teorfa corresponde a un valor de expectacién del vacio (VEV) de un
campo dindmico de otra TCQ. Este es el punto de vista que apoya la idea
de que el ME no predice todo el espectro de particulas elementales.

Por ltimo, ya hemos dicho que el ME no contiene la interaccién gravita-
toria, que estd, en cambio, presente en una teoria cldsica como la RG.
Por otro lado, la RG predice también la presencia de singularidades




en las soluciones de la ecuacién de campo de Einstein, que no pueden
ser resueltas con la teoria misma. Ademas, al ser la RG una teoria
clasica, no puede capturar ningtn efecto cuantico capaz de resolver estas
singularidades.

La primera idea que viene en mente para resolver este problema, es hacer
de la RG una TCC, es decir una teoria de Gravedad Cuantica (GC). Sin
embargo, una cuantizacién directa de la RG conduce a divergencias, ya
que la RG no es renormalizable. Esto significa que estas divergencias no
pueden ser resueltas usando técnicas de renormalizacién y la teoria se
vuelve mal definida a una escala donde los efectos cudnticos empiezan a
ser relevantes, de nuevo, a la escala de Planck.

Nuevamente, en el lenguaje de las TsCE, esto podria significar que la RG
es solamente vélida hasta una determinada escala, y deberfa existir una
teorfa que es valida en el régimen ultravioleta. El mds prometedor, si no
el tnico, candidato que ofrece una teoria consistente de GC es la Teoria
de Cuerdas (TC).

aidea de TC es considerar objectos de dimensién 1 + 1 como particulas
elementales en vez de objetos puntuales como en el ME. Estos objetos
son las llamadas cuerdas. La longitud de la cuerda es dada por Is, que
ademas fija la escala de energfa a la cual estas cuerdas son apreciables.
Generalmente, esta escala se encuentra cerca de la escala de Planck.
Las cuerdas pueden ser abiertas o cerradas, y la diferente tipologia de
particulas que existen en nuestro Universo son vistas como diferentes
modos de excitacién de tales cuerdas. Las componentes del espacio-
tiempo atravesadas por la cuerda mientras evoluciona en tiempo forma
una hoja de universo (en ingles worldsheet, “WS”), y las interacciones son
univocamente determinadas considerando las diferentes topologfas por
el WS de la cuerda. Curiosamente, las ecuaciones del campo de Einstein
surgen directamente a partir de la invariancia conforme del WS. El tinico
pardmetro libre en la teorfa es la longitud de la cuerda Is, pero se cree que
también puede ser un artefacto de la descripcién perturbativa de la TC.
Introduciendo la supersimetria en el WS, el nimero de dimensiones de
espacio-tiempo de la TC se fijan a D = 10 = 1 + 9. Esto significa que
hay seis dimensiones extra ademaés del espacio-tiempo 4-dimensional
que percibimos. El objetivo es compactificar tales dimensiones extras,
de manera que no sean detectables a las escalas de energia accesibles
experimentalmente.

Las cuerdas no son los tinicos objetos predichos por la TC. Hay también
objetos p-dimensionales extendidos, llamados p-branes, en la cual puede
terminar una cuerda abierta. Ellos llevan cargas bajo campos gauge p-
formas en la teorfa. Cuando el acople de la cuerda crece suficientemente,
las branas se convierten en los objectos fundamentales de la teoria, porque
su masa se vuelve mas pequefia de que la masa de la cuerda fundamental.
Elegantemente, integrando todas la excitaciones masivas de cuerdas, TC
se reduce a una teoria en 10d de supergravedad (SUGRA).

El hecho de que haya un pardmetro libre, de nuevo, nos dice que deberia
existir otra teorfa cuyo limite perturbativo es TC. Esta teoria es la llamada
teoria M, y no se conoce, pero se cree que su limite de baja energia tiene
que ser 11d SUGRA. Curiosamente, esta supuesta teoria no es una TC.

Declarar que estamos trabajando en un marco de TC no es suficiente
para determinar univocamente la tipologia de teorfa que estamos con-
siderando. De hecho, hay cinco teorias de supercuerdas, pero, increible-



mente, se relacionan todas mediante dualidades. Las teorias son

» tipo I, donde el ntimero I se debe al nliimero de gravitinos en
la teoria. Se obtiene combinando cuerdas abiertas y cerradas no-
orientadas de manera que sus inconsistencias individuales se
cancelan. Preserva solamente 16 supercargas en 10d, es decir ¥/ = 1.

» Tipo IIA, que es una teoria que contiene dos gravitinos con quirali-
dad opuesta, asi que es una TC no quiral. Preserva daxima super-
simetria, es decir 32 supercargas o N = (1,1) en 10d.

» Tipo IIB es también una teoria con dos gravitinos, pero con la
misma quiralidad, asi que es una TC quiral. También preserva
maxima supersimetria, es decir &' = (2, 0) in 10d.

» Las TsC heterdticas se obtienen estableciendo el sector levégiro
como el de una TC bosénica y el sector dextrégiro como el de una
supercuerda. Usando las cancelaciones de anomalias, los campos
de materia pueden transformarse bajo Eg X Eg 0 SO(32). Preservan
16 supercargas, es decir ¥ = 1in 10d.

La red de dualidades se muestra en la Figura I:

» Tipo I y heterética SO(32) tienen el mismo espectro sin masa y
tienen las mismas acciones 10d SUGRA en el limite de baja energia.

» Tipo I es tipo IIB TC en orientifolds O9-planos.

» Tipo IIB es dual a tipo IIA bajo T-dualidad.

» 11d SUGRA compactificada en un circulo estd relacionada con la
accion efectiva de tipo IIA. Hay, entonces, una dualidad entre las dos
teorfas. En realidad, la dualidad es atin més fuerte, y habitualmente
se llama dualidad de tipo IIA con M-teorfa sobre un circulo. De
hecho, es posible levantar los estados de tipo IIA que tienen cargas
bajo de las p-formas de tipo IIA a teorfa M. Las correspondientes
p-branas son llamadas Mp-branas. Se construyen también como
soluciones de 11d SUGRA. La aplicacién de dualidad de las branas
de tipe IIA y los objetos en teoria M se muestra en la Tabla L.

» Una discusién parecida, pero mas dificil, puede ser hecha con la
teoria M en S!/Z; y Eg x Eg TC heterdtica.

» Enfin,las dos TsC heteréticas estan relacionadas usando T-dualidad.

Hay también otras dualidades que permiten de ir directamente desde
una teoria a una otra, o también con teoria F.

No obstante todas las TsC parecen relacionadas unas con otras, hay to-
davia otro gran problema con las teorias de supercuerdas: TC necesita 10
dimensiones espacio-temporales para ser consistente y nosotros tenemos
multiples opciones de variedades que pueden ser usadas para compact-
ificar las seis dimensiones extras. Ademads, la teoria en 4d resultante
depende fuertemente de la variedad elegida y tenemos que tratar con
un increiblemente gran conjunto de TsCE. Requeriendo que la cantidad
de supersimetria en la TCE esta reducida (pero no estd totalmente rota)
respecto de las 32 supercargas (o 16 por tipo I y TC heteroticas) de la
teoria en 10d, usualmente, se escoge como variedad del espacio interno
una Calabi-Yau (CY) compacta. Estas variedades son responsables de
romper hasta 8 supercargas, e introduciendo planos de orientifolds o
flujos, es posible romper hasta 8 supercargas, es decir /' = 1in 4d.

La gran cantidad de TsCE que se puede obtener eligiendo diferentemente
las CYs o los flujos toma el nombre de Panorama de cuerdas (en ingles
String landscape). El namero de vacios posibles provenientes de TsCE



aparentemente distintas es del orden de 10*2°?’ y de momento no hay
ningun ejemplo de vaci6é de cuerda que describa nuestro Universo. Esta
es la razon por la que puede ser necesario cambiar de perspectiva. En
lugar de buscar todas las TsCE posibles que provienen de TC, es maés
razonable entender cual son las reglas generales que una TCE acoplada
con la gravedad debe satisfacer y mirar si admite una complecién en el
UV hasta TC. Todas las TsCE que no son consistentes con TC (or con GC
en general) se dicen que pertenecen al Ciénaga (en ingles Swampland).

El objetivo del programa del Ciénaga es, entonces, definir una serie de
conjeturas (en la esperanza que se conviertan en teoremas) que todas
las TsCE acopladas a la gravedad deben satisfacer. Cuando una TCE no
satisface una de estas conjeturas, o pertenecen al Ciénaga, o la conjetura
tiene que ser refinada para contemplar también esta TCE. El objetivo es
formular principios bastante precisos que permitan seleccionar las TsCE
que admiten una complecién en el UV hasta GC. Cuanto mads refinada
es la serie de conjeturas, mas precisos son los limites que separan el
Panorama del Ciénaga.

Muchas conjeturas del Ciénaga imponen limitaciones sobre la tipologia
de simetrias que son posibles en una TCE acoplada con la gravedad. Por
ejemplo, una de las conjeturas més aclamadas dice que en una teorfa de
GC no pueden existir simetrfas globales, y todas las simetrias tiene que
ser gauge. Otra conjetura dice que la interaccién gravitatoria tiene que
ser la més débil de todas las interacciones en la TCE. Estas conjeturas
se aplican a simetrfas continuas y se cree que son vélidas también en
simetrias de gauge discretas. De hecho, en algunos contextos, la conjetura
de “No simetrias globales” ha sida probada por todas las tipologias de
simetrias. Pero, la funcién de las simetrias discretas en una teoria de CQ
y en el programa de Ciénaga se encuentra todavia en desarrollo y no se
comprende completamente.

Las simetrias discretas son estados fundamentales en muchas teorias
de fisica mas alld del ME. Pensamos al enigma del sabor, que trata de
explicar el origin de las masas de los fermiones y sus mezclas. También
se han considerado en el MEMS para explicar la estabilidad del protén.
Sin embargo, sus origenes permanece obscuros, y deberian ser investi-
gadas a un nivel mas fundamental. Es, entonces, interesante mirar qué
limitaciones imponen las simetrias discretas al Panorama y al Ciénaga.
En particular, pueden ser usadas, como veremos, como limite a la fuerza
del acoplamiento de gauge de otras simetrfas continuas en la teoria, o
para justificar la presencia de separacién de escala en vacios de anti-de
Sitter (AdS).

Muchas conjeturas de Ciénaga estdn hasta ahora tan bien testadas que
pueden ser usadas para sefalar inconsistencias en la TCE que se esta
estudiando. Esta es la situacién, por ejemplo, de las teorias que tienen
tadpoles dinamicos. Estos tadpoles no son topoldgicos, porque se asocian
a campos dindmicos. La presencia de estos tadpoles habitualmente
significa que la teorfa no estd en un minimo de un potencial y estd
rodando bajo un potencial escalar. Es posible que si alguien elige ignorar
los efectos de estos tadpoles, entonces alguna conjetura de Ciénaga no se
satisfaga. El hecho de que la conjetura de Ciénaga esté violada significa
que la solucién de las ecuaciones de movimiento (EdM) no es correcta, y
tiene que ser substituida con una solucién que depende del tiempo que
tiene en cuenta la presencia del tadpole dindmico. Es, entonces, posible



que la conjetura de Ciénaga es satisfecha, o que sea necesario modificarla
de manera que sea valida en todo el espacio de campos.

Esquema de la tesis

La tesis contiene tres partes principales y una conclusién.

La primera parte contiene desde el Capitulo 1a 4 y retine todo el material
de referencia necesario para entender los principales resultados de la tesis.
En el Capitulo 1, empezamos con un resumen de la correspondencia AdS
/ TCC en la Seccién 1.1. Esta correspondencia propone una equivalencia
entre TC tipo IIB en AdS, especialmente AdSs; x S°, y la teoria de gauge
N = 4 superYang-Mills (SYM) en 4d. Ademas, extendemos la conjetura a
un fondo general para las D3-branas que sondan una singularidad CY en
la Seccién 1.1.1. La CY es no-compacta y viene dada por un cono sobre una
variedad de Sasaki-Einstein (SE) X5. La dualidad, entonces, relaciona TC
tipo IIB en AdSs X X5 con una teoria supersimétrica de campo conforme
(TSCC), que vive en la D3-brana que sonda la punta del cono en la CY.
Desde la generalizacién de la conjetura, explicamos como es posible
construir vértices de bariones que son duales a operadores de bariones en
la SCFT en la Seccién 1.1.2. Es posible construir las TsSCC también en otras
dimensiones espacio-temporales usando el principio hologréfico. Por
ejemplo, en la Seccién 1.1.3, explicamos el modelo de Aharony-Bergman-
Jafferis-Maldacena (ABJM), que es obtenido considerando la teoria M en
AdS, X S7/Zy. La teoria dual es una TSCC de Chern-Simons (CS) en 3d
con grupo de gauge U(N)x X U(N)_g.

La correspondencia relaciona todas las cantidades presentes en el lado
gravitacional con una cantidad andloga en la TSCC. Por ejemplo, es
posible reafirmar el principio de maximizacién de la carga central “a”
que permite calcular las R-cargas de los campos en una TSCC con la
minimizacién del volumen del espacio interno X5 en la teorfa dual. Esto
se llama minimizacién del volumen y lo explicamos enla Seccién 1.1.4 y
es ttil para la discusion en el Capitulo 7.

Desde la Seccién 1.2 empezamos a examinar compactificaciones de TC
con orientifolds y flujos sobre variedad CY. Primero explicamos cudles
son la condiciones generales para compactificar con flujos en tipo II en
la Seccién 1.2.1 y luego damos algunas generalidades de variedades CY
en la Seccién 1.2.2. El procedimiento paso a paso para compactificar TC
sobre CY es ensefiado solo para tipo IIA desde la Seccién 1.2.3 y haremos
un ejemplo de estabilizacién de médulos en la Seccién 1.2.3.4, donde
explicamos DeWolfe-Giryavets-Kachru-Taylor (DGKT). Este ejemplo es
importante para el Capitulo 6.

En el Capitulo 2 introducimos el concepto de teoria de gauge con quivers
en la Seccién 2.1. Para el caso de teorfas de gauge téricas, introducimos el
diagrama de dimer y el suyo grafico dual, es decir el quiver periodico,
en la Seccién 2.2. Explicamos como es posible encontrar simetrias U(1)
continuas usando el dimer (o quiver periédico) en la Seccién 2.2.2.
La novedad consiste en reformular estas técnicas usando identidades
geométricas, introduciendo conceptos topoldgicos nuevos que son ttiles
paraidentificar simetrias globales U(1) usando los dimers. Esto esta hecho
en la Seccién 2.3.1. Finalmente, explicamos como construir orbifolds



generales para teorias tdricas generales en la Seccién 2.3.2. Este capitulo
es importante para el Capitulo 5.

En el Capitulo 3, introducimos las simetrias discretas en TC. Primero,
explicamos cémo simetrias discretas abelianas de gauge aparecen en
teoria de campos, y su generalizacién a teorfa de campos con dimensiones
arbitrarias, en las Secciones 3.1 y 3.1.1. En la Seccién 3.2, describimos las
simetrias discretas de gauge que surgen naturalmente en compactifica-
tiones de TC, centrdndonos en aquellas asociadas al acoplamiento de
Dvali-Kaloper-Sorbo (DKS). Los objetos con cargas bajo estas simetrias
discretas son paredes de dominio (PD), que vamos a clasificar en compact-
ificaciones sobre CY de tipo IIA. Finalmente, describimos cémo simetrias
discretas surgen en TsCC téricas en la Seccién 3.3. Esta tltima seccién es
necesaria para la discusién en el Capitulo 5.

En el Capitulo 4, empezamos con un resumen del programa del Ciénaga,
enumerando las conjeturas principales en la Seccién 4.1. Desde la Seccién
4.2, nos centramos en particular sobre las distintas versiones de la
Conjetura de Gravedad Débil (CGD). Esta conjetura juega un papel
importante en los Capitulos 6 y 7.

La segunda parte se centra en la relacién entre simetrias discretas y el
programa de Ciénaga. Contiene los Capitulos 5y 6.

En el Capitulo 5, introducimos un nuevo kit para identificar el grupo
de Heisenberg discreto que surge desde las TsCC que viven en D3-
branas que sondan singularidades de orbifold generales de una CY 3-fold
torica general. Primero, explicamos cémo identificar la estructura de
un grupo de Heisenberg discreto usando el dimer en Seccién 5.2. Este
grupo de Heisenberg puede ser realizado desde el espacio de cobertura
de una teorifa con orbifold y describimos como construirlo en manera
sistematica En Seccién 5.3. Desde la Seccién 5.4. ofrecemos muchos
ejemplos que ilustran nuestro procedimiento. Concluimos en la Seccién
5.5 con comentarios sobre el dual gravitacional.

En el Capitulo 6, por fin, queremos entender cémo las simetrias discretas
entran en el programa de Ciénaga. En la Seccién 6.2, consideramos teorias
de GC con simetrfas de gauge discretas y continuas. Estudiamos la CGD
para objetos Bogomol'nyi-Prasad—Sommerfield (BPS) presentes en la
teoria y que tienen carga bajo una simetria discreta abeliana. Proponemos
la Conjetura 6.1 que llamamos Zj Conjetura de Acopiamiento Débil
(CAD). Dicha conjetura dice que en una teoria de GC con una simetrfa
discreta de gauge Zy y una simetria continua de gauge con acoplamiento
g, el acoplamiento de gauge debe escalar con k¢, donde a es un ntimero
de orden 1. A modo de ejemplo, en la Seccién 6.3, usamos aquellas
teorfas cuyo grupo de Heisenberg ha sido identificado en el Capitulo
5. La historia se repite también con ABJM en la Seccién 6.4. Ellos son
presentes en modelos de interseccién de branas, tal y como analizamos
en la Seccién 6.5. Desde la Seccién 6.6, empezamos de estudiar simetrias
discretas de 3-formas. Motivados por la estabilizacién de los médulos
de DGKT en tipo IIA, que tiene una separacién de escala en un vacio
AdS en 4d, argumentamos que esta separacién es debida a la presencia
de estas simetrias discretas. Proponemos, entonces, un refinamiento de
la Conjetura de la Distancia en AdS en la versién Fuerte (CDAF) en
presencia de una simetria de gauge discreta Zy. Llamamos a la Conjetura
6.2 la Refinada Conjetura de la Distancia en AdS en la version Fuerte



(RCDAF). También en este caso, apoyamos nuestra proposicién con
ejemplos usando las férmulas de uniones, que revisamos en Apéndice
A.

La tercera parte de la tesis, por otro lado, se centra en la interaccién entre
los tadpoles dinamicos, es decir tadpoles asociados a campos dindmicos,
y la CGD con axiones. Contiene solo el Capitulo 7 y nuestras conclusiones
son que, es posible que, en presencia de tadpoles dindmicos, la CGD no se
satisfaga, siéndolo s6lo en el minimo del potencial. Primero, proponemos
un vistazo de lo que esta pasando en un contexto hologréfico, usando
las técnicas de minimizacién del volumen introducidas en la Seccién
1.1.4. De hecho, en la Seccién 7.2, aplicamos la minimizacién del volumen
para calcular el volumen de 3-ciclos que son envueltos por D3-branas.
Mostramso que la CGD se satisface solo si el volumen es minimizado,
es decir si estamos en el minimo del potencial. Desde la Seccién 7.3,
explicamos cémo calcular la reaccion debida a la presencia de D-branas
en diferentes configuraciones. Primero consideramos la reaccién en
configuraciones supersimétricas en la Seccién 7.3.1, luego pasamos a
las no supersimétricas en la Seccién 7.3.2. Una vez que la configuracion
non-compacta estd entendida, pasamos a discutir la presencia de tadpoles
dindmicos en modelos de D7-branas desde la Seccién 7.4. Consideramos
una compactificacién sobre toros con orientifold y flujos, que permiten la
presencia de D7-branas méviles y ED3-branas y calculamos la reaccién de
las D7-branas, ligeramente desplazada de su minimo, en los instantones.
En la Seccién refsec:the-clash, mostramos que la CGD no se satisface
siempre si ignoramos la presencia del tadpole dindmico y nos quedamos
con una solucién que no depende del tiempo. El modelo explicito que
analizamos se explica en detalle en la Seccién 7.5.

La dltima parte se dedica a las conclusiones de esta tesis.

Ademads, complementamos la tesis con diferentes apéndices que per-
miten al lector entender mejor el contenido examinado en los diversos
capitulos. En el Apéndice A explicamos las condiciones de uniones para
vacios en AdS. En el Apéndice B enumeramos los conceptos principales
de geometria térica, con el fin de introducir el concepto de diagrama
térico y su dual diagrama (p,q)-web en la Seccién B.2. En el Apéndice
C explicamos la anomalia de Freed-Witten (FW) en la Seccién C.1y
introducimos la construccién de Hanany-Witten (HW) en la Seccién C.2.
Finalmente, en el Apéndice D listamos nuestras convenciones para las
funciones modulares usadas en Capitulo 7.



Introduction

Two of the greatest achievements of Physics of the last century have been
the formulation of the Standard Model (SM) and the General Relativity
(GR). The former is, maybe, the most important Quantum Field Theory
(QFT) that has been formulated and predicts all the fundamental particles
that have been so far discovered. It has been tested for decades and the
last particle that was necessary to complete the SM, i.e. the Higgs boson,
which has been discovered in 2012 at CERN [7] and no more fundamental
particles are present in the model.

The SM is also a QFT involving only three of the fundamental interactions
that are known so far, i.e. the strong, the weak and the electromagnetic
interaction (these last two unify at energies above the mass of the Higgs
boson into the electro-weak interaction). However, the gravitational
interaction is left out, so the SM is a QFT where gravity is decoupled.
Gravity, on the other hand, has a classical field theory description in
terms of GR, where it is associated with the dynamics of spacetime itself.
GR is also very well tested by experiments, and it is responsible for
explaining the dynamics of galaxies and the evolution of the Universe
itself. One of the latest confirmations of the predictions of GR have been
the gravitational waves, detected in 2016 [13] but they were one of the
first theoretical results of GR.

SM and GR provide many interesting results, but they are not flawless.
The SM, for instance, does not contain an explanation for the oscillations
of the neutrinos (that it is understood in terms of neutrino masses), or it
does not explain why the mass of the Higgs boson is so small compared
to the scale where gravitational effects become relevant, i.e. the Planck
scale. This last problem can be solved if one looks for Ultraviolet (UV)
completion of SM, which is then considered as an Effective Field Theory
(EFT) valid up to a certain energy cut-off.

A natural extension of the SM is the Minimal Supersymmetric Standard
Model (MSSM), where it is theorized that each known particle has
a supersymmetric partner which differs only by 1/2 in the spin, and
they are related by supersymmetric transformations. Supersymmetry
would solve the hierarchy problem described above, but it also imposes a
degeneracy among the masses of particles and their superpartners. Since
no degeneracy has been observed so far, if supersymmetry exists, it must
be broken at some scale.

Another elegant reason to believe that SM is an EFT is given by the number
of free parameters that are present in the theory that should be fixed by
experiments. There are 18 free parameters that are not predicted by the
SM and, in the modern language of EFTs, the presence of a parameter in
a theory corresponds to the Vacuum Expectation Value (VEV) of some
dynamical field of another QFT. This point of view supports the idea that
the SM is not predicting the whole spectrum of fundamental particles.
Finally, we have already said that the SM does not contain the gravitational
interaction, which is instead present in a classical theory such as GR.
On the other hand, GR predicts also the presence of singularities in the
solutions of Einstein’s field equation, that cannot be cured by the theory.
Moreover, being GR a classical theory, it cannot capture any quantum
effects that might cure such singularities.

The SM physics can be found in textbooks,
e.g. [8-10]. While an introduction to GR
can be found in [11, 12].

Rigid supersymmetry is nicely reviewed
in [14] and references therein.
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The discussion about ST is mainly based
on [9].

The first idea that comes up to mind to solve this problem is to make GR a
QFT, i.e. a theory of Quantum Gravity (QG). However, a straight forward
quantization of GR leads to divergences, being GR non-Renormalizable.
This means that such divergences cannot be cured using renormalization
techniques and the theory becomes ill-defined at the scale in which
quantum effects become relevant, i.e., again, the Planck scale.

Once again, in the EFT language, this might mean that GR is only valid
up to a certain scale, and there must exist a theory that is valid in the UV
regime. Such a theory is still not known.

The most promising, if not the only, candidate that provides a consistent
theory of QG is String Theory (ST).

The idea of ST is to consider 1 + 1 dimensional objects as fundamental
particles instead of point-like ones as in the SM. These objects are called
strings. The length of the string is given by I; and it sets the energy
scale at which such strings become appreciable. Usually, such scale is
close to the Planck scale. Strings can be open or closed, and the different
kind of particles that are present in our universe are seen as different
modes of excitation of such strings. The spacetime components spanned
by the string while it evolves in time form a Worldsheet (WS), and
the interactions are uniquely determined by considering the different
topologies for the WS of the string. Interestingly, Einstein’s field equations
arise directly from the conformal invariance of the WS. The only free
parameter in the theory is the string scale /5 but it is believed also that it
might be an artifact of the perturbative description of ST.

Introducing supersymmetry on the worldsheet theory, we have also a
constraint on the spacetime dimensions of the string theory framework,
which is fixed to be D = 10 = 1 + 9. This means that there are an extra
six dimensions in addition to the 4d spacetime we perceive. The aim is to
compactify such extra dimensions so that they are undetectable at the
energy scales that are currently accessible by experiments.

Strings are not the only objects that are predicted by ST. There are
also extended p-dimensional objects, called p-branes, on which open
strings can end. They carry charges under p-form gauge fields in the
theory. When the string coupling grows large enough, they become the
fundamental objects of the theory, since their mass becomes smaller than
the mass of the fundamental strings. Nicely, integrating out all massive
string excitations, ST reduces to be a 10d Supergravity (SUGRA) theory.
The fact that there is a free parameter, once again, tells us that there
should exist another theory whose perturbative limit is ST. Such theory
is called M-theory, and it is not known, but it is believed that its low
energy limit must be 11d SUGRA. Interestingly, this putative theory is
not a string theory.

Declaring that we are working in a ST framework is not sufficient to
uniquely determine the kind of theory we are going to consider. Indeed,
there are five consistent superstring theories, but amazingly, they are all
related by so-called dualities. The theories are

» Type I, where the number I states the number of gravitinos in the
theory. It is obtained by combining open and closed unoriented
strings in a way such that their individual inconsistencies cancel [9].
It preserves only 16 supercharges in 10d, i.e. N = 1.

» Type IIA, which is a theory that contains two gravitinos with
opposite chiralities, so it is a non-chiral string theory. It preserves



maximal supersymmetry, i.e., 32 supercharges or ¥ = (1, 1) in 10d.

» Type IIB is instead the theory with two gravitinos but with the
same chirality, so it is the chiral string theory. It also preserves 32
supercharges, i.e. N/ = (2,0) in 10d.

» Heterotic string theories are obtained, taking the left sector to be
that of a bosonic string theory, while the right sector to be that
of the superstring. By anomaly cancellations, the matter fields
can transform either under Eg X Eg or SO(32). They preserve 16
supercharges, i.e. N/ = 1in 10d.

The web of dualities is showed in Figure I:

» TypeIand SO(32) Heterotic have the same massless spectrum, and
they have the same low energy 10d SUGRA actions.!

» Type lis type IIB string theory on O9-planes orientifolds.

» Type IIB is dual to type IIA by T-duality.>

» 11d SUGRA compactified on a circle, is related to the effective
action of type IIA. There is then a duality relating the two theories.
Actually, the duality is even stronger, and it is usually stated as a
type IIA / M-theory on a circle duality. Indeed, it is possible to
lift the type IIA brane states charged under the type IIA p-form
to M-theory. The corresponding p-branes are called Mp-branes.
They can be constructed also as 11d SUGRA solutions. The duality
map of the type IIA branes and the M-theory objects is in Table I
from [9].

» A similar discussion, but trickier, can be done with the M-theory
on S'/7Z, and Eg X Eg heterotic duality. As a consequence, 11d
SUGRA is also dual to Eg X Eg heterotic string theory.

» Finally, the two heterotic string theories are related by T-duality.

There are also other dualities that allow one to go directly from one
theory to the other, or also involve F-theory.

Despite all STs seem to be related one to the other, there is still another
major problem with superstring theories: ST needs 10 spacetime dimen-
sions in order to be consistent, and we have multiple choices of manifolds
that can be used to compactify the extra six dimensions. Moreover, the
resulting 4d theory depends strongly on the chosen manifold, and we
need to deal with an incredibly large set of EFTs. Requiring that the
amount of supersymmetry in the EFT is reduced (but not completely
broken) with respect to the 32 supercharges (or 16 for type I and heterotic
STs) of the 10d theory, usually, the manifold of the internal space is
chosen to be a compact Calabi-Yau (CY). These manifolds are responsible

TypellA & M-theory on S!
DO-branes <> KK moments on 11d supergravitons
IIA string < M2-branes wrapped on S!
D2-branes < M2-branes
D4-branes < MB5-branes wrapped on S*

NS5-branes < Mb5-branes
Dé6-branes < KK monopoles
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<_____
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Figure I: Principal duality web of super-
string theories.

1: Up to a change of variable.

2: There is also another duality that maps
type IIB at weak coupling, to type IIB at
strong coupling. This duality is known as
S-duality.

Table I: Relation between type IIA branes
and Mp-branes.
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3: We are considering CY 3-folds. For
larger or smaller CYs the amount of broken
supersymmetry is larger or smaller.

to break up to 8 supercharges,® and introducing orientifold planes or
fluxes, it is possible to break up to 4 supercharges, i.e. /' = 11in 4d.

The large amount of EFTs that can be obtained by choosing differently CYs
and fluxes take the name of String landscape. The number of possible
vacua coming from apparently distinct EFTs is of the order of ~ 10272000
and at the moment there is no known example of string vacuum that
describes our universe.

This is the reason why it might be necessary to change perspective.
Instead of looking at all possible EFTs that come from ST, it is more
reasonable to understand what are the general rules that a EFT coupled
to gravity must satisfy and look if it admits a UV completion to ST. All
the EFTs that are inconsistent with ST (or QG in general) are referred to
belong to the Swampland.

The aim of the Swampland is then that of defining a set of conjectures
(in the hope that they become theorems) that all EFTs coupled to gravity
must satisfy. Whenever an EFT does not satisfy one of these conjecture,
either it belongs to the Swampland, or the conjecture must be refined to
contemplate also this EFT. The purpose is to formulate principles precise
enough that allow us to select the EFTs that admits a UV completion
to QG. More refined is the set of conjectures, and more precise are the
boundaries separating the Landscape from the Swampland.

Many Swampland conjectures set constraints on the kind of symmetries
that are possible in a EFT coupled to gravity. For instance, one of the most
acclaimed conjecture states that in a theory of QG there cannot be global
symmetries, and all symmetries must be gauged. Another conjecture
states that the gravitational interaction must be the weakest one among the
interactions in a EFT. Such conjectures apply for continuous symmetries
and are believed to hold also for discrete gauge symmetries. Indeed, in
some context, the "No global symmetry" conjecture has been proved for
any kind of symmetry. However, the role of the discrete symmetries in a
theory of QG and in the Swampland program is still in development and
not completely understood.

Discrete symmetries have been proved fundamental in many theories of
physics beyond the SM. Let us think about the flavor puzzle, that aims to
explain the origin of fermions masses and their mixing. They have been
also invoked in the MSSM to explain the stability of the proton. However,
their origin remains obscure, and they should be investigated at a more
fundamental level. It is then interesting to see what kind of constraints
the discrete symmetries imposes on the Landscape and the Swampland.
In particular, they can be used, as we will see, as a bound on the gauge
coupling strength of other continuous gauge symmetries in the theory,
or to justify the presence of a separation of scale in a Anti-de Sitter (AdS)
vacua.

Many Swampland conjectures are by now so tested that can be used
also to show some inconsistency in the EFT that one is studying. This
is the case, for instance, of theories that have dynamical tadpoles. Such
tadpoles are not topological, but they are associated to dynamical fields.
The presence of these tadpoles usually mean that the theory is not
sitting at the minimum of a potential, but it is instead rolling down a
slope of a scalar potential. It is possible that if one decides to ignore the
effects of these tadpoles then some Swampland conjecture is not satisfied
anymore. The fact that the Swampland conjecture is violated means that



the solution to the Equations of motion (EoMs) is not the correct one,
and it must be substituted with a time-dependent solution that takes into
account the presence of the dynamical tadpole. It is then possible that
the Swampland conjecture is restored, or it might be necessary to modify
it so that it is valid in all field space.

Plan of the thesis

The thesis contains three main and one conclusive parts.

The first part contains Chapters 1 to 4 and it is collecting all the back-
ground materials that are necessary to understand the main results of
the thesis.

In Chapter 1, we start with a review of the AdS / CFT correspondence
in Section 1.1. This correspondence proposes an equivalence between
type IIB string theory on AdS background, specifically AdSs x S°, and
N = 4 SuperYang-Mills (SYM) gauge theory in 4d. We also extend the
conjecture to general background for the D3-branes probing a CY sin-
gularity in Section 1.1.1. The CY is a non-compact CY given by the cone
over a Sasaki-Einstein (SE) manifold Xs. The duality then relates type
IIB ST on AdSs X X5 with a Supersymmetric Conformal Field Theory
(SCFT) living on the worldvolume of the D3-brane probing the tip of
the cone in the CY. From the generalization of the conjecture, we review
how it is possible to construct baryonic vertices that are dual to baryonic
operators in the SCFT in Section 1.1.2. It is possible to construct also
SCFTs on different spacetime dimensions using the holographic principle.
For instance, in Section 1.1.3 we review the Aharony-Bergman-Jafferis-
Maldacena (ABJM) model, which is obtained considering M-theory on
AdSy x S7/Z. The dual theory is a 3d Chern-Simons (CS) SCFT with
gauge group U(N); X U(N)_g.

The correspondence relates every quantity on the gravity side to an
analogous quantity on the SCFT. For instance, it is possible to restate the
principle of a-maximization that allows the computation of the R-charges
of the fields in a SCFT with the minimization of the volume of the internal
space Xs in the gravity dual. This is usually called Volume minimization,
and it is reviewed in Section 1.1.4, and it will be useful in the discussion
in Chapter 7.

From Section 1.2 we start reviewing ST compactifications with orientifold
and fluxes on CY manifold. We first explain what are the general con-
ditions for compactifications with fluxes in type II in Section 1.2.1, and
later we give some generalities on CY manifolds in Section 1.2.2. The
step-by-step procedure to compactify string theory on CY is showed only
for type IIA from Section 1.2.3, and we will make an example of moduli
stabilization in Section 1.2.3.4, where we will review DeWolfe-Giryavets-
Kachru-Taylor (DGKT). This example is important for Chapter 6.

In Chapter 2 we introduce the concept of quiver gauge theories in
Section 2.1. For the case of toric gauge theories, we introduce the dimer
diagram and its dual graph, i.e. periodic quiver, in Section 2.2. We
review how it is possible to find continuous U(1) symmetries from the
dimer (or periodic quiver) in Section 2.2.2. The novelty is on rephrasing
such techniques using geometric identities, introducing new topological
concepts that are useful to identify U(1) global symmetries using the
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dimer. This is done in Section 2.3.1. Finally, we review how to construct
general orbifolds for general toric theories in Section 2.3.2. This chapter
is important for Chapter 5.

In Chapter 3, we introduce the discrete symmetries in ST. First, we review
how Abelian discrete gauge symmetries appear in field theory, and their
generalization to a field theory in arbitrary dimensions, in Sections 3.1
and 3.1.1. In Section 3.2, we describe the discrete gauge symmetries that
arise naturally in ST compactifications, focusing on those associated to
Dvali-Kaloper-Sorbo (DKS) couplings. The objects charged under these
discrete symmetries are Domain Walls (DWs), that we will classify in type
ITA CY compactifications. Finally, we describe how discrete symmetries
arise in toric SCFTs in Section 3.3. This last section lays the foundations
for what is discussed in Chapter 5.

In Chapter 4, we start with a review of the Swampland program, listing
the principal conjectures in Section 4.1. From Section 4.2, we focus in
particular on the various versions of the Weak Gravity Conjecture (WGC).
Such conjecture plays an important réle in Chapters 6 and 7.

The second part focuses on the relation between discrete symmetries and
the swampland program. It contains Chapters 5 and 6.

In Chapter 5 we introduce new toolkits to identify the discrete Heisenberg
groups that arise from the SCFTs living on D3-branes probing the general
orbifold singularities of general toric CY 3-fold. We first explain how to
identify the structure of a discrete Heisenberg group from the dimer in
Section 5.2. Such Heisenberg group can be realized from the covering
space of the orbifolded theory, and we describe how to construct it
systematically in Section 5.3. From Section 5.4 we provide many examples
that illustrate our procedure. We conclude in Section 5.5 with remarks
on the gravity dual.

In Chapter 6, finally, we want to understand how discrete symmetries
enter the Swampland program. In Section 6.2, we consider theories of
QG with discrete and continuous gauge symmetries. We study the WGC
for Bogomol'nyi-Prasad-Sommerfield (BPS) objects that are present in
the theory and are charged under an Abelian discrete symmetry. We
propose Conjecture 6.1 that we call Z; Weak Coupling Conjecture (WCC).
Such conjecture states that in a theory of QG with a Zj discrete gauge
symmetry and a continuous gauge symmetry with coupling g, the gauge
coupling ¢ must scale with k™%, where « is some order 1 number. As an
example, in Section 6.3, we use those theories whose Heisenberg group
has been identified in Chapter 5. The story is repeated also for ABJM in
Section 6.4. They are also present in intersecting brane models, as we
analyze in Section 6.5. From Section 6.6, we start to study discrete 3-form
symmetries. Motivated by the DGKT type IIA moduli stabilization, which
is a scale separated AdS vacuum in 4d, we argue that such scale separation
is due to the presence of these discrete symmetries. We propose, then,
a refinement of the Strong AdS Distance Conjecture (SADC) when a
Zy discrete gauge symmetry is present. We call Conjecture 6.2 the Zj;
Refined Strong AdS Distance Conjecture (RSADC). Also for this case we
support our proposal with examples using junction formulas, reviewed
in Appendix A.

The third part of the thesis, instead, focuses on the interplay between
dynamical tadpoles, i.e., tadpoles associated to dynamical fields, and the



axion WGC. It contains only Chapter 7 and our findings are that, it is
possible that whenever the dynamical tadpoles are ignored, the WGC is
not satisfied, being satisfied only at the minimum of the potential. We
first propose a glimpse of what it is happening in an holographic context,
using volume minimization techniques introduced in Section 1.1.4. In fact,
in Section 7.2, we apply the volume minimization to compute the volume
of 3-cycles that are wrapped by D3-branes. We show that the WGC is
satisfied only if the volume is minimized, i.e. we are at the minimum
of the potential. From Section 7.3, we review how to compute D-brane
backreactions in various set-ups. First we consider supersymmetric
backreactions in Section 7.3.1, then we move to non-supersymmetric
one’s in Section 7.3.2. Once that the non-compact set-up is understood, we
move to discuss the presence of dynamical tadpoles in D7-brane models
from Section 7.4. We consider a toroidal orientifold compactification with
fluxes, that support mobile D7-branes and ED3-branes, and we compute
the backreaction of the D7-branes, slightly moved off the minimum, to
the instantons. In Section 7.4.3, we show that the WGC is not always
satisfied if we ignore the presence of the dynamical tapdole, and we stick
with a time-independent solution. The explicit model that we analyze is
explained in detail in Section 7.5.

The last part is devoted to the conclusions of this thesis.

In addition, we supplement the thesis by various appendices that allow
the reader to better understand the content discussed in the various
chapters. In Appendix A we review the junction conditions for AdS vacua.
In Appendix B we list the basic concepts of toric geometry, in order to
introduce the concept of toric diagram and its dual (p, )-web diagram
in Section B.2. In Appendix C we review Freed-Witten (FW) anomaly
in Section C.1, and we introduce Hanany-Witten (HW) construction
in Section C.2. Finally, in Appendix D we list our conventions for the
modular functions used in Chapter 7.
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Elements of string theory and
string theory compactification

In this chapter, we review some basic concepts of string theory and string
compactification. In particular, we introduce the correspondence between
type 1IB string theory on AdS and Conformal Field Theories (CFTs). We
will focus mainly on AdSs / CFT4 correspondence in Section 1.1 both
in the original formulation and in its generalization (Section 1.1.1) for
type IIB on AdSs X X5, where X5 is a toric SE manifold. We then give in
Section 1.1.2 a glimpse of how baryonic vertices can be constructed in the
gravity side of the correspondence. We introduce the concept of volume
minimization as gravity dual of the a-maximization for a 4d ¥ = 1 gauge
theory in Section 1.1.4. We will just refer to other generalizations of the
conjecture given by, for instance, the ABJM model in Section 1.1.3. In
Section 1.2 we review type II compactification with fluxes, focusing in
particular on type IIA string theory. The papers used to write this chapter
are usually cited at the beginning of each section.

1.1 AdS /CFT correspondence

In [15], it has been proposed a groundbreaking equivalence between type
IIB string theory on AdSs X S°> and ¥ = 4 SYM gauge theory in 4d. The
strong form of the correspondence is the following [19]:

Conjecture 1.1 [STRONG MaLDACENA's ADS5 / CFT4 coNjecTurk [15]].

Type IIB string theory on AdSs X S5 with radius R and N units of
Fs flux on S° is dynamically equivalent to & = 4 pure SU(N) SYM
theory, with gauge coupling gym.

In particular, the following relations among the parameters are conjec-
tured to hold:
R4

gon = 2mgs and 2g3 N = pE (1.1
It is instructive to see what are the arguments that brought Maldacena
to come up with the conjecture in [15]. Following [17-19], we can first
consider N parallel D3-branes spanning a 10d Minkowski space. For
this set-up, we can consider two kinds of perturbative excitations: those
coming from the closed string sector and those from the open string
sector [17, 20, 21]. In the low energy limit, only the zero modes of the
open and closed strings enter [18]. The closed string massless states give
a gravity multiplet in 10d, while the open string massless states form
a N = 4 vector multiplet in 4d [17]. The two sectors decouple at low
energy, so we get a N = 4 SU(N) SYM in 4d* and a decoupled free
10-dimensional supergravity in flat space.
The second point of view we can take is that of a D3-brane solution of

1.1 AdS / CFT correspondence 21
Generalization of the corre-

spondence .......... 22
Baryonsin AdS........ 23
ABJMmodel ......... 24
Volume minimization ... 25

1.2 String theory compactifica-
tion with fluxes . . .. ... 28

General conditions for com-
pactifications with fluxes . 28

Generalities on Calabi-Yau
manifolds .......... 31
Type IIA effective action . . 33

Section 1.1 is based on [15-19].

4: More properly the gauge group on a
stack of N D3-branes is U(N), but in the
Infrared (IR) the U(1) decouples.
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Section 1.1.1 is based on [17, 18] and refer-
ences therein.

Section 1.1.1.1 is based on [17, 18, 23] and
references therein.

supergravity with N units of D3-brane flux [22]:
ds? = Z(r) " Pndatdx” + Z(r)'? (dr? + r*dQ3) , (1.2)
with

4 2 SN
Fs = (1+ %)dZ 'dx"dx'dx*dx® where Z(r) =1 + % .

(1.3)
The function Z(r) in Eq. (1.3) becomes constant when r approaches
infinity. The solution is then a 10d Minkowski flat space. When v — 0,
Z(r) scales as ¥, but the metric in Eq. (1.2) is heavily redshifted. The low
energy theory consists, once again, of two decoupled sectors: the near
horizon region of the geometry and a decoupled free 10-dimensional
supergravity in flat space. Defining R* = 4na’?¢gsN, the near horizon
limit is obtained for r < R, so that Z(r) ~ R*/r%. The geometry in
Eq. (1.2) becomes [17]

2

T
d52 = ﬁmﬂ/

dr?
dxtdx” + R*Z + RdQZ, (1.4)
T
where we recognize the geometry of AdSs xS°. Thus, we get the conjecture
in Conjecture 1.1.

1.1.1 Generalization of the correspondence

The duality between type IIB supertring theory on AdSs x S° and ¥ = 4
SYM is not the only application of Conjecture 1.1. We can consider a more
general background for the D3-branes. Namely, instead of D3-branes on
a (1 +9)d Minkowski space, we could consider a space as

ds® = dslzv[4 +dr? + rzds,z(5 , (1.5)

where My is a Minkowski space, while dr? + rzds)z(5 is a metric of a conic
Ricci flat manifold Yg, such Xs is a suitable manifold at the base of cone.
The metric of X5 is constrained by the Ricci-flatness condition of Y4 such
that

R, =4, . (1.6)

Considering D3-branes at the tip # = 0 of the cone, one can repeat the
study of the spectrum at the low energy limit on the D3-branes and
this is conjectured to be equivalent to the near horizon limit of type IIB
supergravity on AdSs X X5 with N units of self-dual 5-form flux through
Xs5. One of the main difference is, however, the curvature radius R of
AdSs that this time is related to the volume of X5 as follows:

_ 4m*a’?g N
~ Vol(Xs)

4 (1.7)

1.1.1.1 Orbifold singularities

The simplest generalization of the conjecture is to consider D3-branes
at orbifold singularities. This corresponds to consider the near horizon
limit of D3-branes on My X R®/T, where I is some finite subgroup of the
rotation symmetry group SO(6) = SU(4)r. If I' € SU(2), supersymmetry



is broken to & = 2 in the corresponding 4d SCFT, while, if I' C SU(3,
supersymmetry is broken down to N/ = 1 in 4d. On the gravity side,
this corresponds to consider type IIB supergravity on AdSs x S$°/T. The
simplest way to construct the field theory is to consider N D3-branes on
the covering space of RS /T, ie, RE. There are, then, dimT images of each
D3-brane. The theory is obtained projecting the U(N dimI') &/ = 4 SCFT
over the modes that are invariant under I'. This is done by specifying that
I' is acting on the Chan-Paton indices as that of a regular representation
of I'. We will construct in detail the field theory obtained by the orbifold
projection in Section 2.3.2.

1.1.1.2 Non-orbifold singularities

Interesting are also the singularities constructed from the cone over Xs
that, instead, are not coming from orbifolds. In this case, the theories are
obtained requiring that Y¢ = C(X5) is a non-compact CY 3-folds. Since
the holonomy of the manifold is reduced to SU(3), by our definition of
CY, supersymmetry is reduced to only 4 supercharges, i.e.,, N = 1in 4d.
If the cone is CY, then, also X5 as a name, and it is called Sasaki-Einstein
manifold. The simplest SE is S°, and its cone is simply C3, i.e., the flat
space. Historically, the second manifold for which an explicit metric was
known is called T'! [27]. This is a S! bundle over S? x S? and in the
literature, it is usually expressed in terms of the coset space

_ SU(2) xSU(2)

TV = 0 (18)

The exact metric for T*! is known to be

2 _
dsti, =

2
2 2
> (d67 +sin” 6:dp7) + é (d¢ - > cos Qid(pi) . (19)
i=1 i=1

N

that describes a circle bundle, where the circle i is fibered over S2x82[23,
27]. Its cone is CY and it is called conifold. The CY metric reads

ds? = dr? + r2ds?

B(TLY) TL1 7 (110)

which can be inserted in Eq. (1.2) and it corresponds to the near horizon
limit of type IIB compactified on AdSs X Tq,1 with N units of F5 flux
on T'!. The gauge theory obtained by probing the tip of the conifold
singularity is a toric quiver gauge theory. We will consider this theory in
Chapter 5 (see also Section 1.1.4.1 as an example of volume minimization
applied to this example).

Another famous category of SE manifolds is that called Y?-7. They
constitute an infinite class of SE manifolds and the D3-branes probing
the real cone constructed over them is associated to &/ = 1 4d SCFTs.

1.1.2 Baryons in AdS

Another generalization of Conjecture 1.1is to consider the near horizon
limits of D3-branes on orientifolds. They are very similar to orbifolds,
but there are no twisted sector states in this case. The orientifold cases
are interesting because they break the same amount of supersymmetry

1.1 AdS /CFT correspondence 23

Section 1.1.1.2 is based on [17, 18, 24, 25]
and references therein.

We review some basic property of SE man-
ifolds, in particular for the case of toric
CYs, in Section 1.1.4. The interested read-
ers can find them reviewed e.g. in [25, 26]
and references therein.

Section 1.1.2 is based on [16, 17, 28-31] and
references therein.
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5: In this case it is possible to add an ad-
ditional D3-brane stuck on the orientifold,
to get SO(2N + 1) gauge groups.

6: 7 is a twisted sheaf of integers [28].

The possibility of wrapping a D3-brane
over a 3-cycle is possible only if there is no
B-field turned on. This is consistent with
the fact that this operator can be generated
only if the group is SO(2N).

Section 1.1.2.1 is based on [17, 29] and ref-
erences therein.

Discrete Heisenberg group

A discrete Heisenberg group Hy(Z)
is a non-Abelian nilpotent group with
2 generators, A and B, and one central
element C. The generators, by defi-
nition, commute with the central el-
ement, while it is true the following
commutation relation:

C=ABAT1B7!.

If the Heisenberg group is defined
modulo p, where p is a prime number,
the elements of the group satisfy

AP =BP =CP=1.

Section 1.1.3 is based on [2, 23, 32] and
references therein.

of D3-branes, so in the near horizon limit we still have a /' = 4 4d SCFT.
However, the projection would change the gauge group on the stack of
the D-branes. There are two possible projections, giving either SO(2N))
gauge group® or USp(2N) gauge group for the N = 4 gauge theory in
4d. On the gravity side this corresponds to type IIB string theory on
AdSsxS®/Z> = AdSs xRIP°. However, from the gravity side we still need
to see how it is possible to distinguish between the three possible gauge
groups that arise on the SCFT. This is done implementing a discrete tor-
sion on RIP°. The Neveu-Schwarz — Neveu-Schwarz (NSNS) B, field can

be turned on in the non-trivial cohomology class of H> (]R]P5 , Z) =75

It is also possible to turn on a similar discrete torsion for the Ramond
— Ramond (RR) B-field. It turns out, then, there are four possible string
theories on AdSs x RIP°: when there is no B-fields, the corresponding 4d
SCFT is SO(2N). The theory where Bysns is non-zero, it corresponds to
4d SCFT with gauge group USp(2N). The theory where Bgg is non-zero
corresponds to SO(2N + 1) gauge theory.

The theory corresponding of SO(2N) gauge group is particularly inter-
esting because it allows a gauge invariant chiral superfield constructed
with the Pfaffian. This operator is dual to a D3-brane wrapped around a
3-cycle in RIP%, corresponding to the homology class H; (RP°, Z) = Z,.
This is the first example of baryon operator in the AdS / CFT context.

1.1.2.1 Heisenberg group: a first encounter

This is not the only possibility to obtain a baryon operator from the AdS
/ CFT correspondence. Considering for instance D3-branes probing a
conifold singularity, the dibaryon operator that can be constructed on
the gauge theory side, corresponds to a D3-brane wrapped on an orbit of
one of the two SU(2)’s in the definition of the T'! coset space.

There are also many orbifold theories where it is possible to construct
dibaryon operators. One example has been explored in [29], where
they considered type IIB on AdSs x S°/Zs. The presence of the orbifold
generates torsion homologies for S°/Z; where different branes may be
wrapped on torsion cycles. A D3-brane wrapped on a torsion 3-cycle is
a dibaryon operator. Interesting, since H1(S%/73,7) = Zs, it is possible
to turn on Z3 valued Wilson lines. This leads to triplets of D3-brane
states, on which a discrete group acts faithfully. This group is a discrete
Heisenberg group. We will see the action of the Heisenberg group at the
level of the field theory in Section 3.3 while we will devote a complete
chapter (Chapter 5) for the general analysis of the Heisenberg group on
toric quiver gauge theories.

1.1.3 ABJM model

What we are going to discuss in this section is the gravity dual of
the ABJM theory [32]. On the SCFT side, this is a 3d supersymmetric
U(N)r X U(N)_x CS matter theory, with +k denoting the CS level. From
the gravity perspective, it is possible to realize this theory considering an
extension of Conjecture 1.1. Indeed, the AdS / CFT correspondence can
also be established for other types of branes. An example is to consider
11d supergravity (or low energy limit of M-theory) on AdSs X S”/Z. The
ABJM theory is then living on a stack of N M2-branes probing a C*/Z



orbifold singularity, and the orbifold is acting on the C* coordinates z;

as z; — e2™/kz; The curvature radius of the covering S7 and the AdS, is
given by
6 _ 75 _221-6
R* =2m MP/HNk , (1.11)

where we have used again the covering space perspective as in Sec-
tion 1.1.1.1 to define the radius of the orbifolded space. Using this radius
it is possible to describe this theory in type IIA. The type IIA limit arises
as follows. The S7 is a S! Hopf fibration over CIP?, where the Zj quotient
acts on the S'. The radius of the CPP? factor is large whenever Nk > 1.
From (1.11) we conclude that the M-theory description is valid whenever
k> < N. When k increases, we end up in a weakly coupled regime, and
we can reduce to type IIA string theory [32].

The type IIA background corresponds to a compactification on AdSyxCIP3
with internal and AdS radii R; (see below), with N units of Fg RR flux
over CIP3 (i.e., of F; flux over AdS,) and k units of F, RR flux over
CP! c CP? (due to the Hopf fibration of the M-theory S!).

The matching of string theory quantities to the 11d Planck scale is as
follows. The 10d string coupling g is related to the M-theory radius
R =R/kas

g = M) %2, (112)
that scales as .
gs ~ NV4k~1, (1.13)

The string scale M; is related to the 11d Planck scale as

s M
My == (114)

Therefore, in terms of Mj;, the radius (1.11) becomes

R ~ NVok1/oglPpt. (115)

Finally, we need the radius Ry of CIP® from the string viewpoint. The
type IIA metric is given by

1
2 _ p2 2 2
dsi 4 = R§ (stAds4 + ds@IPs) , (1.16)

where
R% ~ N2k 12M72 (1.17)

In Chapter 6 we will use this theory to introduce the Z;y WCC and we
will review the discrete symmetries present in both the M-theory and
type IIA perspective of the ABJM model.

1.1.4 Volume minimization

In this section, we recall the key ideas in [25, 33]. Consider the AdS /
CFT duality between 4d N = 1 quiver gauge theories, obtained from
D3-branes at a toric CY threefold singularity Ys, and type IIB string
theory on AdSs X X5, with the horizon X5 given by the base of the real
cone Yq. The CY condition of Y4 implies that X5 is SE, and has at least

1.1 AdS /CFT correspondence 25

Section 1.1.4 is based on [3, 18, 25, 33-36]
and references therein.
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A review of toric geometry is in Ap-
pendix B.

7: By det (x, v, Z), we mean the determi-
nant of the matrix obtained by the vectors
x, y and z as rows (or columns).

8: For details of the general proof for toric
SE manifold, the reader can have a look
at[33].

one U(1) symmetry (dual to the SCFT U(1)r-symmetry). It is generated
by the Reeb vector, obtained from the complex structure | of Y by

£=J (7%) . (1.18)

Using the condition that X5 is Einstein, it is possible to fix the normaliza-
tion of the Ricci tensor as

Ronn = 4Qumn - (1.19)

This Ricci tensor can be obtained extremizing the Einstein-Hilbert action,
which can be recast as the volume of X5 [33]

S[g] = / d°x/g (Rx; — 12) = 8Vol(Xs), (1.20)
Xs

which in turn depends only on the Reeb vector &. This means that
the problem of finding the metric for the SE manifold reduces to the
minimization of the volume with respect to the Reeb vector. For toric
Y;, the SE manifold Xs has at least an U(1)3 isometry. Let us introduce
the 3d vectors defining the toric fan data of Y; since they lie on a plane,
they are of the form v; = (1, w;), with w; giving the toric diagram of
the geometry. The computation of the volume of X5 is done using the
Duistermaat-Heckman formula and via localization, which boils down to

simple closed formulas in the toric case. We write down the coordinates
of & = (3, by, bs) as’

& det(v;-1,v;,0i41)
Vol (X5) = — , 1.21
ol (%) 3 ; det (&, vi-1,v;)det (&, v, Viv1) (.20

The quantity Z is defined as the volume of a SE manifold, relative to that
of the round sphere. It is an algebraic number given by

_ 1 1 det(vi_1,v;,vit1)
Z{ba ba) = (2m)3 Vol (Xs) = 24 ; det (&, vi-1,vi) det (&, v, vi41)
(1.22)
The AdS solution thus corresponds to the configuration which minimizes
this quantity with respect to the Reeb vector, a procedure known as
Z-minimization. Incidentally, this provides the gravity dual of the a-
maximization [37] in the holographic 4d &/ = 1 SCFT.

In the toric case, we can be more precise in the expression of the volumes
in terms of the toric data. For instance, let us consider a 3-cycle Z; of a SE
manifold Xs. Such a cycle has a volume that also can be expressed as a
function of the Reeb vector and, in the toric case, using the fan data of Y.
It is another result in [33] that the volume of a 3-cycle as a function of &

is
det (vi-1,vi, vis1)

det (&, vi—1,v;) det (&, v, vip1)

From this expression it is possible to show that®

Vol (%) = 22

(1.23)

d
Vol (Xs) = % > Vol () - (1.24)
i=1
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Finally, it is better to define R the radius of the AdS space and of the
internal manifold Xs. Eq. (1.21) and (1.23) become

°R> & det (vi-1,v;, vi41)

Vol (X5) = i ,

(X5) 3 ; det (&, v;-1,v;)det(&, v, Vi1) (1.25)

det (vi-1, i, vit1)

Vol (¥;) = 2m®R® ! :

(=) 3t (€, 011, 07) det (£, 01, 0137)

This means that Eq. (1.24) is
T(Rz d
Vol (X5) = - ; Vol (%) . (1.26)

Notice, moreover, that we can define the Z-function normalizing the
volume with respect to a 5-sphere of radius R and still get the same
expression as in Eq. (1.22).

1.1.4.1 Example - T!!

The prototypical example of volume minimization for toric SE mani-
folds is given by T'!. This manifold has been already introduced in
Section 1.1.1.2, namely Eq. (1.8), as an example of generalization of Malda-
cena’s Conjecture 1.1 when the D3-branes probe a non-orbifold singularity.
Constructing the cone over T"!, the dual theory is a quiver gauge theory
with gauge group SU(N)g x SU(N);, four # = 1 bifundamental chiral
fields and two N = 1 adjoint gaugini. By a-maximization [37] we get that
the R-charge of the bifundamental fields is 1/2, while that of the gaugini

is 1, and the central charge a is maximized to’ 9: Although this technique is more gen-
eral, for quiver SCFTs, tr R = 0.

3 27
a=— (3rR*-5trR) = —=N?, (1.27)
32 32 10: Recall that for any chiral fields con-
) ) . 1 taining a complex scalar with R-charge R
where the trace is taken over all fermions in the theory.! there is a fermion with R-charge (R — 1).
Let us consider the fan diagram of the conifold as in Figure 1.1a (the B
corresponding toric diagram, obtained by considering the section along -
the plane x = 1 is in Figure 1.1b). The fan vectors are
U1 = (1r01 0)/ U = (1r 1/ 0)/ U3 = (1r 1/ 1)/ U4 = (1r0/ 1) (128) N
S
F4
Inserting these vectors in Eq. (1.22) and minimizing with respect to the
Reeb vector & = (3, by, b3), we obtain a minimum at &min = (3, 3, 3), for o 2 y
which 9
Z (Emin) = == - 1.29 y
(Emin) = 3 (1.29)
The volume of T! is then (a) Fan of the conifold.
1673 Wy w3
Vol(T'!) = — 1.30
T = = (1.30)
We know from [38] (see also [16, 39]) that the central charges a and c of a
SCFT are related to the cosmological constant A of the dual AdS space as
a=c=m2A32. (1.31) w1 wy

(b) Toric diagram of the conifold.
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Section 1.2 is based on [9, 40] and refer-
ences therein.

Section 1.2.1 is based on [40-42] and refer-
ences therein.

11: It is still possible to obtain Minkowski
space in the presence of F; flux.

On the other hand, the cosmological constant can be found from (1.7) to
be

2/3
4V01(X5)
Putting everything together, we obtain
N273
a ik (1.33)

=T Nol(Xs) !

that for the case of T'!, using Egs. (1.27) and (1.29), we see that the two
results match.

1.2 String theory compactification with fluxes

In string compactification, the first ansatz is that the background space-
time is a product
Myo = MaXYe, (1.34)

where Jl4 is a 4-dimensional non-compact manifold, while Y is a compact
internal manifold. Generically, the 10d metric takes the following form

ds? = e2A(y)gwdx“de + gmndy™dy", (1.35)

where ¢ is a non-trivial warp factor that depends on the internal
coordinates, while g, can be either Minkowski, de Sitter (dS) or AdS [40].
The effective 4d theory is obtained expanding all the fields into modes of
the internal manifold Y. This is a generalization of a Kaluza-Klein (KK)
reduction, for a generic compactification.

Since we want that the non-compact space has maximal symmetry, the
background should be purely bosonic (since all VEVs of the fermionic
fields should vanish) [40]. In compactification with fluxes, this means
that only F4 in type IIA and F5 in type IIB are allowed to have compo-
nents along the non-compact directions. Moreover, demanding that the
gravitino has zero VEV, we need a covariantly constant spinor on the
10d manifold. In the absence of fluxes, the consequence is that the warp
factor is constant and the non-compact manifold must be Minkowski.
At the same time, the internal manifold should have a constant spinor.
If we want to preserve supersymmetry, we are forced to consider CY
manifolds.

1.2.1 General conditions for compactifications with fluxes

Before proceeding in explaining how to compactify type IIA on CY
orientifold, it is better to review what are the general conditions that
our theory must satisfy in order to be consistence. In particular, we will
review the tadpole conditions both in type IIA and type IIB as well as
the general Giddings-Kachru-Polchinski (GKP) construction [42].

Maldacena and Nufiez showed in [41] that the flux contribution to the
energy momentum tensor is always positive. This means that, without
considering localized sources or corrections to the EoMs, a de Sitter
compactification is ruled out.!! The introduction of localized sources
also gives a positive contribution to the Einstein’s equation, but, if one
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introduces negative tension objects, it is possible to avoid the no-go
theorem. Such objects are, indeed, the orientifold planes.12
If we want supersymmetric solutions, however, Einstein’s equation is
automatically satisfied, but we need to demand certain Bianchi identity
conditions and the fluxes must also satisfy their EoMs. Let us define the
NSNS flux has

Hs; =dB,, (1.36)

while the RR field strengths in 10d as
Fpi1=dCp — Hy A Cpa + meP?, (1.37)

where m is the Roman mass and the exponential is understood to be the

formal expansion up to order pzj of B.13
The RR field strengths are constrained by Hodge duality, i.e.,

az
Fp+1 = (_1){ ? J *F9—p ’ (1.38)
but both NSNS and RR fluxes must satisfy the following Bianchi identities:

dH3 =0, de+1 —H; A Fp+1 =0. (1.39)

Using the self-duality relations, such Bianchi identities also contain the
EoMs for the fluxes, i.e.,

d (xFp41) + H3 A *Fpy3 =0, (1.40)

that are valid for both type IIA and type IIB. From Eq. (1.40) and the
requirement that we want to have a supersymmetric flux background
with metric (1.35), we obtain the following EoMs:

de+1 — H3 A Fp—l =0,

d (€4A * Fp+1) — Hz A (€4A * Fll—p) =0. (141)
In a compact set-up, the integral of dF,; should be zero, but the
contribution coming from the product with Hj is usually positive if
we require supersymmetry. The EoMs are satisfied if we introduce
orientifolds that cancel the positive contributions. Such cancellations are
usually called NSNS or RR tadpole cancellations, since we want zero
net NSNS or RR charge for the solution. The charges can be fluxes or also
localized sources.
In the following we will consider CYs that are simply connected, so the
only possible source of tadpole cancellation conditions can come from
Dé-branes or O6-planes wrapped on a 3-cycle. The tadpole condition
reads as'*

m
2V’ Js,

where Np¢ and Nog is the number or D6-branes and O6-planes, while
Y3 is the dual 3-cycle to X3.

Npe(Z3) = 2Noe(XZ3) + H3 =0, (1.42)

In type IIB there are more sources of tadpole cancellation conditions.

They come from D7-, D5- and D3-branes. Let us first consider the tadpole
condition coming from the D7-branes. In the presence of Npy, D7-branes
wrapping the 4-cycles 7ip7,, and calling 7}, the 4-cycle wrapped by the
corresponding orientifold image of the D7-branes, the D7-brane tadpole

12: In the following we will focus on su-
persymmetric solutions, but the results
just described are general for any kind of
compactification with fluxes.

13: In type IIB there is no Roman mass
and that term is not present.

14: Recall that for a O6™ -plane the charge
is minus twice the charge of a Dé6-brane.
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15:
-1
qos = 4qD3-

16: The presence of D3-brane charges can
be also induced by the introduction of D7-
or D5-branes. One may wonder, then, if it
is possible to satisfy the tadpole condition
in Eq. (1.45) tuning the fluxes so that the
D3-branes contribution cancel. However,
for supersymmetric backgrounds, one of
the requirements is that

G3 = F3 —tH3,
where T = Cg + ie™?, is Imaginary Self-
Dual (ISD). This condition implies that
H3 A F3
Yo

is positive definite, so one must introduce
O3-planes to cancel the fluxes and the D3-
branes contributions [9].

cancellation condition imposes

> Np7, (Tan + 71}37”) =8> 107,

D7, 07;

(1.43)

where 7tpy, or 1oy, are the Poincaré dual cycles to the 4-cycles 7ipy,
or 7oy, wrapped by the branes. This condition is a cohomological
expression, and it is constraining the number of D7-branes allowed in the
compactification, in the presence of O7-planes. In particular, it tells us
that in the presence of O7-planes, we are forced to introduce D7-branes
in the set-up.

Considering D5-branes wrapped on a 2-cycle X, the Bianchi identify
reads

1
Nps(X2) = Nos(E2) + ——— ‘/ Hs AF1 =0, (1.44)
@n)ya’ Js,

where 24 is the dual 4-cycle to L,. Since D3-branes are point-like in
the internal manifold, their tadpole cancellation conditions involve an
integration over the whole 6d compactification space, giving'®

1 1
Np3 —-Noz + ———— Hs; AF3=0. 1.45
ps = gNos + 5 ‘/\{6 s AF3 (1.45)

The integral gives the number of units of D3-charge induced by the

3-form fluxes:!®

1
Nix = ———— / Hs; A F5. (1.46)
ux (2n)4a’2 Yo

Type IIB orientifold compactifications with D3- and D7-branes can be
realized in F-theory compactifying on a CY 4-folds Xg with an elliptic
fibrations 7t over a 3-fold base Be. Using the F-theory construction, the
tadpole cancellation imposes

X(Xs)
24 7

Np3 + Npux = (147)
where x is the Euler number of Xg. Finally, the tadpole cancellation
condition for NS5-branes is the same for both type IIA and type IIB. In
the presence of these kinds of sources, the Bianchi identity for Hj is
modified such that

dH3 = PNS5 - (1.48)

In [42], GKP showed that if any localized sources have an energy mo-
mentum tensor T'° satisfying

Tl¢ > 2T3p3(x), (1.49)

where T3 is the tension of a D3-brane, and pj is the energy density of
the D3-brane, then the form of the solution is determined completely. In
particular, a warped solution is obtained if

1. The internal components of the Ricci tensor and the axion-dilaton
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T, in string units, are [40]

2m)8a’t _ 1
Rym = %ewa{mw)n},{ +(2n)’ (T,E,Z - ggm,,Tm) ,

V2t = —ie?(V1)? - 4(27'()76_quL 05p7

V-g ot '’

(1.50)

where TP7 is the energy-momentum tensor of a D7-brane wrapped

on some 4-cycles of the internal space.”
2. The 5-form flux is given by

Fs=(1+%)[d(e*) Adx® Adx! Adx® Adx?] . (L51)
3. The complex 3-form flux
Gs = F3 —1H3, (1.52)
where t = Cy + ie~?, is ISD, namely
*G3 =iG3. (1.53)

4. The inequality in Eq. (1.49) is saturated.

An important point is that GKP constructions do not impose super-
symmetry at priori. Indeed, supersymmetric solutions impose G3 to be
ISD, i.e., G3 must be (2,1) and primitive, but also G = 0. In case in
which the CY is not simply-connected, GKP allows for non-zero (1, 2)
non-primitive components and a (0, 3) singlet piece.

1.2.2 Generalities on Calabi-Yau manifolds

We begin with the definition of CY manifold:

Definition 1.1 [CALABI-YAU].

A CY n-fold is a compact n-dimensional Kéhler manifold Y», such
that has a Kdhler metric with global holonomy contained in SU(n).

This definition implies that the first integral Chern class
1
Cl(YZn) = —trR, (1.54)
2m

where R is the Ricci form on Y»,,, vanishes.!8

In the physics literature, CYs are complex manifolds that have holonomy
exactly equal to SU(n). In particular, for string compactifications in
absence of fluxes where Y, is CY 3-fold with holonomy equal to SU(3),
the 4d effective theory preserves minimal supersymmetry.*?

By definition of complex manifold, we can define a complex structure
I7, such that [9]

I = -ob,
P . (1.55)
Ol = 10101001 =0,

17: D7-branes arise naturally in the type
IIB limit of F-theory.

Primitive k-form

Let (Y, J) be a Kdhler manifold of di-
mension 71, we say that & is a primitive
k-form, with k < n, if

a /\]n—k+1 =0.

Section 1.2.2 is based on [9, 43-47] and
references therein.

There are other equivalent definitions of
CY manifolds in the mathematical liter-
ature. Equivalent definitions include the
following.

» A CY n-fold is a compact n-
dimensional Kdhler manifold Y3,
such that the canonical bundle of
Y»,, is trivial.

» A CY n-fold is a compact n-
dimensional Kédhler manifold Y3,
such that it has a never-vanishing
holomorphic n-form.

18: Note that the inverse is not true.

19: 4 real supercharges, i.e., N = 1in 4d.
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20: The Niejenhuis tensor is defined

NP = a[nzgl] -1l 10,1} .

[m ™ n]

Hurewicz’s theorem

For any path-connected space X and
positive integer n there exists a group
homomorphism

hs 2 11,(X) = Hyp(X) .

In particular, for n = 1, there is an iso-
morphism between the abelianization
of the first homotopy group and the
first homology group.

where the last condition is the vanishing of the Niejenhuis tensor,?? from
which we can construct a set of complex coordinates

dz) = dx/ +illdy* and dZ' = dx/ — ill dy*. (1.56)

A 2-form ] can be introduced using the metric 87

] = g7dz' AdZF, (1.57)

where the Kahler condition imposes | to be closed. This is usually called
Kihler form. By definition of CY there must exist a unique non-vanishing
3-form (), called holomorphic 3-form, that satisfies

.3 _
]/\Qannd%Fz%Q/\Q. (1.58)

When one performs a compactification on Y, the fields are expressed in
terms of harmonic forms of Y, since they are related to the zero modes
of the Laplacian in Y. For the case of a complex manifold, p-forms can
be classified in terms of their holomorphic and antiholomorphic indices.
Indeed, we introduce a cohomology class HP*9(Y,) that contains repre-
sentatives of harmonic forms with p holomorphic and g antiholomorphic
indices, and we define 1 = dim HP"7(Ys, Z). This is a generalization of
the Betti numbers for a given manifold, that can be obtained as

n
b= >, hP4, (1.59)
p,q=0
p+q=k
for k = 0,...,2n. The CY condition imposes some constraints on the
harmonic forms that are admissible, and usually the dimensions of the
cohomology classes are represented in an Hodge diamond. For the case
in which Y has exactly holonomy SU(3), the Hodge diamond has the
following form

100 1
RO R0t 0 0
h2'0 hl,l h0,2 0 hl,l 0
R3O p2t o pt? o R =1 Rt R2Y 1 (L60)
h3,1 h2,2 h1,3 0 hl,l 0
W32 p?3 0 0
K33 0

The reasons why the Hodge diamond reduces to only 2 free parameters
are the following;:

» Complex conjugation already imposes h?1 = hi7F.

» Poincaré duality implies 177 = h"7P"71,

» Since the only non-vanishing 3-form is Q, then 130 = 103 = 1.

» Any (p, 0)-form can be contracted with Q to give a (p, )-form, and
by Poincaré duality we obtain h#0 = BP0,

» We also consider Y to be a compact and connected manifold, so

that by = 1, and analogously #%0 = 133 = 1.

» For simplicity, it is also assumed Y4 to be simply connected, so
m1(Ye) = 0, and by Hurewicz’s theorem, also H1(Yg, Z) is trivial.
We conclude that #'? = K01 = 0.
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We conclude that for a CY 3-fold there are only 2 degrees of freedom:

1. h'! parameters that give h'! real Kdhler moduli.
2. h%! parameters, that correspond to h*! complex structure moduli.

We introduce a basis of harmonic (1, 1)-forms w, (and their dual @?) and
a basis of harmonic 3-forms (a A, ﬁB),zl such that

/wa/\c:)b:(sg and/aAAﬁBzéi. (1.61)

Y6 Y6

To summarize, the basis elements are in Table 1.1.

Cohomology Betti
group numbers Basis
HYY(Ye, 7)) hit wWg
H2'2(Y6/ Z) K1 Ik
H3(Ye,Z) | 2h*'+2 | (aa,pBB)
H*'(Ys, Z) n XA
H33(Ye,7) 1 Vol(Ye)

It is possible to introduce the intersection numbers for a CY manifold,
given by

%ubC:/wﬂAwawC/ %ub=/wtz/\wb/\]/
Yo (1.62)

Ys
Ho= | waNJAT, K= JAJAT.
Y6 Y6

In particular, the volume of CY is ¥ = %3{.

1.2.3 Type IIA effective action
1.2.3.1 Type IIA compactification on CY

It is possible to write down the effective type IIA supergravity action in
10d. This is the low energy limit of type IIA superstring theory, for which
we keep only the massless string modes. If we focus only on the bosonic
Degrees of Freedom (DoFs), the theory contains a dilaton ¢, a metric g, a
2-form B; from the NSNS sector, and a 1-form C; and a 3-form Cs from
the RR sector. We can define the corresponding field strengths for the
p-forms, i.e.,

Hs =dB,, F, =dC; and F; = dC3 — C; A Hs, (1.63)

so that the effective type IIA supergravity action in the string frame is??

SlOd _L / dloxﬁ (e—2¢> (R +4(&y¢)2 _ %|H3|2)) +

Th, 2
21<10
1
T 52
2K10

(1.64)

/dlox\/—_g ((|F2|2 + |f4|2)) +Scs,

21: From now on, unless it is specified
otherwise, we work in string units, but
we want to keep the harmonic forms di-
mensionless. For this reason, it is better to
think of them as M2w, and M3a4.

Table 1.1: Cohomology groups and their
corresponding basis for a CY 3-fold.

Section 1.2.3 is based on [9, 40, 44-46, 48—
52] and references therein.

22: In our convention

1
Fpl? = Py P17



34 | 1 Elements of string theory and string theory compactification

23: When we will introduce fluxes, we can
admit also p = 0, where F( corresponds
to the Roman mass.

where 2x3) = (2m)’a’*. In Scg there are all the possible CS terms that
can be written down containing the p-forms present in the theory,

Scs D / Z H; A chp—l A C7_2p + / Z By A dCzp_l A Pg_zp , (165)
P p

where p = 1,2 in the non-democratic notation.?> Moving to the Einstein
frame means to redefine ¢ — gr = gs_l/ze(/’/zg, where g = e{9) is
related to the VEV of the 10d dilaton. It is then possible to redefine
K10 — K109s and the 10d type IIA action becomes:

1 1 L~
SlOd :—2K2 /dlox\/—_gg((RE + E(ay¢)2 - Ee P|H3|2)) +
10
1
ZK%O

(1.66)

/ PN ((63/2¢|ﬁ2|2 + 61/2¢|ﬁ4|2)) +Scs,

where it is understood that we are using g as metric also for the kinetic
terms of the p-forms. We can proceed with the compactification in absence
of fluxes by imposing the ansatz that the metric can be written as (1.35)
and expanding the fields in the harmonic forms of Y in Table 1.1:

C1 =A1(x),
B, = Bz(x)+b“a)a, a= 1,...,h1’1,

Co=A"ANw, +&%pn—E%a, a=1,..., k" and A=1,..., W
(1.67)

The spectrum is then given by scalars (b”, &4, é A), one 1-form A; and

k1 1-forms A’lq and one 2-form B,.
The deformations of the Kéhler form | give rise to h'! real scalars v*. It
is possible to relate these scalars with b“, introducing h'"! complex fields

t = b + 0" (1.68)

These variables parameterize the complexified Kahler cone and the
Kéhler moduli space Jlys. A metric for the Kdhler moduli space is given

by
Gub =

3 3(3% _g%a%b) (L69)

— A*@p = —=
2% Jy, T T2\ T2

Introducing a Kahler potential

K == |2 (ot (1=7)" (= 7) (7)) | -3, a0

the metric in Eq. (1.69) can be rewritten as

J iKks

Gab = 55 5

(1.71)
We can allow also for deformations of the complex structure of Ys. They
are parameterized by complex fields z# and span the complex structure
moduli space, #(. The metric for the complex structure moduli space is
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given by
/XA AXL
Ye
Gmz=—"7"7T—7""—, (1.72)
AB fY wANQ
6
where
= _8 Q Q—a K 17
Xa=5-3 + Ak (L73)

In Eq. (1.73) we have introduced the Kdhler potential K defined as

KCS:—ln[i/ QAQ|. (1.74)
Ye
Expanding Q in terms of (a4, %), ie.,
h2,1
Q=>(Z%a-Fap?), (1.75)
A=1
we can define
zA=/Q/\5A,FA:/Q/\aA, (1.76)
Ys Ye

called holomorphic periods, the special coordinates are defined as
A _ 7A 7024

z4 =724]7°.

We can put all the moduli together in &/ = 2 multiplets for the type IIA

supergravity action compactified on a CY manifold in Table 1.2.

Multiplet Number | Components
Gravity multiplet 1 (v, A1)
Vector multiplets Ll (A‘1’ , 0%, b“)
Hypermultiplets h21 (ZA, &, EA)
Tensor multiplet 1 (Bz, ¢, &, 50)

To state the 4d effective action for type IIA ungauged supergravity>®, we
need to define the 4d dilaton

1.77)

and the effective action is2®

1
Sita < 5 / (R = Im WapF4 A +FP —Re WapF/ A FP) +

- / (Gabdt" A*dE + Ipdg" A *dﬁ”) .

where we have put all the hypermultiplet sector inside the contribution
hupdq" A *dq, where hy, is a quaternionic metric. The expansion can
be found in [45]. Let us deconstruct Eq. (1.78). First FA = dA%, and G
is the Kidhler moduli space metric. The gauge couplings of the vector

24: One of the periods Z° is unphysical
because of the symmetry of the Kahler
potential.

Table 1.2: ¥ = 2 multiplets for type IIA
supergravity action compactified on a CY
manifold.

25: By "ungauged" we means in absence
of background fluxes.

26: It is understood that F4 in the a 4d
field strength, and it is not the holomor-
phic period introduced in Eq. (1.76).

In the expression for the type IIA action
we have not explicitly written down the
coupling in front of the action. By dimen-
sional reduction, we need to rescale the
Einstein metric by a factor

@ _, ) @

8 = Sk -
remembering that we want to keep the
volume of the internal space as dimen-
sionless. The 4d effective Planck mass is
then defined as
)

2
s

2 2
Mp,4 oc M; .
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Special Lagrangian submanifold

A submanifold M of a symplectic man-
ifold Y is Lagrangian if w restricts to
zero on M and dimY = 2dimM. A
submanifold M of a CY manifold is
special Lagrangian if also Im Q) re-
stricts to zero on M. In this case, Re QQ
restricted to M is the volume form of
the induced metric on M [53].

multiplets are encoded inside Va5, whose components are

Re N :( —%%abcb“bbbc 1H apcbbbe )
E%abcbubc _%abcbc ’ (1 78)
I = _%( 1+4Gpb"b"  —4G,pb° ) ’
6 —4Ggpb? 4G :

The interesting point is that the moduli space of type IIA compactification
on CY manifold is given by a product of two moduli spaces:

A= M X M . (1.79)

Moreover, the local structure of the moduli space is different between the
two factors in the product. While the Kéhler moduli space is a special
Kéhler manifold spanned by scalars in the vector multiplets (i.e., the
deformations of the CY Kéahler form), the complex structure moduli space
is a quaternionic manifold spanned by scalars in the hypermultiplets
(i.e., spanned by the complex structure deformations of Ys).

1.2.3.2 Type IIA compactification on CY orientifold

For the case of type IIA, the only orientifold that is consistent with
supersymmetry is the O6-plane on the non-compact directions and
wrapped on a Special Lagrangian 3-cycle of the internal CY. O6-planes
can be included in the theory when the CY admits an isometric and
antiholomorphic involution o. Such ¢ is acting on the Kahler form and
the holomorphic form as

0*] = -] and ¢*Q = %90, (1.80)

where ¢ is the pullback of ¢ and 6 can be reabsorbed in the definition
of ), so it can be set O = 0. The action of the orientifold is then defined
by modding out from the type IIA spectrum all the fields that are not
invariant under

6 =(-1)"Q,0", (1.81)

where F|, is the fermion number operator for the left-moving sector, and
)y, is the worldsheet parity operator that exchanges left and right movers.
Under (—1)'t, the dilaton ¢, the metric ¢ and B, are even, while the RR
fields are odd. On the other hand, ¢, g and C; are even under Q,, while
B; and Cj3 are odd. As a consequence, in order for the type IIA fields not
to be projected out by the orientifold action, we need that ¢, g and C3
are even under the action of ¢, while B, and C; must be odd.
In order to repeat the compactification of type IIA, this time, on CY
orientifold, it is convenient to divide the cohomology groups H-7 in
eigenspaces of 0*:

HP1 = H @ HYT, (1.82)

and we denote h}'? respectively the dimensions of the even and odd
eigenspaces of H”/1. The harmonic forms introduced in Table 1.1 are now
split as in Table 1.3 where we have already imposed hy' = h%?. Since the
volume form is odd, then 1% = 0 = 1>, while h%° = 1 = h33. We can
expand the fields in the massless spectrum in terms of the new basis in
Table 1.3. The involution ¢ acts only on the internal manifold, while the
operators (—1)F1Q), act on the worldsheet theory, this means that there
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Cohomology Betti
group numbers Basis
H (Yo, Z) nit Wa
HYY (Y, 7) h1t Wa
HY(Ys,Z) | W' @"
H?*2(Ye, 7Z) hit "
H3(Ye, Z) 21 +1 | (aa,BP)
H3(Ye, Z) W21 +1 | (BB, aa)

cannot be, for instance, a 2-form B; in the non-compact space. B, can be
then expanded only in a basis w, of odd harmonic (1, 1)-forms, resulting

By=b'w,, a=1,...,hY". (1.83)

Moreover, | is odd under the involution ¢, so it can be expanded in a
similar way, i.e., ] = v*w,, and it can be combined in a set of complex
coordinates:

t* =b" +iv". (1.84)

The Kahler moduli space is parameterized by the same coordinates, but
this time they are il instead of h'!.

The RR field C; is odd under the orientifold, and since there are no
1-forms,” Cj is projected out completely. The field C3 is even under 0%,
and it has the following expansion:

Cs = c3(x) + A" A wg + E2s — EppE, (1.85)

where A{ are hi! 1-forms, while &4 and &p are h%! + 1 scalar fields. The
field c3 has no physical DoF because it can be dualized to a scalar in 4d.
The complex structure deformations can be found expanding € in the
new basis of H @ H3:

h21+1
Q= > (z%a-Fpp? + ZPap - Fpp’) . (1.86)
A,B=1

The constraint in Eq. (1.80) imposes

Im (¢79Z%) =0=Re (¢7°Fp) , Re (e—-i0Z") =0=1m (¢7"9F4) ,

(1.87)
this means that we project out 1! reals scalars because of the first
equation, while the second condition is a constraint on the periods of
the CY. This constraint must be fulfilled so that Eq. (1.80) holds. In the
previous section we have briefly mentioned the possibility that Q2 is
defined up to complex rescaling. This allowed us to reduce the number
of complex structure deformations by 1 and remaining with ! periods.
In the presence of orientifolds, it is more convenient to keep the scale
invariance freedom, and to define a compensator € = e~P=10¢1/2K® 5o
that we have

€Q =Re (6Z*) as +ilm (€Z®) ap — Re (€Fp) B2 — ilm (€F4) p*,
(1.88)

Table 1.3: Cohomology groups and their
corresponding basis for an orientifold CY
3-fold.

27: Remember that we are considering
simply-connected CYs
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Table 1.4: /¥ = 2 multiplets for type IIA
supergravity action compactified on a CY
manifold.

that depends on h?! + 1 real parameters.
It turns out that ‘€€ can be related to C3, defining the complex combina-
tion

Q. = C3 +iRe (8Q) . (1.89)

The complex structure deformations can be found in terms of ¥/ =1
chiral multiplets:

NA = %/ Q. Apt= %£A+iRe (6z4),
Yo (1.90)

Ug =i/ Q. A ap =i&g —2Re (BFp) ,
Yo

and they are the complex structure moduli for type IIA orientifold
compactifications. To summarize, the N = 1 spectrum is in Table 1.4.

Multiplet Number | Components
Gravity multiplet 1 Suv
Vector multiplets hit Al
Chiral multiplets hit £
Chiral multiplets W2l 41 N4 Ug

The general expression for the action for type IIA orientifold compact-
ifications is not useful for our purposes, and instead we refer to the
literature cited at the beginning of Section 1.2.

1.2.3.3 Type IIA compactification on CY orientifold with fluxes

In the previous section, all the scalar components of the /' = 1 multiplets
have a flat potential. Indeed, at tree level the superpotential is trivial,
but non-trivial background generate a scalar potential for the closed
string moduli. If we consider compactifications on CY manifold with
also the presence of non-trivial RR or NSNS fluxes as background, the
CY geometry is not a solution anymore and a potential is generated.

To understand better the definition of fluxes in type IIA string theory, it is
better to work in the democratic formulation for the RR potentials. There
are indeed five p-forms, i.e., Cq, C3, Cs, Cy and Co, linked by self-duality
of their corresponding field strengths. The field strengths are indeed
defined as

P2p = dC2p_1 —H; A Czp_g, + meB2 ,p=1,...,5, (1.91)

where B, is the NSNS field, and Hj is its field strengths, while m is the
mass parameter of IIA. The field strengths satisfy the following Bianchi
identities:

d(e P2 AFy) =0, dH; =0. (1.92)

If the internal manifold is compact, the Bianchi identities imply that Hj
and e™P2 A F, are closed forms, and it is then possible to expand the
forms in their harmonic and exact parts and to define

Fap = Fap + F,% and Hy — Hs + H;®, (1.93)
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where F;f’ and H]; & are the background fluxes. By quantization of the
Page charges, the background fluxes can be characterized in terms of flux

quanta, from which it is always possible to extract their integral parts.

For instance, considering a basis of " € H; (Ys, Z) 2-cycles, and their
duals 7, € H{ (Ys, Z), we define

E =, / S =7, / FF=e, / B =e.  (199)
n? o Ye

For the NSNS sector, we need to introduce a basis of (38X, a 1) € Hy (Ye, Z)
odd 3-cycles, so that

Hy¥ = hg and | H3® = -1, (1.95)
BK Ay

In the presence of fluxes, both Kihler and complex structure moduli
are subjected to a superpotential. The RR fluxes generate a perturbative
potential for the Kdhler moduli:

1 m
Wis = €0 + eat® + E%ubcm”tl’tc + g%ﬂbct”thtc, (1.96)

while the NSNS fluxes are responsible for the superpotential for the
complex structure moduli

Wes = hx N* + WUy . (1.97)

1.2.3.4 An example of moduli stabilization in type IIA

Let us consider an example of type IIA orientifold compactification that
will be useful in the discussion in Chapter 6. We briefly discuss a model
of type IIA moduli stabilization on T¢/ Z§ orientifold done in [48], by
DGKT. This model was fairly easy to analyze because it has no complex
structure moduli, but only those corresponding to the size of the T®,
three moduli for the B-field (one for each T?), the dilaton and a single
axion coming from the compactification of C3. The blow-ups of the 9
singular orbifold points generate further moduli for the metric and the
B-field.

In the simplest set-up, they considered only Fy and Hj fluxes that
contribute to the tadpole cancellation of the RR 7-form of the orientifold,
and they also introduced F; fluxes that remained unbounded. The
presence of the Roman mass Fy = m, slightly modify the action in
Eq. (1.64) and the definition of the RR forms in Eq. (1.63). We can indeed
define [48]

HP® = dB, + Hy¥
F, =dCy + mB,, (1.98)
15’4 =dC3+PZg'—C1 A Hjz — %Bz/\Bz,

Remember that we are working in string
units.

In the previous section we have focused
on CYs that are simply connected, so, tech-
nically the torus is not a CY. However, in
our set up, the resolved orientifold space
has still a trivial H'.
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We have restored a’ for the moment, usu-
ally set to 1. Remember that the charge of
an Op-plane is —2P 75 that of a Dp-brane.

and the action in (1.64), in the string frame becomes

SlOd =L/d10xﬁ (e—zqa (R+4(8M(P)2— %|H§ota1|2))+

212
101 (1.99)
- — dlox\/_—g((|f2|2+ |ﬁ4|2+m2)) +Scs.
2K70
The CS action contains the terms in Eq. (1.65) but also
1 bg. bg.
ScsD—z—z ZBzAdC3/\F4 +C3/\I‘I3 A dCz+
K
10 (1.100)

m m?
—EBz/\Bz/\Bz/\dC3+2—QBz/\Bz/\Bz/\B2/\B2

Finally, the contribution of the orientifold O6 to the action is

-2 Tepb e 2V2
Sos = e /0651 e P[-g e Cy. (1.101)

This set up has only one even @ and one odd f 3-cycle, and we can use
the odd one to define the background H;) & flux:

bg.
H,* = —ppy. (1.102)
The tadpole condition for the RR C; of the orientifold imposes that
mp =-2, (1.103)

so the Roman mass and the Hj flux are bounded and they are order 1.
The RR 3-form C3 can be expanded in terms of the even 3-cycle ag, and
we call £ the single modulus coming from this decomposition. The axion
& and the dilaton ¢ combine into the complex axion-dilaton modulus.
The stabilization of the 3-form axion &£ imposes

pé =e9+ e,-bi - m?/’{b1b2b3 , (1104:)

where the fluxes are defined in Eq. (1.94) and ¥ is the triple intersection
number of the T®/ Z% manifold.
In order to proceed with the stabilization, it is necessary to introduce the
moduli v; that will combine with b; to become the Kdhler moduli of the
4d effective theory. We call also

V= / \/% = 3{01022}3 ’ (1105)
T6/73

the volume of the internal manifold, so that we can define the 4d dilaton

e?
= /2’
In terms of the moduli v;, the fluxes ¢;, p and m, and the 4d dilaton, the
flux-induced potential reads

D

(1.106)

m>¥ p? 2P lereres| 3P |ereres]
V(D,v) = — 24D p3 _\R|mp|edD+ B E 1010281 0 ¢ Tieats]
(D) 2|€1€2€3|€ ¢ \/_|mp|e 4 v K 2 v X

(1.107)
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Minimizing with respect to the moduli, it is possible to set

1 /5 818283‘ D 27 | mA
R , = _— , 1.108
vi e; V3 . m& ¢ Pl 160 |e1eqe3 ( )
and the minimum of the potential is negative:
2
v = _2leees| up (1.109)

3 oX !

so the 4d spacetime is AdS.

The important point of this compactification is that the F4 flux has not
been bounded. Indeed, this solution depends on the value of the e;,
but nothing puts constraints on the values that the potential can get. In
particular, it is possible to define

e = k(?,‘ , (1.110)

where k is some integer number, which represents the Greatest Common
Divisor (GCD) of the ¢;, and k can be made arbitrarily large. Moreover, it
is possible to find the scalings of the stabilized moduli with respect to k,
e.g.,

vi~ K2, U~ 2, eD AP g (1111)

The consequence of this behavior of the solution is that the KK modes
scale with k differently than the 4d cosmological constant A, i.e.

A~k M2~ kT2, (1.112)

this means that in the limit in which A — 0, there are states with mass
of the order of the cutoff of the theory, such that

2
A~ Moot . (1.113)

k
This is the starting point of the Z; RSADC that we will introduce in
Chapter 6. We are going indeed to show that the same scalings can be
obtained by arguments based purely on the discrete symmetries that
arise from the fluxes, and they are responsible for the separation of scale

that this theory admits.
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Elements of toric quiver gauge
theories

In this chapter, we review the concept of quiver gauge theory in Section 2.1,
in particular the relation with the theories introduced in Section 1.1.1. In
Section 2.2 we introduce the dimer models and periodic quivers. We then
review a way to define global U(1) symmetries from the dimer diagrams
in Section 2.2.2. The novelty is from Section 2.3 where we introduce a
new toolkit that allows to find U(1) global symmetries from geometric
identities in the dimer (or periodic quiver). We also introduce the way
in which a general orbifold for a general toric theory is constructed in
Section 2.3.2.

2.1 Quiver gauge theories

In Section 1.1.1 we have considered D-branes probing a conifold sin-
gularity, giving rise to a SCFT. In particular, we focused on conifold
singularities arising from the cone over a toric SE manifold that give
rise to a toric CY 3-fold. The resulting theory, in the case of D3-branes
probing such singularity, is SCFT with at least 4 real supercharges, i.e.
N =1

These theories may be represented using a quiver graph, i.e. a drawing
made of nodes and arrows where each element in the drawing has a
meaning in terms of the gauge and matter content of the SCFT [54]. In the
case of 4d theories, it is usually used ¥ = 1 language. This means that
a quiver is a graph made of circles, squares and arrows: a gauge group
is associated to a circle node. Flavor symmetries are usually encoded in
a square node, finally, to each arrow pointing from the group G; to the
group G;, we associate a bifundamental ¥ = 1 chiral superfield in the
fundamental representation of the group G; and in the antifundamental

representation of the group Gj, i.e. ( 0;, O j). Arrows that start and end

on the same node are chiral superfields in the adjoint representation.

In Figure 2.1a and Figure 2.1b we show, as examples, the quiver of ¥ = 4
pure SU(N) SYM and the quiver of the conifold theory, arising from
D3-brane probing the cone of T'!, i.e. C (T'!). The quiver does not
encode completely the superpotential that must be added to the graph.

2.2 Dimer diagrams and quiver gauge theories

2.2.1 Dimer diagram and periodic quiver

We have seen in Section 2.1 that the quiver graph does not encode directly
the superpotential terms in the graph, and they must be added as extra
information. For the case of gauge theories on D3-branes at toric CY
3-fold singularities, there is an efficient way to add it in a graph, using
dimer diagrams [55-57]. These are bipartite tilings of T?. The bipartite

2.1 Quiver gauge theories ... 43

2.2 Dimer diagrams and quiver
gauge theories ....... 43

Dimer diagram and periodic
quiver . . ...... ... .. 43
Continuous U(1) symmetries 47

2.3 Some topological concepts
in dimers and quivers . . . 48

A new toolkit: U(1) global

symmetries from Geomet-

ric Identities . . . ... ... 49
General Orbifolds of Gen-
eral Toric Theories . . . . . 51

In Figure 2.1b we are considering only reg-
ular N D3-branes that probe the CY sin-
gularity, so the ranks of the gauge groups
are the same.

X

W=1tr (XYZ-XZY)
(@) Quiver of C3.

B

W = elieklir (AinA]-Bl)
(b) Quiver of the conifold.

Figure 2.1: Examples of quiver gauge the-
ories.
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Figure 2.2: Examples of dimer diagrams,
their zig-zag paths and fundamental cells.

(a) Conifold.

(b) dP;.

Figure 2.3: Examples of periodic quivers.

28: We consider a proper dimer diagram
those that have more than two edges.

property means that vertices can be colored black and white, with edges
joining vertices of different colors; it endows edges with an orientation,
e.g., from black to white nodes, and an orientation around vertices e.g.
clockwise (resp. counter-clockwise) for black (resp. white) vertices.

The correspondence with the gauge theory is such that each face F, cor-
responds to a gauge factor SU(N, ). Actually, there is a U(N,) symmetry
group, but the U(1), factor is generically massive due to BF couplings
with closed string modes [58] (often also involved in a Green-Schwarz
mechanism to cancel mixed anomalies). These U(1)’s remain as (pertur-
batively exact) global symmetries and will play a prominent role in this
section.

The correspondence also sets that each edge E;, which separates faces
F, and F}, corresponds to a bifundamental chiral multiplet ( Oa, O b) if

one crosses E; with positive orientation in going from F, to Fj. Finally,
black and white vertices, denoted by V,, or V/, respectively, introduce
superpotential terms +Tr (D, ... Pg, ), with {Ej, ..., E,} is the ordered
set of edges surrounding the vertex, and the sign is positive or negative
for black and white nodes, respectively.

The dimer diagrams for the conifold and the dP; theory are shown in
Figure 2.2. Figure 2.2a is the corresponding dimer diagram of the quiver
in Figure 2.1b.

It will be convenient to introduce the periodic quiver as the dual of
the dimer diagram. Namely, each face is replaced by a node, which we
continue to denote by F,; each edge E; separating face F, from face Fj,
is replaced by an oriented arrow (again denoted by E;) between nodes
F, and Fy; and vertices V,, V, now correspond to plaquettes of arrows
with clockwise or counter-clockwise orientation, respectively. Namely,
in the periodic quiver, nodes correspond to gauge factors, arrows to
bifundamental matter, and plaquettes to superpotential couplings. The
periodic quiver is similar to the standard quivers used to describe gauge
theories, with the extra periodic structure providing also information
about the superpotential. The periodic quivers for the conifold and dP;
theories are given in Figure 2.3.

It will be useful to have in mind that these ingredients in the dimer and
the periodic quiver allow to define a (co)homology in the corresponding
diagrams, ultimately related to the (co)homology in the underlying
2-torus. We have collected this description in Section 2.3.

In the above description, we have considered general ranks N, . In general,
these are constrained by the cancellation of non-Abelian anomalies.

Denoting the (net) number of bifundamentals ( O, O b) by I4p (defined

as an antisymmetric matrix, with negative entries indicating matter in
the conjugate representation), the conditions are

D Nalapy =0 Vb. (2.1)
a

In a bipartite dimer, any face has an even number of edges,28 so if we
choose N, = N for all a there are cancellations among consecutive edges
and the anomaly-cancellation constraints are satisfied. This corresponds
to the so-called regular or dynamical D3-branes (which can move off
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the singular point and explore the geometry). Choices of non-equal
ranks include the so-called fractional branes, which can be regarded
as higher-dimensional branes wrapped on the cycles collapsed at the
singular point. In the following and in Chapter 5 we will focus on regular
D-branes and mostly have the case N = 1 in mind.

The toric geometry associated to a given dimer diagram can be recovered
in several (equivalent) ways. A very direct method is to introduce zig-zag
paths. A zig-zag path in the dimer is a consecutive sequence of edges
such that the path turns maximally to the left at e.g. black vertices and
maximally to the right at white nodes. It can be depicted as a oriented
path following edges and forced to cross them in the middle, see Figure
2.2a. Each edge is thus crossed by two oppositely oriented zig-zag paths.
Zig-zag paths cannot self-intersect, and define (p, q) 1-cycles in the
dimer 2-torus. Each such path corresponds to an external leg in the
web diagram?’ corresponding to the toric 3-fold singularity, namely, the
diagram dual to the toric data, see Figure 2.4b. For a brief discussion
about toric diagrams and (p, g)-web diagrams, we refer to Appendix B.

Intuitively, this follows because the 3-fold geometry can be obtained as
the mesonic moduli space of the gauge theory, and the zig-zag paths
correspond to mesons of the gauge theory (obtained as the trace of the
product of bifundamentals corresponding to the sequence of edges);
notice that the F-term relations imply that mesons are only defined by
the homology classes of the paths.

A more detailed method to obtain the 3-fold geometry is by introducing
perfect matchings. A perfect matching in the dimer diagram is a set of
edges such that each vertex in the dimer belongs to just one edge in the set,
see Figure 2.5 for an example. There is no closed formula for the number
of perfect matchings in a given dimer, but it is easily determined in most
examples. At this point, one can recover the toric diagram as follows:
regarding the perfect matchings p 4 as 1-chains (with orientation of edges
from black to white nodes), one can fix a reference matching po and
obtain a set of 1-cycles in the dimer given by p4 — po. The (p, q) labels of
these 1-cycles correspond to the coordinates of points in the toric diagram
of the 3-fold singularity, see Figure 2.4a. Note that this description is
related to the previous paragraph because zig-zag paths can be obtained
as differences of perfect matchings at consecutive external points in the
toric diagram, namely, segments in the toric diagram dual to precisely
external legs in the web diagram.

o1
(-1,0) (1,0)
(0,0)
1,-1
*
(a) Toric diagram.
(-1,1) (1,1)

(1,0

(-1,-2)
() (p, q)-web diagram.

Figure 2.4: dP; theory.

29: This correspondence is by defining
a height function, defined as an integer-
valued step-wise function increasing by
one unit as one crosses the path (with posi-
tive orientation). The labels of the external
leg in the web diagram are obtained as the
jumps of the height function along the two
basic 1-cycles in the 2-torus. In practice,
this is equivalent (up to some relabeling)
to just taking the (p, ) labels of the zig-
zag path to be those of the external leg of
the web diagram.

Figure 2.5: Set of perfect matchings for
dP; theory.



46

2 Elements of toric quiver gauge theories

An even more detailed relation with the toric description is by noticing
that perfect matchings correspond to coordinates in the linear sigma
model (or holomorphic quotient) description of the mesonic moduli
space of the gauge theory. Let us review it, as it is useful to describe U(1)
symmetries. In general, the bifundamentals are not useful coordinates to
describe the moduli space, because they are constrained by the F-term
conditions; perfect matchings are an efficient ingredient to solve these
constraints automatically. The key idea is to define the bifundamentals
in terms of the perfect matchings by the following relation

o, =[ph", (22)
A

where k; 4 = 1 if E; belongs to the perfect matching p,, and is zero
otherwise. With this relation, all F-term constraints for the bifundamentals
are solved automatically, with no restriction on the p 4. This is related to
the fact that, from the definition of perfect matchings, any term in the
superpotential is given by the product of all perfect matchings

W~]1]pa. (2.3)
A

On the other hand, the above relation (2.2) introduces a redundancy, as
C* transformations of the p4 which leave the ®f, invariant. These are
defined by a set of charges g4 , satisfying

> kiaqar=0 Vi. (2.4)
A

The moduli space of F-flat directions is thus generated by the complex
coordinates p 4 modulo these C* actions. In addition, to obtain the mesonic
moduli space, we have to quotient by the U(1)’s associated to the faces

of the dimer. A bifundamental ®,; in the (D 0, O b) carries charges

(+1,-1) under U(1), X U(1)p, and we need to translate these to charges
for the coordinates p 4. Denoting by ¢; , the charge of the bifundamental
®r, under U(1),, we introduce a matrix of charges g4 , satisfying

Gia= D kiaqaa Vi. (2.5)
A

The charges g4, define C* actions on the p4 which implement the U(1),
actions at the level of perfect matchings. The mesonic moduli space is
thus obtained as the quotient of the complex coordinates p4 by the C*
actions generated by the charges g4, and g4,4.

For illustration, consider one explicit example. In Figure 2.5 we see the
perfect matchings for dP; theory. The moduli space of F—flat directions
is found solving Eq. (2.4), which in our case, for instance, gives the
following two C* actions on the perfect matchings:

pP1 P2 P3 P4 S1 S2 S3 S4
1 o -1 1 -1 -1 0 1 . (2.6)
-1 -1 0 -1 1 1 1 0
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The other C* actions can be found using Eq. (2.5), obtaining

P1 P2 P3 P4 S1 S2 S3  S4
o o0 0 o O o0 1 -1
o o o0 O 1T 0 0 -1 (2.7)
o 0 0 o o0 1 0 -1

Combining the two matrices, you get the complete set of C* actions on the
perfect matchings which defines the mesonic moduli space. The kernel
of the matrix is

0 -1 1 1 0000
1 0 0 -1 0000 |. (2.8)
-1 1 -1 0 0000

The columns of this matrix are the coordinates of points in 3d. All points
are on the plane defined by the equation y = —x — z and, on that plane,
the toric diagram of Figure 2.4a is reproduced.

2.2.2 Continuous U(1) symmetries

In the above discussion, it is implicit that the number of perfect matchings
minus the number of C* actions is equal to 3, so that the symplectic
quotient defines a 3-fold. An important implication is that the resulting
geometry enjoys a U(1)? symmetry (namely, the toric action making it
a toric geometry). Namely, C* actions on the p4 which are orthogonal
to those we are quotienting by. Labeling them with m = 0,1, 2, their
charges q;,4 are given by the kernel of the combined matrix (§4,4/q4,r),
namely satisfy:

> dmaqaa =0 Va,
A

2.9
Z qm,AqAr = 0 Vr. ( )
A

One of these U(1)’s (which we label with m = 0) is an R-symmetry,>°
whereas two linear combinations satisfying >4 gu,a = 0, m = 1,2,
leave W in (2.3) invariant, and correspond to U(1)? mesonic symmetries.
In addition, there are U(1), symmetries associated to the faces. These
correspond to baryonic symmetries, most of which are anomalous. The
mixed U(1), — SU(N,)? anomaly is given by

Agp < Nylyp  (no sum), (2.10)

where N, arises as a normalization of the U(1), generator and I, is
defined as around (2.1). It is thus clear that, denoting by Q, the generator
of U(1),, a general linear combination

Qp = Z 12Qq (2.11)

defines an anomaly free baryonic U(1) when the n, satisfy the anomaly
cancellation condition (2.1), namely

D nalay =0. (2.12)
a

30: In the superconformal case, the actual
R-symmetry is in general a combination
determined by a-maximization, see [24,
59]. We have used a-maximization in Sec-
tion 1.1.4.1. As we have seen in Section 1.1.4,
it is the field theory counterpart of the
volume of the dual SE manifold minimiza-
tion.
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31: In Chapter 5 we will see that they are
also related to the discrete B-symmetry in
R2.

That is, there is an anomaly-free baryonic U(1) for coefficients 1, such
that they could define a fractional brane. Let us emphasize, however, that
for the anomaly-free baryonic U(1) to exist, it is not necessary that the
fractional brane is present; hence our use of lowercase 7, instead of N,
in (2.11).

2.3 Some topological concepts in dimers and
quivers

In this section, we introduce some (co)homological tools for dimer dia-
grams and their dual periodic quivers. The faces/nodes F,, the edges/ar-
rows E; and the vertices/plaquettes V,, and V/, can be regarded as the
analogues of simplices in singular homology, hence we consider their
formal linear combinations (with negative coefficients corresponding to
reversing the orientation these objects carry), which we refer to as 0-, 1-
and 2-chains.

On these diagrams, we can define p-forms as linear maps assigning
a (in general, complex) number to every p-chain. For instance, in the
dimer, we define 2-forms ¢ as assignments of numbers ¢(F,) to the
faces F,, and similarly 1-forms A(E;) and 0-forms f(V,), f(V}). The
assignments defining 2-, 1- and 0-forms in the dimer, when regarded in
the quiver, define 0-, 1- and 2-forms. This can be regarded as a duality (in
a construction known as quad-edge in computational physics), although
we will not exploit it at present.

In the quiver there is a very natural realization of (co)homology. The
boundary dV of a plaquette V (similarly for V’) is the 1-chain given by
the sum of the arrows surrounding it; the boundary JE of an edge E is
the formal difference of the nodes at its tail and its head JE = t(E) — h(E).
Clearly 9% = 0, and we can define an homology. At the level of forms, we
introduce an exterior derivative d as follows. For a 0-form f, we define
df as the 1-form given by

df (E) = f (9E) = f(h(E)) = f(¢(E)), (213)

where h(E), t(E) denote the node at the head and tail of the arrow E.
Similarly, for a 1-form A, we define the 2-form dA by dA(F) = A(JF).
Finally, for a 2-form ¢ we define do = 0. One clearly has d? = 0 so this
defines a cohomology. By defining integration by evaluation, d and d obey
Stokes’ theorem. The above homology and cohomology are realizations
of those of the underlying surface on which the quiver is embedded, in
our case the 2-torus (or, as we occasionally focus on the infinite cover,

R?).

The assignments of (continuous or discrete) charges to bifundamentals are
used to define 1-forms A on the quiver, and the conditions of invariance of
the superpotential amount to closedness, dA = 0. Non-trivial cohomology
classes correspond to the mesonic U(1) symmetries, while exact forms
A = df correspond to U(1) baryonic symmetries in the 2-torus.>!

In the dimer, the notion of boundary and exterior derivative convenient
for us but include a subtlety. We define the boundary JF of a face F as
the sum of the edges bounding it with their natural orientation (i.e., from
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black to white vertices). This differs from the geometric intuition, where
the boundary involves the same edges but with a weight + determined
by the incidence relation between the edge and the face (i.e., the chirality
of the bifundamental). We use a tilde to emphasize this difference. We
define the boundary JE of and edge E as the difference between the
corresponding black and white vertices, namely JF = b(E) — w(E).
Correspondingly, we define the exterior derivative d as follows. For a
0-form f, we define d f by

Af(E) = £ (3E) = FOE) - Fl(E). (214)

Similarly, for a 1-form A we define a/\(F )=A (;’F ) Defining integration

by evaluation, this obeys Stokes’ theorem. However, in general 2 #0,
0% # 0; there is a well-defined cohomology only if we restrict to 0-forms
f which satisfy that for any face F, the value of f on the sum of black
nodes equals its value on the sum of white nodes (and one may define
homology in a similar restricted sense). Since these restrictions render
these tools less natural, we simply use d as a notational device. In terms
of it, if the charge assignments under continuous or discrete symmetries

are used to define a 1-form A, the anomaly cancellation conditions read
dA =0.

2.3.1 A new toolkit: U(1) global symmetries from
Geometric Identities

Let us discuss global U(1) symmetries in the gauge theory from a more
abstract perspective, using the topological intuitions in the dimer/quiver
diagrams introduced in Section 2.3.

A U(1) symmetry is an assignment of charges to the edges E; (or arrows
E;) in the dimer (resp. quiver) diagram of the gauge theory. We may
regard this as a 1-form y on the quiver, namely a map that to each arrow
E; assigns a number (the charge) (E;). Regarding the arrow as a 1-chain,
this is also the integral of the 1-form over the 1-chain. One may also
regard it as a 1-form in the dimer, which we also denote .

These charge assignments are constrained by demanding invariance of the
superpotential. This means that for each plaquette V,, (or V) in the quiver,
with boundary given by a concatenation of arrows {E1, Ey, ..., E}, the
1-form y satisfies

oV, dVy —  y(E1)+y(E)+---+y(Ey) =0. (2.15)

Recalling from Section 2.3 the definition of the exterior derivative, and
using Stokes’ theorem over the plaquette, we have

dy =0. (2.16)

Regarding y as realized in the dimer, these correspond to the so-called
harmonic maps in the math literature. We stick to the nomenclature
suggested by the notation, and refer to these as closed 1-forms in the
periodic quiver.
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As expected, closed 1-forms in finite graphs without torus periodicities
must be exact, namely there exists a 0-form f in the quiver (namely, a
map assigning a number f(F;) to each quiver node F,) such that

y = df . (2.17)

Namely, if we denote by h(E;), t(E;) the head and tail of the arrow E;,
then

V(Ei) = f(£(E;)) — h(t(E))) - (2.18)

Physically, if we denote n, = f(F,), this means that the charge assignment
for edges given by ) is just inherited from the U(1), charges via a linear
combination

Q= Z 1aQq - (2.19)

Namely, just like (2.11), with the only difference that we are not yet
demanding the cancellation of anomalies. As explained above, such
linear combinations in the toroidal graph correspond to (still possibly
anomalous) baryonic U(1) symmetries. Hence, mesonic U(1) symmetries
are defined as closed 1-forms (i.e. symmetries of the superpotential) which
are not exact (i.e. are not baryonic), and correspond to combinations of
the two independent homology classes of 1-forms in the 2-torus. Hence,
we recover the U(1)? mesonic symmetry.

Let us discuss the anomaly cancellation conditions more explicitly as
follows. For each face F; in the dimer (resp., node in the quiver), sur-
rounded by a concatenation of edges (resp. arrows) {Eq, ..., Ey}, the
mixed SU(N,)? anomaly cancellation conditions read

dF, — y(E)+---+y(En)=0. (2.20)

Note that since the natural orientation of edges does not allow to write
this equation as over the boundary of F, in the dimer, hence we use the
notation d for this signed’ boundary.

In this language, an anomaly free U(1) symmetry is a charge assignment
satisfying the conditions (2.15) and (2.20). These form an homogeneous
linear system of equations, with the number of unknowns given by the
number E of edges in the dimer, and with the number of equations given
by the number V of vertices plus the number F of faces. Since the dimer
is a tiling of the 2-torus, it satisfies

F+V=E. (2.21)

Hence, the only non-trivial solution defining U(1) charges must require
the existence of linear relations among the equations. Indeed, a general
dimer always has two such relations, which we may write

DoVa—- > 9V, =0,
a o
SO = > Ve~ >V, =0.
a a 24
These can be regarded as geometric identities which the elements of the
dimer/quiver diagrams satisfy. The two anomaly-free solutions which

exist for any general dimer due to these universal geometric identities
correspond to the U(1)> mesonic symmetries.

(2.22)
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In addition, we know that theories admitting fractional branes have
additional anomaly-free baryonic U(1)’s. These correspond to linear
combinations (2.11) satisfying (2.12). This requires that the above linear
system of equations admits further geometric identities for theories
admitting fractional branes. Indeed, in such cases it is possible to show
that X, nuéF,I can be recast as a combination of dV, and dV,. We will
find explicit examples in later sections and chapters.

Incidentally, we would like to mention that, if we interpret y(E;) not as
charges, but as the exact anomalous dimensions for the bifundamental
chiral multiplets, the above analysis is very closely related to the Leigh-
Strassler characterization of marginal couplings in &/ = 1 SCFTs [60] (see
[61] for a discussion in the present context). Namely, the conditions of
vanishing of the exact beta functions for the superpotential couplings
(at V,, V) and for the gauge couplings (at F,) form an inhomogeneous
linear system of equations for y(E;), whose associated homogeneous
linear system is precisely given by the above, (2.15) and (2.20). Moreover,
the inhomogeneous system of equations satisfies relations given precisely
by the universal (2.22), allowing for the existence of a marginal coupling
corresponding to the complexified coupling constant of the diagonal
gauge group on the recombined regular brane. Additional geometric
identities imply additional marginal couplings, associated to the gauge
couplings of the corresponding fractional branes.

Let us conclude by mentioning the realization of these U(1) symmetries
and marginal couplings in the holographic dual. For systems of D3-branes
at toric singularities, there is a generic U(1)? isometry in the horizon,
which includes the R-symmetry and the U(1)> mesonic symmetry. There
is also a universal massless scalar, given by the axion-dilaton, dual to
the marginal coupling. If the theory admits additional anomaly-free
rank assignments (fractional branes), the gravity dual internal space Xs
contains homology 3-cycles, supporting additional U(1)’s arising from
integrating the RR 4-form over them; also, their dual 2-cycles produce
additional massless scalars from integrating the NSNS and RR 2-forms,
which are duals to the additional marginal couplings of the holographic
dual gauge theory.

In Chapter 5 we will extend this matching to discrete symmetries. The
natural arenas are then orbifolds.

2.3.2 General Orbifolds of General Toric Theories

Consider a general toric gauge theory with a dimer (resp. quiver) diagram
with unit cell 6, with faces F,, edges E; and vertices V,, V. There is a
general procedure to construct general Abelian Zy orbifolds of this theory
[62, 63] as follows. Denote by Q1, Q> the two mesonic U(1)’s, normalized
to have minimal charge +1, and consider the linear combination

Qo =p1Q1 +p2Q2 p1,p2€Z, GCD(p1,p2) = 1. (2.23)

Let us denote by kg, the charge under Qg of the bifundamental associated
to the edge E;. We consider the action of the generator 0 of the orbifold
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Figure 2.6: General orbifolding in a dimer
using a periodic array of unit cells (in light
blue). The final unit cell Gy is showed in
blue.

group Zy to be given by
kE;
0 : @p —exp ZHZW D, . (2.24)

In addition, there is an action of O on the gauge degrees of freedom,
inspired by the action of Chan-Paton indices of D-branes. Namely, such
that an object in the fundamental representation of U(N,) transforms
with an order N matrix

Yo,a = diag (1,1“/0, e?iNy, o, ..., PINTDIN 1%_1) (2.25)

and with its inverse on antifundamental representations.

The orbifold theory is obtained by removing fields of the parent theory
which are not invariant under the combined action of the mesonic and
gauge action. In particular, gauge bosons are singlets under the mesonic
action, so demanding invariance of the generators A, of U(N,) under the
gauge action of yg ,

Ag = VQ,a/\a)/é}u (2.26)

breaks the group as follows

N-1
R UNL) = R R U(na,). (2.27)
a r=0

a

Here the treatment of the U(1)’s is as discussed above, namely, they are
realized just as (potentially anomalous) global symmetries.

For an edge E; separating two faces F,, Fj, in the dimer (respectively, an
arrow with t(E;) = F,, h(E;) = Fp in the quiver), and with charge g,
under (2.23), the invariance of the bifundamental field ®f,, regarded as
a matrix is

D, = 25N yg Oy, (2.28)

leading to a projection pattern of the bifundamental E; into a set of
bifundamentals E; , as follows

N-1
(Da/ Db) - @ (Da,r/ Db,r+k5i) . (2.29)

r=l

Finally, the superpotential of the orbifold theory is obtained by simply
replacing the surviving fields in the superpotential terms of the parent
theory. It is easy to see that a superpotential term in a vertex V, (or V),
describing the interaction of a concatenated set of fields {Ei, ..., E,},
leads to a set of superpotential terms V, , (resp. V, ,) describing the
interaction of the set of fields {E1 s, ..., Ey,}.

The orbifold theory is described by a dimer/quiver diagram whose unit
cell Gy is obtained by taking N copies of the unit cell € of the parent
theory. Hence, each ingredient of the parent theory has N descendant
copies in the orbifold theory. We can be more explicit about how the
different copies of 6 are adjoined to form 6y, as follows, see Figure
2.6. Consider the infinite periodic array in R* corresponding to the
parent theory, and choose a unit cell €, and two basis 1-cycles. The latter
correspond to vectors in R? defining the periodicities. The infinite copies
of 6 can be labeled by two indices (1, r2) according to their position in
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the direction of the basic 1-cycles. Consider now mesons of the theory
in €, with winding numbers (1,0) and (0, 1), and denote by k1, k; the
charges of these mesons under Qg (2.23), namely just the sums of the
Qe charges kg, of the edges/arrows E; involved in the corresponding
meson. The mesons can be regarded as open paths in the infinite array,
starting from a face in 6 to its copy face/node in the copies of € at the
two independent adjacent positions. Now regarding the infinite array as
the covering space for the orbifold theory, the open path joins a starting
face/node F, , with the faces/nodes F; ;1k,, Fs r+k, in the two adjacent
copies. In general, the copy of the face/node F,, in the copy of 6 at
the position (1, r7) in the infinite array corresponds to the face/node

Fa,r+r1 ki+raky .

The integers k1, k, determine the action of the orbifold on the mesons,
namely, on the coordinates of the toric geometry. They are related to the
construction of orbifolds in terms of toric data. Basically, the Zy orbifold
of any toric geometry is obtained by refining the 2-dimensional lattice by
an order N vector, which in our present context is (k1, k2)/N. The action
on the mesons is inherited from this by the standard relation between
mesons and toric data as explained in Section 2.2.1. See Figure 5.12¢ for
an example.

Note that in general, if e.g. GCD(k1, N) = 1, we may take the unit cell
€N of the orbifold theory as the N copies of € in the direction of the
(1,0) 1-cycle in €. However, we prefer to work in the infinite array, and
work for general ki, k; with no special relation with N. On the other
hand, notice that since all N copies of the unit cells arise in the infinite
array, we may choose GCD(ky, k») = 1.
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Discrete symmetries in string
theory

In this chapter we introduce gauge and global discrete symmetries both
in field theory and in string theory.

We review the general properties of discrete gauge symmetries in field
theory in Section 3.1, and we show how naturally they arise in string
compactifications in Section 3.2. Global discrete symmetries may be
found on SCFTs in the context of AdS/CFT. They will play an important
role in Chapter 5, and we explain the main properties in Section 3.3. Such
global symmetries in the SCFT are gauged on the gravity side, and they
are fundamental for the discussion in Chapter 6.

3.1 Abelian discrete gauge symmetries in field
theory

Discrete Abelian gauge symmetries arise in the context of QFT when
a 1(1) gauge symmetry is broken via the Higgs mechanism.>? Let us
consider a complex scalar field ¢ charged under a u(1) symmetry with
charge k € IN. In 4d, the action for this theory contains

S> /dx4 (0utp + ikAu@) (9P — ikA D) . 3.1
Suppose to give a non-trivial VEV v to ¢, such that
6 = = (v + h) e (3.2)
VE 7

where / is the Higgs boson, while 7 is the massless Goldstone boson that
will play the main réle in the following. The action contains a kinetic
term for 1, which is the famous Sttickelberg Lagrangian:

v? s 2
§> = [ dx (dun + kA,)” . (3.3)

The scalar 17 enjoys a shift symmetry 1 = 17 + 1 because it is a phase by its
definition in Eq. (3.2) and it is usually called axion. Moreover, Eq. (3.3) is
invariant under the following gauge transformation:

Ay — Ay =9,

n—n+kA. (34)

Physically, the axion is usually gauged away giving a mass for the vector
field. Technically,  transforms under a non-linear representation of
u(1) [69], and it signals that the symmetry 1(1) has been spontaneously
broken. This interpretation makes clear why there is a discrete part of
u(1) left unbroken. Because of the shift symmetry of 1, i.e. 7 =1 +1,
any transformation A = %, with n € IN, leaves the action invariant. Such
transformations are defined modulo k and they form the Zy subgroup
of U(1).

3.1 Abelian discrete gauge sym-
metries in field theory .. 55

Generalization to arbitrary
dimension .......... 57

3.2 Discrete gauge symmetries
in string theory . . . .. .. 58

Domain wall gauge cou-

plings in type IIA CY com-

pactifications . ....... 59
3.3 Discrete global symmetries
inSCFTs ........... 61

Section 3.1 and its subsections are based
on [8, 10, 51, 52, 64-69] and references
therein.
32: See e.g. [8, 10] for a standard discus-
sion on spontaneous symmetry breaking
in QFT.
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33: Note also that there is also another
gauge transformation: A — A +d©.

34: Although in general it may differ.

The objects that are electrically charged under A are Zy-charged particles
with worldline L [51, 67]. They are described by Wilson line operators

W(L, 1) ~ ¥4 (3.5)

The dual operators associated with these Wilson lines may be useful to
realize that the symmetry is indeed Zj. The only 't Hooft operators that
may be constructed are of the form e [67]. However, this operator is
not gauge invariant, and it can be made gauge invariant if we attach to it
k Wilson lines at the intersection point P = JL. The final operator is

H(P) ~ 2™ PYW(L, k), (3.6)

which represents a process where k particles annihilate in P.

Let us consider v = 1 in Eq. (3.3). It is possible to dualize 1 in Eq. (3.3),
defining
de = *4d17 . (37)

Expanding the kinetic term, we obtain an interaction which is usually
called BF-coupling:

SDk/AAdBZZk/BzAFz, (3.8)

where F, = dA. The coefficient of the BF-coupling is also the order of the
discrete symmetry Z. Such couplings are very frequent in string theory
compactifications also in their generalized forms that we will introduce
in Section 3.1.1.

Such a dual formulation is useful to make manifest also another "emer-
gent" Zj discrete gauge symmetry [67]. Indeed, dualizing the gauge field
such that

dA = *4dA, (3.9)

the action is

1 - 2
EF / dix (QHAV + kBW) . (3.10)

The action in Eq. (3.10) is invariant under the following transformations®

Bz—)Bz+d/\1,

~ ~ (3.11)

A— A1 - kAl .
The emergent symmetry in this case is once again a Z; symmetry>*
but the objects that are charged under it are different. We are now
considering Zk-charged strings along a worldsheet S described by a
Wilson line operator

W(S, 1) ~ e2in s B2 (3.12)

To make the gauge symmetry manifest, we can once again consider the

dual 't Hooft operators naively given by ¥ Je A, where C = dS is the
junction line where they are inserted. To make such operators gauge
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invariant, we need to add k strings on S thatends on C, i.e.,
H(C) ~ X e AW(s, k). (3.13)

In complete analogy with the example in Eq. (3.6), such operator repre-
sents k strings that annihilate along C.

An interesting phenomenon that involves both Z-charged particles and
strings is the following: when a charge n particle defined as in Eq. (3.5)
is moved around a charge p string as in Eq. (3.12), the wavefunction of
the particle picks an Aharonov-Bohm phase ¢?™% . This means that it
corresponds to a gauge transformation n — n + np. This is a way in

which is it possible to detect the presence of a discrete symmetry.

We end this section with a bit of nomenclature. The theory in Eq. (3.3)
is usually called "electric” theory, and the Zji-charged particle is the
fundamental object, while the charged strings are called codimension-2
topological defects. In Eq. (3.10), the Z-charged string is the fundamen-
tal object, while the charged particle is its topological defect. In this case,
the theory is called "magnetic".

3.1.1 Generalization to arbitrary dimension

We have seen in Section 3.1 that it is not always the case that the gauge
symmetry involves a scalar field and a 1-form gauge potential A. Indeed,
the magnetic theory has a 1-form and 2-form playing, respectively, the
role of the charged object and the gauge field. Suppose there is a Zy gauge
symmetry involving a (p — 1)-form 17,1 and a p-form gauge potential
Ap. The gauge transformation will be

Ap — Ap + dAp_1 ,

(3.14)
Mp-1 = Mp-1 = kAp-1.
Let us consider a D-dimensional gauge theory action®
1 2
So - / |dnp-1 + kA,|" . (3.15)
2 Jup

This theory can be obtained with an analogous Higgs mechanism of
that shown in Section 3.1in D = 4. In this case the u(1) gauge symmetry
associated to A is broken to a Zx subgroup. The Wilson lines in this case
are representing (p — 1)-branes with worldvolume S, charged under the
Zy symmetry.

The action in Eq. (3.15) can be dualized by defining a (D — p — 1)-form

Bp-p-1and a (D — p — 2)-form gauge potential AD_p_Q from which we
obtain

1 - 2
So - / (dAD_p_2+kBD_p_1) . (3.16)
2 Jus

This action is invariant under3®

Bp-p-1 — Bp—p-1 +dAp—p-2,
- ~ (3.17)
AD—p—Z I AD—p—2 - kAD—p—Z .

Notice that we recover the electric theory
in Section 3.1 for p = 1 and the magnetic
theor for p = 2.

35: As for the case with p = 2, there is
also another gauge symmetry: -1 —
NMp-1 + d®p_2.

3~6: Remembef that there is also the shift
AD—p—Z —> AD—p—Z + d@D_p_g.
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37: Analogously, we can start from
Eq. (3.16) and we obtain a coupling for
the dual theory equal to

k HDfp /\Ap ,
Mp

with HD—p = dBD—p—l-

The generalization is straightforward for any kind of p-form gauge
symmetry and in any dimension. The objects charged in this case are
Zy~charged (D — p —2)-branes with worldvolume Sp_,_1. However, since
we are dealing with branes for both the theory and its dual, there is no
obvious identification of fundamental and topological defect objects.

Of particular interest is the generalization of the BF-coupling for general
D-dimensional theory and p-form gauge symmetry. Starting, for instance,
from Eq. (3.15) and expanding the square, we can isolate the term

S> k/ dAp A BD—p—l = k/ Fp+1 A BD—p—l , (3.18)
Mp JMp

where we have already integrated by parts the action.” Imposing D = 4
and p = 2, we obtain the BF-coupling of Eq. (3.8), however, here we
see more possible couplings that signal the presence of a Zj; gauge
symmetry.

One of the couplings that will play an important réle in Chapter 6 is
the so-called DKS coupling [66, 70]. Such coupling is a particular kind
of BF-coupling when the B-field is a 0-form. For the particular case of
D =4, denoting By = b, we obtain from Eq. (3.18)

SDO k/ bF,. (3.19)
My

3.2 Discrete gauge symmetries in string theory

In Section 3.1.1 we generalized the BF-couplings to generic dimensions
and p-form symmetry. String theory compactifications with background
fluxes (see e.g. [9, 40, 49, 50] for reviews) offer a large number of examples
in which such couplings arise naturally. As an example, it is sufficient to
consider a KK reduction of the 10d CS couplings of the type II action as
in Eq. (1.65), i.e.,

Stype1t D / D VH3 AFy ACrp + / D BaAFy AFs,, (320)
Mo p Mo p

where B, is NSNS 2-form potential and H3 = dB;. The RR n-form
potentials are given by C,, while F, 1 are their field strengths. The
distinction between type IIA and type IIB is given by n being, respectively,
even or odd.

The presence of non-trivial background fluxes modifies the possible
branes that can wrap cycles in the internal space. This is because the branes
must satisfy the constraints coming from FW anomaly conditions [64,
65] (reviewed in Appendix C). The compactification of Eq. (3.20), which
generate generalized BF-couplings may be also interpreted as wrapped
branes on homologically non-trivial cycles in the internal space that are
charged under the corresponding discrete gauge symmetry signaled by
the BF-couplings. As explained in Section 3.1, the presence of the discrete
symmetry is also shown from the annihilation of charged objects in a
set of the order of the discrete symmetry. In this context, such wrapped
branes decay in sets of the degree of the discrete symmetry, due to the
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processes allowed by the presence of the fluxes. This phenomenon is
usually called flux catalysis [51].

In Chapter 6 we will discuss mainly the presence of DKS couplings, that,
as said in Section 3.1.1, in 4d are BF-couplings associated to a 3-form gauge
symmetry. From the string compactification perspective, these terms
are generated compactifying B, (resp. C3) of Eq. (3.20) along 2-cycles
(resp. 3-cycles) of the internal manifold. From the 4d effective theory, the
charged objects are strings coming from NS5-branes wrapped on the
dual 4-cycles (resp. D4-branes wrapped on 3-cycles), inducing the correct
monodromy for the axion-like particle. Such objects suffer from FW
anomalies that must be canceled by attaching to them domain walls. The
domain wall is unstable, and a number of them may decay to nucleate a
hole, whose boundary is the string itself. Let us do an example in type IIA
backgrounds using the convention for the harmonic forms introduced
in Section 1.2.2. Suppose to compactify B, on a basis of 2-cycles w,.
Axionic strings arise from NS5-branes wrapped on the dual 4-cycles of
w, i.e., PD(w,). In the presence of the Roman mass, i.e., a background
RR-flux F(f)lux, the axionic string develops an FW anomaly, that must be
canceled emitting a D6-brane wrapped in the 4-cycle Poincaré dual of
. The number of D6-branes that must be emitted is proportional to the
amount of F(f)lux. A summary with all the domain walls present in type
ITIA compactification on CY orientifold is in Table 3.1 [52].

Table 3.1: 4d axionic strings and their corresponding domain walls arising from Dp- and NS5-branes wrapped on cycles of the CY manifold
JMe with background fluxes and orientifold.

Axion Brane Flux Domain Wall Rank
By =b"w, | NS50onPD(w,) | Fi™=m D6 on PD(w,) m
By =b"w, | NS50nPD(w,) | Fi*™ = m°w, | D4 onPD(FI™ A w,) | Hapem®
By = b"w, | NS5o0nPD(w,) Ffux =e,Q" D2 at a point in Jls en
Cs=&lar | D4donPD(aj) | HI™=hp/ | D2atapointin e ~hy
Cs=-&p' | D4onPD(p!) | HI*=hla; | D2ata pointin A W

From Table 3.1 it is possible to understand how FW anomaly is cured
by the domain wall for a generic flux. Given the 4d axionic string, in
the presence of a background RR-flux Fg;x, when F», is non-trivial
when restricted to the 4-cycles, a FW anomaly is developed where the
NS5-brane is wrapped. Such anomaly is cured by emitting a D(6 — 2p)-
brane wrapping the (4 — 2p)-cycle in the Poincaré dual class of the cycles
wrapped by the NS5-brane [52]. In Appendix C, the reader will find a
brief explanation of how FW anomalies work and also their relations
with the more familiar HW construction in the non-compact case in terms
of branes.

3.2.1 Domain wall gauge couplings in type IIA CY
compactifications

In this section we derive the gauge coupling constants for domain walls
present in type IIA CY flux compactifications, in particular we will try to
obtain the relevant domain walls that are present in [48].38 We review the
computation in [71] following the conventions in [48]. Recall the type IIA

38: A review of the construction in [48]
has been done in Section 1.2.3.4.
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1
IFpP? = By P

supergravity action in Eq. (1.78) in the 10d string frame. In the presence
of fluxes, we may consider the following modification

SlOd :%/dloxﬁ (8—2¢J (R +4(a#¢)2 _ %|H§Otal|2)) +
10 (3.21)

[0 ((1EaP 1ol )+ s,

T o2
2K7o
where ZK%O = (2n)”a’* and the definitions of the field strengths are

HP® = dB, + Hy®,
ﬁz =dCy +mB,, (3.22)
Fi=dCy+ FF—CinHy— 2By A By

The CS action contains also a prefactor (2x19)~! in front. We define an
adimensional internal volume by ¥ = M®¥ and perform the dimen-
sional reduction in the string frame. For instance, the kinetic term for the
4d field strength associated to the 10d Fy4 reads

. M?2 -
Sk 5 _TS / dax =gV |F4|?, (3.23)

where %, = dCs. To move back to the Einstein frame, we choose a
reference scale 4, and define the 4d dilaton D(x) as

<°V> 62‘1’
— 2D _ 3.2
52(¢> » € v : ( ’ 4)

Therefore, the Einstein frame kinetic terms take the form

a’M

2
s
2

. M2 _
Slgm ) 2—;/d4x\/—g5RE— /d4x\/—gE°Ve_4D|°J4|2, (3.25)

where the products are now done using gr as a metric.

To obtain 4d gauge 3-forms, we perform a KK reduction of 10d p-forms
along suitable harmonic (p —3)-forms in the internal space. In the notation
of [72],

Ci=c), Cs=ciAwy, Cr=dsu N@" and Co =ds Aws.  (3.26)

They correspond to the relevant 4-forms fo, E?f , il,a and @4 associated
with D2-, D4-, D6- and D8-branes.

Notice that we need to normalize the gauge fields by the coefficient in front
of the D-brane CS term, in order for the charges to be properly quantized.
For a Dp-brane this introduces factors of yi, oc a’P*1/2 ~ M in the
forthcoming gauge couplings. Namely, in order to be consistent, we need
to keep the harmonic forms as adimensional, so the generic CS action is

S8~ M3 / ¢3 A wpa, (3.27)
WaXyp—2

where we have called ¢3 A @), collectively each decomposition in (3.26).
The normalization consists in redefining the RR 3-form by a factor M2,
so that there is no prefactor in front of the CS action. The effect of such
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redefinition on (3.25) is just a change in the prefactor in front of the
kinetic terms of the gauge fields,

SlEdn / d4x —

We are almost done with the definition of the coupling constants, but
first we need the following quantities:

M2 / d*x=geV e *P|Fy*.  (3.28)

£2(0) D\
" (@)

K = -In(8%), Kg =4D, K = Kx +Kq.

2 — lfl_le

Substituting in (3.28) and including the other 4-forms, we obtain [71]

-K
kin __ T ¢ 0 A 450 a b
SE —%/? [9;4 A *Fy +4gabg4 /\*g4] +

b /e_K 50 A 4Ty + oy A AT
2M§4 ) 401/28 4|a 4b + 2 4|
(3.29)
where 2
Kk
8ab = —mp (3.30)

is the metric in the Kidhler moduli space with t* = v® + ib”.
Recalling the example in Section 1.2.3.4, we can now specialize to a
toroidal orbifold compactification. The Kéhler potential is

Kk = —In(80'0%0%) = —In((t! + FH)(#* + P2)(t3 + 1)), (3.31)

SO
ov = 3 diag (0, (0772, (0%)77) (332)

We rewrite the action according to this metric obtaining

S?” T / d
4
2MP/4 8

— 3 1
T ~ ~ 1 ~ ~
+ ——Fyi AN KFyi | + —F4 A *xFy
2n1§4/ [Z( 4|i 1) 01/2

1

3
G‘O crl ol
Fy A 21 ( 1)2J4 /\*J'4)

(3.33)

We are finally able to read the coupling constants of all kinds of domain
walls:

1 _me® 1 me K 1 meX@) 1  nmeX

Ty RVt Ry v o ey vrec o

S 8Mp, & 8Mj,(v)? 8  8Mp,V* g7 8M; T2
(3.34)

3.3 Discrete global symmetries in SCFTs

In Section 1.1.2 we have introduced certain kinds of baryons coming
from wrapped branes on torsion cycles. In particular, it is possible to
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Section 3.3 is based on [1, 29, 73-76].
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See Appendix C for a review on HW con-
structions.

The definition of discrete Heisenberg
group has been given in Section 1.1.2.1.

39: A complete quiver graph is a quiver
with 7 nodes all joined among each other
by arrows with different multeplicities and
directions.

Figure 3.1: Quiver for the orbifold ok /3
The superpotential is omitted.

associate three operators, namely, A, B and C that count the number of
wrapped branes on different torsion cycles. For instance, in the set-up
where NS5- and D5-branes were wrapping torsion 3-cycle, they can
be counted respectively by the operators A and B. By HW transition,
when these branes cross, a D3-brane can be created or destroyed. We can
then consider C to be the operator that counts the number of wrapped
D3-branes on torsion 1-cycles, and we realize that these three operators
form a discrete Heisenberg group modulo some integer number q that
depends on the structure of the quiver. It is possible to identify these
operators also in the corresponding SCFT engineered by the brane set-up.
The operators A, B and C will correspond to transformations on the
quiver and on the fields that [73]:

» Leave the superpotential invariant.
» Cancel the anomaly for all the SU(N) gauge groups.

The easiest examples where the Heisenberg group can be found are in 4d
quiver gauge theories with p SU(N) gauge group in a complete quiver
graph with different multiplicities.*” We have already encountered the
gravity dual of these SCFT when we considered orbifold singularities Zj,
in Section 1.1.1.1 and the SCFTs are obtained by N D3-branes probing an
orbifold Z, singularity of C°.

As pioneered in [29], and further explored in [73] (see also [74-76]) there
are several examples of orbifolds of simple geometries. Let us consider,
for instance, the Zj orbifold of C* whose quiver is showed in Figure 3.1.
The theory has 3 gauge groups SU(N); and there is a manifest global
discrete symmetry, with generator A acting as i — i + 1 on the labels of
the SU(N)’s and on the fields, namely

Xiin Xit1iv2
Al Yiim | = Yisiie2 |, (3.35)
Ziiv Zisliv2

where the labels are meant to be taken modulo 3. This is just a Z3
rotation of the theory, which in the context of orbifolds of C? is often
referred to as quantum symmetry (as it is a symmetry of the quantum
worldsheet theory, in the sense of the a’ expansion). This discrete group
can be accompanied by a further symmetry generator B, defined as phase
rotations of the bifundamentals, such that the symmetry is enhanced to
the discrete Heisenberg group.

We can define w = exp[2ni/(3N)], so that on top of the global SU(3)
symmetry, acting on the fields associated to the three complex planes,
there is a global symmetry B under which the fields transform, for
instance, as

Xo1 Xo1
Bl Yo |=w| You [,
Zmn Zot
X12 X12
Bl Yo |=w'| Y2 |, (3.36)
Z12 Z12
Xo0 Xo0
Bl Yoo |=| Yo
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The actions A and B satisfy the commutation relation

AB = CBA, (3.37)
where the action of C is
Xo1 Xo1
Cl| Yo |=w??| Ya |,
Zon Zon
X12 X12
C Y12 =w le , (338)
Z1o Z1o
X0 X0
C Yzo = YZO s
Zao Zao

and commutes with both A and B so it is central. Hence, we recover a
discrete Heisenberg group H3, also known as Aoy.

There are examples of other orbifolds of C? studied for instance, in
[73]. In the case of C®/Zs, whose quiver is in Figure 3.2, we can call
Wiis1 = (Xiis1, Yiiz1), while we keep Z;;_, as it is. Let us also define
w = exp[2mi/(5N)], so that the Heisenberg algebra is given by

B (Wo1, Wiz, Was, Was, Wig) = (Wor, @Wiz, 0*Was, @* Wiy, @ Wy) ,
B(Zo3, Z14, Z20, Z31, Z12) = (0°Zo3, ©°Z1a, 0™ Zoo, 0> Z31, 07 Zaa) ,
C (Wor, Wiz, Waz, Wag, Wyo) = (wWor, @ Wiz, ©Was, ©Wag, 0™ *Wy) ,

C(Zos, Z14, Z20, Z31, Zsp) = (0*Zog, 0°Z1a, 02 Zoo, 0 Zz1, 0 > Zs2) .
(3.39)

In Chapter 5 we will be able to find a procedure to extract the B and
C symmetries for a given toric quiver gauge theory using dimers. Our
technique allows uncovering discrete global symmetries in the fields
theories on D3-branes at singularities given by general orbifolds of general
toric CY 3-fold singularities.

Figure 3.2: Quiver for the orbifold C3/Zs.
The superpotential is omitted.

We have reviewed dimer diagrams and
the construction of a general orbifold of a
general toric CY 3-fold in Chapter 2.



The swampland program and
Weak Gravity Conjectures

In this chapter we are going to give an overview of the swampland
program developed in string phenomenology in the last decade. After
a short list of the principal conjectures in Section 4.1, we are going to
focus on the WGC (Section 4.2) which is the conjecture that is mostly
used in Chapters 6 and 7. The content of this chapter is based on the
reviews [77-79] and the papers [2, 3].

4.1 The swampland program

The Swampland program has the aim of defining a set of criteria to
determine if an EFT can be completed into QG in the UV [78]. The
Swampland is given by all the EFT that cannot be completed to QG,
while the other theories are in the Landscape. In the years there have
been nice reviews [77-79] where one can find more detailed information
about the Swampland program. We are just going to review the relevant
topics for the discussion in the next chapters.

The Swampland program then tries to give conjectures or criteria that
all EFT must satisfy in order to hopefully have a UV completion to QG.
These conjectures are based on string theory constructions, general QG
arguments and microscopic physics [78]. When an EFT does not satisfy a
conjecture, then the theory might be in the swampland or the conjectures
are not refined enough to contemplate that theory.

A way, for instance, to prove that a conjecture must be refined, is to
actually find a UV completion of the EFT. If the theory has a string
theory 10d uplift, even if it was violating some conjectures, then, the
conjectures must be refined in order to include also such EFT. If the 10d
uplift is missing, then, the EFT might be in the swampland for the set of
conjectures that have been so far formulated.

One possibility to make the Swampland program more precise is to
prove the conjectures, and make them theorems. This is the reason many
attempts have been done not only to find a mathematical and physical
proof for the conjectures to hold, but also to find connections among the
conjectures, so to make easier the proof of all of them, whenever it was
possible to prove one of them.

In the following we will list only the most important conjectures and those
that are relevant for the two conjectures we will propose in Chapter 6. In
particular, the different formulations of the WGC will be discussed in
Section 4.2. A schematic picture of how the conjectures are related one to
the others is showed in Figure 4.1.

We start with the following conjecture:

Conjecture 4.1 [No GrLoBAL SYMMETRIES [67, 80]].

A theory with a finite number of states, coupled to gravity, can have

4.1 The swampland program . 65
4.2 Weak Gravity Conjectures . 67
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Figure 4.1: Map of relevant conjectures for
our discussion inspired by [79]. We also
added the two conjectures we will formu-
late in Chapter 6 with their connections to
the already known conjectures.

No
Global
Symmetries

Weak
Gravity

AdS
Distance
Conjecture

Distance
Conjecture

. Il Conjecture
Zx Refined

Zx Weak
Sg(?ng AdS Coupling
c istance Conjecture
onjecture

no exact global symmetries [78].

It is probably the better established conjecture, and it has been proved in
the context of AdS / CFT very recently in [81].

Related to that conjecture there is the Swampland Distance Conjecture
(SDC) [82]. Such conjecture considers a theory, coupled to gravity, with a
moduli space Jl which is parameterized by the VEV of some field ¢ that
has no potential. Let us start from a point P € Jl and we consider the
geodesic distance d(P, Q) between P and another point in the moduli
space Q. The conjecture states that

Conjecture 4.2 [SwampLaND Distance CoNjecTure (SDC) [82]].

There exists an infinite tower of states, with an associated mass scale
M, such that
M(Q) ~ M(P)e™*PQ), (41)

where « is some order 1 positive constant.

The geodesic distance between two points P and Q is defined as

_ [ [, 2000
1P, Q)= [ 55 G, 42

where v is the shortest geodesic connecting the points P and Q, and
ds is the line element along the geodesic [78]. The metric g;; is defined

from the kinetic terms of the fields ¢’ in the action of the theory we are
considering, i.e.

s> M3 [ aPxVoR [§ - gif<¢f>a¢faq>f] SN

For the specific case in which we are considering a theory coupled to



gravity in an AdS vacuum, there exists a consequence of the SDC that
involves the cosmological constant A:

Conjecture 4.3 [ApS Distance Conjecture (ADC) [83]].

Any AdS vacuum has an infinite tower of states that becomes light
in the flat space limit A — 0, satisfying

m~ |A|%, (4.4)

where « is some order 1 positive constant.

For the case of supersymmetric AdS vacua, there is a stronger version of
the ADC, namely

Conjecture 4.4 [StronG ApS Distance Conjecture (SADC] [83]).

For supersymmetric AdS vacua o = %

In Chapter 6 we are actually going to propose a refinement of this last
conjecture in the presence of Zj Abelian gauge symmetries coming from
3-forms gauge potentials.

4.2 Weak Gravity Conjectures

Weak
Gravity

Conjecture

Sublattice / Tower
WGC

The WGC is maybe one of the most famous Swampland conjecture. It
was formulated for the first time in [84] for a 4d theory coupled to
gravity with a U(1) gauge symmetry, with gauge coupling g. It is usually
formulated in two ways and they are, respectively the Electric WGC and
the Magnetic WGC.

Conjecture 4.5 [4D ELectric WEAK GrAVITY CONJECTURE [84]].

There exists a particle in the theory with mass m and charge g

4.2 Weak Gravity Conjectures | 67

Figure 4.2: Principal refined versions of
the WGC.
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40: For the case of the Sublattice WGC, the
integer 7 is universal. For the case of the
Tower WGC the integer depend on q [79].

satisfying
m < gqMp 4. (4.5)

Conjecture 4.6 [4p MacneTic WEak GraviTy CoNJECTURE [84]].

The cutoff scale A of the EFT is bounded from above by the gauge
coupling
A S gMpA . (4.6)

Roughly speaking, then, the WGC is stating that gravity is the weakest
interaction. The original argument at support of this conjecture was
based on the decay of extremal Black Holes (BHs), in order to avoid BH
remnants [77-79].

The first generalization that can be done to Conjecture 4.5 is in the case
when there are multiple U(1) gauge symmetries. It was argued in [85]
that there should be still a bound on the spectrum of particles, based on
a convex hull condition. Suppose to consider a theory coupled to gravity
with multiplet U(1) gauge symmetries with gauge coupling g;. We then
introduce the variable

1

_ 8iqiMpa
=S

(4.7)

where g; is the charge with respect to the symmetry g; of the particle
with mass m1;. The conjecture is the following;:

Conjecture 4.7 [Convex Hurr WGC [85]].

A theory with multiplet U(1)’s must have a spectrum of particles
with charge-to-mass ratio vectors z;, whose convex hull includes
the unit ball.

The natural question is about which states must satisfy the WGC. At the
moment the statement of the conjecture is only an indication that there
should be states satisfying it, but there is no indication on how many
of them and at which energy scale it must be satisfied for those state.
The best version of the WGC that contains information about the kind of
states that must satisfy the WGC is the Sublattice WGC [86-88] or the
Tower WGC [89].

Conjecture 4.8 [SusLartice / Tower WGC [86-89]].

For every site q of the charge lattice, there is a positive integer n
such that there is a superextremal state with charge nq satisfying
the WGC.4

For the moment, we focused on 4d EFTs but one can ask what are
the generalizations to D-dimensional EFT and also what are the corre-
sponding WGCs for objects that are not particles. In the case in which a



D-dimensional EFT contains scalars, for instance, there is a version for
the WGC as follows.

Conjecture 4.9 [ScaLar WGC [90]].

Given an EFT coupled to gravity with some massless scalar fields
@i, there must exist a state with mass m satisfying:

gif8¢im8¢jm > g :zmz p (4.8)

where g;; is the field metric.

Finally, in the case in which a D-dimensional EFT contains U(1) gauge
symmetries come from generic p-forms with kinetic terms [78]:

1 2
%> iy |Fpaa| (4.9)

Conjectures 4.5 and 4.6 become

Conjecture 4.10 [Erectric WGC [86]].

A D-dimensional theory with a p-form field, should have a (p — 1)-
dimensional object with charge g, and tension T}, satisfying

(D-p-2) D-2
i hsas (M) - @

Conjecture 4.11 [Macneric WGC].

The cutoff scale A of the EFT is bounded from above by the gauge
coupling

1
A< (gZMI’{;)Z)Z("*l) : (4.11)

The case of p = 0 is not covered in Conjecture 4.10. Indeed, this case was
already present in [84], and it is the axion-instanton case. Suppose to
consider the following effective Lagrangian [78]:

£ > —f2(da)* + A* >e71% (1-cos(qa)) , (4.12)
q

where f is the axion decay constant and S is the instanton action with
instanton number 4. The WGC for this set-up is

Conjecture 4.12 [Axion WGC [84]].

An axion with decay constant f must couple to instantons with
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2 1
- H1--fp+1
|Fp+1| (p + l)!F.“lm}‘erlF .

Note that Conjecture 4.11 already contem-
plate that case.
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action S, such that
fS<Mpy. (4.13)

It is possible to modify Conjecture 4.10 so that it contains also the case
p = 0, since the Axion WGC is related to the extended gravitational
instantons solution [91]. In the presence of a dilaton, with dilatonic
coupling a, Conjecture 4.10 becomes

a? p(D-p-2)

D-2
S+ B gk (MB) (4.14)

Moreover, it is possible to extend Conjecture 4.7 in the case of multiple
axions, defining

2= ST Mpa, (4.15)

i = — < Cis :
j fif Si

where e; are some orthonormal set of basis vectors [78] and requiring their
convex hull to include the unit ball. Also Conjecture 4.9 gets modified
when we consider axionic couplings. In the presence of a canonically
normalized scalar field ¢, the Axion WGC becomes

F28%+ f2(945)° M2, < M2 ,. (4.16)
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Discrete Symmetries in Dimer
Diagrams

We apply dimer diagram techniques to uncover discrete global sym-
metries in the fields theories on D3-branes at singularities given by
general orbifolds of general toric CY 3-fold singularities. The discrete
symmetries are discrete Heisenberg groups, with two Zy generators
A, B with commutation AB = CBA, with C a central element. This
fully generalizes earlier observations in particular orbifolds of C?, the
conifold and Y, 4. The solution for any orbifold of a given parent theory
follows from a universal structure in the infinite dimer in R? giving the
covering space of the unit cell of the parent theory before orbifolding. The
generator A is realized as a shift in the dimer diagram, associated to the
orbifold quantum symmetry; the action of B is determined by equations
describing a 1-form in the dimer graph in the unit cell of the parent
theory with twisted boundary conditions; finally, C is an element of the
(mesonic and baryonic) non-anomalous U(1) symmetries, determined
by geometric identities involving the elements of the dimer graph of
the parent theory. These discrete global symmetries of the quiver gauge
theories are holographically dual to discrete gauge symmetries from
torsion cycles in the horizon, as we also briefly discuss. Our findings
allow to easily construct the discrete symmetries for infinite classes of
orbifolds. We provide explicit examples by constructing the discrete
symmetries for the infinite classes of general orbifolds of C3, conifold,
and complex cones over the toric del Pezzo surfaces, dP;, dP; and dPs.
The chapter is organized as follows. In Section 5.2 we describe the general
structure of the discrete Heisenberg groups, and in Section 5.2.1 we un-
cover their origin from an underlying structure of a 1-form defined on the
infinite dimer in R? of the parent theory. We exploit this understanding
solving by inspection the discrete symmetries for general orbifolds of C3,
in Section 5.2.2, and of the conifold, in Section 5.2.3. In Section 5.3 we
provide a systematic procedure to construct the explicit solution for the
discrete symmetries of a general orbifold of a general toric singularity,
in terms of equations for 1-forms on the graph of the parent theory
dimer/quiver in its unit cell (with twisted boundary conditions). Sec-
tion 5.4 is devoted to the explicit construction of the discrete symmetries
in infinite families of orbifolds. In Sections 5.4.1 and 5.4.2 we recover
the discrete symmetries for orbifolds of C* and the conifold, and in
Section 5.4.3 we construct the discrete symmetries for the infinite class of
general orbifolds of the dP; theory. Further examples are in Sections 5.4.4
and 5.4.5. Finally, Section 5.5 contains a sketch of the realization of these
symmetries in the gravity dual, in terms of torsion classes in the 5d
horizon geometry.

5.1 General motivations

Discrete symmetries are key to our understanding of quantum field
theory and the SM, and it is an interesting question to address their
realization in fundamental theories like string theory. In particular, the
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5 Discrete Symmetries in Dimer Diagrams

general arguments about absence of global symmetries in theories of QG
(see [80, 92, 93] for early viewpoints, and, e.g., [67, 94] and references
therein, for more recent discussions) suggest that discrete symmetries
should have a gauge nature in such theories [95-102] (see [81, 103, 104]
for recent discussions in the swampland [77, 78, 105] context).

Discrete gauge symmetries have been studied in string theory from
different perspectives. Abelian gauge symmetries and their application
to MSSM-like models have been explored in D-brane models in [51,
106-109]. Non-Abelian discrete gauge symmetries in 4d string compacti-
fications were systematically studied in [110]. In fact, the first appearance
of non-Abelian discrete gauge symmetries in string theory arose in [29]
in the gravity dual of the quiver gauge theory on D3-branes at the
(3 /Z5 singularity. This was subsequently generalized to other particular
orbifolds of €3, the conifold and Y},4 in [73, 76]. The symmetries were
constructed as global discrete symmetries of the quiver theory, by labo-
riously solving the conditions of invariance of the superpotential and
cancellation of discrete gauge anomalies. The symmetries correspond to
discrete Heisenberg groups, with Zy generators A, B anticommuting to
a central element C, namely AB = CBA. In the gravity dual, the discrete
symmetries arise from torsion homology cycles, and the non-Abelian
nature is encoded in brane creation effects among the Zy charged objects
[29], or alternatively in the KK reduction of CS terms for torsion forms
with non-trivial relations [110].

In this chapter, we apply the powerful description of D3-branes at toric
CY 3-fold singularities in terms of dimer diagrams [55-57] to unravel
the underlying structure of discrete symmetries in general orbifolds
of general toric singularities. We find discrete Heisenberg groups for
the whole class of theories, generalizing earlier results for particular
examples. We show that the discrete symmetry structure for any orbifold
of a given parent theory follows from a universal structure in the infinite
dimer in R? giving the covering space of the unit cell of the parent theory.
The general structure is as follows. The generator A is realized as a shift
in the dimer diagram, associated to the orbifold quantum symmetry;
the action of B is determined by equations describing a 1-form in the
dimer graph in the unit cell of the parent theory with twisted boundary
conditions. The element C is a discrete subgroup of the non-anomalous
U(1) symmetries (mesonic and baryonic, if present), determined by a
simple set of equations related to geometric identities among the elements
of the dimer graph in the parent theory.

Our findings allow to easily construct the discrete symmetries for infinite
classes of orbifolds. To illustrate the power of our methods, we provide
explicit examples by constructing the discrete symmetries for general
orbifolds of €3, conifold, and complex cones over the toric del Pezzo
surfaces, dPq, dP; and dPs.

These discrete global symmetries of the quiver gauge theories are holo-
graphically dual to discrete gauge symmetries from torsion cycles in
the horizon, as we also briefly discuss. Our techniques thus provide the
largest ensemble of discrete gauge symmetries in string theory models,
in this case in AdS. They thus provide a natural setup to explore the
properties of discrete symmetries in AdS QG, with interesting interplay
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with holography and hopefully with the swampland constraints for AdS
vacua [81, 83,103, 111].

5.2 Structure of the Discrete Heisenberg group

It is possible to rederive the generators of the Heisenberg group that
we have introduced in Section 3.3 in terms of dimer diagrams.*! In the
construction of Section 2.3.2, there is a manifest global discrete symmetry,
with the generator A acting as ¥ — r + 1 on the labels of the N copies of
the fields of the parent theory, namely

A :Fa,r - Fa,r+1 = SU(na,r) - SU(”a,r-H)

Eiy, > Ei1 = @, — O 6.1

ir+1

Var = Varsyr (similar for V, ).

This is just a Zy rotation of the theory, which, as we have said in
Section 3.3, in the context of orbifolds of C° is often referred to as
quantum symmetry (as it is a symmetry of the quantum worldsheet
theory, in the sense of the o’ expansion).

Using the notation introduced in Section 2.3.2, this transformation
corresponds to a shift of the unit cell of the parent theory ‘6 in the Gy,
which in fact is most easily discussed in the infinite periodic array in
R2. The shifts of 6 to the adjacent unit cells in the two independent
directions correspond to the operations A" and A*2, respectively. Since
GCD(kq, k2) = 1, by Bezout’s theorem there exist integers 1, 2 such
that 1k, + 2k, = 1, hence A corresponds to the shift of the unit cell
¥ to its copy in the position (11, 72). The B and C generators act on
the fields as we shown in the examples in Section 3.3, only this time
we are going to use dimers to uncover the discrete global symmetry.*?
We are looking for this structure on general orbifolds of general toric
geometries. As explained above, the symmetry A corresponds to the
shift ¥ — r + 1, which implements an order N cyclic permutation among
the gauge factors, acting correspondingly on the bifundamentals and
superpotential terms. In addition, we look for an action B under which
the different bifundamental fields E; , will transform with charges bg, ,,
which in general depend on 7. The actions A and B should anticommute to
an action C, under which the bifundamentals E; , transform with charges
cg;, which, in order for C to be central (and in particular commute with
A), must be independent of 7.

The procedure to construct the solution for these charges in general orb-
ifolds of general toric theories is explained in Section 5.3. Before entering
this discussion, it is useful to introduce an important viewpoint.

5.2.1 Discrete symmetries from the covering space

Consider a given parent geometry, and the quotients defined by a Zy
group with generator 0 defined by an action (2.23) associated to the two
integers (p1, p2)- As discussed, there is a I' = Zy quantum symmetry
whose generator we denote by Ay, to emphasize its order. We also have

41: Dimer diagrams have been introduced
in Chapter 2.

42: See, for instance, Figure 5.1 for the cor-
responding dimer diagram of the quiver
in Figure 3.1.

Figure 5.1: Dimer diagram for the orbifold
C3/Zs.
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a Zy generated by By, under which bifundamentals have charges b, ,
defined modulo N.

In this section, we are going to uncover the existence of the most important
structure for the B symmetry for the family of orbifolds of a given parent
theory, for fixed (ki, k2), but different orders N.

The first observation is that it is useful to regard the charge assignments
for the By symmetry in the infinite periodic array in R2, with periodicities
(for fixed ki, kz) depending on N. This is motivated by the following
argument. We regard the set of By charges bg,, as defined for arbitrary
r € Z, hence on the infinite periodic dimer/quiver, but satisfying the
periodicity bg,, = b,,,, mod N.We also have to impose the condition
that By leaves the superpotential invariant, and that it has no mixed
anomaly with the gauge factors. These can be written

Z bg,, =0,

aVa,r

> bg, =0.

OF, s

(5.2)

Here the equations have to be satisfied modulo N. However, we now show
that they actually must be satisfied as equations for integers, without
resorting to the mod N condition, as follows.

It is a familiar fact that quotienting the orbifold theory by the quantum
symmetry I, one recovers the parent theory back. Similarly, if we consider
some non-prime order N = pN’ withp, N’ € Z,and consider the element
(AN)V', it generates a Z, subgroup I" C I'. Quotienting the theory by I”
should result in a theory which is a Zn quotient of the parent, with the
same pair (ki, k2). This merely corresponds to considering the unit cell
@N of the Zy orbifold, and imposing the identification ¥ — r + p on all
elements to achieve a unit cell €y for the Zy- orbifold theory. Going
back to the infinite periodic version, we have an initial set of charges
bg,, (defined mod N) and we are changing from a periodicity set by N
to a periodicity set by N’. The requirement that the initial charges are
compatible with the symmetry Bn- of the discrete Heisenberg group of
the Zn- theory implies that bg,, = b, ,,, mod N”. Transferring this to the
set of constraints (5.2), and we find that they must be obeyed modulo
N’. Considering N’s large enough, or rather, with large enough number
of divisors, it is easy to convince oneself that the equations (5.2) have to
be obeyed in Z, without use of the mod N conditions.

In other words, the family of Zy theories, for fixed (k1, k») and varying
N, has B charges inherited from a universal assignment of integer
charges bg,, € Z, in the infinite periodic quiver/dimer i.e. r € Z. The
charges for the theory of a given N are obtained by restricting the integer
charges modulo N. The fact that this is compatible with the periodicities
bg,, = bg,,.y mod N, for any N, implies that (5.2) have to be obeyed
directly, not modulo N.

In the following, we ignore the subindex N in the discrete symmetry
generators like B, C, and mostly work in whole families of Zy orbifolds,
for fixed (k1, k2), but varying N. As anticipated, this is most efficiently
done by working on the infinite periodic array, with B charges realized
as integer charges therein.
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The fact that the constraints (5.2) are defined without using the modulo
N condition has an interesting implication. In the language of Section
2.3, the set of charges can be regarded as defining a 1-form y, namely
y(Ei;) = bg,,. Then the invariance of the superpotential requires the
1-form to be closed

dy =0. (5.3)

As explained above, solutions in the dimer 2-torus correspond to contin-
uous U(1) mesonic (for non-exact y # df) or baryonic (for exact y = df)
symmetries. This, together with the above considerations, suggests to
look for symmetries defined by 1-forms y defined on the covering infinite
periodic array. In R?, any closed form must be exact y = df; hence,
we introduce a 0-form f on the infinite periodic array. More concretely,
using a label r for the infinite set of faces/nodes, we assign an integer
n, = f(F,) to each face of the (infinite) dimer (resp. node of the infinite
quiver). This amounts to choosing a formal infinite linear combination of
the U(1),,, generators Q,

Qp = Z na,rQa,r . (5.4)

So that a bifundamental associated to an edge E separating faces F, and
F; (resp. an arrow from node F; , to node Fj s) has an associated B charge

bg = V(E) =g, — Ny, for t(E) = Fa,, h(E) = Fys. (5.5)

The values of n, are further constrained by the cancellation of anomalies.
In the following, we use the description in terms of the linear combination
Qp to construct the discrete symmetries in several infinite classes of
models, by solving the anomaly cancellation conditions by inspection. A
systematic procedure to solve general orbifolds of general geometries is
given in Section 5.3.

5.2.2 The infinite class of general orbifolds of C3

Consider the infinite class of general orbifolds of C?,defined by a generator
0 acting as

N eZnikl/N Zﬂsz/N

x X, y—e v, z — eZiks/N 5 (5.6)
with ki + ko + k3 = 0, so we take the twist vector (k1, ko, —k1 — k2)/N.
The notation ki, k; is chosen with hindsight to agree with their meaning

in Section 2.3.2.

The parent theory of D3-branes in flat space C® has three adjoints, X, Y,
Z. They are the basic mesons parameterizing (3, so the orbifold action
on them is inherited from (5.6). They carry charges (1,0), (0,1) and
(=1, -1) under the mesonic U(1)?, so this action corresponds to the Qg
combination (2.23) with p1 = kq, p2 = kz.

In the orbifold, the gauge group is a product of unitary factors U(n),,
with7 =0,...,N — 1, and there are bifundamental fields

Xr,r+k1 ’ Yr,r+k2 ’ Zr,r+k3 ’ (5~7)

77
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Figure 5.2: Dimer diagram for a general
C3/Zy orbifold.

Figure 5.3: General face and B-charges
(in blue) for bifundamentals for a general
C3/Zy orbifold.

where the subindices denote the bifundamental representation, i.e. @,

transforms in the ( O, O s). All information, including the cubic su-

perpotential, is encoded in a honeycomb dimer, where now the unit cell
contains N different faces, labeled by r = 0,..., N — 1, and where the
index of the faces changes by k; and k, between neighboring faces, in
the two independent directions (and hence, by —k; — k» in the third, not
linearly independent, direction). As explained, we prefer to consider
the general class of orbifolds for arbitrary N, by considering the infinite
periodic array in R?, as shown in Figure 5.2.

As explained above, the generator A of the Heisenberg group is realized
as the action r — r + 1. On the other hand, the generator B can be
obtained from the combination (5.4), dropping the index a since there is
only one face in the parent theory. The anomaly cancellation condition
for the coefficients n, thus reads

nr+k1 - n?’—k] + n}’+k2 - n‘r’—kz + nr+k3 - n?‘—k3 = O . (58)

It is not difficult to use known examples to try and infer a viable solution
to the anomaly conditions, given by

_ r(r+1)

5 (5.9

ny
This will be rederived in Section 5.4.1 from a general procedure, but for
the moment we take it at face value. Using the charges for bifundamentals
(5.5), see Figure 5.3, it is straightforward to check that the anomalies for
an arbitrary face cancel.

We can now extract the charges under the C symmetry. From the com-
mutation relation AB = CBA and the fact that C is central, we have
ABFR = CkiBR A, which implies that the charges of the different bifunda-
mentals under the C symmetry can be obtained from the difference of
charges of two copies of the bifundamental related by v — r + k;. The
result is that for bifundamentals of X, Y or Z kind, the C-charge is given

by
Qc(E) = k; with i = 1,2, 3 for bifundamentals of X, Y, Z kind.(5.10)

It is straightforward to check that the anomalies cancel, and that period-
icities are satisfied. This follows directly from the fact that the C-charges
must be equal for all copies of a given bifundamental. This means that
the C-charge can be defined on the dimer of the 2-torus of the parent
theory. In other words, it is part of the mesonic U(1)? symmetry of the C*
theory (note that there are no baryonic U(1)’s in this case), as is moreover
clear from the above explicit charges.

Given this universal solution, we can now find the discrete symmetry for
any Zy orbifold by interpreting the labels r mod N, and thus recovering
the unit cell Gy of the orbifold theory as dictated by the corresponding
identifications of faces in the infinite dimer. It is easy to check that
the set of B charges for the bifundamentals respects the corresponding
periodicities as follows. Consider moving in the direction of r — r + ky,
until we hit r again (mod N). If we denote GCD(ky, N) = p, this will
happen after N/p steps, so we have an identification r ~ r + kyN/p.
The charges of all the bifundamentals charged under U(1), shifts by
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an amount k;kiN/p (with i = 1,2, 3 for fields of the X, Y or Z kind,
respectively), which is 0 mod N in all cases. Clearly, a similar result is
obtained for the identifications in the directions # — r+kp ort — r+ks.

Hence, we have explicitly constructed the discrete Heisenberg groups
Hy for all orbifolds C3/Zy with twist vector (kq, k2, —=k1 — k2)/N. We
invite the reader to check that this general solution reproduces all known
examples of discrete symmetries in orbifolds of C3, in particular those of
Section 5.2.

5.2.3 The infinite class of general orbifolds of the
conifold

We now consider the infinite class of general orbifolds of the conifold.
As shown in Figure 2.2a, the conifold theory is described by two factors

SU(M) x SU(M),, and bifundamentals A1, A, in the ( 0, & ) and B;,

B; in the ( 0,0 ) We define the orbifold by the action of its generator
0 on these fields

iP1 _niP1
0:A1 — eTNA, Ay — e TN A,

. , (5.11)
31 — 62”1%31, B2 — E_zm%BQ.

This agrees with the notation (2.23), by noticing that the charges of Ay,
Ay, By, B, under the mesonic U(1)? symmetries*3 are (1,0), (-1,0), (0, 1),
(Or _1)

Introducing the mesons
X = AlBl ;Y= A2B2 , 2= A1B2 , W= A2B1 P (512)

which satisfy xy = zw, the orbifold action is

; P1tP2 i ZP1=P2
O:x—eX™ N x,y—e Ny,
2 P1P2 oni PAtP2 (5-13)
z—e™ TNz, w—e N w.

Hence, in the notation of Section 2.3.2, we have ki = p1+p2, ko = p1—pa.

The dimer of this theory is shown in Figure 5.4. Note that in this case,
there are two faces F, in the parent theory, and hence two kinds of faces
F,, in the quotient, r € Z, shown in different background colors for
clarity. The label displayed in the figure corresponds to the index r of the
corresponding kind of face.

The A symmetry acts by » — r + 1 as usual. To build the B symmetry,
we consider a general linear combination (5.4). The anomaly cancellation
conditions are

Nar+py + Nar—py = Nar+py — Nar—p, = 0fora =0,1. (5.14)

The condition for a = 0 and a = 1 decouple, and this makes it easy to
find solutions. In particular, we can take

noy, =1, Ny, =0. (5.15)

43: In this case, they are part of a larger
SU(2)? global symmetry.

—p1+p2 p2

L)
N/
N
\
/
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N/

Figure 5.4: Dimer for general orbifold of
the conifold. We show a unit cell of the
parent theory with its two faces, and we
display different background colors for
their images.
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Figure 5.5: B-charges for general orbifold
of the conifold. We take colored faces to
have zero coefficient in the linear combina-
tion of U(1), while the coefficient for white
faces is just its label. Hence, the charges of
edges around a white face are just given by
the face label, with a sign corresponding
to the bifundamental orientation.
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The charges obtained are shown in Figure 5.5, where the white faces are
taken to correspond to 11, = 0, and the colored faces to 1y, = 0. Hence,
the charges for edges around a face correspond to the face label weighted
by the orientation of the bifundamental. It is straightforward to check
that the anomalies for an arbitrary face cancel.

The charge C can be read as the jumps in the B charges as one acts with
the shifts corresponding to A, and read

Qc(A1) =1, Qc(A2) =1, Qc(B1) =-1, Qc(B2) =-1.  (5.16)

As is clear from these charges, the C symmetry is actually an element of
the baryonic U(1) of the parent theory.

The above results will be rederived in Section 5.4.2 from a general
procedure.

5.3 Discrete Symmetries in Orbifolds of Toric
Geometries: General solution

In this section, we provide a systematic recipe to construct the discrete
symmetries of general orbifolds of general toric theories, by formulating
the problem in the framework of the unit cell € of the parent theory.
Morally, the problem amounts to solving for the set of charges (eventually,
B-charges) for the edges/arrows in ‘€, with a twisted boundary condition
encoding the information of the orbifold action.

We start with a short recap of the main lessons from the previous
section. Given a toric theory, we consider the infinite periodic array
for its dimer/quiver diagram, and label the copies of the ingredients
(faces/nodes, edges/arrows, vertices/plaquettes) in the basic unit cell
with an index r € Z. Considering a unit cell €, the orbifold is defined
by two integers (k1, k2), which specify the jumps r — r + k; in the labels
of ingredients as one moves from € to the adjacent unit cells in the
two independent directions. For fixed (ki, k»), this defines a family of
orbifolds, with an extra parameter N specifying the order of the Zy
quotient.

For a given N, there is a discrete Heisenberg group Hy acting as a
discrete symmetry of the theory. However, it is useful to consider the
generators A, B, C, with AB = CBA, of the symmetry in general, without
explicit reference to N. This is done by considering the infinite array of the
dimer/quiver diagram as the natural structure on which the symmetry
acts. In particular, the motion by one unit cell in the two independent
directions corresponds to the application of Ak", i = 1,2. Moreover,
the B-charges for the edges/arrows E; , are defined as integer charges
QB(Ei ) = bg,, for the edges/arrows in the infinite array, satisfying
the conditions (5.2) of invariance of the superpotential and anomaly
cancellation, exactly and not just mod N. Finally, the commutation
relations of the Heisenberg group imply that the C-charges for E; ; are
defined as r-independent integers Qc(E; ;) = cg, in the infinite array,
namely satisfying the periodicity of the unit cell € of the parent theory
(hence, again independent of N). From this universal structure, the
discrete symmetry generators for a particular choice of N are obtained
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must satisfy
y (Vo) =y @V =0, y(3F,) =0. (5.19)

These equations are just (2.15) and (2.20). This shows that C is a dis-
crete subgroup of the anomaly-free U(1) symmetries of the theory. This
includes the U(1)> mesonic symmetries Q1, Q2. In addition, there are
in general N baryonic U(1)’s which we denote by Qg,. Incidentally,
we recall that these U(1)’s arise from linear relations among the above
equations, due to the geometric identities. The result is that the C charge
is a combination of these symmetries,

Np
Qc = m1Q1 +maQa + >, mg,Qs, - (5.20)
1=

So the actual number of unknowns is given by E from the B-charges and
2+ N from the coefficients in the above combination for the C-charges.

Consider now the superpotential invariance and anomaly cancellation
constraints the B-charges have to obey. These are given by (5.19) where
now Y is the 1-form defined by the B-charges. Notice, however, that, since
the B-charges do not satisfy the periodicities of the unit cell ‘6, this defines
a twisted 1-form. In order to work with standard forms, we define the 1-
form y by y(E;) = b,, so the constraints correspond to an inhomogeneous
linear set of equations for the bg,, whose associated homogeneous system
is precisely (5.19), and the inhomogeneous terms are combinations of
the C-charges cg,. The number of equations is F + V, where F is the
number of faces/nodes and V the number of vertices/plaquettes in €.
We may be tempted to consider that this defines a unique solution for
the b’s in terms of the ¢’s, but additional care is required. Remember that
the homogeneous system of equations is not linearly independent, since
there are 2 + Np linear relations arising from the geometric identities.
This implies that, for the inhomogeneous system to admit solutions, the
inhomogeneous terms must satisfy non-trivial consistency constraints.
Namely, evaluating the geometric identities with the (twisted) B-charge
assignments, the dependence on the bg, disappears (because they are
well-defined in ‘€ and hence obey the identity automatically), and we
obtain certain combinations of the C-charges cg, for some edges; these
combinations must be zero for the inhomogeneous system to admit
solutions. This provides 2 + Ng constraints on the C;Ei, which are just
enough to fix the 2 + Np coefficients (5.20) and thus determine the
C-charges.

We may now take the inhomogeneous system of equations for the bg, and
solve it in terms of the cg,. Since the number of independent equations
(again, due to the geometric identities) is F + V — 2 — Nj, the solutions
for the bg, are unique up to (2 + N — Np) free parameters. But this is
expected, since the discrete symmetry B-charges can only be defined up
to the addition of an arbitrary combination of the 2 + Ng continuous
U(1) global symmetries.

In our procedure to solve for the B-charges we have not used the descrip-
tion in terms of the linear combination (5.4), which we exploited in the
examples in Sections 5.2.2 and 5.2.3. Instead, the equations of invariance
of the superpotential are written as part of our general linear system
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and handled simultaneously with the anomaly cancellation conditions.
This is because, whereas the twisting of B-charges along the periodic
directions in the unit cell 6 are easy to understand, it is a priori not clear
how the coefficients n1, , change as one moves in these periodic directions.
On the other hand, given a solution for the B and C-charges, it is easy to
go back to the linear combination (5.4) and disclose these transformation
properties as follows.

Consider the unit cell ‘6 and pick a face/node F, ¢ in the dimer/quiver,
for which we choose 7,4, 9 = 0 without loss of generality. Now we may
propagate to neighboring faces/nodes by crossing edges / following
arrows and obtain the corresponding values of 1, by adding the B
charges of the edges crossed / arrows followed. A particularly interesting
case is the behavior when we propagate from a face/node F; o in € to the
copy Fu 1k +nk, located in the copy of 6 located in the position (1, 2)
with respect to the two basic directions, in the infinite dimer/quiver
diagram. To propagate from the initial to the final face/arrow, we may
pick any path, since the result is path independent. For instance, we can
pick edges/arrows forming a meson M; o in the direction of k1 (resp. Mo
in the direction of k;) in 6, and we can follow the sequence of r; mesons
M, forsg =0,...,r1 —1, toreach F, , k,, and then follow the sequence
of r, mesons My y k,+s,k, fOr sp =0, ..., 12 — 1to reach Fy sk, +r,k,- Using
the B- and C-charges, we have

71—1

nﬂ,V1k1+72k2 - na,O = Z (bM1 + klschl) +
51=0

7’2—1
+ > (b, + kiricm, + kasacag,) (5.21)
52:0
=11bpm, + r2bp, + rirakica, +
r(r =1 ra(r2 — 1
Jnn=D o n-1)

5 1 kaem, ,

where we have dropped sub-indices for charges in the unit cell € at
r=0.

Note that mesons carry no baryonic charge, hence the C-charges appear-
ing above only have the mesonic contributions. From the above, we can
easily understand different patters of growth of the n’s with the r’s: if the
Qc linear combination (5.20) involves the mesonic U(1)’s, the C-charges
in the above equation are active, and the n’s grow quadratically with the
r’s; if the Q¢ linear combination does not contain the mesonic U(1)’s,
then the above C-charges vanish and the n’s grow linearly with the 7’s.
This underlies the different behavior of the ;s for C? and the conifold,
as we see in the examples in the next section.

5.4 Examples of Discrete Symmetries for
Infinite Classes of Orbifolds

In this section, we illustrate the procedure of the previous section, by
applying it to systematically construct the discrete symmetries for several
infinite classes of orbifolds of different geometries.
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Q1 Q Qc
1 0 my
0 1 mo
-1 -1 -m—-m

Table 5.1: Mesonic charges for parent C3.

Figure 5.7: Unit cell in the dimer diagram
for C3. We display the charge assignments
corresponding to the B-charges.

5.4.1 General orbifolds of C°

We consider the general orbifolds of the C? theories described in Sec-
tion 5.2.2. The dimer and unit cell of the parent C* are shown in Figure
5.7. There are no baryonic U(1)’s, and the mesonic charges are in Ta-
ble 5.1 where the last column shows the charges under the combination

Qc = mQq +m2Qs.

There are two geometric identities in the graph. Denoting V and V' the
black and white nodes and F the unique face, they are given by

AV -9V’ =0
- (5.22)
JF -0V -9V’ =0.

Consider now a general orbifold, and consider the B-charge assignment
in Figure 5.7. The conditions of invariance of the superpotential terms in
the black and white nodes, and anomaly cancellation are

V. — bx+by+bz=0
V' — byx—-kycx+by+kicy +bz=0 (5.23)
F — 2bx + kicx +2by + kicy + (k1 + kp)ey +
+2bz + (k1 + ko)cz = 0.

To extract the consistency conditions for the charges cg,, we use the
geometric combinations (5.22), and obtain

- kZCX + k1Cy =0

(5.24)
k1CX + (2k1 + kz)Cy + (kl + kz)CZ =0.

Expressing the charges in terms of Q¢ = m1 Q1 +mQ; in the table above,
the equations reduce to
—komy + kymy =0. (5.25)
Choosing my = ki, my = ks to yield integer C-charges, we have
cx=ki, cy=ky, cz ==k — k. (5.26)

These C-charges ensure that Egs. (5.24) admit a solution for the B-charges.
The equations reduce to

bx + by + bZ =0. (5.27)

As explained above, this determines the B-charges up to the action of
mesonic U(1)?. One may choose the latter to set bx = by = 0 and then
obtain by = 0. Alternatively, we can recover the general solution in
Section 5.2.2 by solving (5.27) with the values

ke k3
bx=-g5 5
ki |k}
by =kika = 5 + -, (5.28)
ki + ko (k1+k2)2
bz = - :

2 2
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Table 5.2: Mesonic charges for parent coni-

Q1 Q2 Qs Qc fold.

Aq 1 0 1 mq + mg

Ay -1 0 1 —mq + mg
B1 0 1 -1 ny — mp
Bz 0 -1 -1 —Mny — mp

5.4.2 General orbifolds of the conifold

PN
Consider the orbifolds of the conifold discussed in Section 5.2.3. The /\f/’ \f\\.
dimer diagram with a unit cell and ansatz for the B-charge assignment is < h
shown in Figure 5.8. There are two mesonic U(1)’s and one baryonic U(1). ~
. . . . . L O L
The latter is associated to the existence of one kind of fractional brane, _
so it corresponds to the overall U(1) on one of the faces, say face 1. The 1 0 éi A1
charges of the different fields under these U(1)’s, and under a general ) ® Wa |
combination Q¢ = m1Q1 + mQ, + mgQsp, are in Table 5.2. gv’/’ ‘\\ Vg
oL 1 &l o Y=
The geometric identities correspond to the two generic ones, and one :5 bapkaeay | bay *";’7{2 ;E
associated to the fractional brane. They can be written L 4 ~ O =
W&
IV -9V’ =0 1 0 =Y+ 1
- - 5
OF; +0F, — 9V =9V’ =0 (5.29) O ® O
dF; -9V =0. Figure 5.8: Dimer diagram with a unit
cell for the conifold. We display the
Using the B-charge assignments in Figure 5.8, the constraints from charge assignments corresponding to the
B-charges.

invariance of the superpotential terms at the two nodes, and anomaly
cancellation on the two faces, are

dV  — ba, +bp +ba, +bp, =0

V' — ba, +kaca, +bp, + (k1 + ka)cp, + ba, + kica, +bp, =0
dF1 — ba, +bp, +kicg, +ba, +kica, +bp, =0 (5.30)
dFy — ba, +kyca, +bp, +kocp, +ba, +bp, =0.

Taking combinations of these equations as in the geometric identities, we
obtain the consistency conditions for the C-charges (there are only two
independent ones)

kZCAl + (k1 + kz)CB1 + k16A2 =0

(5.31)
kz(CA2 - CBl) =0.

Expressing them in terms of the generator Qc = m1Q1 + m2Q2 + mpQp
as in the table above, the equations imply
my = mp = 0, mp arbitrary. (5.32)

Taking the minimal choice to obtain integer charges, we let mg = 1, and
have
CA, = CA, =1, CB, = CB, =-1. (5.33)

Replacing into (5.31) leads to the unique constraint

bA1 + b31 + bAz + sz =0. (5.34)
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Table 5.3: Mesonic charges for parent dPy.

Figure 5.9: Dimer diagram with a unit
cell for the dP; theory. We display the
charge assignments corresponding to the
B-charges.

These charges are as usual defined modulo the action of the two mesonic
and the baryonic U(1) symmetries. The simplest solution is to use them
tosetba, = ba, = bp, = 0 and then we get bp, = 0. This actually leads to
the solution found in Section 5.2.3.

5.4.3 General orbifolds of the dP; theory

To illustrate the power of our method, we construct the discrete sym-
metries for a new infinite class of theories. They correspond to general
orbifolds of the dP; theory. The dimer diagram with a unit cell and
ansatz for the B-charge assignment is shown in Figure 5.9. There are
two mesonic U(1)’s and one baryonic U(1). The latter is associated to
the existence of one kind of fractional brane, given by Ng = 1, Ny = 3,
N; =0, N3 = 2. The charges of the different fields under these U(1)’s,
and under a general combination Qc = m1Qq + mxQ» + mgQp, are in
Table 5.3.

Q1 Q2 Qs Qc
X3 | O 1 1 my + mpg
X | -1 0 -2 —mq1 — 2mpg
Xy | -1 0 -2 —mq — 2mpg
Y30 1 0 1 my + mp
Yoo 1 0 1 mi + mg
Yiz | 1 0 1 my + mp
Zy | O 0 1 Mg
Zor | -1 -1 =2 —my—my—2mg
Zyn | -1 =1 =2 —my—my—2mg
(O 1 1 3 my + my + 3mp

The geometric identities correspond to the two generic ones, and one
associated to the fractional brane. They read
8V1 + <9V2 + 3V3 - 8V1’ - <9V2’ - 8V§ =0
OFq + OF| + dF; + OF3 — (V1 + Vs + dV3) — (V] + 9V} + Vi) = 0
OFg + 39F1 + 20F3 — 39V — 29V, — V3 — 29V! + Vi = 0.
(5.35)

Using the B-charge assignments in Figure 5.9, the constraints from
invariance of the superpotential terms at the three nodes, and anomaly
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cancellation on the four faces, are

Vi — bz, +by, +bx, =0

AVy — kicy,y + by, +bzy +bxy, +bo, =0

Vs —  kacxy, + bxsy + by, + 02, =0

V] — bxy +by, +bz, =0

AV, — (ki+k)czy +bzy +bx, + by, =0

dVy; — by, +bz, +bx, +bo, =0 (5.36)

dFy — by, + bz, + (k1 + k)cz,, + bxy, + (k1 + ka)ex,, + by, +
+(k1 + ka)cyyy + bzg + kaczy + bxyy + koCxyy =0

dF1 — by, +bz, +bx, +bo, =0

dFy — bx, +by, +bz, +bo, =0

OF3 —  bxy, + by, + kicy,y + bz, + kicz,, + by + (k1 + k)exy, +

+by,, + (ki + ka)cy,, +bzy + (ki + ko)cz,, = 0.
The consistency conditions for the C-charges are

kacx,, + kicy,, — (k1 + ko) cz,, =0
(k1 + kz) CxXy T (k1 + kz) CXy T k2CY30 + (k1 + kz) Cy,; + klczz3+

(5.37)
+ kZCZm + (k1 + kz) CZy = 0
(k1 + kz) CXs5 + (k1 + kz) Cyy5 + k1CZZ3 + 2k1CZ3O + ZkZCZ3O =0.
Using the C-charges as in the table above, the system reduces to
kimy + komy =0
1My + K21 (5.38)

2k1 + mp + kp(my + mp +4mg) = 0.
To obtain integer C-charges, we choose

mp = ka(k1 — k2),
myp = 2k2(k1 + Zkz) , (5.39)
my = —Zkl(kl + 2k2) .

And obtain

Cxs = —(k1 + k2)(2k1 + k2) Cy;; = 3ka(ky + ko)

CXy = —2k2(2k1 + kz) CZsy = kz(kl - kz)
CXyy = —2k2(2k1 — k2) czoy =2 (k} —K3) (5.40)
CYyy = 3ko(2k1 + k3) CZy =2 (k% — k%)

Cyy, = 3ka(ky + k2) Cay, = —(k1 — k2)(2k1 + ko) .

87



88 | 5 Discrete Symmetries in Dimer Diagrams

Table 5.4: Mesonic charges for parent dP,.

The solutions for the B-charges are

me
bxy
by,
by,
bzy,
bZza

bq’n

== bZ30 - bY30 + ko (k% - k%)
== bZ3[] - bY3() - 3k1k2(k1 + k2)
=+ byso + kz(kl + kz)(2k1 + kz)

=+ by, + ky (k3 — k3)

== bXso - bY30 — k2 (k% - k%)

== bXao - bY30

=+ bxy + by + bz + ko (kKT = K3) .

(5.41)

where by, by,,, bz,, are left as undetermined parameters encoding the
freedom to shift charges by the global U(1)? symmetry.

5.4.4 General orbifolds of the dP, theory

We now construct the discrete symmetries for the general orbifolds of
the dP; theory. The dimer diagram with a unit cell and the B-charge
assignment is shown in Figure 5.10. There are two mesonic and baryonic
U(1)’s. The charges of the different fields under these U(1)’s, and under
a general combination Qc = m1 Q1 + myQy + mp, Qp, + mp,p,, are in

Table 5.4.
Q1 Q2 Os Qs Qc

Xio| O —% 3 -1 —%mZ + 3mp, — mg,
Xn| 0 0 -4 0 —4mp,

X | -3 0 3 1 —1my+3mp, +ms,
Xp| 0 -3 -1 -1 —lmp—mp, —ms,
X5 | 0 I -1 4 1my — mg, — ms,
Xy |-3 0 -1 1 —1my — mg, + mg,
X33 0 -1 1 1my — mg, + ms,
Xo0 0 % -1 -1 %mz — B, — Mg,
X31 % 0 -1 1 %m1 — mg, + Mg,
Xuu | -3 2 20 —3my+3my+2mp,
Xp | 3 -3 2 0 $my — 3y + 2mp,

On dP; there are two kinds of fractional branes given by:

1L No=0,N1=2,,N,=0,N3=1,Ny;=1;
2. No=1,N1=0,N,=0,N3=1,Ny4 =0.

The geometric identities correspond to the two generic ones, and two
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associated to fractional branes. They read

Vi + Vs + V3 — V! — V) — IV} = 0

OF) + OF1 + 9F, + OF3 + dFy — (Vi + Vs + V3) +

— (V] +9V; +9V3) =0

2(20F; + JF3 + OFy) + Vi =V, — V3 — 59V] — IV} = 39V4 = 0
OFg + dF3 + dVy — V| — 9V} — V] = 0.

(5.42)

Using the B-charge assignments in Figure 5.10, the constraints from
invariance of the superpotential terms at the six nodes, and anomaly
cancellation on the five faces, are

Vi — bx, + by +bx2 +bxy =0

(9V2 e _kZCXM + bX14 + bx21 + bX42 =0

oV — kicx, +bxs, + bxis +bx,, + bx& =0

&Vl/ e bX3] + bX14 + bxis =0

8V2’ e bxm + bX42 + bX(}4 =0

8V3’ e bx32 + k1CX32 + me + k1CX21 + me - k2cX10 + bX& +
_kZCX§4 + in?: =0

dFy — bx,+ bxz +bxy +bx1 =0 (5.43)

oF, — kicxy + bxyy + kicxy, +bx,, + (ki + ko) cxp + bxyy +
+bx10 =0

(9132 — bX32 + bX21 + szo + bX42 =0

(91:3 - k1CX31 + bX31 + klc)(32 + bst + k1CX;3 + bxi3 + inx =0

(9134 — _kZCX14 + bX14 - kZCX§4 - kzcxi3 + in3 + bxfa + bX§4 +
+bx,, + bxé4 =0.

Figure 5.10: Dimer diagram with a unit
cell for the dP, theory. We display the
charge assignments corresponding to the
B-charges.
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Using the C-charges as in the table above, the system reduces to

kz (m1 - ﬂ’lz) + k1m1 =0

1
- Zkz (47?131 —mq + Tl’lz) + Ekl (—81’7131 + 471132 + 3my + 1112) =0 (544)

1
Ekl (4mp, +my —my) — ky (my —my) =0.

To obtain integer C-charges, we choose

And we obtain

CXyp
CXu3
CXas
CX3
CXn

Cx

g

k
my, = 7 (ki +2k),

The solutions for the B-charges are

m = kika, (5.45)
my = ki(k1 + k2),
mg, = }L (kT + 8kiky + 8k3) .
= 2ky(ky + ko) exe, = ~2ka(ky + ko)
= (ki +2k2)(k1 + k2)  cx1 = ka(ky + 2k2)
= (ks + k) ex, = 2kalky + ko)
= —kq(k1 + 2kp) Cxy = —2ka(k1 + k2) (5.46)
= —ky(kq + 2k2) Cxs; = kiko
= —(k1 + 2ko)(k1 + ko) .
bx,, = —bx, — bx,; — bx,,
bys, = ~bxa — b,
bz, = ~bxy + by — 2kikalks + ko)
b1, = bxy + bx, (5.47)
bys, = bxa + kikalks + ko)
bx,, = —bx,, + bx,, — kika(k1 + k2)
bxs, = —bxy; — bxs, + kika(ky + k2),

where bx,,, bx,,, bx,s, bx,, are left as undetermined parameters encoding
the freedom to shift charges by the global U(1)* symmetry.

5.4.5 General orbifolds of the dP3 theory

We now construct the discrete symmetries for the general orbifolds of
the dP3 theory. The dimer diagram with a unit cell and the B-charge
assignment is shown in Figure 5.11.

There are two mesonic U(1)’s and three baryonic U(1)’s. The charges of
the different fields under these U(1)’s, and under a general combination
QC = TH1Q1 + m2Q2 + mp, QBl + TYZBZQB2 + mB3QB3, are in Table 5.5.

On dP3, instead,

there are three kinds of fractional branes given by:

1. N0=0, N1=1, N2=0, N3=0, N4=1, N5=0,‘
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Q1 Q2 Qs Qs Us, Qc
X0 | -1 0 1 0 -1 —1my + mp, — Mg,
Xsa | O 0 -1 1 -1 —Mmp, + Mp, — Mp,
X3 | 0 -1 0 -1 -1 —My — Mg, — Mg,
Xy | -1 1 1 0 1 —1my + my + mz + mp,
X1 1 0 -1 1 1 My — mp, + Mg, + Mg,
Xos 1 0 0 -1 1 ™My — Mg, + Mg,
X31 1 0 -1 0 0 My — me,
Xos 1 -1 -1 0 0 My — My — Mg,
X5 | -1 0 1 -1 0 —my + mg, — Mg,
X | O 0 1 -1 0 mp, — Mg,
Xs3 | O 0 0 1 0 mg,
Xy | -1 1 0 1 0 —my + my + Mg,

2. N0=0, N1=O, N2=1, N3=O, N4=0, N5=1;
3. No=1, Ny=0, N;=1, N3=0, Ny=1, N5 =0.

The geometric identities correspond to the two generic ones, and three
associated to fractional branes. They read

Vi + 9V, +9V3 =9V =9V, - dV; =0

JFo + OF; + OF; + OF3 + OF4 + 0Fs — (Vi + 9V, + 9V3) +

— (V] +9V; +9V3) =0

OF1 +9Fs— Vo —dV3 =0

OF + Fs — V1 — V2 =0

OFg + OF, + dF4 — 29V} — 9V} = 0.

(5.48)

Figure 5.11: Dimer diagram with a unit
cell for the dP3 theory. We display the
charge assignments corresponding to the
B-charges.

Table 5.5: Mesonic charges for parent dP3.
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Using the B-charge assignments in Figure 5.11, the constraints from
invariance of the superpotential terms at the six nodes, and anomaly
cancellation on the six faces, are

Vi
IV,
Vs
V]
IV}
IV}

JF,
JF;

JF,
JF;
JF,
JFs

A

1

1

Ll

bx3z + szo + ons + bX53 =0

—k2CX15 + bX15 + bX54 + bX42 + bX21 =0

k1CX31 + bX31 + leo + bX04 + bX43 =0

bXS] + les + bx53 =0

szo + bX04 + bx42 =0

bx32 + k16X32 + bX21 + k10X21 + me - k2CX1o + bX05 +
_k2CX05 + bx54 + bX43 =0

bx,g + bxgy + bxyy + bxs =0 (5.49)
k1CX3] + bx31 + k1CX15 + les + (kl + kz) Cx,y + bx21 +
+bx10 =0

bst + bx21 + bx20 + bx42 =0

k1CX31 + bx31 + k1CX32 + bst + k1CX53 + bx53 + bx43 =0
bX42 + bX04 + bx43 + bX54 =0

le5 - k2CX15 + bX54 + ons - k2CX05 + bX53 + k2CX53 =0.

Using the C-charges as in the table above, the system reduces to

k2m1 + klmz =0
(k1 + kz) me, = 0

(5.50)
kz (mg3 + 1’}11) =0
ki (mp, — my + my) — ko (mp, —mp,) =0.
To obtain integer C-charges, we choose
mB] = _k2 7
my = 0 ,
mp, =0, (5.51)
mp, = =k, — kq,
mep; = 0.
And we obtain
CXp = ko CXsy = —ko
CXyy = ki+ ko CXy = ki1 + ko
Cxps = k1 Cx;5 = ko
CXs = —k1 CXs3 = k1 (5.52)
CXe5 = —k1 CXey = —k1 + kz

CXy = -k CXy = ki +ky.
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The solutions for the B-charges are

bx, = —bx, — bx,, — bxs,

bX54 = —bx43 + bx26 —kiko

bx,, = bx, —bx, + kika

bx,s = bx,, +bxs, (5.53)
bx, = —bxy — bxs, — bxes + kika

bX64 = _bX42 - bX26
bXSl = —bx43 + bX% + bXes — k1k2 ,

where bx,,, bx,, Uxy, DXy, Ux, are left as undetermined parameters
encoding the freedom to shift charges by the global U(1)° symmetry.

5.5 Some remarks on the gravity dual

In this section, we sketch some main ingredients about the realization
of the discrete symmetries in the gravity dual. It was established in
[29], that the discrete symmetries in the C3/7s theory are associated to
torsion classes in the 5d horizon S®/Z; of the orbifold theory (see also
[73] for other geometries), such that objects charged under the generators
of the discrete Heisenberg group correspond to branes wrapped on
torsion cycles. In a general orbifold, for the 5d horizon X5 = S°/Zy, the
generator of H3(Xs, Z) = Zy is a torsion 3-cycle, such that wrapped D5-
and NS5-branes produce 5d codimension 2 objects, around which the
theory experiences monodromies associated to the A and B generators.
The non-Abelian nature of the discrete gauge symmetry followed because
two torsion 3-cycles intersect over a torsion 1-cycle in H1(Xs, Z) = Zy;
hence when the wrapped NS5- and D5-branes associated to the A and
B actions are crossed in 5d, one generates, by the HW effect [112],** a
D3-brane wrapped on the torsion 1-cycle. This precisely corresponds to
the element C in the discrete Heisenberg group. Alternatively, one can
characterize the discrete symmetry by the representations formed by
(di)baryons, which are realized in the gravity side as D3-branes wrapped
in 3-cycles with non-trivial torsion 1-cycles, on which one can turn on Zy
valued Wilson lines; this leads to N-plets of D3-brane states, on which
the discrete Heisenberg group acts faithfully.

We expect a similar mechanism to work in general orbifold theories,
and hence are led to looking for such 3-cycles in the horizon geometry
of general orbifolds of general toric theories. The 3-cycles on the SE
5d horizon of CY 3-fold singularities have been extensively studied in
the context of the holographic description of baryons, and it is well-
established that calibrated 3-cycles are in correspondence with non-
compact holomorphic 4-cycles in the CY 3-fold singularity ([30], also for
instance, [113-116]). In the toric setup, the non-compact 4-cycles were
described in [117] (see also [118]) in terms of pairs of punctures; namely,
in the type IIA mirror geometry, the non-compact 4-cycle becomes
a non-compact 3-cycle, which is described as a 1-cycle in the mirror
Riemann surface, which comes in through a puncture and goes out
through another puncture. In particular, consider the baryonic operator
corresponding to antisymmetrizing the indices of a given bifundamental;

44: We review HW constructions in Ap-
pendix C.
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45: For simplicity, in this section we carry
out the discussion for theories with no
parallel external legs.
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Figure 5.12: Toric and web diagrams of
the dP; theory and its quotient. We have
highlighted in red the perfect matching
and wedge related to an example of non-
compact 4-cycle.

the corresponding 4-cycle has as mirror a 3-cycle corresponding to
two punctures which are mirror to the two zig-zag paths crossing the
bifundamental. This leads to a one-to-one correspondence between such
baryons and holomorphic 4-cycles in the toric singularity.

The description in terms of pairs of punctures is manifest also in the
original type IIB picture for the non-compact 4-cycles bounded by adjacent
external legs in the web diagram; in this case the non-compact 4-cycle is
defined by the equation p; = 0 of vanishing of the linear sigma model
coordinate corresponding to the perfect matching p; at the corresponding

external point in the toric diagram,*® see Figure 5.12.

When one performs a Zy orbifold of a parent theory, the toric diagram of
the original theory is the same as the original one, but in a refined lattice,
such that the original is an index-N sub-lattice of the final one. Now
recall that points of the toric diagram correspond to perfect matchings of
the dimer; although there is in general not a one-to-one map for general
points in the toric diagrams of the parent and quotient theory, there is
such one-to-one map for external points, as follows. Consider an external
point p; of the toric diagram of the parent theory; this corresponds to a
perfect matching p; of the dimer in the parent unit cell 6; we can now
obtain a perfect matching of the dimer of the orbifold theory with unit
cell By by simply replicating p; N times in the N copies of 6 in €y.
In brief, there is a one-to-one correspondence between external perfect
matchings of the toric diagrams of the parent and quotient geometries,
and similarly between external legs of the web diagrams, and hence
among 4-cycles, see Figure 5.12. Hence, the topology of the 4-cycle in the
orbifold is that of the parent 4-cycle, quotiented by the Zy action. At
the level of the horizon, the 3-cycle defined by the 4-cycle in the orbifold
theory is a quotient of the 3-cycle of the 4-cycle in the parent theory
modded out by the Zy action. This is the origin of the torsion classes, as
follows.

An easy to check important feature is that the pairing of (p, ) labels
of two external legs (namely, the quantity p1q> — q1p2 for legs of labels
(p1, 1), (p2, 92)) picks up a factor of N in going from the parent to
the orbifold theory. Hence, all the pairings are multiples of N in any
Zy orbifold of a general toric singularity. This introduces a subtlety
in the relation between 4-cycles and baryonic operators, in the sense
that the geometric 4-cycle is actually related to an N-plet of baryonic
operators. Focusing on the simplest baryonic operators, obtained by
antisymmetrizing indices on a given bifundamental, this implies that
we have an N-plet of bifundamentals; they are just the N copies of
the bifundamental of the parent theory in the orbifold theory. These N
copies form a representation of the discrete Heisenberg groups, with
the A generator acting as a shift and B- and C-charges as determined
in earlier sections. The holographic duals of the baryons associated to
these bifundamentals are given by D3-branes wrapped on the 3-cycle
with different Z-valued Wilson lines turned on.

It would be interesting to pursue the gravitational dual description of the
Heisenberg group, and in particular to unveil the geometric interpretation
of the B-and C-charges, and their interplay with the mesonic and baryonic
U(1)’s for general orbifolds of general toric geometries. In this direction
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is the discussion about the role of discrete symmetries in the swampland
program described in Chapter 6.



Discrete Symmetries, Weak
Coupling Conjecture and Scale
Separation in AdS Vacua

We argue that in theories of QG with discrete gauge symmetries, e.g.
Zy, the gauge couplings of U(1) gauge symmetries become weak in the
limit of large k, as ¢ — k™ with a a positive order 1 coefficient. The
conjecture is based on black hole arguments combined with the Weak
Gravity Conjecture (or the BPS bound in the supersymmetric setup),
and the species bound. We provide explicit examples based on type
IIB on AdSs x S°/Z; orbifolds, and M-theory on AdSy X S’ /7 ABJM
orbifolds (and their type IIA reductions). We study AdS4 vacua of type
ITIA on CY orientifold compactifications, and show that the parametric
scale separation in certain infinite families is controlled by a discrete Z
symmetry for domain walls. We accordingly propose a refined version
of the SADC, including a parametric dependence on the order of the
discrete symmetry for 3-forms.

The organization of the chapter is given in the next section.

6.1 General motivations

By now, there is a substantial number of swampland conjectures con-
straining effective field theories to be compatible with QG [82, 84, 105, 111,
119, 120] (see [77, 78] for reviews). They have led to interesting insights
into phenomenological applications of string theory models.

Interestingly, many of these works focus on the properties of continuous
gauge symmetries, whereas far fewer results have been obtained to con-
strain discrete symmetries (for some results, see [67, 81, 103], and also
[104]), and mostly focus on the constraint that global discrete symmetries,
just like global continuous symmetries, are forbidden in QG (see [95-97,
99-102] for early literature). Discrete gauge symmetries are an interest-
ing area with exciting applications in Beyond Standard Model (BSM)
phenomenology and string model building [51, 107, 108, 110, 121-123].
The scarcity of swampland constraints on them is partially explained
by the fact that discrete symmetries lack long-range fields or tunable
parameters like coupling constants, so there are fewer handles to quanti-
tatively constrain their properties or their impact on other quantities of
the theory.

In this work, we overcome this difficulty by considering theories with
both discrete and continuous gauge symmetries, and uncover interesting
quantitative links among them. For simplicity, we focus on Abelian
Zy and U(1) symmetries. In theories with a U(1) gauge symmetry,
considerations about evaporation of charged black holes lead to the WGC
[84], by demanding that the black hole should remain (sub)extremal
throughout the process. To put it simply, considering an extremal black
hole with M = gQ (in Planck units), the theory must contain particles
with mass m and charge q, with m < gg, such that the black hole can
decay without becoming superextremal. This is the WGC. The marginal
case in which the WGC particles saturate the inequality m = g has been

6.1 General motivations .... 97
6.2 The Zj Weak Coupling Con-
jecture. . ........... 99
A black hole argument . . . 99
Distance Conjectures . . . . 103
6.3 AdSs x S orbifolds . . . . . 104
The D3-brane particle mass
computation . . . ...... 105
The Zj Distance Conjectures107
A further subtlety . .. ... 107
6.4 M-theory orbifolds and
ABIM ............. 108

M-theory on AdSy x S7/Z; 108
Type IIA description of

ABJMvacua ......... 110
6.5 Discrete symmetries in inter-
secting brane models ... 112

6.6 Discrete 3-form symmetries
and scale separation in AdS
solutions . .......... 114

Review of scaling AdSy
vacua with scale separation 115
The discrete 3-form symme-
try ... .o ool 116
Scaling relations for moduli
from discrete symmetries 119
Discrete symmetries and
scale separation . ... ... 121
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46: By toric, in this context we mean that
the CY3 obtained as the real cone over the
SE 5d variety, is toric.

further proposed to correspond to supersymmetric situations, in which
it often corresponds to a BPS bound.

If the theory enjoys a further Z; discrete gauge symmetry, one can
consider any such classical black hole solution and endow it with discrete
Z charge, with no change in the classical solution, as this charge does
not source long-range fields (see e.g. [124], and also [125] for a recent
perspective), and study their decay as in the WGC. In particular, we may
consider extremal black holes carrying Zy charge and derive a striking
result, the Z; WCC which schematically is the statement that in a theory
with a discrete Z; gauge symmetry and a U(1) gauge symmetry with
coupling g, the gauge coupling scales as g ~ k™" for large k, with o a
positive order 1 coefficient.

The derivation and some qualifications to this statement are discussed
in Section 6.2. In particular, we also relate this statement with diverse
versions of swampland distance conjectures.

As we will see, the derivation is most precise in the supersymmetric case,
in which the WGC bound saturates, but we believe it holds far more
generally, as we will illustrate in concrete string theory examples. In
particular, in Section 6.3 we study AdSsxS°/Zj vacua (and generalization
to general toric%® theories AdSs X X5/Zx), in which there is a discrete
Heisenberg group Hy(Z), associated to torsion classes in S°/Z [1, 29, 73],
as we have seen in Sections 1.1.2.1 and 3.3 and Chapter 5. This is generated
by elements A, B, each generating a Zj symmetry, with commutation
relations AB = CBA, with C a central element. In the effective 5d theory
(namely at scales below the KK scale, and thus at long distance compared
with the AdS radius as well) there is at least one U(1) gauge symmetry,
corresponding to the R-symmetry of the holographic dual SCFT, whose
coupling, as we show, obeys the WCC. In addition, for S° /7., and in fact
for any toric theory X5/Z, there are two additional U(1)’s (the mesonic
global symmetries in the dual SCFT), which also satisfy the WCC.

In Section 6.4 we discuss an analogous exercise in 4d by considering in
Section 6.4.1 the case of M-theory on AdSy X S7 | Z, which provides the
gravity dual to the ABJM theories [32]. The U(1) symmetry corresponds
to an isometry of the internal space, and the discrete symmetry is also
related to torsion classes in S7/Z, although it has an intricate structure
not reducible to just Zj. This is further clarified using the type IIA
perspective in Section 6.4.2, in which the discrete gauge symmetry
is shown to have order k* + N2, and the U(1) symmetry is a linear
combination of different RR p-form gauge symmetries, with a second
linear combination that is massive due to a Sttickelberg coupling. We
discuss these systems and show how the corresponding WCC is duly
satisfied.

In Section 6.6 we turn to exploiting these considerations in theories in
which the Zj charged objects are not particles (or their dual objects, e.g.
strings in 4d), but rather 4d domain walls. In particular, we consider
the type IIA AdS; vacua obtained in CY orientifold compactification
with NSNS and RR fluxes. In Section 6.6.1 we review a class of com-
pactifications with fluxes scaling with a parameter k, shown in [48] to
have parametric scale separation controlled by k. These vacua would
violate the SADC proposed in [83], an issue on which our analysis sheds
important insights. In Section 6.6.2 we show that these systems are
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higher p-form analogues of the type IIA vacua of Section 6.4.2, with a
continuous 3-form symmetry arising from a massless linear combination,
and the discrete symmetry arising from a second linear combination
made massive by a 3-form Stiickelberg mechanism (see [66, 70], also
[121]), also called DKS mechanism. In Section 6.6.3 we discuss the role
of the discrete Z; symmetry in fixing the scaling of the moduli with
k. In Section 6.6.4 we use tensions of BPS domain walls to recover the
vacuum energy scalings, and show that AdS vacua with trivial 3-form
discrete symmetry have no scale separation, while the above scaling
family of AdS vacua with a non-trivial 3-form discrete symmetry displays
scale separation controlled by k, as follows. The scale separation relation
between the KK scale mkg and the 4d cosmological constant A is given
by the species bound

Mg
T .
We accordingly formulate the following Z; RSADC: In supersymmetric
AdSy vacua with a discrete symmetry associated to Zg-charged domain
walls, the ratio between the KK scale and A is mxx ~ (kA)'2.

A= 6.1)

This provides an underlying rationale for the seemingly violation of the
strong ADC by the family of scaling AdS solutions in type IIA vacua
with field strength fluxes. It would be interesting to test it in other setups,
and even exploit it in applications to holography.

Our work is an important step in understanding the nature of discrete
gauge symmetries in QG, and their non-trivial interplay with continuous
gauge symmetries. As in other swampland constraints, although the
arguments for the Z; WCC are admittedly heuristic, there is a substantial
amount of evidence from concrete, very rigorous, string vacua supporting
it. We have argued that discrete symmetries for 3-forms play an important
role in the problem of scale separation, and provided a rationale to embed
it in a refined AdS Distance Conjecture. We thus expect they may be
relevant in other swampland criteria, like the de Sitter constraint.

6.2 The Z; Weak Coupling Conjecture

In this section we consider theories of QG with discrete and continuous
gauge symmetries. For simplicity, we focus on a Zjy discrete symmetry
and a U(1) gauge symmetry. Generalizations to multiple U(1)’s and
discrete groups could be worked out similarly. Notice that in this chapter
we are interested in the properties of the theory at large k, hence many
of our expressions should be regarded as the leading approximation in
an 1/k expansion.

6.2.1 A black hole argument

For concreteness, we focus on 4d theories, although the results extend
to other dimensions (as we will see, e.g., in the examples of Section 6.3).
The strategy is to use black hole evaporation as a guiding principle to
derive new swampland constraints, as we now review in two familiar
situations.
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47: Actually, to account for the fact that the
particle needs not be minimally charged
under Zy, we should point out that the
role of k above should actually be played
by the number of emitted particles. Hence
the factor appearing in relations like (6.4)
may differ from the order of the discrete
group by a factor of the particle charge,
see some examples in Sections 6.4 and 6.6.

6.2.1.1 Review of some mass bound derivations

Let us briefly recall one such derivation for the WGC [84]. The idea is
to consider extremal black holes, with mass M and charge Q, satisfying
M = gQMp, where g is the U(1) gauge coupling (in units in which
the minimal charge is 1). Requiring the decay of such extremal black
holes, while preventing them from becoming superextremal, leads to the
familiar statement of the Weak Gravity Conjecture, namely, that there
must exist some particle in the theory with mass m and charge g such
that

m < gqMp. (6.2)

There are different versions of the WGC (see [78] for a review with
references), including the lattice [86] and sublattice [88] versions, but we
stick to the basic one above.

Let us consider a black hole (possibly charged under the U(1) or not),
carrying a discrete Zj charge. The analysis now follows [126]. Even
though this is a gauge symmetry, it does not have long-range fields, so it
does not affect the classical black hole solution, neither its evaporation in
the semiclassical approximation, which thus does not allow to eliminate
the Zj charge. Since we are interested in the large kbehavior, this would
lead to a too large number of remnants. Hence, when the black hole
radius reaches some cutoff value A™! it starts peeling off its Z charge.
If we denote by m the mass of the Zj charged particles, the mass of the
black hole at the cutoff scale should suffice to emit (k) of such particles,
that is

MpAT! 2 km . (6.3)

The cutoff radius is intuitively of the order of the inverse mass of the
emitted particle, hence we consider A ~ fm, with § some unknown
coefficient encoding model dependent information about the black hole
and its evaporation process. Consequently, we obtain

MZ
m? < —L. (6.4)
k
This is often known as the species bound [126], although in the present
context, k does not correspond to the number of species, rather it relates
to the order of the discrete symmetry.’

Keeping in mind the unknown factors in the discussion, we take the
above relation as controlling the scaling of suitable Z; charged particles
in the limit of large k. Namely, there must exist some Zj charged particle
whose mass must scale as m < k™1/2Mp.

In the following, we will apply this constraint to black holes charged under
continuous U(1) symmetries. One may worry that the derivation in [126]
did not include such charges, i.e., it implicitly assumed Schwarzschild
black holes. However, there are analogous arguments for charged (in
fact extremal) black holes in theories with U(1) gauge groups, leading
to identical results. For concreteness, the classical solutions we are
taking are the extremal Reissner-Nordstrom black holes in 4d space-time
dimensions. They have vanishing Hawking temperature, so the analysis
in [126] is not directly applicable. Extremal black holes can discharge
through Schwinger radiation [127-129]. Whenever the electric field is
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much larger than the background curvature, this happens essentially
in flat space [130]. In this case, the production rate has an exponential

suppression
2

[ ~e I ~eX , (6.5)

where m and g are the mass and charge of the emitted particle and E is
the electric field, given by

_8%Q

= —=. 6.6
47t 12 (66)

As we will argue in Section 6.2.1.2, the simplest way in which this kind
of black hole is able to get rid of both continuous and discrete charges

while remaining subextremal is in the presence of a Z; WGC particle.

Let us assume that this particle is actually BPS,
m=gqMp. (6.7)

As a consequence, the black hole will remain extremal throughout the
whole evaporation process.

From (6.5) and (6.6), we notice that the maximum particle production
will happen close to the horizon, so in this order of magnitude analysis
we will approximate the whole radiation as the contribution of that
region.

From the extremality condition, we can relate the horizon radius and the
charge of the BH with its mass through

Mgy Mgy
ry ~ —, 6.8
They lead to
3
E~g Mp . (6.9)
MpnH

Introducing (6.7) and (6.9) in (6.5) we can estimate the factor in the
exponential suppression of the production rate of the Z; WGC particle

to be
mMpy

2
MP

(6.10)

The black hole will be able to efficiently evaporate the discrete charge
when

M2
Mgy < —. (6.11)
m

With this condition being true, the black hole should still have enough
mass to radiate O (k) particles (assuming the Z; WGC particle to have
unit discrete charge), which means

Mgy 2 km. (6.12)

Finally, from the two conditions (6.11) and (6.12), we obtain the following
bound for the mass of the Z; WGC particle:

m? < =L (6.13)
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This is the species bound in [126]. We have shown that the bound also
applies to extremal black holes emitting Z; WGC particles via Schwinger
effect.

6.2.1.2 The Z; Weak Gravity Conjecture

In the above discussion, the mass of the Zj particle we are constraining
is thought of as the lightest one. However, in the following we argue
that we can use a similar argument to constrain not only the lightest Zj,
charge particle, but also the one with the smallest ratio g/m between its
U(1) charge and its mass. Namely, the WGC particles.

Consider an extremal black hole with mass M and charge Q, and endow
it with a large Z; charge. The black hole can try to peel off its Z; charge
by emitting Zj charged particles, but this would decrease its mass while
keeping its charge fixed, thus becoming superextremal. The simplest way
to prevent this is that there exists some Zj charged particle which is also
charged under the U(1) with charge g, and such that it satisfies the WGC
bound m < ggMp. In other words, the simplest resolution is that the
WGC particles carry Zy charge. We may dub this result as the Z; Weak
Gravity Conjecture.

This is a remarkable result, but is actually a little of an overstatement. It
may well happen that the WGC particles are neutral and do not saturate
the WGC bound, and the evaporation of the black hole by emission
of WGC particles makes it sufficiently subextremal so as to be able to
subsequently emit enough Zj charged particles (not obeying the WGC
bound) to peel off its discrete charge without ever getting superextremal.
Interestingly, notice that this is only possible if the WGC particles satisfy
the strict WGC bound, not the equality, and hence, according to the
extended WGC version in [111], it is possible only in non-supersymmetric
theories. Thus, our derivation above is strictly valid in the supersymmetric
setup, and in our examples we will indeed focus on supersymmetric
examples. We, however, still consider the argument as interestingly
compelling also in non-supersymmetric models, and hence keep an open
mind about its general validity and that of its implications, to which we
turn.

6.2.1.3 The Z; Weak Coupling Conjecture

The fact that the WGC particles, whose defining feature has to do with
the U(1) gauge symmetry, know about the Z; symmetry implies that
there are cross constraints among the U(1) and the Zy symmetry. Indeed,
let us consider a relaxed version of the Z; bound (6.4), by stating that
the Zy charged particles involved in the black hole decay should have
mass scaling as

m~k™Mp, (6.14)

with a an order 1 coefficient, obeying some bound @ > 1/2 to satisfy
(6.4). On the other hand, the particles that extremal black holes use to
peel off their Zj; charge are WGC particles, hence obey

m~ gqMp . (6.15)
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We thus obtain that the gauge coupling of the U(1) must depend on k
and should become weak fast enough in the large k limit, as

g~k7. (6.16)

We thus propose this to be a general swampland constraint, as follows:

Conjecture 6.1 [Z; Weak CourLING CONJECTURE].

In a quantum gravity theory with a discrete Z; gauge symmetry
and a U(1) gauge symmetry with coupling g, the gauge coupling
scales as g ~ k™ for large k, with a a positive order 1 coefficient.

We note that, in the case of multiple U(1) gauge symmetries, a similar
BH argument leads to a Z; Weak Coupling Conjecture for any rational
direction in charge space, much in the spirit of the WGC for multiple
U(1)’s [85]. Since the gauge coupling of any linear combination follows
from those in some basis in the charge lattice, in this case it suffices that
the couplings of these independent U(1) obey the Z; Weak Coupling
Conjecture. We also note that in the case of multiple discrete symmetries,
the conjecture applies to each discrete symmetry independently.

The above intertwining between the properties of discrete and continuous
symmetries is completely unexpected from the viewpoint of the low
energy effective field theory, where these parameters are uncorrelated
and would seem to be completely free choices. As with other swampland
constraints, it is amusing that QG manages to impose its own plans.

A simple illustration of how this interplay works in intersecting brane
modes is discussed at the heuristic level in Section 6.5. More concrete
examples will follow in the upcoming sections.

6.2.2 Distance Conjectures

Before moving to concrete examples, it is interesting to explore the
relation between the Z; WCC and the SDC. The WCC states that gauge
couplings scale to zero for large k, thus approaching a global symmetry
and hence presumably leading to the appearance of a tower of states
becoming light.

An intuitive picture of this implication is as follows. Consider a 4d
version of the Z WCC with ¢ ~ k~%. For simplicity, and following many
examples in string theory, we consider g to belong to a complex modulus

1
S= ? +1i0 (6.17)
and assume a Kéahler potential
K(S,S5) = -1log(S+5). (6.18)

In this moduli space, the distance as a function of s = ReS as one
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approaches infinity reads

d~‘/§ ~logs. (6.19)

The SDC states that there is a tower of states becoming light as s — oo
with masses
My ~ Mpe ™77, (6.20)

with y an order 1 coefficient, for d measured in Planck units. In our case
we have
Mew ~ Mpk™1/207 (6.21)

Hence, there is a Zj Distance Conjecture stating that there is a tower of
states with masses becoming light as a negative power of k. This is just a
rederivation of the ‘species’ bound cutoff [126].

The above argument where g is dealt with as a modulus going to infinite
distance in moduli space does not correspond to the general Z; WCC,
since at least some gauge couplings may not correspond to fundamental
moduli. For instance, consider the intersecting brane toy model in Section
6.5. There, the moduli remain at fixed location in moduli space, and
we instead change the discrete wrapping numbers for some D-branes.
Hence, the origin of the tower should be a different one, as is easily
argued. In a configuration in which one stack of branes has wrappings
scaling with k, the angles between that stack of branes and others will
scale as O ~ k7! (to see that, consider e.g. the cycles (1,0) and (k, 1) in a
rectangular T2 with radii (R1, Ry). They have intersection angle 6 with
tan @ = k"'R,/Ry, hence 6 ~ k™). As discussed in [131, 132] there is a
tower of string states with masses given by

mi, ~ M0 ~ k', (6.22)

This again nicely reproduces the ‘species” bound cutoff.

6.3 AdSs x S° orbifolds

In this section, we consider type IIB string theory on AdSs X S°/Zy.
The discussion can be easily extended to general toric orbifold theories
AdSs X X5/Zy, but the 5-sphere case will suffice to illustrate the main
points. We study general Zj; actions compatible with supersymmetry,
namely acting as SU(3) in the underlying C*. We also note that, although
these vacua do not display scale separation, we may discuss the 5d
physics essentially in the same sense as in the AdS / CFT correspondence,
whose dictionary and results we use freely in this section. Moreover, our
final statement involves gauge couplings for U(1) symmetries, which can
be observed at arbitrarily long distances, in particular at energies well
below the KK scale.

As pioneered in [29] (see also [73-76] for other examples) and gener-
alized in [1], there is a discrete gauge symmetry in the AdSs theory,
corresponding to the discrete Heisenberg group Hy(Z). This group has
been the main focus of Chapter 5. It is defined by two non-commuting



Zy symmetries generated by A, B (hence A* = 1, B¥ = 1) satisfying
AB =CBA, (6.23)

with C a central element (also generating a further Zy, and possibly
mixing with other anomaly free baryonic U(1)’s, if present).

Generalizing [29], the particles charged under the discrete symmetry are
D3-branes wrapped on torsion 3-cycles carrying non-trivial flat gauge
bundles (discrete Wilson lines and 't Hooft loops). The minimally charged
particle is obtained by wrapping the D3-brane on a maximal S%/Z. We
are interested in the mass of this particle, and in particular in its scaling
with k. It is a simple exercise, as this is just analogous to a giant graviton
in the parent AdSs x S° theory [31].

6.3.1 The D3-brane particle mass computation

In the KK reduction from 10d to 5d, the 5d Planck mass Mp s in terms of
the string scale is
MBR®
gtk
We are ignoring numerical factors, e.g., in the volume of S°. Above, R
is the curvature radius of S?, which is also the AdSs radius. Note that
in order to get a theory with N units of RR 5-form flux over S°/Z, the
parent theory is the AdSs X S° solution corresponding to Nk D3-branes,
and the usual relation between the radius R and N is modified to

M, = (6.24)

R* = 4ma’?gNk. (6.25)

Hence
R~ Mg N4, (6.26)

where we have dropped the numerical factors.
The mass m of the D3-brane particle*® in 5d is
MER®

gsk

, (6.27)

We wish to express the mass in terms of the 5d Planck scale. From (6.24)
and (6.26) we get

M ~ Mpsgi *N™/12k7112 | R~ MpIN?RKS. (6.28)

Hence
m ~ Mp sNY3k=1/3 (6.29)

Note that the k-dependence reproduces the 5d version of the relation
(6.4) [126]

M5
k
This result fits nicely with the expectation for the mass of a particle

charged under Z.

m3~

(6.30)
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not matter if we are in the string or Einstein
frame, since this introduces factors that
depend on dynamical fields, but does not
change the scaling with k, which goes into
the constant part (reference value).
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Notice that, as mentioned in Section 6.2.1, the coefficient in (6.30) is not
necessarily the order of the discrete symmetry (which we recall is the
Heisenberg group Hy(Z)) but the number of particles emitted to peel
off the black hole charge. We also note that the factor of N in (6.29) is
presumably related to the precise nature of the cutoff A in the black
hole argument in Section 6.2.1.1. It would be interesting to explore this
dependence in more detail, but we leave this for future work.

6.3.1.1 Comparison with the BPS formula and WCC

The above states are not the lightest carrying charges under the Z
subgroups of the Heisenberg group. In fact, there are charged particle
states arising from fundamental strings and Dl-branes wrapped on
torsion 1-cycles on the internal geometry. What is special about the above
D3-brane particle states is that they are BPS. Just like giant gravitons
in AdSs X S°, they carry N units of momentum along a maximal S?,
determined by the Zj action. In the 5d theory, there is a KK U(1)g, which
is precisely the gravity dual of the R-symmetry of the holographic SCFT.
In the SCFT, the D3-brane particle states are dibaryons of the form det ®;;,
with @ denoting a generic bifundamental chiral multiplet in the quiver
gauge theory. It has R-charge N, and conformal dimension A = N. Using
the AdS / CFT dictionary, we then expect the masses of these particles to
be given by
N

The fact that these states are BPS means that they should saturate the
WGC conjecture bound, in other words, the BPS mass formula

m = (gM}2) NMps. (6.32)

This is the standard m = gQ in Planck units, with charge Q = N and g
being the gauge coupling of the U(1).

In these relations, there is no manifest dependence on k, which could
be puzzling from the viewpoint of the black hole arguments. As we
however know, the resolution is that, on these general grounds, the gauge
coupling ¢ must scale with k, at large k, in particular

g~k (6.33)

This is easily checked by computing the gauge coupling. In the KK
reduction from 10d to 5d, the prefactor of the gauge kinetic term is
1 MBR®
- = ——FR. (6.34)
8 &k
The first factor is just the 10d prefactor times the volume of S°/Z, and
the R? comes from the rescaling of the mixed components of the metric

into a dimensionful gauge field, such that the charges are quantized in
integers.

Using our above expressions, we get

_ -3/2
g ~R7M,Y, (6.35)



which means
gMy/2 = NP1, (6.36)

So, in terms of this gauge coupling, the mass (6.29) turns into (6.32).

Hence, we recover a very explicit confirmation of our heuristic argument
in Section 6.2.

Let us conclude with some general remarks.

» In addition to U(1)g there are in general (in fact, for general
toric theories) two extra mesonic U(1) symmetries, arising from
isometries of the internal 5d manifold. The direct computation
of their 5d gauge couplings proceeds as above, thus leading to a
scaling compatible with the WCC.

» In addition to D3-brane charged particles, there are 5d membranes
of real codimension 2, which implement monodromies associated
to the discrete group elements. As in the Abelian case, these
objects are charged under a dual discrete gauge symmetry (this
can be made more manifest by introducing non-harmonic forms
to represent the torsion classes [106, 110]). However, since these
objects are not charged under any continuous symmetry, we lack a
good handle to constrain their properties, and we will not discuss
them further.

6.3.2 The Zj Distance Conjectures

It is interesting to explore the relation between the Z; WCC and the AdS
Distance Conjecture in the present setup where, using (6.28), going to
large k implies going to large R. This is a decompactification limit (note
that the orbifold only reduces lengths in S° in some directions, so the KK
scale remains R™!), in which also the AdS cosmological constant goes
to zero, approaching flat space. Hence, we can apply the AdS Distance
Conjecture, which, e.g. in its strong version (as we have supersymmetry)
establishes that there should be a tower of states with masses scaling as

1
M ~ & ~ MpsN~23,1/3, (6.37)

where we have also kept the dependence on N. From the 1/R dependence,
it is clear the tower corresponds to KK modes. These are the familiar
particles dual to single trace chiral primary mesonic operators of the
dual SCFT, extensively studied in the literature [16], see [17]. Note that,
even though the scaling with k is the same as for wrapped D3-branes,
KK modes are lighter due to the relative factor of N.

6.3.3 A further subtlety

The above discussion has overlooked an important subtlety. The discrete
symmetry Zj (in fact the full discrete Heisenberg group) is intertwined
with the U(1) in the following sense. Since the D3-branes are charged
under the U(1) with charge N, a set of k D3-branes carries no discrete
Zy charge, but carries kN units of momentum and cannot decay to
the vacuum. In fact, the instanton processes removing the discrete Zj
charge (which correspond to a D3-brane wrapped on the 4-chain whose
boundary is k times the torsion 3-cycle) produce simultaneously N

6.3 AdSs x S° orbifolds
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49: Actually, as mentioned below and
pointed out in [32] the global structure
is different such that there are gauge in-
variant dibaryons for arbitrary N, k.

particles each carrying momentum k on the circle (whose radius is R/k
due to the orbifold).

The situation is very analogous to the one we will encounter in M-
theory and type IIA compactifications in Section 6.4, so we postpone
the discussion. Suffice to say that in this kind of situation, the actual
discrete symmetry has order k? + N2, heuristically corresponding to
the fact that the discrete charge may be eliminated via emission of k
D3-branes (each with charge k under the discrete group) and N KK
modes (each with charge N under the discrete group). In the regime
where the gravity description of S°/Z is valid, we need large R* ~ Nk
and large R/k ~ N'/4k=3/4 hence N > k3, and the order of the gauge
group is effectively dominated by the N term, corresponding to emission
of N KK modes. Hence, the actual discrete symmetry in this regime is
an effective Zy.

It is straightforward to repeat the above computations for the KK mode
particles. The mass is given by k/R, as corresponds to mesonic operators
of dimension k (or multiples of it) due to the orbifold action. We obtain
the relations and scalings

m~MpsNPK m~ gkMy/2, gMy2 = NP3 (6.38)
Here g is obviously the same as in (6.36), but we repeat it for convenience.
Happily, it is clear that ¢ obeys a Zy WCC. Notice also that the discretely
charged KK modes fit more nicely with the black hole argument in
Section 6.2.1. It seems more manageable to emit KK particles than D3-
brane particles, as the latters extend to a very large size in the internal
dimension.

As anticipated, we will re-encounter a very similar situation in M-theory
compactifications in the next section, with the additional handle of a
type IIA reduction, which makes these aspects far more intuitive. We
refer the reader to those sections for details.

6.4 M-theory orbifolds and ABJM

In this section we study the WCC in M-theory on AdS x S”/Z; and
its type IIA reduction, which provide the gravity dual of the ABJM
gauge theories [32]. These theories display interesting new subtleties as
compared with earlier cases. Some have been partially discussed in the
ABJM literature, so we can again profit from the holographic dictionary.

6.4.1 M-theory on AdSy X S7/Z

Let us now consider M-theory on AdS, X S7/Z. This theory has been
introduced in Section 1.1.3 and is the dual to the ABJM theories, which
correspond to U(N)x X U(N)_x CS matter theories,*” with +k denoting
the CS level.

The curvature radius of the covering S” and the AdS, is given in
Eq. (1.11)
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We are interested in studying gauge symmetries in the 4d theory. The 4d
Planck scale is given by

M) R’
P11
Mp, = —— (6.39)
Hence we have
-1 ar1/67.1/6
R ~ M} N6k, (6.40)
and then
Mpa1 ~ Mp o NT7/P2k7112 ) R~ ML N3RS (6.41)

There are two relevant symmetries. There is a U(1) isometry, surviving
from the underlying isometry of S” which decomposes as SO(8) —
SU(4) x U(1) under the orbifold action z; — ¢2™/kz; It is a continuous
gauge symmetry in AdS,. In addition, the internal space has a non-trivial
torsion group Hs (S”/Zx) = Zi which allows to obtain 4d particles by
wrapping M5-branes on the torsion 5-cycle. In the covering space, the
minimal charge particle is essentially an M5-brane giant graviton, similar
to those in the AdSs X S” theory. In particular, it carries N units of
momentum on the S! associated to the U(1) symmetry.

This seems a perfect candidate for a WGC particle charged under the
discrete symmetry, so we consider its properties in analogy with the
D3-brane particles in Section 6.3. Its mass is given by

M6 R>

Mg ~ % = Mp N4 14, (6.42)

where, in the last equation, we have used (6.41). Note that we recover the
AdS / CFT dictionary relation

N

. (6.43)

mms =
indicating that the M5-brane particle is dual to an operator of conformal
dimension N, as befits a dibaryon.

We can compare this mass with the WGC bound (BPS bound), by
computing the gauge coupling. This is just given by the KK reduction of
the 11d Einstein terms and gives

g—Z ~ M9

a1 (RTETY) R?. (6.44)

Note that we have taken the normalization factor R, which holds when
GCD(N, k) = 1. This is because in that normalization, the charges under
the U(1) are KK modes of momentum multiple of k (since the radius
is R/k due to the orbifold action), and M5-branes, whose charges are
multiples of N. Then by Bezout’s lemma, the minimal charge quantum
is 1. For the general case GCD(N, k) = r, we would have a factor (R/r)>.
We proceed with the coprime case in what follows. As pointed out in
[32], the existence of gauge invariant dibaryon operators for general N
(not a multiple of k) implies a specific choice of the global structure of the
gauge group of the holographically dual ABJM field theory, see Footnote
49.
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Using (6.41) we have
ng ~ N3/2k1/2 — g~ N73/4k71/4 . (645)
So we get the WGC/BPS relation

mms = MpagN . (6.46)

It is interesting that in the large k limit we recover a weak coupling scaling
result ¢ ~ k~/%, but that this decrease is slower than the criticalg ~ k~1/?
required by the black hole evaporation argument. The resolution of this
point reveals two interesting related subtleties: the actual discrete gauge
symmetry of the theory is not just Z, and the wrapped M5-branes are
not the only states charged under the discrete symmetry. Indeed, as
mentioned in [32], a set of kK wrapped Mb5-brane particles can unwrap,
but they do not decay to the vacuum, but rather turn into N KK states
with momentum along the U(1) circle (which, due to the Zj orbifold, is
quantized in multiples of k). In other words, there are instantons (given
by M5-branes wrapped on the CIP? base of the Hopf fibration of S7/Z),
which emit k M5-branes and N minimal momentum KK modes. As
will be more intuitively explained in Section 6.4.2, there is a discrete
symmetry of order N2 + k2, under which a wrapped M5-brane has charge
k and a minimal momentum KK mode has charge N. Thus, KK modes
provide a possible alternative to allow for black hole decay, which in
fact is dominated by processes of emission of N such KK modes. Hence,
the gauge coupling needs to obey a WCC with respect to N. Let us thus
check this point.

The KK particle mass is given by

k
MKk = R (6.47)

This constitutes the holographic dictionary relation for an operator
of conformal dimension k. These are constructed with k copies of a
bifundamental field, as required by gauge invariance under the level-k
U(1)’s of the holographic dual field theory [32].

Using (6.41) we have
myxx = Mp 4JN3/43/4 (6.48)
and with (6.45) we obtain
mgx = Mpagk. (6.49)
Hence, these are WGC particles charged under the discrete symmetry,

and the gauge coupling (6.45) obeys a WCC bound with respect to N.

6.4.2 Type IIA description of ABJM vacua

We may now describe the type IIA version of the previous section, which
makes some above points more intuitive, and provides a good warm-up
for the coming sections. For details on how to move from the M-theory
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perspective to type IIA we refer to Section 1.1.3. We can now compute the
4d Planck mass:
Mp , ~ MEg°RE, (6.50)

and combine with (1.17), (6.50) and (1.13) to obtain

R, ~ Nk'Mpl g0 ~ M;}4N3/4k1/4,

.51
MS ~ N_3/4k3/4MP,4g5 ~ MPAN—l/Zk—l/Z . (6 5 )

Let us now consider the gauge symmetries in the 4d theory in this type IIA
string compactification. The SU(4) symmetry arises as the isometry of the
internal CP?. On the other hand, there are additional U(1) gauge fields
arising from the 10d RR fields, concretely the 10d RR 1-form potential
and the 10d RR 3-form potential integrated over CP! ¢ CP®. We should
however notice that there are Stiickelberg couplings arising from the 10d
CS coupling By A F» A Fg, of the form™

NBy AFy +kBy A F! , (6.52)

where F, = /C]PZ F¢. This implies that the massless U(1) linear combina-
tion is

J=kQo—NQs. (6.53)
Here the generators Qp, Q4 are labeled by the objects charged under the

corresponding U(1)’s, namely DO-branes and D4-branes wrapped on
CIP2. Note that our sign convention differs from [32].

The orthogonal linear combination

Qbroken = NQO + kQ4 ’ (654)

corresponds to a massive U(1), which is broken by instanton effects,
and only a discrete subgroup remains. The instanton corresponds to an
NS5-brane wrapped on CIP3, since it couples magnetically to B,. It suffers
from FW anomalies due to the Fg and F; fluxes, so it emits N D0-branes
and k wrapped D4-branes. Hence, the total violation of Qpyoken is N2 + k2.
This is the order of the gauge group. However, notice that at the level of
the black hole (and of the WCC), what is actually relevant is the number
of particles required to be emitted, namely N DO-branes (contributing
charge N each) and k D4-branes (contributing charge k each). The type
ITA internal space is large compared with the string scale if N > k, so
the limit of large order of the discrete gauge group scales as N and the
black hole decay is dominated by the emission of N D0-branes. In the
arguments below, this is one particular instance in which the relevant
coefficient in scaling relations is not the order of the discrete symmetry,
but the number of emitted particles.

Notice also that we are recovering in possibly more intuitive terms
the discussion of the earlier M-theory setup, with wrapped D4-branes
corresponding to wrapped M5-branes and D0O-branes corresponding to
KK modes of the M-theory circle.

Let us discuss the masses of the D4- and D0-brane particles and the U(1)

50: For further discussion of CS couplings
and swampland constraints see [133].
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gauge couplings. They scale as

mpo = g5 Mg ~ Mp JN~343/4,

(6.55)
mpy = 5 MERY ~ Mp JNYV4k1/4

We already notice that the DO-brane mass decreases with N faster than
the 'species’ bound reviewed in Section 6.2.1.1, ensuring that black holes
can get rid of their discrete charge by emitting D0-branes. Let us turn to
check the implication for gauge couplings and verify the Zy WCC.

The 4d gauge couplings for the U(1)’s generated by Qg and Q4 are given
by
L. MEREM;?

2 s g iVl

0
1 5 -4\ 2
>~ Msng (Ms 5R54) .
84

(6.56)

The first common factor arises from the reduction of the 10d kinetic
term for RR fields on the CP3, while the last factors arise from the
normalization of the gauge fields by the coefficient of the D-brane CS
term, so that the charges are integer numbers. Using the familiar relations
above, we obtain the scalings

go—z ~ N3/2k3/2

g4—2 ~ N-21/2 (6.57)

The coupling constant associated to the massless combination (6.53) is

2 2
g% = k—z + N—2 ~ N32k12, (6.58)
8 8

and, as explained, its scaling satisfies the WCC with respect to N

g ~ N734g1/4, (6.59)

As expected, the D0- and D4-brane particles satisfy the BPS/WGC bound,
in agreement with the result for wrapped M5-branes and KK modes in
(6.46), (6.49)

mps = MpagN , (6.60)
mpo = Mp,4gk . '

Notice also that ¢ ~ 1/R in Planck units, so the above masses imply
conformal dimensions N and k for the holographically dual operators,
as is by now familiar.

6.5 Discrete symmetries in intersecting brane
models

Discrete symmetries are ubiquitous in models of intersecting branes (see
[9] for a review), as pioneered in [107]. In this section, we use them to
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illustrate the interplay of Zy and U(1) gauge symmetries, and the scalings
implied by the WCC.

Let us start by recalling the basic setup. Consider a compactification
of type IIA on a CY space X, quotiented by the orientifold® action
QR (-1)f1, where % is an antiholomorphic Z, involution of X, which
introduces O6-planes. Let us denote [ITog] the total homology class of
the 3-cycles wrapped by the O6-planes. Introducing a symplectic basis
[a;], [Bi] of 3-cycles even and odd under R, respectively, we may expand

[Mos] = Z rbslail + sblBil, (6.61)

with 7! some coefficients of order 1-10.

06’ O6

The O6-planes are charged under the RR 7-form, so, as we reviewed in
Section 1.2.1, to cancel its tadpoles we introduce Dé-branes. We consider
stacks of N overlapping D6 4 —branes wrapped on 3-cycles I14, and their
orientifold image D6 4-—branes on 3-cycles I14-. In terms of the basis, we
have

[T4] = ZrA +sA [ITa] = ZrA sfq[ﬁi]. (6.62)

The RR tadpole condition reads
Dl2rh +rbg =0 Vi. (6.63)
A

In addition, there are K-theory RR tadpole conditions [134], which we
skip in this sketchy discussion.

In these models, there are Stiickelberg couplings for the U(1)4, of the
form
D Nasibai AFa. (6.64)
A

F 4 is the field strength of the U(1) gauge field on the D64 —branes, and
the 4d 2-forms b, ; arise from the KK compactification of the RR 5-form

Cs as
b2,i=/C5. (6.65)
Bi

This makes some U(1)’s massive. Let us consider linear combinations of
the U(1)4 generators Q4

Q=>caQa, (6.66)
A

with ¢4 being coprime integers, to preserve charge integrality. The
Stiickelberg coupling for the field strength F of the U(1) generated by A
is

> caNas) | by AF. (6.67)
A
Hence, the condition for a U(1) to remain massless is

D caNas) =0 Vi. (6.68)
A

51: Note that the orientifolds are not es-
sential for the argument, but we choose to
introduce them to better connect with the
literature on intersecting brane models.
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52: This is not the only one, but we stick

to it as an illustrative example.

53: Note that A has dimension mass

2

If not, the U(1) is broken, remaining only as an approximate global
symmetry, broken by non-perturbative D2-brane instanton effects [135-
137]. The condition that a discrete Zj subgroup remains as an exact
discrete gauge symmetry is

> caNas, =0 mod k Vi. (6.69)
A

Generically, to achieve this for a large k, a possibility? is to have sz ~k,
at least for some A, for all i. This implies that there is some brane which
is wrapped on a very large (i.e. multiply wrapped) cycle. This implies
that in general any unbroken U(1), given by a linear combination (6.66)
satisfying (6.68), will also involve that particular Q4 with a coefficient
of order k. This implies that the gauge coupling of the unbroken U(1)
scales as

é = k hence g ~ k12 (6.70)
Although this is not quite a rigorous argument, it is a good illustration
of how the interplay between U(1) gauge couplings and Z; symmetries
arises, as a consequence of the fact that, to achieve a large order Zj;
discrete symmetry, one needs to use parametrically large cycles, thus
parametrically scaling gauge couplings to zero. Hence, intersecting brane
models provide an intuitive mechanism for the WCC.

6.6 Discrete 3-form symmetries and scale
separation in AdS solutions

In [83] it is proposed that in AdS vacua with cosmological constant A,
the limit A — 0 is accompanied by a tower of states becoming light as

m~ |AJ*. 6.71)

The strong version of this conjecture is that & = 1/2, which is the case in
many /most string solutions (see below for examples). We focus on this
version and phrase the conjecture as a ratio of scales™

m2

" 6(1). (6.72)
The states in the tower are typically KK states, and we use this term in the
following. The conjecture implies that one cannot achieve a (parametric)
separation of the KK scale and the scale of the cosmological constant.
In fact, a problem that has been pervasive in holography literature is
the search of gravity duals of QCD or 4d SCFT with conformal anomaly
coefficients a # c. Scale separation is also an important intermediate step
in constructions attempting to realize de Sitter vacua in string theory
[138, 139]. Hence, it is an important question which merits attention.

There are systematic constructions of AdSy vacua in string theory in type
IIA compactifications on CY orientifolds with NSNS and RR fluxes [48,
140] (see [141] for a recent generalization to general CYs). As already
noticed in the literature, there is a family of vacua in [48] (see also [140])
claimed to achieve scale separation, thus violating the strong form of
the conjecture. In this section we show that this family enjoys a Zj
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discrete symmetry arising from 3-form gauge symmetries broken by
a topological coupling to an axion, of the kind considered in [66, 70],
together with a continuous 3-form symmetry.Hence,e it provides a setup
in which a Z; WCC for 3-form gauge fields is at work. The tension
of the corresponding BPS domain walls can be related to the vacuum
energy, and introduces additional factors of k in (6.72), thus explaining
the parametric scale separation, that is controlled by the parameter k.
This symmetry is consistently absent in other AdS vacua with no scale
separation, hence provides a rationale for the existence of scale separation
in this family, and suggests the proper generalization of (6.72) in the
presence of domain wall Z; symmetries.

6.6.1 Review of scaling AdS, vacua with scale separation

In this section we review some key elements of the family of models with
scale separation, following [48] (see also [140] for related classes of type
ITA AdS vacua).

Consider type IIA on a CY threefold modded out by an orientifold
action introducing O6-planes. The O6-planes introduce a tadpole for
the RR 7-form, which is canceled by (possibly present) D6-branes, and a
combination of the Fy = m Romans mass flux parameter and Hz NSNS
field strength flux on 3-cycles. Although it is possible to introduce it, we
consider the RR F; field strength fluxes to be zero.5* On the other hand,
we introduce RR Fj field strength fluxes on a basis of 4-cycles &;

[ Fy=e;€7. (6.73)
X

We do not introduce RR F¢ flux over the CY, and only consider it when
generated by monodromies, see Section 6.6.3. Some details on the 4d
effective action of this theory are provided in Sections 1.2.3.4 and 3.2.1,
and here we streamline the key facts. Whereas the fluxes Fy = m and H3
are constrained to be 0(1) due to the tadpole conditions, the fluxes for
F,4 are unconstrained and can be taken large. The scaling solutions are
achieved in the large k limit of

e ~ &k, (6.74)

where the ; are O(1) quantities. Note that we have renamed the scaling
parameter of [48] as k to make better contact with earlier sections, and to
emphasize its forthcoming role as related to a discrete gauge symmetry.

Although we keep much of the upcoming discussion general, it is useful
to consider explicit examples, like those introduced in Section 1.2.3.4.
A simple class is obtained by taking toroidal orbifolds T®/Zj3, whose
untwisted sector is given by 3 Kdhler moduli associated to the 3 un-
derlying T?’s. Their volumes, measured in string units, are denoted
by v;, i = 1,2, 3, with the overall volume being Y~ v10203. They are
complexified by the axions from the NSNS 2-form over the 2-tori b;.
We ignore twisted sectors, and refer the reader to [48] for details. Since
hyy = 0, there is only one axion & from the period of the RR 3-form
over the 3-cycle; it combines with the 4d dilaton el to form a complex
modulus.

54: Actually, by monodromies in suitable
axions [121] the F; flux can be generated
due to the presence of F flux. This follows
from a DKS coupling, and intertwines non-
trivially with similar DKS coupling to ap-
pear in Section 6.6.2. We keep our simpli-
fied discussion for F» = 0, and refer the
reader to [72, 142] for further information
on the more general framework.
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In the scaling limit, [48] found a supersymmetric AdS; minimum (which
we refer to as the DGKT solution) with the following values for the 4d
moduli

vi, bi ~ kY2, T ~ k3%, 7P, & ~ k32, (6.75)

This implies that
2 ,2Dps2 -3 12
Mg ~e""Mp  ~ kM, (6.76)

and that the following relevant quantities of the 4d effective action,
evaluated at the minimum, and measured in 4d Planck units, scale as

W~ k32, o% ~ 1512 A~ 92 (6.77)

One may evaluate the KK scale as
mxx ~ TV VM ~ k7 Mp 4 (6.78)

(incidentally, it coincides with the mass scale for other massive moduli,
so it provides a general cutoff of the 4d theory).

This leads to a relation of the type (6.71)
mi ~ N7, (6.79)

and hence to a seeming parametric violation of the strong version of
the conjecture. In [143] the problem was considered in a family of IIA
compactifications with geometric fluxes. The back-reaction of the latter
[144] implied a modification of myx which restored the scaling predicted
by the strong AdS Distance Conjecture. This mechanism, however, is
not clearly available in the present context, where geometric moduli
are absent. In the following sections we propose the scale separation
is physical in these cases, and find a rationale in terms of underlying
symmetries.

6.6.2 The discrete 3-form symmetry

In this section, we address the backbone of the solution to the above
conundrum. First, notice that we have rewritten the strong conjecture as
in the form (6.72) with hindsight. Indeed, taking this ratio, we find that
in the DGKT family

Mg
A k. (6.80)

Alternatively, we may express the vacuum energy A in terms of the UV

cutoff scale mgx as
2

m
A~ % . (6.81)

Recalling that A has dimension 2, this is extremely reminiscent of the
type of relation one finds in theories with a Zj discrete gauge symmetry,
see (6.4). Moreover, since the left hand side quantity is the vacuum energy,
the relevant charged objects should be related to the structure of the
vacuum.

We now show that there is indeed an effective Z; symmetry acting on
the domain walls changing the fluxes in the vacuum. The structure is
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controlled by topological couplings of the 10d theory. In fact, we will
study them without assuming the vacuum solution described in the
previous section, and show that the scaling relations found there are
a consequence of these topological couplings, or equivalently of the
discrete symmetry structure.

Therefore, we start with the general CY (orientifold) compactification,
and consider the basis of 4-cycles X; and their dual 2-cycles ;. We recall
the F4 flux structure and introduce 4d axions from B, as

[ Fy = ké;, / By = ¢; (6.82)
Zi ):1‘

(these axions were denoted by b; in the toroidal setup above). In addition,
we introduce a symplectic basis of orientifold-odd 3-cycles a, and
orientifold-even 3-cycles 3,, and introduce the NSNS Hj3 fluxes and RR

axions
/ Hz =p,, / Cs=¢&. (6.83)
Qg ,Ba

In addition, there is a Romans mass flux parameter Fo = .

Let us initially focus on the dynamics of Kéhler moduli, hence ignore &g,
which will be reintroduced later on. Most of the discussion is general,
although we eventually apply it to the toroidal orbifold for illustration.

The dimensional reduction of the 10d CS coupling F4 A F4 A B; leads to
the 4d topological coupling

k (Z E;qbi) Es. (6.84)

1

This makes the 3-form massive, by eating up the 2-form dual to a linear
combination of axions. The overall factor k implies that there is a discrete
Zjy symmetry under which domain walls are charged [51]. This confirms
we are on the right track. In fact, although certain modifications are about
to come in, in the large k limit this Zj discrete symmetry determines the
properties of the system.

The situation is actually slightly more subtle, because of the following.
The scalars ¢; also appear in couplings with other 4-forms, arising from
the 8-form as

F4,1-=/ Fs. (6.85)
L

Hence, including the reduction of the 10d coupling FoB, AFg, the complete
set of topological couplings is

m > iFy;+k (Z é;¢,-) Fy. (6.86)

i

This means that the combination ¢’ = 3; &;¢; also couples to other
4-forms. To isolate that dependence, introduce the generators Q' and
Q; of 3-form U(1) symmetries for C3 and Cj ;, and consider the linear
combination

Q= Z &Q; . (6.87)
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55: With the notational difference that the
roles of N, k are now played by k, m,
respectively.

The topological coupling for the corresponding 4-form F} is

m (Z E;qb,») F, =m¢'F,. (6.88)
1
Hence, we can isolate the axion ¢’ with its couplings to the 4-forms Fj,
Fjas

¢’ (mF} + kFy) . (6.89)

It is interesting that we have this universal sector decoupled (at the
topological level) from other axions and 4-forms, and hence independent
of the details of the underlying CY compactification space.

Since there is only one axion and two 4-forms, there is clearly a massless
3-form corresponding to the combination

Quq) = kQ' - mQ = Z e:Q; —mQ. (6.90)

In the second equality we have recast the combination in terms of the
original 4-forms. It is straightforward to check, using (6.86), that Q1)
is indeed free from topological couplings to scalars, hence remains an
unbroken 3-form gauge symmetry.

The combination appearing in (6.89), namely,
Qi =mQ +kQ = > \m&Q; +kQ, (6.91)
i

is broken to a discrete subgroup. To better understand its structure,
consider the string emitting a number of domain walls, and let us
compute the violation of conservation of Q, . The relevant string couples
to the dual to ¢, namely it is given by an NS5-brane wrapped on the linear
combination of 4-cycles X3; E;ii. Due to the presence of m, it emits me;
Dé6-branes wrapped on %;; due to the presence of e; units of 4-form flux
over ii, it emits 3}; é;e; D2-branes. Since each Dé6-brane on ii violates Q7
in 1 unit, and each D2-brane violates Q in 1 unit, we have a total violation
of Qbroken by

AQL = (&) (K +m?) . (6.92)

1

Although it would seem that at large k the symmetry is of order k2, notice
that it suffices to have k D2-branes (plus a number of D6’s sub-leading
in the 1/k approximation) to annihilate into a string. It is only that one
D2-brane implies a violation of k units of Qproken, from the way we built
the linear combination. So it is an effective Zx for D2-branes.

Notice that this system realizes a 3-form version of the theories with
discrete and continuous U(1) symmetries (for 1-forms) we described in
earlier sections. In particular, the structure of two underlying U(1)’s with
one linear combination broken by a topological coupling is completely
analogous to the discussion of the type IIA gravity dual of ABJM theories
in Section 6.4.2.%°
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6.6.3 Scaling relations for moduli from discrete
symmetries

In analogy with the ABJM system, the D2- and D6-brane domain walls are
BPS, and their tensions must relate to their charges under the unbroken
Quq),

Tow = §QuMp 4 - (6.93)

The gauge coupling ¢ for Q) is derived from those of the 3-form
symmetries associated to Q and Q3 see (6.90). We denote them g,
86,7 Tespectively, to indicate that the charged objects are D2-branes and
Dé6-branes on X;. We have

S=R> @)

8 i 8

|~

1
+m— . (6.94)
82

.1

N

The fact that both D2- and D6-branes can satisfy the BPS condition (6.93),
implies that, in the large k limit, their gauge couplings must relate as

867~ kg2 (6.95)

It is easy to express the ratio of these gauge couplings in terms of
microscopic compactification parameters and derive that the scaling
for v reproduces (6.75). We offer a simplified discussion here, referring
the reader to Section 3.2.1 for a supergravity-friendly derivation. For
concreteness, we also focus on the toroidal case. The inverse gauge
couplings squared are

L = MR (M) = M
83

\2 32
= M2 (M;“’—i) - mp L
857 v v

where the first factor arises from the 10d coupling and the terms in
parentheses arise from normalization of charges to integers, and we recall
that ¥ = v1v,v3. We have that

i T
i TV (6.96)
by (4]
and comparing with (6.95) for different i’s gives
vi ~ kY2, T ~ K32, (6.97)

A more direct, and possibly more general, route to the scaling relations
for moduli is to use the monodromy relations. The fact that, e.g., F4
has topological couplings to axions implies that the flux N of Fs over
the CY changes as the axions wind across their periods. Indeed, the
above discussion is slightly oversimplified, since the fluxes experience
a more intricate set of axion monodromies. These have been studied
systematically in [72], and appeared implicitly in [48]. They just follow
from the nested structure of 10d CS terms, or equivalently of the 10d
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All the scalings can be found looking at
Eq. (3.34) and substituting the correspond-
ing scalings with respect to the Fy flux:

iz _ “e_f K152

8o SMP

1 me®
g7 8My(vi)? ’
1 _ HE_K(U_i)Z 112
g  8Mp7? ’
l _ ne”(_ N k9/2,
83 8Mp7?

however, here they have been obtained
only looking at the discrete symmetries
and using the WGC for the DW.

modified Bianchi identity for Fs, which implies
Fe=dCs+F4ABy+Fy ABy ABy+FyBy ABy ABy + H3 A C3. (6.98)

Hence, restricting to our setup with only Fy, F4 and Hj3, the effective 4d
theory can depend only on the combination

N + ke;pi + mxijxi@ipx + pala (6.99)

(where sums over repeated indices are implicit). Here «; is the triple
intersection number. For instance, k123 = 1 for the torus. This implies
that it is possible to generate Fq flux from m by performing a monodromy
in by to generate F, on the first T2, followed by a monodromy in b, to
generate Fj on the T* transverse to the third coordinate, and one in b3 to
generate Fg on the CY.

This is a more complete version of the topological couplings to 4-forms we
have been considering, and which underlies the discrete symmetry of the
system. We are interested in its behavior in the large k limit. Consistent
scaling of the monodromy relations for large k requires that

b ~ kY2, (6.100)

This is the generalization of the scaling for b; in (6.75), and provides the
complexified counterpart of our scalings for v; in (6.97) (which recovered
those in (6.75)). We point out that the fact that the two components of
complex moduli have identical scalings with large flux quanta fits nicely
with results on asymptotic flux compactification [145]. It is fascinating
that this result follows from just the discrete symmetry in the present
context.

Motivated by this, we can use a similar argument to extract the scaling of
the dilaton multiplet in the large k limit. From (6.99) we get

&~ K32, (6.101)

This is the complexification of a similar dependence of the dilaton, which
thus reproduces (6.75).

Interestingly, with this information, which in particular implies the scaling
(6.76), i.e. Ms ~ k=>Mp 4, we obtain the scaling of gauge couplings
(6.94), (6.96)

g ~ k7154 o~ KA g~ kT84, (6.102)

providing a nice version of the WCC for domain walls.

Note, however, that when including the Hj3 fluxes, the above discussion
is equivalent to the inclusion of additional topological couplings p,&,Fa.
In other words, D2-brane domain walls, in the presence of Hj flux,
can annihilate in sets of p, by nucleating a string given by a D4-brane
wrapped on the 3-cycle a,, due to the FW inconsistency of the latter.
The presence of these couplings spoils the structure of continuous and
discrete 3-form gauge symmetries found in the Kédhler moduli sector.
In other words, the coupling of F, to a different linear combination of
axions implies that the former continuous symmetry is actually also
broken by the new additional axion, given by the linear combination of
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&q. We skip the detailed discussion of the resulting complete discrete
symmetry group. Note, however, that for large k the effects of both m
and p are sub-leading in an 1/k expansion, so the Z; symmetry we have
been using prevails.

Since we have recovered the scalings of the Kahler and complex structure
moduli, it is a simple exercise to use the expressions of 4d supergravity to
derive others like (6.77), and eventually recover the scale separation (6.81).
On the other hand, the 4d approach has been criticized as potentially
hiding subtleties of the 10d solution. Therefore, in the following we use
an alternative approach, and exploit properties of BPS domain walls to
recover the vacuum energy.

6.6.4 Discrete symmetries and scale separation

In this section, we exploit the interplay between the tensions of domain
walls and the vacuum energy, and study the interplay of discrete symme-
tries and scale separation. We argue through explicit examples that AdS
vacua with trivial discrete symmetry for domain walls do not have scale
separation; this is true even if there are non-trivial discrete symmetries
for particles or strings, and in general for real codimension higher than 1
objects. On the other hand, we show that the above type IIA modes with
non-trivial discrete symmetry for domain walls, with the corresponding
scaling for moduli, do have vacuum energy with scale separation. We
extend this general relation and put forward the following refined version
of the swampland constraint (6.72), as follows:

Conjecture 6.2 [Z; Rerinep SADC (Z; RSADC]).

Consider quantum gravity on an AdS vacuum with a Zj discrete
symmetry for domain walls (with k large). In the flat-space limit
A — 0 (with Ak — 0 as well) there exists an infinite tower of states
at a scale Myiofr, with the relation

2

M
A~ CT““’“ . (6.103)

We now proceed to check this conjecture in the examples of supersym-
metric AdS vacua of this chapter, by deriving their vacuum energies from
the properties of domain walls.

6.6.4.1 Vacuum energy from domain walls

Let us describe our main tool to evaluate the vacuum energies without
invoking an underlying scalar potential. There is a general relation
between domain wall tensions and vacuum energies, which essentially
follows from the junction conditions in general relativity. We refer the
reader to Appendix A for a discussion well adapted to our application in
AdS. The key point is that the domain wall tension T is the variation of
certain quantities A, see (A.9), whose square essentially gives the vacuum
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energy A, see (A.8). In the supersymmetric setup, and for BPS domain
walls, these statements become the familiar

A=e®PW, T = A ?W) = AL, A =-3eT|W|? ~—|A]>. (6.104)

We consider BPS domain walls whose quantized charge describes the
change in some field strength flux 7 as one crosses the domain wall. In
the limit of large flux 7, the tension T provides the derivative of dA/dn.
We can then solve to obtain the scaling with 2 of A, and thus of its square,
Al

6.6.4.2 Warm-up examples: no scale separation

We now turn to discuss the AdS examples of Sections 6.3 and 6.4, deriving
their AdS radius from the above strategy, and showing there is no scale
separation. This is in agreement with our RSADC, as these examples have
discrete symmetries for particles (and for their dual real codimension 2
objects) but not for domain walls.

6.6.4.2.1 Type IIB on S°/Z;
Consider type IIB on S°/Z; with N units of RR 5-form flux and

R* ~ M;*¢;Nk. (6.105)

This is of course the class of theories considered in Section 6.3, but we
are now not imposing the solution for the 5d vacuum, rather we are
deriving its vacuum energy from the domain wall properties. In passing,
we also discuss the gauge coupling of the 3-forms and draw conclusions
regarding the WCC.

We consider a BPS domain wall given by a D3-brane in 5d. Its tension is

Tps ~ Mig;" ~ Mp ;NP3 (6.106)

The same result is obtained from the BPS condition

Tps = §Qps (6.107)

upon computation of the gauge coupling of the 5d RR 4-form under
which the D3-brane is charged. Since the tension essentially agrees with
the gauge coupling, we observe an interesting WCC scaling for g (in that
respect, recall that the relevant large order discrete symmetry is Zy). This
is interesting, since the discrete symmetry acts on particles/membranes,
whereas g is a 3-form gauge coupling. It would be interesting to explore
the interplay between discrete and continuous symmetries of different
degrees; we hope to come back to this in future work.

Since this domain wall interpolates between vacua with N and N + 1,
one can now obtain

;—1/\\, ~NOBE =5 A~N2BB =5 A~ MIZ,,SN_4/3k_2/3.
(6.108)

Using (6.28) we have

A~R72. (6.109)
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Hence the AdS radius is the same as that of the internal space, and there
is no decoupling of scales. This is the strong ADC statement in [83].

Note that, even though there are discrete gauge symmetries in the system,
their orders do not enter the ratio of scales. This is in agreement with our
RSADC, since these discrete symmetries involve particles and membranes,
not domain walls.

6.6.4.2.2 M-theory on S”/Z;

Let us consider M-theory on S7/Z; with N units of flux (or Nk in the
covering space) and

6 -6
R® ~ M5, Nk. (6.110)

This is of course the same system as in Section 6.4, but again we wish to
derive the 4d vacuum energy from the relevant BPS domain walls. We
consider a BPS domain wall given by an M2-brane in 4d. Its tension is

3 3 =7/41.-1/4
Tvz ~ M} 1 ~ M3 N7 (6.111)

where we used (6.41). The same result is obtained from the BPS condition

vz = §Qm2 (6.112)

upon computation of the gauge coupling ¢ for the 4d 3-form. Recalling
the relevant large order discrete symmetry is Zy, we note again that we
get an interesting WCC scaling for g.

Since the M2-brane domain wall interpolates between vacua with N and
N + 1 units of flux, we have

i

=7/471.-1/4 —3/47.-1/4 2 -3/27.-1/2 -2
NN MUt = A~ NP = A~ M NP2 R2

(6.113)
In the last relation, we have used (6.41). Again, we recover the result that
the AdS radius is of the same order of magnitude as the KK scale of
the internal space. Also, notice that there are discrete symmetries in the
theory, but they involve particles and strings, rather than domain walls.

Hence, they do not alter the relation between scales, in agreement with
our RSADC.

6.6.4.2.3 Type IIA on CIP3

We would like to repeat the previous computation in the type IIA picture.
Let us consider type ITA theory on CP® with N units of Fs RR flux over
CP? and k units of F; RR flux over CP! ¢ CP? and

R2 ~ M72NV271/2, (6.114)

This is the same system as in Section 6.4.2. The relevant BPS domain wall
is a D2-brane in 4d, whose tension is

Too ~ M3g;" ~ M) N7k, (6.115)

This is the same scaling as the M2-brane in the previous section, and the
D2-brane domain wall interpolates vacua with N and N + 1 units of flux,
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SO wWe recover
A~ 1\/113,41\1-3/2151/2 ~R;%. (6.116)

The AdS radius is the same as that of the internal space, with no scale
separation, in agreement with our RSADC.

6.6.4.3 Revisiting the Scale Separation in type IIA CY flux
compactifications

Consider now the configurations with the large k discrete Zy symmetry
for domain walls in Section 6.6.2. We wish to derive the scaling of the
vacuum energy with k, just using the scaling of moduli VEVs (6.75),
(6.76) derived in Section 6.6.3 from the Z; symmetry.

We consider the BPS domains wall given by a D4-brane wrapped on the
combination of 2-cycles 3}; €;X;. This domain wall interpolates between
vacua with Fy flux given by k and k + 1. Notice that the F4-flux is not
monodromic, hence the D4-branes are stable against nucleation of strings,
and can provide BPS objects (in contrast to, e.g., D2- and D6-brane
domain walls encountered in earlier sections).

The tension of these domain walls can be obtained from the BPS equation
and the gauge couplings, computed in detail in Section 3.2.1. Here we
carry out a simplified derivation, taking the toroidal case for concreteness.
The gauge coupling of a D4;-brane domain wall is
1 — 3 —dor. —
o = M2V (M;307 1) = M7 072 ~ K132, (6.117)
4,i

As usual, in the first equality, the first term comes from the reduction
of the 10d coupling, and the parenthesis from the charge normalization.
Note that the scaling is common for all 7, so by the BPS condition we get
the tension

Tow ~ k134, (6.118)

Notice that, if interpreted in terms of gauge couplings, this implies an
interesting WCC, as in earlier examples. From the above tension, we get

dA

dk
So we recover the scaling (6.77) for A (the reader can check those of &
and W as well). Once mxx is recovered as in (6.78), this reproduces the
scale separation (6.81), in agreement with our RSADC.

kB S A A A~ K2 (6.119)



DYNAMICAL TADPOLES AND SWAMPLAND



Dynamical Tadpoles and Weak
Gravity Constraints

Non-supersymmetric string models are plagued with tadpoles for dy-
namical fields, which signal uncanceled forces sourced by the vacuum.
We argue that in certain cases, uncanceled dynamical tadpoles can lead
to inconsistencies with QG, via violation of swampland constraints. We
describe an explicit realization in a supersymmetric toroidal Z, X Z,
orientifold with D7-branes, where the dynamical tadpole generated by
displacement of the D7-branes off its minimum leads to violation of the
axion Weak Gravity Conjecture. In these examples, cancellation of dy-
namical tadpoles provides consistency conditions for the configuration,
of dynamical nature (as opposed to the topological conditions of topo-
logical tadpoles, such as RR tadpole cancellation in compact spaces). We
show that this approach provides a re-derivation of the Z-minimization
criterion for AdS vacua giving the gravitational dual of a-maximization
in4d W =1 toric quiver SCFTs.

The chapter is organized as follows. In Section 7.2 we point out that the
condition of Z-minimization in AdSs vacua (which is the gravity duals of
a-maximization for 4d ¥ = 1 quiver SCFTs, as reviewed in Section 1.1.4)
can be recasted as a requirement for the WGC of BPS particles to be
fulfilled. In Section 7.3 we consider D-brane backreaction effects, both in
the supersymmetric (Section 7.3.1) and the non-supersymmetric setups
(Section 7.3.2). In Section 7.4, we describe a class of models and discuss
how mistreatment of its dynamical tadpole can lead to naive violations
of the WGC. In Section 7.4.1 we describe the supersymmetric toroidal
orientifolds with D7-branes and 3-form fluxes. In Section 7.4.2 we discuss
the dynamical tadpole generated when D7-branes move off its minimum,
and discuss its backreaction. In Section 7.4.3 we argue that computation
of the backreaction only in the internal space can lead to violation of
the WGC for different classes of ED3-brane instantons. In Section 7.5 we
construct and explicit orientifold of T®/(Z X Z,) realizing this idea. In
Sections 7.5.1 and 7.5.2 we review different discrete choices in toroidal
orientifolds, and in Section 7.5.3 we employ them to build our explicit
example, which is equipped with suitable fluxes in Section 7.5.4. We
conclude with some final considerations in Section 7.6.

7.1 Preliminaries

Supersymmetry breaking has proven a formidable challenge since the
early days of string theory. Leaving aside the potential appearance of
tachyons, the supersymmetry breaking ingredients often produce tadpole
sources for dynamical fields, unstabilizing the vacuum [146, 147]. In terms
of underlying supersymmetric moduli space, this can be described in
terms of a non-trivial potential for the moduli, with the tadpole signaling
that the theory is sitting on a slope, rather than at a minimum (or an
otherwise tachyonic extremum). Simple realizations arise in early models
of supersymmetry breaking using antibranes in type II (orientifold)
compactifications [148-151]. As in these models such tadpoles arise for
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fields in the NSNS sector, they are usually known as NSNS tadpoles.
However, since similar phenomena arise in more general contexts e.g. for
open string moduli (or in other constructions like heterotic or M-theory),
we refer to them as dynamical tadpoles.

They are in contrast with non-dynamical tadpoles, i.e. tadpoles for non-
propagating p-form fields (such as the familiar RR tadpoles), which lead
to topological consistency conditions on string vacua. Instead, dynamical
tadpoles indicate not an inconsistency of the theory, but the fact that
equations of motion are not obeyed in the proposed configuration, which
should be modified to a spacetime dependent solution, e.g. rolling down
the slope of the potential (see e.g. [152, 153] for this approach in the
above context). Hence, they are often treated more lightly, or directly
ignored /hidden under the rug.

In this work we argue that such a mistreatment of dynamical tadpoles
has a dramatic impact on the consistency of the theory, and in particular
can lead to stark contradiction with QG, in the form of violations of some
of the best established swampland constraints [82, 105] (see [77, 78] for
reviews), in particular the WGC [84].

We illustrate these ideas in an explicit example of a type IIB orien-
tifold compactification with NSNS and RR 3-form fluxes [42, 154], with
D7-branes, and admitting a supersymmetric minimum. We focus on
supersymmetric instantons given by euclidean D3-branes (ED3-branes)
wrapped on 4-cycles, satisfying the axion WGC [84], and in fact sat-
urating it as the BPS relation [111]. We consider toroidal models (and
orbifolds thereof), on which D7-branes have position ‘moduli’ which
are in fact stabilized by the fluxes [155-158]. The potential arises by the
axion monodromy mechanism [70, 121, 159, 160], with the axion played
by the periodic D7-brane position. Moving the D7-branes slightly off this
minimum leads to a controlled supersymmetry breaking due to flux-
induced extra tension on the D7-brane worldvolume, and the generation
of dynamical tadpoles, in particular for the D7-brane position ‘'modulus’
itself. This kind of displacement has been exploited in the construction
of models of inflation [161, 162].

The key point is that the flux-induced extra energy density stored on
the D7-brane worldvolume sources corrections to the geometry, which
are usually encoded in a corrected internal warp factor (see [163], based
on [164] in the supersymmetric setup). We show that this procedure
implies brooming a dynamical tadpole under the rug, and that it leads to
a contradiction with QG; concretely, it produces corrections to the action
of ED3-brane instantons which violate the axion WGC.

The problem lies in the assumption that the backreaction of the supersym-
metry breaking source is fully encoded in an internal warp factor, with
no effect on the non-compact spacetime configuration, hence ignoring
the dynamical tadpole sourced by supersymmetry breaking. QG is thus
reminding us that consistent configurations must necessarily include
spacetime dependence to account the dynamical tadpole.

Although we shown this for a concrete model, we expect the general
ideas to hold in more general configurations, and even genuinely non-
supersymmetric vacua. In fact, we advocate that these general ideas must
play a crucial role in understanding how swampland constraints on vacua
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extend to ‘moduli” spaces with non-trivial scalar potential. In particular,
unless a proper treatment of the dynamical tadpoles is implemented, the
familiar formulation of swampland constraints such as the WGC can be
expected to hold only in vacua.

One can turn this logic around and consider that the condition to satisfy
the WGC in its familiar formulation can be equivalent to the condition
to sit at a vacuum, i.e. minimizing the corresponding scalar potential.
This is indeed what happens in our D7-brane case study, and we expect
this to hold in more generality.”® In fact, we provide extra support for
this idea in an amusingly unrelated setup; we show that the condition
of Z-minimization [25, 33], which in holographic dualities provides the
gravitational dual of a-maximization of 4d ¥ = 1 SCFTs [37] in terms
of type IIB AdSs X X5 vacua, introduced in Section 1.1.4, follows from
applying the WGC for D3-branes wrapped on 3-cycles of the internal
variety Xs.

7.2 Z-minimization and ga-maximization from
WGC

We start with an observation that in certain string models, configurations
away from the vacuum lead to an uncanceled dynamical tadpole which
manifests as a non-fulfillment of the WGC. Hence, the condition to satisfy
the WGC by minimizing the action of suitable charged states turns out to
be equivalent to minimization of the scalar potential. In this section we
explain how this idea explains the condition of Z-minimization in the
context of AdS vacua in holography. We point out that in this context the
deviation from the vacuum is not a modulus or light scalar direction, but
rather involves modes with masses comparable with the cutoff, i.e. the
KK scale; this suggests a more general validity of our arguments beyond
their use in effective field theory. We are going to use this argument as a
warm-up for what will follow in the next sections.

We now show that the above condition of Z-minimization is equivalent
to the requirement that the WGC is satisfied for a suitable set of charged
states in the AdS theory. For this purpose, we consider type IIB theory
compactified on AdSs X X5, with the volume of X5 relative to that of S5
(of the same radius as the AdS, R) given by the function Z(&), which is
minimized at the vacuum.

We now consider a set of states whose masses depend on the Reeb vector.
As explained in Section 1.1.4, we can take D3-branes wrapped on 3-cycles
L; of Xs. The ratio of the masses m; /m;y of such state for a general trial
Reeb vector, and for the vacuum one is

m; VOI(ZI)

—_—= 7.1
min  Volmin(Zi) 7

In order to express it in a WGC format, we need to obtain the gauge
couplings of the U(1)r under which these are charged. By dimensional
reduction from 10d we have

872 = Mg *Vol(Xs)R?, (7.2)

56: This view aligns with the recent
progress in relating swampland con-
straints on spacetime configurations and
on properties of states defined on them,
see for instance [165, 166].

Z-minimization has been introduced in
Section 1.1.4.
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where the last R? is just a standard normalization factor.

We can also compute the 5d Planck mass by reduction from 10d to get

M?w = M8g:*Vol(Xs) . (7.3)
They are related by
gM)2 =R, (7.4)

independently of Vol(Xs). This is useful, since in this system the free
parameters in the Reeb vector are not actual moduli in this configuration
(their masses are of the order of the KK scale), so their change is not
really a deformation in a given effective theory. Hence, it is questionable
to use the same or different values for ¢ and Mp 5 in comparing the
vacuum and configurations away from it. The above relation allows us to
circumvent this discussion and proceed to the result.

We now use that the wrapped D3-branes are BPS states at the vacuum

and satisfy

32 _ Q
My = gQMp/,5 =% (7.5)
where Q denotes its charge under U(1)r. Hence, at the configuration
away from the vacuum we have

32 Vol(X;)

= gQMP’B VOlmin(Zi) .

(7.6)
Due to the convexity of the volume functions with respect to the Reeb
vector & [25, 33] (see also [35, 167, 168]), the only way to satisfy the WGC is
to take the value & = &;n. In other words, we recover the Z-minimization
condition from WGC considerations.

7.3 D-brane backreactions in local models

In our examples, the dynamical tadpole is sourced by D-branes, hence its
proper discussion requires accounting for the D-brane backreaction. In
this section we consider several examples of backreaction of D-branes on
other D-branes, in cases where they preserve a common supersymmetry,
or not. For our examples in later sections we need to focus on backreaction
effects on ED3’s, so we restrict to this case in this section, although the
ideas generalize easily to other branes. We also mainly focus on local
models, leaving the discussion of global models, and the issues of the
resulting dynamical tadpoles, to Section 7.4.

7.3.1 Warm up: Supersymmetric backreactions

We start with a review of supergravity backgrounds sourced by D-branes
(D3-branes, D7-branes, and bound states thereof), and the backreaction
effects on ED3-branes preserving a common supersymmetry. In these su-
persymmetric cases, the discussion in this section is related to alternative
description in terms of generalized calibrations, see [169-176].
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7.3.1.1 D7 on ED3

Consider type IIB theory on My XXy XIR?, with X4 a compact K3 or T4, and
consider Npy D7-branes spanning the directions 01234567 and transverse
to 89 (see below for remarks on the bounds on Npy). In this theory, there
is a BPS instanton given by an euclidean D3-branes (ED3) spanning X4
and localized in 0123 and 89, in general not coinciding with the D7-brane
in those coordinates. The fact that the ED3 is BPS is easy to verify from
the common solutions to the supersymmetry conditions of the D7 and
the ED3. In an alternative view, there is a ‘'no-force’ condition, which is
easy to check from the open string perspective, from the vanishing of the
1-loop annulus amplitude. Here we are instead interested in the closed
string perspective, in which we check that the supergravity background
created by the D7-brane exerts 'no net force” on the ED3 (in more proper
language, the action of the ED3 is independent of its position with respect
to the D7).

We consider the background created by the D7-branes. Denoting by z
the complex plane in 89, and using r = |z|, the metric has the general
brane solution structure

ds? = Z(r) Py dxtdx’ + Z(r)_l/zds)z(4 + Z(r)?dzdz . (7.7)

The function Z(r) obeys the 2d Laplace equation with a point source at
the origin. In the non-compact case, for Np; D7-branes, we have

_ Npy
Z= 7 log(r/L) + ..., (7.8)

where L is a scale set by e.g. by the global compactification (see Section
7.4 for a related discussion), and the dots correspond to extra contribu-
tions due to possible distant sources. In addition, there is a non-trivial
background for the dilaton

e =27(r) (7.9)

and for the 10d axion. These are more easily described by combining
them into the 10d complex coupling T = Cy + ie~?. For the case in Eq.
(7.8), it is given by

D

T= o log(z/L)+... (7.10)

This encodes the shift Co — Co + 1 upon the shift z — ¢?™'z as one
surrounds one D7.

This is a good approximation for a small number of D7-branes; due to
the non-flat asymptotics, larger Npy overcloses the transverse space to a
compact structure better described in F-theory [177]. In our description
we will deal with one D7-brane and, if necessary, we consider the compact
configuration close to the weakly coupled IIB limit of the orientifold of
T2 by Q%(-1)f1, where ® : z — —z introducing O7-planes [178]. In
such situation, the above function Z should be replaced by a T?> Green’s
function, see later for analogous examples.

It is now straightforward to consider an ED3 in the probe approximation,
and to evaluate its action to check it is independent of its position relative
to the D7-brane. Concretely, the effect of the backreaction is to introduce
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57: This would be Fourier-Mukai in case
X4 =K3.

factors of Z which cancel off

(2_1/4)4V01(X4) _ Vol(Xy)
Z_lgs s '

Sgps = (7.11)

This is the closed string version of the BPS property.

As usual, the open string description is more suitable for inter-brane
distances below the string scale, while the closed string exchange de-
scription is better suited for larger distances. In this case the discussion is
equivalent in both pictures, due to the large amount of supersymmetry
in the system.

7.3.1.2 D3 on ED3

Les us now consider a different example. Consider again type IIB theory
on My X Xy X R? as above, with X4 compact, and consider Npz D3-branes
along 4d Minkowski space. Although the discussion can be carried out
in more generality, we are interested in smearing the D3-branes as a
constant density along X4. The backreaction thus depends only on the
radial direction in the complex plane z = re’¥ spanned by 89. This is
similar to the above D7-brane case, and in fact both are related by "T-
duality’” in X4. Adapting the celebrated D3-brane supergravity solution
to the case of a warp factor obeying a 2d Laplace equation, we have

ds? = Z(r)_l/zr]wdx“dx" + Z(r)l/zds)z(4 + Z(r)?dzdz, (7.12)

with N
Z(r) = - gsznm log(r/L) + ... (7.13)

Here the dots denote extra pieces, due to global structure e.g. due to pos-
sible distant sources, and L again denotes a global (e.g. compactification)
scale.

The D3-branes also source the RR 4-form Cy4. Given its self-duality, the
background can be expressed in terms of the components of C4 along Xj.
This leads to the following profile with the polar angle 0

N
@E/C4=2—7‘f’9+... (7.14)
Xq

We now consider a BPS instanton given by an ED3 wrapped on X4, and
describe the effect of the backreaction. The ED3 feels the warping in the
metric, and couples directly to the axion ¢, so its Dirac-Born-Infeld (DBI)
+ CS action picks up a factor

1 ( 8sNps
2n

s

.Np3 _ _Nps
logr) i Im logz+...= o logz+... (7.15)

In this case, it is the holomorphy of the result that encodes the BPS
nature of the ED3. Our computation is essentially that in [164]; indeed,
using (7.15) as the corrected instanton action, for e.g. Np3 = 1 the 4d
non-perturbative contribution to e.g. the superpotential gives

W = Ze_SgDB , (716)
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where the factor 27t has been reabsorbed and S%DS is the instanton action
in the absence of correction. For the open string perspective on this result,

see [135-137, 179].

7.3.1.3 D7/D3 on ED3

By combining the results of the previous two sections, it is straightfor-
ward to study the backreaction of BPS bound states of D7- and D3-branes
(namely, magnetized D7-branes [132, 180, 181]). The gravitational backre-
action is obtained using the harmonic superposition rule in supergravity
[182]

ds? = 25 P70 P dxtdxt + 252 2ds, + 2127 dzdz,  (7.17)

with N N
_ _Npr _ _&sN\Np3
ZD7 = o log(r/L) , ZD3 = o log(r/L) , (7.18)

where we are ignoring the dots. In addition, we have backgrounds for
the IIB complex coupling 7 and the axion ¢ as in Eq. (7.14)

T = @log(z/L), Q= %Im (logz). (7.19)
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In the ED3 action, the dilaton background cancels with the D7-brane
metric backreaction factor Zpy, leaving a net effect due only to the
D3-branes, given by (7.15).

The generalization of results of the previous sections to global supersym-
metric setups is clear, by simply replacing Zp7, Zps by the corresponding
solutions of the Laplace equation

~AZpsy7 (x%, %) = ppgy7 (x%, %) . (7.20)
The above examples correspond to the local solutions of

pp3/7 ~ Npaj702(z, 2) . (7.21)

In global compact setups, the Laplace equation implies some non-trivial
integrability conditions on the sources, which are closely related to the
dynamical tadpoles. We thus postpone their discussion to Section 7.4.

7.3.2 Non-supersymmetric backreactions

In this section we consider supersymmetry breaking sources, including
anti-D3-branes (dubbed D3-branes in the following), and their backreac-
tion effect on ED3’s. Our aim is to obtain the backreaction of D7-branes
with induced D3/D3-brane charge, as arises in the presence of NSNS
2-form field backgrounds (ubiquitous in compactifications with NSNS
and RR 3-form fluxes [42, 154]). Our results provide a simple re-derivation
of [163] (to which we refer the reader for a detailed discussion), and
generalize easily to some further effects not considered therein.
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7.3.2.1 Anti-D3 on ED3

Consider the setup of type IIB theory on My X Xy X R? as in Section
7.3.1.2, but with Nz D3-branes instead of D3-branes. We consider the

model locally, so that we ignore global tadpoles. Since the D3-branes
have the same tension but opposite charge compared with D3-branes,
their backreaction on the metric is given by (7.12) with

Z(r) = _gsz_l\? log(r/L) + ... (7.22)

and the backreaction on the RR 4-form equals to Eq. (7.14) with an extra
sign

Ngz

The effect on an ED3 located at position z is multiplication by a factor
N
—2—23 log(Z/L) + ... . (7.24)

This anti-holomorphic dependence reflects the fact that locally, the ED3
and D3 preserve common supersymmetries, albeit those opposite to the
ED3/D3 system (and globally, by the CY threefold compactification).

7.3.2.2 D7/D3/anti-D3 on ED3

We could now consider the backreaction of D3/ D3 pairs. However, these
systems are strongly unstable due to tachyons, and we prefer to consider
a more tractable alternative, which in fact is our main setup in future
sections. We consider type IIB theory on My X X4 X R? with a D7-brane
wrapped on Xy with equal smeared (in X4) D3/ D3 charge distributions.
These arise in the presence of a worldvolume gauge background with
field strength F, and/or pullbacked NSNS 2-form background B;, which
combine into

Fy = 27'(0(,F2 +B,. (725)

The D3/D3 charge distributions cancel locally when it satisfies
FNFr=0. (7.26)

The individual D3- and D3-brane contributions are obtained by extracting
the self- and anti-selfdual pieces

1
Foe = 5(972 + %), (7.27)
where %4 is Hodge in X4. In particular, we have
Nps = / Fo+ NFo 4, Nﬁ = —/ Fo- NFo,- (7.28)
Xy Xy

and (7.26) implies Np3 = Np3, as anticipated.

Since both contribute in the same way to the gravitational background, it
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is useful to introduce

N3 = [ |%|* = Nps + Ngz = 2Np3. (7.29)
Xy

To compute the backreaction, we superimpose the effects of the corre-
sponding brane charges, as computed in earlier sections. This is the
leading contribution in an expansion with the sources (flux densities)
as a perturbative parameter; this implies ignoring the corrections that
would involve, e.g., solving the gravitational background of a source in
the background created by another source. The present expansion fits
well with the regime needed for the coming sections and agrees with the
detailed analysis in [163].

The result is that the correction to the ED3 action is controlled by a
factor —% log(r/L). Particularizing to toroidal X4 = T* and constant
backgrounds, we have

1
SED3 =(1- E|9'2|2 IOg(V/L) + ... SI(ZZD3 , (7.30)
where for future convenience, we have added a constant piece in the
prefactor, so that the action is ng when % = 0. The above result is

easily understood from different perspectives. The D7-brane backreaction
on the dilaton and metric cancel out, leaving an effective D3- and D3-
brane distribution, whose backreaction on C4 cancels exactly, and whose
backreaction on the metric adds up. As anticipated, we recover the result
in [163].

7.3.2.3 D5/anti-D5 on ED3

We now consider an effect present in this setup, but not included in [163].
In the presence of the worldvolume background %, there is an induced
D5- or D5-brane density, which also must backreact on the geometry. For
simplicity and future use, we consider Xy = T* (or an orbifold thereof),
and consider constant %, so that the D5-brane charge is smeared, and
the solution does not depend on internal coordinates in X4. We also focus
on induced D5-brane charge, and the results will extend easily to D5/D5
setups needed later on.

The supergravity background created by a D5-brane (e.g. along 45 and
transverse to 67 in X4) is determined by a 2d harmonic function Zps(r)
as

ds? = Zo P dxtdx? + 2512 ds3 + ZU2ds2, + 712 dzdz

D5
(7.31)
e2 = Zps.

In local R? we have

8sNps
o log(r/L) +.... (7.32)

Zps = —

The above backreaction superimposes to D7/D3/D3 as discussed ear-
lier.
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There is also a RR 2-form background, which will not be relevant to
our setups. In fact, we are interested in obtaining the correction to the
action of an ED3 (along 4567) from the above background, and the latter
does not couple to the RR 2-form. Note also that in this case there is no
correction coming from the backreacted metric, since the Zps factors
have inverse power for 45 and 67, and they cancel off. One is thus left
with the correction to the dilaton, which gives a correction to ng by a
factor

1
Shos = [1- yom |F>|log(r/L) + ...| Spps (7.33)
where we expanded Z]13/52 to first order in the induced D5-brane charge,
and we already included the constant piece 1, as above.

In the above expressions we have been sloppy concerning the numerical
factors, which are not essential to our analysis below, since it is enough
to keep track of the parametric dependence with induced charges. The
signs of the different contributions are on the other hand crucial.

7.4 Dynamical tadpoles and WGC in D7-brane
models

7.4.1 A D7-brane model

We are considering the model with D7-brane and 3-form fluxes in
[157], which we now review. Although the specific model fulfilling the
conditions we need is discussed in Section 7.5, we here discuss the
general class of type IIB orientifolds of T®, or rather orbifolds thereof,
like T2 X T*/Zs, or T®/(Zy X 7). For concreteness, we carry out the
description in terms of the latter, although we also discuss the simpler
alternatives when indicated. We take a factorized (T?)3 structure, with
coordinates 0 < x, yi <1,i=1,2,3 for each T?, and complexify them
as z' = x' + 7;y". We mod out by QR (-1)'*, where % flips all T°
coordinates, z{ — —z!, which introduces 64 O3-planes. In addition, in
the presence of orbifold quotients, e.g., Z, X Z, there are additional sets
of 4 O7;-planes localized on the i T2. The O3-plane charge is canceled
against contributions from the upcoming 3-form fluxes, and D3-branes
if necessary, which can be located at arbitrary positions. The models
typically also contain D7;-branes, transverse to the i" T2. These can be
located at arbitrary positions, provided we include the corresponding
orbifold and orientifold images, and that we comply with the flux
stabilization discussed next.

Following [157] we introduce a specific choice of NSNS and RR 3-form
fluxes,

F3 = 4ra’N (dx! Adx? A dy® + dy' A dy® Ady?)

7.34

Hs = 4m*a’N (dx! A dx? A dx® + dy' A dy* A dx®) . 734
Although naively N € Z due to flux quantization, it must actually
be some suitable multiple of some Npin due to the diverse quotients;
for instance, N € 27 for T® orientifolds with standard (i.e. negatively
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charged) O3-planes [183], and N € 47Z, 87Z in T®/(Z X Zy) orientifolds
[184, 185], as we recall in Section 7.5.4.

The flux superpotential admits supersymmetric minima for
71Ty = -1, 131 = -1, (7.35)

where 7 is the 10d IIB complex coupling.

The fluxes also stabilize some of the D7-brane moduli as follows. The
presence of the fluxes introduces an in general non-zero pullback of
the NSNS 2-form on the D7-branes. For instance, for a D7; at a generic
position (x!, y'), in a suitable gauge, we have

Blpy, = 4m?a’N (x'dx® A dx® + yldy? A dx®) . (7.36)

The supersymmetry condition [186] requires that (7.25) is primitive, and
of type (1, 1) when expressed in complex components. This is clearly
satisfied at the origin z! = 0, where D7;-branes can thus be stabilized.
However, as emphasized in [157] it is possible to locate them at other
positions (x!, y!) if Nx!, Ny! € Z, by compensating (7.36) with suitably
quantized worldvolume gauge fluxes. For our purposes, we just need
some D7-brane to be located at the origin, and we can consider a general
distribution for the rest. For concreteness, using the above freedom, and
the fact that N is even from flux quantization, we choose to locate the
D7;-branes distributed in sets of 8 on top of the O7;-planes to have local
charge cancellation (see Section 7.5.3 for an explicit example).

For orientifolds of T®/(Z, X Z) there are typically®® additional kinds of
D7-branes, that we now discuss. D7;-brane behave similar to the D7;-
branes above, and introduce no qualitative new features. On the other
hand, for D73-branes, the motion away from the origin is compatible with
supersymmetry and corresponds to a flat direction. This is because the
induced B-field is (1, 1) (and primitive), hence satisfies the supersymmetry
conditions. Our focus is on supersymmetry breaking effects, so we will
not be interested in exploring this possibility.

Focusing again on D7;-branes, we also note that, despite the induced
B-fields, there is no net induced D3-brane charge, since (7.36) wedges
to zero with itself, c.f. (7.26). In fact in other models, or even in this
model but for the motion of the D73-branes, there is a non-zero net
induced D3-brane charge, proportional to the displacement squared.
This is compatible with the cancellation of tadpoles for the RR 4-form due
to a mechanism unveiled in [162]: the backreaction of the induced D5-
brane charges on the D7-brane modifies the RR 3-form flux F3, changing
the flux contribution to the tadpole in precisely the right amount. In
our examples, we focus on D7-brane motions not involving induced
net D3-brane charge, and hence no such modification of the F3 flux
background.

7.4.2 Moving off the minimum and the dynamical
tadpole

We now start addressing our main point by introducing a source of
supersymmetry breaking, which triggers a dynamical tadpole. A simple

58: Albeit, not in the specific example to
be constructed in Section 7.5.
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59: In Section 7.4.3.3 we also consider
ED(—1)-brane instantons. These are also
BPS with respect to the supersymmet-
ric D3/03 and D7/07 background, and
again disappear in the relevant part of the
backreaction.

way to achieve this is to consider moving away from the minimum of
the potential. Among the different ways to climb up the potential, we
focus on the motion of D7;-branes because they lead to better understood
backreaction effects, of the kind discussed in Section 7.3 (clearly, D7,-
brane motion leads to similar results).

Consider the above type IIB orientifold, and consider a fixed point at
which some D7;-branes sit, which without loss of generality we take to
be the origin x! = y! = 0. To be precise, we consider regular D7-branes
with respect to the relevant orbifold group, so that they can move off
into the bulk (see Section 7.5 for a detailed discussion of constructions
allowing this motion) e.g. in the first complex plane, to the position

zl=+eeR, (7.37)

where the two signs correspond to a D7-brane and its image.

This motion is along a massive direction, off the minimum of the potential,
due to the non-trivial B-field (7.36) on the D7;-brane worldvolume. Since
there is no net D3-brane charge, this can be regarded as a D3/D3-brane
tension localized at z! = +¢, and proportional to N?|¢|?, backreacting
on the metric, as in Section 7.3.2.1. This is also the scaling of the potential
energy stored in the configuration. In addition, there is an induced
D5-brane change on the D7-brane (and its corresponding D5-brane in
its image), which implies a backreaction on the dilaton, as in Section
7.3.2.3. We are now interested in computing the backreaction of these
extra sources. Since everything will be happening in a complex plane,
from now on we denote z! and 7y by z and 7 (hoping for no confusion
with the IIB complex coupling).

Since we consider a motion |¢| < L, where L sets the size of the (T?);
directions, we can start with a local model as in Section 7.3. Note that we
still consider M < ¢ so that we can use the supergravity description to
obtain the backreaction. In general, there is a non-trivial supergravity
background created by the D3-branes and O3-planes in the configuration,
the D7-branes and O7-planes, and finally the induced D3/D3-branes,
and D5- (and D5-) branes. In the coming sections we are interested in
the effect of this background on ED3;-branes,? for which most of these
contributions cancel. As discussed in Section 7.3.2, the key backreaction
effects are in the warp factor Z sourced only by the induced tension on
the D7-brane worldvolume, and the induced D5-brane backreaction on
the dilaton. They schematically read

N2|€|2
Z =1-——[log(|z — el/L) +log(|z + el/L)] +...
NZR (7.38)
gs‘l ~1-— % [log(|z —¢|/L) +log(|z + el/L)] +...

where we introduce the constant term 1 to recover the trivial backreaction
for ¢ = 0. Here the overall prefactors depending on N|¢| provide the
induced brane density, and the dots hide the global features to which turn
next. Note that in these and coming expressions, we are only interested
in the parametric dependence, and we skip order 1 numerical factors, in
particular in the coefficients of the log terms for the metric and dilaton
profiles. On the other hand, the explicit minus sign and the structure
of the bracket of logs itself are identical for both backgrounds, as it is
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determined by the solution of a Laplace equation in R? with sources at
zZ = *®e&.

The above expression is valid for small ¢, since we take the linear/quadratic
approximation for the induced D5/D3-brane density. The result can how-
ever, be extended to a larger ¢ by using the full DBI contribution, e.g. for
the 3-brane charge we sketchily change

le|? —>2(\/1+|e|2—1) . (7.39)

We will nevertheless stick to small ¢, since it controls the expansion of
weak supersymmetry breaking sources employed in the computation of
the leading backreaction effect. In any event, the only relevant information
is that the coefficients of the logs are positive definite (up to the explicitly
indicated sign) for any value of ¢, and vanish at ¢ = 0 at least as O(¢).

We now turn to a very important point. We eventually need the backre-
action at a general position z, not necessarily close to the origin. Hence,
even if ¢ is small, we need to consider the global compactification. For
this, in principle, one would simply promote the previous logarithmic
backreaction to a solution of the Laplace equation with a delta function
source c.f. (7.20). However, this leads to a problem of integrability of the
equation, as the left-hand side integrates to zero in a compact space, and
the right-hand side does not. This is nothing but the dynamical tadpole
problem presented in the introduction: there is a vacuum energy stored
in the internal space, which leads to an inconsistency of the equations of
motion.

A usual procedure (see [163], based on [164] in the supersymmetric
setup) is to modify the equations of motion (the Laplace equation) by
introducing a constant distribution of background source compensating
the delta function (i.e. so that the right-hand side integrates to zero). In
other words, we promote

log(lzzgl)+log(|zgg|) —>G2(|ZZ€|)+G2(|ZZE|) ,  (7.40)

where G(z) is the 2d Green'’s function, satisfying

1
L2Imt’

AGy(z-2')=02(z—2") - (7.41)
Here, L is explicitly the length of the T2 sides, set to L = 1 in what follows
for simplicity. The solution is given by (see, e.g., [163, 187], also [188] in a
different context)

1

S(z|T
o) = - 10g 1(z10)

n(7)

(Im z)?
T oimt (7.42)

where 91(z|7) and 1)(7) are defined, respectively in Egs. (D.8) and (D.10)
and where an additive integration constant has been fixed to have the
Green function integrated to zero (so that a constant density of source
gives rise to no correction).

The above trick is a well-defined mathematical procedure, but its physical
meaning is questionable. It corresponds to introduce by hand in (7.41) a
constant negative tension background in the internal geometry, which
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indeed sounds troublesome. Alternatively, it corresponds to ignoring the
dynamical tadpole (potential for the D7-brane position off its minimum)
and to insist that the configuration still admits a solution with distortions
only in the internal space, keeping the external 4d Minkowski spacetime.
In the following section, we argue that these are not just subtle technical-
ities, but, rather than putting the dynamical tadpole under the rug, can
lead to a direct contradiction with quantum gravitational swampland
constraints, in particular the Weak Gravity conjecture.

7.4.3 The clash with the WGC

In this section we show that in the theory there are objects that implement
the WGC in the vacuum, but for which the above discussed backreaction
(with the tadpole hidden under the rug) induces corrections in the wrong
direction, so that the configuration no longer obeys the WGC.

A simple possibility is to focus on BPS objects at the supersymmetric
minimum, and to track their properties in the displaced configuration. As
anticipated in Section 7.3.2, we consider the axion WGC and focus on the
ED3-brane instantons wrapped on Xy, and transverse to the z!-complex
plane. We consider two possibilities to be discussed, in turn, regular
ED3-branes, which are mobile and can be located at different positions
in z!, and fractional ED3-branes, which are stuck at a given fixed point
(and can be regarded as ED3/ED(—1) bound states).

7.4.3.1 The regular ED3

Consider a regular ED3, namely one that can be located at any position in
z1, before the introduction of fluxes (since the latter lead to localization,
as will be mentioned soon). In the case of a T orientifold, this is achieved
by introducing an orientifold image, and if there are orbifold quotients
this requires a specific choice of Chan-Paton actions, whose details we
skip (see Section 7.5 for an extensive discussion).

At the supersymmetric minimum, the action for the BPS ED3-brane
instanton is
So=ImT, (7.43)

where T is the 4-cycle modulus of the underlying T®. The BPS relation
ensures these instantons saturate the axion WGC, in fact also for arbitrary
instanton charge (e.g., multiply wrapped ED3s).

Although the above observations apply for instantons located at arbitrary
z1, the introduction of 3-form fluxes leads to a localization effect, since,
e.g. away from z! = 0 the ED3 picks up a B-field exactly as in (7.36), which
contributes to increase its action. This contribution grows quadratically
with |z!| and is not suppressed for small ¢, so it dominates over &-
dependent backreaction corrections. Hence, in the following we focus
on the effect of backreactions on ED3 located at z! = 0, where the direct
flux-induced localization vanishes (however, we advance that ED3s at
other possible locations will bite back in Section 7.4.3.2).

When we move the D7-brane off its minimum, the backreaction (7.38)
enters as a multiplicative factor in the instanton action. Hence, the
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correction to the ED3 action at z = 0 is
AS = -C (log|¢|) ImT, (7.44)

with a positive definite coefficient C, vanishing for ¢ — 0, with the
sketchy structure
Nle|  N?[e]?
~— .
271 i
Note that N ||, N2|&|*Im T encodes the total induced 5-brane and 3-brane
tensions, and correspond to N5, N3 in (7.32) and (7.29), respectively.

C (7.45)

Since we have small ¢, this gives a positive correction AS positive, thus
increasing the action of the instanton. Actually, this is not yet problematic.
In fact, since (7.44) follows from just the local model approximation,
there is no finite 4d Planck scale and hence no contradiction with the
WGC so far. Notice also that the dynamical tadpole has not yet been
ignored, since the Laplace equation in non-compact spaces does not
require the cancellation of sources, hence the introduction of the fake
background to cancel the tadpole. This agrees with our picture that it is
the mistreatment of the dynamical tadpole that leads to problems with
quantum gravitational constraints.

7.4.3.2 Going compact: The ED3 landscape

In this section we consider the compact T? model, and the modification it
implies for the ED3-brane action and its interplay with the axion WGC.

As we have explained, to describe the backreaction in the compact T2
we have to promote the logs in earlier expressions to solutions of the
2d Laplace equation c.f. (7.40), which leads to the dynamical tadpole
problem. Getting rid of it as described above, the effect of the backreaction
on the action of an ED3 at a general location z is

—CGrot(z;€) = =C[Ga(z + €]1) + Gax = [7)] , (7.46)

where Gy is the total Green’s function due to the two sources at z = +¢.
This by itself does not lead to a substantial modification, since its local
behavior near z = 0 is just the above logs, so we recover the same
correction to the action of the ED3 at z = 0. However, there is an
important novelty in the compact model, since there are locations away
from z = 0 where the B-field induced on the volume of the ED3-brane can
be canceled by a suitable worldvolume magnetic flux, giving a vanishing
(7.25) on the ED3. Namely, recalling (7.36), we see that for an ED3 at
x! =n1/N, y! = ny/N, with n; € Z, we may cancel the induced B-field
by choosing

Fy = — (mdx® A dx® + nady? A dx®) . (7.47)

This is nothing but the ED3 version of the open string landscape of [157].
These ED3s are in the same topological charge sector as the original ED3
at z = 0 because /X4 F» A Fp = 0. Hence, the condition that we actually
obtain a violation of the WGC is that the backreacted ED3 action increases
for all points of the ED3 open string landscape. In terms of (7.46), the
condition is that the value of Gy, is negative at all the ED3 open string
landscape points.

141



142

(@ N =2

7 Dynamical Tadpoles and Weak Gravity Constraints

Since flux quantization in orientifolds of T requires that N must be
at least a multiple of 2 (and possibly for 4 or 8, in further orbifolds),
the ED3 open string landscape points include at least the four points
z =0,1/2,7/2,(1+1)/2. This is non-trivial, since recall the integral of the
Green'’s function integrates to zero over T?, hence scans over both positive
and negative values. In fact, we have performed extended numerical
checks for different values of ¢ and 7, and have always found that the
above condition seems impossible to fulfill. In other words, even if the
value of Gyt can be made negative at one or even several of these points,
there is always at least one of them where Gy, is positive. In Figures 7.1,
7.2 we provide typical examples for 7 = 27, ¢ = 0.1,0.2,and N =2, 4.

(3-2%+(@+2)%0

Golz + &) + Galz — )

(b) N = 4.

Figure 7.1: Plot of Gy, for T = 2i and ¢ = 0.1. The blue dots are the ED3 open string landscape points, and the green one z = 0.

(@ N =2.

(3-2+(@+2)%D

Golz + ) + Galz — )

(b) N =4.

Figure 7.2: Plot of Gyot. for T = 2i and ¢ = 0.1. The blue dots are the ED3 open string landscape points, and the green one z = 0.

The pattern is clear and shows that there is no violation of the WGC in
this sector of axion charges. Although it could be interesting to have a
direct analytical proof of this result, we instead move the discussing the
WGC in other closely related charge sectors.

7.4.3.3 The fractional ED3/ED(—1) sector

The discussion in the previous section makes it clear that the WGC
for regular ED3s is satisfied precisely because they are free to move
in the T?, so that there is always a representative of the charge sector
with small enough action. In this section we seek further and consider
fractional ED3-branes, which can be stuck at fixed points, and show that
the corresponding WGC is violated.
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In orientifolds of toroidal orbifolds, in addition to the regular ED3-branes
there may be fractional ED3-branes, stuck at the orbifold fixed points.
These arise when it is possible to endow the ED3-branes with Chan-Paton
indices not in the regular representation of the orbifold group. On general
grounds, it is not obvious that one can build models in which D7-branes
can be mobile (as we need, to move off the minimum) while admitting
fractional ED3-branes stuck at the orbifold points. We postpone this
technical discussion and the construction of an explicit model to Section
7.5, and here proceed with those aspects related to the WGC.

For our purposes in this section, it suffices to note that flux quantization
in orbifolds ensures that the orbifold points lie at possible ED3 open
string landscape positions, so that (suitably magnetized) fractional ED3s
maintain their minimal action, without suffering an increase due to the
pullbacked B-field. Hence, since these ED3’s are stuck at such position, it
would naively seem straightforward to find values of parameters 7, ¢,
such that the Gy, at that particular location is negative. Some obvious
examples are given by the figures above. This would seem to lead to
direct violation of the WGC.

However, although the final conclusion is correct, this is not exactly
how things work, due to important subtleties. Recall the intuition that
fractional branes cannot move off the fixed point because they carry
charges under RR fields in the orbifold twisted sector (geometrically, they
are secretly wrapped on the cycles collapsed at the orbifold singularity).
In other words, they can be regarded as ED3/ED(—1)-brane bound states.
We are thus dealing with a multi-charge sector, and must hence consider
the multi-axion version of the WGC. This is described in terms of the
convex hull WGC [85, 122, 189]. In the following, we sketch the discussion
in the simplified situation that there is only one twisted axion,®
the generalization to several introduces no new features. Also, we abuse
language to use the more familiar particle WGC terminology, such as
‘state’ or ‘'mass’ (instead of instanton and action).

since

Consider the situation before the introduction of the 3-form fluxes. We
can consider the set of BPS (possibly fractional) ED3/ED(—1)-brane
bound states, for arbitrary charges. The BPS condition ensures that all
these states saturate the WGC condition, and that their charge to mass
ratio lie in the extremal region given by the unit ball. Namely, for any
rational direction in charge space, there is a BPS state saturating the
WGC, namely with unit charge to mass ratio. This is illustrated in Figure
7.3a.

Let us now consider including the backreaction effects. In the direction
of the purely untwisted charge, the discussion is as in the previous
section, and although the fractional ED3 at the orbifold point does not
satisfy the WGC bound, the theory does contain other states satisfying
the strict inequality. Hence, the curve of former BPS states is deformed
outward along that direction, with the deformation controlled by the
small parameter &.

In the direction of the purely twisted charge, the charged states are
(fractional and regular) ED(—1)-branes. Although we have not discussed
them in Section 7.3, the backreaction effects are straightforward to
describe. Since they have no extended dimensions, the ED(—1)-branes
are insensitive to the warp factor sourced by the induced D3-brane

60: We are also skipping the discussion
of the 10d axion, to which ED(—1)-brane
instantons couple; again they do not sig-
nificantly change the argument or its con-
clusion.

Untwisted

Twisted

(a) In the BPS case, the solid line describes
the set of BPS states, saturating the WGC
for any rational direction.

Untwisted

‘
! Twisted

(b) After including the backreaction, the
curve of the former BPS states is deformed
away from the unit circle. In the purely
untwisted charge direction, the WGC is
satisfied, but it is violated in the purely
twisted charge direction.

Figure 7.3: The 2-axion convex hull WGC
before and after including the backreac-
tion.
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charge; on the other hand, their action is controlled by ¢;!, which gets
corrected due to the induced D5-brane charge. Promoting its value (7.38)
to the global setup, we find a correction given by (7.46), with a positive
definite coefficient C ~ N|¢| from the 5-brane source. In analogy with
the argument for ED3s, this correction increases the action for fractional
ED(—1) brane instantons, again with the deviation controlled by &. Since
we are dealing with twisted charges, there are no representatives in this
charge sector in other locations, so there is no charged states satisfying
the WGC in this charge sector. Combining results for general rational
charge vectors, the WGC diagram looks like Figure 7.3b. The unit ball is
squashed by an amount controlled by ¢, and there is a violation of the
WGC in the direction close enough to the purely twisted axion charge
vector.

We can be more precise about Figure 7.3. In Figure 7.3a we are showing
all possible states with charges (1, m) under the untwisted and twisted
axions given by bound states of ED3-branes wrapped 7 times on T? and
m fractional ED(—1)-brane instantons. Since they are BPS they fill out the
round circle. In Figure 7.3b, the corrections controlled by ¢ go in opposite
directions for the untwisted and twisted directions, and the states fill
out the ellipse. Since now the convex hull does not contain the unit ball,
there is a violation of the WGC, in particular close to the twisted axion
charge vector.

As a final remark, note that we have not discussed the values of the
Planck scale and axion decay constants. In fact, since we are working
in the effective theory of the supersymmetric vacuum, and have simply
changed a scalar VEV, the axion decay constants remain fixed; or more
precisely, any change in the axion decay constant should be encoded in
a dependence on the scalars. This would lead to a discussion in terms
of the scalar WGC (see [90], also [190, 191] for variants, and [78] for the
axion version). However, this does not help to satisfy the constraint since
e.g. for a single axion the scalar WGC reads [78]

f2S* + f2(0yS)*Mp < M3 (7.48)

Hence the scalar contribution is positive definite and adds to the gravita-
tional contribution.

The simplest explanation for the non-fulfillment of the WGC in the
configuration is thus that it does not provide a consistent background,
due to the artificial removal of the dynamical tadpole. In other words,
the configuration makes the inconsistency of the background manifest as
an incompatibility with QG, namely with the swampland constraint.

In the next section, we build an explicit orientifold with the features
described above. Readers not interested in the details are advised to jump
to the conclusions in Section 7.6.

7.5 An explicit Z, X Z; orientifold example

In this section, we build an orientifold of T®/(Z, X Z,) with mobile
D7;-branes which allows for fractional ED3 branes stuck at some fixed
points, hence provides an explicit realization of the above ideas. As we
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will see, the fact that we are interested in D7- and ED3-branes associated
to the same 4-cycle in T® makes it non-trivial to allow mobile D7s and
stuck ED3s. For the benefit of the reader, we take the opportunity to
review the key points of type IIB orientifolds, and some of the main
models illustrating them, to better explain our eventual choice of the
final model realizing mobile D7-branes and stuck ED3-branes.

7.5.1 Choice of discrete torsion

Orientifolds of T®/(Z, X Z) have been studied for decades, and illustrate
the wealth of possible discrete parameters in defining orientifolds of
orbifold varieties. On one hand, the T°/(Z, X Z,) orbifold admits a
choice of Z, discrete torsion [192-194]. The two resulting models are
distinguished by a parameter ¢ = +1 determining the action of the
generator O of one of the Z,’s on the states of the sector twisted by
the generator w of the second Z, (equivalently, as a relative weight
between two disjoint SL(2, Z) orbits of contributions to the torus partition
function). Since the twisted sector of w contains 2-cycles (collapsed at
the orbifold singularities) and 3-cycles (given by the 2-cycles times a
1-cycle in the unrotated TZ), the choice of discrete torsion determines if
the O projection keeps the w-twisted 2-cycles or the 3-cycles. Including a
similar analysis for the three different twisted sectors, and the untwisted
contributions, the resulting CY 3-folds have Hodge numbers (h1,1, hp,1) =
(3,51) for one choice (which we will refer to as without discrete torsion,
and denote with ¢ = +1) and (h,1, h2,1) = (51, 3) for the other choice
(which we will refer to as with discrete torsion, and denote with ¢ = —1).
We warn the reader that the convention of ‘'with/without’ is not uniform
in the literature, and that we follow the one used in part of the literature
on orientifolds (see later), which is opposite to e.g. [194].

From a geometric perspective, a fractional ED3-brane wrapped on a
holomorphic 4-cycle stuck at orbifold fixed points must be secretly
wrapped on a collapsed 2-cycle at the singularity. Hence, to allow for
them, the underlying orbifold model must contain blowup 2-cycles,
namely, it must be the (h11, 12,1) = (51, 3) choice (with discrete torsion
or € = —1, in our conventions).

This means that the T/(Z, X Z,) orientifold we need is not the one
constructed in [195], which corresponds to the model (h1,1, h2,1) = (3,51)
(without discrete torsion, or ¢ = +1, in our convention). This can be
checked by noticing that the Chan-Paton matrices defining the orbifold
actions on the D-branes give not a true representation of the orbifold
group, but a projective one, as explained in [196, 197] (the "with/without’
convention there is opposite to ours, and follows [194]). Instead, we must
focus on models based on the choice (h 1, hp1) = (51, 3) (with discrete
torsion, or ¢ = —1, in our convention). This may sound troublesome, since
models with this choice of discrete torsion tend to have positively charged
orientifold planes, and hence require the introduction of antibranes [198,
199] (see also [148-150, 200, 201] for examples in other orientifolds). We
will later on see how our model does not suffer from this problem.
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61: Actually, the most obvious choice
would be the SO/Sp projection. In the
discussion below, we assume we take the
projection corresponding to negatively
charged orientifold planes, to the extent al-
lowed by the other discrete choices (which
in some cases force some of these orien-
tifold planes to be positively charged).

62: See [202] for a notable exception.

7.5.2 Choice of vector structure

When performing the orientifold quotient, there are further discrete
choices to consider.®! In the twisted sectors of a general orbifold ele-
ment Z,, the orientifold usually acts by exchanging oppositely twisted
sectors.®? This implies that the sector twisted by an order 2 orbifold
element R is mapped to itself, and there is a discrete choice of sign for
the corresponding orientifold action ()’ (where the prime indicates that
the worldsheet parity is in general accompanied by geometric, or other,
actions) [203]. As explained in this reference, this manifests in the open
string sector of a Dp-brane as the following condition on the Chan-Paton
matrices

YRp = VYR Ver p - (7.49)

The choices +/~— are (this time, universally) known as with/without
vector structure, see [204] (also [205]) for geometric interpretation un-
derlying the naming. An important aspect is that the choice is correlated
with a choice of the orientifold action on the closed string sector, hence
the sign choice in the open sector must hold for all D-branes in the
model.

A typical choice of Chan-Paton matrices for any of these branes in models
without vector structure is, in a suitable basis,

YRrp = diag(il,, —il,), ya,p = (Il 11”) or Yoy p = (—iIL Zﬂn) ,
n n

(7.50)
where n denotes the number of D-branes in a given set fixed under
the orbifold and orientifold actions, and the two choices of y¢ , are
symmetric/antisymmetric for the SO/Sp projections. For instance, the
6d T*/Z, model in [206, 207] corresponds to the above action for n = 16
on 32 coincident D-branes mapped to themselves by the orbifold and
orientifold actions. Similarly, in the 4d model in [195] the orientifold action
on each Z, orbifold twist is of this kind (albeit in a not simultaneously
diagonalizable way, as befits the projective representation required for
the discrete torsion choice of the model). Generalizations to other orbifold
groups have also been constructed [208] (see also [209]).

As is clear from the template (7.50), the orientifold acts by exchanging
the two different kinds of fractional branes of the underlying Z, orbifold.
Hence, a consistent orientifold action requires that the orbifold action
on D-branes is in the regular representation, namely, tr yg , = 0, and
hence one cannot have stuck fractional D-branes. For our purposes in
the main text, this would be fine to allow for mobile D7-branes, but it
forbids having stuck ED3-branes. Note that, in the particular case of the
model in [195], this also agrees with our earlier discussion of the absence
of fractional 4-cycles for that choice of discrete torsion.

Hence, for our purposes in the main text, we are interested in models
where the orientifold action on an orbifold element rotating the first
complex plane is with vector structure. Models with vector structure have
been considered, starting from [203] (see [210] for 4d examples) and they
involve an extra subtlety. In the D9-brane description, the orbifold fixed
points, also fixed under this orientifold action with vector structure, have a
positive RR charge. Hence, as shown in [203], a consistent supersymmetric
model can be achieved only if 8 of the 16 fixed points have orientifold
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action with vector structure, and the other 8 have orientifold action
without vector structure (with the difference implemented by a suitable
Wilson line). The model thus contains D9-branes, but no D5-branes. The
model has a T-dual with D5-branes and no D9-branes, which had been
constructed in [211]. We now turn to the construction of this 6d model,
but in terms of D7-branes, to later employ it to build a 4d model with
mobile D7-branes and admitting stuck ED3s.

The construction of the 6d model is as follows. Take T* parameterized
by (z1, z2) with z; = x; + T;y4, and x;, y; with periodicities 1. We have
a Z, orbifold action generated by 6 : (z1,z2) — (—z1,—22), with 16
orbifold fixed points at the locations x; = 0, %, yi =0, % We orientifold
by QR;(-1)ft with Ry : (z1,22) — (-z1 + %,22). This leads to 4 O7;-
planes (which we take negatively charged), located at x; = 1,3, y1 =
0, %, and spanning z,. There are 32 D7;-branes, whose distribution
in the z1 plane should respect the symmetries and will be discussed
later on. The orbifold fixed points do not sit on top of the O7;-planes,
so the orientifold action exchanges them. The orientifold group also
includes the element QR;0(—1)ft, which is however freely acting since
R10 : (z1,22) — (zl + %, —zz). Hence, there are no crosscap RR tadpoles,
namely, no O7;-planes, and hence no D7,-branes need to be introduced.
This reproduces the cancellation of untwisted tadpoles with only one
kind of brane, as in the T-duals [203, 211]. On the other hand, since the
orientifold planes do not coincide with the orbifold fixed points, they do
not induce twisted RR tadpoles. Hence, the D7;-branes can be located
anywhere in the z1-plane, for instance as 8 independent D7-branes with
their corresponding orbifold and orientifold images. If they are located on
top of an orbifold or orientifold fixed point, their symmetry is enhanced.
For instance, locating 16 D7-branes on top of an orientifold plane and
16 on top of its orbifold image, one gets SO(16) vector multiplets of 6d
N =1, with one adjoint hypermultiplet. If we locate 16 D7-branes on top
of an orbifold point, and 16 at its orientifold image, the cancellation of
RR disk twisted tadpoles enforces

trye7 = 0— Yo7, = diag(]lg, —]lg) , (7.51)

at each of the two orbifold fixed points. In this case, the gauge group
is U(8)?, with two hypermultiplets in the ( ), [J). Although sitting
at the orbifold fixed point, the D7;-branes can be moved off into the
bulk, and this corresponds to Higgsing with the bifundamental down
to less symmetric patterns, possibly down to the generic U(1)%. As a
related comment, note that the equality of +1 and -1 entries in (7.51) is
not enforced by the orientifold action (which is merely mapping one
orbifold fixed point to the other), but by the disk RR tadpole condition.
This implies that it is perfectly consistent to have a D3-brane wrapped on
the directions z> and sitting at an orbifold fixed point in z; (with another
D3-brane at its orientifold image position) with

trygs #0— eg. yg3=1. (7.52)

This D3-brane sources a twisted tadpole, but there are non-compact
dimensions transverse to it in which the flux lines can escape to infinity.
The fact that the D3-brane sources this charge implies it cannot be moved
off the orbifold fixed point. Indeed, the open string sector does not
contain any matter fields for the choice (7.52). This wrapped D3-brane
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corresponds to a BPS string in the 6d theory, and is to become a stuck
ED3 in the upcoming 4d model, by wrapping its two dimensions on the
extra T2.

7.5.3 The 4d model

It is now easy to combine different above ingredients to build a 4d
model with mobile D7-branes and admitting stuck ED3s. We consider a
factorized T® parameterized by (z1, z2, z3) with z; = x; + 7,4, and x;, y;
with periodicities 1. We mod out by the Z, X Z, orbifold action generated
by 6: (z1,22,23) = (—z1,—22,23) and w: (21, 22,23) — (21, —22, —23).
This leads to the familiar 16 X 3 orbifold fixed planes, and as explained
in Section 7.5.1, we choose the model leading to (%11, hz,1) = (51,3) (i.e.
with discrete torsion or ¢ = —1, in our convention).

We now perform an orientifold QR (-1)Ft, with Ry: (z1,22,23) —
(—z1+1/2,2z,23). As explained in Section 7.5.2, this leads to 4 O7;-
planes located at x1 = 1/4,3/4, y1 = 0,1/2, and spanning z,. On the
other hand, QR;0(-1)t and QR;0w(-1)"t act with a shift in the co-
ordinate z;, hence are freely acting and do not introduce O7,- and
O73-planes. Finally, QR w(-1)Fr acts geometrically as Ryw: (z1, 22, 23)
— (=21 +1/2,-22,—23), and leads to 64 O3-planes, at x; = 1/4,3/4,
y1=0,1/2,x;,y; =0,1/2 for i = 2,3. Note that the O7; planes exchange
the 0-fixed orbifold points (and similarly for the w0-fixed points), but
maps each w-fixed plane to itself (and similarly for the O3-planes). In
particular, notice that there are points which are simultaneously fixed
under the w action and the O3-plane (or O7;-plane) action.

We must now specify the discrete choices for these orientifold actions
to achieve the desired result. We take negatively charged O7;-planes to
have a total of 32 D7;-branes, as counted in the covering space. Since we
seek to have mobile D7;-branes and stuck ED3-branes in z;, we need the
action of QR;(—=1) on the 0 orbifold to be with vector structure, just as
in the last 6d example discussed above. On the other hand, the action of
QR;(=1)t on the w orbifold cannot be with vector structure, since this
would lead to positively charged O3-planes, whose RR charge cannot
be canceled in a supersymmetric way. Hence, this sector should have
Chan-Paton matrices without vector structure. The orientifold action on
the Ow sector follows from the above, and is without vector structure.

Notice that this pattern matches the observation in [198] that in orien-
tifolds of T/ (Z, X Z,) there are three discrete sign choices ¢; determining
the orientifold action on the corresponding orbifold element, morally
g; = +1 (resp. ¢; = —1) implies the corresponding orientifold planes are
negatively (resp. positively) charged. These signs are correlated with the
discrete torsion parameter ¢ by ¢1£2¢3 = €. Our model has a discrete
torsion ¢ = —1, and hence requires that at least one orientifold action
has ¢; = —1. However, the model cleverly evades the need to introduce
positively charged orientifolds planes, because the ¢; = —1 action cor-
responds to the O orbifold sector, where the orientifold action is freely
acting and no actual orientifold planes appear. The two ¢; = +1 sectors
are the Ow sector, without orientifold planes, and the w, with negatively
charged O3-planes.
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To make the above description more explicit, let us describe the Chan-
Paton action on the 32 D3-branes. In the actual model in the main text,
the D3-branes will actually be replaced by 3-form fluxes, see Section 7.5.4,
so they are here used just to illustrate the effect of discrete choices in
open string sectors.

We consider 16 D3-branes located at and O3-plane, and 16 at the image
under the orbifold action O (or Ow). Each set is mapped to itself by
the action @ and by Q' = QR;(-1)*, which should be represented by
matrices Y3, Var 3 of the form (7.50). On the other hand, if we include
the 16+16 set in a single matrix yg 3 to describe the action of 0, its interplay
with QR;(-1)Ft should be with vector structure. Finally, recall that the
matrices )¢ 3, Yw,3 should provide a non-projective representation of the
orbifold group, due to the choice of discrete torsion. A simple choice
satisfying these properties is

1 . . o .
Y03 = ( ]116 16 ), Yoj3 = d1ag(z]lg, —1]18;1]18,—1]18) P

is (7.53
| —ilg )
Y3 = g
—ilg
Although y¢ 3 and y,,3 commute, we have not diagonalized the former
to maintain the 16+16 split manifest. The matrices satisfy (7.49) with +

sign for yg,3 and — sign for y,, 3. We have chosen the antisymmetric yq 3
corresponding to an Sp projection.

For D7; branes, we choose to locate 8 on top of each O7;-plane, which
we recall are exchanged pairwise by 6. The Chan-Paton matrices in the
corresponding 8+8 set are similar to the above, but with symmetric y¢y 7,
namely

1 . . . . .
Ye,7, = ( 1 5 ), Yo, = diag(ily, —ily; ily, —ily) ,

14
7.54
1, (7.54)
Yo = 1,
14

7.5.4 Introducing 3-form fluxes
As already mentioned, and is clear in the main text, the model must

include NSNS and RR 3-form fluxes, which contribute to the RR 4-form
tadpole cancellation. In particular, in the normalization (7.34), we have

1
Nfuwx = =—3—5 | F3AH3;=2N>. 7.55
fox = a2 -/X6 3 A Hs (7.55)
The RR tadpole condition is
Naux + Np3 =32, (7.56)

where Npj3 is the number of D3-branes, as counted in the covering space.
Hence, the condition for the flux contribution not to overshoot®® the RR

63: Notice that a moderate overshoot can
actually be allowed, and still maintain
supersymmetry, if one includes suitably
magnetized D9-branes, as implemented in
[212, 213] to solve a similar overshooting
problem in [184, 185, 214].
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tadpole is that N < 4.

One may fear that this bound is too small for an orientifold of T®/(Z, X Z,),
due to flux quantization conditions. As mentioned in the main text, it
was argued in [183] that in orientifolds of T® NSNS and RR fluxes
must be quantized in multiples of 2, if the model has all negatively
charged O3-planes, while odd quanta are allowed only if other (positively
charged) exotic O3-planes are included. In addition, the Z, orbifold
projections in general allow for smaller 3-cycles than in the underlying
T, leading to more strict quantization conditions. In fact, as shown in
[184, 185] the orientifold of the T®/(Z, X Z,) with (h11, ha1) = (3,51)
(without discrete torsion, or ¢ = 1, in our convention) requires 3-form
fluxes to be quantized in multiples of 8, leading to an overshoot of their
RR tadpole contribution. However, happily, for the T®/(Z, X Z,) we are
actually using, with (h11, hi21) = (51, 3) (with discrete torsion, or € = -1,
in our convention), it was shown in [184] that 3-form fluxes must be
quantized in multiples of 4. Thus, the minimum amount of flux available
for this model leads to N = 4, which precisely saturates the RR tadpole
cancellation, without need of D3-branes.

We would like to finish with an important observation, which relates flux
quantization with the ‘energetics’ of the stuck ED3-branes of interest in
the main text. The 3-form fluxes (7.34) are clearly invariant under the
orbifold and orientifold transformations. However, this invariance is not
manifest once we write down explicit expressions for the NSNS 2-form
gauge potential. For instance, let us redefine the origin in the z!-plane,
so that the origin z! = 0 corresponds to an orientifold plane, as in the
main text. Then, we may write

B =4m?a’N (x'dx® A dx® + y'dy? A dx®) , (7.57)

c.f. (7.36). This is invariant under the orientifold action, but not invariant
under the orbifold action (which in the z;-plane acts as a reflection with
respect to e.g. (x!, x?) = (1/4, 0). Clearly, this is just because (7.57) holds
in a local patch, and we are allowed to make gauge transformations
among different patches. Hence, near (x!, x?) = (1/4,0) we may fix a
different gauge and represent the same H3 with

B =4m*a’N ((x' = 1) dx® A dx® + yldy* Adx®) (7.58)

which is invariant under the orbifold, but not the orientifold action. The
question now is, if we consider ED3-brane instantons stuck at the orbifold
fixed point, which of the two expressions for the B-field should we
consider? This is relevant, because its pullback on the ED3 worldvolume
provides a contribution to the ED3 action, and hence seems to have an
impact on whether the WGC is satisfied. The answer is simply that both
expressions are valid, if we consider not just a given ED3, but rather
the whole set of magnetized ED3s, with different magnetization quanta.
Indeed, the shift in the B-field upon the gauge transformation can be
translated into a change in the magnetization of an ED3 by an amount

—jINazx2 Adx®. (7.59)

This can be absorbed by a properly quantized worldvolume magnetic
flux precisely thanks to the 3-form flux quantization condition N = 4 (or



a multiple thereof, in general).

An equivalent description is in terms of axion monodromy, with the
‘axion’ given by the position of the ED3-branes; considering the full
tower of magnetized ED3-branes, the tower at z! = 1/4 is identical to
the tower at z! = 0 modulo ED3-branes with different magnetization
F, = ndx* A dx® changing as n — n — 1. Another equivalent description
is in the language of [157] c.f. Section 7.4.3.2, as follows. In terms of
the B-field (7.57), there is an open string landscape of BPS ED3’s at
points x!N € Z, y!N € Z; hence, for N = 4, the orbifold fixed point
z! = 1/4 is one of the open string landscape points where some ED3
with suitable magnetization can cancel the corresponding B-field. This
cancellation is made manifest in the alternative local expression (7.58).
Notice that a similar mechanism is exploited for the D7;-branes so that
their distribution in sets of 8 on top of the O7;-planes, as discussed
in Section 7.5.3, remains a valid supersymmetric background in the
presence of fluxes.

7.6 Final remarks

In this chapter, we have considered the backreaction of supersymmetry
breaking effects and the corresponding dynamical tadpole in explicit
examples of type IIB toroidal orientifolds. We have shown that the
resulting configurations seem to violate the WGC for certain axions.
We have argued that the underlying problem is due to the unphysical
assumption of ignoring the effects of the dynamical tadpoles on the
4d spacetime configuration, restricting the backreaction to the internal
space. Hence, these are examples of theories in which dynamical tadpoles
manifest as direct incompatibility with QG, via swampland constraints.

These examples and the above interpretation open up many new avenues,
among others:

» Our source of supersymmetry breaking is based on moving slightly
off the minimum of an otherwise supersymmetric theory. It would
be nice to carry out the arguments in this chapter in a genuinely
non-supersymmetric model.

» It would be interesting to find models where the spacetime de-
pendence sourced by the dynamical tadpole can be solved, and
to address the formulation of the WGC in those backgrounds. In
particular, it may well be possible that the WGC does not hold in
its usual formulation. For instance, the usual black hole arguments
for the WGC for particles is based on the stability of remnants, a
feature which is sensitive to new effects if one is considering e.g.
time-dependent configurations.

» We have also encountered models where the dynamical tadpole
does not seem to lead to violation of the WGC. It would be inter-
esting to explore if they violate some other swampland constraint.
Conversely, these models could potentially be used to uncover new
swampland constraints not considered hitherto.

» Cancellation of topological tadpoles (such as RR tadpoles), which
are often associated to cancellation of anomalies in the spacetime
theory, or on suitable probes [134]. The ED3 and ED(—1)-brane

7.6 Final remarks
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instantons in our examples are reminiscent of probes of the dy-
namical tadpoles, albeit in a dynamical rather than a topological
way. It would be interesting to explore the interplay of dynamical
tadpoles and probes in more general setups.

These and other related questions seem capable of shedding new light in
the long-standing problem of dynamical tadpoles in string theory.
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Conclusiones

En esta tesis hemos analizado multiples aspectos de simetrfas discretas
y las hemos relacionado con el programa de Ciénaga. Hemos sefialado
también que ignorar la presencia de tadpoles dindmicos en compatifica-
tiones de TC puede conducir a violaciones de la CGD, sefialando una
incompatibilidad con GC.

La tesis se divide en tres partes principales.

La primera parte contiene desde el Capitulo 1al Capitulo 4. Presentaban el
material de referencia necesario para entender los resultados principales
de la tesis. En el Capitulo 1 hemos examinado los conceptos bésicos de
la correspondencia AdS / TCC que sienta las bases de las teorias y los
instrumentos que habriamos usado en los capitulos siguientes. Hemos
analizado también cudles son las condiciones para una compatificacion
consistente de tipo II sobre CY con orientifolds y flujos, centrandonos en
particular en la TC de tipo IIA.

En el Capitulo 2 hemos introducido el concepto de teoria de gauge con
quivers y, para las teorfa de gauge térica, las hemos descrito usando
diagramas de dimers y sus duales, quiver periédicos. En la Seccién 2.3
y 2.3.1 hemos descrito una nueva manera para obtener simetrias U(1)
globales a partir de propiedades topoldgicas de los dimers (o quiver
periédicos), usando lo que hemos llamado identidades geométricas.
En el Capitulo 3 hemos analizado simetrias discretas de gauge, en
particular cémo la simetrias discretas de gauge surgen naturalmente en
la compactificacién de TC. Hemos introducido los acoplamientos DKS
en 4d que sefialan la presencia de simetrias discretas, bajo las cuales las
paredes de dominios tienen carga. Desde el punto de vista de las TsCC,
hemos introducido el grupo de Heisenberg discreto que surge en la 4d
TsCC definida en las D3-branas que sondan singularidades de orbifolds
generales para generales CYs 3-folds toricas.

En el Capitulo 4 hemos elegido resumir el programa de Ciénaga en
su objetivo y caracteristicas principales. Nos hemos centrado en las
principales conjeturas, y en particular sobre las principales versiones de
la CGD que juegan una funcién importante en los siguientes capitulos
de esta tesis.

La segunda parte trata sobre la relacién entre simetrias discretas y el
programa del Ciénaga. Primero, hemos estudiado las simetrias discretas
globales en TsCC en 4d en el Capitulo 5 y, luego, hemos estudiado
simetrias discretas de gauge en compatificacién de TC en el Capfitulo 6.
De hecho, en el Capitulo 5, hemos aplicado las técnicas de los diagramas
dimer para descubrir las simetrias discretas globales en las teorfas de
campos sobre D3-branas en singularidades dadas por orbifolds generales
de singularidades de CY 3-fold téricas generales.

Primero hemos descrito cémo es posible definir las simetrias discretas
desde el espacio de cobertura de la teorfa con el orbifold, y luego
hemos encontrado una manera algoritmica de definir las cargas de
los campos quirales que tienen carga bajo las simetrias discretas del
grupo de Heisenberg. Se presentan muchos ejemplos como prueba de
la universalidad de nuestra técnica por cualquier orbifold que preserva
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por lo menos N = 1 de supersimetria en 4d. Hemos concluido con unos
comentarios sobre el dual gravitacional. Este dual ha sido usado en el
Capitulo 6 como apoyo para nuestras conjeturas. Estas conjeturas son la
primera formulacién precisa de la importancia de las simetrias discretas
en el programa del Ciénaga.

La primera conjetura es la Z; CAD en la Conjetura 6.1. Dicha conjetura
dice que en una teoria de GQ con una simetria discreta Zy de gauge
y una simetria U(1) de gauge con acoplamiento g, el acopiamiento de
gauge escala como g k™%, con & un nimero de orden 1. Hemos mostrado
ejemplos para apoyar dicha conjetura. Por ejemplo todos los duales
gravitacionales de las teorias que tienen un grupo discreto de Heisenberg
satisfacen la conjetura. Otro ejemplo es el modelo ABJM, ambos en la
formulacién de tipo IIA y de teoria M, que satisface la conjetura.

La segunda conjetura es la Z; RCDAF en la Conjetura 6.2. Esta conjetura
es un refinamiento de la CDAF en el caso en el cual hay una simetrfa de
gauge discreta Z. En particular, dicha simetrfa discreta estd relacionada
con paredes de dominio en 4d, asociadas a 3-formas. La declaracién
exacta de la conjetura es que en una teoria de GQ sobre un vacio de
AdS, con una simetria discreta Zj para paredes de dominio, en el limite
de espacio plano, la constante cosmoldgica L escala con M2k.1, donde
M es la masa de una torre infinita de estados que muestran que la
TCE se estd rompiendo. Esto es un resultado importante que puede
explicar la presencia de la separacién de escala en vacios de AdS en
compactificacién de TC. Para apoyar nuestra conjetura hemos usado
férmulas de uniones (presentadas en el Apéndice A) que nos permiten
calcular el comportamiento de la constante cosmolégica en completa
generalidad.

Hay interesantes argumentos que pueden ser desarrollados partiendo
de los resultados del Capitulo 6. Aqui podemos comentar dos:

» Una consecuencia directa de la CAD es que es posible hacer el
acoplamiento de gauge de una simetria de gauge U(1) arbitraria-
mente pequefio si hay una simetria discreta Zx con k arbitraria-
mente grande. Esto puede resultar en una violacién de la CGD, y
serfa interesante encontrar un limite del orden de la simetria disc-
reta de manera que las teorfas efectivas permanecen consistentes
con los principios de la gravedad cudantica.

» Todos los vacios que hemos estudiado cuando hemos propuesto
nuestras conjeturas son en AdS y en una configuracién super-
simétrica. Esperamos que la CAD sea verdadera también cuando
hay otros fondos y seria interesante comporbar si es verdadera tam-
bién en casos no supersimétricos. En estos escenarios no siempre es
facil identificar la torre que se convierte en ligeras cuando la teoria
se rompe, ademads, hay meno control de las masas de las particu-
las cargadas bajo las simetrias consideradas. Sin embargo, puede
ser importante investigar ulteriormente tales configuraciones para
conectar con nuestro Universo.

La tercera y tltima parte contiene el Capitulo 7. Hemos estudiado el
comportamiento de la CGD por axiones en compactificaciones de tipo
IIB sobre toros con orientifolds y flujos que admiten D7-branas méviles.
Cuando las D7-branas se mueven fuera del minimo, se forma un tadpole
dindmico, y si se ha ignorado, se viola la CGD. Primero hemos dado un
argumento heuristico usando el dual gravitacional del laa-maximizacién,



es decir la minimizacién del volumen, explicado en la Seccién 1.1.4.
Si consideramos D3-branas que envuelven 3-ciclos holomorfos, hemos
mostrado que la CGD se satisface solo si imponemos las ecuaciones del
movimiento, es decir si minimizamos el volumen del ciclo. Esto ha sido
usado como un indicio que la CGD, tal y como esta formulada, podria
ser valida solo al minimo de un potencial.

Luego hemos estudiado las reacciones de D-branas en la geometria y
los otros campos en compatificaciones de tipo IIB. Como calentamiento,
hemos estudiado primero los casos supersimétricos, sin flujos, y luego
hemos hecho los casos no supersimétricos con flujos. Hemos construido
una compatificacién explicita sobre toros con orientifolds y flujos que per-
miten por D7-branas méviles. Hemos estudiado la reaccién proveniente
desde las D7-branas, cuando estaban fuera de la posicién de equilibrio,
sobre branas instanténicas. Si elegimos ignorar el tadpole dinamico
que se forma cuando la D7-brana esta fuera del minimo, hay estados
que violan la Convex Hull CGD para axioness. Pero, hemos encontrado
también modelos donde los tadpoles dindmicos no parecian conducir
a una violacién de la CGD. Seria interesante explorar si violan otras
conjeturas del Ciénaga. Ademas, estos modelos pueden potencialmente
conducir a nuevas limitaciones del Ciénaga que no hemos considerado
hasta ahora.

En esta tesis hemos hecho progresos en el entendimiento de GC, en
particular hemos ensefiado cémo las simetrias discretas pueden jugar
un papel en el programa del Ciénaga y en GC en general. Por ejemplo,
pueden explicar porqué hay separacién de escala en el modelo DGKT de
estabilizacién de médulos. Ademéds, esté claro que también las simetrias
continuas se ven afectadas por la presencia de las simetrias discretas,
entonces su fisica tiene que ser investigada ulteriormente.

El estudio de la relacién entre la presencia de tadpoles dindmicos y el
programa de Ciénaga es también importante. De hecho, uno de los fines
del programa de Ciénaga es refinar sus conjeturas con el fin de delimitar
lo méximo posible la frontera entre el Ciénaga y el Panorama. El hecho
de que hayamos encontrado violaciones en la CGD cuando los tadpoles
dindmicos han sido ignorados permite una doble interpretacién: por
un lado GC parece ser consciente de que la solucién que ha sido usada
no era la correcta, porque el tadpole dindmico ha sido ignorado. Por
otro lado, es posible que la CGD tenga que ser modificada para que sea
verdadera en todo el espacio de los campos.

Esta tesis ha dado respuesta a unas preguntas, pero también ha formulado
nuevas interesantes preguntas cuya respuesta puede contribuir a esta
nueva era de Fenomenologia de TC.
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Conclusions

In this thesis, we have analyzed multiple aspects of discrete symmetries
and related them to the Swampland program. We have also pointed out
that ignoring the presence of dynamical tadpoles in ST compactifications
may lead to violations of the WGC, signaling an incompatibility with
QG.

The thesis is divided in three main parts.

The first part contains Chapters 1 to 4. They were reviewing the back-
ground material that was necessary to understand the main results of
the thesis. In Chapter 1 we reviewed the basic concepts of the AdS / CFT
correspondence to lay the foundations to the theories and the tools that
we would have used in the following chapters. We have also reviewed
what are the conditions for a consistent tree-level type Il compactification
on CY orientifold with fluxes, focusing in particular, on type IIA ST.

In Chapter 2 we have introduced the concept of quiver gauge theories
and, for toric gauge theories, we have also described them in terms of
dimer diagrams and their dual periodic quivers. It is in Sections 2.3
and 2.3.1 that we described a new way to get global U(1) symmetries
from the topological properties of dimer diagrams (or periodic quivers),
using what we called geometric identities.

In Chapter 3 we reviewed discrete gauge symmetries, in particular, how
gauge discrete symmetries arise naturally in string theory compactifi-
cations. We introduce the DKS couplings in 4d that signal the presence
of discrete symmetries, under which domain walls are charged. From
the SCFT point of view, we introduced the discrete Heisenberg group
that arise in 4d SCFTs defined on the worldvolume of D3-branes probing
general orbifold singularities for general toric CY 3-folds.

In Chapter 4 we decided to review the Swampland program in its aim
and main characteristics. We focused on the principal conjectures, and in
particular, on the various version of the WGC that played a major role in
the following chapters of this thesis.

The second part discussed the interplay between the discrete symmetries
and the Swampland program. We first studied global discrete symmetries
in 4d SCFTs in Chapter 5 and, then, we studied gauge discrete symmetries
in ST compactifications in Chapter 6.

Indeed, in Chapter 5, we applied dimer diagram techniques to uncover
discrete global symmetries in the fields theories on D3-branes at singu-
larities given by general orbifolds of general toric CY 3-fold singularities.
We first described how it was possible to define discrete symmetries
from the covering space of the orbifolded theory, and then we found
an algorithmic way to define the charges for the chiral fields under the
discrete symmetries of the Heisenberg group. Many examples were also
given that prove the universality of our technique for any kind of orbifold
that preserves at least /' = 1 supersymmetry in 4d. We concluded with
some remarks on the gravity dual. The gravity dual of these theories
has been also used in Chapter 6 to provide support to our conjectures.
These conjectures are the first precise formulation proving that discrete
symmetries are important in the Swampland program.
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The first conjecture is the Z; WCC in Conjecture 6.1. Such conjecture
states that in a theory of QG with a discrete Z; gauge symmetry and
a U(1) gauge symmetry with coupling g, the gauge coupling scales as
g ~ k™%, with @ some order 1 coefficient. We provided examples that
support such conjecture. For instance, all the gravity dual theories that
have a discrete Heisenberg group satisfy the conjecture. Another example
is the ABJM model, both in the type IIA and in the M-theory formulation,
that satisfies the conjecture.

The second conjecture is the Zx RSADC in Conjecture 6.2. This conjecture
is a refinement of the SADC in the case in which a Zj gauge symmetry is
present. In particular, such discrete symmetry is related to domain walls
in 4d, so associated to 3-forms. The precise statement of the conjecture is
that in a theory of QG on an AdS vacuum, with a Z; discrete symmetry
for domain walls, in the flat-space limit the cosmological constant A
scale with M2k~!, where M is the mass of an infinite tower of states
signaling the breaking of the EFT. This is an important result because it
can explain the presence of scale separation in AdS vacua ST compactifi-
cations. To support our conjecture, we used junctions formulas (reviewed
in Appendix A) that allowed us to compute the scaling behavior of the
cosmological constant in complete generality.

There are interesting topics that may be developed starting from the
results of Chapter 6. Here we can comment on two of them:

» A direct consequence of the WCC is that it is in principle possible
to make the gauge coupling of a U(1) gauge symmetry arbitrarily
small if there exists a discrete symmetry Zy with k arbitrarily large.
Such effect may lead to violation of the WGC, and it would be
interesting to find a bound on the order of the discrete symmetry so
that the effective theories remain consistent with quantum gravity
principles.

» All the vacua that we studied when we proposed our conjectures
are in AdS and in a supersymmetric set up. We expect that the
WCC is true also when there are other backgrounds, and it would
be interesting to see if it is true also in non-supersymmetric cases.
In these scenarios it is not always easy to identify the tower that
is becoming light when the theory is breaking down, moreover,
there is less control on the masses of the particles charged under
the considered symmetries. Nevertheless, it could be important to
further investigate such set-ups to make contact with our universe.

The third (and last) part contains Chapter 7. We studied the behavior of
the axion WGC in type IIB compactifications on tori with orientifolds,
fluxes and mobile D7-branes. When the D7-branes are moved off-shell,
a dynamical tadpole is forming, and if ignored, the WGC is violated.
We first gave an heuristic argument using the gravity dual of the a-
maximization, i.e., volume minimization, reviewed in Section 1.1.4. If we
consider D3-branes wrapping holomorphic 3-cycles, we showed that the
WGC is satisfied only if impose the EoM, i.e. we minimize the volume of
the cycle. This has been used as a hint that the WGC, as it is formulated,
might be valid only at the minimum of a potential.

We, then, studied the backreactions of D-branes on the geometry and
other fields in type IIB compactifications. As a warm-up, we first studied
the supersymmetric cases without fluxes, and then we moved on to
the non-supersymmetric cases with fluxes. We constructed an explicit



toroidal compactification with orientifolds and fluxes that allowed for
mobile D7-branes. We studied the backreaction coming from the D7-
branes moved from their stable position on instanton branes. If we decide
to ignore the dynamical tadpole that forms once the D7-branes are
off-shell, there are states that violate the Convex Hull WGC for axions.
However, we have encountered models where the dynamical tadpole
does not seem to lead to violation of the WGC. It would be interesting
to explore if they violate some other swampland constraint. Moreover,
these models could potentially lead to new swampland constraints not
considered so far.

In this thesis, we made progress in the understanding of QG, in particular,
we showed how discrete symmetries may play an important role in the
Swampland program and QG in general. For instance, they provide an
explanation for the scale separated vacua in DGKT moduli stabilization.
Moreover, it is clear that also continuous symmetries are affected by the
presence of discrete symmetries, so their physics should be investigated
more.

The study of the interplay between the presence of dynamical tadpoles
and the Swampland program is also important. One of the purposes of
the Swampland program is to refine its conjectures and to delineate as
much as possible the border between the Swampland and the Landscape.
The fact that we found violations of the WGC when dynamical tadpoles
are ignored allows for a duple interpretation: on one hand QG seems
to be aware that the solution that has been used was not the correct
one, since the dynamical tadpole was ignored. On the other hand, it is
possible that the WGC might be modified to be true in all field space.
This thesis provided answers to some questions but also raised new
interesting questions whose answers may contribute to this new era of
String Phenomenology.
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APPENDIX



Junction conditions for AdS
vacua

Here we adapt to the 4d set-up, the discussion of [215], which studies
a Randall-Sundrum construction [216, 217] with an arbitrary number
of branes (domain walls). The discussion is also similar to systems of
D8-branes in type I’ theory [218].

Consider a 4d spacetime with N parallel domain walls with tensions
T;, located at positions y; in a coordinate y. The region between the i-th
and (i + 1)-th brane has cosmological constant A;. A solution of the 4d
Einstein equation

N

DT A0 = yi) = 0y = yis1)IV-GGun+

i=1

1
V=Geun = - ——
'MN 4M

PA
1/ gl st 6% 6(y — y,-)] , (A1)

where €y = Rpyn — %GMNR, is given by the ansatz

ds® = e‘z‘j(y)mwdx“dxv +r2dy?. (A.2)

The warp factor in the above expression is given by the following
piecewise linear function

o(y) =(A1 = Ao)(y = y1)O(y — y1) + (A2 = A1)(y — y2)0(y — y2)+
+.o (AN = AN-D(Y = yN)O(W - yN), (A.3)

where Ag and Ay provide the asymptotic behavior at y = Foco. In any
region between two domain walls, we can perform a change of coordinates
x

2= oW (A.4)
Tc

to bring the metric (A.2) to a more standard form, i.e.
G
2
*o

ds® = = (nudxtdx” + dx3) , (A.5)

from which it is clear that the solution describes slices of AdS; with
different values of the cosmological constant, made explicit below.

From (A.1), we obtain the following constraints for o(y) [215]:

2 N
(@' (y) =- 12M2 Z; i [0 —yi) = 6(y —yisn)] (A.6)
a’(y) = M2 Z Tio(y — yi) . (A7)
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Substituting (A.3) in (A.6) and (A.7), we obtain the relations

—Air2
A=y |—C, (A.8)
12MP4
Tire
=Ai-Ai. A9
8M1234 i i—-1 ( )

Hence these junction conditions relate the variation of the cosmological
constant to the potential of the branes that give us the domain walls. This
is a general interpretation of what we proposed in Section 6.6.4.



Toric Geometry

In this appendix we collect the main definitions of toric geometry useful B.1 Toric variety . . ... ..... 167
for Chapters 2 and 5. B.2 Fans, toric diagram and
(p, q)-web diagrams . ... 167

B.1 Toric variety

Appendix B is based on [219-221] and
The definition of toric variety is [220]: references therein.

Definition B.1 [Toric VARIETY].

A toric variety X is a complex algebraic variety containing an

algebraic torus T = (C*)" as a dense open set, together with an C =C\{0}
action of T on X whose restriction to T C X is just the usual

multiplication on T.

It usually considers a generalization of a projective space CIP", defined

as
n+1
(DIP”:C \{0,0,...,O}’ B.1)
C*
and the action of C* is to multiply all the coordinates of C"*! by a A € C*,
ie.
(zo,...zn) = (Azg, ..., Azy) . (B.2)

In the case of a toric variety, it is necessary to specify which points are
removed from C™ and there could be several C* actions that give an
algebraic torus,

T=CX...xC" = (C)". (B.3)

For these reasons, usually, a toric variety of dimension 7 is expressed
as [219, 221]

_C"\Zy
S (C) xT’
where Z, is a set of points removed from C™, and r = m — n. We have
also added T, which is an Abelian subgroup related to the orbifold
singularities.

X (B.4)

B.2 Fans, toric diagram and (p, g)-web diagrams

Toric varieties can be described by a fan, and projective toric varieties
can all be described by lattice points in a polytope [220]. Let us consider
a lattice N = Z" and the vector space Ng = N X R obtained allowing
for real coefficients.

Definition B.2 [Cong].
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This is also the first Hirzebruch F;.

A strongly convex rational polyhedral cone 0 C Np is a set

o= {Z a;ivila; > o} , (B.5)

where {v; } are a set of vectors in N. We also ask the strong convexity
condition, i.e., 0 N (=o) = {0}.

Definition B.3 [Fan].

A collection X of strongly convex rational polyhedral cones in Np is
called a fan if

1. each face of a cone in X is also a cone in X;
2. the intersection of two cones in X is a face of each.

Let us try to construct Eq. (B.4) using the definition of the fan. First, we
consider a fan with m vectors, of dimensions 7. The 1-dimensional cones
of a fan X, i.e., X.(1) correspond to vectors in N. They are set {v;}, with
i=1,...m.To each vector v; it is associated a homogeneous coordinate
t;. For any subset of £(1), that does not generate a cone in X we associate
an algebraic set defined by t;; = ... = t;; = 0, where t;; to t;; are the
vectors in the subset. The union of all the subsets is Z 4.

Let us, now, define G = (C*)" ™" xT = G x I. We introduce a map

¢ C" ", (B.6)

that acts on the coordinates t; as

mo m.o o,
(tl,...tm)—>(]—[tf',...]—[tf’), (B.7)
i=1 i=1

where we have denoted the vector v; = (U}, ., Ul") The group G is the
kernel of ¢, i.e.
G = ker (¢) . (B.8)

In other words, let us define the action of G on the homogeneous
coordinates as

G (h, .. t) = (Aw?tl,...awfntm) ) (B.9)

the charge vectors w* are in the kernel of ¢, i.e.
> (oF) i =o0. (B.10)

For a fan with m vectors in N, we must find 7 linear relations among
them, and the coefficients of the relations are the w{. On the other hand,
the discrete subgroup I' is associated to orbifold singularities.

The easiest way to understand these definitions is through an example.
Let us consider the toric fan for the first del Pezzo, dP;, with vectors
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v1=(1,0), v2=(0,1), v3=(-1,-1) and vs = (0,-1).  (B.11)

The vectors {v1,v3} and {v2,v4} do not span a cone in the fan (see
Figure B.1), we conclude that

Zan={t1=t3=0} U {t, =t, =0} . (B.12)

The group G is the kernel of the function ¢ acting on the homogeneous
coordinates as

¢ (1, ta, b3, ta) = (t5", 02158, (B.13)
We identify, then, G with the action
G- (t1, ta, t3, ts) = (A1t1, Aato, Aits, AT Aots) (B.14)

we obtain two C* actions associated to the parameters Ay with charges
w1 =(1,0,1,-1) and A, with charges w; = (0,1,0,1).

Proposition B.1 [toric CALABI-YAU VARIETY].

The toric variety X, is Calabi-Yau if and only if all the vectors v; of
Y end on the same hyperplane in N.

As a consequence,

D>l =0. (B.15)

Considering, for instance, the complex cone over a dP;, this would
correspond to increase the dimension of the lattice from 2-dimensional
to 3-dimensional. The vectors in Eq. (B.11) may become, for instance

v1=(1,0,1), v2=(0,1,1), v3 =(-1,-1,1) and v4 = (0,-1,1).
(B.16)
There is only one C* action for these four vectors, and the corresponding
charges are, for instance, @ = (2,-1,2, =3). Projecting the fan on the
plane (0, 0, 1), we obtain the so-called toric diagram, in Figure B.2a.

Finally, one can draw the dual of the toric diagram, i.e., the (p,q)-web, by

simply drawing the perpendicular lines to the edges of the toric diagram.

In Figure B.2b we show the unresolved (p,q)-web of the complex cone
over dP;.

[ {
Figure B.1: Fan of dP;.

It might be worth to stress that the first
del Pezzo is compact, i.e., its fan spans
the whole NR. In the following we will
construct toric varieties that are CYs, and
this can happen only if

St =0,
i

The toric CY associated to a del Pezzo

surface is the complex cone constructed

over the del Pezzo. This is a toric non-
compact space, and it is CY.

(a) Toric diagram.

(b) Unresolved (p,q)-web.

Figure B.2: Toric diagram and unresolved
(p,q)-web of Cc(dPy).



Freed-Witten anomaly and
Hanany-Witten construction

C.1 Freed-Witten anomaly

Recall the example in Section 3.2 of the D6-brane domain wall in 4d
coming from the compactification of B, over a basis of 2-cycles. We
concluded that such a brane must be present because of the presence of
FW anomaly coming from the wrapped NS5-brane and the Roman mass.
Freed and Witten showed in [64], indeed, that D-branes cannot wrap
a submanifold which supports some units of NSNS 3-form flux, since
this configuration is anomalous. What was later showed in [65] is that
such an anomaly can be cancelled if we assume the presence of other
D-branes wrapping specific cycles. Let us be more concrete using the
notation of [65].

FW anomaly is telling us that a D-brane can wrap a cycle W’ in the
presence of a NSNS 3-form flux in the class [H]|+- only if

W3(W") + [H][w =0, (C1)

where W3(W”) is the integral Stiefel-Whitney class of T/".54
Suppose that we want to wrap a D-brane on %”. The anomaly can be
cancelled if there is a magnetic source F on W C W’ such that

PD(W C W’) = Wy(W') + [H] | - (C.2)

The magnetic source is given by a D-brane ending on 7. The consequence
is that a D-brane wrapping W propagates in time, and ends on the D-
brane wrapping W”’. Such D-brane is then unstable and it might decay
due to the presence of the D-brane wrapping 7".

In Section 3.2 we generalized the discussion of the possible domain walls
associated to the DKS couplings coming from the compactification. Such
discussion may be rewritten in terms of FW anomaly as follows.

Suppose to have a NS5-brane with worldvolume X and the presence
of a background RR-flux Fg“xl 5, such that ¥ C X4.%° Then, the NS5-
brane will emit D(6 — p)-branes spanning the Poincaré dual class of
L.

It is clear that it is the same phenomenon described above but from the
opposite perspective. Other possibilities may be obtained T-dualizing
and S-dualizing this case. For completeness, we list them all in the
following [51]:

» A Dp-brane with worldvolume X,;; and non-trivial NSNS 3-
form flux H§HX| ¥, with ¥ C X, 41, must emit D(p — 2)-branes on
PD(Z C Zp41).

» Finally, a Dp-brane with worldvolume ¥, and non-trivial RR-
flux Fg“x |z, emits F1-strings along the Poincaré dual class of . C
Y1 [222].

C.1 Freed-Witten anomaly ... 171

C.2 Hanany-Witten construction 172

Section C.1 is based on [51, 64, 65] and
references therein.

64: We add it for completeness but in the
cases discuss in Section 3.2 and Chapter 6
we have not considered torsion classes, so
this term may be ignored.

65: Remember that in the case of type IIA
string theory p can be only even, but this
argument works also for type IIB where p
is odd.
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Section C.2 is based on [51, 112] and refer-
ences therein.

Table C.1: Possible configuration of the
original HW construction. The — repre-
sents where the branes extend.

Table C.2: Possible configuration of the
original HW construction with the pres-
ence of D3-branes. The — represents where
the branes extend.

fTTT

x2,x3, x*

T_) X9
& x°,x7, 28

Figure C.1: Example of a HW cartoon. The
horizontal lines represent D3-branes, the
vertical lines are NS5-branes and the cir-
cled crosses are D5-branes.

66: We are not entering into details, but in
order not to break supersymmetry, when
moving around the branes it is necessary
to respect the s-rule [112, 223]. In 3d, this
rule states that there cannot be more than
one D3-brane stretching between an NS5-
brane and a D5-brane. It is easy to see that
such a rule is satisfied in Figure C.1.

It is an exercise to obtain these versions of the FW anomalies from the
one in the box by a set of T- and S-dualizations.

C.2 Hanany-Witten construction

FW anomaly may be regarded also as the consistency condition for
the creation and annihilation of branes by HW transition [112]. The
HW transition comes from the possibility of engineering 3d & = 4
Supersymmetric Quantum Field Theories (SQFTs) via string theory
constructions. We will first review the original technique, and we later
mention the relations between the two effects.

Let us consider a set of NS5-branes and D5-branes as in Table C.1.

NS5 | - - - | - - -
D5 - - -

The D5-branes and the NS5-branes may cross along direction x?, and such
crossing generate a D3-brane along the directions showed in Table C.2.

| x
P e D

D5
DB [- - - | | -

This phenomenon of brane creation is due to the presence of a source
of flux coming from one of the two branes that the other brane picks
up when they cross. In the compact case, FW anomaly imposes that a
D3-brane must be present as a consistent condition.

As an interesting aside from a configuration like that in Table C.2 it is
possible to construct 3d N = 4 theories leaving on the worldvolume of
the D3-brane after a dimensional reduction along x°. The SO(3) X SO(3)
R-symmetry of 3d N = 4 theories comes from the rotational symmetries
of the plane (x%, x%, x*) and (x®, x7, x8). The gauge theory can be read
using what is called HW cartoon, showed in Figure C.1 as an example.

The identification of the 3d field theory can proceed as follows. For every
region between two NS5-branes, the number N; of horizontal lines (i.e.,
the number of D3-branes) corresponds to U(N;) gauge group. Vector
multiplets are strings starting from a D3-brane in a cell, to another (or
the same) D3-brane cell in the same cell. Bifundamental matter is instead
given by strings starting from a D3-brane in a cell and ends on another
D3-brane in another cell. Flavors are given by strings starting from a
D3-brane in a cell and ends on a D3-brane attached to a D5-brane. For
these reasons, the theory in Figure C.1is the HW cartoon of the 3d ¥ = 4
U(2) gauge theory with 4 flavors.

Brane creation and annihilation may be used to move the branes in the
cartoon around and obtain different branches of the same theory.*

We end this section with the generalization of the HW construction by
use of a set of T- and S-dualizations. In general, the brane creation or
annihilation goes as follows [51].



C.2 Hanany-Witten construction

Consider a NS5-brane along directions 012345 and a D(p + 3)-brane
along 01...p678, for p < 5. These branes can cross along x°, creating
aD(p + 1)-brane along 01. .. p9.

A dual version of this set-up is given, considering a Dp-brane along
01...p and a D(8 — p)-brane along O(p + 1)...8. Once again they can
cross at x? where an Fl-string is created spanning 09. All these set-ups
are related to the consistency conditions given by FW anomaly.
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Modular functions

Here we collect the definitions of the modular functions used in Chap-
ter 7. Modular functions are functions of a complex parameter T which
transforms under the SL(2, Z) modular group [9]

ewwitha,b,c,deZandad—bc=1. (D.1)
ct+d

The generators of the group are

T:7—>1+1,

1 (D.2)
S:1—>-——.
T
It is usually useful to introduce the nome
g =e*iT, (D.3)

and we will now follow [224] in order to define the principal modular
functions. The first function we introduce is the theta function

3z, 1) = Z eninzrezmnz ) (D.4)

n=—oo

which enjoys the following properties:

Nz +1,7)=3(z,1), (D.5a)
Sz +1,7) = e MTEY(2, 7)), (D.5b)
ANz, t+1)=39 (z + %, 'c) , (D.5¢)
! (% —%) = (—i)'2e™/73(z, 7). (D.5d)

In terms of the nome (D.3), it can be written as a product

[ee]

3z, 1) = I—[ (1-¢") (1 + e2nizqm—1/2) (1 + e—zmzqm—uz)
n=1

= (D.6)
=[](-q") (1 +2cos(2mz)g" V% + q2m) )

n=1

The theta function in (D.4) usually is refined with two characteristics 0
and ¢, becoming
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that can be used to define the function 91(z, 7):

81(zl7) = —s[ ig ](Z,T) =i . (=1)qnl/2R e2mitn=/2):
n=-—0o0

N (D.8)
=2q"8sin(nz) [ ] (1-4") (1-2cos(2nz)q™ + q*") .
m=1

From Eq. (D.5), we can derive the following quasi-periodicity relations:

N(z + 1|7) = —=91(z|1) (D.9a)
Nz +1|1) = —q_l/ze_zmzsl(zl’c). (D.9b)
There are other particular theta functions that can be obtained from

Eq. (D.7) and the reader may find them in standard string theory books
such as [9, 224, 225]. Finally, we can introduce the Dedekind eta function

n(m) =g Ta-qm, (D.10)
m=1
that has the following modular transformations
nt+1) = ein/un(’c) , (D.11a)

n (—%) = (—i1)"?n(7). (D.11b)
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