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Abstract

In this thesis, an angular analysis of B0→ K∗0µ+µ− decays is presented. The angluar and

the invariant dimuon mass squared (q2) distributions are parameterised in an unbinned

maximum likelihood fit.

The signal model is based on the decay amplitudes of B0→ K∗0µ+µ− decays, including

the penguin amplitudes and the amplitudes involving hadronic resonances, i.e. B0→ V (→
µ+µ−)K∗0 decays, where V are cc vector resonances, such as the J/ψ .

Fitting for the decay amplitudes directly allows for the determination of the vector and

pseudo-vector coupling constants C9 and C10 from data. These can be compared to Standard

Model (SM) calculations in order to search for New Physics (NP) beyond the SM.

Since both the penguin amplitudes and the hadronic amplitudes are included in the

model, the interference between them can be determined directly from data. The level

of interference between the resonant amplitudes and the penguin amplitudes in B0 →
K∗0µ+µ− decays has never been measured before and cannot be predicted from first

principles in the SM. Due to that lack of knowledge, the SM predictions of B0→ K∗0µ+µ−

decays are currently not fully trusted in the particle physics community. This holds back

the interpretation of the discrepancies between the measured q2-binned angular observables

of B0→ K∗0µ+µ− decays [1] and the SM predictions, as clear indication of NP. The fit

presented in this thesis is intended to help to solve this issue.

The parameterisation of the background events is complex for this analysis due to a

kinematic constraint applied to all events, which causes a distortion of the background. A

novel background fitting procedure and new correction techniques are presented in this

thesis.

While the full dataset, which will be used for the planned publication, is not available

yet, a preliminary fit to the 2011 and 2012 data, corresponding to approximately 3 fb−1

of integrated luminosity, is presented in this thesis to demonstrate the ability of the

model to describe the data. The fit results also provide a first indication, that the

discrepancy between experiment and SM still persists in the angular and q2 distributions

of B0 → K∗0µ+µ− decays, despite a sizeable contribution from the interference of the

hadronic amplitudes with the penguin amplitudes.
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1. Introduction

The Standard Model (SM) of particle physics is currently the most accurate theory

describing the fundamental constituents of matter and how they interact. Despite that,

the SM is not the ideal fundamental theory to describe our universe. For example, it does

not incorporate gravity, it does not describe Dark Matter [3], and it cannot explain the

observed matter-antimatter asymmetry in our universe [4]. This motivates searches for

New Physics (NP) in the form of new fundamental particles beyond the Standard Model.

Two types of searches for NP are typically conducted at particle accelerators. Direct

searches aim at producing NP in high energy particle collisions and detecting the NP by

measuring a peak in the invariant mass spectrum of the decay products. Direct searches

are limited by the centre of mass energy of the collisions. Indirect Searches on the other

hand, work by performing precision measurements of known decays and comparing them

to SM predictions, in order to find a discrepancy between experiment and theory. Any

discrepancy, also referred to as an anomaly, would point towards virtual NP contributions

to the decay. Indirect searches are therefore not limited by the beam energy of the particle

accelerator. However, they are dependent on the understanding of the SM predictions

which often rely on approximation techniques.

In recent years, several anomalies have been found in decays involving the rare b→ sℓ+ℓ−

process. These include branching fraction measurements [5–8], angular observables [1, 6, 9–

12], and ratios of branching fractions between b→ sℓ+ℓ− decays with different flavours

of leptons [13–15]. The anomalies could be explained by introducing new vector or axial-

vector particles such as a Z
′
[16] or leptoquarks [17].

However, a large contribution to the overall discrepancy between b→ sℓ+ℓ− measurements

and predictions comes from the angular observables of B0 → K∗0µ+µ− decays. The

calculation of the angular observables involves an Effective Field Theory (EFT) which

largely relies on the assumption that the calculation of the quark level b→ sℓ+ℓ− process

factorises with calculation of the hadron level B0 → K∗0 transition. This assumption

breaks down for decays involving hadronic resonances in the from of B0→ V (→ µ+µ−)K∗0

decays, where V are qq (mainly cc) vector resonances such as the J/ψ . The qq loop

occurring in these decays can exchange gluons with the spectator quarks of the B0→ K∗0

transition such that the factorisation assumption is not valid.

In previous angular analyses of B0 → K∗0µ+µ− decays, the mµµ regions dominated by

the resonant decays (e.g. the region around mµµ ≈ mJ/ψ , where mµµ is the reconstructed
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invariant mass of the muon pair and mJ/ψ is the true mass of the J/ψ meson) are

omitted to limit the effect of the resonant decay modes. However, due to the large

magnitudes of the tree level B0→ V (→ µ+µ−)K∗0 decays relative to the penguin decay,

interference of the hadronic amplitudes with the penguin amplitudes can lead to so-called

non-local contributions far away from the pole masses of the resonances. These non-local

contributions alter the angular distributions and since the resonances are vector particles,

the non-local contributions can mimic the presence of a virtual NP vector particle.

The level of interference is unknown and cannot be predicted from first principles in the

SM calculations. Therefore, the SM calculations are currently not fully trusted, which

prohibits the interpretation of the observed anomalies of the angular distributions of

B0→ K∗0µ+µ− decays as clear indication of the presence of NP.

The analysis presented in this thesis aims at fitting the angular and m2
µµ (q2) distribu-

tions of B0→ K∗0µ+µ− decays including the resonant regions, using data collected with

the LHCb detector. The empirical model (presented in chapter 3), which is used for this

fit, is based on the decay amplitudes, including the resonant amplitudes. This allows the

direct measurement of the Wilson Coefficients C9 and C10, which encapsulate the vector

and axial vector coupling strengths in b→ sℓ+ℓ− processes, as well as the measurement of

the magnitudes and phases of the resonant amplitudes relative to the penguin amplitudes.

Therefore, the level of interference is determined directly from data.

Several experimental effects need to be taken into account for this analysis, including

the q2 resolution of the detector (discussed in chapter 5) which causes the reconstructed

peaks of some of the resonances to be much wider than their respective natural widths.

To improve the q2 resolution, a kinematic fit is performed, varying the reconstructed four

momenta of the final state particles to best match the invariant mass of the final state

particles (mrec
B0) to the true mass of the B0 meson. For the combinatorial background

events, the kinematic fit has the opposite effect, creating a mrec
B0-dependent smearing of

the q2 distribution. This complicates the background parameterisation which is presented

in chapter 6.

Another effect which necessitates a novel solution is caused by one of the vetos used in

the event selection, where background events of B+ → K+µ+µ− decays are removed by

cutting on the invariant mass of the Kµµ system. This creates a sculpting of the cos θK , q
2,

and mrec
B0 distributions of the combinatorial background events in the upper mass side-band.

This is taken into account when determining the background parameterisation as discussed

in section 6.4.
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The full dataset of Run 1 and Run 2 events, which is planned to be used for this

analysis, is not available yet. A first fit to the Run 1 data is presented in chapter 7. It

demonstrates that the empirical model used in this thesis can describe the data well.

Since the empirical model uses the information contained in the q2 dependence of the

angular observables, a better experimental precision on the Wilson Coefficients C9 and

C10 is achieved than in previous fits to B0→ K∗0µ+µ− decays in Run 1. The fit gives a

first preliminary indication that the discrepancy between the measured value for C9 and

the SM prediction still persists, even when accounting for the interference between the

hadronic amplitudes and the penguin amplitudes.
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2. Theoretical overview of B0
→

K∗0µ+µ− decays

2.1 Introduction to the Standard Model of Particle

Physics

The aim of particle physics is to explain the fundamental constituents of matter in the

universe. The current best theory describing the fundamental particles as well as their

interactions is the Standard Model (SM)1. The SM is a quantum field theory and interprets

particles as quantum oscillations of fields. The Lagrangian, which describes the dynamics

of the fields and which can be used to calculate measurable quantities, can be split into

two parts

LSM = Lgauge + LHiggs. (2.1)

Lgauge describes the electromagnetic (EM), weak and strong interaction and follows the

local gauge symmetry group SU(3) × SU(2) × U(1). Specifically the strong interaction

obeys the SU(3) group and the electromagnetic and weak force obey the SU(2) × U(1)

group. Each group has a specific number of generators (8 for SU(3) and 4 for SU(2)×U(1))

and each generator corresponds to a gauge boson. Gauge bosons, which all have spin 1,

are responsible for carrying the three fundamental forces: The electromagnetic force is

carried by the massless photon γ. The weak force is mediated by the massive Z, W+ and

W− bosons. The strong force is carried by the eight massless gluons.

The particles that constitute matter are called fermions and have spin 1/2. There are

two types of fermions: quarks and leptons. For every fermion there is an anti-fermion

with opposite EM charge. Quarks come in six flavours which can be grouped into three

generations with rising masses: The first generation quarks are the up u, down d; the

second generation quarks are the charm c, strange s; the third generation quarks are

the top t and beauty b. Quarks combine to hadrons which can be baryons consisting of

three quarks or three antiquarks or mesons consisting of a quark and an anti-quark. More

recently exotic hadronic states consisting of four or five quarks or antiquarks, referred to

as Tetraquarks and Pentaquarks, have been observed [20]. There are three flavours of

1This section is written in reference to [18,19]. Additional references are given in the text.
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leptons with a charged lepton (e, µ, τ) and a neutrino (νe, νµ ντ ) for each flavour. Every

fermion can have either left or right handed chirality. In the massless limit, left handed

chirality means the spin is parallel to the momentum of the particle, and right handed

chirality means the spin is anti-parallel to the momentum.

The gauge bosons mediate the forces between particles depending on which particles

they couple to based on the particles charges: The photon interacts with all EM charged

particles, i.e. all quarks, the charged leptons, and the W+ and W− bosons. The Z,

W+, and W− bosons interact with all fermions. Gluons interact with particles carrying

color charge which are the quarks as well as the gluons themselves. The strengths of the

interactions are set by the coupling constants (α for the electromagnetic interaction, αW

for the weak interaction, and αs for the strong interaction), which are the free parameters

of the gauge sector of the SM. Due to the self coupling of the gluons and the large value

of αs, processes which involve gluon exchanges cannot be calculated perturbatively to

arbitrary order and therefore accuracy. Several approximation techniques are used to make

predictions of hadron decays as explained in sections 2.4 and 2.5.

The Higgs sector of the SM (LHiggs) describes a scalar field which is responsible for

giving mass to the Z, W+ and W− bosons as well as the fermions through spontaneous

symmetry breaking [21–24]. A further consequence of the Higgs field is the existence of

the Higgs Boson.

Expressed in the flavour basis, the Lagrangian for weak neutral current interactions of

quarks can be written as

LNC = igW [uLjZµγ
µuLj] (2.2)

where Zµ is the neutral current, gW is the weak coupling strength and uLj denotes a left

handed quark with j being the flavour index. Similarly, the Lagrangian for weak charged

current interactions of quarks can be written as

LCC =
igW√
2
[W+

µ uLjγ
µdLj +W+

µ dLjγ
µuLj], (2.3)

where Wµ denotes the charged current and uLj stands for a u type quark with generation

index j and dLj for a d type quark.

The Lagrangians can be rotated into the physical mass basis using two unitary matrices:

Ud
ij acting on dL and Uu

ij acting on uL. Applying this to equation 2.2 gives

LNC = igW [uLα(U
u
L)αj(U

u†
L )jβZµγ

µuLβ] = igW [uLαδαβ]Zµγ
µuLβ. (2.4)
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Due to the unitary matrices cancelling in equation 2.4, the Lagrangian does not allow any

off diagonal transitions that would mix quark flavours. In other words, tree-level2 flavour

changing neutral currents (FCNC) are forbidden in the SM. However, when applying the

same rotations to equation 2.3 we get

LCC =
igW√
2
[W+

µ uLα(U
u
L)αj(U

d†
L )jβγ

µdLj +W+
µ dLj(U

d
L)αj(U

u†
L )jβγ

µuLj]. (2.5)

Thus, for charged weak currents the matrices do not cancel and the Lagrangian does

allow flavour changing transitions between generations α and β. The strengths of these

transitions are free parameters in the SM an are summarised in the CKM matrix [25,26]

Vαβ which is commonly expressed in the Wolfenstein parameterisation [27]:

Vαβ =







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






=







1− λ2/2 λ 0

−λ 1− λ2/2 Aλ2

0 −Aλ2 1






+O(λ3), (2.6)

with λ ≈ 0.22 and A ≈ 1.25. In the third order terms, the CKM matrix allows for CP

violation, which is the difference of a physical system after charge conjugation (changing

all particles for anti-particles and changing all anti-particles for particles) and parity

transformation (reversing the sign of all spacial coordinates). The CKM matrix is the

only source for CP violation in the SM.

As stated above, Lagrangians can be used to calculate observable quantities, such as

particles’ lifetimes or differential decay rates. To this end, the modulus squared of the

amplitude A of a decay is calculated with

|A|2 = |〈f | O | i〉|2 , (2.7)

where |i〉 and |f〉 are the initial and initial states of the fields. For example |i〉 = |b〉 and
|sℓ+ℓ−〉 for a b quark decaying into an s quark and a lepton pair, which is discussed in

section 2.3. The operator O is a function of the interaction Lagrangian which describes

the interaction through which the transition from |i〉 to |f〉 occurs. Generally, A cannot

be computed fully analytically in the SM and several approximation methods are used.

The Lagrangian used for calculating b→ sℓ+ℓ− decays is discussed in section 2.4.

2i.e. to first order
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2.2 Indirect searches for New Physics

Despite its successes, the SM is far from being the ideal fundamental theory to describe

our universe. The shortcomings of the SM include:

• It does not incorporate gravity. A complete model of nature should be able to

describe all fundamental forces.

• The particles described by the SM make up only 4.9% of the universe [3, 28].

• The amount of CP violation allowed by the CKM matrix is about ten orders of

magnitude too low in order to explain the matter-antimatter asymmetry observed in

our universe [4].

These facts motivate searching for new physics (NP) beyond the SM. There are two

different approaches for this: The first approach is a direct search which attempts to detect

a new fundamental particle by creating it in a high energy collision and reconstructing it

via its decay products. The advantage of this approach is that discovering NP is free of

theoretical uncertainties. The disadvantage is that the search is limited by the collision

energy. The second approach for finding NP is the indirect search. It works by performing

precision measurements of known processes that can be predicted by the SM and looking

for a discrepancy between experiment and theory. NP can modify the processes virtually,

i.e. without the NP particle being produced on-shell. Thus, indirect searches can be

sensitive to NP scales far greater than the collision energy. The disadvantage of indirect

searches is that they require a good understanding of the SM prediction in order to

correctly interpret any difference between experiment and theory as a discovery of NP.

The measurable observable used for an indirect search can be expressed as a sum of

the amplitude describing the SM interaction ASM and the amplitude describing the NP

interaction ANP

Q ∼ |ASM + ANP |2. (2.8)

Since the sensitivity of Q to ANP is larger when ASM is small, decays which are heavily

suppressed in the SM are ideal for searching for NP.
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Figure 2.1: Feynman diagrams describing the B0→ K∗0µ+µ− decay in the lowest order in the SM. The

penguin loop diagram (left) involves a W boson and either a γ or Z boson. The box diagram involves two

W bosons. Figures from Ref. [29].

2.3 Flavour changing neutral currents of B mesons

As discussed in section 2.1, in the SM, FCNC transitions are forbidden at tree-level.

However, FCNC can still occur in the SM via loop-level processes. One example for this

is the B0→ K∗0µ+µ− decay which involves a b→ sℓ+ℓ− transition3. The corresponding

Feynman diagrams for the electroweak penguin process and the box process are shown in

figure 2.1. Due to the additional weak couplings in the loop, the B0→ K∗0µ+µ− decay

is heavily suppressed and has a measured branching fraction of (1.06± 0.10)× 10−6 [30].

This makes the B0→ K∗0µ+µ− decay an excellent candidate for indirect searches for NP,

because NP interactions which allow b→ sℓ+ℓ− transitions can have a sizeable impact on

the differential decay rate. Furthermore, the B0→ K∗0µ+µ− decay, which has leptons in

the final state is preferred over rare B0 decays with fully hadronic final states, because

the latter are much harder to predict since the assumption of the factorisation of the

quark level transition and the hadronic transition (see section 2.5) does not hold to the

same degree. Experimentally, muons are preferred in the final state over electrons, since

muons produce less bremstrahlung and can therefore be measured with a higher resolution.

Furthermore, muons are easier to trigger on and to identify as explained in section 4.6.

In order to compare experimental data to the SM prediction, a framework for calculating

b→ sℓ+ℓ− processes is needed, which is explained in the next section.

3Throughout the thesis charge conjugation is implied unless specific CP states are explicitly discussed.
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2.4 Effective Field theory for b→ sℓ+ℓ− decays

In order to calculate b→ sℓ+ℓ− processes in a model-independent framework that also

allows sensitivity to NP, an Effective Field Theory (EFT) is devised using the Operator

Product Expansion (OPE) method [31]. It works by separating physical effects based on

their energy scales: All heavy degrees of freedom above a chosen energy scale µ, such as

the mass of the W -boson mW , are separated from the lighter degrees of freedom which are

smaller than µ. Since the heavy degrees of freedom are characterised by a small distance

scale of 1/mW ≈ 10−2 GeV−1, they are referred to as short-distance. Correspondingly,

the lighter degrees of freedom which are of the order 1/ΛQCD ≈ 5GeV−1 (assuming

ΛQCD ≈ 200MeV) are referred to as long distance.

Decoupling the long distance and short distance effects allows writing the matrix

element of an effective Hamiltonian Heff at a given scale as

〈f |Heff |i〉 =
∑

i

Ci(µ) 〈f | Oi |i〉 |µ (2.9)

where Ci - referred to as Wilson Coefficients - are complex numbers that encapsulate

the short distance contributions, whereas Oi are operators describing the long distance

contributions.

By construction, the effect of heavy NP is encoded into the Wilsons coefficients.

Therefore, by calculating the values of the Wilson Coefficients in the SM (CSM
i ) and

comparing to the values of the Wilson coefficients that best describe experimental data Ci,
the contributions from NP can be determined with

CNP
i = Ci − CSM

i . (2.10)

For b→ sℓ+ℓ− decays the complete effective Hamiltonian can then be written as [32,33]

Hε = −4GF√
2

(

VtbV
∗
tsH(t)

ε + VubV
∗
usH(u)

ε

)

(2.11)

with

H(t)
ε = C1Oc

1 + C2Oc
2 +

6
∑

i=3

CiOi +
∑

i=7,8,9,10,P,S

(CiOi + C ′
iO′

i) ,

H(u)
ε = C1(Oc

1 −Ou
1 ) + C2(Oc

2 −Ou
2 ) .

Due to the small size of the relevant CKM elements, contributions from H(u)
ε are doubly

CKM-suppressed and usually neglected [34]. Also the scalar and pseudoscalar operators

(OS and OP ) are highly suppressed and usually ignored [32].
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Figure 2.2: Diagrams illustrating the EFT operators that contribute to b→ sℓ+ℓ− decays. Left describes

the semileptonic operators O9 and O10 involving a vector current. Right depicts the electromagnetic

operator O7 involving a photon current.

In the SM, the largest contributions to b→ sℓ+ℓ− transitions come from the three operators

O7,9,10 which can be expressed as [32]:

O7 =
e

g2
mb(s̄σµνPRb)F

µν , O′
7 =

e

g2
mb(s̄σµνPLb)F

µν , (2.12)

O9 =
e2

g2
(s̄γµPLb)(µ̄γ

µµ), O′
9 =

e2

g2
(s̄γµPRb)(µ̄γ

µµ), (2.13)

O10 =
e2

g2
(s̄γµPLb)(µ̄γ

µγ5µ), O′
10 =

e2

g2
(s̄γµPRb)(µ̄γ

µγ5µ), (2.14)

where g is the strong coupling constant, PL,R = (1 ± γ5)/2 are the left/right chirality

projections, F µν is the electromagnetic field tensor and σµν are the Pauli-spin matrices.

The primed operators O′
7,9,10 denote the operators with opposite chirality which vanish or

are highly suppressed in the SM [32].

O7 is the electromagnetic operator corresponding to the radiation of a photon, whereas

O9 and O10 are the semileptonic vectors which correspond to a vector and axial-vector

current respectively. With respect to the SM diagrams (figure 2.1), O7 corresponds to the

photon penguin diagram, whereas O9 and O10 correspond to the Z and W box diagrams.

Within the EFT, O7, O9 and O10 can be illustrated with simple diagrams where all

heavy particles are encapsulated into effective couplings as shown in figure 2.2. This also

shows the similarity of the EFT for b→ sℓ+ℓ− decays to Fermi’s effective theory of weak

interactions, which in the limit q2 ≪ m2
W was able to describe the beta decay accurately

with a four-fermion vertex before electroweak theory was devised and before the W was

discovered [18].

The Wilson coefficients can be expanded perturbatively as [32, 33]

Ci = C
(0)
i +

αs
4π

C
(1)
i +

(αs
4π

)2

C
(2)
i +O(α3

s) , (2.15)
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where C
(n)
i refers to the n-loop level contribution. The values for C

(n)
i are calculated by

matching them to the full SM processes at the scale µ = mW as described in Ref. [33].

Since tree level FCNC are forbidden in the SM this means C0
i becomes zero4. The Wilson

coefficients are calculated up to two loop contributions i.e. with next-to-next-leading

order (NNLO) precision. Subsequently, the Wilson Coefficients are evolved from µ = mW

to µ = mb using a Renormalization Group Equation [33]. Due to the NNLO terms the

Wilson Coefficients from equation 2.11 end up mixing, i.e. one cannot necessarily assume

a specific contribution to a given Wilson Coefficient. Therefore, it is common to express

the effective Wilson Coefficients which for Ceff
7,9,10 are given by:

Ceff
7 =

4π

αs
C7 −

1

3
C3 −

4

9
C4 −

20

3
C5 − 80

9
C6 ,

Ceff
9 =

4π

αs
C9 + Y (q2) ,

Ceff
10 =

4π

αs
C10 , C ′,eff

7,8,9,10 =
4π

αs
C ′

7,8,9,10 , (2.16)

where Y (q2) is a large collection of terms including C1,2,3,4,5,6 and can be found in Ref. [32].

The values of the Wilson coefficients depend on the choice of the exact values of mW

and mb for setting the energy scales in the OPE, as well as mZ and mt when integrating

out the heavy particles. This introduces a phenomenological uncertainty in the EFT

predictions of b→ sℓ+ℓ− processes, as investigated in Ref. [33]. The values for the Wilson

coefficients obtained in Ref. [32] are Ceff
9 - Y (q2) = 4.211; Ceff

10 = -4.103; Ceff
7 = -0.304;

C ′eff
7 = -0.0061.

The relative contributions of the Wilson Coefficients Ceff
7 , Ceff

9 and Ceff
10 to the decay

rate of B0→ K∗0µ+µ− vary as a function of the invariant mass of the muon pair squared

(q2). Ceff
7 dominates the region of q2 ≤ 1GeV2/c2, as it is more likely to radiate a virtual

photon at low q2, thus causing a photon pole in that kinematic region. With rising q2,

contributions from Ceff
9 and Ceff

10 dominate the spectrum. Thus, the best experimental

sensitivity to all three dominant Wilson coefficients can be obtained by fitting data across

the full q2 spectrum.

Experimentally, the quark level b→ sℓ+ℓ− transition is not observed directly but within

the hadronic decay of B0→ K∗0µ+µ−. Therefore, in order to parameterise experimental

data and extract values for the Wilson coefficients, a model is required which describes

the hadronic B0→ K∗0 transition, as explained in the following section.

4except for O2 [32].
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2.5 Form Factors

When calculating B0→ K∗0µ+µ− decays, the quark level b→ sℓ+ℓ− transitions and the

B0→ K∗0 transition are assumed to factorise, which is known as the naive factorisation

assumption [32].

The matrix elements which describe the hadronic B0 → K∗0 transition are referred

to as form factors (FFs). They can only be calculated non-perturbatively. Two different

methods are commonly used to calculate the FFs: The Light Cone Sum Rules (LCSR)

method which is only valid at low q2 and Lattice QCD which is valid at high q2. For the

analysis presented in this thesis, a continuous parameterisation of the form factors across

the full q2 spectrum is needed. This has been achieved in Ref. [35], where the six FFs

needed to describe B0→ K∗0µ+µ− decays (V , A1, A12, T1, T2, T23) have been calculated

using LCSR and Lattice QCD and subsequently parameterised as a function of q2 using

the expression [35]:

Fi(q
2) =

1

1− q2/m2
R,i

2
∑

k=0

αik
[

z(q2)− z(0)
]k
, (2.17)

where

z(t) =

√
t+ − t−√

t+ − t0√
t+ − t+

√
t+ − t0

, (2.18)

with t± ≡ (mB ± mK∗)2 and t0 ≡ t+(1 −
√

1− t−/t+). mR,i denotes the masses of

the excited B0 states as given in Ref. [35]. αik are the FF parameters. Equation 2.17

is truncated after the 3rd order (quadratic in z) which was found to describe the FFs

well [35]. Thus there are three free parameters for each of the six form factors.

The parameters are obtained in a combined fit to the calculated FFs while taking into

account all correlations between the FFs. Figure 2.3 shows the calculated FFs in bins

of q2 obtained from LCSR (red points) and Lattice QCD (blue points), as well as the

parameterised FFs as a function of q2 (grey band). The authors of [35] published the best

fit values for all αik as well as the full covariance matrix. These are used in the fit to LHCb

data described in this thesis to constrain the FFs.

The actual decay being observed experimentally is not B0 → K∗0µ+µ− but B0 →
K∗0(→ K+π−)µ+µ−. In order to be able to use the B0→ K∗0 FFs, the K∗0 is treated as

a stable particle in the decay of the B0 meson and the decay of the K∗0 is then treated

as an independent process [32]. The impact of this approximation is a currently debated

issue and is explored in Ref. [36].
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Figure 2.3: Form factors obtained from LCSR (red points) and Lattice QCD (blue points). The grey band

shows the combined z-expansion fit. Figure from Ref. [35].
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2.6 Angular definitions

Considering only the P-wave configuration (angular momentum of 1) of the K+π− system5,

the decay B0→ K∗0(→ K+π−)µ+µ− can be fully described by three decay angles and q2,

which as previously stated is the squared invariant mass of the dimuon system. There are

several conventions for the definition of the angles. In this thesis, the LHCb convention is

used which is defined in Ref. [8] and also used in Refs. [1, 9, 10]. Under this convention,

the angular distributions of the B0→ K∗0µ+µ− and B0→ K∗0µ+µ− decays are the same,

assuming there is no CP violation.6.

cos θℓ is defined as the cosine of the angle θℓ between the direction of the µ+ (µ−) in

the rest frame of the dimuon system and the direction of the dimuon in the B0 (B0) rest

frame. The explicit definition of cos θℓ for B
0→ K∗0µ+µ− decays is given by

cos θℓ =
(

p̂
(µ+µ−)

µ+

)

·
(

p̂
(B0)

µ+µ−

)

=
(

p̂
(µ+µ−)

µ+

)

·
(

−p̂(µ+µ−)

B0

)

, (2.19)

where p̂
(Y )
X are unit vectors for the direction of particle X in the rest frame of the system

Y . The definition of cos θℓ for B
0→ K∗0µ+µ− is:

cos θℓ =
(

p̂
(µ+µ−)

µ−

)

·
(

p̂
(B0)

µ+µ−

)

=
(

p̂
(µ+µ−)

µ−

)

·
(

−p̂(µ+µ−)

B0

)

. (2.20)

Similarly, cos θK is defined as the cosine of the angle θK between the direction of the

K+ (K−) in the K∗0 (K∗0) rest frame and the direction of the K∗0 (K∗0) in the rest frame

of the B0 (B0). Explicitly, cos θK for B0→ K∗0µ+µ− decays is defined as

cos θK =
(

p̂
(K∗0)

K+

)

·
(

p̂
(B0)

K∗0

)

=
(

p̂
(K∗0)

K+

)

·
(

−p̂(K∗0)

B0

)

. (2.21)

For B0→ K∗0µ+µ− decays the definition of cos θK is:

cos θK =
(

p̂
(K∗0)

K−

)

·
(

p̂
(B0)

K∗0

)

=
(

p̂
(K∗0)

K−

)

·
(

−p̂(K∗0)

B0

)

(2.22)

The angle φ is defined as the angle between the plane containing the µ+ and µ− and

the plane containing the kaon and pion from the K∗0 (K∗0). Explicitly for B0→ K∗0µ+µ−

decays φ is defined with

cosφ =
(

p̂
(B0)

µ− × p̂
(B0)

µ+

)

·
(

p̂
(B0)

K− × p̂
(B0)

π+

)

, (2.23)

5See section 2.9 for a discussion of the S-wave contribution.
6For a definition of the ‘theorists convention‘ and how to convert between conventions see [37].
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sinφ = −
[(

p̂
(B0)

µ− × p̂
(B0)

µ+

)

×
(

p̂
(B0)

K− × p̂
(B0)

π+

)]

· p̂(B0)

K∗0 (2.24)

whereas for B0→ K∗0µ+µ− decays φ is defined with

cosφ =
(

p̂
(B0)

µ+ × p̂
(B0)

µ−

)

·
(

p̂
(B0)

K+ × p̂
(B0)

π−

)

, (2.25)

sinφ =
[(

p̂
(B0)

µ+ × p̂
(B0)

µ−

)

×
(

p̂
(B0)

K+ × p̂
(B0)

π−

)]

· p̂(B0)

K∗0 (2.26)

Figure 2.4 shows an illustration of the definition of the angles for B0 → K∗0µ+µ−

decays. The differential decay rate of B0→ K∗0µ+µ− and B0→ K∗0µ+µ− decays can be

expressed using the angles defined above as shown in the next section.

Figure 2.4: Illustration of the definition of the angles θL, θK and φ for B0→ K∗0µ+µ− decays. Figure

from Ref. [8].

2.7 Differential decay rate

The differential decay rate of B0→ K∗0µ+µ− decays can be calculated by squaring the

matrix element for B0→ K∗0µ+µ− decays from the EFT (see section 2.4) and summing
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over the spins. When considering only the P-wave configuration of the K+π− system and

also ignoring scalar contributions to the dimuon system, the differential decay rate can be

expressed in terms of the decay angles, defined in the previous section, and q2 [38]:

d4Γ[B0→ K∗0µ+µ−]

dq2d~Ω
=

9

32π

∑

i

Ji(q
2)fi(cos θl, cos θK , φ)

=
9

32π

[

Js1 sin
2 θK + J c1 cos

2 θK

+Js2 sin
2 θK cos 2θl + J c2 cos

2 θK cos 2θl

+J3 sin
2 θK sin2 θl cos 2φ+ J4 sin 2θK sin 2θl cosφ

+J5 sin 2θK sin θl cosφ+ Js6 sin
2 θK cos θl

+J7 sin 2θK sin θl sinφ+ J8 sin 2θK sin 2θl sinφ

+J9 sin
2 θK sin2 θl sin 2φ

]

.

(2.27)

The (cos θℓ, cos θK , φ) dependence of the decay rate is introduced by spherical harmonics

which multiply each of the q2 dependent angular observables Ji(q
2). The angular observables

Ji(q
2) encapsulate the complete information that can be extracted from measurements

of B0 → K∗0µ+µ− [32]. They can be expressed as bi-linear combinations of the 6

complex transversity amplitudes AL,R
0 , AL,R

‖ , AL,R
⊥ which are presented in the following

section (section 2.8).
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Explicitly, the angular observables are given by [38]:

J1s =
(2 + β2

ℓ )

4

[

|AL⊥|2 + |AL‖ |2 + |AR⊥|2 + |AR‖ |2
]

+
4m2

ℓ

q2
Re

(

AL⊥A
R
⊥

∗
+ AL‖A

R
‖

∗)
,

J1c = |AL0 |2 + |AR0 |2 +
4m2

ℓ

q2
[

|At|2 + 2Re(AL0A
R
0

∗
)
]

+ β2
ℓ |AS|2 ,

J2s =
β2
ℓ

4

[

|AL⊥|2 + |AL‖ |2 + |AR⊥|2 + |AR‖ |2
]

,

J2c = −β2
ℓ

[

|AL0 |2 + |AR0 |2
]

,

J3 =
1

2
β2
ℓ

[

|AL⊥|2 − |AL‖ |2 + |AR⊥|2 − |AR‖ |2
]

,

J4 =
1√
2
β2
ℓ

[

Re(AL0A
L
‖

∗
+ AR0 A

R
‖

∗
)
]

,

J5 =
√
2βℓ

[

Re(AL0A
L
⊥

∗ − AR0 A
R
⊥

∗
)− mℓ

√

q2
Re(AL‖A

∗
S + AR‖

∗
AS)

]

,

J6s = 2βℓ
[

Re(AL‖A
L
⊥

∗ − AR‖ A
R
⊥

∗
)
]

,

J7 =
√
2βℓ

[

Im(AL0A
L
‖

∗ − AR0 A
R
‖

∗
) +

mℓ
√

q2
Im(AL⊥A

∗
S − AR⊥

∗
AS))

]

,

J8 =
1√
2
β2
ℓ

[

Im(AL0A
L
⊥

∗
+ AR0 A

R
⊥

∗
)
]

,

J9 = β2
ℓ

[

Im(AL‖
∗
AL⊥ + AR‖

∗
AR⊥)

]

, (2.28)

where the parameter βℓ is given by

βℓ =

√

1− 4m2
ℓ

q2
. (2.29)

Due to the choice of the angular basis in the LHCb convention, the differential decay

rate for the CP transformed B0→ K∗0µ+µ− decay,

d4Γ̄[B0→ K∗0µ+µ−]

dq2d~Ω
=

9

32π

∑

i

J̄i(q
2)fi(cos θl, cos θK , φ), (2.30)

results in the same angular distribution as the B0→ K∗0µ+µ− decay. Therefore, one can

sum over the decay rates to determine a set of CP -averaged observables Si:

Si =
(

Ji + J̄i
)

/

(

dΓ

dq2
+

dΓ̄

dq2

)

. (2.31)

38



This allows merging the B0→ K∗0µ+µ− and B0→ K∗0µ+µ− data sets, yielding twice the

number of events available for fitting.7

The observable S6s is a related to the forwared-backward asymmetry of the dimuon system

and is therefore commonly replaced by AFB = 3
4
S6s. The observable S1c is a measure

of the fraction of the longitudinal polarisation of the K∗0 and is commonly referred to

as FL = S1c. It is also common to define optimized angular observables for which the

B0→ K∗0 FF uncertainties cancel to first order and thus allow more precise SM predictions.

The convention for the optimized observables used by LHCb is [1, 10]:

P1 =
2S3

(1− FL)
= A

(2)
T ,

P2 =
2

3

AFB

(1− FL)
,

P3 =
−S9

(1− FL)
,

P ′
4,5,8 =

S4,5,8
√

FL(1− FL)
,

P ′
6 =

S7
√

FL(1− FL)
.

(2.32)

It should be noted that in some theoretical predictions the definition of the optimized

observables are different [39].

2.8 Transversity amplitudes

The K∗0 in the B0→ K∗0µ+µ− decay has three possible polarisation states: longitudinal

(denoted with ‘0’), parallel (denoted with ‘‖’) or perpendicular (denoted with ‘⊥’). The

decay with each polarisation state is described by a corresponding amplitude. Furthermore,

the muon system can either have left or right handed chirality (denoted L and R).

Thus, there are six complex amplitudes AL,R
0 , AL,R

‖ , AL,R
⊥ that can fully describe the

B0 → K∗0µ+µ− decay rate in the P-wave configuration. The amplitudes contain the

Wilson coefficients C7, C9 and C10 as well as the FFs described in section 2.5 and can be

written as [2]:

AL,R
0 (q2) = −8N

mBmK∗

√

q2

{

(C9 ∓ C10)A12(q
2) +

mb

mB +mK∗

C7T23(q
2) + G0(q

2)

}

, (2.33)

7CP violating effects are negligible in the SM and are so far also not favoured as a NP effect.
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AL,R
‖ (q2) = −N

√
2(m2

B −m2
K∗)

{

(C9 ∓ C10)
A1(q

2)

mB −mK∗

+
2mb

q2
C7T2(q

2) + G‖(q
2)

}

,

(2.34)

AL,R
⊥ (q2) = N

√
2λ

{

(C9 ∓ C10)
V (q2)

mB +mK∗

+
2mb

q2
C7T1(q

2) + G⊥(q
2)

}

, (2.35)

with

λ = m4
B +m4

K∗ + q4 − 2(m2
Bm

2
K∗ +m2

K∗q2 +m2
Bq

2), βℓ =
√

1− 4m2
ℓ/q

2 (2.36)

and

N = VtbV
∗
ts

√

G2
Fα

2

3× 210π5m3
B

q2λ1/2βµ . (2.37)

The functions G0(q
2), G‖(q

2), and G⊥(q
2) in equations 2.33, 2.34, and 2.35 describe the

non-local contributions to the B0→ K∗0µ+µ− decay which are discussed in section 2.11.

An empirical model to parameterise G0(q
2), G‖(q

2), and G⊥(q
2) is presented in chapter 3.

Since C9 ≈ −C10, the right handed amplitudes are highly suppressed in the SM.

2.9 S-wave contribution

Apart from the P-wave configuration of the K∗0, the B0 → K∗0µ+µ− decay can also

occur via kaon resonances with angular momentum 0 (S-wave configuration) such as the

K∗0
0(800). The S-Wave decays and make up a significant contribution of the observed

B0→ K∗0µ+µ− decays [40]. Since the S-Wave decays have different angular distributions

than the P-Wave decays, their presence would alter the angular observables if ignored in a

fit to data. The S-wave contribution is therefore included in the differential decay rate by

including 6 additional angular terms with the corresponding angular observables J ′
1c, J

′
2c,

J ′
4, J

′
5, J

′
7, J

′
8, which are described by the S-wave amplitudes and the interference between

the P-wave and S-wave amplitudes. The differential decay rate then becomes [41]:
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d4Γ[B0→ K∗0µ+µ−]

dq2d~Ω
=

9

32π

∑

i

Ji(q
2)fi(cos θl, cos θK , φ)

=
9

32π

[

Js1 sin
2 θK + J c1 cos

2 θK + J ′
1c(1− cos2 θl)

+Js2 sin
2 θK cos 2θl + J c2 cos

2 θK cos 2θl + J ′
2c cos

2 θK(1− cos 2θl)

+J3 sin
2 θK sin2 θl cos 2φ+ J4 sin 2θK sin 2θl cosφ+ J ′

4 sin 2θl sin θK cosφ

+J5 sin 2θK sin θl cosφ+ J ′
5 sin θK sin θl cosφ+ Js6 sin

2 θK cos θl

+J7 sin 2θK sin θl sinφ+ J ′
7 sin θK sin θl sinφ+ J8 sin 2θK sin 2θl sinφ

+J ′
8 sin 2θl sin θK sinφ+ J9 sin

2 θK sin2 θl sin 2φ
]

.

(2.38)

The angular observables J ′
1c, J

′
2c, J

′
4, J

′
5, J

′
7, J

′
8 are functions of the S-wave amplitudes

AL,R
00 as well as the P-wave amplitudes AL,R

0 , AL,R
‖ , AL,R

⊥ (see section 2.8) and are given by

J ′
1c =

1

3
|AL

00|2 +
1

3
|AR

00|2 ,

J ′
2c =

2√
3

[

Re(AL
00AL∗

0 ) + (L→ R)
]

,

J ′
4 =

√

2

3

[

Re(AL
00AL∗

‖ ) + (L→ R)
]

,

J ′
5 = 2

√

2

3

[

Re(AL
00AL∗

⊥ )− (L→ R)
]

,

J ′
7 = 2

√

2

3

[

Re(AL
00AL∗

‖ )− (L→ R)
]

,

J ′
8 =

√

2

3

[

Re(AL
00AL∗

⊥ ) + (L→ R)
]

,

(2.39)

The S-wave amplitudes AL,R
00 are given by

AL,R
00 (q2) = −N

λK∗0
0

√

q2

{

(C9 ∓ C10)F1(q
2) +

2mb

mB +mK∗

C7FT (q
2) + G00(q

2)

}

, (2.40)

with

λK∗0
0

= m4
B +m4

K∗
0
+ q4 − 2(m2

Bm
2
K∗

0
+m2

K∗
0
q2 +m2

Bq
2), βℓ =

√

1− 4m2
ℓ/q

2 (2.41)
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F (0) αF bF

F1(q
2)K

∗
0 (800) 0.27 -2.1 1.2

FT (q
2)K

∗
0 (800) 0.3 -2.2 1.2

Table 2.1: Coefficients for the S-wave FFs taken from Ref. [43].

and

N = VtbV
∗
ts

√

G2
Fα

2

3× 210π5m3
B

q2
√

λK∗0
0
βµ . (2.42)

The functions F1(q
2) and FT (q

2) in equation 2.40 are the FFs associated to the S-wave

B0 → K∗0µ+µ− decay. These FFs have not been studied extensively yet. There is a

calculation using a perturbative QCD approach which expresses the FFs with the following

parameterisation [42,43]

Fl,T (q
2) =

F (0)

1 + αF q2/m2
B + bF (q2/m2

B)
2
, (2.43)

where F (0), αF , bF are the individual FF coefficients. The FF coefficients for the FFs of

the B0→ K∗0µ+µ− decay in the K∗0
0(800) configuration calculated in Ref. [43] are given

in table 2.1. The paper does not give any uncertainties or correlations of these coefficients.

This poses an issue for performing a fit to data while taking the S-wave contribution

into account. The way this is handled in this thesis is described in section 3.3 and the

systematic uncertainty due to the poor understanding of the S-wave FFs is discussed in

section 7.2.3.

2.10 Anomalies of b→ sℓ+ℓ− decays

There are several measurements of b→ sℓ+ℓ− processes that show tensions with the SM.

They can be grouped into three categories: Branching fraction measurements, angular

analyses, and lepton flavor universality (LFU) tests.

LHCb has measured the branching fractions of several b→ sℓ+ℓ− decays to be lower

than the SM predictions: B0→ K∗0µ+µ− [5, 8], B0
s → φµ+µ− [6], and Λ0

b → Λµ+µ− [7].

In angular analyses, fits to the angular distributions, such as the distribution of the

angles defined in section 2.6, are performed to obtain a set of angular observables (such as

the observables given in eq. 2.32). These fits allow the extraction of the full information
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encoded in the decays which make them ideal for finding NP. Measurements of angular

observables that show discrepancies with the SM, performed by LHCb include [1, 6, 9–12].

Both the branching fraction measurements and the measurements of angular observ-

ables suffer from a common disadvantage: The theoretical predictions depend on the

understanding of the hadronic interaction of the decay. Even for optimized angular observ-

ables (equation 2.32), in which the FF uncertainties cancel to first order, the theoretical

uncertainties are significantly large when comparing experimental results with SM pre-

dictions. This dependence on the theoretical understanding of the hadronic interactions

is removed in LFU tests, which are measurements of ratios of branching fractions such

as BF(B0 → K∗0µ+µ−)/BF(B0 → K∗0e+e−). Since the SM couplings are lepton flavour

universal, the ratios are easily predicted with high precision within the SM and any effects

of the hadronic interactions cancel out. Measured LFU ratios that are discrepant from the

SM include B0 → K∗0ℓ+ℓ− decays [13], and B+ → K+ℓ+ℓ− decays [14, 15].

Despite the LFU ratios being the theoretically ‘cleanest’ observables, one cannot

solely rely on them for searching for NP in b→ sℓ+ℓ− decays. Firstly, the most significant

discrepancy with the SM is currently observed in the angular observables of B0→ K∗0µ+µ−

decays [1]. Secondly, LFU ratios will only reveal NP if the NP does in fact violate LFU,

which may not be the case.

The various b→ sℓ+ℓ− anomalies can be interpreted in a coherent way by performing

global fits determining the values of the Wilson Coefficients with which the predictions best

describe the available measurements of b→ sℓ+ℓ− processes [16, 44]. Different hypotheses

regarding the nature of the NP are tested such as 1D hypotheses allowing CNP
9 only, or

CNP
9 = - CNP

10 or 2D hypotheses such as allowing (CNP
9 , CNP

10 ). The left plot in figure 2.5

shows the allowed regions for the (CNP
9 , CNP

10 ) hypothesis from fits to ATLAS (green), Belle

(violet), CMS (yellow) and LHCb (red) as well as the combined (blue) data. The best fit

values are (-0.91, 0.18) with a pull of 5.6σ with respect to the SM [15]. This indicates

a significant shift in the vector coupling C9. However, there is an ongoing debate in the

community about the presence of so called non-local effects which might mimic NP by

shifting the observed value of C9, as discussed in the following section.

To further illustrate the importance of branching fraction measurements and measure-

ments of angular observables, the right side of figure 2.5 shows the fit to the LFU ratios

only, which yields a much less clear picture.
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Figure 2.5: Contours of global fits under the (CNP
9 , CNP

10 ) hypothesis using all available b → sℓ+ℓ−

observables (left) and LFU ratios only (right). Figure from Ref. [16].
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Figure 2.6: Feynman diagram for a b→ scc process in the EFT. Figure from Ref. [45].

2.11 Effect of non-local contributions

As described in section 2.3, b→ sℓ+ℓ− transitions occur only at the loop level in the SM.

The same final state can be obtained through b→ sqq processes if the qq pair decays into a

lepton pair, as shown in figure 2.6. The qq pair is a bound state which can make up vector

meson resonances such as ρ(770), φ(1020), J/ψ , ψ(2S), ψ(3770), ψ(4040) and ψ(4160).

Since decays such as B0 → J/ψK∗0 can also occur on the tree level, their amplitudes

dominate the total B0 → K∗0µ+µ− decay rate at q2 = m2
J/ψ (or the pole mass of the

respective resonance). Figure 2.7 shows the total decay rate of B0→ K∗0µ+µ− including
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all b→ sqq transitions and the peaks of the resonances are clearly visible.

Since the qq can exchange gluons with the b quark, as shown in figure 2.6, the

factorisation assumption (i.e. describing the quark level b→ sℓ+ℓ− transition and the

formation of the K∗0 meson separately) does not hold for b→ sqq processes. Consequently,

the decay amplitudes written in terms of the Wilson Coefficients and the FFs (see equations

2.33, 2.34, 2.35) do not properly describe the q2 dependence of the processes involving

qq loops. Since the resonances are vector particles, their presence effectively changes the

value of C9 in a q2 dependent way. This is expressed by the functions G0(q
2), G‖(q

2), and

G⊥(q
2) in equations 2.33, 2.34, 2.35. The change of C9 becomes largest at the pole masses

of the resonances.

In analyses that aim to be sensitive to NP by measuring observables related to the penguin

amplitudes, the resonant q2 regions are discarded from analysis (see for example Ref. [1]).

However, the b→ sqq processes can have effects on the B0→ K∗0µ+µ− decay rate, far away

from the pole masses of the resonances, through interference of the b→ sqq amplitudes

with the b→ sℓ+ℓ− penguin amplitudes. Therefore, the effects of the hadronic resonances

are referred to as non-local contributions. Since the phases of the resonant amplitudes

relative to the penguin amplitudes cannot be calculated from first principles and have never

been measured before, the level of interference, i.e. the size of the non-local contributions

is unknown.

There is an ongoing debate among theorists how to take non-local contributions into

account when calculating B0→ K∗0µ+µ− decays. One approach, which claims validity

only in the heavy quark and large energy limit (corresponding to q2 < 6GeV2/c4), uses

QCD factorisation methods [32, 34, 46]. Moreover, there is a model to determine the level

of charm loop interference through analyticity [47], but it is also only valid away from the

pole masses of the resonances. The effect of the higher ψ resonances is studied in Ref. [48].

In chapter 3, an empirical model is presented which aims to describe the full q2 spectrum

by parameterising the q2 dependence of the resonances with relativistic Breit Wigner

functions and assigning a magnitude and phase for each resonance relative to the penguin

amplitude. This allows determining the Wilson Coefficients directly from data while also

measuring the phases of the resonant amplitudes relative to the penguin amplitude. Thus,

the effect of the non-local contributions can be assessed experimentally.

LHCb has published a similar measurement of the phase difference of the resonant and

penguin amplitudes in the B+→ K+µ+µ− decay, where the level of interference was found

to be small [49]. However, the conclusions cannot be transferred to the B0→ K∗0µ+µ−
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Figure 2.7: Decay rate of B0→ K∗0µ+µ− as a function of q2 including all relevant b→ sqq transitions

(blue) and using the penguin amplitudes only (red). Based on the model described in chapter 3. Figure

from Ref. [50].

decay, since its amplitude structure is very different. The B+ → K+µ+µ− decay is

described by two amplitudes rather than the six amplitudes of B0→ K∗0µ+µ− (see section

2.8) and the final state of B+→ K+µ+µ− is described by a single angle and q2, whereas

B0→ K∗0µ+µ− requires three angles and q2 (see section 2.6).

Measuring the non-local contributions directly from data will help our understanding

of whether the observed anomalies in the angular observables of B0→ K∗0µ+µ− decays

are the result of underestimated interference of cc-loops with the penguin.
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3. Empirical model for searching for

New Physics in B0
→ K∗0µ+µ−

As explained in the previous chapter, measurements of angular observables in B0 →
K∗0µ+µ− decays have shown discrepancies to SM predictions, indicating a shift of the

vector Wilson Coefficient C9 with respect to the SM. However, this cannot clearly be

interpreted as an indication for NP because interference from hadronic resonances with the

short distance amplitudes can also cause a shift of C9. Therefore, these non-local effects

can mimic NP if they are not taken into account correctly in the SM predictions.

The purpose of this thesis is to perform a novel fit to the full q2 spectrum in the range

(0.1 ≤ q2 ≤ 18.0) GeV2/c4, parameterising both the penguin amplitudes as well as the

hadronic resonance amplitudes and the interference between them.

The model containing both the penguin and hadronic amplitudes is presented in section

3.1. Its prediction of the non-local effects is compared to predictions from other models in

section 3.2. The inclusion of the S-wave component in the model, which is necessary to

describe real data, is described in section 3.3.

3.1 Modelling non-local contributions

The model which is used in this thesis to parameterise the full B0→ K∗0µ+µ− spectrum

is based on Ref. [2]1.

The signal model is based on the full differential decay rate (see equation 2.38), where

the angular observables Ji and J ′
i are expressed in terms of the decay amplitudes (see

equations 2.28 and 2.39). The effect of the non-local contributions is introduced on the

amplitude level. Recalling from section 2.8, the P-wave amplitudes can be written as

AL,R
0 (q2) = −8N

mBmK∗

√

q2

{

(C9 ∓ C10)A12(q
2) +

mb

mB +mK∗

C7T23(q
2) + G0(q

2)

}

, (3.1)

AL,R
‖ (q2) = −N

√
2(m2

B−m2
K∗)

{

(C9 ∓ C10)
A1(q

2)

mB −mK∗

+
2mb

q2
C7T2(q

2) + G‖(q
2)

}

, (3.2)

1This entire section is written in reference to Ref. [2].
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AL,R
⊥ (q2) = N

√
2λ

{

(C9 ∓ C10)
V (q2)

mB +mK∗

+
2mb

q2
C7T1(q

2) + G⊥(q
2)

}

, (3.3)

with

λ = m4
B +m4

K∗ + q4 − 2(m2
Bm

2
K∗ +m2

K∗q2 +m2
Bq

2), βℓ =
√

1− 4m2
ℓ/q

2 (3.4)

and

N = VtbV
∗
ts

√

G2
Fα

2

3× 210π5m3
B

q2λ1/2βµ , (3.5)

where the functions in G0(q
2), G‖(q

2), and G⊥(q
2) describe the non-local hadronic contri-

butions.

In this empirical model, inspired by Refs. [48, 49,51], the hadronic contributions are

parameterised with

G0(q
2) =

mb

mB +mK∗

T23(q
2)ζ0eiω

0

+ A12(q
2)
∑

j

η0j e
iθ0jAres

j (q2), (3.6)

G‖(q
2) =

2mb

q2
T2(q

2)ζ‖eiω
‖

+
A1(q

2)

mB −mK∗

∑

j

η
‖
j e
iθ

‖
jAres

j (q2), (3.7)

G⊥(q
2) =

2mb

q2
T1(q

2)ζ⊥eiω
⊥

+
V (q2)

mB +mK∗

∑

j

η⊥j e
iθ⊥j Ares

j (q2). (3.8)

The first terms are the non-local contributions to the C7 terms. The respective contribution

to each transversity amplitude has a magnitude ζλ and phase ωλ which can be determined

in a fit to data. There is a degeneracy of ζλ with the first order parameter of each respective

form factor, i.e. with αT230 , αT20 , αT10 . Therefore, the first order FF parameters are fixed to

the values determined in Ref. [35], whereas the 2nd and 3rd order parameters are floated

and constrained to the covariance matrix (also published in Ref. [35]).

The second terms in equations 3.6, 3.7, and 3.8 are the non-local contributions to the C9
terms. The sums indicate sums over the considered vector resonances j ∈{ρ0, φ(1020),
J/ψ , ψ(2S), ψ(3770), ψ(4040), ψ(4160)}. Each resonance amplitude is multiplied with a

complex number where η0j , η
‖
j , η

⊥
j are the magnitudes and are θ0j , θ

⊥
j , θ

‖
j the phases of each

resonant amplitude relative to C9. These phases and magnitudes can also be determined

in a fit to data.
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The q2 dependence of each resonance is modelled by a relativistic Breit-Wigner Ares
j (q2),

similarly to the model used in Ref. [49], given by

Ares
j (q2) =

mres jΓres j

(m2
res j − q2)− imres jΓj(q2)

, (3.9)

where mres j is the pole mass and Γres j the natural width of resonance j. The respective

values are taken from [30]. The function Γj(q
2) represents the running width which is

given by

Γj(q
2) =

p

pres j

mres j

q
Γres j, (3.10)

where p is the momentum of the muons in the dimuon rest frame evaluated at q, and pres j

is the momentum evaluated at the mass of the resonance.

Since there are three magnitudes and phases for each resonance, it is common to define

the phases θ⊥j , θ
‖
j to be relative to θ0j . Thus, θ

0
j is defined to be the overall phase between

the resonance j and the penguin amplitudes.

Existing measurements of B0 → V K∗0 decays, where V denotes any vector meson

resonance appearing in the B0→ K∗0µ+µ− spectrum, are sensitive to the relative phases

θ⊥j , θ
‖
j between the resonant amplitudes. However, the phases θ0j between the resonant

and the penguin amplitudes, and thus the level of interference between the resonances and

the penguin, are completely unknown. This is because there has never been an analysis

of B0→ K∗0µ+µ− data which parameterised both the penguin and resonant amplitudes

simultaneously, which is exactly what the analysis presented in this thesis is aiming to

accomplish by fitting LHCb data with the model explained above.

3.2 Comparison to other models

In order to make predictions with the model described in the previous section, available

measurements of the relative phases θ⊥j , θ
‖
j and magnitudes η0j , η

⊥
j , η

‖
j can be used2.

For the decays B0 → J/ψK∗0 and B0 → ψ(2S)K∗0, measurements of the relative

phases and magnitudes of the transversity amplitudes are available from the LHCb, Babar

and Belle collaborations [52–54]. Also, the branching fractions have been measured by

the Belle collaboration [53, 55]. Furthermore, the relative phases and magnitudes and

branching fractions of the B0→ φK∗0 have been measured [56–58]. Using these inputs,

the magnitudes η0j , η
‖
j , η

⊥
j of each resonant amplitude, normalised to the respective FFs,

2This section is written in reference to Ref. [2].
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are calculated with

|η0j |2 =
f 0
j B(B0 → V K∗0)× B(V → µ+µ−)

τB

∫

∣

∣

∣

∣

∣

8N
mBmK∗

√

q2
Ares
j (q2)A12(q

2)

∣

∣

∣

∣

∣

2

dq2

,

|η‖j |2 =
f
‖
j B(B0 → V K∗0)× B(V → µ+µ−)

τB

∫
∣

∣

∣

∣

N
√
2(m2

B −m2
K∗)Ares

j (q2)
A1(q

2)

mB −mK∗

∣

∣

∣

∣

2

dq2
,

|η⊥j |2 =
f⊥
j B(B0 → V K∗0)× B(V → µ+µ−)

τB

∫
∣

∣

∣

∣

N
√
2λAres

j (q2)
V (q2)

mB +mK∗

∣

∣

∣

∣

2

dq2
,

(3.11)

where f 0
j , f

‖
j , and f

⊥
j are the measured polarisation fractions of the B0 → V K∗0 decays

and τB denotes the lifetime of the B0 meson. Calculating the magnitudes with the above

expressions ensures that the integral of the sum of squared magnitudes of a given resonance

yields the correct experimental branching fraction.

For the B0→ ρ0K∗0 decay, the total decay amplitude is set using the world average

branching fraction and the relative phases and magnitudes are set to those of the B0→ φK∗0

decay. For the decays B0→ VψK
∗0, with Vψ ∈ {ψ(3770), ψ(4040), andψ(4160)}, there are

no available measurements. Therefore, for the purpose of making predictions to compare

to other models, the relative phases and magnitudes of the decays are assumed to be the

same as B0→ J/ψK∗0 and the branching fractions are approximated by scaling the known

branching fractions of B0 → ψ(2S)K∗0 with ψ(2S)→ µ+µ− by the ratio of the known

branching fractions of B+→ ψ(2S)K+ and B+→ VψK
+ with Vψ→ µ+µ−.

As discussed above, the phase θ0j relative to the penguin is unknown for each resonance.

Therefore, these phases are varied and the effect of different values are studied when

comparing to different models.

The first model to which the empirical model, described in section 3.1, is compared to

is the prediction of non-local charm loop contributions presented in Ref. [59]. It uses light

cone sum rules calculations of the B0→ K∗0 matrix elements including contributions from

cc loops for q2 ≪ 4m4
c and a hadronic dispersion relation to extrapolate to higher q2. The

extrapolation uses experimental input for the amplitude structure of the B0→ J/ψK∗0

and B0→ ψ(2S)K∗0 decays. The effect of the charm loops are represented as ∆C9(q2),
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a q2 dependent correction to the Wilson Coefficient C9. The model in Ref. [59] uses the

invariant amplitude base and the authors also provide the relation of this basis to the

transversity basis which is used in Ref. [2] and in this thesis.

Figure 3.1 shows the real part of ∆C9(q2) predicted in Ref. [59] (magenta band) as well

as the predictions made with the model described in section 3.1, considering only the

hadronic contributions from B0 → J/ψK∗0 and B0 → ψ(2S)K∗0 decays, with different

values for the phases. The black dashed line shows the prediction obtained when setting

all phases to zero, thereby ignoring the measured relative phases between the hadronic

amplitudes. The cyan line shows the prediction obtained when setting the relative phases

between the hadronic amplitudes to the measured values but setting the overall phases

between the resonances and the penguin amplitudes θ0J/ψ ,ψ(2S) to zero. The dashed cyan

line shows the prediction obtained with the relative phases set to the measured values

and setting θ0J/ψ ,ψ(2S) = π. When ignoring the relative phases of the hadronic amplitudes,

the prediction of ∆C9(q2) made with the model described in section 3.1 is consistent with

the prediction from Ref. [59]. However, when taking the relative phases of the hadronic

amplitudes into account, the predictions are different. The size of the difference depends

on the choice of the free phases θ0J/ψ ,ψ(2S).

The second model to which the empirical model, described in section 3.1, is compared

is the prediction of the non-local charm loop contributions presented in Ref. [47]. The

non-local contributions are calculated at q2 < 0 to next-to-leading order in αs and then

parameterised as a function of q2 using a z-expansion, truncated after the second order,

similar to equation 2.17. Figure 3.2 shows the real and imaginary parts of the q2 dependent

shifts of C9 in the transversity basis predicted by [47] (magenta points). Also shown are

the corresponding predictions obtained with the model described in section 3.1, when

considering hadronic contributions only from the J/ψ and ψ(2S), with three different

choices for the phases θ0J/ψ ,ψ(2S) (cyan lines). The empirical model shows good agreement

with the predictions from Ref. [47] when setting θ0J/ψ ,ψ(2S) = π/8. The differences of the

models in the imaginary parts of ∆C9(q2) is due to the choice for the ωλ = π which is

discussed in more detail in Ref. [2]. Smaller values for ωλ have been found to give a better

agreement with Ref. [47] but bigger values for ωλ give better agreement with Ref. [59]. 3

3It should be noted that the same model (described in this section) is used for both figure 3.1 and

3.2 with the respective phase configurations explained in the figures and in the text. The difference in

line-shapes of ∆C9(q2) between the figures is due to the fact that completely different amplitude bases are

used. No trivial direct comparison can be made between them.
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Figure 3.1: q2 dependent shift of C9 due to the effect of the non-local contributions to the B0→ K∗0µ+µ−

invariant amplitudes. The prediction from Ref. [59] is shown with the magenta band. The prediction

using the model described in section 3.1 taking into account only the hadronic contributions from J/ψ and

ψ(2S) is also shown for different choices for the phases. The phases θ0J/ψ ,ψ(2S) are set to 0 (solid cyan line)

and π ( dashed cyan line). Also shown is the prediction where all phases including the relative phases

between the resonant amplitudes are set to 0 (dashed black line). Figure from Ref. [2].

In summary, the empirical model, presented in section 3.1 and in Ref. [2], shows

good agreement with existing models which predict the non-local contributions to B0→
K∗0µ+µ− decays, depending on the choice of the values of the phases. Contrary to previous

models, the empirical model can naturally include contributions from any vector resonance
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appearing in the q2 spectrum of B0→ K∗0µ+µ− decays. These include the light quark

resonances such as the φ(1020) and ρ0, as well as the heavy resonances appearing at

q2 > 4m2
D, where mD is the mass of the lowest mass D meson, such as the ψ(3770),

ψ(4040), and ψ(4160).

However, the caveat of the empirical model is that it cannot be generalised easily as it

relies on relativistic BW functions and therefore does not conserve unitarity. Furthermore,

it does not necessarily predict the non-local contributions to vanish at the kinematic

endpoint. Nonetheless, these considerations do not pose an issue for fitting experimental

data, as the phase space of real events vanishes at the kinematic end point, so there is no

data that needs to be described. Furthermore, in a fit to experimental data the model

does not need to be able to describe negative q2. The BW model can describe the data in

the considered kinematic region well. Thus, it can be concluded that while the model is

not a true model in the strictest theoretical sense, it is a reasonable approximation of a

true model which does agree well in its predictions with more theoretically sound models

(shown above), and can be used to describe and learn from experimental data.

3.3 Inclusion of the S-wave component in the model

In sections 3.1 and 3.2 only the P-wave contributions to the B0→ K∗0µ+µ− decay were

considered. In order to describe data, also the S-wave contributions have to be included in

the model. As discussed in section 2.9, the form factors F1(q
2) and FT (q

2) associated to

the S-wave amplitudes are not very well understood. To avoid decreasing the sensitivity to

the Wilson Coefficients, the S-wave amplitudes are decoupled from the rest of the model

by replacing the Wilson coefficients in the S-wave amplitudes with

(C9 − C10) → CSV 1

(C9 + C10) → CSV 2

C7 → CS
T

(3.12)

This way the overall normalisation of the S-wave form factors is effectively free in the fit

and the actual Wilson coefficients are solely determined in the P-wave amplitudes. The

S-wave amplitudes then become

AL,R
00 (q2) = −N

λK∗0
0

√

q2

{

CS
V 1,V 2F1(q

2) +
2mb

mB +mK∗

CS
TFT (q

2) + G00(q
2)

}

. (3.13)
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Figure 3.2: Non-local contributions to the B0 → K∗0µ+µ− amplitudes in the transversity basis as a

function of q2 predicted in Ref. [47] (magenta points) and predicted with the model described in section

3.1 when considering hadronic contributions only for the J/ψ and ψ(2S), for different values of the phases

θ0J/ψ ,ψ(2S) (cyan bands). Figure from Ref. [2].

Non-local contributions are also included for the S-wave amplitudes, similarly to how

they are included for the P-wave amplitudes:

G00(q
2) = F1(q

2)
∑

j=J/ψ ,ψ(2S)

η0j e
iθ0jAres

j (q2). (3.14)

As indicated in the sum, non-local S-wave contributions are only included for the J/ψ and

the ψ(2S), because they are the dominant resonances. Due to the much smaller branching

fractions of the B0 → V K∗0 decays involving the other resonances, compounded with

the small fraction of S-wave decays overall (roughly 8%), contributions from the other

resonances can safely be neglected. Furthermore, any non-local contribution to the C7 terms

in the S-wave amplitudes would be too small for a fit to be sensitive to them. Thus they

are not included explicitly in G00(q
2). However, due to the reparameterisation C7 → CS

T ,

the factor CS
T can effectively capture the real part of non-local S-wave contributions to C7.

When considering both the P-wave and S-wave contributions, the mass of the K+π−
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system mKπ, is needed to fully describe B0→ K∗0µ+µ− decays. The mKπ distribution

helps to distinguish between the P-wave and S-wave contributions since the P-wave

amplitude has much more narrow mKπ distribution. In the model used in this thesis, the

mKπ dependence is integrated out in order to reduce the number of dimensions in the fit

from five (cos θℓ, cos θK , φ, q
2, mKπ) to four. To this end, the angular observables in the

differential decay rate (eq. 2.38) which contain the P-wave amplitudes (J1s, J1c, J2s, J2c,

J3, J4, J5, J6s, J6c, J6c, J7, J8, J9) are multiplied with the integral of the P-wave mKπ line

shape, which is calculated with

ImKπP =

∫ 996MeV/c2

796MeV/c2
|g(mKπ)|2dmKπ, (3.15)

where g(mKπ) is a relativistic Breit-Wigner function with the mass and width of the

K∗0(892). The integral is performed in the 100 MeV/c2 window around the K∗0(892) pole

mass.

Similarly, the angular observable made up of the S-wave amplitudes (J ′
1c) is multiplied

with the integral of the S-wave mKπ line shape, calculated with

ImKπS =

∫ 996MeV/c2

796MeV/c2
|f(mKπ)|2dmKπ, (3.16)

where the function f(mKπ) is given by the LASS model [60].

The interference terms (J ′
2c, J

′
4, J

′
5, J

′
7, J

′
8) which are made up of P-wave and S-wave

amplitudes get multiplied with ImKπP−S , given by

ImKπP−S =

∫ 996MeV/c2

796MeV/c2
f(mKπ)g(mKπ)

∗dmKπ. (3.17)
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3.4 Summary of the parameters of the signal model

The parameters of the signal model used in this thesis are summarised in table 3.1. The

table indicates the treatment of each parameter during the fit to real data - i.e. whether

it is left floating freely, constrained via an external constraint, or fixed to an externally

measured or calculated value.

The fit was found to be more stable when expressing the amplitudes of the higher ψ

resonances and the non local effects on ∆C7 in terms of the real and imaginary parts rather

than the respective magnitudes and phases.

For the fit to Run 1 data (shown in chapter 7), the relative magnitudes and phases of the

ρ(770) and the φ(1020) are fixed but may be floated in future fits to the merged Run 1 and

Run 2 data. The resolution parameters in the mid and high q2 region are determined from

data in separate fits. Then, during the full fit of the signal model, the slope parameters α2

and α3 are floated again. This is discussed in section 5.3.

The constraints of the FF parameters are discussed in section 2.5 and 3.3. Furthermore,

the fit uses a constraint on ∆C7 taken from Ref. [61].
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Wilson Coeffs

|C9| free

θC9 fixed

|C10| free

θC10 fixed

|C7| fixed

θC7 fixed

Resonances

|AJ/ψ‖ | free

θ
J/ψ
‖ free

|AJ/ψ⊥ | free

θ
J/ψ
⊥ free

|AJ/ψ0 | fixed

θ
J/ψ
0 free

|Aψ(2S)‖ | free

θ
ψ(2S)
‖ free

|Aψ(2S)⊥ | free

θ
ψ(2S)
⊥ free

|Aψ(2S)0 | free

θ
ψ(2S)
0 free

|Aρ(770)‖ | fixed

θ
ρ(770)
‖ fixed

|Aρ(770)⊥ | fixed

θ
ρ(770)
⊥ fixed

|Aρ(770)0 )| free

θ
ρ(770)
0 free

|Aφ(1020)‖ | fixed

θ
φ(1020)
‖ fixed

|Aφ(1020)⊥ | fixed

θ
φ(1020)
⊥ fixed

|Aφ(1020)0 )| fixed

θ
φ(1020)
0 free

Re(A
ψ(3770)
‖ ) free

Im(A
ψ(3770)
‖ ) free

Re(A
ψ(3770)
⊥ ) free

Im(A
ψ(3770)
⊥ ) free

Re(A
ψ(3770)
0 ) free

Im(A
ψ(3770)
0 ) free

Resonances

Re(A
ψ(4040)
‖ ) free

Im(A
ψ(4040)
‖ ) free

Re(A
ψ(4040)
⊥ ) free

Im(A
ψ(4040)
⊥ ) free

Re(A
ψ(4040)
0 ) free

Im(A
ψ(4040)
0 ) free

Re(A
ψ(4160)
‖ ) free

Im(A
ψ(4160)
‖ ) free

Re(A
ψ(4160)
⊥ ) free

Im((A
ψ(4160)
⊥ ) free

Re(A
ψ(4160)
0 ) free

Im(A
ψ(4160)
0 ) free

FFs [35]

αA01 constr.

αA02 constr.

αA10 constr.

αA11 constr.

αA12 constr.

αA120 constr.

αA121 constr.

αA122 constr.

αV0 constr.

αV1 constr.

αV2 constr.

αT10 fixed

αT11 constr.

αT12 constr.

αT20 fixed

αT21 constr.

αT22 constr.

αT230 fixed

αT231 constr.

αT232 constr.

S-Wave

|AJ/ψ00 | free

θ
J/ψ
00 free

|Aψ(2S)00 | free

θ
ψ(2S)
00 free

αF1
0 fixed [43]

αF1
1 fixed [43]

αF1
2 fixed [43]

αFT0 fixed [43]

αFT1 fixed [43]

αFT2 fixed [43]

CSV 1/(C9 − C10) free

CSV 1/(C9 + C10) free

CST /C7 free

∆C7 [61]

Re(ζ‖eiω‖) constr.

Im(ζ‖eiω‖) constr.

Re(ζ⊥eiω⊥) constr.

Im(ζ⊥eiω⊥) constr.

Re(ζ0eiω0) constr.

Re(ζ0eiω0) constr.

Resolution (sec. 5.3)

α2 free

N2
u fixed

N2
l fixed

σ2
gauss fixed

σ2
CB, fixed

f 2 fixed

α3 free

N3
u fixed

N3
l fixed

σ3
gauss fixed

σ3
CB fixed

f 3 fixed

Table 3.1: All parameters of the signal model. The treatment of each parameter (free floating, fixed, or

constrained using external constraints) in the fit to data is indicated.



4. Experimental Setup

4.1 The Large Hadron Collider

CMS

ALICE
ATLAS

LHCb

LHC

SPS

PS
p

Pb

Figure 4.1: The LHC experiments and the pre-accelerators. From Ref. [62].

In order to study the nature of matter at the smallest accessible scale, the European

Organisation for Nuclear research (CERN) in Geneva in Switzerland has built the Large

Hadron Collider (LHC) [63]. Measuring 26.7 km in circumference, it is the worlds largest

particle collider. It is also the worlds most powerful collider, capable of accelerating protons

to energies of up to 6.5TeV. The acceleration is achieved by 16 radio-frequency cavities

placed along the beam line, while 1232 superconducting dipole magnets provide a strong

magnetic field of up to 7.7T, bending the proton beams along the ring.

Two proton beams are accelerated simultaneously in opposing direction and collided

with centre of mass energies (
√
s) of up to 13TeV at four intersections of the beam

pipes. At each intersection, a particle detector system measures and records the outgoing

particles produced in the collisions. Figure 4.1 shows a schematic of the LHC and its

pre-acceletators, the Proton Synchroton (PS) and the Super Proton Synchroton (SPS), as

well as the positions of the four particle detector systems (also referred to as experiments)

at the LHC: ATLAS [64] and CMS [65] are general purpose experiments with a large focus

on searching for new fundamental heavy particles such as the Higgs Boson which was
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Figure 4.2: Angular distribution of simulated pp→ bbX production at
√
s = 8TeV using PYTHIA8 [71].

The bins marked red indicate the angular acceptance of the LHCb detector. Figure from Ref. [72].

discovered in 2012 [66,67]. ALICE [68] studies the Quark Gluon Plasma [69] created in

Pb-Pb collisions1. LHCb [70] is dedicated to heavy flavour physics with the main focus

of finding indirect evidence for New Physics in CP violation and rare decays of hadrons

containing b and c quarks.

4.2 LHCb detector layout

At the LHC, b-hadrons are produced through the creation of bb quark pairs in the pp-

collisions, and the subsequent hadronisation of the b and b quarks. The predominant

process for pp→ bb is gluon fusion, where each gluon carries a certain fraction of its proton’s

momentum as determined by the proton’s Parton Distribution Function. Any asymmetry

between the momenta of the gluons causes the bb system to be boosted along the beam

line with respect to the rest frame of the pp system. Figure 4.2 shows the distribution of

the angles θ1 (θ2) between the momentum of the b-quark (b-quark) and the beam line for

simulated pp→ bbX production. The simulation shows that the majority of bb quark pairs

collimate in a narrow cone around the beam line on either side of the collision point. In

order to study the decay of b-hadrons at the LHC, it is therefore preferential to build a

1The LHC is also capable of accelerating Pb ions to energies of up to 2.76TeV per nucleon.
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detector that covers the forward (around θ ≈ 0) and/or backward (around θ ≈ π) region

rather than the transverse plane. The angular acceptance of LHCb covers the forward

region of approximately 10mrad to 300mrad as shown by the red bins in figure 4.2. The

angular acceptance is often expressed in terms of pseudorapidity which is defined as:

η = − log

(

tan

(

θ

2

))

. (4.1)

The angular acceptance of LHCb is 2 < η < 5.

The choice to build a one sided forward detector rather than a dual sided detector,

and therefore loosing half of the bb pairs, is justified by the space constraints of the cavern

in which LHCb was built. It is preferential to build a single detector arm and making it

as long as possible. This allows to fit in more detector systems, as well as to achieve the

highest possible precision in the measurement of the momenta of the particles due to a

longer leaver arm.

The production cross section for pp→ bbX within the LHCb acceptance has been

measured as σ(pp→ bbX) = 72.0 ± 0.3 ± 6.8µb at
√
s = 7TeV and σ(pp→ bbX) =

144± 1± 21µb at
√
s = 13TeV [73]. Therefore, an equal amount of integrated recorded

luminosity, which is a measure for the number of recorded pp collisions, at
√
s = 13TeV

contains about twice as many bb pairs as at
√
s = 7TeV. Table 4.1 summarises the centre of

mass energy, the bb production cross section as well as the integrated recorded luminosity

for the data which is used in this thesis ordered by the year of data taking. The combined

periods of 2011 and 2012 are commonly referred to as Run 1 while the combined periods

of 2016 and 2017 are referred to in this thesis as Run 2.2

Figure 4.3 shows a schematic slice of the LHCb detector in the y-z plane. The z-axis

is defined to be parallel to the beam line and the x-y plane is perpendicular to the z axis.

The collision point at x = y = z = 0 is surrounded by the Vertex Locator (VELO) which

tracks charged particles and is responsible for determining the position of the pp collision

vertex as well as secondary vertices of decaying particles. Further down the beam line

(z > 0) is a magnet providing an integrated magnetic field of 4Tm which bends the path

of charged particles. Additional tracking of charged particles, and the determination of

the particle’s momenta, is performed by the tracking stations consisting of the TT (before

the magnet) and T1, T2 and T3 (behind the magnet). Particle identification is achieved

2There was also data taken in 2015 and 2018 which are often included in what is referred to as Run 2.

However, in this thesis the data from 2015 is omitted for data quality reasons and the data from 2018 is

omitted due to a lack of finalised processing of the data by the LHCb collaboration.
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Year
√
s σ(pp→ bbX) integrated recorded luminosity

[TeV] [µb] [fb−1]

2011 7 ∼72 1.1

2012 8 ∼82 2.1

2016 13 ∼144 1.7

2017 13 ∼144 1.7

Table 4.1: Centre of mass energy, bb production cross section and integrated recorded luminosity at LHCb

for the data periods used in this thesis.

using two Ring Imaging Cerenkov detectors RICH1 and RICH2. The calorimeter system,

comprised of the scintillating pad detector (SPD) and pre-shower (PS), followed by an

electromagnetic (ECAL) and a hadronic calorimeter(HCAL), allows photons, electrons and

hadrons to be identified and measures their energy. The muon system (M1-M5) identifies

and measures the momentum of muons and also allows triggering on muons.

In the following, the detector systems which are most important for this analysis are

explained in more detail.

4.3 Vertexing

Due to their long lifetime, hadrons containing b and c quarks typically fly on the order of

several mm before decaying. Therefore, events containing b or c-hadrons, can be identified

by finding secondary decay vertices away from the primary pp-vertex (PV). Charged

particles produced in a vertex traverse through the VELO [74] depositing small doses of

energy, so called hits, in the VELO’s silicon sensors. Tracking algorithms reconstruct the

trajectories, referred to as tracks, of the particles. By extrapolating the tracks into the

interaction region, the vertices can be reconstructed. Since it is an extrapolation, the

further away the reconstructed hits are from the vertex, the larger the uncertainty on the

vertex position. Therefore, the VELO is built as close to the beam line as possible: during

operation it is 8mm away from the interaction point which is the closer than any other

LHC detector.

The VELO is made of 21 half-moon shaped modules placed on either side of the beam

line as shown in figure 4.4. Each module consists of two sets of silicon strip sensors, one
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Figure 4.3: Schematic of the LHCb detector. The z-axis is defined to be parallel to the beam line and the

x-y plane is perpendicular to the z axis. The origin (0, 0, 0) is defined to be roughly at the collision point.

Figure from Ref. [70].

with the strips lined in radial direction to measure the polar angle of hits (φ sensors, shown

in blue in figure 4.4) and one with strips lined circularly around the module to measure

the axial distance of the hits (R sensors, shown in red in figure 4.4)).

The hit position resolution is determined by the width of the strips (referred to as

pitch) and by the fact that each module has two perpendicular layers of strips. The pitch

varies from ∼ 40 µm close to the beam to ∼ 100 µm away from the beam, achieving a

maximal resolution of ∼ 4 µm on the hit position.

The precision on the vertex position depends, besides the hit resolution of the modules

and the distance of the modules to the vertex, on the number of tracks coming from each

vertex. The resolution on the x (z) coordinate of a vertex is ∼ 35 µm (∼ 260 µm) for a

vertex with five tracks while the precision is ∼ 12 µm (∼ 80 µm) for a vertex with 30

tracks [75].

Besides determining the position of primary and secondary vertices, the VELO is also

used to determine the impact parameter (IP) of tracks. IP is defined as the closest distance
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Figure 4.4: Schematic of the VELO detector. Taken from Ref. [70].

of a track to a vertex. Events that contain b- or c-hadrons are characterised by tracks with

large IP with respect to the primary vertex. The precision on IP is ∼ 20 µm for high

momentum tracks.

Both sides of the VELO can be moved in and out of the interaction zone. The narrow

distance of 8mm between the VELO modules and the beam line is only kept while the

proton beams are stable. Whenever the proton beams are not stable, for example during

ramp up of the beam energy, the VELO models are moved outward by 3 cm to protect

them from damage from stray beam particles.

4.4 Tracking

Besides the VELO, several more tracking detectors are installed in LHCb further down-

stream the beam line. The main purpose of these is to determine the momentum of

charged particles from the curvature of the tracks in the known magnetic field. The first

tracker is the Tracker Turicensis (TT), positioned right before the magnet (see figure 4.3),

which has four layers of silicon strip detectors. Behind the magnet are three tracking

detectors T1, T2, T3 with four layers each. Each layer is split into two different detector
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technologies. The sections close to the beam-pipe, referred to as Inner Tracker (IT) [76],

are subject to a higher occupancy of particles traversing through it and therefore consist

of high resolution silicon trackers. The outer sections away from the beam, referred to as

Outer Tracker (OT) [77], have a lower occupancy and therefore consist of gas based straw

tube detectors, which are cheaper than silicons strips but have a lower resolution.

The momentum resolution of the tracking system varies from δp/p = 0.4% at

p = 5GeV/c to δp/p = 0.6% at p = 100GeV/c.

4.5 Particle Identification using Ring Imaging

Cherenkov dectectors

Many measurements performed by LHCb rely heavily on correctly identifying parti-

cle species to reconstruct specific decays. For the reconstruction of the B0 → K∗0(→
K+π−)µ+µ− decay the correct identification of kaons and pions is essential.

In LHCb, the main system responsible for particle identification (PID) of hadrons is the

RICH system, consisting of two Ring imaging Cherenkov detectors: RICH1 and RICH2 [78].

They work based on the fact that a particle traversing through a medium faster than

the speed of light in that medium radiates a cone of light in a process called Cherenkov

radiation. The RICH detectors collect this light using mirrors and photo-detectors and

determine the opening angle θc of the light cone. The angle θc is related to the mass m

and momentum p of the particle as well as the refractive index n of the medium:

cos(θc) =

√

m2 c2 + p2

pn
. (4.2)

The left hand side of figure 4.5 shows the reconstructed Cherenkov angles in RICH1 as

a function of particle momentum for different particle species. Clear distinct bands for

the different particle species are visible, however with increasing momentum they all tend

towards the same asymptotic limit and loose all separation. This is because for large

momenta cos(θc) → 1/n, i.e. all particles produce the same radius only dependent on

the refractive index of the medium. Therefore, the PID separation power of the RICH

decreases with increasing particle momentum.

The two RICH detectors use different mediums, with different refractive indices,

optimized for resolution at different momentum ranges. RICH1, which is placed before

the magnet and uses C4F10 (n = 1.0014), provides PID for kaons and pions with momenta
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Figure 4.5: Left: Reconstructed Cherenkov angles as a function of reconstructed particle momentum in

calibration data with the C4F10 radiator of the RICH1. Distinct bands are visible for different particle

species. The separation between the lines decreases with increasing momentum. Right: Kaon identification

efficiency (red) and pion misidentification rate (black) in the RICH system using two different cuts on the

DLLKπ variable: DLLKπ > 0: (open points) and DLLKπ > 5 (closed points). Figures from Ref. [79].

of 2− 40GeV/c in the full LHCb angular acceptance of 25− 300mrad [79]. RICH2 uses

CF4 (n = 1.0005) and provides PID for kaons and pions with momenta of 15− 100 GeV/c,

within an angular acceptance more focused on the region closer to the beam line of

15 − 120mrad [79]. The choice of angular coverage is driven by the fact that higher

momentum particles are more likely to traverse the detector at smaller polar angles.

Using the momentum information obtained by the tracking, as well as the Cherenkov

angles reconstructed via the photons measured in the RICH, equation 4.2 is used to fit

different mass hypotheses to each track. The difference in Log-Likelihoods (DLL) of two

different mass hypotheses can then be used to discriminate between two particle species

for a given track, for example:

DLLKπ = logL(θc, p|K)− logL(θc, p|π) (4.3)

The kaon identification efficiency as well as the rate of pions being misidentified as kaons

using the DLLKπ variable is shown in the right hand side of figure 4.5. Two different cuts

on DLLKπ are compared. A stricter cut of DLLKπ > 5 keeps the pion misidentification rate

below 5%, even at high momenta. However, it also causes the kaon identification efficiency

rate to drop significantly to less then 50% for p > 80 MeV/c. On the other hand, a looser

cut of DLLKπ keeps the kaon identification efficiency above 80% for p < 80 MeV/c at the

cost of an increased pion misidentification rate which reaches ∼30% at p = 100 MeV/c.
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Figure 4.6: Schematic of the muon detector in the y-z plane (left) and x-y plane (right). Figure from

Ref. [80].

The left hand side of figure 4.5 shows that the separation of muons and pions is rather

poor in the RICH. Therefore, an additional detector system is used for identifying muons

as explained in the next section.

4.6 Muon Identification

Just like kaons and pions, the identification muons is crucial for the analysis presented in

this thesis.

Experimentally muons have the advantage of penetrating material much better than

most other particles, while also being long lived enough to travel through the full length

of the detector. The LHCb muon system [81] takes advantage of this fact by being placed

at the very end of the LHCb apparatus as shown in figure 4.3.

The muon system consists of five rectangular stations M1-M5 with M1 being placed

in front of the calorimeters and M2-M5 being placed behind the calorimeters. Sections

M2-M5 are interlaced with 80 cm thick iron shields - labelled as muon filters in figure 4.6 -

which absorb all particles except for muons with p > 6 GeV/c.

Each muon system station has 276 multi-wire proportional chambers (MWPCs) which

detect hits of charged particles passing through them. In case of M1, the sections closest
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momentum range Required hits in muon stations

3GeV/c < p < 6GeV/c M2 and M3

6GeV/c < p < 10GeV/c M2, M3 and either M4 or M5

p > 10GeV/c M2, M3, M4 and M5

Table 4.2: The conditions for the isMuon variable. From Ref. [82].

to the interaction region, which are subject to higher levels of radiation, are made up of

12 gas electron multiplier (GEM) detectors instead of MWPCs. Each station is segmented

into 4 regions (marked R1-R4 in the right hand side of figure 4.6), in which the size of the

MWPCs is increasing as a function of the distance from the beam-pipe, ensuring consistent

occupancy across the regions.

Since all other particles are stopped in the calorimeters or the iron shields, muon tracks

can be identified simply by requiring hits in the muon stations. Whether or not a track is

labelled as a muon is expressed by the binary variable isMuon. The conditions for isMuon

are given in table 4.2. The isMuon variable has an identification efficiency of about 95%

(for tracks with 0.8GeV/c < pT < 1.7GeV/c)3 - 100% for tracks with pT > 5GeV/c [82].

The misidentification probability is below ∼ 2% for protons, kaons and pions [82].

Another PID variable based on the muon system, is a likelihood determined by matching

hits in the muon stations with the extrapolated track of a charged particle determined by

the tracker.

The muon system is also used in the trigger as explained in the following section.

4.7 Trigger

The LHC provides pp-collisions at a rate of 40 MHz. This is many orders of magnitude

higher than the rate at which data can be processed and stored. Also, only a fraction

of the pp-collisions produce b(c)-hadrons, and since the amount of storage is limited, it

is preferential to discard all events that likely do not contain any b(c)-hadrons. This is

achieved by the trigger system, which decides when to read out the detector and which

events get written to long term storage.

When filtering the events that were written to storage to obtain an event sample

3pT refers to the transverse momentum - i.e. the component of the momentum transverse to the beam

line.
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containing a specific signal decay such as B0→ K∗0µ+µ−, the events can be classified with

two categories. Events are classified as TOS (Trigger on Signal), if the trigger objects

of the signal decay (for example the muons of the B0→ K∗0µ+µ− decay) have sufficient

energy to trigger the event. Events are classified as TIS (Trigger independent of Signal), if

the events contain particles not associated to the signal decay with high enough energy

to cause the event to be triggered. These definitions allow the determination of the TOS

trigger efficiency ǫTOS, using background subtracted data, with

ǫTOS =
N(TOS and TIS)

N(TIS)
, (4.4)

where N(TIS) refers to the number of TIS events in the sample, and N(TOS and TIS) is

the number of events which meet both the TOS and TIS definitions.

The trigger is split into two stages: The low level trigger (L0) which is implemented in

specialised hardware, and the high level trigger (HLT) which is implemented in software.

Both stages are explained in the following.

4.7.1 Low Level Trigger

The main goal of the L0 is to decide when to read out the detector. It uses information

from the calorimeters and the muon system, both of which can be read out quickly, to

accept or reject events.

The L0 calorimeter trigger and L0 muon trigger work independently. Events triggered

by the L0 calorimeter trigger are not used in this analysis and therefore this section focuses

on the L0 muon trigger.

Since events which contain heavy flavor hadrons are often characterised by particles

with high transverse momentum pT, the L0 muon trigger accepts events containing either

a single high-pT muon (L0Muon) or a pair of muons with high pT (L0DiMuon).

The L0 muon trigger works by reconstructing straight-line tracks from aligned hits in

the five muon stations. An estimate of the pT is determined under the assumption that

each track is from a muon which originated from the interaction region and traversed the

known integrated magnetic field. The pT resolution is ∼ 25%.

The trigger algorithm then identifies the largest and second largest pT in each event and

accepts the event if either the largest pT is above the L0Muon threshold, or the product of

the largest and the second largest pT is above the L0DiMuon threshold. The thresholds used

for taking the data, which is analysed in this thesis, is given in table 4.3. The thresholds

are optimized for maximised signal efficiency under the different LHC running conditions.
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L0Muon threshold L0DiMuon threshold

plargestT plargestT × p2
nd largest

T

2011 [84] > 1.48 GeV > (1.296 GeV)2

2012 [84] > 1.76 GeV > (1.6 GeV)2

2016 [83] > 1.8 GeV > 2.25 GeV2

2017 [83] > 1.35 GeV > 1.69 GeV2

Table 4.3: L0Muon and L0DiMuon thresholds used to take the majority of the data in each year.
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Figure 4.7: Efficiencies of the L0Muon and L0DiMuon trigger in Run 2 data for B+→ J/ψ (µ+µ−)K+ decays

as a function of the pT of the B+. The efficiencies were determined using samples of trigger unbiased

signal events. Based on a Figure from Ref. [83].

Furthermore, the L0 trigger includes a requirement on the maximum number of hits in

the SPD (SPD multiplicty) to reduce the complexity of the events and therefore speed

up the reconstruction. For L0Muon, the SPD multiplicity is required to be smaller than

450, while for L0DiMuon, which accepts a much lower event rate, a looser cut on the SPD

multiplicity of < 900 is used. The use of the SPD multiplicty does not cause a significant

loss in signal efficiency [83].

Figure 4.7 shows the trigger efficiencies (defined in equation 4.4) of L0Muon and

L0DiMuon in Run 2 data for B+ → J/ψ (µ+µ−)K+ decay as a function of the pT of the
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B+. In terms of the trigger the B+→ J/ψ (µ+µ−)K+ decay is very similar to the decay

analysed in this thesis, which therefore has a comparable trigger efficiency.

The output bandwidth of the L0 trigger is 1 MHz, of which 400 kHz are reserved for

the muon triggers L0Muon and L0DiMuon.

4.7.2 High Level Trigger

Events that passed the L0 trigger are then processed by the HLT. The HLT is implemented

in software and runs on large computing farm of 27000 physical cores, capable of running

∼ 50000 threads using hyper-threading. The HLT processes the events in two stages:

HLT1 and HLT2.

High Level Trigger 1

In HLT1 a partial event reconstruction is performed. The information from the full

tracking system is used to reconstruct tracks of charged particles that deposited hits in

all tracking stations. These tracks are referred to as long tracks. The quality of each

track is determined by calculating the χ2 of the fitted track with respect to the associated

hits. Furthermore, tracks in the VELO are used to reconstruct the PV. Due to timing

constraints of HLT1, the only PID that is performed is the identification of muons, which

is achieved by matching long tracks with hits in the muon stations. This is only attempted

for tracks in events which were triggered by L0Muon.

The decision whether or not an event is accepted or rejected by HLT1 is based on

several independent algorithms called trigger lines. Besides specialised trigger lines used for

collecting calibration data or for collecting low multiplicity events, there are two different

inclusive trigger lines as well as muon trigger lines. In the analysis presented in this thesis,

events selected by the inclusive trigger lines and the muon trigger lines are used.

The inclusive trigger lines have the goal of selecting events which contain b- or c-

hadrons by looking for either a single track with large IP or a two track vertex with large

displacement with respect to the PV. The two track trigger line was only introduced in

2015 onward. The tracks must meet quality requirements based on their χ2.

The muon trigger lines only run on events selected by L0Muon. They aim at selecting

events containing decays of b- or c- hadrons with muons in the final state. There are three

major muon lines: The first looks for a single muon with large IP with respect to the

PV and with large pT; the second muon line selects dimuon pairs with a dimuon mass

matching with the mass of charmonia or bottomonium resonances; the third muon line
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Figure 4.8: Efficiency of the HLT1 muon trigger lines and the HLT1 inclusive single track trigger line

(Track MVA) in Run 2 data for B+→ J/ψ (µ+µ−)K+ decays as a function of the pT of the B+. Figure

from Ref. [83].

selects dimuons from a displaced secondary vertex. The efficiency of the muon lines and

the efficiency of the single track inclusive line are shown in figure 4.8. Since the muon lines

are only applied to events triggered by L0Muon and L0DiMuon, their absolute efficiencies

are lower than the efficiency of the inclusive line, which runs on all L0 events.

The HLT1 trigger stage reduces the event rate of ∼ 1 MHz, which it receives from L0,

to ∼ 110 kHz which gets passed to the second stage HLT2.

High Level Trigger 2

In HLT2 a full event reconstruction is performed. Besides long tracks, also tracks that

only deposited hits in the T stations (T tracks) as well as tracks that deposited hits in the

TT and the T stations (downstream tracks) are reconstructed. HLT2 also performs full

PID using the muon system, the RICH detectors, and the calorimeter system.

In Run 1 the detector was not fully calibrated during the reconstruction in HLT2,

causing the event variables to slightly differ from the variables obtained during offline
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topological”) in Run 2 data for B+→ J/ψ (µ+µ−)K+ decays as a function of the pT of the B+. Figure

from Ref. [83].

reconstruction4. During Run 2, due to improvements in computing power and optimisation

of algorithms, it was possible to use the full calibration data in HLT2, achieving the

highest possible resolution of the variables. This allowed the HLT2 trigger decisions to be

optimized in Run 2.

Similarly to HLT1, the decision whether an event is accepted or rejected by HLT2 is

based on several independent trigger lines. The HLT2 lines which are relevant for this

analysis are presented in the following.

Inclusive b-hadron trigger lines search for a two-, three-, or four-track vertex that is

displaced from the PV and has sizeable pT. These trigger lines are also referred to as

topological trigger lines as they use the typical topology of b-hadron decays to identify

them. They are implemented with multivariate classifiers which are trained to optimize

the selection criteria to select b-hadrons which can be fully reconstructed inside the LHCb

acceptance and to reject c-hadrons which are the biggest contribution to background.

The HLT2 muon trigger lines select a wide range of muonic signals, similar to the

4Offline reconstruction refers to the event reconstruction which is performed on the stored data.
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HLT1 trigger lines. Important for this analysis are the muon and dimuon trigger lines

which require large displacement from the PV. Figure 4.9 shows the efficiency (defined

in equation 4.4) of HLT2 muon trigger lines, the inclusive topological trigger (”any

topological”) lines and the topological triggers lines where one track is required to be

identified as a muon (”any muon topological”). Compared to the any topological trigger,

the any muon topological lines have a lower efficiency because they only process events

selected by the HLT1 single-muon trigger line.

Due to improvements in various parts of the data acquisition (DAQ), allowing faster

storage of events, the output rate of HLT2 trigger changed over the course of the data

taking: 3 kHz in 2011 [85], 5 kHz in 2012 [84], and 12.5 kHz from 2015 onward [83].

4.8 Generation of simulated events

As in any particle physics experiment, the distributions of the observables measured by

the LHCb detector - in case of this analysis the helicty angles and q2 of B0→ K∗0µ+µ− -

are different to their true distributions in nature. This is due to the effect of the detector

acceptance, detector response, the trigger and the subsequent steps in the event selection5,

which may favor certain values of the observables over others. In order to correct the

measured distributions for these effects, so called full Monte Carlo Simulations (MC) are

produced. In this context ‘full’ refers to the fact that the full sequence of events from

the initial pp collision until the reconstruction of the final state particles is simulated.

Simulations are produced in several stages, where each stage is handled by a different

software package.

The pp collisions and the primary particles produced within them - including b-hadrons

- are simulated using Pythia [71, 86]. The subsequent decay of unstable particles (e.g.

b-hadrons) into secondary particles is handled by EvtGen [87]. The interaction of the

produced particles with the LHCb detector and the detector response is then simulated

using GEANT4 [88]. The output from the simulated detector response is then digitized by

the BOOLE package [89] and reconstructed in the same way as data from the real detector

using BRUNEL [89].

The resulting simulations can be analysed just like data but also carry the additional

information of the true variables (e.g. momentum, PID, decay chain information) for

each particle. Comparing true and reconstructed distributions of MC events, allows the

5The event selection will be presented in section 5.1.
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quantification of detector/trigger/selection effects as well as the optimization of signal

selection procedures. For this analysis, this includes the parameterisation of the acceptance

(see section 5.2) as well as part of the parameterisation of the resolution (see section 5.3).

4.8.1 Correcting differences between data and simulation

In order to rely on the simulations to model the acceptance and resolution, it is important

to ensure that the simulated detector replicates all effects of the real detector correctly.

Any systematic difference in the distributions of simulated events and data events are

corrected for. Differences in the PID variables are corrected using so-called PID resampling

and several other differences are corrected by reweighting the simulated events to match

the distributions in data.

PID resampling

Since the PID variables are used to suppress several background contributions, as described

in section 5.1, it is important that the PID variables agree well between data and simulation.

However, due to the presence of a large number of low energy photons in the RICH detector,

as well as due to other factors, the simulation does not reproduce the PID variables well.

In order to improve the agreement between simulation and data, the PID variables in the

simulations are resampled using clean high-statistics control samples from data as input.

The data control samples, given in table 4.4, are selected using only tracking quantities.

The control samples are used to produce calibration histograms of each PID variable in

bins of track pseudorapidity η, the number of tracks per event (nTracks), and track pT.

Each track in the simulation is then matched to a bin in η, nTracks, and pT and each

PID variable is randomly sampled from the respective calibration histogram.

To validate the resampling method, the PID variables are compared in B0→ J/ψK∗0

data and B0→ J/ψK∗0 simulation. Since this data also includes background events, the

Particle Sample

K D∗+ → D0(→K+π−)π+

π D∗+ → D0(→K+π−)π+

µ J/ψ →µ+µ−

Table 4.4: High statistics data samples used for the PID resampling.
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Figure 4.10: PID distributions of the hadrons in sWeighted B0→ J/ψK∗0 data and simulation. The top

figures show the comparison of sWeighted data (black), non-resampled simulation (green) and resampled

simulation (red) for Run 2. The same is shown in the bottom plots but for Run 1.

sPlot technique described in Ref. [90] is used. The sPlot technique works by calculating a

weight for each event, proportional to the probability of the event being a signal event.

These so-called sWeights are determined by using a control variable, in this case the

mrec
B0 distribution. Applying the sWeights to the events in the B0→ J/ψK∗0 data results

signal-like distributions in each of the variables of interest.

Figure 4.10 shows the distribution of the PID variables of the hadrons in sWeighted

B0→ J/ψK∗0 data (black points) and in non-resampled simulation (green) and resampled

simulation (red). The top plots show the Run 2 data and simulation while the bottom plots

show the Run 1 data and simulation. The resampled simulation shows good agreement

with the sWeighted data. The spike at 0 in the Run 2 pion PID distribution is caused by

events which are below the RICH momentum threshold. The threshold was higher during

Run 2 than during Run 1 because of hardware modifications of the RICH detector.
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Kinematic reweighting

The distributions of the number of tracks per event nTracks, the vertex fit quality of the

signal candidate (χ2
Vtx), and the B0 candidate pT in the simualation show discrepencies

to the respective distributions in data and therefore need to be corrected. This is done

by determining weights for each simulated event such that the simulation matches the

data. The weights are calculated by comparing the nTracks, χ2
Vtx, pT(B

0) distributions

in sWeighted B0→ J/ψK∗0 data to the distributions in the simulation. The weights are

derived sequentially, whereby first a weight is derived to correct the nTracks distribution,

which is then applied to the simulated events before determining the weight for pT(B
0).

Finally, the product of the first two weights are applied before deriving the weight for χ2
Vtx.

These weights are then applied to all simulated events based on the nTracks, χ2
Vtx, and

pT(B
0) of each event. The effect of the reweighing is shown for Run 2 simulations in figure

4.11. The distributions of the reweighed simulation agree well with the sWeighted data.

Several checks have been performed to further validate the reweighting [91]. It has

been confirmed that quantities being reweighed are not correlated to the angles cos θK ,

cos θℓ, and φ. Also the agreement of data and simulation has been confirmed for several

other variables. Furthermore, it has been shown that the weights can be applied to correct

the simulation across the full q2 range.

76



number of tracks in event
0 100 200 300 400 500

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007
Simulation

sWeighted Data

Reweighted Simulation

(MeV/c)
T

candidate p
0 10000 20000 30000 40000

0

0.02

0.04

0.06

0.08

0.1

3−
10×

Simulation

sWeighted Data

Reweighted Simulation

vertex quality
0 10 20 30

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Simulation

sWeighted Data

Reweighted Simulation

Figure 4.11: Distributions of nTracks, χ2
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0) of sWeighted data (black) and the corresponding

simulation before (red) and after (blue) reweighing.
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5. Event selection and corrections of

experimental effects

As stated in section 4.2, the data analysed in this thesis was taken in 2011 and 2012

(Run 1) as well as 2016 and 2017 (Run 2). Ultimately, it is planned to fit the merged

datasets of Run 1 and Run 2. However, in order to fit the signal model to the data,

an acceptance model is required (see section 5.2). Currently, only separate acceptance

parameterisations for Run 1 and Run 2 data are available, but in order to fit the merged

dataset an averaged acceptance parametersation needs to be determined. This is beyond the

scope of this thesis. Since the parameterisation of the background (see chapter 6) does not

require an acceptance parameterisation, the background studies are presented based on the

merged dataset. Furthermore, a fit with the full model including the signal and background

components is performed using Run 1 data only.

The goal of the analysis presented in this thesis is to simultaneously determine the

Wilson Coefficients as well as the resonant contributions by fitting the full q2 spectrum of

B0→ K∗0µ+µ− events. The procedure for selecting B0→ K∗0µ+µ− candidate events from

the events recorded by LHCb is described in section 5.1. The particle reconstruction and

the event selection procedure can influence the shape of the angular and q2 distributions of

the reconstructed B0→ K∗0µ+µ− decays. These so called acceptance effects are accounted

for during the fit by multiplying the signal model with an acceptance function as described

in section 5.2.

Due to the limited resolution of the detector, the reconstructed peaks of the narrow

resonances φ(1020), J/ψ , and ψ(2S) are much wider than their natural widths. In order to

properly describe the data with the model described in chapter 3, the model is convolved

with a resolution function as described in section 5.3.

5.1 Selection

The events analysed in this thesis were recorded by LHCb in 2011 and 2012 (Run 1) as

well as 2016 and 2017 (Run 2). The purpose of the selection procedure is to identify the

events which most likely contain signal candidates. Signal candidates are reconstructed

by correctly identifying and combining the tracks of the four final state particles of
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B0→ K∗0(→ K+π−)µ+µ− decays including all resonant modes. The final state particles

are identified using the mass and charge hypothesis from the event reconstruction described

in chapter 4. Any event that does not contain a correctly reconstructed signal candidate

is referred to as a background event.

The fit presented in this thesis is using the same event sample as the published

measurement of the q2-binned angular observables [1]. Additionally, the 2017 data is

analysed in this thesis using the identical selection algorithms as for the 2016 data.

The selection procedure is therefore presented briefly, omitting any discussion of the

optimisation of the different cut values, which would be beyond the scope of this thesis.

For a more detailed discussion see Refs. [91–93].

The selection is performed in four main stages. It starts with the trigger, which was

explained in section 4.7. The sample of the triggered events is then passed through the

stripping where various criteria are applied to reduce the size of the event sample by

selecting only well reconstructed events that are likely to contain signal candidates. The

stripped data is then passed through the so called pre-selection, a series of cuts aimed at

reducing the number of combinatorial background events, while retaining as many signal

events as possible. Combinatorial background events are events where the candidate is

formed by random combinations of tracks not belonging to a signal decay. The stripping

as well as the pre-selection is presented in section 5.1.1.

Background contributions from misidentified decays, referred to as peaking backgrounds,

are removed with specific cuts as described in section 5.1.2. In the last step of the selection

process, a multivariate analysis (MVA) classifier, which is trained to identify signal events,

is used to further reduce background contributions as explained in section 5.1.3. The

resulting number of candidate events in the different kinematic regions of interest are

summarised in section 5.1.4.

5.1.1 Stripping and Preselection

The triggers used to collect events containing decays of B mesons with muons in the final

state are explained in section 4.7. After the event reconstruction is complete and potential

signal decays are identified, only TOS events are selected for analysis, i.e. only events

where the trigger objects associated to the signal decay were responsible for triggering the

event.

The triggered events are then passed through a stripping algorithm, also referred to as

stripping line. The conditions of the stripping line B2XMuMu used to select B0→ K∗0µ+µ−
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Candidate Stripping Run 1 Run 2

B meson IP χ2 < 16 (best PV) IP χ2 < 16 (best PV)

B meson 4800MeV/c2 < mrec
B0 < 7100MeV/c2 4800MeV/c2 < mrec

B0 < 7100MeV/c2

B meson DIRA angle < 14mrad DIRA angle < 14mrad

B meson flight distance χ2 > 121 flight distance χ2 > 121

B meson vertex χ2/ndf < 8 vertex χ2/ndf < 8

µ+µ− m(µ+µ−) < 7100MeV/c2 m(µ+µ−) < 7100MeV/c2

µ+µ− vertex χ2/ndf < 9 vertex χ2/ndf < 9

K∗0 m(K+π−) < 6200MeV/c2 m(K+π−) < 6200MeV/c2

K∗0 vertex χ2/ndf < 9 vertex χ2/ndf < 8

K∗0 flight distance χ2 > 9 flight distance χ2 > 16

tracks ghost Prob < 0.4 ghost Prob < 0.5

hadron min IP χ2 > 9 min IP χ2 > 6

muon min IP χ2 > 9 min IP χ2 > 9

muon IsMuon IsMuon

muon DLLµπ > −3 DLLµπ > −3

GEC SPD Mult. < 600 SPD Mult. < 600

Table 5.1: Stripping selection criteria of the B2XMuMu line for Run 1 and Run 2.

Candidates Selection

Track 0 < θ < 400 mrad

Track Pairs θpair > 1 mrad

K DLLKπ > -5

π DLLKπ < 25

PV |X − 〈X〉| < 5mm

PV |Y − 〈Y 〉| < 5mm

PV |Z − 〈Z〉| < 200mm

Table 5.2: Pre-selection cuts applied to the stripped event sample. In this table θ refers to the angle of a

track relative to the beamline and θpair is the opening angle between two track pairs.

events, including any resonant modes such as B0→ J/ψK∗0, are summarised in table 5.1

for Run 1 and Run 2. The differences between the cut values for Run 1 and Run 2 are

due to changes in the running condition of LHCb and are discussed in Ref. [91].
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The first series of cuts of the stripping are related to the B0 meson candidate. The B0

is required to be likely to originate from the PV and a broad cut is placed on mKπµµ, i.e.

the reconstructed invariant mass of the B0 (mKπµµ is also denoted as mrec
B0 hereafter). The

DIRA angle is defined as the angle between a line drawn from the PV vertex to the decay

vertex (DV) of the B0 and the sum of the 4-momenta of its decay products. Requiring a

small DIRA angle increases the probability of having a well reconstructed B0 meson. The

B0 candidate is also required to have travelled a significant distance from the PV before

decaying. Furthermore, a reasonable quality of the DV of the B0 is required.

To ensure the two muons originate from the same vertex, a cut is placed on the dimuon

vertex quality. Also a broad limit is placed on the dimuon mass to reject events with

dimuon masses much larger than the expected range in B0→ K∗0µ+µ− decays1.

The reconstructed K∗0 is also required to have a good vertex quality. Furthermore, the

flight distance of the K∗0 relative to the PV is required to be sufficiently large to ensure

the K∗0 vertex is not compatible with being part of the PV.

For each final state track, a cut is placed on the probability of being a ghost track,

defined as a track that is falsely reconstructed from hits in the detector that are not

associated to a given particle. Furthermore, it is required that the final state particles are

well separated from the PV by requiring a minimum IP. For each muon the PID variable

IsMuon (explained in section 4.6) is required to be true and a minimum requirement is

placed on the probability that the muon is a muon rather than a pion.

Lastly, in order to reject events with a large number of background tracks, which are less

likely to be reconstructed well, a cut is placed on the SPD multiplicity (see also section

4.7.1).

After the stripping, the pre-selection cuts are applied which are summarised in table

5.2. Identical cuts are used for Run 1 and Run 2 data. All final state tracks are required

to have angles relative to the beamline such that the track is within the acceptance of the

LHCb detector. Also, a minimum requirement is placed on the opening angle between

track pairs to ensure that tracks can be well separated in the reconstruction. The PID

variable DLLKπ is used to ensure a high probability that both the pion and the kaon are

identified correctly. Finally, in order to reject events containing tracks from beam-gas

interactions, cuts are placed on the distance of the PV position from the average PV

position.

After the pre-selection, an additional cut is placed on the Kπ invariant mass, mKπ,

1Ultimately, the fit is performed in the range (0.18 ≤ q2 ≤ 18) GeV2/c4
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choosing a window of ±100MeV/c2 around the nominal K∗0 mass:

795.9 < mKπ < 995.9MeV/c2. (5.1)

Furthermore, for events which contain multiple reconstructed B0→ K∗0µ+µ− candi-

dates (< 1% of all events after selection) one candidate is chosen randomly and all tracks

associated to the other candidates are considered to be background tracks.

5.1.2 Peaking backgrounds

Several decays can be misidentified as B0 → K∗0(→ K+π−)µ+µ− decays and therefore

end up in the selected event sample as so called peaking backgrounds. Furthermore, true

B0→ K∗0(→ K+π−)µ+µ− decays can be reconstructed wrongly (for example by swapping

the K and π) which also contributes to the peaking backgrounds. To reject peaking

backgrounds, specific cuts are used as outlined below.

Misreconstructed B0→ K∗0(→ K+π−)µ+µ− decays where the K and π were swapped

are rejected by requiring

DLLKπ(K) > DLLKπ(π). (5.2)

Two vetos are used to reject Λ0
b→ pK−µ+µ− decays. They can mimic signal decays if

the proton is misidentified as a pion. These are vetoed by rejecting events with

DLLpπ(π) > 0 and (5.3)

mK(π→p)µµ ∈ [5575, 5665]MeV/c2,

where mK(π→p)µµ denotes the invariant mass of the reconstructed B0 candidate when

swapping the mass of the K for the mass of a proton. Λ0
b→ pK−µ+µ− decays can also

mimic signal decays if the proton is misidentified as a kaon and the kaon as pion. To

remove this background source, events with

DLLKπ(π) > 0 and (5.4)

m(K→p)(π→K)µµ ∈ [5575, 5665]MeV/c2

are rejected.

The decays B0 → J/ψ (→ µ+µ−)K∗0(→ K+π−) and B0 → ψ(2S)(→ µ+µ−)K∗0(→
K+π−) can contribute to the peaking backgrounds if the final state particles are swapped
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through misidentification: µ− ↔ π− or K+ ↔ µ+. These swapped backgrounds from

B0→ J/ψK∗0 are vetoed by rejecting events with

m(π→µ)µ ∈ [3036, 3156]MeV/c2 and (5.5)

DLLµπ(π) > 5.0 or isMuon(π),

as well as rejecting events with

m(K→µ)µ ∈ [3036, 3156]MeV/c2 and (5.6)

DLLµπ(K) > 5.0 or isMuon(K).

Analogously, the swapped backgrounds from B0→ ψ(2S)K∗0 decays are vetoed by rejecting

events with

m(π→µ)µ ∈ [3626, 3746]MeV/c2 and (5.7)

DLLµπ(π) > 5.0 or isMuon(π)

and rejecting events with

m(K→µ)µ ∈ [3626, 3746]MeV/c2 and (5.8)

DLLµπ(K) > 5.0 or isMuon(K).

.

The rare decay B0
s → φ(→ K+K−)µ+µ− can mimic a signal event if the K− is

misidentified as a π−. This background is vetoed by rejecting events with

mK(π→K)µµ ∈ [5321, 5411]MeV/c2 (5.9)

and rejecting events with

mK(π→K) ∈ [1010, 1030]MeV/c2 and DLLKπ(π) > −10 or (5.10)

mK(π→K) ∈ [1030, 1075]MeV/c2 and DLLKπ(π) > +10.

Finally, the rare decay B+→ K+µ+µ− can contribute to the peaking backgrounds if the

final state is combined with a random pion from the rest of the event. This contribution is

only present in the upper mass side-band of the mrec
B0 spectrum and is removed by rejecting

events with

mKπµµ > 5380MeV/c2 and (5.11)

mKµµ ∈ [5220, 5340]MeV/c2.
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This veto also removes combinatorial background events in the upper mass side-band,

causing a sculpting of the background distributions. This has to be taken into account

when using the upper mass side-band to parameterise the combinatorial background, as

described in chapter 6.

5.1.3 Multivariate Selection

In the final step of the selection procedure a multivariate analysis technique is used to

further suppress background events. This involves training a multivariate classifier, in this

case a Boosted Decision Tree (BDT) [94], to classify signal and background events using

their distinct characteristics in data. The input variables for the BDT are:

• B0 lifetime;

• B0 momentum and pT;

• B0 direction angle (DIRA);

• K+π−µ+µ− vertex χ2;

• DLLKπ of the kaon and pion;

• DLLµπ of the muons;

• isolation of the four final state particles.

The isolation is defined as the number of background tracks that can form a vertex with a

given final state track.

The BDT is trained using data. The events in the upper mass side-band

((5350 ≤ mrec
B0 ≤ 7000) MeV/c2) are labelled as background events. The sample of

events labelled as signal events is obtained from B0→ J/ψK∗0 data. Since this data also

includes background events, the sPlot technique, already mentioned in section 4.8, is used.

Applying the per-event sWeights to the B0→ J/ψK∗0 data yields signal-like distributions

in each of the input variables.

In order to maximise the performance of the BDT, the k-folding technique is employed.

The dataset is divided into 10 sub-samples and the BDT is trained using 9 of the sub-

samples as input and evaluated on the remaining sub-sample. Then, the training step is

repeated while including the previously excluded sub-sample and excluding a different

sub-sample. This is repeated until 10 different BDTs have been trained. When applying
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Figure 5.1: Distribution of the BDT variable of the events in the kinematic region considered in this thesis

((5220 ≤ mrec
B0 ≤ 5840) MeV/c2, (0.18 ≤ q2 ≤ 18.0) GeV2/c4, (795.9 ≤ mKπ ≤ 995.9) MeV/c2) in Run 1

data (left) and Run 2 data (right). All events with BDT > 0.1 are used for the analysis.

the multivariate classifier to the event sample after stripping and pre-selection, the output

of these 10 BDTs is averaged to obtain a single BDT variable for each event – except for

the events in the J/ψ region, where for each given event only the single BDT is used that

was trained on the 9 sub-samples which did not include the given event.

The distribution of the BDT variable in Run 1 data (left) and Run 2 data (right) is

shown in figure 5.1.

The cut value for selecting the event sample for analysis is chosen such that signal

significance defined as

s =
Nsig

√

Nsig +Nbkg

(5.12)

is maximised. This is given for BDT > 0.1 for both Run 1 and Run 2 data as shown in

Ref. [91]2. The signal efficiency for this BDT cut value is 77% in Run 1 and 87% in Run 2,

whereas the background rejection efficiency is 95% in Run 1 and 97% in Run 2 [50].

2The actual maximum for s is found at BDT ≈ 0 for both Run 1 and Run 2 data. However in order to

be conservative and to avoid being affected by fluctuations which may shift the observed maximum, a

slightly higher cut is used for the analysis.
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5.1.4 Number of candidate events after selection

The number of candidate events per q2-region after the selection in Run 1 only data and

in the merged Run 1 and Run 2 data are given in table 5.3 for the signal region and the

upper mass side-band.

mrec
B0 region low q2 mid q2 high q2 total

Run 1
signal region 450 260772 17547 278769

side-band 64 3156 419 3639

Run 1 + Run 2
signal region 1556 868624 57504 927684

side-band 169 7637 1018 8824

Table 5.3: Number of candidate events per q2 region (see table 5.4 for the definition of the q2 re-

gions) in the signal region ((5239.58 ≤ mrec
B0 ≤ 5319.58) MeV/c2) and in the upper mass side-band

((5440 ≤ mrec
B0 ≤ 5840) MeV/c2) in Run 1 only and merged Run 1 and Run 2 data.

5.2 Acceptance

The angular and q2 distributions of the final event sample are not the same as the true

distributions of B0→ K∗0µ+µ− events, due to so called acceptance effects. These include

the limited coverage and limited efficiency of the detector as well potential biases and

inefficiencies in the selection procedure. To take the acceptance effects into account in

the fit to data, the signal model (described in chapter 3) is multiplied with an acceptance

function.

To determine the acceptance function, simulated B0 → K∗0µ+µ− events, which are

generated according to a phase space model, are analysed. The phase space model yields

flat cos θℓ, cos θK , and φ distributions of the generated events. However, the q2 distribution

is not flat as it is less likely to generate an event with large q2. Therefore, the events are

reweighed to obtain a flat q2 distribution at generator level. The generated events are

passed through the full detector simulation, reconstruction and selection procedures (see

section 4.8). Since the distributions are flat at generator level, any non-flat shape in the

cos θℓ, cos θK , φ, and q
2 distributions of the events after reconstruction and selection is due
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to the acceptance effects. Therefore, the acceptance function is obtained by parameterising

the cos θℓ, cos θK , φ and q2 distributions of the events after reconstruction and selection

with

ε(cos θℓ, cos θK , φ, q
2) =

∑

k,l,m,n

cklmnP (cos θℓ, k)P (cos θK , l)P (φ,m)P (q2, n), (5.13)

where P (x,m) are Legendre polynomials as a function of x and of orderm. The observables

φ and q2 are re-scaled to the range −1 ≤ x ≤ 1 when evaluating the polynomial. The

factors cklmn are the acceptance coefficients. Using the orthogonality of the Legendre

polynomials, the acceptance coefficients can be calculated with

cklmn =
1

N ′

N
∑

i=1

wi

[(

2k + 1

2

)(

2l + 1

2

)(

2m+ 1

2

)(

2n+ 1

2

)

× P (cos θℓ, k)P (cos θK , l)P (φ,m)P (q2, n)
]

,

(5.14)

where the sum indicates a sum over the simulated events. The factors wi include the

weights per event which are applied to obtain a flat q2 distribution as well as the weights

used to correct for differences in the simulation and data (described in section 4.8.1). N ′

is the normalisation associated with the weights, given by N ′ =
∑N

i=1wi.

The orders of the Legendre polynomials are chosen as the set of lowest orders with

which the acceptance parameterisation can describe the acceptance effect well: k = 4,

l = 5, m = 6, n = 5 [1]. Thus, there are 720 coefficients in total.

In this thesis, the same acceptance coefficients are used as in the published measurement of

the angular observables in B0→ K∗0µ+µ− decays [1]. The acceptance is parameterised for

Run 1 and Run 2 separately, since the detector condition as well as some of the selection

criteria are different for the two periods. Since, only Run 1 data is analysed with the

signal model (see introduction of this chapter), the acceptance is only shown for Run 1.

Figures 5.2 shows the q2, cos θℓ, cos θK , and φ distributions of the phase-space simulated

B0→ K∗0µ+µ− events after reconstruction and selection as well as the one-dimensional

projections of the acceptance parameterisation for Run 1.
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Figure 5.2: One-dimensional projections of the four-dimensional acceptance parametrisation on q2, cos θℓ,

cos θK , and φ for Run 1. The points are the distributions of B0 → K∗0µ+µ− events generated with a

phase space model and passed though the full reconstruction and event selection procedure.
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Figure 5.3: Unconstrained-q2 (open points) and constrained-q2 (closed points) distribution of the Run 1

events in the narrow core region of the J/ψ peak. Each distribution is parameterised with a Gaussian (blue

line and red line) and the resulting width parameters (σ) are given on the figures. The mass constraint

improves the q2 resolution by a factor of ∼ 2.3.

5.3 Resolution

5.3.1 B0 mass constraint

The model described in chapter 3 contains the narrow resonances φ, J/ψ , and ψ(2S) which

have natural widths much narrower than the q2 resolution in the measurement. In order

to maximize the sensitivity to the interference between the resonances and the penguin

amplitudes, improving the q2 resolution is crucial. Therefore, a mass constraint is used,

which works by varying the reconstructed 4-momenta of the final state particles within

their measured uncertainties such that the invariant mass mKπµµ best matches the known

mass of the B0 meson (mB0 = 5279.58MeV/c2 [30]). Since the constraint adds additional

information into the measurement, the resolution in q2 is improved with this method.3

At the peak position of the J/ψ , the mass constraint improves the q2 resolution by

a factor of ∼ 2.3 as shown in figure 5.3, where the unconstrained q2 distribution (open

points) and the constrained q2 distribution (closed points) of the events in the core of

3The mass constraint also improves the angular resolution, but since the angular distributions have no

sharp peaks, the angular resolution is much less important than the q2 resolution. Thus, the unconstrained

angles are used in the fit.
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the J/ψ peak in Run 1 data are shown. Also shown are Gaussian fits (red line) to each

distribution and the resulting width parameters (σ).

For the remainder of the thesis q2 refers to the mass constrained q2, unless specified

otherwise.

5.3.2 Resolution model

Despite the improvement of the q2 resolution, discussed in the previous section, the

reconstructed peaks of the φ(1020), J/ψ , and ψ(2S) resonances are still much wider than

the respective natural widths. Thus, in order to fit the signal model (described in section

3) to the data, the model is convolved with a resolution function, following the approach

used in Ref. [49]. The other resonances besides the φ(1020), J/ψ , and ψ(2S) are much

wider than the q2 resolution and are therefore not significantly influenced by the resolution.

However, the three narrow resonances can only be described when modelling the resolution

correctly.

The q2 resolution changes as a function of q2, but it would not be computationally

feasible to model the resolution with a function that continuously changes as a function

of q2.4 Therefore, three independent resolution regions are defined such that each region

contains one of the narrow resonances. The q2 regions are given in table 5.4. The resolution

parameters are constant within each q2 region. The fit with the signal model is then

performed as a simultaneous fit5 to these regions, where all signal parameters are shared

across the regions but the resolution parameters in each region are independent.

The resolution in each region is modelled with a sum of a Gaussian G and a double

sided crystal ball C with common mean parameter µ, i.e.

R(q2, ~λ) = fG(q2, µ, σG) + (1− f)C(q2, µ, σC , αl, αu, ηl, ηu), (5.15)

where f is the relative fraction of the Gaussian with respect to the double sided Crystal

Ball function, and σG and σC are the widths of the Gaussian and the double sided Crystal

4The convolution is implemented via a Fast Fourier Transform, which would not be possible if the

resolution parameters depend on q2. During the fit, the convolution needs to be calculated for each call of

the likelihood sum. Therefore, an efficient algorithm for calculating the convolution is crucial in order to

maximise the computational efficiency of the fit.
5‘Simultaneous fit’ refers to a maximum likelihood fit where the event sample is split into sub-samples

according to a defined segmentation of the data (e.g the three q2 regions). A separate likelihood sum is

calculated for each region, where the PDF depends on the region (e.g. different resolution parameters).

Parameters that enter the PDF in several regions (e.g. all signal parameters) are referred to as shared

parameters.
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q2 range (GeV2/c4)

low q2 [0.18, 3.24]

mid q2 [3.24, 11.56]

high q2 [11.56, 18.0]

Table 5.4: Definition of q2 regions used throughout the thesis.

Ball function respectively. The double sided Crystal ball function is given by

C(q2, µ, σC , αl, αu, ηl, ηu) =



















Al(Bl − δ)ηl if δ < αl

e−
1

2
δ2 if αl < δ < αu

Au(Bu − δ)ηu if δ > αu

(5.16)

with,

δ = (q2 − µ)σC ,

Al,u =

(

ηl,u
|αl,u|

)ηl,u

e−
1

2
·|αl,u|

2

,

Bl,u =
ηl,u
|αl,u|

− |αl,u|,

(5.17)

where αl,u and ηl,u are the parameters that set the slope and onset of the lower (denoted

with index l) and upper (denoted with index u) exponential tail.

The strategy for determining the parameters depends on the q2 region. In the low q2

region the number of resonant B0→ φK∗0 events in the data is too small to determine

the resolution from data reliably. Hence, in this region the resolution parameters are

determined using B0→ K∗0µ+µ− simulations. In the mid and high q2 region, the number

of resonant events is sufficient for determining the resolution parameters directly from

data.

The resolution parameters for Run 1 and Run 2 data have been compared and were

found to be compatible. Therefore, it is feasible to determine a resolution parameterisation

for the merged dataset using the same functional form as given in equation 5.15. However,

as discussed in the introduction of this chapter, in this thesis only the Run 1 data is fitted

with the signal model, and therefore only the Run 1 resolution parameterisation is shown

in this section.
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Determination of the resolution parameters in the low q2 region

In order to determine the resolution parameters in the low q2 region, simulated B0 →
K∗0µ+µ− events are used, which contain both the information of the reconstructed particles

as well as the generator level ‘true’ values for all kinematic observables. For each event,

the difference of true and reconstructed q2 is calculated. The distribution of q2true - q
2
rec of

all events within (0.18 ≤ q2rec ≤ 3.24) GeV2/c4 is then parameterised with the resolution

model (equation 5.15) as shown in figure 5.4. The resulting resolution parameters are given

in table 5.5. In the final fit to data (described in chapter 7), the resolution parameters in

the low q2 region are fixed to these values.
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Figure 5.4: Fit of the resolution model to the q2true - q2rec distribution of simulated B0→ K∗0µ+µ− decays

with (0.18 ≤ q2rec ≤ 3.24) GeV2/c4 for Run 1. Figure from Ref. [50].

Parameter Value

σC 2.02×10−3 ± 2.76×10−4

σG 7.21×10−2 ±2.76×10−4

f 3.33×10−2 ± 2.47×10−2

αl -2.80×10−1 ± 2.21×10−2

αu 2.93×10−1 ± 2.33×10−2

ηl 18.84 ± 7.95

ηu 9.31 ± 1.71

Table 5.5: Resolution parameters in the low q2 region. The values are obtained by fitting q2true - q2rec of

simulated B0→ K∗0µ+µ− events with (0.18 ≤ q2rec ≤ 3.24) GeV2/c4 with the resolution model given in

equation 5.15.
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Figure 5.5: Fits of relativistic Breit Wigner functions convolved with the resolution model to the q2

distribution of simulated B0→ J/ψK∗0 (left) and B0→ ψ(2S)K∗0 (right) decays for Run1. Figures from

Ref. [50].

Determination of the resolution parameters in the mid and high q2 region

The values of the resolution parameters in the mid and high q2 regions are determined

in several steps. Firstly, simulated B0 → J/ψK∗0 and B0 → ψ(2S)K∗0 events are used

to validate the resolution function. A relativistic Breit-Wigner function is convolved

with the resolution model and fitted to the q2 distribution of simulated B0→ J/ψK∗0 or

B0→ ψ(2S)K∗0 events as shown in figure 5.5. It is found that relativistic Breit-Wigner

functions convolved with the resolution model are good descriptions of the J/ψ and ψ(2S)

peaks. The simulation studies also show that the peaks can be well described with a

symmetric slope parameter αl = −αu. Therefore, the resolution model is simplified by

replacing αl and −αu with a single α parameter.

Secondly, the pole mass of the J/ψ amplitude in the signal model, described in chapter 3,

is set to the measured peak position of the J/ψ peak in data: mJ/ψ = 3096.63±0.01MeV/c2.

Therefore, the µ parameter in the resolution model is set to zero since the resolution

function does not need to account for any shift of the J/ψ peak.

Thirdly, the data events in the core region of the J/ψ peak ((9.44≤ q2rec ≤ 9.74) GeV2/c4)

are fitted with the full signal model convolved with the resolution model. The J/ψ amplitude

is dominating the considered q2 region, such that effects from the penguin amplitudes are

negligible. In this fit, the tail parameters (α, ηl,u) are fixed to the best fit values from the

fit to the simulation and only the widths σG and σC and the fraction f are allowed to

float.
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Figure 5.6: Projection on q2 of the 4 dimensional fit to the events in the core region of the J/ψ peak in

Run 1 data using the full signal and background model to determine the core parameters of the resolution

model. The dotted red line indicates the signal PDF, the dashed black line indicates the background PDF

(see chapter 6), and the solid blue line shows the sum of the signal and background PDFs. The pull is

defined as the difference of the value of data and the value of the projection of the PDF at the center of

the respective bin, divided by the uncertainty of the data.

Figure 5.6 shows the data in the core region of the J/ψ peak as a function of q2 as well as

the q2 projection of the fit PDF. The dotted red line shows the signal PDF, the dashed

black line shows the background PDF (explained in detail in chapter 6), and the solid blue

line shows the sum of the signal and background PDFs.

The determination of the resolution parameters in the high q2 region is done similarly

by fitting the ψ(2S) peak. In the last step the core of the ψ(2S) in data is fitted with a

single Breit Wigner function convolved with the resolution model to determine the core

parameters of the resolution model as shown in figure 5.7. In the signal model, the pole

mass of the ψ(2S) amplitude is set to the measured peak position of the ψ(2S) peak in

data: mψ(2S) = 3685.66± 0.05MeV/c2.

In the final simultaneous fit to all three q2 regions (described in chapter 7), the α

parameter of the resolution functions in the mid and high q2 regions are floated again, to

minimize the dependence of the resolution model on the simulation6.

The distortion of the angular distributions, due to the limited resolution of the detector,

is considered to be negligible compared to the variations in the angular spectra, which

6The parameters ηl and ηu have been found to be largely redundant with the α parameter and are

fixed to the best fit values obtained in the fit to simulation.
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Figure 5.7: Fit to the core region of the ψ(2S) peak in Run 1 data using a relativitic Breit Wigner

convolved with the resolution model to determine the core parameters of the resolution model. Figure

from Ref. [50].

contain no narrow peaks. The systematic uncertainty associated to the angular resolution

is described in section 7.2.4.

Parameter Value

σC 4.40×10−2 ± 1.84×10−3

σG 2.77×10−2 ± 4.98×10−4

f 4.47×10−1 ± 4.70×10−2

αl -9.98×10−1 ± 1.75×10−1

αu 1.04 ± 1.76×10−1

ηl 17.10 ± 7.74

ηu 11.07 ± 3.03

Table 5.6: The resolution parameters for the mid q2 region for Run 1 data. The tail parameters are

obtained from a fit to simulated B0→ J/ψK∗0 events and the core parameters are obtained from fitting

the core of the J/ψ peak in data.
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Parameter Value

σC 5.73×10−2 ± 1.54×10−2

σG 3.03×10−2 ± 1.67×10−3

f 6.50×10−1 ± 1.29×10−1

αl -1.10 ± 6.66×10−2

αu 1.10 ± 6.73×10−2

ηl 6.24 ± 5.75×10−1

ηu 11.94 ± 2.12

Table 5.7: The resolution parameters for the high q2 region for Run 1 data. The tail parameters are

obtained from a fit to simulated B0→ ψ(2S)K∗0 events and the core parameters are obtained from fitting

the core of the ψ(2S) peak in data.

96



6. Background

6.1 Introduction

A major experimental challenge for the analysis presented in this thesis is the modelling

of the background. The final selection of B0→ K∗0µ+µ− candidates contains about 10%

combinatorial background events in the q2 regions dominated by penguin B0→ K∗0µ+µ−

decays and about 2.5% in the regions dominated by B0→ J/ψK∗0 and B0→ ψ(2S)K∗0.

Thus, in order to extract information about the signal decays from data, it is crucial to

correctly determine the background shapes in all dimensions as well as the background

yield. The functional form of the background PDF is chosen empirically (see section 6.3

for the explicit expressions used) and the parameters are determined directly from data.

Modelling the background for the fit presented in this thesis is complex for several

reasons:

(1) The high dimensionality of the B0→ K∗0µ+µ− system: The fit is performed in the

three helicity angles cos θℓ, cos θK , φ (see section 2.6), q2, as well as mrec
B0 .

(2) The B0 mass constraint of the reconstructed final state particles (see section 5.3.1):

While greatly improving the q2 resolution for signal events, it has the opposite

effect for background events. It distorts their q2 distribution and creates a strong

correlation between q2 and mrec
B0 . Thus, it is impossible to simply fit all events across

the full mrec
B0 range to determine the background shape. The solution for this is

presented in section 6.2.

(3) Since the events across the full q2 range, including the resonant regions, are used in the

fit, there are three types of combinatorial background rather than one: K+π−µ+µ−,

J/ψ (→ µ+µ−)K+π−, and ψ(2S)(→ µ+µ−)K+π−.

(4) The cut on mKµµ, used to remove background events from B+ → K+µ+µ− decays

(see equation 5.11 in section 5.1.2), creates a gap in the phase space of the upper

mass side-band, which – when ignored – causes a sizeable bias in the background

parameterisation. This effect is discussed in detail in section 6.4 and a novel procedure

for resolving the issue is presented.
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There are other angular analyses of B0 → K∗0µ+µ− decays [95], [96] and B+ →
K+µ+µ− decays [49] where one or two out of these conditions exist, but never all four.1

Since the background parameters are extrapolated from the upper mass side-band

into the signal region, potential correlations of the angles with mrec
B0 are investigated and

accounted for as described in section 6.7.

All the issues outlined above are dealt with in further detail in the rest of this chapter.

A feasibility study for including the lower mass side-band

((5130 ≤ mrec
B0 ≤ 5210) MeV/c2) in the background fit has been performed. The

precision of the background parameters could potentially be improved by including the

lower mass side-band, since it would turn the extrapolation of the background parameters

along mrec
B0 into an interpolation, and would also increase the number of background events

used for determining the background shape. However, the lower mass side-band contains

approximately 50% signal events, which have a q2 distribution that is highly distorted in a

non-trivial way. The distortion is due to the fact that the events are mass constrained to

the center of the lower mass side-band (see section 6.2). Consequently, the systematic

uncertainty introduced by modelling the distorted signal contribution outweighs the

improvements in the statistical precision of the background parameters.

6.2 Strategy

The fit of the signal model2 is performed in the range (5239.58 ≤ mrec
B0 ≤ 5319.58) MeV/c2

indicated with the green area in figure 6.1, which shows the mrec
B0 distribution of all selected

candidates in the merged Run 1 and Run 2 data. The signal region is chosen such that

contributions from B0
s→ J/ψK∗0 and B0

s→ ψ(2S)K∗0 decays, visible as a hump at around

mrec
B0 ≈ 5375 MeV/c2, and partially reconstructed B0 decays at mrec

B0 . 5130 MeV/c2 are

fully avoided. About 90% of the B0→ K∗0µ+µ− signal events are contained in this region.

The upper mass side-band (SB) starting at mrec
B0 ≥ 5440 MeV/c2 is used to determine a

parameterisation of the background events in the signal region. The upper mass side-band

is made up purely of combinatorial background events which can be separated into three

different contributions: Fully combinatorialK+π−µ+µ− events, and resonant combinatorial

1Strictly speaking the B+ → K+µ+µ− veto was used in both analyses but did not cause a sizeable

bias due to different fit strategies and smaller datasets.
2The signal model is described in chapter 3 and the fit of the full signal and background model to

Run 1 data is shown in chapter 7.
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Figure 6.1: Invariant mass distribution of the B0→ K∗0µ+µ− candidates in the merged Run 1 and Run 2

data. The green area indicates the signal region. The blue and grey areas indicate the side-band regions.

The red arrows show the mass constraint points for each region. The B0
s→ J/ψK∗0 and B0

s→ ψ(2S)K∗0

decays are visible as a hump at mrec
B0 ≈ 5375 MeV/c2 and are fully avoided in the signal region as well as

in the side-band regions.

background events (henceforth referred to as resonant background) containing charmonia

resonances paired with random kaons and pions: J/ψ (→ µ+µ−)K+π− and ψ(2S)(→
µ+µ−)K+π−.

The three background contributions have independent shapes in all dimensions and can

be most easily distinguished via the q2 distribution (see figure 6.2) where the two resonant

backgrounds peak at the J/ψ and ψ(2S) mass respectively, while the fully combinatorial

background spans the full q2 range.

Effect of the mass constraint

As described in section 5.3.1, the 4-momenta of the final state particles of all B0→ K∗0µ+µ−

candidates are mass constrained to the B0 mass in order to improve the q2 resolution of

the signal events. However, for background events this has the opposite effect. The q2

distribution of the background is distorted since the mass constraint shifts the momenta
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Figure 6.2: Unconstrained q2 distribution of the background events in the upper mass side-band

(5440 ≤ mrec
B0 ≤ 5480) MeV/c2 in the merged Run 1 and Run 2 dataset.

of the final state particles to best match the invariant mass with the B0 mass, despite the

fact that the final state particles are in fact the not decay products of a B0. This effect

is illustrated in figure 6.3 where the q2 distributions of the events in several sub-regions

of the upper mass side-band are shown without mass constraint (black points) and after

constraining the events to the B0 mass (red points). The large charmonia peaks are

widened and shifted by the mass constraint. The distortion becomes stronger as a function

of mrec
B0 , creating a correlation of the q2 shape of the background with mrec

B0 . Due to this

effect, it is impossible to parameterise the background events across the full mrec
B0 range in

a simple fit, and it is not straight forward to use events in the upper mass side-band to

determine the shape of the background in the signal region.

To solve the issue created by the mass constraint, the upper mass side-band is segmented

into five sub-regions (named SB1 - SB5), indicated with the blue and grey areas in figure

6.1. The mrec
B0 ranges of SB1 - SB5 are given in table 6.1. Each SB region has the same

width of 80 MeV/c2 as the signal region. The events in each SB region are mass constrained

to the central mrec
B0-value of the respective region (marked by red arrows in figure 6.1).

Since the SB regions have the same width as the signal region, the SB constraints yield

the same level of distortion of the q2 shape of the background as the B0-mass constraint
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Figure 6.3: The q2 distributions of the events in all upper mass SB regions without mass constraint

(black), constrained to mB0 (red), and constrained to the center of the respective SB region (green).

in the signal region. The q2 distribution of the SB constrained events is shown with the

blue points in figure 6.3. The charmonia peaks are widened compared to the peaks in

unconstrained q2. In the context of the background fit, q2 refers to the SB constrained q2
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mrec
B0 range (MeV/c2) constraint point (MeV/c2) scaled distance to mB0

Signal [5239.58, 5319.58] 5279.58 0

SB1 [5440, 5520] 5480 ∼0.3851

SB2 [5520, 5600] 5560 ∼0.5388

SB3 [5600, 5680] 5640 ∼0.6926

SB4 [5680, 5760] 5720 ∼0.8463

SB5 [5760, 5840] 5800 1.0

Table 6.1: Definition of the mrec
B0 regions used throughout this thesis. The second column contains the mrec

B0

values to which the events in each region are mass constrained to. The third column gives the distance of

the centre of each region to the true mass of the B0, scaled by the furthest distance.

(using the centre of the respective SB region) hereafter, unless specified otherwise.

The background parameters are determined by simultaneously fitting the five SB regions

and extrapolating the background parameters into the signal region.

6.3 Background parameterisation

Since the three background contributions (fully combinatorial background, J/ψ -background,

and ψ(2S)-background) have different kinematic behaviours, it cannot be assumed that

the shapes of their distributions are the same. Therefore, each of the three background

contributions is parameterised by an independent PDF. The functional form in each

dimension of each PDF is chosen empirically.

The fully combinatorial background is parameterised as

Pcom(~Ω, q
2,mrec

B0) = Ccos θℓ(cos θℓ)× Ccos θK (cos θK)× Cφ(φ)×W(q2)×M(mrec
B0), (6.1)

where Ci are Chebychev polynomials of second order. W(q2) is a two parameter Weibull

function given by [97]

W(q2) = a · b · (b · q2)a−1 · e−(b·q2)a , (6.2)

where a and b are the parameters of the function which are hereafter referred to as aq
2

comb

and bq
2

comb. Finally, M(mrec
B0) is a falling exponential.
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The resonant backgrounds are parameterised using the same functional forms (but

with fully independent parameters) except for the q2 dimension, which is are described by

a Crystal Ball function CB(q2) [98]. Thus, the PDFs for the resonant backgrounds are

PJ/ψ/ψ(2S)(~Ω, q2,m) = Ccos θℓ(cos θℓ)× Ccos θK (cos θK)× Cφ(φ)× CB(q2)×M(m). (6.3)

As described in section 5.3, the signal fit is performed simultaneously in three regions

in q2. Therefore, the background is also parameterised in those q2 regions. The low q2

region contains only fully combinatorial events, whereas the mid and the high q2 regions

also contain contributions from J/ψ and ψ(2S) background events respectively. Therefore,

the total PDF describing the background is given by:

Pbkg(~Ω, q
2,m) =



















Pcom(~Ω, q
2,m) in low q2

fJ/ψPJ/ψ (~Ω, q2,m) + (1− fJ/ψ )Pcom(~Ω, q
2,m) in mid q2

fψ(2S)Pψ(2S)(~Ω, q2,m) + (1− fψ(2S))Pcom(~Ω, q
2,m) in high q2,

(6.4)

where fJ/ψ and fψ(2S) are the fractions of resonant over fully combinatorial background in

the mid and high q2 region respectively. The most power for determining these fractions

comes from the q2 dimensions.

Each Chebychev polynomial has two parameters, the mass dimension is described by

one parameter for each component, the Weibull function has two parameters and each

Crystal Ball function has four parameters. Also, there are the two background fractions

fJ/ψ and fψ2s. Thus, the background events are described by 33 parameters in total.

The background parameters are determined by simultaneously fitting the three q2 regions

and five mrec
B0 SB regions. Thus, there are 15 normalisation regions for the background fit.

All parameters are shared across the SB regions. The parameters of Pcom are also shared

across the q2 regions, whereas the parameters of PJ/ψ and Pψ2s are only determined in the

mid and high q2 region respectively. Table 6.2 shows all background parameters, ordered

by background component and dimension, indicating in which normalisation region each

parameter is determined as well as which parameters are fixed in the fit.

The parameter bq
2

comb is fixed to 0.0001, since the fit favours very small values for this

parameter, but becomes unstable at the lower limit of 0. The parameters tail parameters

ηq
2

J/ψ and ηq
2

ψ(2S) are fixed because they are highly correlated with αq
2

J/ψ and αq
2

ψ(2S) respectively,

causing the fit to be unstable. The values ηq
2

J/ψ = 0.8 and ηq
2

ψ(2S) = 50 have been found to

yield good fits to the data3. Furthermore, the parameter αq
2

ψ(2S) is fixed to 0.6, since the fit

3Due to the correlation with the α parameters the exact values of ηq
2

J/ψ and ηq
2

ψ(2S) are not important
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has very little sensitivity to it and floating it causes an unstable fit.4

The background PDF, described above, assumes factorisation of all dimensions. This

holds true for the angles and q2 as shown in section 6.6. However, there are dependencies

of some of the background parameters on mrec
B0 , which are taken into account as discussed

in section 6.7.

4Due to the large value of ηq
2

ψ(2S), the Crystal Ball function of the ψ(2S) effectively becomes a Gaussian.

104



component dim. name fixed
q2 region

low mid high

fully comb.

cos θℓ
aLcomb

x x x

bLcomb

cos θK
aKcomb

bKcomb

φ
aφcomb

bφcomb

q2
aq

2

comb

bq
2

comb x

mrec
B0 smcomb

J/ψ

cos θℓ
aLJ/ψ

x

bLJ/ψ

cos θK
aKJ/ψ
bKJ/ψ

φ
aφJ/ψ
bφJ/ψ

q2

µq
2

J/ψ

σq
2

J/ψ

αq
2

J/ψ

ηq
2

J/ψ x

mrec
B0 smJ/ψ

ψ(2S)

cos θℓ
aLψ(2S)

x

bLψ(2S)

cos θK
aKψ(2S)
bKψ(2S)

φ
aφψ(2S)
bφψ(2S)

q2

µq
2

ψ(2S)

σq
2

ψ(2S)

αq
2

ψ(2S) x

ηq
2

ψ(2S) x

mrec
B0 smψ(2S)

fractions
fJ/ψ x

fψ(2S) x

Table 6.2: The parameters of the background PDF, ordered by background component and dimension.

Also given are the q2 regions in which each parameter is determined. All parameters are shared across all

SB windows. Parameters that are permanently fixed in the side-band fit are marked in the fourth column.
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Figure 6.4: cos θK distribution of the events in the mid q2 and SB2 region in Run 1+Run 2 data. The red

line shows a second order polynomial fit which cannot describe the data due the drop-off of the data at

cos θK ≥ 0.5 which is caused by the K+µ+µ− veto.

6.4 Effect of the B+
→ K+µ+µ− veto on the upper

mass side-band

As described in section 5.1, the process of selecting B0→ K∗0µ+µ− events includes a veto

where all events with

mKπµµ > 5380MeV/c2 and (6.5)

mKµµ ∈ [5220, 5340]MeV/c2

are removed from the analysis. This Kµµ-veto fully suppresses background events from

B+ → K+µ+µ− decays which – when paired with random pions – would otherwise populate

the upper mass side-band and greatly complicate the parameterisation of the background.

However, the veto also removes all combinatorial background events in a certain region

of the final state phase space, which effectively changes the shape of the cos θK , q
2, and

mrec
B0 distributions as well as the relative yields of the fully combinatorial and resonant

backgrounds in the upper mass side-band.

Figure 6.4 shows the cos θK distribution of the events in the mid q2 range in SB2 as

well as the projection of a second order Chebychev polynomial fit. The strong drop-off in

the distribution at cos θK ≥ 0.5 is caused by the veto. The drop-off cannot be described

106



by the 2nd order polynomial and causes the parametrisation to be wrong with respect

to the true underlying distribution. Furthermore, this effect is not present in the signal

region and the extrapolation of the background parameters from the upper side-band into

the signal region would thus be invalid.

To solve this, the background PDF is adjusted such that the fit effectively ”ignores”

the affected phase space, as described in the following.

6.4.1 Phase space Monte Carlo simulation

Since mKµµ is not a variable that is included in the fit, the definition of the K+µ+µ− veto

needs to be translated from a cut in mKµµ into a cut in (~Ω, q2, mrec
B0)-space, in order to

adjust the PDF for the effect of the veto.

A phase-space Monte Carlo simulation is used to this end. B0→ K+π−µ+µ− decays

are simulated according to a phase-space model for varying masses of the B0 meson: Two

million events are generated for each of 50 steps in a range of (5440 ≤ mrec
B0 ≤ 5860) MeV/c2.

Events are then selected within the mKπ window which is used throughout the analysis

(equation 5.1). Subsequently, events are selected using the reverse Kµµ-veto condition

(equation 6.5) - i.e. only the events that are usually vetoed are kept.

Figure 6.5 shows the cos θℓ, cos θK , φ, q
2, mrec

B0 , and mKπ projections of the ratio

of the events selected by the veto divided by all events within the mKπ window. The

events selected by the Kµµ-veto are evenly distributed along the cos θℓ and φ dimensions,

indicating that the veto has no effect in these dimensions. However, there is a clear

dependence of the number of selected events on cos θK , q
2, mrec

B0 and mKπ.

The strongest dependence of the number of events selected by the veto is on cos θK .

Most of the Kµµ-veto selected events concentrate in a narrow window in cos θK of about

0.5 < cos θK < 1.0, which creates the clear drop-off in the cos θK distribution observed in

data. The effect on the q2 distribution is smaller and over a wide q2 range. With rising q2,

more and more events are vetoed, which when ignored in a fit would effectively pull the

PDF down at high q2 with respect to the true distribution. Only the fully combinatorial

background is affected by this since the resonant backgrounds are concentrated in narrow

q2 windows. The effect of the veto on the mrec
B0 distribution is the same for all three

background components, and causes a pull on the slope parameters of the background

PDF starting at around mrec
B0 ≈ 5.5 GeV/c2. The effect on the mKπ shape is small but

may still be relevant for analyses that fit for mKπ. In this work mKπ is not fitted for, and

thus the 4 dimensional veto-affected region can be projected down into a 3 dimensional
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Figure 6.5: Ratios of the distributions of phase space toy events selected by the Kµµ-veto condition

divided by all phase space toy events. The graphs are zero-suppressed on the y-axis except for the graph

of cos θK .

affected region in (cos θK , q
2, mrec

B0).

The correlations between cos θK , q
2, and mrec

B0 lead to a non-trivial shape of the affected

(cos θK , q
2, mrec

B0)-phase space. One way to illustrate this is to think of the veto as a cut on

cos θK , where the removed cos θK range depends on q2 and mrec
B0 . Figure 6.6 shows the mrec

B0
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Figure 6.6: (mrec
B0 , cos θK)-projections of the Kµµ-veto affected phase space in different bins in q2. The

red lines indicate the low and high cos θK values of the cos θK -window which is removed by the veto. The

full set of plots is shown in appendix A.1

vs cos θK distribution of all phase-space toy events selected by the veto within two different

q2 ranges: (3.08 ≤ q2 ≤ 4.08) GeV2/c4 (left) and (17.01 ≤ q2 ≤ 18) GeV2/c4 (right). The

red lines indicate the cos θK-window which is affected by the veto in the given mrec
B0 bin for

the given q2 range. The size and shape of the veto-affected area in (mrec
B0 , cos θK) greatly

depends on q2. The complete set of plots showing the affected (mrec
B0 , cos θK) areas in bins

of q2 as well as the affected (mrec
B0 , q2)-area in bins of cos θK is shown in appendix A.1.

In order to obtain a well defined description of the veto-affected (cos θK , q2,

mrec
B0)-volume, a three dimensional histogram is filled with all phase space events that

are selected by the veto. This histogram is shown in figure 6.7. The size of each box is

proportional to the number of entries. The phase space of each bin that has at least one

entry is considered affected by the veto. This non parametric definition of the veto-affected

region in (cos θK , q
2, mrec

B0)-space is used in the side-band fit to adjust the PDF for the

effect of the veto as described in section 6.4.2.

Parameter choices for the Monte Carlo Method and smoothing algorithm

Using a Monte Carlo simulation to translate the mKµµ cut into a cut in (cos θK , q
2, mrec

B0),

and then using a non parametric description of the veto-affected (cos θK , q
2, mrec

B0)-region,

comes with a few details to consider:

A finer binning of the (cos θK , q
2, mrec

B0)-histogram used to describe the affected phase

space (see figure 6.7) yields a more detailed approximation of the affected volume. However,
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Figure 6.7: (cos θK , q2, mrec
B0) distribution of the phase space simulated events selected by the B+ →

K+µ+µ− veto. The size of each box is proportional to the number of entries. The phase space of each

bin that has at least one entry is considered affected by the veto.

a finer binning of the cut histogram increases the computing time of the side-band fit,

since the calculation of the normalisation of the PDF scales with the number of affected

bins (see section 6.4.2). Furthermore, a finer binning of the cut histogram also increases

the probability for any bin contained in the affected volume to have zero entries - which

would falsely classify that bin as unaffected. This can be offset by generating more phase

space events for every step in mrec
B0 . However, due to the fact that a single entry in a phase

space bin is enough for the bin to be considered as affected by the veto, a higher number

of events also leads to an effective widening of the cut volume. This is demonstrated in

table 6.3 where the fraction of phase space considered as ‘affected by veto’ is given for

different numbers of events generated per step in mrec
B0 .

A too large cut-volume leads to additional events being unnecessarily removed from

the upper mass side-band which were not removed by the actual K+µ+µ−-veto, thereby

decreasing the statistical precision of the side-band fit. On the other hand, in order to be

sure that no affected region in phase space is missed, it is actually preferential to slightly

overestimate the affected region.

Taking all of the above into account, a binning of 50 × 50 × 50 is chosen for the (cos θK ,
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number of events

generated per step in mrec
B0

fraction of phase space

considered as ‘affected by veto’

0.1 million 13.55%

0.5 million 15.01%

1 million 15.47%

2 million 15.77%

3 million 15.98%

4 million 16.1%

Table 6.3: Dependence of the size of the (cos θK , q2, mrec
B0)-cut on the number of events generated in the

phase space simulation.

q2, mrec
B0) histogram and 2 million B0 → K+π−µ+µ− phase space events are generated

for each bin in mrec
B0 . Furthermore, an algorithm has been developed which scans the 3D

histogram and identifies the outer edges of the out-most affected bins in every dimension

(the red lines in figure 6.6 show the outer edges in cos θK). Bins that have no entry but

are contained between bins that are affected are filled to ensure they meet the ‘affected by

veto’ condition. The algorithm also ensures that the dimensions are unanimous in their

classification of every bin. This means that, if a bin is between the lowest and highest

affected bin in cos θK , it must also between the lowest and highest bin along the q2 and

mrec
B0 direction. Due to the curved shape of the affected volume this is not automatically

the case for every bin.

In order to demonstrate that the (cos θK , q
2, mrec

B0)-region determined via the method

described above does indeed model the region affected by the veto, figure 6.8 compares

the (mrec
B0 , cos θK)-distribution of events which were rejected by the Kµµ-veto in the range

(9 ≤ q2 ≤ 10) GeV2/c4 in Run 1 data (colored histogram) with the (mrec
B0 , cos θK)-area

which is marked as affected by the phase space simulation (red boxes). All events rejected

by the veto are within the area which is marked as affected. The area that is considered

as affected is indeed a bit larger than the area occupied by the vetoed events but as stated

earlier this is preferred to ensure no affected phase space is missed.
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6.4.2 Correcting for the veto in the side-band fit

The 3D histogram shown in figure 6.7 is used to place an explicit cut, removing all events

in the veto-affected (cos θK , q
2, mrec

B0)-volume. Hereafter, this cut is referred to as (cos θK ,

q2, mrec
B0)-cut. About 6% of the side-band events that passed all selection criteria including

the original K+µ+µ−-veto are removed by this cut.

Furthermore, the (cos θK , q
2, m)-histogram is used to adjust the background PDF by

setting the PDF to zero in the cut volume:

Pwith-cut
bkg (~Ω, q2,mrec

B0) =







0 for(cos θK , q
2, andmrec

B0) in cut volume

Pbkg(
~Ω, q2,mrec

B0) otherwise,
(6.6)

where Pbkg(
~Ω, q2,mrec

B0) is given by equation 6.4. Setting the PDF to zero in the cut volume,

ensures that the fit does not ‘expect’ any events in this volume and is thus not affected by

the absence of events there.

When calculating the normalisation of Pwith-cut
bkg , the fact that some of the phase space

is missing needs to be taken into account. Due to the binned definition of the cut volume,

the normalisation fo the background PDF in each q2 region (low, mid, and high q2) and
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each SB region of the simultaneous side-band fit (SB1 - SB5) can be calculated with

∫

Pwith-cut
bkg =

∫ 1

−1

∫ 1

−1

∫ π

−π

∫ q2max

q2
min

∫ mmax

mmin

Pwithout-cut
bkg (~Ω, q2,m) dmdq2dcosθKdφdcosθl

−
∑

i

∫ 1

−1

∫ 1

−1

∫ cos θK
i
max

cos θK
i
min

∫ q2, imax

q2, i
min

∫ mimax

mi
min

Pwithout-cut
bkg (~Ω, q2,m) dmdq2dcosθKdφdcosθl,

(6.7)

where [q2min, q
2
max] and [mmin, mmax] are the fit ranges in q2 and mrec

B0 of the given q2 and

SB region. The sum indicates a sum over all bins i which are affected by the veto, while

[cos θK
i
min, cos θK

i
max], [q

2, i
min,q

2, i
max], and [mi

min,m
i
max] are the cos θK , q

2, and mrec
B0 ranges of

bin i.

Correction of the background fractions

With the PDF adjusted as described above, the fit recovers the correct shapes of the

background distributions unaffected by the veto as demonstrated in the following section

(section 6.4.3). However, the best fit values for the PDF fractions fJ/ψ and fψ2s (see

equation 6.4) would still be the relative yields after the veto, which are different to the

true relative yields before the veto. They are different, because the resonant and the

fully combinatorial backgrounds lose different relative amounts of events to the veto, since

the shapes of their distributions are different - most notably in q2 where the resonant

backgrounds peak at the J/ψ and ψ(2S) masses squared, whereas the fully combinatorial

background is distributed much more evenly across q2.

The effect of the veto on the background fractions is corrected for during the fit by

calculating the fraction of lost events for each background contribution:

Rλ =

∫

Pwithout−cut
λ

∫

Pwith−cut
λ

, (6.8)

where λ stands for fully combinatorial (com), J/ψ or ψ(2S) and the integrals denote 5D

integrals over (~Ω, q2, mrec
B0). Using equation 6.8, fJ/ψ and fψ2s in equation 6.4 are replaced

with

faα =
f bαRcom

f bαRcom + (1− f bα)Rα

. (6.9)

Here, α stands for either J/ψ or ψ(2S). faα is the fraction after cut and f bα is the

fraction before cut. When replacing fJ/ψ and fψ2s in equation 6.4 with faJ/ψ and

faψ(2S), the total PDF describes the events after the veto, but the fit determines
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the floating parameters f bJ/ψ and f bψ(2S), i.e. the fractions before the veto. The frac-

tions before the veto are then extrapolated into the signal region as described in section 6.7.

6.4.3 Demonstration of the efficacy of the veto correction

The efficacy of the method described above is demonstrated with a toy study. Events are

generated according to Pwithout-cut
bkg (i.e. equation 6.4). The resulting cos θK , q

2, and mrec
B0

distributions are shown by the red points in figure 6.9. All events in the veto affected

(cos θK , q
2, mrec

B0)-volume are then removed from the toy sample, yielding the distributions

shown by the blue points.

The sample after the cut is then fitted with Pwith-cut
bkg , as described above. Projections

of Pwith-cut
bkg are calculated in the bins of the (cos θK , q

2, mrec
B0)-cut histogram and added

together while scaling each projection with the number of events in the respective bin. The

resulting projections are shown by the black lines in figure 6.9 which show good agreement

with the distributions of toy events after the cut.

The parameters obtained from this fit are then used to draw projections of Pwithout-cut
bkg

scaled with the total number of events before the cut as shown by the red line. These

projections are in very good agreement with the distributions of the toy sample before cut,

demonstrating that the correct parameters can be obtained even when fitting the events

after the cut.

Pull study

Furthermore, a pull-study is conducted to test the correction of the veto. The pull of a fit

parameter is defined as

pull(a) =
a− atrue
σ(a)

, (6.10)

where a is the value returned by the fit, atrue is the value with which the toy sample

was generated, and σ(a) is the uncertainty returned by the fit. If the fit has no bias

for parameter a and the uncertainty σ(a) is a 1σ standard deviation, then pull(a) is

distributed according to a normal distribution with µ(pull(a)) = 0 and σ(pull(a)) = 1.

Thus, by generating many event samples, fitting each one and calculating the pull for

every parameter in every sample it can be tested whether the fit returns the correct

parameters without any biases.
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Figure 6.9: cos θK , q2, mrec
B0 distributions of a toy MC before and after the (cos θK , q2, m)-cut. The sample

of events is fitted with the PDF which has been adjusted for the missing phase space. The projections of

that fit are shown with the black line. Using the parameters from that fit, projections of the PDF without

adjusting for the missing phase space are shown with the red line which shows good agreement with the

distribution of the events before the cut. This demonstrates that the method is capable of determining

the correct background shapes even when fitting the event sample after cut.
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Figure 6.10: Distribution of pull(aKcomb) in fits to 1200 toy event samples with approximately 80000

background events each. The (cos θK , q2, m)-cut was applied to the each toy sample. The events were

then fitted without correcting for the veto (left figure), and with the correction for the veto (right figure).

Also displayed are the mean and standard deviation of the histograms as well as a Gaussian fit to each

histogram (red line) and the resulting µ and σ parameters. There is a clear bias on aKcomb when ignoring

the missing phase space but when adjusting the PDF accordingly the bias is removed.

To test the correction of the veto, 1200 background toy event samples with approxi-

mately the same number of background events as in the merged Run 1 and Run 2 data are

generated.5 The (cos θK , q
2, mrec

B0)-cut is applied to each toy sample, and each sample is

then fitted with and without correcting for the missing phase space. Figure 6.10 shows the

distribution of the pull of aKcomb for the fits ignoring the gap (left) and the fits correcting

for it (right). The boxes in each figure display the mean and standard deviation of the

pull values as well as results from Gaussian fits (red lines) to the pull distributions. The

background fits ignoring the effect of the veto have a strong bias of about −7.4σ(aKcomb)

i.e. the fits return too small values of aKcomb, whereas the background fits, which use the

correction for the missing phase space, return the correct value for aKcomb without any bias.

The µpull values resulting from Gaussian fits to the pull distributions of all background

parameters are given in table 6.4. The biases due to the ignored veto are largest for the

cos θK parameters of the J/ψ background and second and third largest for the cos θK

parameters of the ψ(2S) and combinatorial background. This is due to the fact that

there are more J/ψ background events than ψ(2S) background events (and more ψ(2S)

background events than fully combinatorial events). Thus, the test is most sensitive to the

mismodeling of the J/ψ shape and hence gives a bigger bias for the J/ψ parameters. The

5The number of events for each toy sample is sampled from a Poisson distribution with a mean of the

number of background events in the merged Run 1 and Run 2 data.
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centre column of table 6.4 shows that the fits which include the correction for the veto

can recover all parameters correctly apart from a few small biases. These biases are due

to the low number of events and the high number of floating parameters. To show that

the fits have no biases when the number of events is higher, the pull study is repeated

with twice the number of background events per toy sample and the resulting µpull values

are given in the right column in table 6.4.
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Run 1+Run 2 stats Run 1+Run 2 stats 2×(Run 1+Run 2 stats)

no correction with correction with correction

µpull µpull µpull

smcomb 0.510 ± 0.028 -0.038 ± 0.028 0.019 ± 0.029

smJ/ψ 1.050 ± 0.028 -0.066 ± 0.028 0.020 ± 0.029

smψ(2S) 0.340 ± 0.029 -0.036 ± 0.029 0.020 ± 0.029

aLcomb -0.025 ± 0.029 -0.025 ± 0.029 -0.021 ± 0.029

bLcomb 0.010 ± 0.029 0.003 ± 0.029 -0.051 ± 0.029

aKcomb -7.374 ± 0.031 0.040 ± 0.029 -0.030 ± 0.029

bKcomb -3.897 ± 0.026 0.082 ± 0.029 -0.010 ± 0.029

aφcomb -0.014 ± 0.030 -0.014 ± 0.030 -0.008 ± 0.030

bφcomb 0.042 ± 0.029 0.041 ± 0.029 0.021 ± 0.030

aq
2

comb -0.478 ± 0.029 0.001 ± 0.029 0.001 ± 0.029

aLJ/ψ 0.050 ± 0.028 0.050 ± 0.028 -0.012 ± 0.028

bLJ/ψ -0.032 ± 0.029 -0.028 ± 0.029 -0.000 ± 0.029

aKJ/ψ -24.337 ± 0.030 0.038 ± 0.029 -0.007 ± 0.029

bKJ/ψ -14.157 ± 0.026 -0.007 ± 0.029 0.017 ± 0.029

aφJ/ψ 0.019 ± 0.028 0.019 ± 0.028 -0.016 ± 0.029

bφJ/ψ 0.023 ± 0.028 0.023 ± 0.028 0.016 ± 0.029

µq
2

J/ψ -0.130 ± 0.029 -0.007 ± 0.029 0.020 ± 0.029

σq
2

J/ψ -0.097 ± 0.029 -0.064 ± 0.029 -0.015 ± 0.030

αq
2

J/ψ -0.108 ± 0.029 -0.032 ± 0.029 -0.022 ± 0.030

aLψ(2S) 0.028 ± 0.029 0.026 ± 0.029 -0.017 ± 0.030

bLψ(2S) -0.023 ± 0.029 -0.055 ± 0.029 0.026 ± 0.030

aKψ(2S) -8.815 ± 0.031 0.045 ± 0.029 0.001 ± 0.028

bKψ(2S) -3.822 ± 0.025 0.070 ± 0.029 0.010 ± 0.029

aφψ(2S) 0.027 ± 0.028 0.025 ± 0.028 0.017 ± 0.030

bφψ(2S) 0.006 ± 0.030 0.000 ± 0.030 0.015 ± 0.030

µq
2

ψ(2S) -0.109 ± 0.029 0.026 ± 0.029 0.017 ± 0.029

σq
2

ψ(2S) -0.008 ± 0.030 -0.080 ± 0.030 -0.031 ± 0.029

fJ/ψ 0.432 ± 0.030 0.056 ± 0.029 0.035 ± 0.029

fψ(2S) 0.093 ± 0.030 0.056 ± 0.030 0.049 ± 0.030

Table 6.4: Results of Gaussian fits to the pull distributions of all floating background parameters in 1200

fits to toy sample swith the same (doubled) number of background events as in the merged Run 1 and

Run 2 dataset. The uncertainties given are the statistical uncertainties from the Gaussian fits. The

(cos θK , q2, m)-cut was applied to each toy sample. The events were then fitted with and without for the

gap in the phase space. Ignoring the gap causes biases for cos θK , q2 and mrec
B0 parameters. Even with the

correction there are small biases for some of the parameters which are due to low statistics. The right

column shows the results from a pull study with double the number of events per toy sample which shows

that the biases are removed.
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side-band regions SB1 and SB2 are indicated with the horizontal red lines. The diagonal band crossing

q2 = 9.8 GeV2/c4 is made up of signal B0→ J/ψK∗0 events which leak into SB1 and SB2.

6.5 Signal in side-band veto

There is a contribution of B0→ J/ψK∗0 signal decays in the upper mass side-band which –

if ignored – can cause a bias for the background parameterisation.

Figure 6.11 shows the (unconstrained-q2, mrec
B0) distribution of the events in the merged

Run 1 and Run 2 dataset. There is a diagonal band crossing q2 = 9.8GeV2/c4 which is

made up of B0→ J/ψK∗0 decays. The events in the lower and higher end of the diagonal

band are B0→ J/ψK∗0 decays where the J/ψ mass was either reconstructed too low or

too high, which causes the correlation between q2 and mrec
B0 .

These events leak into the first two side-band regions SB1 and SB2 (indicated with

red lines in figure 6.11) and become a significant contribution in these regions despite

being so far from the true mass of the B0 meson. They are significant because they are

shifted so far in q2 that they are separated from the background J/ψ peak. Thus, they are

populating an area in q2 where only the fully combinatorial background is present.6 This

6There are also B0 → J/ψK∗0 events in SB1 and SB2, which have high mrec
B0 because the K∗0 was

reconstructed too high instead of the J/ψ . These events are not shifted in q2 and therefore populate the

q2 region dominated by the background J/ψ events. The level of signal events under the background J/ψ

peak in SB1 is on the level of 2% and can safely be ignored.
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Figure 6.12: q2 distributions of the events in the mid-q2 region in SB1 (left) and SB2 (right). Also shown

is the q2 projection of the background PDF. The small peak above the background J/ψ peak is from

B0→ J/ψK∗0 signal events. Since the signal peak is not described by the background model, the presence

of the peak causes the combinatorial background to be overestimated by the fit PDF as seen most clearly

in the left figure for q2 < 8GeV2/c2.

Figure 6.13: q2 distributions of the events in the mid-q2 region in SB1 (left) and SB2 (right) after applying

the signal veto to remove contributions from B0→ J/ψK∗0 signal events. Also shown is the q2 projection

of the background PDF which has been fitted to the data while accounting for missing phase space due to

the signal veto.

is demonstrated in figure 6.12 which shows the q2 distributions of the events in the mid-q2

region in SB1 and SB2. The B0→ J/ψK∗0 signal events are visible as small peaks above

the background J/ψ peak. When fitting the background without taking this contribution

into account, the signal peaks cause the level of fully combinatorial background to be

overestimated as shown by the projection of the fitted background PDF in figure 6.13.

In order to remove the signal contribution in the side-band, a similar technique is

used as for the Kµµ-veto described in the previous section. The q2 ranges populated
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Figure 6.14: Rejected (q2, mrec
B0) region of the signal veto. Each box represents a bin in phase space in

which all events are rejected and in which the background PDF is set to zero.

by B0→ J/ψK∗0 signal events in SB1 and SB2 are removed from the analysis and the

background PDF is adjusted accordingly, analogously to the method described in section

6.4.2. Figure 6.14 shows the (q2,mrec
B0)-histogram indicating the rejected phase space, where

each blue box represents a phase space bin which is removed from the analysis. The q2

ranges are chosen such that 100% of the B0→ J/ψK∗0 signal events are removed.

Figure 6.13 shows the q2 distribution in SB1 and SB2 as well as the q2 projection of the

background fit, after rejecting the events in the signal affected phase space and adjusting

the PDF accordingly. The PDF now describes the combinatorial background well.

As can be seen in figure 6.11, the contribution from B0→ ψ(2S)K∗0 decays, which is

the second largest signal contribution, is too small to be significant in the upper mass

side-band. Therefore, a similar veto for B0→ ψ(2S)K∗0 decays is not necessary.
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6.6 Factorisation of angles and q2

The PDF used to describe the background assumes factorisation in all dimensions, which

greatly simplifies the expression. To justify this assumption, it is necessary to check the

data for correlations in any of the dimensions. In this section, it is shown that it is a

reasonable approximation that the three angles and q2 are uncorrelated. The potential

dependence of the angular and q2 shapes on mrec
B0 and the treatment of this dependence is

separately discussed in section 6.7.

6.6.1 Factorisation of each angle with q2

Investigating the factorisation of the angles with q2 is only necessary for the fully combina-

torial background as it spreads across the full q2 range. The resonant background events

contain real J/ψ and ψ(2S) mesons which have very narrow decay widths such that the

angular distributions factorise with q2 naturally.

Figure 6.15 shows the cos θℓ, cos θK , and φ distributions of the fully combinato-

rial background in the low, mid and high q2 region. For this study, all events in the

sub-regions containing the resonant backgrounds, i.e. (8 ≤ q2 ≤ 11.56) GeV2/c4 and

(12.9 ≤ q2 ≤ 14.5) GeV2/c4, are removed, since they would otherwise dominate the mid and

high q2 event sample, thus making it impossible to study the q2 dependence of the angular

distributions of the fully combinatorial background. The bottom of each figure shows the

ratios of the angular distributions in the mid and high q2 region over the distributions in

the low q2 region. No significant dependence of the shape of the angular distribution on

q2 is observed, except in cos θK where the high and mid q2 distribution falls more clearly

at high cos θK than in low q2 region. However, this is due to the effect of the Kµµ-veto

which becomes stronger with rising q2 and is corrected for in the side-band fit as explained

in section 6.4.

Since no significant dependence of the shape of the angular distribution on q2 is observed,

a PDF that factorises in each angle with q2 is a good description of the data. In future

measurements with more data, this should be reviewed again as the measurements might

become sensitive to potential correlations.
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Figure 6.15: cos θℓ, cos θK , and φ distributions of the fully combinatorial background in the low q2 region

(black stars), mid q2 region (blue squares), and high q2 region (red circles). Events from the resonant

sub-regions are not included. Also shown are the ratios of the angular distributions in the mid and high

q2 region over the angular distributions in the low q2 region.

6.6.2 Factorisation of the three angles

To test the assumption that the angluar distributions of the background can be described

with factorising Chebychev polynomials, a goodness of fit (g.o.f.) test is used. After

performing the simultaneous side-band fit (as described in this chapter) to the merged
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Run 1 and Run 2 data, a three dimensional g.o.f. test is carried out in the dimensions

cos θℓ,cos θK , and φ. If the fit cannot be rejected, it can be assumed that using a PDF

which factorises in the three angles is a reasonable approximation.

Goodness of fit test: Mixed sample method

To determine the level of agreement between the data and the fit PDF, a multivariate

unbinned g.o.f. test is implemented. The test is based on the mixed sample method

described in Ref. [99].

If two event samples share the same parent distributions, then they mix perfectly when

combined into a single event sample.7 This can be used to judge the g.o.f. of a fit to data

by simulating toy events from the fit PDF and determining how well the toy events mix

with the data events.

To quantify how well two event samples mix, the nk nearest neighbours of any given

event in the combined dataset must be identified. For this purpose, the normalised

Euclidean distance of two events ~xi and ~xj in the three dimensional space is defined as

‖~xi − ~xj‖2 =
3

∑

v=1

(

xvi − xvj
wv

)2

, (6.11)

with v ∈ {cos θℓ, cos θK , φ} and where wv denotes the weights for the different dimensions.

The weights are chosen as the largest possible distance in each dimension given by the

respective ranges, i.e. wcos θℓ = wcos θK = 2 and wφ = π. In the case of v = φ, the distance

xvi − xvj is determined as the shortest distance between the two angles.

Following Ref. [99], the test statistic that quantifies the quality of the mixing of the toy

MC event sample with the dataset is defined as

T =
1

nk(nd + nm)

nd+nm
∑

i=1

nk
∑

k=1

I(i, k), (6.12)

where nd and nm are the number of events in the dataset and the toy MC sample

respectively, nk is the number of nearest neighbours considered for each event, and I(i, k)

is defined with

I(i, k) =







1 if event i and its kth neighbour are both data events or both toy events

0 otherwise.

(6.13)

7The notion of mixing in this context will become clear after the explanation of the method in this

section.
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If nd = nm and the toy sample and the data sample mix perfectly, the expectation value

for T is 1/2. In other words, on average one would expect half of the nearest neighbours of

each event to be from the same sample as the event itself. Worse mixing i.e. less agreement

between the two samples yields higher values for T .

The pull of T is defined as

pull(T ) =
(T − µT )

σT
, (6.14)

where µT and σT are the expectation value and standard deviation of T . The expectation

value is given by

µT =
nd(nd − 1) + nm(nm − 1)

n(n− 1)
(6.15)

with n = nd + nm. The standard deviation of T depends on the shape of the PDF and

can only be approximated:

lim
n,nk,D→∞

σ2
T =

1

nnk

(

ndnm
n2

+ 4
n2
dn

2
m

n4

)

, (6.16)

where D is the number of dimensions of the g.o.f. test. A detailed discussion of this

approximation can be found in Ref. [99] where it was found to hold well for nm = 10× nd

and nk = 10 in a two dimensional test. If the approximation of σT is correct and the

data sample and the toy sample follow the same parent distribution – i.e. if the fit PDF

models the data perfectly – then the pull is expected to have a limiting standard normal

distribution (mean of zero and standard deviation of one). Since larger values for T are

obtained if the distributions do not agree well, the rejection of the hypotheses that the two

distributions have the same parent distribution – i.e. that the fit describes the data well –

is a one-sided cut at high pull values. For example, fits to data that yield a pull ≥ 1.64

are rejected at 95% confidence level.

In order to ensure that the (cos θK ,q
2,mrec

B0)-cut used to remove the phase-space which

is affected by the Kµµ-veto (see section 6.4) and the signal in side-band veto (see section

6.5) do not influence the g.o.f. test, both cuts are applied to the side-band data as well as

to every toy simulation sample.

Since the g.o.f. test is performed in three dimensions and the approximation of σT

(equation 6.16) may depend on the shape of the PDF, the g.o.f. method is tested first

to determine the expected pull distribution. This is done by performing g.o.f. tests for

perfect ‘fits’ where it is a priori known that the PDF can describe the events. To this end,

an ensemble of 200 toy event samples is generated from the background PDF with the
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Figure 6.16: Pull distributions obtained from performing three dimensional g.o.f. tests for 200 simulated

toy samples. The mean and standard deviation of the pull distribution, determined by performing a

Gaussian fit (dotted blue line) are given in the plot.

same number of events per sample as in the upper mass side-band data (nd = 8824). In

this test of the g.o.f. method, these small toy event samples represent the data sample

in the real g.o.f. test. Each small toy sample is then compared with a larger toy event

sample of nm = 10× nd = 88240 events, generated from the same background PDF. The

g.o.f. tests are performed with nk = 10. The resulting pull distribution is shown in Figure

6.16. The mean value obtained with a Gaussian fit to the pull distribution is compatible

with zero as expected. Moreover, the width of the pull distribution roughly agrees with

unity. Therefore, it can be concluded that the approximation for the standard deviation

(equation 6.16) holds well for the three dimensional g.o.f. test with the background PDF

obtained in the fit to the Run 1 and Run 2 data.

The mixed sample method is then used to determine the (cos θℓ,cos θK ,φ)-g.o.f. of the

upper mass side-band fit to the merged Run 1 and Run 2 data. Since the g.o.f. test is

influenced by statistical fluctuations in the toy sample, the test is repeated 200 times and

the average pull value is determined. Therefore, an ensemble of 200 toy MC samples with

nm = 10 × nd = 88240 events each is generated from the fit PDF. Each toy sample is

compared to the upper side-band data to determine a pull value. The pull distribution of

the 200 tests is shown in figure 6.17. The mean pull value, determined with a Gaussian fit,

is −0.049± 0.057. This indicates that the fit cannot be rejected, or in other words the

cos θℓ,cos θK , and φ distributions of the events in the upper mass side-band are in good

agreement with the background PDF.
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Figure 6.17: Results of 200 g.o.f. tests performed in (cos θℓ, cos θK , φ) for the upper mass side-band fit.

Each test is done by simulating a large toy event sample (with 10 times the number of events as the data

sample) from the background PDF and comparing the toy event sample to the upper mass side-band

data, using the mixed event method to determine a pull value. The mean pull value, determined with

the Gaussian fit shown with the dashed blue line, is compatible with zero, indicating that the fit PDF is

compatible with the data.

Note that the width of the pull distribution shown in figure 6.17 cannot be interpreted

in the same way as the width of the distribution in figure 6.16. Figure 6.17 shows the

results from repeating the same g.o.f. test 200 times using the same data sample each time.

The width of the pull distribution is determined by the statistical fluctuations in the toy

samples. These fluctuations are proportional to
√
nm. In contrast, figure 6.16 shows the

results from 200 individual g.o.f. tests. In each test an independent small toy event sample

(representing the data sample of the real g.o.f. test) is compared to a corresponding large

toy MC sample. Only in this case the expected value for σT is unity.

Since the background PDF factorises in cos θℓ,cos θK and φ, it can also be concluded

that the assumption of the factorisation of the angles holds. This test should be repeated

in upcoming analyses which use more data as the fit may become sensitive to potential

correlations.

A complementary test of the factorisation assumption has been performed for the

measurement of the q2-binned angular observables [1], via a method of moments analysis

on the upper mass side-band of the data. The angular distributions of the upper mass

side-band data were parameterised with fully correlated Legendre polynomials and were

also parameterised with factorised Legendre polynomials. It was found that all diagonal
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Figure 6.18: Results of 200 g.o.f. tests performed in (cos θℓ, cos θK , φ) for a bad fit to the upper mass

side-band which ignores the effect of the Kµµ veto. Each test is done by simulating a large toy event

sample (with 10 times the number of events as the data sample) from the background PDF and comparing

the toy event sample to the upper mass side-band data, using the mixed event method to determine a

pull value. The mean pull value indicates that the fit PDF can be rejected at the 75% confidence level.

coefficients in the correlated Legendre polynomials are compatible with the correspond-

ing coefficients in the factorised Legendre polynomials. In other words no significant

correlations have been found [91].

Example of a rejected bad fit

To demonstrate the ability of the mixed sample g.o.f. test to reject bad fits, the side-band

fit is repeated but without applying the (cos θK ,q
2,mrec

B0)-cut and without the corresponding

adjustment of the PDF (see section 6.4). An exemplary projection of this fit is shown

in figure 6.4. The g.o.f. test is carried out 200 times, as described above but the

(cos θK ,q
2,mrec

B0)-cut is not applied to the data or the toy simulations. The resulting pull(T )

distribution is shown in figure 6.18. The mean pull value of −0.68± 0.05 indicates that

the fit can be rejected at the 75% confidence level.

6.7 Mass dependence of the background parameters

Since the background parameters are extrapolated along mrec
B0 , any dependence of the

background parameters on mrec
B0 has to be considered in order to ensure an accurate

description of the background in the signal region.
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To this end, the fact that the side-band regions are fitted simultaneously is taken

advantage of. In each side-band region SBi, every background parameter pxSBi for x ∈ (cos θℓ,

cos θK , φ, q
2) (i.e. all parameters in table 6.2 except for the mrec

B0 parameters and the

fractions) is reparameterised with:

pxSBi = pxa + pxmd ×md
SBi

(6.17)

where pxa and pxmd are fit parameters and md
i is the distance of the center of region SBi

to the B0 mass. In order to ensure that pa and pmd have comparable scales, md
i is scaled

by the distance between the highest SB region (SB5) and the B0 mass. The values of

md
SBi

can be found the right column of table 6.1. This means, within each SB region,

factorisation of the angles and q2 with mrec
B0 is still assumed but the fit allows for a linear

dependence of every background parameter from region to region.

The benefit of this reparameterisation of the background parameters is that it allows taking

a mass dependence into account while still giving the minimal number of background

parameters in the signal region (since md
Signal = 0) which simplifies the combined signal

and background fit.

When reparameterising all background angular and q2 parameters with equation 6.17,

the total number of floating parameter becomes 52. In this case, due to the high number

of floating parameters and the large correlations between most pxa and pxmd parameters,

the uncertainties of the background parameters in the signal region increase significantly

(up to a factor 3). It is therefore preferential not to unnecessarily give additinoal freedom

to the fit model if the model with some of the pxmd parameters fixed to zero is also a good

description of the data.

The most significant dependence of the angular shape on the SB region is observed for

the cos θK dimension8, while the cos θℓ, φ and q2 shapes are consistent between SB regions.

Therefore, the nominal model allows mass dependence only in the cos θK dimension.

The alternative of parameterising the mrec
B0 dependence of all background parameters, is

considered as a systematic uncertainty as described in section 7.2.1.

Mass dependence of the background fractions

Due to the different mrec
B0 slopes of the three background components, the background

fractions fJ/ψ and fψ(2S) are different in each mass region. To take this into account, the

8Even after correcting for the effect of the Kµµ-veto.
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fraction in each side-band region fSBi
J/ψ (fSBi

ψ2s ) is calculated as a function of the fraction in

the signal region fS
J/ψ (fS

ψ(2S)) :

fSBi

J/ψ =
fS
J/ψ ×

∫
SBi

PJ/ψ
∫
S
PJ/ψ

fS
J/ψ ×

∫
SBi

PJ/ψ
∫
S
PJ/ψ

+ (1− fS
J/ψ )×

∫
SBi

Pcom
∫
S
Pcom

(6.18)

where
∫

S
and

∫

SBi
denote the 5-dimenstional integrals of the PDF over the signal region

and the side-band region SBi respectively. The expression for the ψ(2S) fraction fSBi
ψ2s is

analogous.

By replacing the background fractions f bJ/ψ and f bψ(2S) in equation 6.9 with the above

expressions for fSBi
J/ψ and fSBi

ψ(2S) respectively, the background fractions in the signal region

are direct fit parameters in the side-band fit, while equation 6.18 gives the background

fraction in each side-band region such that the background PDF can describe the side-band

data.

6.8 Determination of the signal fraction

The total PDF for the combined signal and background fit in the signal region

((5239.58 ≤ mrec
B0 ≤ 5319.58) MeV/c2) is given by

P i
bkg(~Ω, q

2) = f isig · Psig(~Ω, q
2) + (1− f isig) · Pbkg(~Ω, q

2), (6.19)

where i indicates the q2-region i.e. low, mid, and high q2 (see table 5.4). Psig(~Ω, q
2) denotes

the signal PDF which is given by the model described in chapter 3, convolved with the

resolution model (described in section 5.3) and multiplied with the acceptance model

(described in section 5.2). Pbkg(
~Ω, q2) denotes the background PDF described throughout

this chapter. Note however, that in the fit to the signal region, mrec
B0 is not included in

the fit. The differences between the signal PDFs in the three q2 regions are the resolution

parameters (see section 5.3). The differences between the background PDFs in the three

q2 regions are the different background components present in each region (see section 6.2

and equation 6.4).

The parameter f isig in equation 6.19 denotes the fraction of signal events in the signal

region in q2 region i (i ∈ {low q2, mid q2, high q2 }). These fractions need to be determined

from data. They can be calculated with

f isig = 1−
N signal region,i

bkg

N signal region,i
total

, (6.20)
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Here N signal region, i
bkg denotes the number of background events and N signal region i

total the sum of

signal events and background events in q2 region i in the signal region. While the total

number of events in each q2 region in the signal region is a priori known for the given

dataset, the number of background events in each q2 region in the signal region needs to

be estimated from a fit.

There are two different approaches for estimating the number of background events in

the signal region.:

A) Using the slope parameters (smcomb, s
m
J/ψ , s

m
ψ(2S)) and the background fractions (fJ/ψ ,

fψ(2S)), obtained in the simultaneous 5D side-band fit, to extrapolate the yield of

each background component from the upper mass side-band into the signal region.

B) Performing separate fits to mrec
B0 in the full range (5220 ≤ mrec

B0 ≤ 5840) MeV/c2,

parameterising both the signal and background contributions and determining

f ifull range. The number of background events in the full mrec
B0-range can then be

calculated in each q2 region using f ifull range. These background yields are then

interpolated into the signal region using the fitted background slopes.

Both methods have been implemented and tested and are described below. However, due

to the superior statistical power obtained with method B, this method is chosen for the

analysis. Therefore method A is only outlined briefly.

6.8.1 Method A - using the slopes and fractions from the side-

band fit

The simultaneous side-band fit provides best fit values for the background slopes smcomb,

smJ/ψ , s
m
ψ(2S)), all angular and q

2 parameters, as well as the background fractions fbefore,cut
J/ψ

and fbefore,cut
ψ2s , where ‘before cut’ refers to both the Kµµ-veto (see equation 6.9) and the

signal veto (see section 6.5.) Furthermore, in each q2 region, the number of background

events after the Kµµ-veto and signal-veto (Naftercut
SBi,tot

) is known in each side-band window.

In the mid q2 region the number of background events in the signal region can therefore
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be calculated with (for shortness m = mrec
B0)

N signal region,mid q2

bkg =
5

∑

SBi=1

[

fSBi

J/ψ ,after cut ·Nafter cut
i,tot ·

∫

Pbeforecut
i,J/ψ

∫

Pafter cut
i,J/ψ

]

·
∫ m=s2

m=s1
MJ/ψ (m)dm

∫ m=b2

m=b1
MJ/ψ (m)dm

+
5

∑

SBi=1

[

(1− fSBi

J/ψ ) ∗N
aftercut
i,tot ·

∫

Pbefore cut
i,c

∫

Pafter cut
i,c

]

·
∫ m=s2

m=s1
Mc(m)dm

∫ m=b2

m=b1
Mc(m)dm

(6.21)

where the first term calculates the number of J/ψ background events in the signal region

and the second term calculates the number of fully combinatorial background events in

the signal region. The sum indicates the sum over the five SB regions (SB1,..., SB5). The

expression in the first square brackets calculates the number of background J/ψ events in

SBi by multiplying the total number of background events in SBi with the value of the

J/ψ fraction in SBi (see equation 6.18) and then correcting this yield for the effect of the

Kµµ veto and signal veto by multiplying the yield with the ratio of the integrals of the

background J/ψ PDF without and with adjustment for the missing phase-space. The sum

of veto-corrected J/ψ yields is then extrapolated into the signal region using the ratio of

the integral of MJ/ψ (which is simply an exponential with slope parameter smJ/ψ ) in the

signal region (s1 = 5239.58 MeV/c2, s2 = 5319.58 MeV/c2) over the integral of MJ/ψ in

the full side-band (b1 = 5440 MeV/c2, b2 = 5840 MeV/c2). The second term *for the fully

combinatorial background) is analogous.

The calculation of the number of background events in the signal region in the high

q2 region (N signal region, high q2

bkg ) is done analogously to equation 6.21. The calculation of

N signal region, low q2

bkg is simpler, since there is only one background contribution and thus there

is only the second term containing the fully combinatorial background PDF and there is

no background fraction needed.

The advantage of this method is that it uses a correction for the effect of the Kµµ-

veto and signal veto and cleanly separates the individual background components, before

extrapolating the yield of each component using the corresponding slope. The disadvantage

is that the method only uses information from the upper mass side-band, and furthermore

uses an extrapolation down into the signal region along a steeply falling exponential.

The method is tested using toy simulations. To this end, 1000 toy samples with

∼ 1million events each (approximately equivalent to the number of events in the merged

Run 1 and Run 2 dataset) are generated using the full signal (including acceptance and

resolution effects) and background model. Each toy is fitted with the simultaneous side-

band fit described in this chapter, and the signal fraction in each q2 region is calculated
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Figure 6.19: Distribution of the signal fraction per q2 region determined via method A – using the

information from the simultaneous side-band fit – in fits to 1000 toy simulations of ∼ 1 million events

each. Also shown are Gaussian fits to the distributions of the signal fractions.

for each fit. The resulting values for the signal fraction per q2 region are shown in

figure 6.19 along with Gaussian fits to the f isig distributions. Based on the standard

deviation obtained via the Gaussian fits, the precision on the signal fractions for the merged

Run 1+Run 2 dataset is 1.3% for f low q2

sig , 0.02% for fmid q2

sig , and 0.6% for fhigh q2

sig . However,

the distributions of f isig are slightly asymmetric, most notably for f low q2

sig , which would make

the uncertainties of the signal parameters asymmetric as well and therefore complicate the

interpretation of the results. Furthermore, the statistical power of method A is inferior to

the alternative method described in the following section.

6.8.2 Method B - Performing separate mrec
B0 fits

In this method, one dimensional fits to mrec
B0 are performed across the full range of

(5220 ≤ mrec
B0 ≤ 5840) MeV/c2 in each q2 region, while modeling both the signal and

background components. The resulting background slopes and signal fractions are then

used to estimate the number of background events in the signal region.

133



region short notation q2 range [GeV2/c4]

low-q2 QR1 0.18 ≤ q2 ≤ 3.24

resonant mid-q2 QR2res 8.20 ≤ q2 ≤ 10.6

fully combinatorial mid-q2 QR2comb

3.24 ≤ q2 ≤ 8.20

and 10.6 ≤ q2 ≤ 11.56

resonant high-q2 QR3res 12.4 ≤ q2 ≤ 14.4

fully combinatorial high-q2 QR3comb

11.56 ≤ q2 ≤ 12.4

and 14.4 ≤ q2 ≤ 18

Table 6.5: q2 regions for the simultaneous mrec
B0 -fit. Unconstrained q2 is used here.

Isolating the three background components

Since the three background components can have different mrec
B0 slopes, the mid-q2 and

high-q2 regions are split up into sub regions to isolate each component. The q2 windows of

QR1, QR2comb, QR2res, QR3comb, and QR3res are given in table 6.5.

Due to the effect of the mass constraint on the q2 distribution of the background, described

in section 6.2, the unconstrained q2 dimension is used for splitting up the data into these

regions. Using unconstrained q2 allows choosing the q2 ranges such that all events from

signal B0 → J/ψK∗0 (B0 → ψ(2S)K∗0) events as well as all background J/ψ (ψ(2S))

events are included in the resonant regions, while making the resonant regions as narrow as

possible. Since there are also fully combinatorial events (which may have a different slope)

contained in the resonant regions, there is a small inherent bias on the background slopes

with this method, which is taken into account as a systematic uncertainty as described in

section 7.2.1.9

9If the B0-mass constrained q2 would be used to split the data into q2 regions, the position and widths

of the resonant background peaks would be correlated with mrec
B0 . This would cause the background

peaks in the upper mass side-band to be shifted and to be wider than the signal B0 → J/ψK∗0 and

B0→ ψ(2S)K∗0 peaks in the signal region. This would make it necessary to choose a much wider resonant

q2 window to include both components fully, which would in turn dilute the sample of resonant events

with even more fully combinatorial events. In addition to decreasing the statistical precision of smcomb this

would also increase the systematic uncertainty on smJ/ψ and smψ(2S).
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Simultaneous mrec
B0 fit

The mrec
B0 fit is performed simultaneously to the five q2 regions defined in table 6.5. The

total PDF in each q2 region j (j ∈ {QR1, QR2res, QR2comb, QR3res, QR3comb}) is given by

Pj
total(m

rec
B0) = f full region,j

sig · Pj
signal(m

rec
B0) + (1− f full region, j

sig ) · Pj
bkg(m

rec
B0), (6.22)

where the signal component is parameterised by

Pj
signal(m|~λ) = fcorePCB(m|µ, σ1, α, n) + (1− fcore)PCB(m|µ, σ2, α, n), (6.23)

i.e. a sum of two Crystal Ball functions with shared mean (µ) and tail parameters (α, n)

but different widths (σ1 and σ2). The background Pj
bkg(m

rec
B0) is modelled with a falling

exponential with slope sj.

All parameters of the simultaneous mrec
B0 fit are summarised in table 6.6. In the resonant

mid-q2 and resonant high-q2 regions, the fit is sensitive to events from B0
s→ J/ψK∗0 and

B0
s→ ψ(2S)K∗0 decays respectively. Thus, in these regions, a second signal component is

included which uses the same parameterisation as given in equation 6.23 with a mean µ

shifted by ∆m = m(B0
s )−m(B0) = 87.19MeV/c2 [30]. The fraction fB0/Bs of B

0 decays

over B0
s decays is floated in the fit and shared between the regions QR2res and QR3res. The

contribution from rare B0
s→ K∗0µ+µ− decays is approximately 1% of the B0→ K∗0µ+µ−

signal decays and can be neglected [100]. Therefore, no contributions from B0
s decays need

to be included in the regions QR1, QR2comb, and QR3comb.

As part of the analysis for Ref. [96], the q2 dependence of the mrec
B0 signal shape was

investigated using Monte Carlo simulated samples of B0→ K∗0µ+µ− and B0→ J/ψK∗0

decays. It was found that all parameters except for the widths σ1 and σ2 are independent

of q2. Based on the MC simulations, the widths are approximately 1.038 times wider in

the high-q2 region of (11.56 ≤ q2 ≤ 18) GeV2/c4 than in the lower q2 regions [91]. Thus,

during the simultaneous mrec
B0-fit in this analysis, all signal parameters are shared across

the five q2 regions and the width parameters (σ and σ2) are multiplied with 1.038 in

QR3comb and QR3res. The signal fractions f full region,j
sig are independently floating in all five

q2 regions.

The background slopes in the regions QR1, QR2comb, and QR3comb have been found

to be statistically compatible and therefore the parameters sQR1, sQR2comb , sQR3comb are

replaced with a single parameter which is shared across the three regions. Figure 6.20

shows the mrec
B0 distributions in the five q2 regions as well as the projection of the PDFs

from the simultaneous fit to the data.
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name QR1 QR2comb QR2res QR3comb QR3res

sQR1 x

sQR2comb x

sQR2res x

sQR3comb x

sQR3res x

fQR1
s x

fQR2 COMB
s x

fQR2 RES
s x

fQR3 COMB
s x

fQR3 RES
s x

µm,signal x x x x x

σm,signal x x x x (×1.038) x (×1.038)

σm,signal2 x x x x (×1.038) x (×1.038)

αm,signal x x x x x

fcore x x x x x

fB0/Bs x x

Table 6.6: Fit parameters of the simultaneous mrec
B0 fit. The region(s) in which each parameter is/are

determined is indicated. Parameters that are determined in several regions are shared parameters in

the fit. The sigma parameters are multiplied with 1.038 in the high q2 regions to account for the q2

dependence of the B0 peak as discussed in the text.

Calculation of the background yield in the signal region

The number of background events N signal region, j
total in the signal region in each of the five q2

regions (j ∈ {QR1, QR2res, QR2comb, QR3res, QR3comb}) is then calculated by interpolating

the background yield in the full mrec
B0 range into the signal region with

N signal region, j
bkg = (1− f full region,j

sig ) ·N full region,j
total ·

∫ mrec

B0=5319.58 MeV/c2

mrec

B0
=5239.58 MeV/c Pj

bkg(m
rec
B0)

∫ mrec

B0
=5840 MeV/c2

mrec

B0
=5220 MeV/c2 Pj

bkg(m
rec
B0)

(6.24)
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Figure 6.20: mrec
B0 distribution in the five q2 regions of the simultaneous mrec

B0 fit of the merged Run 1 and

Run 2 data. Also shown are the projections of the simultaneous mrec
B0 -only fit to those regions. The signal

parameters are shared across all q2 regions and the width parameters (σ and σ2) are multiplied with a

factor of 1.0385 in the high-q2 regions to account for the q2 dependence of the mrec
B0 resolution. The slope

of the fully combinatorial background is shared across low-, mid- and high-q2, whereas the slopes in the

resonant regions are independent.

where N full region,j
total is the total number of events within the full mrec

B0 range. Pj
bkg(m

rec
B0) is a

falling exponential with slope sj.
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Finally, the number of background events in the signal region in the low q2 region is

given by

N signal region, low q2

bkg = N signal region,QR1
total , (6.25)

while the number of background events in the signal region in the mid q2 region is calculated

with

N signal region,mid q2

bkg = N signal region,QR2res
total +N signal region,QR2comb

total . (6.26)

Analogously, the number of background events in the signal region in the high q2 region is

calculated with

N signal region, high q2

bkg = N signal region,QR3res
total +N signal region,QR3comb

total . (6.27)

These estimated numbers of background events in the signal region are then used to

calculate the signal fraction in the signal region using equation 6.20.

Figure 6.21 shows the signal fraction per q2 region determined in fits to 1000 toy samples

with ∼ 1 million events each. Also shown are Gaussian fits to the f isig distributions to

determine the mean and standard deviation of the signal fraction obtained with the method

described in this section. The mean value of each f isig is in good agreement with the true

values of f isig given by

true(f low q2

sig ) = 0.8955± 0.0052 (6.28)

true(fmid q2

sig ) = 0.97393± 0.0034

true(fhigh q2

sig ) = 0.9626± 0.0063.

The true values were obtained by generating a single toy with 10 million events and counting

the number of signal and background events in the signal region. The uncertainties given

in equation 6.28 are the propagated Poisson uncertainties.

Based on the standard deviation obtained in the Gaussian fits in figure 6.21, the statistical

precision on the signal fractions for the merged Run 1+Run 2 dataset is 0.04% for f low q2

sig ,

0.003% for fmid q2

sig , and 0.01% for fhigh q2

sig .
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Figure 6.21: Distribution of signal fraction per q2 region determined via method B – using the information

from the simultaneous mrec
B0 fit – in fits to 1000 toy simulations of ∼ 1 million events each. Also shown are

Gaussian fits to the f isig distributions and the resulting mean µ and σ values.
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6.9 Summary of the fitting strategy

In this section, the fit strategy used in this thesis is briefly summarised.

(step 1) mrec
B0 fit

(step 2) side-band fit

(step 3) signal-region fit.

In step 1, the mrec
B0 fit is performed in five simultaneous q2 regions as described in

section 6.8.2.

In step 2, the 5D (cos θℓ,cos θK ,φ,q
2,mrec

B0) side-band fit is performed simultaneously

in five SB regions and three q2 regions, while applying the correction for the effect of the

Kµµ-veto (see section 6.4) and the signal-veto (see section 6.5), and while allowing for a

mass dependence of the cos θK parameters (see section 6.7).

During the fit in step 2, the mrec
B0-slope parameters of the three background components

are constrained to the slopes determined in step 1. All other parameters from step 1 are

also floated again and constrained using the full covariance matrix (14× 14) determined

in step 1. The constraint is implemented by adding the constraint term c to the log-

Likelihood, where c is given by

c = −0.5 · ~λdiv(K−1
λλ
~λdiv), (6.29)

where Kλλ is the covariance matrix from the simultaneous mrec
B0 fit and ~λdiv is given by

~λdiv =



















smcomb

smJ/ψ
smψ(2S)

f full region,j
sig

~λ
mrec

B0

signalmodel



















−



















sQR1

sQR2res

sQ2res

f full region,j
sig

~λ
mrec

B0

signalmodel



















best fit values from step 1

. (6.30)

with j ∈ {QR1, QR2res, QR2comb, QR3res, QR3comb}. Note that sQR1 represents the single

slope parameter that is determined as a shared parameter in QR1, QR2comb, and QR3comb.
~λ
mrec

B0

signalmodel denotes the signal parameters from step 1.

Except for the slope parameters, the parameters from the simultaneous mrec
B0 fit have

no influence on the background parameters and are purely constrained from the covariance

140



matrix. The reason for floating them again in step 2, is that the simultaneous side-band

fit then yields a single covariance matrix (46× 46) containing all parameters from both

step 1 and step 2. This way all potential correlations are taken into account.

In step 3 the signal and background (cos θℓ, cos θK , φ, q
2) fit is performed in the signal

region ((5239.58 ≤ mrec
B0 ≤ 5319.58) MeV/c2). All parameters contained in the (46× 46)

covariance matrix from step 2 are floated in this fit and constrained to the best fit values

from step 2 using the (46× 46) covariance matrix. The information obtained from fitting

the side-band is therefore used via the constraint, while the background events in the

signal region are adding further information about the background shape. The signal

fraction is calculated for each likelihood call using the expressions in equations 6.20 and

6.24.

Since step 3 requires the full fit with the signal model, it cannot be carried out for

the merged Run 1+Run 2 dataset as explained in chapter 5. However, it is carried out for

the fit to Run 1 data presented in chapter 7.

6.10 Test of the background fit using toy simulations

To test the stability of the fits described in this chapter, a pull study is performed. For

this study, 1000 toy samples with ∼ 1million events each (approximately equivalent to

the number of events in merged the Run 1 and Run 2 dataset) are generated using the

full signal (including acceptance and resolution effects) and background model. Each toy

sample is fitted with the simultaneous mrec
B0 fit and the simultaneous side-band fit, i.e. step

1 and step 2 described in section 6.9.

The (cos θK , q
2, mrec

B0)-cut which mimics the Kµµ-veto and the signal-veto are applied to

the simulated toys and the background PDF is adjusted accordingly.

The pull of each parameter is calculated for each of the 1000 fits using equation 6.10.

The pull distribution of each parameter is fitted with a Gaussian to determine the mean

µpull and standard deviation σpull. Table 6.7 shows µpull and σpull for all background

parameters which were floating in the fits to the toy samples. The width of the pull

distribution of all parameters is compatible with unity, indicating that for each parameter

the statistical uncertainty obtained in the fit, agrees well with one standard deviation.

For an unbiased parameter one expects µpull = 0. Most parameters are unbiased. The

largest biases are observed for the slope parameters smcomb, s
m
J/ψ , s

m
ψ(2S) which are due to

the fact that they are constrained to the slopes determined in the mrec
B0 fit which are biased
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by construction (see section 6.8.2). Note however, that the statistical uncertainties of the

slope parameters are on the order of 1-4%.10

The biases of the background fractions fJ/ψ and fψ(2S) are due to the fact that the

value of each background fraction in a given SB window depends on the slope parameters

(see equation 6.18) and therefore the biases in the slopes lead to biases in the background

fractions. The small biases observed for some of the angular and q2 parameters are due to

correlations of those parameters with the slopes and fractions.

The effect of the biases of the background parameters on the signal parameters is taken

into account as a systematic uncertainty as described in section 7.2.1.

10Since the pull is the difference of the best fit value and the true value divided by the statistical

uncertainty, a bias of µpull ≈ 2 equates to a 2-8% shift of the slope parameter values.
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µpull σpull

smcomb 1.923 ± 0.033 1.038 ± 0.024

smJ/ψ -2.418 ± 0.032 0.993 ± 0.024

smψ(2S) -2.520 ± 0.034 1.034 ± 0.026

aLcomb 0.016 ± 0.030 0.943 ± 0.021

bLcomb -0.005 ± 0.031 0.994 ± 0.022

aKcomb 0.205 ± 0.032 1.016 ± 0.023

bKcomb 0.399 ± 0.031 0.981 ± 0.022

aφcomb 0.033 ± 0.032 1.019 ± 0.023

bφcomb 0.004 ± 0.032 1.024 ± 0.023

aq
2

comb 0.035 ± 0.032 1.013 ± 0.023

aLJ/ψ -0.003 ± 0.031 0.975 ± 0.022

bLJ/ψ 0.073 ± 0.032 1.000 ± 0.022

aKJ/ψ -0.070 ± 0.031 0.993 ± 0.022

bKJ/ψ -0.118 ± 0.032 1.001 ± 0.022

aφJ/ψ -0.036 ± 0.032 1.026 ± 0.023

bφJ/ψ -0.005 ± 0.032 0.997 ± 0.022

µq
2

J/ψ 0.014 ± 0.032 1.008 ± 0.023

σq
2

J/ψ -0.102 ± 0.031 0.983 ± 0.022

αq
2

J/ψ 0.008 ± 0.032 0.997 ± 0.022

µpull σpull

aLψ(2S) -0.008 ± 0.032 1.010 ± 0.023

bLψ(2S) -0.013 ± 0.032 1.020 ± 0.023

aKψ(2S) -0.107 ± 0.032 1.005 ± 0.022

bKψ(2S) -0.161 ± 0.031 0.968 ± 0.022

aφψ(2S) -0.010 ± 0.033 1.030 ± 0.023

bφψ(2S) 0.027 ± 0.033 1.036 ± 0.023

µq
2

ψ(2S) -0.050 ± 0.033 1.037 ± 0.023

σq
2

ψ(2S) -0.084 ± 0.032 1.016 ± 0.023

fJ/ψ -0.989 ± 0.026 0.837 ± 0.019

fψ(2S) -1.159 ± 0.026 0.812 ± 0.018

aKmd,comb -0.193 ± 0.031 0.992 ± 0.022

bKmd,comb -0.374 ± 0.031 0.981 ± 0.022

aKmd,J/ψ 0.090 ± 0.032 1.004 ± 0.022

bKmd,J/ψ 0.120 ± 0.032 1.000 ± 0.022

aKmd,ψ(2S) 0.113 ± 0.032 1.000 ± 0.022

bKmd,ψ(2S) 0.188 ± 0.030 0.957 ± 0.021

Table 6.7: Fit results of Gaussian fits to the pull distributions of all background parameters in fits to 1000

toy simulations. For an unbiased parameter one expects µpull = 0. The observed biases are discussed in

the text. All values for σpull are compatible with 1, demonstrating that for each parameter the uncertainty

obtained by the fits agrees well with one standard deviation.
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6.11 Background fit to the merged Run 1 and Run 2

data

In this section the results of the background fit to the merged Run 1 and Run 2 dataset

are presented. As explained in section 6.9 the simultaneous mrec
B0 fit is performed first and

the projections of this fit is shown in figure 6.20. The results of all parameters floating

during the 5D simultaneous side-band fit are given in table 6.8.

Figures 6.22, 6.23, and 6.24 show some exemplary distributions of the angular and q2

distributions in some of the (mrec
B0 , q2) regions as well as the corresponding projections

of the background PDF. The full set of distributions and fit projections for all five SB

regions and all three q2 regions are shown in appendix A.3. The background PDF describes

the data well in all kinematic windows. The mrec
B0 and q2 dependent gap in the cos θK

distribution caused by the Kµµ veto is well described by the PDF. Furthermore, the

mrec
B0-region dependence of the shape of the cos θK distributions is well described.

The background PDF does not seem to capture the slope of the data in the mrec
B0

distribution at mrec
B0 < 5580MeV in the mid q2 region shown in figure A.19. The local

change in slope is most likely due to B0→ J/ψK∗0 signal events leaking into the upper

mass side-band (see section 6.5) which is not well described by the double Crystal Ball

function used to parameterise the signal peak. However, the mrec
B0 fit over the full mrec

B0

range, shown in figure 6.20, demonstrates that this is a local issue and does not affect the

general description of the mrec
B0 distribution of the signal and background.

144



name result

smcomb (3.71 ± 0.16)×10−3

smJ/ψ (5.847 ± 0.090)×10−3

smψ(2S) (5.20 ± 0.21)×10−3

aLcomb 0.074 ± 0.057

bLcomb 0.223 ± 0.051

aKcomb 0.25 ± 0.20

bKcomb 0.21 ± 0.18

aφcomb -0.090 ± 0.059

bφcomb -0.005 ± 0.056

aq
2

comb 1.080 ± 0.090

aLJ/ψ -0.028 ± 0.021

bLJ/ψ -0.500 ± 0.023

aKJ/ψ 0.242 ± 0.066

bKJ/ψ 0.448 ± 0.067

aφJ/ψ 0.026 ± 0.021

bφJ/ψ -0.022 ± 0.020

µq
2

J/ψ 9.6184 ± 0.0019

σq
2

J/ψ 0.1467 ± 0.0016

αq
2

J/ψ 0.965 ± 0.039

aLψ(2S) -0.118 ± 0.071

bLψ(2S) -0.502 ± 0.080

aKψ(2S) 0.34 ± 0.25

bKψ(2S) 0.03 ± 0.27

name fit result

aφψ(2S) -0.141 ± 0.070

bφψ(2S) 0.055 ± 0.067

µq
2

ψ(2S) 13.6147 ± 0.0092

σq
2

ψ(2S) 0.2073 ± 0.0078

fJ/ψ 0.9528 ± 0.0043

fψ(2S) 0.731 ± 0.026

aKmd,comb -0.22 ± 0.28

bKmd,comb -0.11 ± 0.26

aKmd,J/ψ -0.05 ± 0.10

bKmd,J/ψ -0.83 ± 0.11

aKmd,ψ(2S) -0.16 ± 0.38

bKmd,ψ(2S) -0.40 ± 0.41

fQR1
s 0.755 ± 0.013

fQR2 COMB
s 0.96685 ± 0.00060

fQR3 COMB
s 0.658 ± 0.011

fQR2 RES
s 0.9494 ± 0.0020

fQR3 RES
s 0.774 ± 0.010

µm,signal 5280.956 ± 0.024

σm,signal 15.738 ± 0.083

σm,signal2 26.78 ± 0.32

αm,signal 1.5589 ± 0.0080

fcore 0.721 ± 0.012

fB0/Bs 0.98767 ± 0.00021

Table 6.8: Fit results of the background parameters and the parameters describing the mrec
B0 distribution

of the signal, for the merged Run 1 and Run 2 data. The uncertainties are statistical uncertainties.
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Figure 6.22: cos θK distributions in the mid, and high-q2 regions in SB1, SB3, and SB5 in the merged Run 1

and Run 2 data. Also shown are the projections of the simultaneous side-band fit. The mrec
B0-dependent

gap in the cos θK distribution caused by the Kµµ veto is well described by the PDF which is adjusted for

the missing phase space (see section 6.5. See appendix A.3 for the full set of plots.
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Figure 6.23: q2 distributions in the low, mid, and high-q2 regions in SB1 and SB2 Also shown are the

projections of the simultaneous side-band fit. See appendix A.3 for the full set of plots. The gaps in the

q2 distribution in the mid-q2 region are caused by the signal veto explained in section 6.5
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Figure 6.24: cos θℓ and φ distributions in the low, mid, and high-q2 regions in SB1 in the merged Run 1

and Run 2 data. Also shown are the projections of the simultaneous side-band fit. See appendix A.3 for

the full set of plots.
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7. Fit to Run 1 data

As described in chapter 5, the full fit with the signal model can currently only be carried

out for Run 1 data1. The fit to the Run 1 data presented in this chapter, is to be seen as a

proof of concept to demonstrate the ability of the model to describe the data. Any physics

interpretations are preliminary and in order to draw real conclusions, the published result

which will use merged Run 1 and Run 2 data should be awaited.

The signal model, described in chapter 3, is convolved with the resolution model

(described in section 5.3.2) and multiplied with the acceptance model (described in section

5.2). The fit procedure is presented in section 6.9. For the fit to Run 1 data all three steps

of the fit procedure are carried out. The results of the background fit to the Run 1 data

are presented briefly in section 7.1. The systematic uncertainties are discussed in section

7.2 and the results of the full fit to Run 1 data are presented in section 7.3.

7.1 Background fit to Run 1 data

The fit procedure for the fit to the Run 1 data follows the steps outlined in section 6.9.

The projections of the simultaneous mrec
B0 fit (step 1) are shown in appendix A.4.

Following the simultaneous mrec
B0 fit, the simultaneous side-band fit is performed (step 2),

while floating the parameters of the simultaneous mrec
B0 fit again and constraining them

to the results from step 1. The background parameters as well as the parameters of the

simultaneous mrec
B0 fit are then floated again in the signal region fit (step 3) and constrained

to the best fit values from step 2.

The background events in the signal region therefore add an additional constraint to the

background parameters. This additional constraint is significant, since there are more

background events in the signal region than in the upper mass side-band. For example, in

the mid q2 region there are ∼ 4450 background events in the signal region and ∼ 3150

events in the upper mass side-band. However, due to the large number of signal events

in the signal region (∼ 256300 in the mid q2 region) the fit is still less sensitive to the

background shapes in the signal region than in the upper mass side-band.

In order to study the effect of floating the background parameters in the signal region,

the background parameterisation obtained in the signal region fit (step 3) is compared to

1The averaged acceptance model for the merged Run 1 and Run 2 has yet to be determined which is

beyond the scope of this thesis.
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the background parameterisation obtained purely from side-band data (step 2).

Figure 7.1 shows the cos θK , cos θℓ, and φ distributions of the Run 1 data in SB1 and SB2

in the mid-q2 region (the full set of figures for all dimensions and regions can be found in

appendix A.5). The projections of the background PDF after the side-band fit (blue) and

after the signal region fit (red) are shown as dashed lines. The blue and red shaded areas

indicate the 68% confidence interval of each PDF, which was obtained by fluctuating all

parameters using the respective covariance matrix.

The background PDFs (after SB fit and after signal region fit) are in good general agreement

with some exceptions. The biggest discrepancies are observed for the cos θℓ and cos θK

distributions in SB1 and SB2 in the mid-q2 region, indicating a systematic uncertainty

related to the extrapolation of the background parameters from the side-band into the

signal region as discussed below. The projections in the φ dimension fully agree in all

regions.

Figure 7.2 shows the q2 distribution in SB1 in all three q2 regions as well as the projections

and confidence intervals of the background PDF before and after the signal region fit. The

only minor disagreement between the two PDFs can be found in the lower tail of the J/ψ

peak in the mid-q2 region.

The comparison of the background PDFs before and after the signal region fit also

constitutes a systematic check of the extrapolation of the background parameters along

the mrec
B0 dimension (see section 6.7). As the background PDFs before and after the signal

region fits are not completely statistically compatible, a systematic uncertainty related to

the extrapolation of the background parameters is determined in section 7.2.1.
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Figure 7.1: cos θK , cos θℓ, and φ distributions in the first two upper side-band regions (SB1 and SB2)

in the mid-q2 region in Run 1 data. Also shown are the projections of the background PDF after the

simultaneous side-band fit (blue dashed line) as well as the PDFs’ 68% confidence interval (blue shaded

area), determined by varying all parameters using the covariance matrix obtained in the fit. Furthermore,

the background PDF after the signal region fit (red dashed line) and the respective 68% confidence interval

(red shaded area) are shown. Note that the background events in the signal region (not shown here) add

additional constraints on the background parameters in the signal region fit.
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Figure 7.2: q2 distribution in SB1 in all three q2 regions in Run 1 data. Also shown are the projections of

the background PDF after the simultaneous side-band fit (blue dashed line) as well as the PDFs’ 68%

confidence interval (blue shaded area) determined by varying all parameters using the covariance matrix

obtained in the fit. Furthermore, the background PDF after the signal region fit (red dashed line) and the

respective 68% confidence interval (red shaded area) are shown. Note that the background events in the

signal region (not shown here) add additional constraints on the background parameters in the signal

region fit.
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7.2 Systematic uncertainties

7.2.1 Backround parameterisation

There are two major sources of systematic uncertainties of the signal parameters caused by

the background parameterisation. Firstly, the fit procedure for determining the background

parameterisation results in small biases for some of the background parameters which then

can cause biases for the signal parameters. Secondly, the extrapolation of the background

parameters along mrec
B0 causes a systematic uncertainty.

Other sources of systematic uncertainties such as the choice of the parameterisation of

the background components were considered, for example higher orders of the Chebychev

polynomials, used to parameterise the angular distributions of the background. However,

the order chosen in this thesis gives the best agreement with the data. Fits with higher

orders are susceptible to over-fitting the data, exhibit large fluctuations of the PDF at the

borders of the distributions, and are therefore no reasonable variations of the fit strategy.

Biases from the fit procedure

The biases of the background parameters caused by the background fit procedure (see

chapter 6) can cause biases of the signal parameters. These are treated as a source

of systematic uncertainty. To determine the systematic uncertainties caused by the

background fit procedure, a toy study is performed. One thousand toy samples of three

million events each are generated with the full signal and background model, including

resolution and acceptance effects. The signal and background events are generated

separately using the relative yields observed in data, and each event is labelled either

signal or background. Each toy sample is then fitted twice:

(A) The signal events are fitted with the signal only model.

(B) All events (signal and background) are fitted with the full three-step fit procedure

described in section 6.9.

Then, the difference of each signal parameter obtained in fit (A) and fit (B) is calculated

for each toy sample, e.g. ∆C9 = CFitA
9 − CFitB

9 .

Figure 7.3 shows the distributions of ∆C9 and ∆C10 as well as Gaussian fits to determine the

mean µ∆ and width σ∆ of the distributions. The absolute value of the mean shift i.e. |µ∆|,
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Figure 7.3: ∆C9 and ∆C10 distributions (where ∆C9 = CFitA
9 − CFit B

9 and analogously for ∆C10). Each
distribution is fitted with a Gaussian to determine the µ∆ which is taken as the systematic uncertainty

related to the background parameterisation.

is taken as the systematic uncertainty caused by the background parameterisation.2 This

is done for all signal parameters. The resulting systematic uncertainties and the systematic

uncertainties as a fraction of the respective statistical uncertainty from the fit to Run 1

data are given in table 7.1.3 Only the parameters with systematic uncertainties of at least

5% of the statistical uncertainty are shown. The systematic uncertainties for C9 and C10
are 9% and 16% of the statistical uncertainty respectively. The real part4 of the non-local

contribution to C7 in the A0 amplitude has a systematic uncertainty of 6% of the statistical

uncertainty. Also one of the FF parameters, αA12 , is affected at the level of 11% of the

statistical uncertainties, as are the resolution parameters in the mid-q2 region (α2) and in

the high q2 region (α3) at 14% and 13% of the statistical uncertainty.

2The widths of the ∆C9,10 distributions are correlated to the statistical uncertainty added by the

background, since no background events are included in fit (A).
3Technically, the “statistical” uncertainties here are the fit uncertainties which include the statistical

uncertainties as well as the theoretical uncertainties from the FF constrain.
4The fit was found to be more stable when fitting for the real and imaginary parts of the non-local

contribution to C7 instead of the corresponding magnitudes ζ⊥,‖,0 and phases ω⊥,‖,0.
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µ∆ µ∆/σstatistical

|Aψ(2S)‖ | (-40.94 ± 2.13)×10−7 0.09

|Aψ(2S)⊥ | (-47.71 ± 2.39)×10−7 0.10

|Aψ(2S)0 | (-71.815 ± 3.044)×10−7 0.12

Im(A
ψ(4160)
0 ) (-19.79 ± 1.31)×10−7 0.05

FF αA12 0.0547 ± 0.0035 0.11

|Aψ(2S)00 | (-26.49 ± 1.64)×10−7 0.05

|C9 | -0.0236 ± 0.0016 0.09

|C10 | 0.0322 ± 0.0019 0.16

Re(∆CA0
7 ) (5.13 ± 0.77)×10−3 0.06

resolution α2 (1.050 ± 0.064)×10−3 0.14

resolution α3 (8.96 ± 0.34)×10−3 0.13

Table 7.1: Systematic uncertainties of the signal parameters due to the background fitting procedure. The

systematic uncertainties are determined by generating 1000 high statistics toy samples and comparing the

fit results of a signal only fit to the results from the full signal and background fit. The absolute value

of the mean difference of the fit parameters (|µ∆|, obtained with Gaussian fits) is taken as systematic

uncertainty. In the right column, the systematic uncertainties are given as a fraction of the statistical

uncertainty of the respective parameter. Only the parameters which have systematic uncertainties of at

least 5% of the statistical uncertainty are shown.
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Extrapolation of the background parameters

Since the background PDFs before and after the signal region fit are not fully statistically

compatible, as shown in figure 7.1 and figure 7.2, the systematic uncertainties related to the

extrapolation of the background parameters is determined. The systematic uncertainties

are estimated by using varied fit strategies to fit the data:

(A) The nominal fit as explained in section 6.9.

(B) The background parameters and the signal fractions are fixed to the best fit results

of the simultaneous mrec
B0 fit and the simultaneous side-band fit.

(C) The same fit strategy as (A) except that all background parameters are reparame-

terised with pxSBi = pxa +p
x
md×md

SBi
instead of just the cos θK parameters (see section

6.7).

Both variations constitute tests for the mrec
B0 dependence of the background parameteri-

sation and the systematic uncertainties determined with the two methods are therefore

correlated. However, for the Run 1 only data, the number of events are too small to ensure

a stable fit with variation (C) which uses 52 free parameters to describe the background

(also see table 5.3 for the number of events). Therefore, this method is omitted for the

Run 1 only fit, but could be used for the fit to the merged Run 1 and Run 2 data.

For this thesis, only the variation (B) is considered and each signal parameter from

fit (B) is compared to the respective value obtained in the nominal fit (A). The absolute

difference is taken as systematic uncertainty. The projections of the background PDF of

fit (A) and (B) can be compared in figures 7.1 and 7.2 as well as appendix A.5.

The systematic uncertainties resulting from the extrapolation of the background parameters

along mrec
B0 are given in table 7.2 along with the systematic uncertainties as a fraction of

the statistical uncertainties in the nominal fit.

The systematic uncertainties are quite large, most notably for C9 and C10 where the

systematic uncertainties are 20% and 65% of the statistical uncertainties respectively.

The extrapolation of the background parameters along mrec
B0 is therefore the dominant

systematic uncertainty for C10.
However, the nominal fit uses background events in the signal region5, and is therefore

less affected by the extrapolation of the background parameters than the study presented

5As stated before in the mid q2 region, there are ∼ 5215 background events in the signal region and

3156 background events in the upper mass side-band
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in this section suggests. In other words, it could be argued that the fit with the fixed

background is not an ideal variation of the fit strategy for determining a systematic

uncertainty. The variation is overestimating the ‘misunderstanding’ of the background,

since the varied fit simply ignores some of the information available in the data. Therefore,

the systematic uncertainties given in this section are likely overestimated. However, in

order to stay conservative, the systematic uncertainties are used as given in table 7.2. This

method should be revisited for the fit to the merged Run 1 and Run 2 data.
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σsyst σsyst/σstat

|AJ/ψ‖ | 0.000006 0.26

θ
J/ψ
‖ 0.003202 0.26

|AJ/ψ⊥ | 0.000002 0.09

θ
J/ψ
0 0.093489 0.93

|Aψ(2S)‖ | 0.000008 0.18

|Aψ(2S)⊥ | 0.000007 0.15

θ
ψ(2S)
0 0.126169 0.40

|Aρ(770)0 )| 0.000004 0.11

θ
ρ(770)
0 0.000003 0.06

Im(A
φ(1020)
0 ) 0.000003 0.20

Re(A
ψ(3770)
‖ ) 0.000010 0.39

Im(A
ψ(3770)
‖ ) 0.000002 0.10

Re(A
ψ(3770)
⊥ ) 0.000001 0.06

Im(A
ψ(3770)
⊥ ) 0.000006 0.27

Re(A
ψ(3770)
0 ) 0.000004 0.13

Im(A
ψ(3770)
0 ) 0.000005 0.13

Re(A
ψ(4040)
‖ ) 0.000003 0.08

Re(A
ψ(4040)
⊥ ) 0.000002 0.07

Im(A
ψ(4040)
⊥ ) 0.000003 0.12

Re(A
ψ(4040)
0 ) 0.000002 0.05

Im(A
ψ(4040)
0 ) 0.000004 0.09

Im(A
ψ(4160)
‖ ) 0.000002 0.05

Re(A
ψ(4160)
⊥ ) 0.000004 0.12

Re(A
ψ(4160)
0 ) 0.000005 0.13

Im(A
ψ(4160)
0 ) 0.000006 0.16

σsyst σsyst/σstat

αA120 0.000773 0.08

αA122 0.020461 0.05

|AJ/ψ00 | 0.000034 0.66

θ
J/ψ
00 0.083515 0.83

|Aψ(2S)00 | 0.000013 0.25

θ
ψ(2S)
00 0.141741 0.45

|C9 | 0.050106 0.20

|C10 | 0.130912 0.65

Scale Swave V1 0.955726 0.41

Scale Swave V2 1.025880 0.45

Scale Swave T 0.412042 0.35

Re(∆CAP
7 ) 0.002409 0.12

Re(∆CAT
7 ) 0.015854 0.41

Im(∆CAT
7 ) 0.004485 0.19

Re(∆CA0
7 ) 0.005057 0.06

Im(∆CA0
7 ) 0.002005 0.08

α2 0.001761 0.23

α3 0.038108 0.54

Table 7.2: Systematic uncertainties related to the extrapolation of the background parameters along

mrec
B0 . Also shown are the systematic uncertainties as a fraction of the statistical uncertainty. Only the

parameters with systematic uncertainties which are at least 5% of the statistical uncertainty are shown.
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Figure 7.4: cos θK distribution of toy events generated with the model transformed into the helicity basis

including the exotic contributions (red), including the exotic contributions with doubled magnitudes

(green), and without exotic contributions (blue). Figure from Ref. [50].

7.2.2 Exotic charmonium-like states

Several exotic charmonium-like states with a quark content of ccud have been observed

in decays of B0 mesons. The first observation was made by the Belle experiment by

measuring the Z(4430)− state in the ψ(2S)π+ invariant mass spectrum of the B0 →
ψ(2S)K−π+ decay [101, 102]. The existence of the Z(4430)− was also confirmed by the

LHCb collaboration [103]. The Belle collaboration performed a full angular analysis of

the Z(4430)− → ψ(2S)π+ decay [104]. Two more ccud states have been observed by the

Belle collaboration in the J/ψπ± spectrum of the B0→ J/ψK−π+ decay: Z(4330)+ and

the Z(4200)+ [105].

The presence of these exotic states in the J/ψπ± spectrum of B0→ J/ψK−π+ decays

can have an impact on the angular distributions as shown in Ref. [106], particularly adding

a peak in the cos θK distribution at cos θK < −0.5. Since the exotic charmonium-like states

are not included in the empirical model used in this thesis, a corresponding systematic

uncertainty is assigned. To this end, toy samples are simulated with an extended model

which includes the amplitudes corresponding to the Z(4430)± and Z(4200)+ states, using
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the magnitudes and phases measured by the Belle collaboration [104, 105]. Since the

measurements were performed using the helicity amplitude basis (H0,+,−), the model

described in chapter 3 is transformed into the helicity formalism using the relations given

in Ref. [107], in order to allow the inclusion of the exotic contributions into the model.

Using the extended model, toy samples are generated while also including acceptance

and resolution effects (see sections 5.2 and 5.3). These toy samples are labelled “exotic”

toys. Then, using the same model, but setting all exotic amplitudes to zero,6 the same

number of toy samples, labelled “non exotic” toys, are generated. Figure 7.4 shows the

cos θK distribution of one of the exotic toy samples (red points) and of the corresponding

non-exotic toy sample (blue points). The effect of the presence of the exotic states is

clearly visible at cos θK < −0.5.

Both the exotic and non-exotic toys are fitted with the nominal model described in

chapter 3 and the mean difference of the fit parameters is used as a systematic uncertainty.

The systematic uncertainties are given in table 7.3 for the parameters most affected by

the presence of the exotic states. Also given are the systematic uncertainties divided by

the statistical uncertainties from the fit to Run 1 data. For the Wilson coefficients C9
and C10, the systematic uncertainty is on the order of 8% of the statistical uncertainty.

The systematic uncertainty of the phase of the J/ψ amplitudes relative to the penguin

amplitudes is approximately 6% of the statistical uncertainty.

Since the measured magnitudes of the Z(4430)± and Z(4200)+ amplitudes have large

uncertainties, a second toy study is performed where the magnitudes of the exotic ampli-

tudes are doubled. Figure 7.4 shows the cos θK distribution of a toy sample with doubled

magnitudes of the exotic amplitudes (green points). The resulting systematic uncertainties,

shown in table 7.4, are used for the final result presented in section 7.3.

6All other parameters remain unchanged and the same list of starting seeds are used for generating the

non-exotic toys as were used for generating the exotic toys.
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Parameter Systematic uncertainty Systematic uncertainty/statistical uncertainty

θ0J/ψ 5.92 × 10−3 0.06

|C9| 2.07 × 10−2 0.08

|C10| 1.61 × 10−2 0.09

Table 7.3: The systematic uncertainties due to ignoring the presence of the charmonium-like exotic states

Z(4430)± and Z(4200)+ in the signal model. The systematic uncertainties as a fraction of the expected

statistical uncertainties from fit to Run 1 data are given in the right coloumn. The uncertainties are given

for the C9, C10 and the phase θ0J/ψ. The effect of the exotic states is found to be negligible for the other

parameters.

Parameter Systematic uncertainty Systematic uncertainty/statistical uncertainty

θ0J/ψ 1.27 × 10−2 0.13

|C9| 4.88 × 10−2 0.19

|C10| 5.21 × 10−2 0.26

Table 7.4: The systematic uncertainties due to ignoring the presence of the charmonium-like exotic states

Z(4430)± and Z(4200)+ in the signal model when doubling the magnitudes of the amplitudes of the exotic

states. The systematic uncertainties as a fraction of the statistical uncertainties from the fit to Run 1

data are given in the right column. The uncertainties are given for the C9, C10 and the phase θ0J/ψ. The

effect of the exotic states is found to be negligible for the other parameters.
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7.2.3 S-Wave form factors

As discussed in sections 2.9 and 3.3, the signal model used in this thesis includes contribu-

tions from B0→ K∗0µ+µ− decays in the S-Wave configuration. The S-Wave amplitudes

are expressed in terms of the two from factors F1(q
2) and FT (q

2) as shown in equation

2.40. The S-Wave form factors have not been studied very extensively and therefore have

large uncertainties. The nominal model in this thesis uses the values of the S-Wave form

factors coefficients F (0)1,T , α1,T
F , and b1,TF calculated in Ref. [43]. The authors did not

publish any uncertainties for these coefficients.

Therefore, a conservative estimate of the systematic uncertainties, caused by the lack

of understanding of the S-Wave form factors, is determined for the signal parameters. To

this end, toy simulations with 10 millions events each are produced using the nominal

signal model, including resolution and acceptance effects. Each toy sample is then fitted

twice, once with the nominal signal model, and once with a modified model where the

S-Wave from factors F1,T are replaced with the form factors that enter into the longitudinal

P-wave amplitude AL,R
0 (see equation 2.33). Explicitly, F1 is replaced with A12 and FT is

replaced with T23. The motivation behind using the AL,R
0 FFs instead of the S-Wave FFs

as a systematic variation, is that the K∗0 in the S-Wave configuration is longitudinally

polarised just like the AL,R
0 amplitude.

The mean difference of each fit parameter in the nominal fit and the fit with swapped

FFs is taken as a systematic uncertainty. The resulting systematic uncertainties as well as

the systematic uncertainties as a fraction of the statistical uncertainties from the fit to

Run 1 data are given in table 7.5. Only the parameters for which the systematic uncertainty

is at least 5% of the statistical uncertainty are given. The systematic uncertainties, are

significant for several parameters, for example for C9 where the systematic uncertainty is

∼ 46% of the expected statistical uncertainty.

However, as shown in figure 7.5, the S-Wave FFs (blue line) and P-Wave FFs (dashed

black line and red area) are vastly different, indicating that the systematic uncertainties

obtained from swapping the S-Wave FFs for the P-Wave FFs are likely an overestimation.

Furthermore, figure 7.6 shows the B+→ K+ form factors f0, f+, and fT , calculated

using lattice QCD [108]. The notation is such that f+ corresponds to F1 and fT corresponds

to FT . f0 denotes the scalar form factor which is not included in the model used in this

thesis. The similarity between the B+→ K+ form factors and the S-Wave B0→ K∗0 form

factors, and the fact that the B+→ K+µ+µ− decay is also in an S-Wave configuration,

suggest that the B+→ K+ form factors could be used as a systematic variation in order
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Figure 7.5: The S-Wave form factors F1 and FT as a function of q2 using the nominal coefficients from

Ref. [43] (blue line). Also shown are the form factors of the P-Wave amplitude A0: A12 (left) and T23

(right) – shown with the dashed black line and the red area indicating the 68% confidence interval – with

which F1 and FT are replaced in order to estimate a systematic uncertainty associated to the S-Wave

form factors. Figures from Ref. [50].

to estimate the systematic uncertainties.

However, in order to avoid underestimating the systematic uncertainties, the more

conservative study outlined above is used in this thesis. Further theoretical calculations of

the S-Wave B0→ K∗0 FFs could improve the precision of the fit with the model described

in this thesis.

Figure 7.6: The B+→ K+ form factors f0, f+, fT as a function of q2. Relating these to the B0→ K∗0

form factors, f+ corresponds to F1 and fT corresponds to FT . f0 is the scalar form factor which is not

included in the model used in this thesis. Figures from Ref. [108].
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Parameter Systematic uncertainty Systematic uncertainty/Statistical uncertainty

|C9| 1.15 × 10−1 0.46

|C10| 2.12 × 10−2 0.11

θ0J/ψ 2.86 × 10−4 0.29

η
‖
ψ(2S) 2.02 × 10−5 0.45

η⊥ψ(2S) 2.41 × 10−5 0.52

η0ψ(2S) 3.01 × 10−5 0.50

η00ψ(2S) 9.97 × 10−6 0.20

Re(A0
ρ0) 6.35 × 10−6 0.21

Im (A0
ρ0) 2.90 × 10−6 0.07

Re(A
‖
ψ(3770)) 1.61 × 10−6 0.06

Im(A⊥
ψ(3770)) 4.87 × 10−6 0.22

Re(A
‖
ψ(4040)) 2.82 × 10−6 0.09

Im(A
‖
ψ(4040)) 6.07 × 10−6 0.15

Re(A⊥
ψ(4040)) 9.89 × 10−6 0.39

Im(A⊥
ψ(4040)) 5.56 × 10−6 0.22

Re(A0
ψ(4040)) 1.71 × 10−6 0.05

Im(A0
ψ(4040)) 4.05 × 10−6 0.10

Re(A
‖
ψ(4160)) 3.55 × 10−6 0.09

Im(A
‖
ψ(4160)) 6.69 × 10−6 0.155

Re(A⊥
ψ(4160)) 1.04 × 10−5 0.325

Im(A⊥
ψ(4160)) 7.38 × 10−6 0.27

Im(A0
ψ(4160)) 5.55 × 10−6 0.14

Re(ζ‖eiω‖) 7.76 × 10−3 0.20

Re(ζ⊥eiω⊥) 1.27 × 10−2 0.33

Im(ζ⊥eiω⊥) 6.16 × 10−3 0.27

Re(ζ0eiω0) 1.03 × 10−1 1.18

Table 7.5: The systematic uncertainties associated to the poor understanding of the S-Wave form factors.

In the right column, the systematic uncertainties as a fraction of the statistical uncertainties from the fit

to the Run 1 data are given. Only parameters with a systematic uncertainty which is at least 5% of the

statistical uncertainty are given.
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Figure 7.7: Distributions of ∆θℓ, ∆θK and ∆φ defined as the differences between the angles of the true

and reconstructed decay products in B0→ K∗0µ+µ− simulations. Also shown are fits with triple Gaussian

PDFs used to parameterise the angular resolution. Figure from Ref. [50].

7.2.4 Angular Resolution

As explained in section 5.3, the signal model used in this thesis is convolved with a

resolution model in q2, but ignores resolution effects in the angles. This is due to the fact

that the q2 distribution includes extremely narrow peaks which are much narrower than the

q2 resolution but the angular distributions do not contain any such peaks and are varying

slower than the angular resolution. Nevertheless, ignoring the limited angular resolution

is a source of systematic uncertainty. The estimation of this systematic uncertainty is

presented in this section.

Firstly, simulated B0→ K∗0µ+µ− events from the full MC simulation (see section 4.8)

in the ranges (5239.58 ≤ mrec
B0 ≤ 5319.58) MeV/c2 and (795.9 ≤ mKπ ≤ 995.9) MeV/c2

are used to a obtain a parameterisation of the angular resolution. Using the true (i.e.

165



generator level) and the reconstructed four momenta of the final state particles, the true and

reconstructed angles are calculated. The distributions of the differences ∆x = xrec − xtru

for x ∈ {cos θK , cos θℓ, φ} are then parameterised using triple Gaussian PDFs. The triple

Gaussian is defined as a sum of three Gaussians with independent means µ1,2,3, independent

widths σ1,2,3 and two fractions f1,2. The distributions of ∆ cos θℓ, ∆ cos θK , and ∆φ along

with the respective triple Gaussian fit are shown in figure 7.7. The triple Gaussian PDFs

describe the distributions well. The resulting resolution parameters for the resolution in

cos θℓ, cos θK , and φ are given in tables 7.6, 7.7, and 7.8 respectively.

The angular resolution parameterisations are then used in a toy study designed to

determine a systematic uncertainty. Using the nominal signal model, including q2-resolution

and acceptance effects, toy simulation samples are generated with 10 million events each.

Each sample is then fitted twice. First, the events are fitted with the nominal model.

Then, the angles in the toy samples are smeared using the resolution parameterisations

shown in figure 7.7 and then fitted with the nominal model again. The mean difference

of the fit parameters in the two fits are taken as the systematic uncertainty related to

ignoring the angular resolution.

The resulting systematic uncertainties are given in table 7.9. The largest systematic

uncertainty is observed for the real part of the non-local contribution to the C7 in the

longitudinal amplitude (Re(ζ0eiω0)), with a systematic uncertainty of 14% of the statistical

uncertainty. The systematic uncertainties of the Wilson Coefficients are small, with C10
having the larger systematic uncertainty of 8% of the statistical uncertainty. With more

data, these systematic uncertainties will become more significant and therefore it may be

advisable to include the angular resolution model in the fit in future measurements which

include Run 3 data.
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Parameter Value

σ1 3.99 × 10−3 ± 4.69 × 10−5

σ2 1.02 × 10−2 ± 2.57 × 10 −4

σ3 1.28 × 10+0 ± 8.21 × 10−3

µ1 -1.56 × 10−2 ± 3.43 × 10 −5

µ2 3.08 × 10−5 ± 1.64 × 10 −4

µ3 -2.34 × 10−2 ± 1.12 × 10 −2

f1 7.84 × 10−1 ± 1.18 × 10−2

f2 6.81 × 10−1 ± 2.34 × 10−3

Table 7.6: Result of the fit parameters from fitting a triple Gaussian to the distribution of ∆ cos θℓ in

order to parameterise the cos θℓ resolution.

Parameter Value

σ1 4.05 × 10−3 ± 4.51 × 10−5

σ2 1.07 × 10−2 ± 2.75 × 10 −4

σ3 3.69 × 10+2 ± 1.84 × 102

µ1 -1.62 × 10−2 ± 3.36 × 10 −5

µ2 4.01 × 10−5 ± 1.77 × 10 −4

µ3 2.35 × 10−1 ± 1.57 × 10 −1

f1 7.98 × 10−1 ± 1.07 × 10−2

f2 6.83 × 10−1 ± 2.33 × 10−3

Table 7.7: Result of the fit parameters from fitting a triple Gaussian to the distribution of ∆ cos θK in

order to parameterise the cos θK resolution.

Parameter Value

σ1 1.04 × 10−2 ± 1.29 × 10−4

σ2 3.08 × 10−2 ± 6.85 × 10 −4

σ3 5.00 × 10+2 ± 3.77 × 102

µ1 6.99 × 10−5 ± 9.26 × 10−5

µ2 -1.12 × 10−4 ± 4.43 × 10−4

µ3 6.58 × 10−2 ± 1.29 × 10 −1

f1 7.43 × 10−1 ± 1.02 × 10−2

f2 6.75 × 10−1 ± 2.38 × 10−3

Table 7.8: Result of the fit parameters from fitting a triple Gaussian to the distribution of ∆ cos θK in

B0→ K∗0µ+µ− simulations in order to parameterise the φ resolution.
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Parameter Systematic uncertainty Systematic uncertainty/Statistical uncertainty

|C9| 8.84 × 10−3 0.04

|C10| 1.59 × 10−2 0.08

η
‖
J/ψ 1.45 × 10−6 0.06

η⊥J/ψ 1.36 × 10−6 0.06

η⊥ψ(2S) 3.69 × 10−6 0.08

η0ψ(2S) 3.31 × 10−6 0.05

Re(ζ⊥eiω⊥) 2.74 × 10−3 0.07

Re(ζ0eiω0) 1.24 × 10−2 0.14

Table 7.9: The systematic uncertainties related to ignoring the angluar resolution in the model, and the

systematic uncertainties divided by the respective statistical uncertainties from the fit to Run 1 data. Only

parameters that have a systematic uncertainty which is at least 5% of the expected statistical uncertainty

are given.
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7.2.5 Acceptance

The acceptance parameterisation described in section 5.2 is dependent on the choice of

the orders of the Legendre polynomials. In order to avoid over-fitting and oscillations

at the edges of the distributions, the lowest set of orders is chosen with which the

acceptance parameterisation can still describe the acceptance effect well. In order to

ascertain the systematic uncertainty associated to the orders of the Legendre polynomials,

an alternative higher order acceptance parameterisation is determined, where each order

has been increased by 3. Toy event samples are generated from the signal model using the

higher order acceptance model and fitted with the nominal model and with the higher

order model. No significant difference between the two fits is observed for any of the signal

parameters, indicating that the systematic uncertainty associated to the choice of orders

of the acceptance function is negligible.

Furthermore, the limited number of simulated events used for determining the accep-

tance coefficients can be a cause of systematic uncertainty. This has been investigated

extensively for the measurement of the q2-binned angular observables, which uses the

same acceptance parameterisation [1, 91]. It was found that the systematic uncertainty

associated to the limited number of simulated events used for determining the acceptance

parameterisation is negligible. To crosscheck these findings with the model used in this

thesis, variations of the acceptance coefficients are created using their covariance matrix.

Then, toy simulations are generated using the nominal acceptance model and fitted with

the nominal model and with the varied acceptance. The differences of the signal parame-

ters caused by the varied acceptance is found to be negligible compared to the statistical

uncertainties of the signal parameters.

A further source of systematic uncertainties related to the acceptance model are due to

the fact that the full MC simulations, used to determine the acceptance parameterisation,

may not perfectly reproduce the data. The data driven corrections for the differences

between data and simulation are described in section 4.8.1. The PID resampling signif-

icantly improves the agreement of the PID variables between data and simulation. In

order to determine a corresponding systematic uncertainty, the small residual differences

between data and simulation are corrected by applying weights. The weights are calculated

based on sWeighted B0→ J/ψK∗0 data and the PID-resampled simulation. An alternative

acceptance parameterisation is determined based on the additionally weighted simulation.

Then, toy simulations are generated with the signal model using the nominal acceptance

model and fitted back with the nominal acceptance and the alternative acceptance. The
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differences of the signal parameters caused by the alternative acceptance model are negli-

gible compared to the statistical uncertainties.

The systematic uncertainty related to the kinematic reweighting is asssed by determining

three alternative acceptance parameterisations, where one of the three weights (used for

correcting the nTracks, χ2
Vtx, and p

B0

T distributions respectively) is omitted in each one.

Then, toy simulation samples are generated with the signal model and each of the three

alternative acceptance functions. Each toy sample is fitted with the nominal acceptance

and the respective alternative acceptance model. The resulting systematic uncertainties

are negligible compared to the statistical uncertainties.

7.2.6 Residual Peaking Backgrounds

Not all of the vetos used to reject peaking backgrounds described in section 5.1.2 are

100% efficient, i.e. a small number of peaking background events are still contained in

the final event selection. In order to determine the systematic uncertainties related to

these residual peaking backgrounds, the (cos θℓ, cos θK , φ, q
2, mrec

B0) distribution of each

peaking background component is modelled using simulations. Subsequently, toy event

samples are generated for each peaking background contribution and injected into signal

toy event samples, using the expected rate of each peaking background contribution. The

resulting peaking-background-enriched toy samples are then fitted using the nominal signal

model. No significant bias for any of the signal parameters was found, which is due to the

extremely small rate of the peaking backgrounds. Therefore, the systematic uncertainty

associated to ignoring the residual peaking backgrounds is considered to be negligible.
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7.2.7 Summary of the systematic uncertainties

A summary of the systematic uncertainties of the most important signal parameters, i.e.

the magnitudes of the Wilson Coefficients C9 and C10, and the magnitudes and phases of

the J/ψ and ψ(2S) P-Wave amplitudes, is given in table 7.10. The largest systematic

uncertainty of each parameter is printed in bold. The background extrapolation is the

dominant systematic uncertainty for most of the parameters shown in the table, except for

the magnitude of C9 and the magnitudes of the ψ(2S) amplitudes for which the systematic

uncertainties related to the S-Wave FFs are dominant. As discussed in sections 7.2.1

and 7.2.3, both the systematic uncertainties from the background extrapolation and the

systematic uncertainties related to the S-Wave FFs are conservative estimates, and should

be revisited for the planned fit of the merged Run 1 and Run 2 data.

bkg fit bkg extrapolation exotics S-wave FF ang. resolution

|C9 | 2.36× 10−2 5.01× 10−2 4.88× 10−2 1.15× 10−1 8.84× 10−3

|C10 | 3.22× 10−2 1.31× 10−1 5.21× 10−2 2.12× 10−2 1.59× 10−2

θ
J/ψ
‖ 1.15× 10−5 3.2× 10−3 2.86× 10−4

θ
J/ψ
⊥ 5.22× 10−5 4.2× 10−5

θ
J/ψ
0 5.92× 10−3 9.35× 10−2 1.27× 10−2 8.92× 10−4

θ
ψ(2S)
‖ 3.95× 10−4 1.08× 10−3

θ
ψ(2S)
⊥ 7.17× 10−4 1.43× 10−3

θ
ψ(2S)
0 6.9× 10−3 1.26× 10−1 5.84× 10−3

|AJ/ψ‖ | 1.94× 10−7 6× 10−6 1.45× 10−6

|AJ/ψ⊥ | 4.12× 10−8 2× 10−6 1.36× 10−6

|Aψ(2S)‖ | 4.09× 10−6 8× 10−6 2.02× 10−5 1.39× 10−6

|Aψ(2S)⊥ | 4.77× 10−6 7× 10−6 2.41× 10−5 3.69× 10−6

|Aψ(2S)0 | 7.19× 10−6 2× 10−6 3.01× 10−5 3.31× 10−6

Table 7.10: Summary of the systematic uncertainties of the magnitudes of the Wilson Coefficients C9
and C10, and the magnitudes and phases of the J/ψ and ψ(2S) P-Wave amplitudes. Only systematic

uncertainties which are at least 5% of the respective statistical uncertainty from the fit to Run 1 data are

included in the table. The largest systematic uncertainty of each parameter is printed in bold.
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7.3 Results of the fit to Run 1 data

The fit procedure used for the fit to the Run 1 data is described in section 6.9.

The best fit values for the signal fractions are:

f lowq2

sig = 0.8898± 0.0006

fmidq2

sig = 0.98292± 0.00005

fhighq2

sig = 0.9722± 0.0002,

(7.1)

where the uncertainties are estimated statistical uncertainties based on toy simulations,

since the signal fractions are not direct fit parameters in the fit (see section 6.8).

The cos θK and cos θℓ distributions in the three q2 regions (low-, mid-, and high-q2)

in the signal region ((5239.58 ≤ mrec
B0 ≤ 5319.58) MeV/c2) are shown in figure 7.8. Also

shown are the projections of the total fit PDF (blue line) and the projections of the signal

component (dashed red line) and the background component (dotted and dashed black

line). The pull distributions are shown on the bottom of each plot, where the pull is

defined as the difference between each data point and the value of the projection of the

total PDF at the centre of the respective bin, divided by the uncertainty of the data. The

total PDF agrees well with the data, except for cos θK < −0.5. This discrepancy is due to

the presence of exotic charmonium-like states, such as the Z(4430), in the data, which are

ignored in the model. The corresponding systematic uncertainty is discussed in section

7.2.2.

Figure 7.9 shows the φ and q2 distributions in the three q2 regions in the signal region

along with the PDF projections. The total PDF describes the data well including the

q2 regions of the higher ψ resonances visible as broad peaks above the ψ(2S) peak. Also

the ρ0 and φ(1020) resonances are visible in the low-q2 region and are well described by

the PDF. The large pulls at the J/ψ and ψ(2S) peaks are due to the coarse binning of

the data in the plot and the rapidly changing shape of the distribution. The model does

describe these peaks well, as demonstrated with the fit to the narrow J/ψ region shown

with much finer binning in figure 5.6.
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Figure 7.8: cos θK and cos θℓ and distributions in the three q2 regions in the signal region

((5239.58 ≤ mrec
B0 ≤ 5319.58) MeV/c2) in Run 1 data. Also shown are the projections of the total

fit PDF (blue line) and the projections of the signal component (dashed red line) and the background

component (dotted and dashed black line). The pull is defined as the difference between the data and the

value of the projection of the total PDF at the centre of the respective bin divided by the uncertainty of

the data.
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Figure 7.9: φ and q2 and distributions in the three q2 regions in the signal region

((5239.58 ≤ mrec
B0 ≤ 5319.58) MeV/c2) in Run 1 data. Also shown are the projections of the total

fit PDF (blue line) and the projections of the signal component (dashed red line) and the background

component (dotted and dashed black line). The pull is defined as the difference between the data and the

value of the projection of the total PDF at the centre of the respective bin divided by the uncertainty of

the data. The large pulls observed at the J/ψ and ψ(2S) peak are due to the coarse binning of the data

and the steep slopes of the peaks. The PDF does describe the data well as demonstrated in the fit to the

narrow J/ψ region shown in figure 5.6.
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results ±σfit ± σsyst σsyst/σfit precision

|C9 | 3.64 ± 0.25 ± 0.14 0.55 0.078

|C10 | 4.42 ± 0.20 ± 0.15 0.73 0.057

θ
J/ψ
‖ 0.207 ± 0.012 ± 0.0032 0.26 0.062

θ
J/ψ
⊥ -0.2411 ± 0.0095 ± 0.000067 0.01 0.039

θ
J/ψ
0 -1.63 ± 0.10 ± 0.095 0.94 0.085

θ
ψ(2S)
‖ -0.674 ± 0.048 ± 0.0011 0.02 0.071

θ
ψ(2S)
⊥ -2.6431 ± 0.045 ± 0.0016 0.04 0.017

θ
ψ(2S)
0 -1.72 ± 0.32 ± 0.13 0.40 0.198

|AJ/ψ‖ | 0.004344 ± 0.000023 ± 0.0000062 0.27 0.005

|AJ/ψ⊥ | 0.004178 ± 0.000024 ± 0.0000024 0.10 0.006

|Aψ(2S)‖ | 0.001073 ± 0.000045 ± 0.000022 0.50 0.046

|Aψ(2S)⊥ | 0.001065 ± 0.000046 ± 0.000026 0.56 0.050

|Aψ(2S)0 | 0.001596 ± 0.000060 ± 0.000031 0.52 0.042

Table 7.11: Fit results of the magnitudes of the Wilson Coefficients C9 and C10 and the magnitudes and

phases of the J/ψ and ψ(2S) P-Wave amplitudes from the fit to Run 1 data. The uncertainties are the

fit uncertainties (including statistical uncertainties and theoretical uncertainties from the P-Wave FF

constraint) and systematic uncertainties. The ratio of the systematic uncertainties and the fit uncertainties

are given in the centre column. The precision, defined as the total uncertainty (fit uncertainties and

systematic uncertainties added in quadrature) divided by the best fit value, is given in the right column.

The results for the full set of floating signal parameters are given in table A.1.

The results from the fit to Run 1 data are given in table 7.11 including the fit

uncertainties – consisting of the statistical uncertainties and the theoretical uncertainties

of the P-Wave FF constraint (see section 2.5) – and the combined systematic uncertainties.

The results are given for the magnitudes of the Wilson coefficients C9 and C10, and the

magnitudes and phases of the J/ψ and ψ(2S) P-Wave amplitudes. The results for the full

set of signal parameters are given in appendix A.2.

The precision on the phase of the J/ψ (ψ(2S)) amplitudes relative to the penguin

amplitudes i.e. θ
J/ψ
0 (θ

ψ(2S)
0 ) is on the level of 8.5% (19.8%) which is precise enough to

determine the level of the non-local contributions as shown in section 7.3.2.

The result for C9 can be compared to the value of C9 obtained from the measurement

of the q2-binned angular observables using the same Run 1 dataset [10]. In the paper the

authors present a χ2 fit to the angular observables using the EOS software package [109], to
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determine a best fit value for the real part of C9. They report the best fit value for Re(C9)
to be shifted by ∆Re(C9) = −1.04± 0.25 from the SM central value of Re(C9) = 4.27 [110],

corresponding to a 3.4 standard deviation discrepancy to the SM based on the difference

in χ2 of the best fit point to the SM point. However, a more recent fit of the q2-binned

angular observables from Run 1 using the FLAVIO package [111] with up to date SM

nuisance parameters gives a tension of 3.0σ [1]. Therefore, the uncertainty of ∆Re(C9)
reported in Ref. [10] is likely underestimated.

The best fit value obtained in the fit presented in this thesis, corresponds to ∆Re(C9) =
−0.63 ± 0.29, where the uncertainty is the combined fit uncertainty and systematic

uncertainty. This value is closer to the SM model than the one obtained from the binned

angular observables, but still only agrees with the SM at 2.2 standard deviations. Based

on the SM value of Re(C10) = −4.17 [110], the best fit value for C10 obtained in the fit

presented in this thesis corresponds to ∆Re(C10) = −0.25± 0.25, which is compatible with

the SM at one standard deviation.

Figure 7.10 shows the best fit point from this thesis (blue cross) in the CNP
9 - CNP

10 plane

as well as the 1σ, 2σ and 3σ contours (blue areas) determined using the covariance matrix

from the fit and the systematic uncertainties. The SM values (CNP
9 = CNP

10 = 0) are indicated

with dashed lines. The blue contours visualise the discrepancy of the measurement from

this thesis with the SM at 2.2σ for C9 and 1σ for C10. Also, the hypothesis of CNP
9 = −CNP

10 ,

which is commonly considered in global fits to b→ sℓ+ℓ− measurements [16, 112], is likely

rejected by the fit presented in this thesis, since the results are only compatible with this

hypothesis at ∼ 2.5σ to 3σ.

In order to compare the result from this thesis to previousB0→ K∗0µ+µ− measurements

made with LHCb Run 1 data, the FLAVIO package is used to determine the allowed

region in the CNP
9 − CNP

10 plane based on the q2-binned angular observables of B0 →
K∗0µ+µ− decays [10] and the measurement of the B0→ K∗0µ+µ− branching fraction [40].

The branching fraction measurement is included to allow better comparability with the

measurement in this thesis. The signal model used in this thesis is sensitive to the

relative magnitudes of the penguin amplitudes and resonant amplitudes and therefore

uses branching fraction information from data. The 1σ band obtained from the Run 1

q2-binned angular observables and branching fraction measurement is shown with the

orange area in figure 7.10.

The measurement from this thesis achieves a better precision for both C9 and C10. This is
because the analysis presented in this thesis uses more events than the previous analyses,
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Run 1

Figure 7.10: Allowed region in the CNP
9 - CNP

10 plane obtained using the best fit values, the covariance

matrix, systematic uncertainties in the fit to Run 1 data presented in this thesis (blue areas). Shown

are the 1σ, 2σ and 3σ regions. The best fit values for (CNP
9 , CNP

10 ) are indicated with a blue cross. Also

shown is the 1σ region (orange area) obtained with the FLAVIO package [111] using the q2-binned angular

observables of B0 → K∗0µ+µ− decays from Run 1 [10] and the measurement of the B0 → K∗0µ+µ−

branching fraction [40] as input.

by fitting the full q2 range and not omitting the resonant regions. Also, the analysis

presented in this thesis is the first analysis that uses the full information encapsulated in

the correlation of the events across q2 by not binning the data. Furthermore, the non-local

contributions are determined from data such that no theoretical uncertainty associated to

these previously unknown contributions need to taken into account.

The latter point could also explain the fact that the central value of (CNP
9 , CNP

10 ) obtained

in this thesis is shifted with respect to the previous analyses. The SM calculations, which

are used in b→ sℓ+ℓ− global fit packages such as EOS and FLAVIO, take the unknown

non-local contributions into account only by allowing for a systematic variation of the

angular observables, not by shifting the central values of the angular observables. Therefore,

when fitting the q2-binned angular observables with FLAVIO, the resulting central values

of the Wilson coefficients do not take potential non-local effects into account. In contrast
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to that, the fit presented in this thesis explicitly determines the relative contributions of

the penguin amplitudes and the resonant amplitudes from data such that the resulting

Wilson Coefficients are unaffected by the non-local contributions.7

7.3.1 Comparing angular observables to q2-binned measurement

The model described in this thesis can be used to calculate the CP -averaged angular

observables Si (see equation 2.31 and equation 2.28 in section 2.7) as a function of q2. This

allows the comparison of the results from this thesis to the published q2-binned angular

observables measured in Run 1 data [10].

Figure 7.11 shows the full set of CP -averaged angular observables AFB, FL, S3, S4, S5, S7,

S8, and S9 as a function of q2 calculated with the model used in this thesis, after fitting

the model to Run 1 data. The blue shaded area depicts the 68% confidence level of the

model, determined by varying the parameters according to the covariance matrix obtained

in the fit. Also shown with the black data points are the measured values of the q2-binned

angular observables from Ref. [10]. Note, that this is not a fit of the unbinned model to

the binned observables, but rather it is a comparison of the results of two independent fits

to the same data – with the exception that the events in the resonant regions, containing

contain the φ(1020), J/ψ and ψ(2S) resonances, are omitted in the q2-binned fit, but are

included in the fit presented in this thesis.

The angular observables calculated with the fitted model from this thesis, are in good

general agreement with the directly measured binned angular observables. This is further

confirmation that the model used in this thesis is a good description of the data. The

fit from this thesis determines the angular observables with better precision than the

q2-binned measurement, as expected from the comparison discussed in the previous section.

The discrepancies observed in the first q2 bin are due to the fact that the model used

for the q2-binned fit assumes massless leptons, which creates a redundancy between the

angular terms Js1 and J c1 and therefore allows less information to be extracted from the

angular fit [113].

The SM predictions given in Ref. [112] (using FF input from Ref. [35]) are also shown

in figure 7.11 with green boxes. Since the systematic uncertainties are not included in the

confidence intervals for the measurement from this thesis in figure 7.11, no quantitative

7However, as discussed in section 3.2 the fit in this thesis does come with the caveat of being model

dependent.
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conclusions should be drawn from these comparisons.8 Still, the comparison allows

qualitative conclusions based on the central values.

The largest discrepancies between the q2-binned measurement and SM predictions have

been found in the third and fourth bin in S5 [10]. Even though the value of S5 at the

center of the fourth bin, calculated with the model from this thesis using the best fit values

from the fit to Run 1 data, is slightly closer to the SM than the q2-binned measurement,

the discrepancies remain. In the second bin of S5 the discrepancy with the SM is increased

compared to the q2-binned measurement. Furthermore, the small discrepancies observed

for AFB remain. In terms of FL the trend of a discrepancy between measurement and SM

prediction is clearer with the measurement from this thesis as the extremely high value of

FL in the third bin, obtained in the q2-binned measurement, is likely not confirmed.

8However, quantitative conclusions can be drawn from the direct measurement of the Wilson Coefficients

C9 and C10 as described in the previous section.
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Figure 7.11: Comparison of the CP -averaged angular observables measured in bins of q2 (black points) [10]

to the angular observables calculated with the model described in this thesis using the best fit values from

the fit to Run 1 data (red line). The blue shaded area indicates the 68% confidence interval of the model

obtained by fluctuating the parameters according to the covariance matrix from the fit. Note that this

is a comparison of the results of two independent fits to the same data – with the exception that the

q2-binned fit does not use the events in the resonant regions. The green boxes show the SM predictions

given in Ref. [112] (using FF input from Ref. [35]).



7.3.2 Effect of the non-local contributions

To illustrate the effect of the non-local contributions on the angular observables, figure

7.12 shows S5(q
2) calculated with three variations of the model from in this thesis (with

the parameters obtained in the fit to Run 1 data), as well as the measured values of S5 in

bins of q2 from Ref. [10]. In the top left plot, only the penguin amplitudes are used to

calculate S5. The penguin amplitudes alone cannot describe the binned measurements

of S5, most notably in the range of (3 ≤ q2 ≤ 8) GeV2/c4. In the top right plot, the

penguin amplitudes as well as the resonant amplitudes are used to calculate S5 but any

non-local effect on C7 are ignored. The effect of the resonances and their interference

with the penguin amplitudes is clearly visible. The inclusion of the resonant amplitudes

in the model improves the agreement between the un-binned and binned measurement.

In the bottom plot in figure 7.12, the full model is used to calculate S5 giving the best

agreement with the binned measurement. This indicates that both the hadronic resonance

contributions to C9, as well as the non-local contributions to C7 are relevant in order to

describe B0→ K∗0µ+µ− decays, even in the range of (3 ≤ q2 ≤ 8) GeV2/c4, where the

penguin decays make up the largest contribution to the decay rate.

To demonstrate the effect of the non-local contributions on the decay rate of B0→
K∗0µ+µ− decays, figure 7.13 shows the differential decay rate of the P-Wave amplitudes

calculated from the model described in this thesis after fitting it to the Run 1 data. The

cyan band shows the decay rate obtained when including only the penguin amplitudes in the

model. The red band shows the decay rate obtained when including the penguin amplitudes

as well as resonance amplitudes in the model but omitting non-local contributions to

C7. The blue band shows the decay rate calculated with the full model, i.e. including

the penguin and resonance amplitudes as well as the non-local contributions to C7.

The resonances cause destructive interference in the regions (1 ≤ q2 ≤ 8) GeV2/c4 and

(11 ≤ q2 ≤ 13) GeV2/c4 while they cause constructive interference in the high q2 region at

(16 ≤ q2 ≤ 19) GeV2/c4. The non-local contributions to C7 cause a decrease of the decay

rate at the photon pole at q2 ≤ 1 GeV2/c4 but a slight overall increase at q2 ≥ 1 GeV2/c4.
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penguin only penguin and resonances

penguin, resonances, and ∆C7

Figure 7.12: Study of the effect of the non-local contributions on the angular observable S5(q
2). Shown

are the measured values of S5 in bins of q2 (black points) from Ref. [10] as well as the calculation of

S5 as a function of q2 made with the model described in this thesis using the best fit values from the

fit to Run 1 data (red lines). In the top left plot, the calculations are made including only the penguin

amplitudes. In the top right plot, the calculations are made including the penguin amplitudes as well as all

resonance amplitudes but omitting any non local contribution to C7. In the bottom plot the calculations

are made using the full model i.e. including the penguin and resonance amplitudes as well as the non-local

contributions to C7.
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Figure 7.13: Differential decay rate of P-Wave B0→ K∗0µ+µ− decays as a function of q2, calculated with

the model described in this thesis after fitting it to the Run 1 data. The bands are obtained by varying

all parameters within the covariance matrix from the fit. The cyan band shows the decay rate obtained

when including only the penguin amplitudes in the model. The red band shows the decay rate obtained

when including the penguin amplitudes as well as resonance amplitudes in the model. The blue band

shows the decay rate calculated with the full model, i.e. including the penguin and resonance amplitudes

as well as the non-local contributions to C7.
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8. Conclusions

This thesis presents a novel four dimensional fit to the angular and q2 distributions of

B0 → K∗0µ+µ− decays, including the resonant modes such as B0 → J/ψK∗0, in Run 1

data recorded by the LHCb detector. The empirical model used for the fit is based on the

decay amplitudes. This allows for the determination of the Wilson Coefficients C9 and C10
as well as the relative magnitudes and phases of the resonant amplitudes relative to the

penguin amplitudes directly from data.

The best fit value for the magnitude of the Wilson coefficient C9 is |C9| = 3.64± 0.25± 0.14,

where the first uncertainty includes the statistical uncertainty and the theoretical uncer-

tainties (P-Wave form factors) and the second uncertainty is the systematic uncertainty.

The result corresponds to a shift of ∆Re(C9) = −0.63 ± 0.29 (where the uncertainty is

the combined statistical, theoretical, and systematic uncertainty) with respect to the SM

central value of Re(C9) = 4.27. Therefore, the measurement agrees with the SM only at

2.2 standard deviations. This indicates that there remains a discrepancy between the

measured and predicted angular distributions of B0→ K∗0µ+µ− decays even when taking

the non-local contributions into account.

The empirical model is capable of determining the Wilson Coefficients C9 and C10 with

better higher precision than previous analyses of B0 → K∗0µ+µ−, since it uses the full

information contained in the q2 dependence and correlations of the angular observables.

The precision on the phases of the J/ψ and ψ(2S) amplitudes relative to the penguin am-

plitudes are on the level of 8.5% and 20%, which is precise enough to ascertain the level of

the non-local contributions. In terms of the P-Wave decay rate, the resonances lead to mild

destructive interference in the regions (1 ≤ q2 ≤ 8) GeV2/c4 and (10 ≤ q2 ≤ 13) GeV2/c4

and cause constructive interference in the high q2 region at (16 ≤ q2 ≤ 19) GeV2/c4.

Comparing the angular observables, calculated with the model from this thesis, to the q2

binned measurement of the angular observables [10] reveals that the penguin amplitudes

alone cannot describe the angular observables. Both the hadronic contribution to C9 as well
as the non-local contributions to C7 are necessary to reproduce the q2 binned measurement.

The merged Run 1 and Run 2 dataset contains approximately 3 times more events

than Run 1 only. Assuming that the statistical uncertainties scale with ∼ 1/
√
3, while the

systematic uncertainties and the central values remain the same, the expected precision

for C9 is ∼ 5% and the precision for C10 is ∼ 4% for the fit to the merged Run 1 and Run 2

data.
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[16] M. Algueró et al., Emerging patterns of New Physics with and without Lepton

Flavour Universal contributions, Eur. Phys. J. C 79 (2019) 714, arXiv:1903.09578,

[Addendum: Eur.Phys.J.C 80, 511 (2020)].

[17] B. Gripaios, M. Nardecchia, and S. A. Renner, Composite leptoquarks and anomalies

in B-meson decays, JHEP 05 (2015) 006, arXiv:1412.1791.

[18] M. Thomson, Modern particle physics, Cambridge University Press, New York, 2013.

[19] M. D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge Univer-

sity Press, 2014.

[20] G. Cowan and T. Gershon, Tetraquarks and Pentaquarks, 2399-2891, IOP Publishing,

2018.

[21] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett.

13 (1964) 508.

[22] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons,

Phys. Rev. Lett. 13 (1964) 321.

[23] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Global conservation laws and

massless particles, Phys. Rev. Lett. 13 (1964) 585.

[24] T. W. B. Kibble, Symmetry breaking in non-abelian gauge theories, Phys. Rev. 155

(1967) 1554.

[25] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531.

[26] M. Kobayashi and T. Maskawa, CP -Violation in the renormalizable theory of weak

interaction, Prog. Theor. Phys. 49 (1973) 652.

186

https://doi.org/10.1007/JHEP08(2017)055
https://doi.org/10.1007/JHEP08(2017)055
http://arxiv.org/abs/1705.05802
https://doi.org/10.1103/PhysRevLett.113.151601
https://doi.org/10.1103/PhysRevLett.113.151601
http://arxiv.org/abs/1406.6482
https://doi.org/10.1103/PhysRevLett.122.191801
http://arxiv.org/abs/1903.09252
https://doi.org/10.1140/epjc/s10052-019-7216-3
http://arxiv.org/abs/1903.09578
https://doi.org/10.1007/JHEP05(2015)006
http://arxiv.org/abs/1412.1791
https://doi.org/10.1088/978-0-7503-1593-7
https://doi.org/10.1088/978-0-7503-1593-7
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRev.155.1554
https://doi.org/10.1103/PhysRev.155.1554
https://doi.org/10.1103/PhysRevLett.10.531
https://doi.org/10.1143/PTP.49.652


[27] L. Wolfenstein, Parametrization of the kobayashi-maskawa matrix, Phys. Rev. Lett.

51 (1983) 1945.

[28] Planck, P. A. R. Ade et al., Planck 2013 results. XXII. Constraints on inflation,

Astron. Astrophys. 571 (2014) A22, arXiv:1303.5082.

[29] Feynman Diagram Library, https://www.physik.uzh.ch/~che/FeynDiag/index.

php. Accessed: 2020-07-08.

[30] Particle Data Group, M. Tanabashi et al., Review of particle physics, Phys. Rev.

D98 (2018) 030001.

[31] K. G. Wilson, Non-lagrangian models of current algebra, Phys. Rev. 179 (1969)

1499.

[32] W. Altmannshofer et al., Symmetries and Asymmetries of B → K∗µ+µ− Decays in

the Standard Model and Beyond, JHEP 01 (2009) 019, arXiv:0811.1214.

[33] C. Bobeth, M. Misiak, and J. Urban, Photonic penguins at two loops and mt depen-

dence of BR[B → Xsl
+l−], Nucl. Phys. B 574 (2000) 291, arXiv:hep-ph/9910220.

[34] M. Beneke, T. Feldmann, and D. Seidel, Exclusive radiative and electroweak

b → d and b → s penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173,

arXiv:hep-ph/0412400.

[35] A. Bharucha, D. M. Straub, and R. Zwicky, B → V ℓ+ℓ− in the Standard Model from

light-cone sum rules, JHEP 08 (2016) 098, arXiv:1503.05534.

[36] S. Descotes-Genon, A. Khodjamirian, and J. Virto, Light-cone sum rules for

B → Kπ form factors and applications to rare decays, JHEP 12 (2019) 083,

arXiv:1908.02267.

[37] J. Gratrex, M. Hopfer, and R. Zwicky, Generalised helicity formalism, higher moments

and the B → KJK (→ Kπ)ℓ̄1ℓ2 angular distributions, Phys. Rev. D93 (2016) 054008,

arXiv:1506.03970.

[38] J. Matias, F. Mescia, M. Ramon, and J. Virto, Complete Anatomy of B̄d− > K̄∗0(− >

Kπ)l+l− and its angular distribution, JHEP 04 (2012) 104, arXiv:1202.4266.

187

https://doi.org/10.1103/PhysRevLett.51.1945
https://doi.org/10.1103/PhysRevLett.51.1945
https://doi.org/10.1051/0004-6361/201321569
http://arxiv.org/abs/1303.5082
https://www.physik.uzh.ch/~che/FeynDiag/index.php
https://www.physik.uzh.ch/~che/FeynDiag/index.php
http://pdg.lbl.gov/
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRev.179.1499
https://doi.org/10.1103/PhysRev.179.1499
https://doi.org/10.1088/1126-6708/2009/01/019
http://arxiv.org/abs/0811.1214
https://doi.org/10.1016/S0550-3213(00)00007-9
http://arxiv.org/abs/hep-ph/9910220
https://doi.org/10.1140/epjc/s2005-02181-5
http://arxiv.org/abs/hep-ph/0412400
https://doi.org/10.1007/JHEP08(2016)098
http://arxiv.org/abs/1503.05534
https://doi.org/10.1007/JHEP12(2019)083
http://arxiv.org/abs/1908.02267
https://doi.org/10.1103/PhysRevD.93.054008
http://arxiv.org/abs/1506.03970
https://doi.org/10.1007/JHEP04(2012)104
http://arxiv.org/abs/1202.4266


[39] S. Descotes-Genon, J. Matias, M. Ramon, and J. Virto, Implications from clean

observables for the binned analysis of B− > K ∗ µ+µ− at large recoil, JHEP 01

(2013) 048, arXiv:1207.2753.

[40] LHCb, R. Aaij et al., Measurements of the S-wave fraction in B0 → K+π−µ+µ−

decays and the B0 → K∗(892)0µ+µ− differential branching fraction, JHEP 11 (2016)

047, arXiv:1606.04731, [Erratum: JHEP 04, 142 (2017)].

[41] D. Becirevic and A. Tayduganov, Impact of B → K∗
0ℓ

+ℓ− on the New Physics search

in B → K∗ℓ+ℓ− decay, Nucl. Phys. B 868 (2013) 368, arXiv:1207.4004.

[42] R.-H. Li, C.-D. Lu, W. Wang, and X.-X. Wang, B → S Transition Form Factors in

the PQCD approach, Phys. Rev. D 79 (2009) 014013, arXiv:0811.2648.
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A. Appendix

A.1 2D projections of the phase space affected by the

B+
→ K+µ+µ− veto
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Figure A.1: (mrec
B0 , cos θK)-projections of the K+µ+µ− veto affected phase space in several bins in q2.
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Figure A.2: (mrec
B0 , cos θK)-projections of the K+µ+µ− veto affected phase space in several bins in q2.
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Figure A.3: (mrec
B0 , cos θK)-projections of the K+µ+µ− veto affected phase space in several bins in q2.
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Figure A.4: (mrec
B0 , q2)-projections of the K+µ+µ− veto affected phase space in several bins in cos θK .
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Figure A.5: (mrec
B0 , q2)-projections of the K+µ+µ− veto affected phase space in several bins in cos θK .
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Figure A.6: (mrec
B0 , q2)-projections of the K+µ+µ− veto affected phase space in several bins in cos θK .
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A.2 Full fit results of the fit to Run 1 data
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results ±σfit
|AJ/ψ‖ | (4.344 ± 0.023)×10−3

θ
J/ψ
‖ 0.207 ± 0.012

|AJ/ψ⊥ | (4.178 ± 0.024)×10−3

θ
J/ψ
⊥ -6.5243 ± 0.0095

θ
J/ψ
0 -1.63 ± 0.10

|Aψ(2S)‖ | (1.073 ± 0.045)×10−3

θ
ψ(2S)
‖ -0.674 ± 0.048

|Aψ(2S)⊥ | (1.065 ± 0.046)×10−3

θ
ψ(2S)
⊥ 3.640 ± 0.045

|Aψ(2S)0 | (1.596 ± 0.060)×10−3

θ
ψ(2S)
0 -1.72 ± 0.32

|Aρ(770)0 )| (8.04 ± 3.29)×10−5

θ
ρ(770)
0 (-16.953 ± 41.249)×10−6

Im(A
φ(1020)
0 ) (6.82 ± 1.60)×10−5

Re(A
ψ(3770)
‖ ) (2.12 ± 2.57)×10−5

Im(A
ψ(3770)
‖ ) (-13.777 ± 24.890)×10−6

Re(A
ψ(3770)
⊥ ) (-68.5287 ± 217.2680)×10−7

Im(A
ψ(3770)
⊥ ) (-17.578 ± 21.653)×10−6

Re(A
ψ(3770)
0 ) (-81.584 ± 34.212)×10−6

Im(A
ψ(3770)
0 ) (6.032 ± 4.048)×10−5

Re(A
ψ(4040)
‖ ) (-34.833 ± 33.120)×10−6

Im(A
ψ(4040)
‖ ) (3.127 ± 41.185)×10−6

Re(A
ψ(4040)
⊥ ) (-17.250 ± 26.129)×10−6

Im(A
ψ(4040)
⊥ ) (-32.273 ± 25.469)×10−6

Re(A
ψ(4040)
0 ) (-70.6644 ± 32.0690)×10−6

Im(A
ψ(4040)
0 ) (8.66 ± 4.14)×10−5

Re(A
ψ(4160)
‖ ) (-17.200 ± 39.992)×10−6

Im(A
ψ(4160)
‖ ) (7.594 ± 43.102)×10−6

Re(A
ψ(4160)
⊥ ) (3.23 ± 3.20)×10−5

result ±σfit
Im(A

ψ(4160)
⊥ ) (6.982 ± 27.141)×10−6

Re(A
ψ(4160)
0 ) (2.186 ± 4.037)×10−5

Im(A
ψ(4160)
0 ) (1.56 ± 3.93)×10−5

αA10 0.2963 ± 0.0099

αA11 0.396 ± 0.057

αA12 1.30 ± 0.50

αA120 0.2682 ± 0.0098

αA121 0.536 ± 0.068

αA122 0.47 ± 0.39

αV0 0.375 ± 0.013

αV1 -1.166 ± 0.074

αV2 2.5 ± 1.3

|AJ/ψ00 | (2.990 ± 0.051)×10−3

θ
J/ψ
00 -4.80 ± 0.10

|Aψ(2S)00 | (1.060 ± 0.052)×10−3

θ
ψ(2S)
00 -2.58 ± 0.32

|C9 | 3.64 ± 0.25

|C10 | 4.42 ± 0.20

CSV 1/(C9 − C10) 0.8 ± 2.3

CSV 1/(C9 + C10) 4.7 ± 2.3

CST /C7 -1.7 ± 1.2

Re(∆CAP
7 ) -0.009 ± 0.038

Im(∆CAP
7 ) -0.041 ± 0.020

Re(∆CAP
7 ) -0.026 ± 0.039

Im(∆CAP
7 ) -0.024 ± 0.023

Re(∆CAP
7 ) -0.102 ± 0.087

Im(∆CAP
7 ) -0.017 ± 0.024

α2
resolution 1.1656 ± 0.0076

α3
resolution 1.380 ± 0.071

Table A.1: Fit results of all floating signal parameters from the fit to Run 1 data. The uncertainties are

the fit uncertainties, which include statistical uncertainties and theoretical uncertainties from the P-Wave

FF constraint and the ∆C7 constraint.
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A.3 Projections of the upper mass side-band fit in

merged Run 1 and Run 2 data
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Figure A.7: cos θK distributions in each mass side-band region in the low-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.8: cos θK distributions in each mass side-band region in the mid-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.9: cos θK distributions in each mass side-band region in the high-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.10: cos θℓ distributions in each mass side-band region in the low-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.11: cos θℓ distributions in each mass side-band region in the mid-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.12: cos θℓ distributions in each mass side-band region in the high-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.13: φ distribution in each mass side-band region in the low-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.14: φ distribution in each mass side-band region in the mid-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.15: φ distribution in each mass side-band region in the high-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.16: q2 distribution in each mass side-band region in the low-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.17: q2 distribution in each mass side-band region in the mid-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.18: q2 distribution in each mass side-band region in the high-q2 region. Also shown are the

projections of the simultaneous side-band fit described in chapter 6
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Figure A.19: mrec
B0 distribution in each q2 region. Also shown are the projections of the simultaneous

side-band fit described in chapter 6
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A.4 Projections of the simultaneous mrec
B0 fit in Run 1

data
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Figure A.20: mrec
B0 distribution in the five q2 regions of the simulatenous mrec

B0 fit in Run 1 data. Also

shown are the projections of the simultaneous mrec
B0-only fit to those regions. The signal parameters are

shared across all q2 regions and the width parameters (σ and σ2) are multiplied with a factor of 1.0385

in the high-q2 regions to account for the q2 dependence of the mrec
B0 resolution. The slope of the fully

combinatorial background is shared across low-, mid- and high-q2, whereas the slopes in the resonant

regions are independent.
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A.5 Projections of the upper mass side-band fit in

Run 1 data
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Figure A.21: cos θK distribution in each mass side-band region in the low-q2 region in Run 1 data. Also

shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)

as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.22: cos θK distribution in each mass side-band region in the mid-q2 region in Run 1 data. Also

shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)

as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.23: cos θK distribution in each mass side-band region in the high-q2 region in Run 1 data. Also

shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)

as well as the PDFs’ 68% confidence interval (blue shaded area), obtained by varying the parameters

using the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region

fit (red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that

the background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.24: cos θℓ distribution in each mass side-band region in the low-q2 region in Run 1 data. Also

shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)

as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.25: cos θℓ distribution in each mass side-band region in the mid-q2 region in Run 1 data. Also

shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)

as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.26: cos θℓ distribution in each mass side-band region in the high-q2 region in Run 1 data. Also

shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)

as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.27: φ distribution in each mass side-band region in the low-q2 region in Run 1 data. Also shown

are the projections of the background PDF after the simultaneous side-band fit (blue dashed line) as

well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.28: φ distribution in each mass side-band region in the mid-q2 region in Run 1 data. Also shown

are the projections of the background PDF after the simultaneous side-band fit (blue dashed line) as

well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.29: φ distribution in each mass side-band region in the high-q2 region in Run 1 data. Also shown

are the projections of the background PDF after the simultaneous side-band fit (blue dashed line) as

well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.

227



data

PDF after sideband fit

uncertainty of PDF after sideband fit

PDF after signal region fit

uncertainty of PDF after signal region fit

1 2 3
]4c/2 [GeV2q

2

4

6E
v
en

ts

Run1 data  region2qlow- SB1

1 2 3
]4c/2 [GeV2q

5

10

E
v
en

ts

Run1 data  region2qlow- SB2

1 2 3
]4c/2 [GeV2q

2

4

6

8E
v
en

ts

Run1 data  region2qlow- SB3

1 2 3
]4c/2 [GeV2q

2

4

6E
v
en

ts

Run1 data  region2qlow- SB4

1 2 3
]4c/2 [GeV2q

2

4

6

8E
v
en

ts

Run1 data  region2qlow- SB5

Figure A.30: q2 distribution in each mass side-band region in the low-q2 region in Run 1 data. Also shown

are the projections of the background PDF after the simultaneous side-band fit (blue dashed line) as

well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.31: q2 distribution in each mass side-band region in the mid-q2 region in Run 1 data. Also

shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)

as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.32: q2 distribution in each mass side-band region in the high-q2 region in Run 1 data. Also

shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)

as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.33: mrec
B0 distribution in each q2 region in Run 1 data. Also shown are the projections of

the background PDF after the simultaneous side-band fit (blue dashed line) as well as the PDFs’ 68%

confidence interval (blue shaded area) obtained by varying the parameters using the covariance matrix

obtained in the fit. Furthermore, the background PDF after the signal region fit (red dashed line) and the

respective 68% confidence interval (red shaded area) are shown. Note that the background events in the

signal region (not shown here) add additional constraints on the background parameters in the signal

region fit.
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