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Abstract

In this thesis, an angular analysis of BY — K*9u* = decays is presented. The angluar and
the invariant dimuon mass squared (¢?) distributions are parameterised in an unbinned
maximum likelihood fit.

The signal model is based on the decay amplitudes of B — K*9uT = decays, including
the penguin amplitudes and the amplitudes involving hadronic resonances, i.e. B — V(—
putp~)K* decays, where V are € vector resonances, such as the J/.

Fitting for the decay amplitudes directly allows for the determination of the vector and
pseudo-vector coupling constants Cy and Cyo from data. These can be compared to Standard
Model (SM) calculations in order to search for New Physics (NP) beyond the SM.

Since both the penguin amplitudes and the hadronic amplitudes are included in the
model, the interference between them can be determined directly from data. The level
of interference between the resonant amplitudes and the penguin amplitudes in B —
K*uTpu~ decays has never been measured before and cannot be predicted from first
principles in the SM. Due to that lack of knowledge, the SM predictions of B® — K*0p* =
decays are currently not fully trusted in the particle physics community. This holds back
the interpretation of the discrepancies between the measured ¢?-binned angular observables
of B®— K*9u*pu~ decays [1] and the SM predictions, as clear indication of NP. The fit
presented in this thesis is intended to help to solve this issue.

The parameterisation of the background events is complex for this analysis due to a
kinematic constraint applied to all events, which causes a distortion of the background. A
novel background fitting procedure and new correction techniques are presented in this
thesis.

While the full dataset, which will be used for the planned publication, is not available
yet, a preliminary fit to the 2011 and 2012 data, corresponding to approximately 3fb~!
of integrated luminosity, is presented in this thesis to demonstrate the ability of the
model to describe the data. The fit results also provide a first indication, that the
discrepancy between experiment and SM still persists in the angular and ¢? distributions
of B® — K*9u" ;= decays, despite a sizeable contribution from the interference of the

hadronic amplitudes with the penguin amplitudes.
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1. Introduction

The Standard Model (SM) of particle physics is currently the most accurate theory
describing the fundamental constituents of matter and how they interact. Despite that,
the SM is not the ideal fundamental theory to describe our universe. For example, it does
not incorporate gravity, it does not describe Dark Matter 3], and it cannot explain the
observed matter-antimatter asymmetry in our universe |4]. This motivates searches for
New Physics (NP) in the form of new fundamental particles beyond the Standard Model.
Two types of searches for NP are typically conducted at particle accelerators. Direct
searches aim at producing NP in high energy particle collisions and detecting the NP by
measuring a peak in the invariant mass spectrum of the decay products. Direct searches
are limited by the centre of mass energy of the collisions. Indirect Searches on the other
hand, work by performing precision measurements of known decays and comparing them
to SM predictions, in order to find a discrepancy between experiment and theory. Any
discrepancy, also referred to as an anomaly, would point towards virtual NP contributions
to the decay. Indirect searches are therefore not limited by the beam energy of the particle
accelerator. However, they are dependent on the understanding of the SM predictions
which often rely on approximation techniques.

In recent years, several anomalies have been found in decays involving the rare b— s¢* ¢~
process. These include branching fraction measurements [5-8|, angular observables [1}6}9}-
12|, and ratios of branching fractions between b— s¢*¢~ decays with different flavours
of leptons |13-15]. The anomalies could be explained by introducing new vector or axial-
vector particles such as a Z' [16] or leptoquarks [17].

However, a large contribution to the overall discrepancy between b— s¢*¢~ measurements
and predictions comes from the angular observables of B® — K*Ou*pu~ decays. The
calculation of the angular observables involves an Effective Field Theory (EFT) which
largely relies on the assumption that the calculation of the quark level b— sf*¢~ process
factorises with calculation of the hadron level B® — K*V transition. This assumption
breaks down for decays involving hadronic resonances in the from of B*— V(— pu*p=)K*°
decays, where V are ¢g (mainly ¢¢) vector resonances such as the J/ib. The ¢g loop
occurring in these decays can exchange gluons with the spectator quarks of the B® — K*°
transition such that the factorisation assumption is not valid.

In previous angular analyses of B® — K*'u*pu~ decays, the m,, regions dominated by

the resonant decays (e.g. the region around my, ~ m,,, where my, is the reconstructed
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invariant mass of the muon pair and my, is the true mass of the J/i) meson) are
omitted to limit the effect of the resonant decay modes. However, due to the large
magnitudes of the tree level B®— V(— utp~)K*? decays relative to the penguin decay,
interference of the hadronic amplitudes with the penguin amplitudes can lead to so-called
non-local contributions far away from the pole masses of the resonances. These non-local
contributions alter the angular distributions and since the resonances are vector particles,
the non-local contributions can mimic the presence of a virtual NP vector particle.

The level of interference is unknown and cannot be predicted from first principles in the
SM calculations. Therefore, the SM calculations are currently not fully trusted, which
prohibits the interpretation of the observed anomalies of the angular distributions of
B®— K*%u* i~ decays as clear indication of the presence of NP.

The analysis presented in this thesis aims at fitting the angular and mfm (¢?) distribu-
tions of B®— K*°u*u~ decays including the resonant regions, using data collected with
the LHCb detector. The empirical model (presented in chapter [3)), which is used for this
fit, is based on the decay amplitudes, including the resonant amplitudes. This allows the
direct measurement of the Wilson Coefficients Cy and Cyy, which encapsulate the vector
and axial vector coupling strengths in b— s/~ processes, as well as the measurement of
the magnitudes and phases of the resonant amplitudes relative to the penguin amplitudes.
Therefore, the level of interference is determined directly from data.

Several experimental effects need to be taken into account for this analysis, including
the ¢* resolution of the detector (discussed in chapter [5)) which causes the reconstructed
peaks of some of the resonances to be much wider than their respective natural widths.
To improve the ¢? resolution, a kinematic fit is performed, varying the reconstructed four
momenta of the final state particles to best match the invariant mass of the final state

particles (m’) to the true mass of the B® meson. For the combinatorial background

events, the kinematic fit has the opposite effect, creating a m'5-dependent smearing of
the ¢? distribution. This complicates the background parameterisation which is presented
in chapter [6]

Another effect which necessitates a novel solution is caused by one of the vetos used in
the event selection, where background events of BT — K+ u™pu~ decays are removed by
cutting on the invariant mass of the K uu system. This creates a sculpting of the cos 0k, ¢,
and mg; distributions of the combinatorial background events in the upper mass side-band.
This is taken into account when determining the background parameterisation as discussed

in section
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The full dataset of Run 1 and Run 2 events, which is planned to be used for this
analysis, is not available yet. A first fit to the Run 1 data is presented in chapter [7] It
demonstrates that the empirical model used in this thesis can describe the data well.
Since the empirical model uses the information contained in the ¢? dependence of the
angular observables, a better experimental precision on the Wilson Coefficients Cy and
Co is achieved than in previous fits to BY— K*'u™u~ decays in Run 1. The fit gives a
first preliminary indication that the discrepancy between the measured value for Cy and
the SM prediction still persists, even when accounting for the interference between the

hadronic amplitudes and the penguin amplitudes.
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2. Theoretical overview of B? —

K*9ut 1~ decays

2.1 Introduction to the Standard Model of Particle
Physics

The aim of particle physics is to explain the fundamental constituents of matter in the
universe. The current best theory describing the fundamental particles as well as their
interactions is the Standard Model (SM)[} The SM is a quantum field theory and interprets
particles as quantum oscillations of fields. The Lagrangian, which describes the dynamics
of the fields and which can be used to calculate measurable quantities, can be split into

two parts
[»SM — [gauge 4 LHiggs. (21>

L£g21ge describes the electromagnetic (EM), weak and strong interaction and follows the
local gauge symmetry group SU(3) x SU(2) x U(1). Specifically the strong interaction
obeys the SU(3) group and the electromagnetic and weak force obey the SU(2) x U(1)
group. Each group has a specific number of generators (8 for SU(3) and 4 for SU(2) x U(1))
and each generator corresponds to a gauge boson. Gauge bosons, which all have spin 1,
are responsible for carrying the three fundamental forces: The electromagnetic force is
carried by the massless photon 7. The weak force is mediated by the massive Z, W+ and
W~ bosons. The strong force is carried by the eight massless gluons.

The particles that constitute matter are called fermions and have spin 1/2. There are
two types of fermions: quarks and leptons. For every fermion there is an anti-fermion
with opposite EM charge. Quarks come in six flavours which can be grouped into three
generations with rising masses: The first generation quarks are the up u, down d; the
second generation quarks are the charm ¢, strange s; the third generation quarks are
the top t and beauty b. Quarks combine to hadrons which can be baryons consisting of
three quarks or three antiquarks or mesons consisting of a quark and an anti-quark. More
recently exotic hadronic states consisting of four or five quarks or antiquarks, referred to

as Tetraquarks and Pentaquarks, have been observed [20]. There are three flavours of

1This section is written in reference to [18,[19]. Additional references are given in the text.
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leptons with a charged lepton (e, p, 7) and a neutrino (v., v, v,) for each flavour. Every
fermion can have either left or right handed chirality. In the massless limit, left handed
chirality means the spin is parallel to the momentum of the particle, and right handed
chirality means the spin is anti-parallel to the momentum.

The gauge bosons mediate the forces between particles depending on which particles
they couple to based on the particles charges: The photon interacts with all EM charged
particles, i.e. all quarks, the charged leptons, and the W™ and W~ bosons. The Z,
W+, and W~ bosons interact with all fermions. Gluons interact with particles carrying
color charge which are the quarks as well as the gluons themselves. The strengths of the
interactions are set by the coupling constants (« for the electromagnetic interaction, ayy
for the weak interaction, and «y for the strong interaction), which are the free parameters
of the gauge sector of the SM. Due to the self coupling of the gluons and the large value
of ay, processes which involve gluon exchanges cannot be calculated perturbatively to
arbitrary order and therefore accuracy. Several approximation techniques are used to make
predictions of hadron decays as explained in sections and [2.5]

The Higgs sector of the SM (£i82%) describes a scalar field which is responsible for
giving mass to the Z, W' and W~ bosons as well as the fermions through spontaneous
symmetry breaking [21-24]. A further consequence of the Higgs field is the existence of
the Higgs Boson.

Expressed in the flavour basis, the Lagrangian for weak neutral current interactions of

quarks can be written as
»CNC = igw[ﬂLquvuuLj] (22)

where Z,, is the neutral current, gy is the weak coupling strength and ur; denotes a left
handed quark with j being the flavour index. Similarly, the Lagrangian for weak charged
current interactions of quarks can be written as
19w _ =
Loo = =Wty dey + Wdpyy* ur,], (2.3)

V2

where W, denotes the charged current and uy; stands for a u type quark with generation
index j and dy; for a d type quark.
The Lagrangians can be rotated into the physical mass basis using two unitary matrices:

U{; acting on dr, and Uj; acting on uz. Applying this to equation gives
Lo = igw Ura(Ut)as (UL 52,7 urs] = igw[iradag) Zu uss. (2.4)
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Due to the unitary matrices cancelling in equation [2.4] the Lagrangian does not allow any
off diagonal transitions that would mix quark flavours. In other words, tree—leve]ﬂ flavour
changing neutral currents (FCNC) are forbidden in the SM. However, when applying the
same rotations to equation [2.3) we get

Loo = == W, Ua(Up)es (UL o7 dry + W, iy (UD)as (U7 ury].— (2.5)

V2

Thus, for charged weak currents the matrices do not cancel and the Lagrangian does
allow flavour changing transitions between generations o and . The strengths of these
transitions are free parameters in the SM an are summarised in the CKM matrix [25]26]

Vo3 which is commonly expressed in the Wolfenstein parameterisation [27]:

Vud vus Vub 1_>\2/2 )\ O
Vas = | Ve Ve Vo | =] - 1272 A | +00N), (2:6)
Vie Vis Vi 0 —AN 1

with A =~ 0.22 and A =~ 1.25. In the third order terms, the CKM matrix allows for CP
violation, which is the difference of a physical system after charge conjugation (changing
all particles for anti-particles and changing all anti-particles for particles) and parity
transformation (reversing the sign of all spacial coordinates). The CKM matrix is the

only source for CP violation in the SM.

As stated above, Lagrangians can be used to calculate observable quantities, such as
particles’ lifetimes or differential decay rates. To this end, the modulus squared of the

amplitude A of a decay is calculated with
AP = [(Flola, (2.7)

where [i) and |f) are the initial and initial states of the fields. For example |i) = |b) and
|s€*t¢~) for a b quark decaying into an s quark and a lepton pair, which is discussed in
section [2.3] The operator O is a function of the interaction Lagrangian which describes
the interaction through which the transition from |i) to |f) occurs. Generally, A cannot
be computed fully analytically in the SM and several approximation methods are used.

The Lagrangian used for calculating b— s¢*¢~ decays is discussed in section [2.4]

2i.e. to first order

27



2.2 Indirect searches for New Physics

Despite its successes, the SM is far from being the ideal fundamental theory to describe

our universe. The shortcomings of the SM include:

e [t does not incorporate gravity. A complete model of nature should be able to

describe all fundamental forces.
e The particles described by the SM make up only 4.9% of the universe [3,28].

e The amount of CP violation allowed by the CKM matrix is about ten orders of
magnitude too low in order to explain the matter-antimatter asymmetry observed in

our universe [4].

These facts motivate searching for new physics (NP) beyond the SM. There are two
different approaches for this: The first approach is a direct search which attempts to detect
a new fundamental particle by creating it in a high energy collision and reconstructing it
via its decay products. The advantage of this approach is that discovering NP is free of
theoretical uncertainties. The disadvantage is that the search is limited by the collision
energy. The second approach for finding NP is the indirect search. It works by performing
precision measurements of known processes that can be predicted by the SM and looking
for a discrepancy between experiment and theory. NP can modify the processes virtually,
i.e. without the NP particle being produced on-shell. Thus, indirect searches can be
sensitive to NP scales far greater than the collision energy. The disadvantage of indirect
searches is that they require a good understanding of the SM prediction in order to
correctly interpret any difference between experiment and theory as a discovery of NP.

The measurable observable used for an indirect search can be expressed as a sum of
the amplitude describing the SM interaction Agy and the amplitude describing the NP
interaction Anp

Q ~ |Asn + Anpl*. (2.8)

Since the sensitivity of Q) to Axp is larger when Ag), is small, decays which are heavily

suppressed in the SM are ideal for searching for NP.
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Figure 2.1: Feynman diagrams describing the B® — K*%u* ™~ decay in the lowest order in the SM. The
penguin loop diagram (left) involves a W boson and either a v or Z boson. The box diagram involves two
W bosons. Figures from Ref. [29].

2.3 Flavour changing neutral currents of B mesons

As discussed in section 2.1 in the SM, FCNC transitions are forbidden at tree-level.
However, FCNC can still occur in the SM via loop-level processes. One example for this
is the B— K*Ou*;~ decay which involves a b— 5¢¢~ transitio. The corresponding
Feynman diagrams for the electroweak penguin process and the box process are shown in
figure Due to the additional weak couplings in the loop, the B® — K*°u* = decay
is heavily suppressed and has a measured branching fraction of (1.06 & 0.10) x 107¢ [30].
This makes the BY — K*Ou*u~ decay an excellent candidate for indirect searches for NP,
because NP interactions which allow b— s¢T¢~ transitions can have a sizeable impact on
the differential decay rate. Furthermore, the BY — K*Ou*u~ decay, which has leptons in
the final state is preferred over rare B decays with fully hadronic final states, because
the latter are much harder to predict since the assumption of the factorisation of the
quark level transition and the hadronic transition (see section does not hold to the
same degree. Experimentally, muons are preferred in the final state over electrons, since
muons produce less bremstrahlung and can therefore be measured with a higher resolution.
Furthermore, muons are easier to trigger on and to identify as explained in section
In order to compare experimental data to the SM prediction, a framework for calculating

b— slT¢~ processes is needed, which is explained in the next section.

3Throughout the thesis charge conjugation is implied unless specific CP states are explicitly discussed.
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2.4 Effective Field theory for b— sfT£~ decays

In order to calculate b— s¢*¢~ processes in a model-independent framework that also
allows sensitivity to NP, an Effective Field Theory (EFT) is devised using the Operator
Product Expansion (OPE) method |31]. It works by separating physical effects based on
their energy scales: All heavy degrees of freedom above a chosen energy scale p, such as
the mass of the W-boson myy, are separated from the lighter degrees of freedom which are
smaller than p. Since the heavy degrees of freedom are characterised by a small distance
scale of 1/my ~ 1072GeV !, they are referred to as short-distance. Correspondingly,
the lighter degrees of freedom which are of the order 1/Aqcp ~ 5GeV ™' (assuming
Aqep ~ 200 MeV) are referred to as long distance.

Decoupling the long distance and short distance effects allows writing the matrix

element of an effective Hamiltonian H.g at a given scale as
(f| Mot |i) Zc (f10i i) ], (2.9)

where C; - referred to as Wilson Coeflicients - are complex numbers that encapsulate
the short distance contributions, whereas O; are operators describing the long distance
contributions.

By construction, the effect of heavy NP is encoded into the Wilsons coefficients.
Therefore, by calculating the values of the Wilson Coefficients in the SM (C?™) and
comparing to the values of the Wilson coefficients that best describe experimental data C;,

the contributions from NP can be determined with
et =c - M. (2.10)
For b— sf*¢~ decays the complete effective Hamiltonian can then be written as [32}33]

1Gp
V2

H.o = — (Vo Vi1 + Vi Ve 1) (2.11)

with

6
HY = CO05+C05+ > Cio+ > (GiOi+Cl0o)),

€
1=3 1=17,8,9,10,P,S

HW = (O — OF) + CH(O5 — OF).

Due to the small size of the relevant CKM elements, contributions from ng) are doubly
CKM-suppressed and usually neglected [34]. Also the scalar and pseudoscalar operators
(Og and Op) are highly suppressed and usually ignored [32].
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Figure 2.2: Diagrams illustrating the EFT operators that contribute to b— s/~ decays. Left describes
the semileptonic operators Og and Ojy involving a vector current. Right depicts the electromagnetic

operator O7 involving a photon current.

In the SM, the largest contributions to b— s¢*¢~ transitions come from the three operators

O7.9.10 which can be expressed as [32]:

e

07 = émb(sau,,PRb)F“”, 0/7 - Emb(go-}U/PLb)FMV7 (212)
e? e?

Oy = E(EWPLb)(m“ML Oy = E(EW»PRb)(IZ’Y“N)a (2.13)
e2 e?

Oy = ?@%PLb)(ﬁ’Y“%/ﬁ)a Ol = E<§7HPR6)(/17“75M)’ (2.14)

where g is the strong coupling constant, P, r = (1 & 7;)/2 are the left/right chirality
projections, F'* is the electromagnetic field tensor and o, are the Pauli-spin matrices.
The primed operators (9’779710 denote the operators with opposite chirality which vanish or
are highly suppressed in the SM [32].

O7 is the electromagnetic operator corresponding to the radiation of a photon, whereas
Oy and Oy are the semileptonic vectors which correspond to a vector and axial-vector
current respectively. With respect to the SM diagrams (figure , O corresponds to the
photon penguin diagram, whereas Oy and Oy correspond to the Z and W box diagrams.
Within the EFT, O;, Oy and Oyy can be illustrated with simple diagrams where all
heavy particles are encapsulated into effective couplings as shown in figure 2.2} This also
shows the similarity of the EFT for b— s¢*¢~ decays to Fermi’s effective theory of weak
interactions, which in the limit ¢*> < mj, was able to describe the beta decay accurately
with a four-fermion vertex before electroweak theory was devised and before the W was
discovered [18].

The Wilson coefficients can be expanded perturbatively as [32,33]

Crm e+ 4 () 000, 13
47 A
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where CZ-(") refers to the n-loop level contribution. The values for Ci(n) are calculated by
matching them to the full SM processes at the scale p1 = my, as described in Ref. [33].
Since tree level FCNC are forbidden in the SM this means C becomes zerﬂ The Wilson
coefficients are calculated up to two loop contributions i.e. with next-to-next-leading
order (NNLO) precision. Subsequently, the Wilson Coefficients are evolved from p = myy,
to u = my using a Renormalization Group Equation [33]. Due to the NNLO terms the
Wilson Coefficients from equation [2.11] end up mixing, i.e. one cannot necessarily assume
a specific contribution to a given Wilson Coefficient. Therefore, it is common to express
the effective Wilson Coefficients which for C¢f |, are given by:

47 1 4 20 80
O = L - Cy— 50— T Cs =5 G,

A

47
Gt = —Co+Y(q?),

4 47
eff /,eff _ /
C(10 - o C110 ) C"7,8,9,10 - o C17,8,9,10 ) (216>
S

s

where Y (¢?) is a large collection of terms including C1 23456 and can be found in Ref. [32].

The values of the Wilson coefficients depend on the choice of the exact values of my,
and m, for setting the energy scales in the OPE, as well as myz and m; when integrating
out the heavy particles. This introduces a phenomenological uncertainty in the EFT
predictions of b— s¢T¢~ processes, as investigated in Ref. [33]. The values for the Wilson
coefficients obtained in Ref. [32] are CST - Y (¢?) = 4.211; O = -4.103; C£f = -0.304;
Crft = -0.0061.

The relative contributions of the Wilson Coefficients C£T, C¢ and C$T to the decay
rate of BY— K*°u* = vary as a function of the invariant mass of the muon pair squared
(¢%). C dominates the region of ¢> < 1GeV?/c?, as it is more likely to radiate a virtual
photon at low ¢2, thus causing a photon pole in that kinematic region. With rising ¢?,
contributions from C§T and Cff dominate the spectrum. Thus, the best experimental
sensitivity to all three dominant Wilson coefficients can be obtained by fitting data across
the full ¢ spectrum.

Experimentally, the quark level b— s¢*¢~ transition is not observed directly but within
the hadronic decay of B®— K*%; ™=, Therefore, in order to parameterise experimental
data and extract values for the Wilson coefficients, a model is required which describes

the hadronic BY— K*° transition, as explained in the following section.

dexcept for Oy [32].
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2.5 Form Factors

When calculating B® — K*°u* i~ decays, the quark level b— s¢T¢~ transitions and the
B® — K*Y transition are assumed to factorise, which is known as the naive factorisation
assumption [32].

The matrix elements which describe the hadronic BY — K*U transition are referred
to as form factors (FFs). They can only be calculated non-perturbatively. Two different
methods are commonly used to calculate the FFs: The Light Cone Sum Rules (LCSR)
method which is only valid at low ¢ and Lattice QCD which is valid at high ¢?. For the
analysis presented in this thesis, a continuous parameterisation of the form factors across
the full ¢* spectrum is needed. This has been achieved in Ref. [35], where the six FFs
needed to describe B®— K*0utu~ decays (V, Ay, Ay, T1, Ts, Ths) have been calculated
using LCSR and Lattice QCD and subsequently parameterised as a function of ¢* using

the expression [35]:

1 2

C1- q2/m%%,i =0

k

Fi(q*) ap [2(¢*) — 2(0)]" (2.17)

where

ty —t— Iy — 1
Z(t) — \/ + \/ + 0 :

Vip —t+ i —to
with ¢4 = (mp £ mg+)? and to = t.(1 — /1 —t_/t;). mg,; denotes the masses of
the excited BY states as given in Ref. [35]. «i are the FF parameters. Equation m

is truncated after the 3rd order (quadratic in z) which was found to describe the FFs

(2.18)

well [35]. Thus there are three free parameters for each of the six form factors.

The parameters are obtained in a combined fit to the calculated FFs while taking into
account all correlations between the FFs. Figure [2.3| shows the calculated FFs in bins
of ¢* obtained from LCSR (red points) and Lattice QCD (blue points), as well as the
parameterised FFs as a function of ¢* (grey band). The authors of [35] published the best
fit values for all o, as well as the full covariance matrix. These are used in the fit to LHCb
data described in this thesis to constrain the FFs.

The actual decay being observed experimentally is not B® — K*%u*pu~ but B —
K*(— K*t7 )uTp~. In order to be able to use the B®— K* FFs, the K* is treated as
a stable particle in the decay of the B® meson and the decay of the K*¥ is then treated
as an independent process [32]. The impact of this approximation is a currently debated

issue and is explored in Ref. [36].
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Figure 2.3: Form factors obtained from LCSR (red points) and Lattice QCD (blue points). The grey band
shows the combined z-expansion fit. Figure from Ref. .
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2.6 Angular definitions

Considering only the P-wave configuration (angular momentum of 1) of the K7~ systemﬂ
the decay B’ — K*°(— K™n~)uTu~ can be fully described by three decay angles and ¢,
which as previously stated is the squared invariant mass of the dimuon system. There are
several conventions for the definition of the angles. In this thesis, the LHCb convention is
used which is defined in Ref. [8] and also used in Refs. [1,9,/10]. Under this convention,
the angular distributions of the B® — K*u* = and B®— K*9ut i~ decays are the same,
assuming there is no CP violation[]]

cos 0, is defined as the cosine of the angle , between the direction of the p* (u~) in
the rest frame of the dimuon system and the direction of the dimuon in the B® (B°) rest

frame. The explicit definition of cos ), for B® — K*°u* = decays is given by
At (B R At
cosfy = <p,(f+ g )) : (p,(ﬁ:_> = <p£f‘+ g )) : <—p5§‘o : )) , (2.19)
()

where py ’ are unit vectors for the direction of particle X in the rest frame of the system
Y. The definition of cos @, for B*— K*Ou*pu~ is:

(o (B° At ot
cosfy = <p£b“_ a )) . (pfﬁ}) = <p£¢“_ a )) . <—p%‘o a )) . (2.20)

Similarly, cos fk is defined as the cosine of the angle 6 between the direction of the
KT (K7) in the K*0 (K*0) rest frame and the direction of the K** (K*°) in the rest frame
of the B (BY). Explicitly, cosfx for B’ — K*Ou* ;= decays is defined as

. *0 ~(BO N *0 N *0
cosfi = (pgi )> : <pgio)> = (p%i )> . (—ng )> . (2.21)
For B®— K*0u* 1~ decays the definition of cos 0 is:
R %0 (B° R *0 R *0
cosfOx = <p%<_ )) : <p§io)> = (p(lf— )> : (—pgﬁ )> (2.22)

The angle ¢ is defined as the angle between the plane containing the ™ and p~ and
the plane containing the kaon and pion from the K*0 (K*°). Explicitly for B®— K*0utpu~
decays ¢ is defined with

(BY) (B A(BY) (B
cos ¢ = (p,ﬂf) X pfﬁ )> : (pf;«) x P )) , (2.23)

°See section for a discussion of the S-wave contribution.
6For a definition of the ‘theorists convention‘ and how to convert between conventions see [37].
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. ~(B° ~(B° ~(B° ~(BO° ~(BO
sin = — [(p,(, " xpl )) X (pﬁ«) x P )ﬂ P (2.24)
whereas for B®— K*0u% i~ decays ¢ is defined with
(B ~(BY (B (BO
cos ¢ = (p,(ﬁ) X p,(f )> : <p§<+) x p )) : (2.25)

. ~ 0 R 0 R 0 N 0 R 0
sin ¢ = [(pfﬁ) x P )> x (pﬁi) x P )>] Pl (2.26)
Figure shows an illustration of the definition of the angles for B — K*Ou*pu~
decays. The differential decay rate of B®— K*0u* = and B— K**ut = decays can be

expressed using the angles defined above as shown in the next section.

(b) ¢ definition for the B° decay

Figure 2.4: Illustration of the definition of the angles 6;, fx and ¢ for B — K*9u* =~ decays. Figure
from Ref. [8].

2.7 Differential decay rate

The differential decay rate of B — K*°u* i~ decays can be calculated by squaring the
matrix element for B®— K*°uTu~ decays from the EFT (see section and summing
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over the spins. When considering only the P-wave configuration of the K*7~ system and
also ignoring scalar contributions to the dimuon system, the differential decay rate can be

expressed in terms of the decay angles, defined in the previous section, and ¢? |38]:

d'T[B® = K*utu~]
32ZN

i(cos 0y, cos O,
o ) filcos by, cos O, 0)

=39x [Jl sin? Ok + Ji cos 2 0k

+J35 sin? Ok cos 26, + J3 cos? O cos 26
(2.27)

+J5 sin? Ok sin? @) cos 2¢ + J, sin 20k sin 26, cos ¢
+J5 sin 20 sin 0 cos ¢ + J¢ sin® O cos 6

+J7 sin 20k sin 0 sin ¢ + Jg sin 26k sin 26, sin ¢
+Jy sin? O sin? 0, sin 2¢

The (cos by, cosfk, ¢) dependence of the decay rate is introduced by spherical harmonics
which multiply each of the ¢? dependent angular observables J;(¢?). The angular observables
Ji(¢*) encapsulate the complete information that can be extracted from measurements
of B® - K*uTu~ [32]. They can be expressed as bi-linear combinations of the 6

complex transversity amplitudes AS’R, Aﬁ’R, AE’R which are presented in the following

section (section [2.8)).
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Explicitly, the angular observables are given by [38]:

2+ 32 4m? . .
Jis = %UA 2+ [A[ PP+ AT + [Af?] —l—q—;Re (AT AT + AP AT |
_ L2 R|2 4_77]% 2 ALAR* 2 A 2
Jie = |Ag]” + [Ag]" + e [|At| + 2Re(Ag 4y )]+ﬁe| sl®,
Joo = B (AL 4 AR AR AR
Joe = —Bg [|AF1? + AT
1
Jy = =B [|AL]? — |AFP + |ARP — AR
J, = —@3 [Re(AFAF™ + AFA[],

V2

I = V2B, [Re(AgAﬁ*—A{fAf*)_ me

* R*
7 el e(Af A} + A Asg))|
Jos = 280 [Re(AfAL" — AFATT)]
my

Ve

J o= V2B, [Im(AgAﬁ* — ARAR) + m(AL A% — Af*AS))} ,

1 * *
Js = Eﬁ‘? [Im(AgAL" + AFAT)]
Jo = B; [Im(Af"AL + A" AT)] (2.28)

where the parameter (3, is given by
Be=1]1——L (2.29)

Due to the choice of the angular basis in the LHCb convention, the differential decay
rate for the CP transformed B° — K*°u* = decay,

d*T[BY — K*utu]
- (cos 0, cos O, ), 9.30
X 327TZJ q°) fi(cos O, cos Ok, @) (2.30)

results in the same angular distribution as the B°— K*°u* 1~ decay. Therefore, one can

sum over the decay rates to determine a set of C'P-averaged observables S;:

dr dr )

(2.31)
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This allows merging the B® — K*u* = and B® — K*0utp~ data sets, yielding twice the
number of events available for ﬁttingﬂ

The observable Sg, is a related to the forwared-backward asymmetry of the dimuon system
and is therefore commonly replaced by Apg = %SGS. The observable S;. is a measure
of the fraction of the longitudinal polarisation of the K*° and is commonly referred to
as Fp = Si.. It is also common to define optimized angular observables for which the
BY— K*° FF uncertainties cancel to first order and thus allow more precise SM predictions.

The convention for the optimized observables used by LHCb is [1,/10]:
255

p=—"23  _ 4®
YT a-FR) T
2 Ars
p,—=2_*5
T30 -FR)’
— S,
Py=— =9
S0 (2.32)
P/ — S4,5,8
WS RO-F)
S7

Pi= —.
VFL(1—F)
It should be noted that in some theoretical predictions the definition of the optimized

observables are different [39).

2.8 Transversity amplitudes

The K*O in the B — K*°u*u~ decay has three possible polarisation states: longitudinal
(denoted with ‘0’), parallel (denoted with ‘||”) or perpendicular (denoted with ‘L’). The
decay with each polarisation state is described by a corresponding amplitude. Furthermore,
the muon system can either have left or right handed chirality (denoted L and R).
Thus, there are six complex amplitudes AB’R, .A|I|“’R, AIIR that can fully describe the
B — K*u*pu~ decay rate in the P-wave configuration. The amplitudes contain the
Wilson coefficients C7, Cq and (' as well as the FF's described in section 2.5 and can be
written as [2]:

mprmg= m

Vi

"CP violating effects are negligible in the SM and are so far also not favoured as a NP effect.

AR (¢?) = =8N -
0 (a°) mp + My

{(09:F010>A12<q2>+ ” 07T23<q2>+go<q2>}, (2.33)
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A (q? 2
Afm%zdw@méw@o%%¢aw () +7T@n@w@wﬁ}
mp — M= q
(2.34)
V(qg? 2
AP = W (CoF o) 2o 1o @

with

A =mp +mi +q* — 2(mymie. + mi.q® + mBq®), Be=1/1—4m2/q? (2.36)

and

G22
szm¢——ﬂ;wmwm. (2.37)

3 % 210753,
The functions Go(¢*), G(¢*), and G (¢*) in equations [2.33} [2.34] and describe the
non-local contributions to the B®— K*°u* 1~ decay which are discussed in section [2.11]

An empirical model to parameterise Go(¢?), G)|(¢*), and G, (¢?) is presented in chapter .
Since Cy = —C'g, the right handed amplitudes are highly suppressed in the SM.

2.9 S-wave contribution

Apart from the P-wave configuration of the K*°, the B® — K*9u™;~ decay can also
occur via kaon resonances with angular momentum 0 (S-wave configuration) such as the
K*%,(800). The S-Wave decays and make up a significant contribution of the observed
B°— K*%u* = decays [40]. Since the S-Wave decays have different angular distributions
than the P-Wave decays, their presence would alter the angular observables if ignored in a
fit to data. The S-wave contribution is therefore included in the differential decay rate by
including 6 additional angular terms with the corresponding angular observables J{., J;.,
Jy, Ji, Jh, Jg, which are described by the S-wave amplitudes and the interference between

the P-wave and S-wave amplitudes. The differential decay rate then becomes [41]:
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d*T[B° — K*O
[ pop = ZJ ) fi(cos by, cos Ok, @)

:32% [Jf sin? fx + JE cos? fx + J1(1 — cos?6)

+J; sin? Ok cos 26; + J5 cos? Ok cos 20; + Ji. cos? Ok (1 — cos 26;)

+J5 sin? Ok sin? 6, cos 2¢ + Jy sin 20k sin 26, cos ¢ + J sin 26, sin Ok cos ¢
+J5 sin 26k sin 6) cos ¢ + Ji sin O sin 6, cos ¢ + J§ sin? O cos 6,

+J7 sin 20k sin 6 sin ¢ + J;, sin O sin 6, sin ¢ + Jg sin 20 sin 26, sin ¢

+Jg sin 26, sin Ok sin ¢ + Jy sin? Ok sin® 6, sin 2¢] )
(2.38)

The angular observables Ji., Ji., Jj, Ji, Ji, J§ are functions of the S-wave amplitudes
Aoo as well as the P-wave amplitudes AS’R, AL’R, AIIR (see section and are given by

Jie = !A I+ —IA ®

, 2
JQC = \/§[

J, = \/;[Re(A Ai*)+ (L — R)] ,
Jb = 2\/2[ Re(AgpAT) — (L = R)] ,

e(Aj Ay + (L — R)] ,

J = 2\/;[Re(.A Ai*) = (L= R)]

J = \/g[ Re(AlAY) + (L — R)] ,
(2.39)

The S-wave amplitudes A(I;(’)R are given by

A g0 2
Ay (@) = %{(cwomm(q?) ﬁ@m 2>+goo<q2>}, (2.40)

with
Azo = M + M +¢* = 2(mpmiee + mi > +mpg?), fo=1/1—4mi/¢?  (2.41)
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0.27 -2.1 1.2
0.3 -2.2 1.2

F <q2>Kg (800)
Fr ( QQ)K;; (800)

Table 2.1: Coeflicients for the S-wave FFs taken from Ref. [43].

and

. G%a? )
N = ViV, mq A0 By - (2.42)

The functions Fy(¢*) and Fr(g¢?) in equation are the FFs associated to the S-wave
B® — K*°u*p~ decay. These FFs have not been studied extensively yet. There is a

calculation using a perturbative QCD approach which expresses the FFs with the following

parameterisation [42}43]

_ F(0)
1+ apg?/m% + bp(q?/m%)?

Fir(q®) (2.43)

where F'(0), ap, bp are the individual FF coefficients. The FF coefficients for the FFs of
the B — K*Ou™ ;= decay in the K*%(800) configuration calculated in Ref. [43] are given
in table The paper does not give any uncertainties or correlations of these coefficients.
This poses an issue for performing a fit to data while taking the S-wave contribution
into account. The way this is handled in this thesis is described in section and the

systematic uncertainty due to the poor understanding of the S-wave FF's is discussed in

section [T.2.3]

2.10 Anomalies of b— s€1t£~ decays

There are several measurements of b— s¢™/~ processes that show tensions with the SM.
They can be grouped into three categories: Branching fraction measurements, angular
analyses, and lepton flavor universality (LFU) tests.

LHCDb has measured the branching fractions of several b— sfT¢~ decays to be lower
than the SM predictions: B®— K*9u*pu~ [5,8], B — ¢utp~ [6], and A) — Autp~ [7].

In angular analyses, fits to the angular distributions, such as the distribution of the
angles defined in section 7 are performed to obtain a set of angular observables (such as
the observables given in eq. . These fits allow the extraction of the full information
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encoded in the decays which make them ideal for finding NP. Measurements of angular
observables that show discrepancies with the SM, performed by LHCb include [1,/6,/9-H12].

Both the branching fraction measurements and the measurements of angular observ-
ables suffer from a common disadvantage: The theoretical predictions depend on the
understanding of the hadronic interaction of the decay. Even for optimized angular observ-
ables (equation , in which the FF uncertainties cancel to first order, the theoretical
uncertainties are significantly large when comparing experimental results with SM pre-
dictions. This dependence on the theoretical understanding of the hadronic interactions
is removed in LFU tests, which are measurements of ratios of branching fractions such
as BF(BY — K*u" ™) /BF(B® — K*%e*e™). Since the SM couplings are lepton flavour
universal, the ratios are easily predicted with high precision within the SM and any effects
of the hadronic interactions cancel out. Measured LFU ratios that are discrepant from the
SM include B® — K*°¢*(~ decays [13], and BT — K¢t ¢~ decays [14,/15].

Despite the LFU ratios being the theoretically ‘cleanest’ observables, one cannot
solely rely on them for searching for NP in b— s¢*¢~ decays. Firstly, the most significant
discrepancy with the SM is currently observed in the angular observables of B® — K*p %~
decays [1]. Secondly, LFU ratios will only reveal NP if the NP does in fact violate LFU,
which may not be the case.

The various b— s¢™¢~ anomalies can be interpreted in a coherent way by performing
global fits determining the values of the Wilson Coefficients with which the predictions best
describe the available measurements of b— s¢*¢~ processes [16}44]. Different hypotheses
regarding the nature of the NP are tested such as 1D hypotheses allowing Co™ only, or
CF = - CNF or 2D hypotheses such as allowing (C3'F, CNY). The left plot in figure
shows the allowed regions for the (C3, CIY) hypothesis from fits to ATLAS (green), Belle
(violet), CMS (yellow) and LHCD (red) as well as the combined (blue) data. The best fit
values are (-0.91, 0.18) with a pull of 5.60 with respect to the SM [15]. This indicates
a significant shift in the vector coupling Cy. However, there is an ongoing debate in the
community about the presence of so called non-local effects which might mimic NP by
shifting the observed value of Cy, as discussed in the following section.

To further illustrate the importance of branching fraction measurements and measure-
ments of angular observables, the right side of figure shows the fit to the LFU ratios

only, which yields a much less clear picture.
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Figure 2.5: Contours of global fits under the (C)'F, CI') hypothesis using all available b — sf*¢~
observables (left) and LFU ratios only (right). Figure from Ref. .

-
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Figure 2.6: Feynman diagram for a b— sc¢ process in the EFT. Figure from Ref. .

2.11 Effect of non-local contributions

As described in section 2.3, b— s¢*¢~ transitions occur only at the loop level in the SM.
The same final state can be obtained through b — sqq processes if the ¢g pair decays into a
lepton pair, as shown in figure [2.6, The ¢g pair is a bound state which can make up vector
meson resonances such as p(770), ¢(1020), Jip, ¥(25), ¥(3770), 1(4040) and (4160).
Since decays such as B® — J/ip K*O can also occur on the tree level, their amplitudes
dominate the total BY — K*°u*pu~ decay rate at ¢ = m?]/w (or the pole mass of the
respective resonance). Figure shows the total decay rate of B®— K*%u ™ including
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all b— sqq transitions and the peaks of the resonances are clearly visible.

Since the ¢g can exchange gluons with the b quark, as shown in figure 2.6] the
factorisation assumption (i.e. describing the quark level b — s¢*¢~ transition and the
formation of the K** meson separately) does not hold for b— sqg processes. Consequently,

the decay amplitudes written in terms of the Wilson Coefficients and the FFs (see equations

12.33], 2.34}, [2.35]) do not properly describe the ¢*> dependence of the processes involving

qq loops. Since the resonances are vector particles, their presence effectively changes the

value of Cy in a ¢* dependent way. This is expressed by the functions Go(¢?), G(¢*), and

G (¢?) in equations [2.33] [2.34] [2.35] The change of Cy becomes largest at the pole masses

of the resonances.

In analyses that aim to be sensitive to NP by measuring observables related to the penguin
amplitudes, the resonant ¢ regions are discarded from analysis (see for example Ref. [1]).
However, the b— sqq processes can have effects on the B® — K*u*u~ decay rate, far away
from the pole masses of the resonances, through interference of the b— sqg amplitudes
with the b— s¢T¢~ penguin amplitudes. Therefore, the effects of the hadronic resonances
are referred to as non-local contributions. Since the phases of the resonant amplitudes
relative to the penguin amplitudes cannot be calculated from first principles and have never
been measured before, the level of interference, i.e. the size of the non-local contributions
is unknown.

There is an ongoing debate among theorists how to take non-local contributions into
account when calculating B° — K*%u*u~ decays. One approach, which claims validity
only in the heavy quark and large energy limit (corresponding to ¢? < 6 GeV?/c?), uses
QCD factorisation methods [32,34,/46]. Moreover, there is a model to determine the level
of charm loop interference through analyticity [47], but it is also only valid away from the
pole masses of the resonances. The effect of the higher 1) resonances is studied in Ref. [48].

In chapter , an empirical model is presented which aims to describe the full ¢? spectrum
by parameterising the ¢> dependence of the resonances with relativistic Breit Wigner
functions and assigning a magnitude and phase for each resonance relative to the penguin
amplitude. This allows determining the Wilson Coefficients directly from data while also
measuring the phases of the resonant amplitudes relative to the penguin amplitude. Thus,
the effect of the non-local contributions can be assessed experimentally.

LHCb has published a similar measurement of the phase difference of the resonant and
penguin amplitudes in the BT — K*u*u~ decay, where the level of interference was found

to be small [49]. However, the conclusions cannot be transferred to the B®— K*Ou*p~
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Figure 2.7: Decay rate of BY — K*°u*pu~ as a function of ¢? including all relevant b— sqq transitions
(blue) and using the penguin amplitudes only (red). Based on the model described in chapter 3| Figure

from Ref. .

decay, since its amplitude structure is very different. The BT — KTutu~ decay is
described by two amplitudes rather than the six amplitudes of B®— K*°u™u~ (see section
and the final state of B* — K*utu~ is described by a single angle and ¢?, whereas
B%— K"t p~ requires three angles and ¢2 (see section [2.6)).

Measuring the non-local contributions directly from data will help our understanding
of whether the observed anomalies in the angular observables of B®— K*%u* 1~ decays

are the result of underestimated interference of cé-loops with the penguin.
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3. Empirical model for searching for
New Physics in BY — K*0utpu—

As explained in the previous chapter, measurements of angular observables in B? —
K*u* = decays have shown discrepancies to SM predictions, indicating a shift of the
vector Wilson Coefficient Cy with respect to the SM. However, this cannot clearly be
interpreted as an indication for NP because interference from hadronic resonances with the
short distance amplitudes can also cause a shift of Cy. Therefore, these non-local effects
can mimic NP if they are not taken into account correctly in the SM predictions.

The purpose of this thesis is to perform a novel fit to the full ¢? spectrum in the range
(0.1 < ¢* < 18.0) GeV?/c?, parameterising both the penguin amplitudes as well as the
hadronic resonance amplitudes and the interference between them.

The model containing both the penguin and hadronic amplitudes is presented in section
3.1} Tts prediction of the non-local effects is compared to predictions from other models in
section [3.2] The inclusion of the S-wave component in the model, which is necessary to
describe real data, is described in section [3.3]

3.1 Modelling non-local contributions

The model which is used in this thesis to parameterise the full B°— K**u* = spectrum
is based on Ref. [2]]

The signal model is based on the full differential decay rate (see equation , where
the angular observables J; and J; are expressed in terms of the decay amplitudes (see
equations and . The effect of the non-local contributions is introduced on the
amplitude level. Recalling from section [2.8] the P-wave amplitudes can be written as

mpr = m

\/?

AEN(g?) = 8N

{(Cg F Co)A12(q?) + ° CrTos(q%) + QO(QQ)} , (3.1)

mp + Mg~

AL 2y + 9||(q2)} L (32)

AL = =B i) { (€05 Cu)

mp — Mg~

IThis entire section is written in reference to Ref. [2].
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V(g?) me

mp + mK*

AII_’R(QQ) = N\/ﬁ {(Cg + 010) C7T1( ) + QL(q2)} s (33)

with

A =mpy +mi +q* = 2(mEmie. + mi.q® + muq®), Bo=1/1—4m2/q? (3.4)

and

105173
x 209momy

G202
N = v;bv;\/ 3F—q2»/% : (3.5)

where the functions in Go(¢*), G(¢?), and G, (¢*) describe the non-local hadronic contri-
butions.
In this empirical model, inspired by Refs. [48,49.,/51], the hadronic contributions are

parameterised with

my iw? 09 Ares
Go(q") = o Ts(')C"e™ + An(d”) Ej nie's A (%), (3.6)
2 me I zw“ H 19” res
Gi(@) = =5 Da@)e™ + Z JA (3.7)
2\ 2mb 1 qwt V( 2 1 'LOJ res
') = R + L S AT 69

The first terms are the non-local contributions to the C; terms. The respective contribution
to each transversity amplitude has a magnitude ¢* and phase w® which can be determined
in a fit to data. There is a degeneracy of ¢* with the first order parameter of each respective
form factor, i.e. with al*, af?, af'. Therefore, the first order FF parameters are fixed to
the values determined in Ref. [35], whereas the 2nd and 3rd order parameters are floated
and constrained to the covariance matrix (also published in Ref. [35]).

The second terms in equations 3.7 and are the non-local contributions to the Cq
terms. The sums indicate sums over the considered vector resonances j €{p°, ¢(1020),
J, (28), ¥(3770), 1(4040), 1(4160)}. Each resonance amplitude is multiplied with a
complex number where 79, 77]“, n;- are the magnitudes and are 69, 65, Qy the phases of each
resonant amplitude relative to Cy. These phases and magnitudes can also be determined

in a fit to data.
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The ¢? dependence of each resonance is modelled by a relativistic Breit-Wigner A;-es(qQ),

similarly to the model used in Ref. [49], given by

mresjrresj

AF(q°) = (3.9)

(mIQ'eSj —q*) — imreSij<q2)’

where m,.s; is the pole mass and I'\e; the natural width of resonance j. The respective
values are taken from [30]. The function I';(¢*) represents the running width which is

given by

p mresj
Li(¢*) = —
! Pres j

where p is the momentum of the muons in the dimuon rest frame evaluated at ¢, and pyes ;

Fresj» (310)

is the momentum evaluated at the mass of the resonance.

Since there are three magnitudes and phases for each resonance, it is common to define
the phases 6]{ (9}' to be relative to 9?. Thus, (9? is defined to be the overall phase between
the resonance j and the penguin amplitudes.

Existing measurements of B® — V K*Y decays, where V denotes any vector meson
resonance appearing in the B® — K*°u* 1~ spectrum, are sensitive to the relative phases
Hj, HJH between the resonant amplitudes. However, the phases 99 between the resonant
and the penguin amplitudes, and thus the level of interference between the resonances and
the penguin, are completely unknown. This is because there has never been an analysis
of B®— K*%" ;= data which parameterised both the penguin and resonant amplitudes
simultaneously, which is exactly what the analysis presented in this thesis is aiming to

accomplish by fitting LHCb data with the model explained above.

3.2 Comparison to other models

In order to make predictions with the model described in the previous section, available
measurements of the relative phases HJ-L, Q'} and magnitudes 77?, njL, 7)]” can be use.

For the decays BY — J/i K*® and B° — 9(2S)K*", measurements of the relative
phases and magnitudes of the transversity amplitudes are available from the LHCb, Babar
and Belle collaborations [52-54]. Also, the branching fractions have been measured by
the Belle collaboration [53,55]. Furthermore, the relative phases and magnitudes and
branching fractions of the B®— ¢K* have been measured [56/58]. Using these inputs,

the magnitudes 77?, 77}', njL of each resonant amplitude, normalised to the respective FF's,

2This section is written in reference to Ref. [2].
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are calculated with

,  [IB(B? = VE®) x BV — ptu)

’77?| = 2 ’

mpm -
TB/ 8NB—2KA;eS(q2)A12(q2) dq?

V&

FIB(B® = VE*) x B(V — ptp)
Ai(q?)

mp — Mg=

2 _
s |* = — (3.11)

B / ’N\/ﬁ(m% — m%*)Ages(QQ) dq?

[iB(BY = VE*) x B(V — ptu~)
B / ’N@A;GS@?)M

dq?
mp + Mg~

U

where f7, f]|-|, and f;- are the measured polarisation fractions of the B® — VK* decays
and 7 denotes the lifetime of the B® meson. Calculating the magnitudes with the above
expressions ensures that the integral of the sum of squared magnitudes of a given resonance
yields the correct experimental branching fraction.

For the B® — p°K*? decay, the total decay amplitude is set using the world average
branching fraction and the relative phases and magnitudes are set to those of the B® — ¢ K *°
decay. For the decays BY— V,, K*°) with V,, € {¢(3770), 1(4040), and ¢)(4160)}, there are
no available measurements. Therefore, for the purpose of making predictions to compare
to other models, the relative phases and magnitudes of the decays are assumed to be the
same as BY — J/i K*° and the branching fractions are approximated by scaling the known
branching fractions of B — 1(25)K** with ¢(25) — u*pu~ by the ratio of the known
branching fractions of BT — ¢(25)K™ and BT — V, K with Vi, — pFu~.

As discussed above, the phase (9? relative to the penguin is unknown for each resonance.
Therefore, these phases are varied and the effect of different values are studied when

comparing to different models.

The first model to which the empirical model, described in section [3.1} is compared to
is the prediction of non-local charm loop contributions presented in Ref. [59]. It uses light
cone sum rules calculations of the BY — K*° matrix elements including contributions from
cé loops for ¢ < 4m? and a hadronic dispersion relation to extrapolate to higher ¢*. The
extrapolation uses experimental input for the amplitude structure of the BY — J/) K*9
and B? — (25)K*® decays. The effect of the charm loops are represented as ACy(q?),
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a ¢ dependent correction to the Wilson Coefficient Cy. The model in Ref. [59] uses the
invariant amplitude base and the authors also provide the relation of this basis to the
transversity basis which is used in Ref. [2] and in this thesis.

Figure [3.1] shows the real part of ACy(¢®) predicted in Ref. [59] (magenta band) as well
as the predictions made with the model described in section |3.1] considering only the
hadronic contributions from B® — Ji) K*0 and B? — ¢(2S5)K*0 decays, with different
values for the phases. The black dashed line shows the prediction obtained when setting
all phases to zero, thereby ignoring the measured relative phases between the hadronic
amplitudes. The cyan line shows the prediction obtained when setting the relative phases
between the hadronic amplitudes to the measured values but setting the overall phases
between the resonances and the penguin amplitudes Qg/w’w(z s) to zero. The dashed cyan
line shows the prediction obtained with the relative phases set to the measured values
and setting 69/¢ bEs) = T When ignoring the relative phases of the hadronic amplitudes,
the prediction of ACy(¢?) made with the model described in section is consistent with
the prediction from Ref. [59]. However, when taking the relative phases of the hadronic
amplitudes into account, the predictions are different. The size of the difference depends

: 0
on the choice of the free phases ¢ T 0(25)"

The second model to which the empirical model, described in section [3.1} is compared
is the prediction of the non-local charm loop contributions presented in Ref. [47]. The
non-local contributions are calculated at ¢> < 0 to next-to-leading order in o, and then
parameterised as a function of ¢% using a z-expansion, truncated after the second order,
similar to equation Figure shows the real and imaginary parts of the ¢> dependent
shifts of Cy in the transversity basis predicted by [47] (magenta points). Also shown are
the corresponding predictions obtained with the model described in section [3.1] when
considering hadronic contributions only from the J/i and ¢(25), with three different
choices for the phases 69/ b (28) (cyan lines). The empirical model shows good agreement
with the predictions from Ref. [47] when setting 99/1”#(25) = /8. The differences of the
models in the imaginary parts of ACy(q?) is due to the choice for the w* = 7 which is
discussed in more detail in Ref. [2]. Smaller values for w* have been found to give a better

agreement with Ref. [47] but bigger values for w* give better agreement with Ref. [59]. ﬂ

3It should be noted that the same model (described in this section) is used for both figure and
with the respective phase configurations explained in the figures and in the text. The difference in
line-shapes of ACq(q?) between the figures is due to the fact that completely different amplitude bases are

used. No trivial direct comparison can be made between them.
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Figure 3.1: ¢? dependent shift of Cy due to the effect of the non-local contributions to the B® — K*Cpu+tpu~
invariant amplitudes. The prediction from Ref. is shown with the magenta band. The prediction
using the model described in section taking into account only the hadronic contributions from J/i) and
1(2S) is also shown for different choices for the phases. The phases Gg/w’ »(2s) are set to 0 (solid cyan line)
and 7 ( dashed cyan line). Also shown is the prediction where all phases including the relative phases
between the resonant amplitudes are set to 0 (dashed black line). Figure from Ref. .

In summary, the empirical model, presented in section and in Ref. [2], shows
good agreement with existing models which predict the non-local contributions to B —
K*0u* 1~ decays, depending on the choice of the values of the phases. Contrary to previous

models, the empirical model can naturally include contributions from any vector resonance
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appearing in the ¢? spectrum of B° — K*9u* = decays. These include the light quark
resonances such as the ¢(1020) and p°, as well as the heavy resonances appearing at
q® > 4m?,, where mp is the mass of the lowest mass D meson, such as the 1(3770),
1(4040), and 1(4160).

However, the caveat of the empirical model is that it cannot be generalised easily as it
relies on relativistic BW functions and therefore does not conserve unitarity. Furthermore,
it does not necessarily predict the non-local contributions to vanish at the kinematic
endpoint. Nonetheless, these considerations do not pose an issue for fitting experimental
data, as the phase space of real events vanishes at the kinematic end point, so there is no
data that needs to be described. Furthermore, in a fit to experimental data the model
does not need to be able to describe negative ¢?. The BW model can describe the data in
the considered kinematic region well. Thus, it can be concluded that while the model is
not a true model in the strictest theoretical sense, it is a reasonable approximation of a
true model which does agree well in its predictions with more theoretically sound models

(shown above), and can be used to describe and learn from experimental data.

3.3 Inclusion of the S-wave component in the model

In sections and only the P-wave contributions to the B®— K*°u*pu~ decay were
considered. In order to describe data, also the S-wave contributions have to be included in
the model. As discussed in section , the form factors F(q?) and Fr(¢*) associated to
the S-wave amplitudes are not very well understood. To avoid decreasing the sensitivity to
the Wilson Coefficients, the S-wave amplitudes are decoupled from the rest of the model

by replacing the Wilson coefficients in the S-wave amplitudes with

(Cg — CIO) — Cél
(Cg + C1o) — 652 (3.12)
C7 — stv
This way the overall normalisation of the S-wave form factors is effectively free in the fit

and the actual Wilson coefficients are solely determined in the P-wave amplitudes. The

S-wave amplitudes then become

)\K*O 2m
Azt (d?) = —Nﬁ { Civai (@) + mBJr—;WCiS:FT(f) - Qoo(QQ)} : (3.13)
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Figure 3.2: Non-local contributions to the B® — K*°u*pu~ amplitudes in the transversity basis as a
function of ¢2 predicted in Ref. [47] (magenta points) and predicted with the model described in section
when considering hadronic contributions only for the J/) and ¢ (2S), for different values of the phases
98/11171#(25) (cyan bands). Figure from Ref. [2].

Non-local contributions are also included for the S-wave amplitudes, similarly to how

they are included for the P-wave amplitudes:

Goo(a”) = Fi(a®) Y mje A (gP). (3.14)
J=J $(29)

As indicated in the sum, non-local S-wave contributions are only included for the J/i) and
the ¢(2S5), because they are the dominant resonances. Due to the much smaller branching
fractions of the BY — VK*Y decays involving the other resonances, compounded with
the small fraction of S-wave decays overall (roughly 8%), contributions from the other
resonances can safely be neglected. Furthermore, any non-local contribution to the C; terms
in the S-wave amplitudes would be too small for a fit to be sensitive to them. Thus they
are not included explicitly in Gyo(¢?). However, due to the reparameterisation C; — C%,
the factor C3 can effectively capture the real part of non-local S-wave contributions to Cr.

When considering both the P-wave and S-wave contributions, the mass of the K+7~
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system mpgx, is needed to fully describe B® — K*°u* ;= decays. The my, distribution
helps to distinguish between the P-wave and S-wave contributions since the P-wave
amplitude has much more narrow mg, distribution. In the model used in this thesis, the
my, dependence is integrated out in order to reduce the number of dimensions in the fit
from five (cos @, cos O, ¢, ¢°, mgy) to four. To this end, the angular observables in the
differential decay rate (eq. which contain the P-wave amplitudes (Jis, Jic, Jos, Joc,
J3, Ju, Js, Jesy Jees Joe, J7, Js, Jo) are multiplied with the integral of the P-wave mg, line

shape, which is calculated with

996 MeV/c?
e | J9(mice) P (3.15)
796 MeV/c?

where g(mg,) is a relativistic Breit-Wigner function with the mass and width of the
K*9(892). The integral is performed in the 100 MeV/c? window around the K*°(892) pole
mass.

Similarly, the angular observable made up of the S-wave amplitudes (J7.) is multiplied

with the integral of the S-wave my, line shape, calculated with
996 MeV/c?
zon = [ o) P, (3.16)
796 MeV/c?

where the function f(mpg,) is given by the LASS model [60].
The interference terms (J3., Jy, Ji, J%, J§) which are made up of P-wave and S-wave

amplitudes get multiplied with Z;)%z, given by

996 MeV/c?
Ip*s :/ F(mucr)g(micr) dmic. (3.17)
7

96MeV/c?
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3.4 Summary of the parameters of the signal model

The parameters of the signal model used in this thesis are summarised in table 3.1} The
table indicates the treatment of each parameter during the fit to real data - i.e. whether
it is left floating freely, constrained via an external constraint, or fixed to an externally
measured or calculated value.

The fit was found to be more stable when expressing the amplitudes of the higher ¥
resonances and the non local effects on AC; in terms of the real and imaginary parts rather
than the respective magnitudes and phases.

For the fit to Run 1 data (shown in chapter , the relative magnitudes and phases of the
p(770) and the ¢(1020) are fixed but may be floated in future fits to the merged Run 1 and
Run 2 data. The resolution parameters in the mid and high ¢? region are determined from
data in separate fits. Then, during the full fit of the signal model, the slope parameters o>
and o? are floated again. This is discussed in section

The constraints of the FF parameters are discussed in section and Furthermore,

the fit uses a constraint on AC; taken from Ref. [61].
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Wilson Coeffs Resonances S-Wave
|Co free Re( Aﬁ’(m‘m)) free |Agéw | free
Oc, fixed Im( Aﬁ’(‘m‘lo) ) free 06]({ v free
|C10] free Re( A’f(4040)) free |A6po( 2 | free
Oes fixed  [m(AY7) gee fre
|Cx| fixed Re( Ag(4040)) free alt fixed [43]
Oc, fixed Tm (A4 free aft fixed [43]
Resonances 7 ﬁé(ﬁﬁz4166)5 | free ay! fixed [43]
|A“‘I/¢] free Im(Aﬁj(mo)) free ag fixed [43]
0|‘|]/ v free Re(A’f(LHﬁO)) free ap fixed [43]
|Ai/ Y free Im((Alf(mo)) free ) 95{ 77777777 fixed [43] |
Qi/ v free Re(ABMlGO)) free C1/(Co — Cro) | free
|AE)7/¢| fixed Im(Ag}(MﬁO)) free CP1/(Co + Cao) | free
9(‘)7 s free FFs 35 C7/Cr free
7 Mﬁﬁﬂ 77777777 £ ;eiei 7 ozfo Clonstr. ACr [61]
QIQIWS) free a0 constr. Re(¢llel constr.
|Af(28) | free g constr. Im(¢lle™l) constr.
Qf@s) free ot constr. Re(¢te™t) constr.
IAE)WS) | free i constr. Im (¢ e t) constr.
oL free a2 constr. Re(¢%™0) constr.
|Aﬁ (770)) fixed a2 constr. Re((%e™?) constr.
0 (770) fixed ayt? constr. Resolution | (sec. 5.3
| A7) fixed ay constr. o? free
QTWO) fixed af constr. N2 fixed
| ATy free ay constr. N? fixed
g5 (770) free all fixed 02 s fixed
AT el o comstr. oh fxed
go(1020) fixed all constr. f? fixed
|A¢i(1020)\ fixed o fixed I free
6711020 fixed  af? constr. N3 fixed
|A§(1020)) | fixed ad? constr. N} fixed
0¢ (1020) free ad? fixed O uss fixed
Re(Aﬁ}(?’WO)) free o % constr. odp fixed
Im (A} free al? constr.  f3 fixed
Re (Af(?’?m) ) free
Im(Aqﬁ(?’Wo)) free
Re(Ag(?’??O)) free
Im(Ag(?’WO)) free

Table 3.1: All parameters of the signal model. The treatment of each parameter (free floating, fixed, or

constrained using external constraints) in the fit to data is indicated.



4. Experimental Setup

4.1 The Large Hadron Collider

LHC

Figure 4.1: The LHC experiments and the pre-accelerators. From Ref. [62].

In order to study the nature of matter at the smallest accessible scale, the European
Organisation for Nuclear research (CERN) in Geneva in Switzerland has built the Large
Hadron Collider (LHC) [63]. Measuring 26.7 km in circumference, it is the worlds largest
particle collider. It is also the worlds most powerful collider, capable of accelerating protons
to energies of up to 6.5 TeV. The acceleration is achieved by 16 radio-frequency cavities
placed along the beam line, while 1232 superconducting dipole magnets provide a strong
magnetic field of up to 7.7T, bending the proton beams along the ring.

Two proton beams are accelerated simultaneously in opposing direction and collided
with centre of mass energies (1/s) of up to 13TeV at four intersections of the beam
pipes. At each intersection, a particle detector system measures and records the outgoing
particles produced in the collisions. Figure shows a schematic of the LHC and its
pre-acceletators, the Proton Synchroton (PS) and the Super Proton Synchroton (SPS), as
well as the positions of the four particle detector systems (also referred to as experiments)
at the LHC: ATLAS [64] and CMS [65] are general purpose experiments with a large focus

on searching for new fundamental heavy particles such as the Higgs Boson which was
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Vs=8TeV
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Figure 4.2: Angular distribution of simulated pp— bbX production at /s = 8 TeV using PYTHIA 8 .
The bins marked red indicate the angular acceptance of the LHCb detector. Figure from Ref. .

discovered in 2012 ,. ALICE studies the Quark Gluon Plasma created in
Pb-Pb collisionsﬂ. LHCb is dedicated to heavy flavour physics with the main focus
of finding indirect evidence for New Physics in CP violation and rare decays of hadrons

containing b and ¢ quarks.

4.2 LHCDb detector layout

At the LHC, b-hadrons are produced through the creation of bb quark pairs in the pp-
collisions, and the subsequent hadronisation of the b and b quarks. The predominant
process for pp— bb is gluon fusion, where each gluon carries a certain fraction of its proton’s
momentum as determined by the proton’s Parton Distribution Function. Any asymmetry
between the momenta of the gluons causes the bb system to be boosted along the beam
line with respect to the rest frame of the pp system. Figure [4.2] shows the distribution of
the angles 6; (f,) between the momentum of the b-quark (b-quark) and the beam line for
simulated pp— bbX production. The simulation shows that the majority of bb quark pairs
collimate in a narrow cone around the beam line on either side of the collision point. In

order to study the decay of b-hadrons at the LHC, it is therefore preferential to build a

!The LHC is also capable of accelerating Pb ions to energies of up to 2.76 TeV per nucleon.
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detector that covers the forward (around 6 ~ 0) and/or backward (around 6 = 7) region
rather than the transverse plane. The angular acceptance of LHCb covers the forward
region of approximately 10 mrad to 300 mrad as shown by the red bins in figure 4.2, The

angular acceptance is often expressed in terms of pseudorapidity which is defined as:

o) a

The angular acceptance of LHCb is 2 < n < 5.

The choice to build a one sided forward detector rather than a dual sided detector,
and therefore loosing half of the bb pairs, is justified by the space constraints of the cavern
in which LHCb was built. It is preferential to build a single detector arm and making it
as long as possible. This allows to fit in more detector systems, as well as to achieve the
highest possible precision in the measurement of the momenta of the particles due to a
longer leaver arm.

The production cross section for pp — bbX within the LHCDb acceptance has been
measured as o(pp — bbX) = 72.0 £ 0.3 £ 6.8ub at /s = 7TeV and o(pp — bbX) =
144 +£1 4 21 ub at /s = 13TeV [73]. Therefore, an equal amount of integrated recorded
luminosity, which is a measure for the number of recorded pp collisions, at /s = 13TeV
contains about twice as many bb pairs as at /s = 7TeV. Table |4.1|summarises the centre of
mass energy, the bb production cross section as well as the integrated recorded luminosity
for the data which is used in this thesis ordered by the year of data taking. The combined
periods of 2011 and 2012 are commonly referred to as Run 1 while the combined periods
of 2016 and 2017 are referred to in this thesis as Run 2P

Figure shows a schematic slice of the LHCDb detector in the y-z plane. The z-axis
is defined to be parallel to the beam line and the z-y plane is perpendicular to the z axis.
The collision point at = y = z = 0 is swrrounded by the Vertex Locator (VELO) which
tracks charged particles and is responsible for determining the position of the pp collision
vertex as well as secondary vertices of decaying particles. Further down the beam line
(z > 0) is a magnet providing an integrated magnetic field of 4 Tm which bends the path
of charged particles. Additional tracking of charged particles, and the determination of
the particle’s momenta, is performed by the tracking stations consisting of the TT (before
the magnet) and T1, T2 and T3 (behind the magnet). Particle identification is achieved

2There was also data taken in 2015 and 2018 which are often included in what is referred to as Run 2.
However, in this thesis the data from 2015 is omitted for data quality reasons and the data from 2018 is

omitted due to a lack of finalised processing of the data by the LHCDb collaboration.
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Year /s o(pp— bbX) integrated recorded luminosity

[TeV] [ pb] [fb~]
2011 7 ~T2 1.1
2012 8 ~82 2.1
2016 13 ~144 1.7
2017 13 ~144 1.7

Table 4.1: Centre of mass energy, bb production cross section and integrated recorded luminosity at LHCb

for the data periods used in this thesis.

using two Ring Imaging Cerenkov detectors RICH1 and RICH2. The calorimeter system,
comprised of the scintillating pad detector (SPD) and pre-shower (PS), followed by an
electromagnetic (ECAL) and a hadronic calorimeter(HCAL), allows photons, electrons and
hadrons to be identified and measures their energy. The muon system (M1-M5) identifies
and measures the momentum of muons and also allows triggering on muons.

In the following, the detector systems which are most important for this analysis are

explained in more detail.

4.3 Vertexing

Due to their long lifetime, hadrons containing b and ¢ quarks typically fly on the order of
several mm before decaying. Therefore, events containing b or c-hadrons, can be identified
by finding secondary decay vertices away from the primary pp-vertex (PV). Charged
particles produced in a vertex traverse through the VELO [74] depositing small doses of
energy, so called hits, in the VELQ'’s silicon sensors. Tracking algorithms reconstruct the
trajectories, referred to as tracks, of the particles. By extrapolating the tracks into the
interaction region, the vertices can be reconstructed. Since it is an extrapolation, the
further away the reconstructed hits are from the vertex, the larger the uncertainty on the
vertex position. Therefore, the VELO is built as close to the beam line as possible: during
operation it is 8 mm away from the interaction point which is the closer than any other
LHC detector.

The VELO is made of 21 half-moon shaped modules placed on either side of the beam

line as shown in figure [4.4 Each module consists of two sets of silicon strip sensors, one
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Figure 4.3: Schematic of the LHCb detector. The z-axis is defined to be parallel to the beam line and the
a-y plane is perpendicular to the z axis. The origin (0, 0, 0) is defined to be roughly at the collision point.
Figure from Ref. .

with the strips lined in radial direction to measure the polar angle of hits (¢ sensors, shown
in blue in figure and one with strips lined circularly around the module to measure
the axial distance of the hits (R sensors, shown in red in figure [4.4)).

The hit position resolution is determined by the width of the strips (referred to as
pitch) and by the fact that each module has two perpendicular layers of strips. The pitch
varies from ~ 40 pum close to the beam to ~ 100 um away from the beam, achieving a
maximal resolution of ~ 4 um on the hit position.
The precision on the vertex position depends, besides the hit resolution of the modules
and the distance of the modules to the vertex, on the number of tracks coming from each
vertex. The resolution on the z (z) coordinate of a vertex is ~ 35 um (~ 260 um) for a
vertex with five tracks while the precision is ~ 12 pm (~ 80 um) for a vertex with 30
tracks [75).

Besides determining the position of primary and secondary vertices, the VELO is also

used to determine the impact parameter (IP) of tracks. IP is defined as the closest distance
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Figure 4.4: Schematic of the VELO detector. Taken from Ref. |70].

of a track to a vertex. Events that contain b- or c-hadrons are characterised by tracks with
large IP with respect to the primary vertex. The precision on IP is ~ 20 pum for high
momentum tracks.

Both sides of the VELO can be moved in and out of the interaction zone. The narrow
distance of 8 mm between the VELO modules and the beam line is only kept while the
proton beams are stable. Whenever the proton beams are not stable, for example during
ramp up of the beam energy, the VELO models are moved outward by 3 cm to protect

them from damage from stray beam particles.

4.4 'Tracking

Besides the VELO, several more tracking detectors are installed in LHCb further down-
stream the beam line. The main purpose of these is to determine the momentum of
charged particles from the curvature of the tracks in the known magnetic field. The first
tracker is the Tracker Turicensis (TT), positioned right before the magnet (see figure [1.3)),
which has four layers of silicon strip detectors. Behind the magnet are three tracking

detectors T1, T2, T3 with four layers each. Each layer is split into two different detector
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technologies. The sections close to the beam-pipe, referred to as Inner Tracker (IT) [76],
are subject to a higher occupancy of particles traversing through it and therefore consist
of high resolution silicon trackers. The outer sections away from the beam, referred to as
Outer Tracker (OT) [77], have a lower occupancy and therefore consist of gas based straw
tube detectors, which are cheaper than silicons strips but have a lower resolution.

The momentum resolution of the tracking system varies from dp/p = 0.4% at

p=5GeV/c to op/p = 0.6% at p = 100 GeV/ec.

4.5 Particle Identification wusing Ring Imaging

Cherenkov dectectors

Many measurements performed by LHCb rely heavily on correctly identifying parti-
cle species to reconstruct specific decays. For the reconstruction of the B® — K*°(—
K*n7)utp~ decay the correct identification of kaons and pions is essential.

In LHCb, the main system responsible for particle identification (PID) of hadrons is the
RICH system, consisting of two Ring imaging Cherenkov detectors: RICH1 and RICH2 |78].
They work based on the fact that a particle traversing through a medium faster than
the speed of light in that medium radiates a cone of light in a process called Cherenkov
radiation. The RICH detectors collect this light using mirrors and photo-detectors and
determine the opening angle 6. of the light cone. The angle 6. is related to the mass m

and momentum p of the particle as well as the refractive index n of the medium:

cos(f.) = —W (4.2)
The left hand side of figure shows the reconstructed Cherenkov angles in RICH1 as
a function of particle momentum for different particle species. Clear distinct bands for
the different particle species are visible, however with increasing momentum they all tend
towards the same asymptotic limit and loose all separation. This is because for large
momenta cos(f.) — 1/n, i.e. all particles produce the same radius only dependent on
the refractive index of the medium. Therefore, the PID separation power of the RICH
decreases with increasing particle momentum.
The two RICH detectors use different mediums, with different refractive indices,
optimized for resolution at different momentum ranges. RICH1, which is placed before

the magnet and uses C4F1 (n = 1.0014), provides PID for kaons and pions with momenta
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Figure 4.5: Left: Reconstructed Cherenkov angles as a function of reconstructed particle momentum in
calibration data with the C4F( radiator of the RICH1. Distinct bands are visible for different particle
species. The separation between the lines decreases with increasing momentum. Right: Kaon identification
efficiency (red) and pion misidentification rate (black) in the RICH system using two different cuts on the
DLLg, variable: DLLg, > 0: (open points) and DLLg, > 5 (closed points). Figures from Ref. [79].

of 2 — 40 GeV/c in the full LHCDb angular acceptance of 25 — 300 mrad |79]. RICH2 uses
CFy (n = 1.0005) and provides PID for kaons and pions with momenta of 15 — 100 GeV/c,
within an angular acceptance more focused on the region closer to the beam line of
15 — 120mrad [79]. The choice of angular coverage is driven by the fact that higher
momentum particles are more likely to traverse the detector at smaller polar angles.
Using the momentum information obtained by the tracking, as well as the Cherenkov
angles reconstructed via the photons measured in the RICH, equation is used to fit
different mass hypotheses to each track. The difference in Log-Likelihoods (DLL) of two
different mass hypotheses can then be used to discriminate between two particle species

for a given track, for example:
DLLg, = log L(0c, p|K) — log L(0., p|7) (4.3)

The kaon identification efficiency as well as the rate of pions being misidentified as kaons
using the DLLg, variable is shown in the right hand side of figure [1.5] Two different cuts
on DLL g, are compared. A stricter cut of DLL g, > 5 keeps the pion misidentification rate
below 5%, even at high momenta. However, it also causes the kaon identification efficiency
rate to drop significantly to less then 50% for p > 80 MeV/c. On the other hand, a looser
cut of DLL, keeps the kaon identification efficiency above 80% for p < 80 MeV /c at the

cost of an increased pion misidentification rate which reaches ~30% at p = 100 MeV /c.
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Figure 4.6: Schematic of the muon detector in the y-z plane (left) and z-y plane (right). Figure from
Ref. [80].

The left hand side of figure [4.5 shows that the separation of muons and pions is rather
poor in the RICH. Therefore, an additional detector system is used for identifying muons

as explained in the next section.

4.6 Muon Identification

Just like kaons and pions, the identification muons is crucial for the analysis presented in
this thesis.

Experimentally muons have the advantage of penetrating material much better than
most other particles, while also being long lived enough to travel through the full length
of the detector. The LHCb muon system [81] takes advantage of this fact by being placed
at the very end of the LHCb apparatus as shown in figure [£.3

The muon system consists of five rectangular stations M1-M5 with M1 being placed
in front of the calorimeters and M2-M5 being placed behind the calorimeters. Sections
M2-M5 are interlaced with 80 cm thick iron shields - labelled as muon filters in figure |4.6] -
which absorb all particles except for muons with p > 6 GeV/c.

Each muon system station has 276 multi-wire proportional chambers (MWPCs) which

detect hits of charged particles passing through them. In case of M1, the sections closest
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momentum range Required hits in muon stations
3GeV/e <p<6GeV/e M2 and M3

6 GeV/e < p < 10GeV/e M2, M3 and either M4 or M5
p > 10GeV/c M2, M3, M4 and M5

Table 4.2: The conditions for the isMuon variable. From Ref. [82].

to the interaction region, which are subject to higher levels of radiation, are made up of
12 gas electron multiplier (GEM) detectors instead of MWPCs. Each station is segmented
into 4 regions (marked R1-R4 in the right hand side of figure , in which the size of the
MWPCs is increasing as a function of the distance from the beam-pipe, ensuring consistent
occupancy across the regions.

Since all other particles are stopped in the calorimeters or the iron shields, muon tracks
can be identified simply by requiring hits in the muon stations. Whether or not a track is
labelled as a muon is expressed by the binary variable isMuon. The conditions for isMuon
are given in table [4.2] The isMuon variable has an identification efficiency of about 95%
(for tracks with 0.8 GeV/c < pr < 1.7 GeV/c)| - 100% for tracks with pr > 5GeV/c [82].
The misidentification probability is below ~ 2% for protons, kaons and pions [82].

Another PID variable based on the muon system, is a likelihood determined by matching
hits in the muon stations with the extrapolated track of a charged particle determined by
the tracker.

The muon system is also used in the trigger as explained in the following section.

4.7 Trigger

The LHC provides pp-collisions at a rate of 40 MHz. This is many orders of magnitude
higher than the rate at which data can be processed and stored. Also, only a fraction
of the pp-collisions produce b(c)-hadrons, and since the amount of storage is limited, it
is preferential to discard all events that likely do not contain any b(c)-hadrons. This is
achieved by the trigger system, which decides when to read out the detector and which
events get written to long term storage.

When filtering the events that were written to storage to obtain an event sample

3pr refers to the transverse momentum - i.e. the component of the momentum transverse to the beam

line.
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containing a specific signal decay such as B® — K*°u* i, the events can be classified with
two categories. Events are classified as TOS (Trigger on Signal), if the trigger objects
of the signal decay (for example the muons of the B — K*%u* ™ decay) have sufficient
energy to trigger the event. Events are classified as TIS (Trigger independent of Signal), if
the events contain particles not associated to the signal decay with high enough energy
to cause the event to be triggered. These definitions allow the determination of the TOS

S using background subtracted data, with

ros _ N(TOS and TIS)
¢ T T N(TIS)

where N (TIS) refers to the number of TIS events in the sample, and N(TOS and TIS) is
the number of events which meet both the TOS and TIS definitions.
The trigger is split into two stages: The low level trigger (L0) which is implemented in

trigger efficiency €T©

(4.4)

specialised hardware, and the high level trigger (HLT) which is implemented in software.

Both stages are explained in the following.

4.7.1 Low Level Trigger

The main goal of the L0 is to decide when to read out the detector. It uses information
from the calorimeters and the muon system, both of which can be read out quickly, to
accept or reject events.

The LO calorimeter trigger and L0 muon trigger work independently. Events triggered
by the LO calorimeter trigger are not used in this analysis and therefore this section focuses
on the LO muon trigger.

Since events which contain heavy flavor hadrons are often characterised by particles
with high transverse momentum pr, the LO muon trigger accepts events containing either
a single high-pr muon (LOMuon) or a pair of muons with high pr (LODiMuon).

The LO muon trigger works by reconstructing straight-line tracks from aligned hits in
the five muon stations. An estimate of the pr is determined under the assumption that
each track is from a muon which originated from the interaction region and traversed the
known integrated magnetic field. The pt resolution is ~ 25%.

The trigger algorithm then identifies the largest and second largest pr in each event and
accepts the event if either the largest pr is above the LOMuon threshold, or the product of
the largest and the second largest pr is above the LODiMuon threshold. The thresholds used
for taking the data, which is analysed in this thesis, is given in table [4.3] The thresholds

are optimized for maximised signal efficiency under the different LHC running conditions.
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LOMuon threshold LODiMuon threshold

plTargest plTargest % p%ﬂd largest
2011 [84] > 1.48 GeV > (1.296 GeV)?
2012 [84] > 1.76 GeV > (1.6 GeV)?
2016 [83] > 1.8 GeV > 2.25 GeV?
2017 [83] > 1.35 GeV > 1.69 GeV?

Table 4.3: LOMuon and LODiMuon thresholds used to take the majority of the data in each year.
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Figure 4.7: Efficiencies of the LOMuon and LODiMuon trigger in Run 2 data for BT — J/ (u ™)K decays
as a function of the pt of the BT. The efficiencies were determined using samples of trigger unbiased

signal events. Based on a Figure from Ref. [83].

Furthermore, the L0 trigger includes a requirement on the maximum number of hits in
the SPD (SPD multiplicty) to reduce the complexity of the events and therefore speed
up the reconstruction. For LOMuon, the SPD multiplicity is required to be smaller than
450, while for LODiMuon, which accepts a much lower event rate, a looser cut on the SPD
multiplicity of < 900 is used. The use of the SPD multiplicty does not cause a significant
loss in signal efficiency [83].

Figure shows the trigger efficiencies (defined in equation of LOMuon and
LODiMuon in Run 2 data for B* — J/i) (utp~ ) K™ decay as a function of the pr of the
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B*. In terms of the trigger the BT — J/i) (uT ™)K decay is very similar to the decay
analysed in this thesis, which therefore has a comparable trigger efficiency.
The output bandwidth of the LO trigger is 1 MHz, of which 400 kHz are reserved for

the muon triggers LOMuon and LODiMuon.

4.7.2 High Level Trigger

Events that passed the L0 trigger are then processed by the HLT. The HLT is implemented
in software and runs on large computing farm of 27000 physical cores, capable of running
~ 50000 threads using hyper-threading. The HLT processes the events in two stages:
HLT1 and HLT?2.

High Level Trigger 1

In HLT1 a partial event reconstruction is performed. The information from the full
tracking system is used to reconstruct tracks of charged particles that deposited hits in
all tracking stations. These tracks are referred to as long tracks. The quality of each
track is determined by calculating the y? of the fitted track with respect to the associated
hits. Furthermore, tracks in the VELO are used to reconstruct the PV. Due to timing
constraints of HLT1, the only PID that is performed is the identification of muons, which
is achieved by matching long tracks with hits in the muon stations. This is only attempted
for tracks in events which were triggered by LOMuon.

The decision whether or not an event is accepted or rejected by HLT1 is based on
several independent algorithms called trigger lines. Besides specialised trigger lines used for
collecting calibration data or for collecting low multiplicity events, there are two different
inclusive trigger lines as well as muon trigger lines. In the analysis presented in this thesis,
events selected by the inclusive trigger lines and the muon trigger lines are used.

The inclusive trigger lines have the goal of selecting events which contain b- or c-
hadrons by looking for either a single track with large IP or a two track vertex with large
displacement with respect to the PV. The two track trigger line was only introduced in
2015 onward. The tracks must meet quality requirements based on their x?.

The muon trigger lines only run on events selected by LOMuon. They aim at selecting
events containing decays of b- or ¢- hadrons with muons in the final state. There are three
major muon lines: The first looks for a single muon with large IP with respect to the
PV and with large pr; the second muon line selects dimuon pairs with a dimuon mass

matching with the mass of charmonia or bottomonium resonances; the third muon line
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Figure 4.8: Efficiency of the HLT1 muon trigger lines and the HLT1 inclusive single track trigger line
(Track MVA) in Run 2 data for B* — Jap (utp~) K™ decays as a function of the pr of the BT. Figure
from Ref. [83].

selects dimuons from a displaced secondary vertex. The efficiency of the muon lines and
the efficiency of the single track inclusive line are shown in figure [4.8] Since the muon lines
are only applied to events triggered by LOMuon and LODiMuon, their absolute efficiencies
are lower than the efficiency of the inclusive line, which runs on all L0 events.

The HLT1 trigger stage reduces the event rate of ~ 1 MHz, which it receives from LO,
to ~ 110 kHz which gets passed to the second stage HLT?2.

High Level Trigger 2

In HLT2 a full event reconstruction is performed. Besides long tracks, also tracks that
only deposited hits in the T stations (T tracks) as well as tracks that deposited hits in the
TT and the T stations (downstream tracks) are reconstructed. HLT2 also performs full
PID using the muon system, the RICH detectors, and the calorimeter system.

In Run 1 the detector was not fully calibrated during the reconstruction in HLTZ2,

causing the event variables to slightly differ from the variables obtained during offline
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topological”) in Run 2 data for BT — J/ (ut ™)K ™ decays as a function of the pr of the B*. Figure
from Ref. [83].

reconstructiorﬁ. During Run 2, due to improvements in computing power and optimisation
of algorithms, it was possible to use the full calibration data in HLT2, achieving the
highest possible resolution of the variables. This allowed the HLT?2 trigger decisions to be
optimized in Run 2.

Similarly to HLT1, the decision whether an event is accepted or rejected by HLT?2 is
based on several independent trigger lines. The HLT2 lines which are relevant for this
analysis are presented in the following.

Inclusive b-hadron trigger lines search for a two-, three-, or four-track vertex that is
displaced from the PV and has sizeable py. These trigger lines are also referred to as
topological trigger lines as they use the typical topology of b-hadron decays to identify
them. They are implemented with multivariate classifiers which are trained to optimize
the selection criteria to select b-hadrons which can be fully reconstructed inside the LHCb
acceptance and to reject c-hadrons which are the biggest contribution to background.

The HLT2 muon trigger lines select a wide range of muonic signals, similar to the

4Offline reconstruction refers to the event reconstruction which is performed on the stored data.
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HLT1 trigger lines. Important for this analysis are the muon and dimuon trigger lines
which require large displacement from the PV. Figure shows the efficiency (defined
in equation of HLT2 muon trigger lines, the inclusive topological trigger (”any
topological”) lines and the topological triggers lines where one track is required to be
identified as a muon (”any muon topological”). Compared to the any topological trigger,
the any muon topological lines have a lower efficiency because they only process events
selected by the HLT'1 single-muon trigger line.

Due to improvements in various parts of the data acquisition (DAQ), allowing faster
storage of events, the output rate of HLT2 trigger changed over the course of the data
taking: 3 kHz in 2011 [85], 5 kHz in 2012 [84], and 12.5 kHz from 2015 onward [83].

4.8 Generation of simulated events

As in any particle physics experiment, the distributions of the observables measured by
the LHCD detector - in case of this analysis the helicty angles and ¢* of B®— K*u*p~ -
are different to their true distributions in nature. This is due to the effect of the detector
acceptance, detector response, the trigger and the subsequent steps in the event selectionﬂ,
which may favor certain values of the observables over others. In order to correct the
measured distributions for these effects, so called full Monte Carlo Simulations (MC) are
produced. In this context ‘full’ refers to the fact that the full sequence of events from
the initial pp collision until the reconstruction of the final state particles is simulated.
Simulations are produced in several stages, where each stage is handled by a different
software package.

The pp collisions and the primary particles produced within them - including b-hadrons
- are simulated using Pythia [71,[86]. The subsequent decay of unstable particles (e.g.
b-hadrons) into secondary particles is handled by EvtGen [87]. The interaction of the
produced particles with the LHCb detector and the detector response is then simulated
using GEANT4 [88]. The output from the simulated detector response is then digitized by
the BOOLE package [89] and reconstructed in the same way as data from the real detector
using BRUNEL [89].
The resulting simulations can be analysed just like data but also carry the additional
information of the true variables (e.g. momentum, PID, decay chain information) for

each particle. Comparing true and reconstructed distributions of MC events, allows the

5The event selection will be presented in section
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quantification of detector/trigger/selection effects as well as the optimization of signal
selection procedures. For this analysis, this includes the parameterisation of the acceptance
(see section as well as part of the parameterisation of the resolution (see section |5.3)).

4.8.1 Correcting differences between data and simulation

In order to rely on the simulations to model the acceptance and resolution, it is important
to ensure that the simulated detector replicates all effects of the real detector correctly.
Any systematic difference in the distributions of simulated events and data events are
corrected for. Differences in the PID variables are corrected using so-called PID resampling
and several other differences are corrected by reweighting the simulated events to match

the distributions in data.

PID resampling

Since the PID variables are used to suppress several background contributions, as described
in section [5.1] it is important that the PID variables agree well between data and simulation.
However, due to the presence of a large number of low energy photons in the RICH detector,
as well as due to other factors, the simulation does not reproduce the PID variables well.
In order to improve the agreement between simulation and data, the PID variables in the
simulations are resampled using clean high-statistics control samples from data as input.
The data control samples, given in table 4.4] are selected using only tracking quantities.
The control samples are used to produce calibration histograms of each PID variable in
bins of track pseudorapidity 7, the number of tracks per event (nTracks), and track pr.
Each track in the simulation is then matched to a bin in 7, nTracks, and pr and each
PID variable is randomly sampled from the respective calibration histogram.

To validate the resampling method, the PID variables are compared in B®— Jj) K*°
data and B — J/i) K*° simulation. Since this data also includes background events, the

Particle Sample
K Dt - D(—=K*n")nt
m Dt — DY =Kt n)mt
{t J —ptuT

Table 4.4: High statistics data samples used for the PID resampling.
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Figure 4.10: PID distributions of the hadrons in s Weighted B® — J/i) K*° data and simulation. The top
figures show the comparison of sWeighted data (black), non-resampled simulation (green) and resampled

simulation (red) for Run 2. The same is shown in the bottom plots but for Run 1.

sPlot technique described in Ref. [90] is used. The sPlot technique works by calculating a
weight for each event, proportional to the probability of the event being a signal event.
These so-called sWeights are determined by using a control variable, in this case the
mgs distribution. Applying the sWeights to the events in the BY— Jh K*° data results
signal-like distributions in each of the variables of interest.

Figure [4.10] shows the distribution of the PID variables of the hadrons in sWeighted
B — J/ih K*Y data (black points) and in non-resampled simulation (green) and resampled
simulation (red). The top plots show the Run 2 data and simulation while the bottom plots
show the Run 1 data and simulation. The resampled simulation shows good agreement
with the sWeighted data. The spike at 0 in the Run 2 pion PID distribution is caused by
events which are below the RICH momentum threshold. The threshold was higher during
Run 2 than during Run 1 because of hardware modifications of the RICH detector.
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Kinematic reweighting

The distributions of the number of tracks per event nTracks, the vertex fit quality of the
signal candidate (x%,,), and the B° candidate pr in the simualation show discrepencies
to the respective distributions in data and therefore need to be corrected. This is done
by determining weights for each simulated event such that the simulation matches the
data. The weights are calculated by comparing the nTracks, x%,,, pr(B") distributions
in sWeighted B — Jiy K** data to the distributions in the simulation. The weights are
derived sequentially, whereby first a weight is derived to correct the nTracks distribution,
which is then applied to the simulated events before determining the weight for p(B°).
Finally, the product of the first two weights are applied before deriving the weight for x%. .
These weights are then applied to all simulated events based on the nTracks, X3, and
pr(BP) of each event. The effect of the reweighing is shown for Run 2 simulations in figure
The distributions of the reweighed simulation agree well with the sWeighted data.
Several checks have been performed to further validate the reweighting [91]. It has
been confirmed that quantities being reweighed are not correlated to the angles cosf,
cos g, and ¢. Also the agreement of data and simulation has been confirmed for several
other variables. Furthermore, it has been shown that the weights can be applied to correct

the simulation across the full ¢ range.
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5. Event selection and corrections of

experimental effects

As stated in section [{.2, the data analysed in this thesis was taken in 2011 and 2012
(Run 1) as well as 2016 and 2017 (Run 2). Ultimately, it is planned to fit the merged
datasets of Run 1 and Run 2. However, in order to fit the signal model to the data,
an acceptance model is required (see section . Currently, only separate acceptance
parameterisations for Run 1 and Run 2 data are available, but in order to fit the merged
dataset an averaged acceptance parametersation needs to be determined. This is beyond the
scope of this thesis. Since the parameterisation of the background (see chapter@ does not
require an acceptance parameterisation, the background studies are presented based on the
merged dataset. Furthermore, a fit with the full model including the signal and background

components is performed using Run 1 data only.

The goal of the analysis presented in this thesis is to simultaneously determine the
Wilson Coefficients as well as the resonant contributions by fitting the full ¢> spectrum of
B° — K*%u* 1~ events. The procedure for selecting B° — K*%u* 1~ candidate events from
the events recorded by LHCb is described in section [5.1} The particle reconstruction and
the event selection procedure can influence the shape of the angular and ¢? distributions of
the reconstructed B® — K*°u* = decays. These so called acceptance effects are accounted
for during the fit by multiplying the signal model with an acceptance function as described
in section
Due to the limited resolution of the detector, the reconstructed peaks of the narrow
resonances ¢(1020), J/i), and 1(2S) are much wider than their natural widths. In order to
properly describe the data with the model described in chapter |3] the model is convolved

with a resolution function as described in section 5.3l

5.1 Selection

The events analysed in this thesis were recorded by LHCb in 2011 and 2012 (Run 1) as
well as 2016 and 2017 (Run 2). The purpose of the selection procedure is to identify the
events which most likely contain signal candidates. Signal candidates are reconstructed

by correctly identifying and combining the tracks of the four final state particles of
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BY— K*9(— K™n~)uTp~ decays including all resonant modes. The final state particles
are identified using the mass and charge hypothesis from the event reconstruction described
in chapter |4l Any event that does not contain a correctly reconstructed signal candidate
is referred to as a background event.

The fit presented in this thesis is using the same event sample as the published
measurement of the ¢?>-binned angular observables [1]. Additionally, the 2017 data is
analysed in this thesis using the identical selection algorithms as for the 2016 data.
The selection procedure is therefore presented briefly, omitting any discussion of the
optimisation of the different cut values, which would be beyond the scope of this thesis.
For a more detailed discussion see Refs. [91-93].

The selection is performed in four main stages. It starts with the trigger, which was
explained in section [4.7. The sample of the triggered events is then passed through the
stripping where various criteria are applied to reduce the size of the event sample by
selecting only well reconstructed events that are likely to contain signal candidates. The
stripped data is then passed through the so called pre-selection, a series of cuts aimed at
reducing the number of combinatorial background events, while retaining as many signal
events as possible. Combinatorial background events are events where the candidate is
formed by random combinations of tracks not belonging to a signal decay. The stripping
as well as the pre-selection is presented in section [5.1.1}

Background contributions from misidentified decays, referred to as peaking backgrounds,
are removed with specific cuts as described in section [5.1.2] In the last step of the selection
process, a multivariate analysis (MVA) classifier, which is trained to identify signal events,
is used to further reduce background contributions as explained in section [5.1.3, The
resulting number of candidate events in the different kinematic regions of interest are

summarised in section [5.1.4

5.1.1 Stripping and Preselection

The triggers used to collect events containing decays of B mesons with muons in the final
state are explained in section [£.7] After the event reconstruction is complete and potential
signal decays are identified, only TOS events are selected for analysis, i.e. only events
where the trigger objects associated to the signal decay were responsible for triggering the
event.

The triggered events are then passed through a stripping algorithm, also referred to as

stripping line. The conditions of the stripping line B2XMuMu used to select B® — K*Ou*pu~
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Candidate Stripping Run 1 Run 2

B meson IP x? < 16 (best PV) IP x? < 16 (best PV)
B meson 4800 MeV/c? < m's§ < 7100 MeV/c? 4800 MeV/c? < mlss < 7100 MeV/¢?
B meson DIRA angle < 14 mrad DIRA angle < 14 mrad
B meson flight distance y? > 121 flight distance x? > 121
B meson vertex x*/ndf < 8 vertex x?/ndf < 8
php m(ptp~) < 7100 MeV/c? m(ptp~) < 7100 MeV/c?
php~ vertex x?/ndf < 9 vertex x?/ndf < 9
K*Y m(KTn~) < 6200 MeV/c? m(KTn™) < 6200 MeV/c?
K*0 vertex x?/ndf < 9 vertex x?/ndf < 8
K*0 flight distance x? > 9 flight distance x? > 16
tracks ghost Prob < 0.4 ghost Prob < 0.5
hadron min IP y% > 9 min IP y% > 6
muon min IP y? > 9 min IP y? > 9
muon IsMuon IsMuon
muon DLL,, > -3 DLL,r > -3
GEC SPD Mult. < 600 SPD Mult. < 600

Table 5.1: Stripping selection criteria of the B2XMuMu line for Run 1 and Run 2.

Candidates Selection
Track 0 < 6 < 400 mrad
Track Pairs Opair > 1 mrad

K DLLgr > -5

T DLLg, < 25
PV X —(X)| < 5mm
PV Y —(Y)| < 5mm
PV |Z —(Z)| < 200 mm

Table 5.2: Pre-selection cuts applied to the stripped event sample. In this table 0 refers to the angle of a

track relative to the beamline and 6,4, is the opening angle between two track pairs.

events, including any resonant modes such as B®— J/i) K*°, are summarised in table
for Run 1 and Run 2. The differences between the cut values for Run 1 and Run 2 are

due to changes in the running condition of LHCDb and are discussed in Ref. [91].
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The first series of cuts of the stripping are related to the B° meson candidate. The B°
is required to be likely to originate from the PV and a broad cut is placed on mgy,,, i.e.
the reconstructed invariant mass of the B° (MK is also denoted as M6 hereafter). The
DIRA angle is defined as the angle between a line drawn from the PV vertex to the decay
vertex (DV) of the B® and the sum of the 4-momenta of its decay products. Requiring a
small DIRA angle increases the probability of having a well reconstructed B° meson. The
BY candidate is also required to have travelled a significant distance from the PV before
decaying. Furthermore, a reasonable quality of the DV of the B is required.

To ensure the two muons originate from the same vertex, a cut is placed on the dimuon
vertex quality. Also a broad limit is placed on the dimuon mass to reject events with
dimuon masses much larger than the expected range in B®— K*u*pu~ decayﬂ.

The reconstructed K*° is also required to have a good vertex quality. Furthermore, the
flight distance of the K*¥ relative to the PV is required to be sufficiently large to ensure
the K*° vertex is not compatible with being part of the PV.

For each final state track, a cut is placed on the probability of being a ghost track,
defined as a track that is falsely reconstructed from hits in the detector that are not
associated to a given particle. Furthermore, it is required that the final state particles are
well separated from the PV by requiring a minimum IP. For each muon the PID variable
IsMuon (explained in section is required to be true and a minimum requirement is
placed on the probability that the muon is a muon rather than a pion.

Lastly, in order to reject events with a large number of background tracks, which are less
likely to be reconstructed well, a cut is placed on the SPD multiplicity (see also section
4.7.1)).

After the stripping, the pre-selection cuts are applied which are summarised in table
Identical cuts are used for Run 1 and Run 2 data. All final state tracks are required
to have angles relative to the beamline such that the track is within the acceptance of the
LHCD detector. Also, a minimum requirement is placed on the opening angle between
track pairs to ensure that tracks can be well separated in the reconstruction. The PID
variable DLL, is used to ensure a high probability that both the pion and the kaon are
identified correctly. Finally, in order to reject events containing tracks from beam-gas
interactions, cuts are placed on the distance of the PV position from the average PV
position.

After the pre-selection, an additional cut is placed on the K7 invariant mass, mgy,

1Ultimately, the fit is performed in the range (0.18 < ¢? < 18) GeV?/c*
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choosing a window of £100 MeV/c? around the nominal K*° mass:
795.9 < my, < 995.9 MeV/c?. (5.1)

Furthermore, for events which contain multiple reconstructed B® — K*°u*p~ candi-
dates (< 1% of all events after selection) one candidate is chosen randomly and all tracks

associated to the other candidates are considered to be background tracks.

5.1.2 Peaking backgrounds

Several decays can be misidentified as B® — K*°(— K7~ )u*p~ decays and therefore
end up in the selected event sample as so called peaking backgrounds. Furthermore, true
BY— K*(— K™n~)uTu~ decays can be reconstructed wrongly (for example by swapping
the K and m) which also contributes to the peaking backgrounds. To reject peaking
backgrounds, specific cuts are used as outlined below.
Misreconstructed B® — K*O(— K*7~)u*pu~ decays where the K and m were swapped
are rejected by requiring
DLLgA(K) > DLLg, (). (5.2)

Two vetos are used to reject AY — pK~pTp~ decays. They can mimic signal decays if

the proton is misidentified as a pion. These are vetoed by rejecting events with

DLL,.(m) > 0 and (5.3)
M (rspyun € 5575, 5665] MeV/c?,

where mg(r—p)uu denotes the invariant mass of the reconstructed B candidate when
swapping the mass of the K for the mass of a proton. A) — pK~pu"u~ decays can also
mimic signal decays if the proton is misidentified as a kaon and the kaon as pion. To

remove this background source, events with

DLLgr(m) > 0 and (5.4)
MK —p)(rs K € [5DT5, 5665] MeV/ ¢

are rejected.
The decays B® — Jip(— puTp~ )K*(— KTn~) and B — »(25)(— puTp ) K*(—

K*7~) can contribute to the peaking backgrounds if the final state particles are swapped
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through misidentification: pu~ <+ 7~ or KT < pu*. These swapped backgrounds from
B%— Jhp K*° are vetoed by rejecting events with

Mz € [3036,3156] MeV/c* and (5.5)
DLL,(m) > 5.0 or isMuon(r),

as well as rejecting events with

MKy € [3036, 3156] MeV/c? and (5.6)
DLL,(K) > 5.0 or isMuon(K).

Analogously, the swapped backgrounds from B® — (25)K*Y decays are vetoed by rejecting

events with

My € (3626, 3746] MeV/c? and (5.7)
DLL,-(7) > 5.0 or isMuon(m)

and rejecting events with

MK € [3626, 3746] MeV/c® and (5.8)
DLL,(K) > 5.0 or isMuon(K).

The rare decay B? — ¢(— KTK )utp~ can mimic a signal event if the K~ is

misidentified as a 7~. This background is vetoed by rejecting events with
MK (rs iy € [5321,5411] MeV/c? (5.9)
and rejecting events with

Mi@-x) € [1010,1030] MeV/c® and DLLg,(7) > —10 or (5.10)
M rx) € [1030,1075] MeV/c® and DLL () > +10.

Finally, the rare decay BT — K" pu~ can contribute to the peaking backgrounds if the

final state is combined with a random pion from the rest of the event. This contribution is

rec

only present in the upper mass side-band of the m's§ spectrum and is removed by rejecting

events with

Mgy > 5380 MeV/c? and (5.11)
Mg € [5220, 5340] MeV/c?.
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This veto also removes combinatorial background events in the upper mass side-band,
causing a sculpting of the background distributions. This has to be taken into account
when using the upper mass side-band to parameterise the combinatorial background, as

described in chapter [6]

5.1.3 Multivariate Selection

In the final step of the selection procedure a multivariate analysis technique is used to
further suppress background events. This involves training a multivariate classifier, in this
case a Boosted Decision Tree (BDT) [94], to classify signal and background events using

their distinct characteristics in data. The input variables for the BDT are:
o B lifetime;

e B% momentum and pr;

B direction angle (DIRA);

Ktn~=putp~ vertex x?;

DLLg, of the kaon and pion;

DLL, of the muons;
e isolation of the four final state particles.

The isolation is defined as the number of background tracks that can form a vertex with a
given final state track.

The BDT is trained using data. The events in the upper mass side-band
((5350 < mfss < 7000) MeV/c?) are labelled as background events. The sample of
events labelled as signal events is obtained from B®— J/i K** data. Since this data also
includes background events, the sPlot technique, already mentioned in section is used.
Applying the per-event sWeights to the B®— J/i) K*0 data yields signal-like distributions
in each of the input variables.

In order to maximise the performance of the BDT, the k-folding technique is employed.
The dataset is divided into 10 sub-samples and the BDT is trained using 9 of the sub-
samples as input and evaluated on the remaining sub-sample. Then, the training step is
repeated while including the previously excluded sub-sample and excluding a different

sub-sample. This is repeated until 10 different BDTs have been trained. When applying
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Figure 5.1: Distribution of the BDT variable of the events in the kinematic region considered in this thesis
((5220 < miss < 5840) MeV/c?, (0.18 < ¢* < 18.0) GeV?/c?, (795.9 < mp, < 995.9) MeV/c?) in Run 1
data (left) and Run 2 data (right). All events with BDT > 0.1 are used for the analysis.

the multivariate classifier to the event sample after stripping and pre-selection, the output
of these 10 BDTs is averaged to obtain a single BDT variable for each event — except for
the events in the J/i region, where for each given event only the single BDT is used that
was trained on the 9 sub-samples which did not include the given event.

The distribution of the BDT variable in Run 1 data (left) and Run 2 data (right) is
shown in figure [5.1]

The cut value for selecting the event sample for analysis is chosen such that signal

significance defined as

s = Mg (5.12)

\/ 4Vsig + kag

is maximised. This is given for BDT > 0.1 for both Run 1 and Run 2 data as shown in
Ref. [91]@. The signal efficiency for this BDT cut value is 77% in Run 1 and 87% in Run 2,
whereas the background rejection efficiency is 95% in Run 1 and 97% in Run 2 [50].

2The actual maximum for s is found at BDT ~ 0 for both Run 1 and Run 2 data. However in order to
be conservative and to avoid being affected by fluctuations which may shift the observed maximum, a

slightly higher cut is used for the analysis.
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5.1.4 Number of candidate events after selection

The number of candidate events per g?-region after the selection in Run 1 only data and
in the merged Run 1 and Run 2 data are given in table for the signal region and the

upper mass side-band.

m'ss region | low ¢> mid ¢*> high ¢* | total

signal region | 450 260772 17547 | 278769
Run 1

side-band 64 3156 419 3639

signal region | 1556 868624 57504 | 927684
Run 1 + Run 2

side-band 169 7637 1018 8824

Table 5.3: Number of candidate events per ¢ region (see table for the definition of the ¢ re-
gions) in the signal region ((5239.58 < m!s§ < 5319.58) MeV/c?) and in the upper mass side-band
((5440 < mlss < 5840) MeV/c?) in Run 1 only and merged Run 1 and Run 2 data.

5.2 Acceptance

The angular and ¢? distributions of the final event sample are not the same as the true
distributions of B® — K*°u* 1~ events, due to so called acceptance effects. These include
the limited coverage and limited efficiency of the detector as well potential biases and
inefficiencies in the selection procedure. To take the acceptance effects into account in
the fit to data, the signal model (described in chapter [3]) is multiplied with an acceptance
function.

To determine the acceptance function, simulated B° — K*°u*p~ events, which are
generated according to a phase space model, are analysed. The phase space model yields
flat cos 0y, cos O, and ¢ distributions of the generated events. However, the ¢ distribution
is not flat as it is less likely to generate an event with large ¢?. Therefore, the events are
reweighed to obtain a flat ¢ distribution at generator level. The generated events are
passed through the full detector simulation, reconstruction and selection procedures (see
section [4.8)). Since the distributions are flat at generator level, any non-flat shape in the

cos By, cos O, ¢, and ¢? distributions of the events after reconstruction and selection is due
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to the acceptance effects. Therefore, the acceptance function is obtained by parameterising
the cos 8y, cos Ok, ¢ and ¢? distributions of the events after reconstruction and selection
with
g(cos by, cos O, ¢, ¢*) = Z Crimn P (cos Oy, k) P(cos O, 1) P(¢, m) P(q*, n), (5.13)
k,l,m,n

where P(x, m) are Legendre polynomials as a function of 2 and of order m. The observables
¢ and ¢* are re-scaled to the range —1 < x < 1 when evaluating the polynomial. The
factors cyim, are the acceptance coefficients. Using the orthogonality of the Legendre

polynomials, the acceptance coefficients can be calculated with

1 i K%Jrl) (21+1) (2m+1> (2n+1)
Ckimn = Y7 Ww;
N £ 2 2 2 2 (5.14)

x P(cos By, k)P(cos O, 1) P(¢, m)P(q*, n)] )

where the sum indicates a sum over the simulated events. The factors w; include the
weights per event which are applied to obtain a flat ¢* distribution as well as the weights
used to correct for differences in the simulation and data (described in section [4.8.1)). N’
is the normalisation associated with the weights, given by N’ = Zf\il w.

The orders of the Legendre polynomials are chosen as the set of lowest orders with
which the acceptance parameterisation can describe the acceptance effect well: k& = 4,
l=5,m=26,n=>5|l]. Thus, there are 720 coefficients in total.

In this thesis, the same acceptance coefficients are used as in the published measurement of
the angular observables in B®— K*°u™u~ decays [1]. The acceptance is parameterised for
Run 1 and Run 2 separately, since the detector condition as well as some of the selection
criteria are different for the two periods. Since, only Run 1 data is analysed with the
signal model (see introduction of this chapter), the acceptance is only shown for Run 1.
Figures shows the ¢?, cos by, cos O, and ¢ distributions of the phase-space simulated
B?— K*9u*u~ events after reconstruction and selection as well as the one-dimensional

projections of the acceptance parameterisation for Run 1.
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Figure 5.2: One-dimensional projections of the four-dimensional acceptance parametrisation on g2, cos 6y,
cosfp, and ¢ for Run 1. The points are the distributions of B® — K*9uTu~ events generated with a

phase space model and passed though the full reconstruction and event selection procedure.
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Figure 5.3: Unconstrained-¢> (open points) and constrained-¢? (closed points) distribution of the Run 1
events in the narrow core region of the J/ib peak. Each distribution is parameterised with a Gaussian (blue
line and red line) and the resulting width parameters (o) are given on the figures. The mass constraint

improves the ¢? resolution by a factor of ~ 2.3.

5.3 Resolution

5.3.1 B mass constraint

The model described in chapter [3| contains the narrow resonances ¢, J/i), and 1(2S) which
have natural widths much narrower than the ¢? resolution in the measurement. In order
to maximize the sensitivity to the interference between the resonances and the penguin
amplitudes, improving the ¢? resolution is crucial. Therefore, a mass constraint is used,
which works by varying the reconstructed 4-momenta of the final state particles within
their measured uncertainties such that the invariant mass mg,,, best matches the known
mass of the B meson (mpo = 5279.58 MeV /c? [30]). Since the constraint adds additional
information into the measurement, the resolution in ¢? is improved with this methodﬂ
At the peak position of the J/), the mass constraint improves the ¢* resolution by
a factor of ~ 2.3 as shown in figure , where the unconstrained ¢* distribution (open

points) and the constrained ¢? distribution (closed points) of the events in the core of

3The mass constraint also improves the angular resolution, but since the angular distributions have no
sharp peaks, the angular resolution is much less important than the ¢2 resolution. Thus, the unconstrained

angles are used in the fit.
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the J/ib peak in Run 1 data are shown. Also shown are Gaussian fits (red line) to each
distribution and the resulting width parameters (o).
For the remainder of the thesis ¢? refers to the mass constrained ¢?, unless specified

otherwise.

5.3.2 Resolution model

Despite the improvement of the ¢? resolution, discussed in the previous section, the
reconstructed peaks of the ¢(1020), J/i», and ¥ (2S) resonances are still much wider than
the respective natural widths. Thus, in order to fit the signal model (described in section
to the data, the model is convolved with a resolution function, following the approach
used in Ref. |[49]. The other resonances besides the ¢(1020), J/i», and ¥ (2S) are much
wider than the ¢? resolution and are therefore not significantly influenced by the resolution.
However, the three narrow resonances can only be described when modelling the resolution
correctly.

The ¢? resolution changes as a function of ¢2, but it would not be computationally
feasible to model the resolution with a function that continuously changes as a function
of ¢* E| Therefore, three independent resolution regions are defined such that each region
contains one of the narrow resonances. The ¢? regions are given in table . The resolution
parameters are constant within each ¢? region. The fit with the signal model is then
performed as a simultaneous ﬁtﬂ to these regions, where all signal parameters are shared
across the regions but the resolution parameters in each region are independent.

The resolution in each region is modelled with a sum of a Gaussian G and a double

sided crystal ball C' with common mean parameter u, i.e.

R<q27 X) - fG(q27:U’7 UG) + (]‘ - f)C(q27 H, 0C, O, Oy, nl77]u)7 (515)

where f is the relative fraction of the Gaussian with respect to the double sided Crystal

Ball function, and o and o¢ are the widths of the Gaussian and the double sided Crystal

4The convolution is implemented via a Fast Fourier Transform, which would not be possible if the
resolution parameters depend on ¢2. During the fit, the convolution needs to be calculated for each call of
the likelihood sum. Therefore, an efficient algorithm for calculating the convolution is crucial in order to

maximise the computational efficiency of the fit.
5¢Simultaneous fit’ refers to a maximum likelihood fit where the event sample is split into sub-samples

according to a defined segmentation of the data (e.g the three ¢* regions). A separate likelihood sum is
calculated for each region, where the PDF depends on the region (e.g. different resolution parameters).
Parameters that enter the PDF in several regions (e.g. all signal parameters) are referred to as shared

parameters.
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q? range (GeV?/c*)

low ¢? [0.18, 3.24]
mid ¢ [3.24, 11.56]
high > [11.56, 18.0]

Table 5.4: Definition of ¢? regions used throughout the thesis.

Ball function respectively. The double sided Crystal ball function is given by

AI(BI — (5)771 if o < (87}
_1ls2

C(¢% 1y 00,y Qs ) = { e ifay <6< o (5.16)
Ay(By — 8™ i > ay

with,
§ = (¢* — p)oc,
M,u
(T ) el
Al,u - (’alu’> e 2 ) (517)
Bl,u - UL - |al,u|7
|O‘I7U|

where «a;,, and 7, are the parameters that set the slope and onset of the lower (denoted
with index [) and upper (denoted with index u) exponential tail.

The strategy for determining the parameters depends on the ¢? region. In the low ¢?
region the number of resonant B® — ¢K*? events in the data is too small to determine
the resolution from data reliably. Hence, in this region the resolution parameters are
determined using B° — K*°u i~ simulations. In the mid and high ¢? region, the number
of resonant events is sufficient for determining the resolution parameters directly from
data.

The resolution parameters for Run 1 and Run 2 data have been compared and were
found to be compatible. Therefore, it is feasible to determine a resolution parameterisation
for the merged dataset using the same functional form as given in equation However,
as discussed in the introduction of this chapter, in this thesis only the Run 1 data is fitted
with the signal model, and therefore only the Run 1 resolution parameterisation is shown

in this section.
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Determination of the resolution parameters in the low ¢ region

In order to determine the resolution parameters in the low ¢* region, simulated B° —
K*% ™ events are used, which contain both the information of the reconstructed particles
as well as the generator level ‘true’ values for all kinematic observables. For each event,
the difference of true and reconstructed ¢? is calculated. The distribution of ¢2 . - ¢2, of
all events within (0.18 < ¢2_ < 3.24) GeV?/c? is then parameterised with the resolution
model (equation as shown in figure . The resulting resolution parameters are given
in table . In the final fit to data (described in chapter , the resolution parameters in

the low ¢? region are fixed to these values.

1000~

Events

500

G | L L l L L
—0.05 0 0.05

gX(GeV?/ch
Figure 5.4: Fit of the resolution model to the ¢2,, - ¢2. distribution of simulated B® — K*°u*pu~ decays
with (0.18 < ¢2,. < 3.24) GeV?/c?* for Run 1. Figure from Ref. [50].

Parameter Value

oo 2.02x107% £+ 2.76x 1074
lofe 7.21x1072 £2.76x10~*
f 3.33x1072 4+ 2.47x1072
y -2.80x 107! £ 2.21x1072
Qy 2.93x107! £ 2.33x1072
m 18.84 £+ 7.95

My 9.31 £ 1.71

Table 5.5: Resolution parameters in the low ¢* region. The values are obtained by fitting g2, - ¢ of
simulated B®— K*°u* ™ events with (0.18 < ¢2, < 3.24) GeV?/c* with the resolution model given in

equation [515}
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Figure 5.5: Fits of relativistic Breit Wigner functions convolved with the resolution model to the ¢
distribution of simulated B®— J/i K*0 (left) and B®— ¢(25)K*? (right) decays for Runl. Figures from
Ref. [50].

Determination of the resolution parameters in the mid and high ¢? region

The values of the resolution parameters in the mid and high ¢? regions are determined
in several steps. Firstly, simulated BY — J/i) K*® and B® — ¢(25)K*° events are used
to validate the resolution function. A relativistic Breit-Wigner function is convolved
with the resolution model and fitted to the ¢* distribution of simulated B®— J/i) K** or
B%— 4(2S)K*? events as shown in figure . It is found that relativistic Breit-Wigner
functions convolved with the resolution model are good descriptions of the J/) and 1)(2S5)
peaks. The simulation studies also show that the peaks can be well described with a
symmetric slope parameter oy = —ay,,. Therefore, the resolution model is simplified by
replacing oy and —«, with a single o parameter.

Secondly, the pole mass of the J/i» amplitude in the signal model, described in chapter ,
is set to the measured peak position of the J/i) peak in data: m j, = 3096.6340.01 MeV/c2.
Therefore, the p parameter in the resolution model is set to zero since the resolution
function does not need to account for any shift of the J/i» peak.

Thirdly, the data events in the core region of the J/i) peak ((9.44 < ¢2. < 9.74) GeV?/c?)
are fitted with the full signal model convolved with the resolution model. The J/i) amplitude
is dominating the considered ¢? region, such that effects from the penguin amplitudes are
negligible. In this fit, the tail parameters («, n;,,) are fixed to the best fit values from the
fit to the simulation and only the widths o4 and o¢ and the fraction f are allowed to
float.
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Figure 5.6: Projection on ¢? of the 4 dimensional fit to the events in the core region of the J/) peak in
Run 1 data using the full signal and background model to determine the core parameters of the resolution
model. The dotted red line indicates the signal PDF, the dashed black line indicates the background PDF
(see chapter @, and the solid blue line shows the sum of the signal and background PDFs. The pull is
defined as the difference of the value of data and the value of the projection of the PDF at the center of
the respective bin, divided by the uncertainty of the data.

Figure shows the data in the core region of the J/i) peak as a function of ¢ as well as
the ¢? projection of the fit PDF. The dotted red line shows the signal PDF, the dashed
black line shows the background PDF (explained in detail in chapter @, and the solid blue
line shows the sum of the signal and background PDFs.

The determination of the resolution parameters in the high ¢? region is done similarly
by fitting the 1(2S) peak. In the last step the core of the 1(25) in data is fitted with a
single Breit Wigner function convolved with the resolution model to determine the core
parameters of the resolution model as shown in figure [5.7] In the signal model, the pole
mass of the 1(25) amplitude is set to the measured peak position of the 1 (2S5) peak in
data: my sy = 3685.66 £ 0.05 MeV/c?.

In the final simultaneous fit to all three ¢ regions (described in chapter , the a
parameter of the resolution functions in the mid and high ¢? regions are floated again, to
minimize the dependence of the resolution model on the simulationf}

The distortion of the angular distributions, due to the limited resolution of the detector,

is considered to be negligible compared to the variations in the angular spectra, which

6The parameters 1; and 7, have been found to be largely redundant with the o parameter and are

fixed to the best fit values obtained in the fit to simulation.
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¥(2S) peak in Run 1 data using a relativitic Breit Wigner

convolved with the resolution model to determine the core parameters of the resolution model. Figure

from Ref. [50].

contain no narrow peaks. The systematic uncertainty associated to the angular resolution

is described in section [7.2.4]

Parameter

Value

oc
oge
f
o
au
m
Nu

4.40x1072 4+ 1.84x1073
2.77x107% 4 4.98x10~4
4.47x1071 4+ 4.70x 1072
-9.98x107! £+ 1.75x107!
1.04 + 1.76x107*
17.10 £ 7.74
11.07 £ 3.03

Table 5.6: The resolution parameters for

the mid ¢? region for Run 1 data. The tail parameters are

obtained from a fit to simulated B° — J/) K*? events and the core parameters are obtained from fitting

the core of the J/ip peak in data.
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Parameter

Value

oc
Je;
f
07)
Qy
m
T

5.73x1072 4 1.54x 1072
3.03x1072 4+ 1.67x1073
6.50x107" 4+ 1.29x10~!
-1.10 £ 6.66x 1072
1.10 £ 6.73x1072
6.24 £ 5.75x107!
11.94 + 2.12

Table 5.7: The resolution parameters for the high ¢ region for Run 1 data. The tail parameters are

obtained from a fit to simulated BY — 1(25)K*? events and the core parameters are obtained from fitting

the core of the ¥ (2S) peak in data.
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6.

Background

6.1 Introduction

A major experimental challenge for the analysis presented in this thesis is the modelling

of the background. The final selection of B® — K*°u*pu~ candidates contains about 10%

combinatorial background events in the ¢? regions dominated by penguin B° — K*0p* -
decays and about 2.5% in the regions dominated by B°— J/ip K*° and B®— (2S5)K*".

Thus, in order to extract information about the signal decays from data, it is crucial to

correctly determine the background shapes in all dimensions as well as the background
yield. The functional form of the background PDF is chosen empirically (see section

for the explicit expressions used) and the parameters are determined directly from data.

Modelling the background for the fit presented in this thesis is complex for several

reasons:

(1)

(2)

The high dimensionality of the B® — K*°u* =~ system: The fit is performed in the
three helicity angles cos 8y, cosfy, ¢ (see section , q*, as well as m’ss.

The BY mass constraint of the reconstructed final state particles (see section :
While greatly improving the ¢? resolution for signal events, it has the opposite
effect for background events. It distorts their ¢ distribution and creates a strong
correlation between ¢? and mgs. Thus, it is impossible to simply fit all events across
the full mS§ range to determine the background shape. The solution for this is
presented in section [6.2]

Since the events across the full ¢? range, including the resonant regions, are used in the
fit, there are three types of combinatorial background rather than one: K7~ putpu~,
JPp (= pt ) K, and (28) (= ptpm ) K

The cut on mg,,, used to remove background events from BT — K*p*tpu~ decays

(see equation in section [5.1.2)), creates a gap in the phase space of the upper
mass side-band, which — when ignored — causes a sizeable bias in the background

parameterisation. This effect is discussed in detail in section [6.4]and a novel procedure

for resolving the issue is presented.
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There are other angular analyses of B® — K*°u*pu~ decays [95], [96] and Bt —
K*ptu~ decays [49] where one or two out of these conditions exist, but never all four]f]

Since the background parameters are extrapolated from the upper mass side-band
into the signal region, potential correlations of the angles with m5§ are investigated and
accounted for as described in section [6.7

All the issues outlined above are dealt with in further detail in the rest of this chapter.

A feasibility  study  for  including the lower  mass side-band
(5130 < miss < 5210) MeV/c?) in the background fit has been performed. The
precision of the background parameters could potentially be improved by including the
lower mass side-band, since it would turn the extrapolation of the background parameters
along mig; into an interpolation, and would also increase the number of background events
used for determining the background shape. However, the lower mass side-band contains
approximately 50% signal events, which have a ¢? distribution that is highly distorted in a
non-trivial way. The distortion is due to the fact that the events are mass constrained to
the center of the lower mass side-band (see section . Consequently, the systematic
uncertainty introduced by modelling the distorted signal contribution outweighs the

improvements in the statistical precision of the background parameters.

6.2 Strategy

The fit of the signal mode]ﬂ is performed in the range (5239.58 < mls§ < 5319.58) MeV/c?
indicated with the green area in figure , which shows the m'ss distribution of all selected
candidates in the merged Run 1 and Run 2 data. The signal region is chosen such that
contributions from BY — J/ib K*¥ and B? — ¢(2S5)K*? decays, visible as a hump at around
mlss ~ 5375 MeV/c?, and partially reconstructed B decays at m'ss < 5130 MeV/c? are
fully avoided. About 90% of the B — K*°; ;1= signal events are contained in this region.

The upper mass side-band (SB) starting at m’s5 > 5440 MeV /¢? is used to determine a
parameterisation of the background events in the signal region. The upper mass side-band
is made up purely of combinatorial background events which can be separated into three

different contributions: Fully combinatorial K7~ " u~ events, and resonant combinatorial

1Strictly speaking the Bt — K+ putpu~ veto was used in both analyses but did not cause a sizeable

bias due to different fit strategies and smaller datasets.
2The signal model is described in chapter [3| and the fit of the full signal and background model to

Run 1 data is shown in chapter
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Figure 6.1: Invariant mass distribution of the B — K*u* = candidates in the merged Run 1 and Run 2
data. The green area indicates the signal region. The blue and grey areas indicate the side-band regions.
The red arrows show the mass constraint points for each region. The B — J/p K** and BY — ¢(2S)K*°
decays are visible as a hump at m's§ ~ 5375 MeV/ c? and are fully avoided in the signal region as well as

in the side-band regions.

background events (henceforth referred to as resonant background) containing charmonia
resonances paired with random kaons and pions: J/ip(— ptp”)K n~ and ¥(2S)(—
pru ) Krm.

The three background contributions have independent shapes in all dimensions and can
be most easily distinguished via the ¢ distribution (see figure [6.2)) where the two resonant
backgrounds peak at the J/ib and ¢ (2S) mass respectively, while the fully combinatorial
background spans the full ¢* range.

Effect of the mass constraint

As described in section the 4-momenta of the final state particles of all B — K*0p*p~
candidates are mass constrained to the BY mass in order to improve the ¢? resolution of
the signal events. However, for background events this has the opposite effect. The ¢

distribution of the background is distorted since the mass constraint shifts the momenta
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Figure 6.2: Unconstrained ¢? distribution of the background events in the upper mass side-band
(5440 < mls5 < 5480) MeV/c? in the merged Run 1 and Run 2 dataset.

of the final state particles to best match the invariant mass with the B° mass, despite the
fact that the final state particles are in fact the not decay products of a BY. This effect
is illustrated in figure where the ¢? distributions of the events in several sub-regions
of the upper mass side-band are shown without mass constraint (black points) and after
constraining the events to the B? mass (red points). The large charmonia peaks are
widened and shifted by the mass constraint. The distortion becomes stronger as a function

of m’S§, creating a correlation of the ¢* shape of the background with m's5. Due to this

effect, it is impossible to parameterise the background events across the full mi5 range in
a simple fit, and it is not straight forward to use events in the upper mass side-band to
determine the shape of the background in the signal region.

To solve the issue created by the mass constraint, the upper mass side-band is segmented
into five sub-regions (named SB1 - SB5), indicated with the blue and grey areas in figure
. The m'5s ranges of SB1 - SB5 are given in table . Each SB region has the same
width of 80 MeV/c? as the signal region. The events in each SB region are mass constrained
to the central miss-value of the respective region (marked by red arrows in figure .
Since the SB regions have the same width as the signal region, the SB constraints yield

the same level of distortion of the ¢ shape of the background as the B’-mass constraint
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Figure 6.3: The ¢ distributions of the events in all upper mass SB regions without mass constraint

(black), constrained to mpo (red), and constrained to the center of the respective SB region (green).

in the signal region. The ¢? distribution of the SB constrained events is shown with the
blue points in figure [6.3] The charmonia peaks are widened compared to the peaks in

unconstrained ¢2. In the context of the background fit, ¢? refers to the SB constrained ¢?

101



m'ss range (MeV/c?)  constraint point (MeV/c?) scaled distance to mpgo
Signal | [5239.58, 5319.58] 5279.58 0
SB1 [5440, 5520] 5480 ~0.3851
SB2 [5520, 5600] 9560 ~0.5388
SB3 [5600, 5680] 5640 ~0.6926
SB4 [5680, 5760] 5720 ~0.8463
SBb5 [5760, 5840] 5800 1.0

Table 6.1: Definition of the m[55 regions used throughout this thesis. The second column contains the m'5g
values to which the events in each region are mass constrained to. The third column gives the distance of

the centre of each region to the true mass of the B?, scaled by the furthest distance.

(using the centre of the respective SB region) hereafter, unless specified otherwise.
The background parameters are determined by simultaneously fitting the five SB regions

and extrapolating the background parameters into the signal region.

6.3 Background parameterisation

Since the three background contributions (fully combinatorial background, J/-background,
and 1(25)-background) have different kinematic behaviours, it cannot be assumed that
the shapes of their distributions are the same. Therefore, each of the three background
contributions is parameterised by an independent PDF. The functional form in each

dimension of each PDF is chosen empirically.

The fully combinatorial background is parameterised as
Peom (L, %, m18) = Coos, (€08 8r) X Cons oy (08 Oc) X Co(d) X W(?) x M(miS),  (6.1)

where C; are Chebychev polynomials of second order. W(q?) is a two parameter Weibull
function given by [97]
W) =a-b-(b-¢*)"" e 0", (6.2)

(12

where a and b are the parameters of the function which are hereafter referred to as a__

and b%

o Finally, M(m’s5) is a falling exponential.
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The resonant backgrounds are parameterised using the same functional forms (but
with fully independent parameters) except for the ¢* dimension, which is are described by
a Crystal Ball function CB(¢?) [98]. Thus, the PDFs for the resonant backgrounds are

PJ/¢/¢(25)(§,q2,m) = Ceos0,(€0807) X Ceospy (COSOK) X Cp() X CB(qQ) x M(m). (6.3)

As described in section [5.3] the signal fit is performed simultaneously in three regions
in ¢2. Therefore, the background is also parameterised in those ¢ regions. The low ¢?
region contains only fully combinatorial events, whereas the mid and the high ¢? regions
also contain contributions from J/i) and 1 (2S5) background events respectively. Therefore,

the total PDF describing the background is given by:

Peom (€2, ¢2,m) in low ¢>
73bkg@? ¢*,m) = 3 fru Py (G q®m) + (1= Fr)Peom($3, g% m) in mid ¢* (6.4)
Foes)Pues) (L, 6% m) + (1 = fyes) Peom(2, ¢%,m)  in high ¢?,
where fj,, and fy2s) are the fractions of resonant over fully combinatorial background in
the mid and high ¢? region respectively. The most power for determining these fractions
comes from the ¢ dimensions.

Each Chebychev polynomial has two parameters, the mass dimension is described by
one parameter for each component, the Weibull function has two parameters and each
Crystal Ball function has four parameters. Also, there are the two background fractions
fap and fyos. Thus, the background events are described by 33 parameters in total.
The background parameters are determined by simultaneously fitting the three ¢? regions
and five mi55 SB regions. Thus, there are 15 normalisation regions for the background fit.
All parameters are shared across the SB regions. The parameters of P, are also shared
across the ¢? regions, whereas the parameters of Py and Pyog are only determined in the
mid and high ¢? region respectively. Table shows all background parameters, ordered
by background component and dimension, indicating in which normalisation region each
parameter is determined as well as which parameters are fixed in the fit.

The parameter bgimb is fixed to 0.0001, since the fit favours very small values for this
parameter, but becomes unstable at the lower limit of 0. The parameters tail parameters
'r]gj » and 775}2(2 s) are fixed because they are highly correlated with af]]j » and af@ 5) respectively,
causing the fit to be unstable. The values 773; » = 0.8 and 7712(25) = 50 have been found to

yield good fits to the dat. Furthermore, the parameter oz;f@ s) is fixed to 0.6, since the fit

2 2
3Due to the correlation with the o parameters the exact values of 773/ " and 773} (25) are not important
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has very little sensitivity to it and floating it causes an unstable ﬁtﬁ
The background PDF, described above, assumes factorisation of all dimensions. This
holds true for the angles and ¢? as shown in section . However, there are dependencies
rec

of some of the background parameters on mss, which are taken into account as discussed
in section

4Due to the large value of 77?;(2 ) the Crystal Ball function of the (25) effectively becomes a Gaussian.
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' q? region
component | dim. | name | fixed . )
low | mid | high

cos 6,

cos O

fully comb. a

rec

m'se S

cos 6,

cos O

I

rec m
mise S

cos 0,

cos O

»(25)

2
Mes) | X

rec m
M pgo Si(29)

T X
/ »(29) X

fractions

Table 6.2: The parameters of the background PDF, ordered by background component and dimension.
Also given are the ¢? regions in which each parameter is determined. All parameters are shared across all

SB windows. Parameters that are permanently fixed in the side-band fit are marked in the fourth column.
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Figure 6.4: cos @y distribution of the events in the mid ¢? and SB2 region in Run 1+Run 2 data. The red
line shows a second order polynomial fit which cannot describe the data due the drop-off of the data at
cos B > 0.5 which is caused by the KT putu~ veto.

6.4 Effect of the Bt — K u*u~ veto on the upper

mass side-band

As described in section [5.1], the process of selecting B — K*°u*pu~ events includes a veto

where all events with

MErpn > 5380 MeV/c? and (6.5)
My € [5220, 5340] MeV/c?

are removed from the analysis. This Kpup-veto fully suppresses background events from
BT — KTt u~ decays which — when paired with random pions — would otherwise populate
the upper mass side-band and greatly complicate the parameterisation of the background.

However, the veto also removes all combinatorial background events in a certain region
of the final state phase space, which effectively changes the shape of the cos 0, ¢*, and
ms distributions as well as the relative yields of the fully combinatorial and resonant
backgrounds in the upper mass side-band.

Figure shows the cos 0 distribution of the events in the mid ¢? range in SB2 as
well as the projection of a second order Chebychev polynomial fit. The strong drop-off in

the distribution at cosfx > 0.5 is caused by the veto. The drop-off cannot be described
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by the 2nd order polynomial and causes the parametrisation to be wrong with respect
to the true underlying distribution. Furthermore, this effect is not present in the signal
region and the extrapolation of the background parameters from the upper side-band into
the signal region would thus be invalid.

To solve this, the background PDF is adjusted such that the fit effectively ”ignores”
the affected phase space, as described in the following.

6.4.1 Phase space Monte Carlo simulation

Since mp,,, is not a variable that is included in the fit, the definition of the K*pu*u~ veto
needs to be translated from a cut in mg,, into a cut in (Q ¢*, mlss)-space, in order to
adjust the PDF for the effect of the veto.

A phase-space Monte Carlo simulation is used to this end. B — K*7~pu*u~ decays
are simulated according to a phase-space model for varying masses of the B® meson: Two
million events are generated for each of 50 steps in a range of (5440 < m’s§ < 5860) MeV /c?.
Events are then selected within the m g, window which is used throughout the analysis
(equation . Subsequently, events are selected using the reverse Kpupu-veto condition
(equation - i.e. only the events that are usually vetoed are kept.

Figure shows the cosf, cosOk, ¢, ¢>, miss, and my, projections of the ratio
of the events selected by the veto divided by all events within the mg, window. The
events selected by the Kpuu-veto are evenly distributed along the cos#, and ¢ dimensions,
indicating that the veto has no effect in these dimensions. However, there is a clear
dependence of the number of selected events on cos by, ¢%, m'ss and my..

The strongest dependence of the number of events selected by the veto is on cos 0.
Most of the K pup-veto selected events concentrate in a narrow window in cos 0 of about
0.5 < cosfi < 1.0, which creates the clear drop-off in the cos 0 distribution observed in
data. The effect on the ¢? distribution is smaller and over a wide ¢? range. With rising ¢?,
more and more events are vetoed, which when ignored in a fit would effectively pull the
PDF down at high ¢* with respect to the true distribution. Only the fully combinatorial
background is affected by this since the resonant backgrounds are concentrated in narrow
¢* windows. The effect of the veto on the mlS distribution is the same for all three
background components, and causes a pull on the slope parameters of the background
PDF starting at around m'S§ ~ 5.5 GeV/c?. The effect on the my, shape is small but
may still be relevant for analyses that fit for mg,. In this work mg, is not fitted for, and

thus the 4 dimensional veto-affected region can be projected down into a 3 dimensional
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Figure 6.5: Ratios of the distributions of phase space toy events selected by the K pu-veto condition
divided by all phase space toy events. The graphs are zero-suppressed on the y-axis except for the graph

of cosfOk.

affected region in (cosfy, ¢*, m'ss).

The correlations between cos 0, ¢, and mso lead to a non-trivial shape of the affected

(cosbr, ¢*, m'ss)-phase space. One way to illustrate this is to think of the veto as a cut on

cos O, where the removed cos 0 range depends on ¢ and mg6. Figure shows the m’55
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Figure 6.6: (mlsS, cos 0 )-projections of the K ppu-veto affected phase space in different bins in ¢*. The
red lines indicate the low and high cos 6 values of the cos 0 x-window which is removed by the veto. The
full set of plots is shown in appendix

vs cos Ok distribution of all phase-space toy events selected by the veto within two different
q? ranges: (3.08 < ¢ < 4.08) GeV?/c* (left) and (17.01 < ¢* < 18) GeV?/c? (right). The
red lines indicate the cos 6 x-window which is affected by the veto in the given m’5s bin for
the given ¢? range. The size and shape of the veto-affected area in (m’s6, cosOk) greatly
depends on ¢%. The complete set of plots showing the affected (m’$5, cosfk) areas in bins
of ¢* as well as the affected (mS5, ¢?)-area in bins of cos f is shown in appendix
In order to obtain a well defined description of the veto-affected (cosfx, q?,
m's6)-volume, a three dimensional histogram is filled with all phase space events that
are selected by the veto. This histogram is shown in figure The size of each box is
proportional to the number of entries. The phase space of each bin that has at least one
entry is considered affected by the veto. This non parametric definition of the veto-affected

region in (cos Ok, ¢, m'ss)-space is used in the side-band fit to adjust the PDF for the
effect of the veto as described in section [6.4.2]

Parameter choices for the Monte Carlo Method and smoothing algorithm

Using a Monte Carlo simulation to translate the mg,, cut into a cut in (cosOg, ¢*, m'ss),
and then using a non parametric description of the veto-affected (cos 0k, ¢*, m'ss)-region,
comes with a few details to consider:

A finer binning of the (cos Ok, ¢*, mS)-histogram used to describe the affected phase

space (see ﬁgure yields a more detailed approximation of the affected volume. However,
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Figure 6.7: (cosfx, ¢, m 50) distribution of the phase space simulated events selected by the Bt —
K*pu*p~ veto. The size of each box is proportional to the number of entries. The phase space of each

bin that has at least one entry is considered affected by the veto.

a finer binning of the cut histogram increases the computing time of the side-band fit,
since the calculation of the normalisation of the PDF scales with the number of affected
bins (see section . Furthermore, a finer binning of the cut histogram also increases
the probability for any bin contained in the affected volume to have zero entries - which
would falsely classify that bin as unaffected. This can be offset by generating more phase
space events for every step in miss. However, due to the fact that a single entry in a phase
space bin is enough for the bin to be considered as affected by the veto, a higher number
of events also leads to an effective widening of the cut volume. This is demonstrated in
table [6.3| where the fraction of phase space considered as ‘affected by veto’ is given for
different numbers of events generated per step in m's.

A too large cut-volume leads to additional events being unnecessarily removed from
the upper mass side-band which were not removed by the actual Kt u™pu~-veto, thereby
decreasing the statistical precision of the side-band fit. On the other hand, in order to be
sure that no affected region in phase space is missed, it is actually preferential to slightly
overestimate the affected region.

Taking all of the above into account, a binning of 50 x 50 x 50 is chosen for the (cos O,
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number of events fraction of phase space

generated per step in m55 | considered as ‘affected by veto’

0.1 million 13.55%
0.5 million 15.01%
1 million 15.47%
2 million 15.77%
3 million 15.98%
4 million 16.1%

Table 6.3: Dependence of the size of the (cos 0k, ¢?, mi56)-cut on the number of events generated in the

phase space simulation.

¢*, m’5) histogram and 2 million B — K7~ p*u~ phase space events are generated
for each bin in mi55. Furthermore, an algorithm has been developed which scans the 3D
histogram and identifies the outer edges of the out-most affected bins in every dimension
(the red lines in figure show the outer edges in cosff). Bins that have no entry but
are contained between bins that are affected are filled to ensure they meet the ‘affected by
veto’ condition. The algorithm also ensures that the dimensions are unanimous in their
classification of every bin. This means that, if a bin is between the lowest and highest
affected bin in cos @, it must also between the lowest and highest bin along the ¢? and
m’gs direction. Due to the curved shape of the affected volume this is not automatically
the case for every bin.

In order to demonstrate that the (cosfx, ¢*, m'ss)-region determined via the method
described above does indeed model the region affected by the veto, figure compares
the (m'ss, cos O )-distribution of events which were rejected by the K pp-veto in the range
(9 < ¢* < 10) GeV?/c* in Run 1 data (colored histogram) with the (m’sS, cosfy )-area
which is marked as affected by the phase space simulation (red boxes). All events rejected
by the veto are within the area which is marked as affected. The area that is considered
as affected is indeed a bit larger than the area occupied by the vetoed events but as stated

earlier this is preferred to ensure no affected phase space is missed.
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Figure 6.8: (m’S5, cos 0 ) distribution of the events rejected by the veto in the range (9 < ¢ < 10) GeV?/c*
in Run 1 data. Red boxes: (m's§, cos 0 )-area marked as affected by the KT ptpu~-veto via the phase

space simulation in same ¢ range.

6.4.2 Correcting for the veto in the side-band fit

The 3D histogram shown in figure is used to place an explicit cut, removing all events

in the veto-affected (cos Ok, ¢%, m'ss)-volume. Hereafter, this cut is referred to as (cos O,

7>, m'ss)-cut. About 6% of the side-band events that passed all selection criteria including
the original K utpu~-veto are removed by this cut.
Furthermore, the (cosfx, ¢*, m)-histogram is used to adjust the background PDF by

setting the PDF to zero in the cut volume:

0 for(cos Ok, ¢*, and m'ss) in cut volume

Pi (L hmigh) = . (6.6)
Prg(2,¢°, mis)  otherwise,

where Pbkg(ﬁ, ¢*, m'ss) is given by equation . Setting the PDF to zero in the cut volume,
ensures that the fit does not ‘expect’ any events in this volume and is thus not affected by
the absence of events there.

When calculating the normalisation of P,;{jgh-m, the fact that some of the phase space
is missing needs to be taken into account. Due to the binned definition of the cut volume,

the normalisation fo the background PDF in each ¢? region (low, mid, and high ¢*) and
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each SB region of the simultaneous side-band fit (SB1 - SB5) can be calculated with

qmax mmlx 5
/ Phjeshecut / / / / / Prithout-cut(G) g% m) dmdg*dcosf dgdcost),

cos 9Kmdx G { o .
_ Z/ / / ) / / ‘ Pl\)zvklghout-cut(Q’ q2’ m) dmdqdeOSQKdQﬁdCOSQb
_1 cos Kmln min
(6.7)

rec

2
Where [qmim Gmax

] and [Mumin, Mmax| are the fit ranges in ¢* and m'ss of the given ¢ and

SB region. The sum indicates a sum over all bins ¢ which are affected by the veto, while
g Y

o8 Oxctiny cO8 Okt ], (g g2l ], and [miy,, mi. ] are the cos Ok, ¢%, and misS ranges of

bin <.

Correction of the background fractions

With the PDF adjusted as described above, the fit recovers the correct shapes of the
background distributions unaffected by the veto as demonstrated in the following section
(section . However, the best fit values for the PDF fractions f;, and fyos (see
equation would still be the relative yields after the veto, which are different to the
true relative yields before the veto. They are different, because the resonant and the
fully combinatorial backgrounds lose different relative amounts of events to the veto, since
the shapes of their distributions are different - most notably in ¢*> where the resonant
backgrounds peak at the J/ib and 1(2S) masses squared, whereas the fully combinatorial
background is distributed much more evenly across ¢>.

The effect of the veto on the background fractions is corrected for during the fit by

calculating the fraction of lost events for each background contribution:

fr])wzthout cut
fr])wzth cut

where A stands for fully combinatorial (com), J/ip or ¥(2S) and the integrals denote 5D
integrals over (Q 7>, m's5). Using equatlon . fp and fyo, in equation are replaced
with

Ry = (6.8)

a 5 Reom

Jo = Film + (1 - DR
Here, a stands for either Jib or ¢(2S). f¢ is the fraction after cut and f° is the
fraction before cut. When replacing fj, and fye, in equation with f}’w and
f{Z(zs)a the total PDF describes the events after the veto, but the fit determines

(6.9)
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the floating parameters ff}/w and ff/j(zs), i.e. the fractions before the veto. The frac-

tions before the veto are then extrapolated into the signal region as described in section [6.7}

6.4.3 Demonstration of the efficacy of the veto correction

The efficacy of the method described above is demonstrated with a toy study. Events are
generated according to Pt (i.e. equation . The resulting cos O, ¢*, and m’ss
distributions are shown by the red points in figure All events in the veto affected
(cos Ok, ¢*, m'ss)-volume are then removed from the toy sample, yielding the distributions
shown by the blue points.

The sample after the cut is then fitted with Pﬁ‘ﬁgh'wt, as described above. Projections
of Pf)f;h‘c‘“ are calculated in the bins of the (cosfk, ¢*, m'ss)-cut histogram and added
together while scaling each projection with the number of events in the respective bin. The
resulting projections are shown by the black lines in figure which show good agreement
with the distributions of toy events after the cut.

The parameters obtained from this fit are then used to draw projections of Pf)ﬁghom‘mt
scaled with the total number of events before the cut as shown by the red line. These
projections are in very good agreement with the distributions of the toy sample before cut,
demonstrating that the correct parameters can be obtained even when fitting the events

after the cut.

Pull study

Furthermore, a pull-study is conducted to test the correction of the veto. The pull of a fit
parameter is defined as
a4 — Gtrue

pull(a) = (6.10)

o(a)
where a is the value returned by the fit, a. is the value with which the toy sample
was generated, and o(a) is the uncertainty returned by the fit. If the fit has no bias
for parameter a and the uncertainty o(a) is a 1o standard deviation, then pull(a) is
distributed according to a normal distribution with p(pull(a)) = 0 and o(pull(a)) = 1.
Thus, by generating many event samples, fitting each one and calculating the pull for
every parameter in every sample it can be tested whether the fit returns the correct

parameters without any biases.
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Figure 6.9: cosfx, ¢°, m’56 distributions of a toy MC before and after the (cos 0, q?, m)-cut. The sample
of events is fitted with the PDF which has been adjusted for the missing phase space. The projections of
that fit are shown with the black line. Using the parameters from that fit, projections of the PDF without
adjusting for the missing phase space are shown with the red line which shows good agreement with the
distribution of the events before the cut. This demonstrates that the method is capable of determining

the correct background shapes even when fitting the event sample after cut.



Entries 1200 Entries 1200

90 90

« «
%Ei Mean  —7.376 +0.03084 %'Ei Mean 0.0377 + 0.02897
S 80 Std Dev 1.068 +0.02181 S 80 Std Dev 1.004 + 0.02048
2 o Prob 0.4896 2 Prob 0.5854

=)

Gauss i -7.374 +0.031 7
Gauss o 1.072 £ 0.022

Gauss 1 0.03974 + 0.02898
1.004 + 0.021

Gauss ¢

6

S

6

=)

5 5

=}

4

S

4

S

3

S

3

S

2

=)

=}
(LA LR AR RN RN AR AR

2

=)

o
-

LEL

o
i

L o h v e b L L
-12 -1 -10 -9 -8 -7 -6

h
-5 —4 2 3 4
BKG_CTK_PAR1_pul BKG_CTK_PAR1_pul

Figure 6.10: Distribution of pull(af ) in fits to 1200 toy event samples with approximately 80000
background events each. The (cosfx, g2, m)-cut was applied to the each toy sample. The events were
then fitted without correcting for the veto (left figure), and with the correction for the veto (right figure).
Also displayed are the mean and standard deviation of the histograms as well as a Gaussian fit to each
histogram (red line) and the resulting p and o parameters. There is a clear bias on aX . when ignoring

the missing phase space but when adjusting the PDF accordingly the bias is removed.

To test the correction of the veto, 1200 background toy event samples with approxi-

mately the same number of background events as in the merged Run 1 and Run 2 data are

generated.ﬂ The (cos O, ¢*, m'Ss)-cut is applied to each toy sample, and each sample is

then fitted with and without correcting for the missing phase space. Figure shows the

K
comb

for it (right). The boxes in each figure display the mean and standard deviation of the

distribution of the pull of a for the fits ignoring the gap (left) and the fits correcting

pull values as well as results from Gaussian fits (red lines) to the pull distributions. The
K
cornb)

background fits ignoring the effect of the veto have a strong bias of about —7.40(a

K
comb?

correction for the missing phase space, return the correct value for a

i.e. the fits return too small values of a whereas the background fits, which use the

K

com

, Without any bias.

The pipun values resulting from Gaussian fits to the pull distributions of all background
parameters are given in table [6.4 The biases due to the ignored veto are largest for the
cos 0 parameters of the J/b background and second and third largest for the cosfk
parameters of the ¢ (2S) and combinatorial background. This is due to the fact that
there are more J/i) background events than ¢ (2S5) background events (and more 1 (2S5)
background events than fully combinatorial events). Thus, the test is most sensitive to the

mismodeling of the J/) shape and hence gives a bigger bias for the J/i) parameters. The

5The number of events for each toy sample is sampled from a Poisson distribution with a mean of the

number of background events in the merged Run 1 and Run 2 data.
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centre column of table [6.4] shows that the fits which include the correction for the veto
can recover all parameters correctly apart from a few small biases. These biases are due
to the low number of events and the high number of floating parameters. To show that
the fits have no biases when the number of events is higher, the pull study is repeated
with twice the number of background events per toy sample and the resulting jipu values
are given in the right column in table [6.4]
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Run 1+Run 2 stats | Run 1+Run 2 stats | 2x(Run 14+Run 2 stats)
no correction with correction with correction
Hpull Hpull Hpull

See b 0.510 £ 0.028 -0.038 £ 0.028 0.019 £+ 0.029
sf}}w 1.050 £ 0.028 -0.066 £ 0.028 0.020 £ 0.029
53(25) 0.340 £+ 0.029 -0.036 £ 0.029 0.020 £+ 0.029
al -0.025 £ 0.029 -0.025 £ 0.029 -0.021 £ 0.029
b 0.010 £ 0.029 0.003 £+ 0.029 -0.051 £+ 0.029
al -7.374 £ 0.031 0.040 £+ 0.029 -0.030 £ 0.029
bE -3.897 £+ 0.026 0.082 £ 0.029 -0.010 £ 0.029
afomb -0.014 £ 0.030 -0.014 £ 0.030 -0.008 £ 0.030
bfomb 0.042 £ 0.029 0.041 £ 0.029 0.021 £ 0.030
agzmb -0.478 £+ 0.029 0.001 £ 0.029 0.001 £ 0.029
a?w 0.050 £ 0.028 0.050 £ 0.028 -0.012 £ 0.028
bg/w -0.032 £ 0.029 -0.028 £ 0.029 -0.000 £ 0.029
aljw -24.337 £+ 0.030 0.038 £+ 0.029 -0.007 £ 0.029
blf/w -14.157 + 0.026 -0.007 £ 0.029 0.017 £ 0.029
a%} 0.019 £ 0.028 0.019 £ 0.028 -0.016 £ 0.029
bf’;/w 0.023 £ 0.028 0.023 £ 0.028 0.016 £ 0.029
,ugjqﬁ -0.130 £ 0.029 -0.007 £ 0.029 0.020 £ 0.029
03;/) -0.097 £ 0.029 -0.064 £ 0.029 -0.015 £ 0.030
O‘?fjw -0.108 £ 0.029 -0.032 £ 0.029 -0.022 £ 0.030
G;Lz;(25) 0.028 £ 0.029 0.026 £+ 0.029 -0.017 £ 0.030
b5(25) -0.023 £ 0.029 -0.055 £ 0.029 0.026 £ 0.030
35(25) -8.815 £ 0.031 0.045 £ 0.029 0.001 £ 0.028
bg(%) -3.822 £ 0.025 0.070 £+ 0.029 0.010 £ 0.029
ai(%) 0.027 £ 0.028 0.025 £+ 0.028 0.017 £ 0.030
b$(25) 0.006 £ 0.030 0.000 £ 0.030 0.015 £ 0.030
/‘(5(25) -0.109 £ 0.029 0.026 £ 0.029 0.017 £+ 0.029
03;(25) -0.008 £ 0.030 -0.080 £ 0.030 -0.031 £+ 0.029
Fan 0.432 £ 0.030 0.056 £ 0.029 0.035 £ 0.029
Jv@s) 0.093 £+ 0.030 0.056 £ 0.030 0.049 £+ 0.030

Table 6.4: Results of Gaussian fits to the pull distributions of all floating background parameters in 1200
fits to toy sample swith the same (doubled) number of background events as in the merged Run 1 and
Run 2 dataset. The uncertainties given are the statistical uncertainties from the Gaussian fits. The
(cos Ok, ¢, m)-cut was applied to each toy sample. The events were then fitted with and without for the
gap in the phase space. Ignoring the gap causes biases for cosfx, ¢ and miys parameters. Even with the
correction there are small biases for some of the parameters which are due to low statistics. The right
column shows the results from a pull study with double the number of events per toy sample which shows

that the biases are removed.
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Figure 6.11: ¢2 vs mis distribution of the events in Run 1+Run 2 data. The mi§ regions of the
side-band regions SB1 and SB2 are indicated with the horizontal red lines. The diagonal band crossing
¢> = 9.8 GeV?/c* is made up of signal B — J/i) K*0 events which leak into SB1 and SB2.

6.5 Signal in side-band veto

There is a contribution of B®— J/) K*O signal decays in the upper mass side-band which —
if ignored — can cause a bias for the background parameterisation.

Figure shows the (unconstrained-¢2, m’s§) distribution of the events in the merged
Run 1 and Run 2 dataset. There is a diagonal band crossing ¢> = 9.8 GeV?/c* which is
made up of B®— Ji K** decays. The events in the lower and higher end of the diagonal
band are B®— J/i) K*° decays where the J/ib mass was either reconstructed too low or
too high, which causes the correlation between ¢* and m'ss.

These events leak into the first two side-band regions SB1 and SB2 (indicated with
red lines in figure and become a significant contribution in these regions despite
being so far from the true mass of the B® meson. They are significant because they are
shifted so far in ¢® that they are separated from the background J/4) peak. Thus, they are

populating an area in ¢? where only the fully combinatorial background is presentﬁ This

6There are also B? — J K*9 events in SB1 and SB2, which have high m5s because the K*9 was
reconstructed too high instead of the J/. These events are not shifted in ¢? and therefore populate the
q? region dominated by the background .J/i events. The level of signal events under the background .J/i)
peak in SB1 is on the level of 2% and can safely be ignored.
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Figure 6.12: ¢? distributions of the events in the mid-¢* region in SB1 (left) and SB2 (right). Also shown
is the ¢ projection of the background PDF. The small peak above the background J/i) peak is from
B — J/p K*9 signal events. Since the signal peak is not described by the background model, the presence
of the peak causes the combinatorial background to be overestimated by the fit PDF as seen most clearly

in the left figure for ¢ < 8 GeV?/c2.
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Figure 6.13: ¢2 distributions of the events in the mid-¢? region in SB1 (left) and SB2 (right) after applying
the signal veto to remove contributions from B®— J/) K*0 signal events. Also shown is the ¢ projection
of the background PDF which has been fitted to the data while accounting for missing phase space due to

the signal veto.

is demonstrated in figure which shows the ¢? distributions of the events in the mid-¢?
region in SB1 and SB2. The B®— J/) K* signal events are visible as small peaks above
the background J/ib peak. When fitting the background without taking this contribution
into account, the signal peaks cause the level of fully combinatorial background to be
overestimated as shown by the projection of the fitted background PDF in figure [6.13]
In order to remove the signal contribution in the side-band, a similar technique is

used as for the Kpuu-veto described in the previous section. The ¢? ranges populated
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Figure 6.14: Rejected (q¢?, m’56) region of the signal veto. Each box represents a bin in phase space in

which all events are rejected and in which the background PDF is set to zero.

by B®— Jhp K* signal events in SB1 and SB2 are removed from the analysis and the
background PDF is adjusted accordingly, analogously to the method described in section
. Figure shows the (q2,m§§8)—histogram indicating the rejected phase space, where
each blue box represents a phase space bin which is removed from the analysis. The ¢?
ranges are chosen such that 100% of the B®— J/i) K*° signal events are removed.

Figure shows the ¢? distribution in SB1 and SB2 as well as the ¢* projection of the
background fit, after rejecting the events in the signal affected phase space and adjusting
the PDF accordingly. The PDF now describes the combinatorial background well.

As can be seen in figure [6.11] the contribution from B°— ¢(2S)K* decays, which is
the second largest signal contribution, is too small to be significant in the upper mass

side-band. Therefore, a similar veto for B®— (2S5)K*? decays is not necessary.
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6.6 Factorisation of angles and ¢*

The PDF used to describe the background assumes factorisation in all dimensions, which

greatly simplifies the expression. To justify this assumption, it is necessary to check the

data for correlations in any of the dimensions. In this section, it is shown that it is a

reasonable approximation that the three angles and ¢? are uncorrelated. The potential
rec

dependence of the angular and ¢? shapes on m 5o and the treatment of this dependence is
separately discussed in section [6.7]

6.6.1 Factorisation of each angle with ¢>

Investigating the factorisation of the angles with ¢? is only necessary for the fully combina-
torial background as it spreads across the full ¢*> range. The resonant background events
contain real J/i) and ¥(2S5) mesons which have very narrow decay widths such that the
angular distributions factorise with ¢ naturally.

Figure [6.15] shows the cosf,, cosfg, and ¢ distributions of the fully combinato-
rial background in the low, mid and high ¢? region. For this study, all events in the
sub-regions containing the resonant backgrounds, i.e. (8 < ¢* < 11.56) GeV?/¢* and
(12.9 < ¢® < 14.5) GeV?/c?, are removed, since they would otherwise dominate the mid and
high ¢* event sample, thus making it impossible to study the ¢* dependence of the angular
distributions of the fully combinatorial background. The bottom of each figure shows the
ratios of the angular distributions in the mid and high ¢? region over the distributions in
the low ¢? region. No significant dependence of the shape of the angular distribution on
q? is observed, except in cos 0 where the high and mid ¢? distribution falls more clearly
at high cos @k than in low ¢? region. However, this is due to the effect of the K upu-veto
which becomes stronger with rising ¢ and is corrected for in the side-band fit as explained
in section
Since no significant dependence of the shape of the angular distribution on ¢ is observed,
a PDF that factorises in each angle with ¢? is a good description of the data. In future
measurements with more data, this should be reviewed again as the measurements might

become sensitive to potential correlations.
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Figure 6.15: cos 8, cosf, and ¢ distributions of the fully combinatorial background in the low ¢? region
(black stars), mid ¢? region (blue squares), and high ¢? region (red circles). Events from the resonant
sub-regions are not included. Also shown are the ratios of the angular distributions in the mid and high

¢? region over the angular distributions in the low ¢2 region.

6.6.2 Factorisation of the three angles

To test the assumption that the angluar distributions of the background can be described
with factorising Chebychev polynomials, a goodness of fit (g.o.f.) test is used. After

performing the simultaneous side-band fit (as described in this chapter) to the merged

123



Run 1 and Run 2 data, a three dimensional g.o.f. test is carried out in the dimensions
cos By,cos Ok, and ¢. If the fit cannot be rejected, it can be assumed that using a PDF

which factorises in the three angles is a reasonable approximation.

Goodness of fit test: Mixed sample method

To determine the level of agreement between the data and the fit PDF, a multivariate
unbinned g.o.f. test is implemented. The test is based on the mixed sample method
described in Ref. [99)].

If two event samples share the same parent distributions, then they miz perfectly when
combined into a single event sample.ﬂ This can be used to judge the g.o.f. of a fit to data
by simulating toy events from the fit PDF and determining how well the toy events mix
with the data events.

To quantify how well two event samples mix, the n; nearest neighbours of any given
event in the combined dataset must be identified. For this purpose, the normalised

Euclidean distance of two events #; and 2 in the three dimensional space is defined as

3 . o 2
R 12 T; — &
I -t =3 (42 (6.11)

v=1

with v € {cos by, cos Ok, ¢} and where w, denotes the weights for the different dimensions.
The weights are chosen as the largest possible distance in each dimension given by the
respective ranges, i.e. Weosp, = Weoso, = 2 and w, = 7. In the case of v = ¢, the distance
z; — xj is determined as the shortest distance between the two angles.

Following Ref. [99], the test statistic that quantifies the quality of the mixing of the toy
MC event sample with the dataset is defined as

ng+nm ng

1 .
T = P > Ik, (6.12)

i=1 k=1

where ng and n,, are the number of events in the dataset and the toy MC sample
respectively, ny is the number of nearest neighbours considered for each event, and (i, k)
is defined with

16.k) 1 if event 4 and its k" neighbour are both data events or both toy events
1, k)=
0 otherwise.

(6.13)

"The notion of mizing in this context will become clear after the explanation of the method in this

section.
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If ng = n,, and the toy sample and the data sample mix perfectly, the expectation value
for T"is 1/2. In other words, on average one would expect half of the nearest neighbours of
each event to be from the same sample as the event itself. Worse mixing i.e. less agreement
between the two samples yields higher values for T

The pull of T is defined as

pull(T) = @ (6.14)

where pp and or are the expectation value and standard deviation of T'. The expectation

value is given by

ng(ng — 1) + np(ny, — 1)
n(n —1)

with n = ng + n,,. The standard deviation of T" depends on the shape of the PDF and

can only be approximated:

1 [ ngn n2n?
1i 2 — Moy qdm 1
n,nk}lgn—mo or nng ( n2 + n4 ’ (6 6)

where D is the number of dimensions of the g.o.f. test. A detailed discussion of this
approximation can be found in Ref. [99] where it was found to hold well for n,, = 10 x ngy
and n; = 10 in a two dimensional test. If the approximation of or is correct and the
data sample and the toy sample follow the same parent distribution — i.e. if the fit PDF
models the data perfectly — then the pull is expected to have a limiting standard normal
distribution (mean of zero and standard deviation of one). Since larger values for T" are
obtained if the distributions do not agree well, the rejection of the hypotheses that the two
distributions have the same parent distribution — i.e. that the fit describes the data well —
is a one-sided cut at high pull values. For example, fits to data that yield a pull > 1.64
are rejected at 95% confidence level.

In order to ensure that the (cos K,qQ,mgg)—cut used to remove the phase-space which
is affected by the K puu-veto (see section and the signal in side-band veto (see section
do not influence the g.o.f. test, both cuts are applied to the side-band data as well as
to every toy simulation sample.

Since the g.o.f. test is performed in three dimensions and the approximation of op
(equation may depend on the shape of the PDF, the g.o.f. method is tested first
to determine the expected pull distribution. This is done by performing g.o.f. tests for
perfect ‘fits’” where it is a priori known that the PDF can describe the events. To this end,
an ensemble of 200 toy event samples is generated from the background PDF with the
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Testing the g.o.f. method using toy simulations
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Figure 6.16: Pull distributions obtained from performing three dimensional g.o.f. tests for 200 simulated
toy samples. The mean and standard deviation of the pull distribution, determined by performing a
Gaussian fit (dotted blue line) are given in the plot.

same number of events per sample as in the upper mass side-band data (ng = 8824). In
this test of the g.o.f. method, these small toy event samples represent the data sample
in the real g.o.f. test. Each small toy sample is then compared with a larger toy event
sample of n,, = 10 x ng = 88240 events, generated from the same background PDF. The
g.o.f. tests are performed with ny = 10. The resulting pull distribution is shown in Figure
6.16l The mean value obtained with a Gaussian fit to the pull distribution is compatible
with zero as expected. Moreover, the width of the pull distribution roughly agrees with
unity. Therefore, it can be concluded that the approximation for the standard deviation
(equation holds well for the three dimensional g.o.f. test with the background PDF
obtained in the fit to the Run 1 and Run 2 data.

The mixed sample method is then used to determine the (cosy,cos 0k ,¢)-g.o.f. of the
upper mass side-band fit to the merged Run 1 and Run 2 data. Since the g.o.f. test is
influenced by statistical fluctuations in the toy sample, the test is repeated 200 times and
the average pull value is determined. Therefore, an ensemble of 200 toy MC samples with
n, = 10 X ng = 88240 events each is generated from the fit PDF. Each toy sample is
compared to the upper side-band data to determine a pull value. The pull distribution of
the 200 tests is shown in figure [6.17] The mean pull value, determined with a Gaussian fit,
is —0.049 £ 0.057. This indicates that the fit cannot be rejected, or in other words the
cos By,cos 0k, and ¢ distributions of the events in the upper mass side-band are in good

agreement with the background PDF.
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Determining g.0.f. in cos@; X cosf X ¢ of the side-band fit
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Figure 6.17: Results of 200 g.o.f. tests performed in (cos 8y, cosfg, ¢) for the upper mass side-band fit.
Each test is done by simulating a large toy event sample (with 10 times the number of events as the data
sample) from the background PDF and comparing the toy event sample to the upper mass side-band
data, using the mixed event method to determine a pull value. The mean pull value, determined with
the Gaussian fit shown with the dashed blue line, is compatible with zero, indicating that the fit PDF is
compatible with the data.

Note that the width of the pull distribution shown in figure [6.17| cannot be interpreted
in the same way as the width of the distribution in figure [6.16] Figure [6.17] shows the
results from repeating the same g.o.f. test 200 times using the same data sample each time.
The width of the pull distribution is determined by the statistical fluctuations in the toy
samples. These fluctuations are proportional to /n,,. In contrast, figure shows the
results from 200 individual g.o.f. tests. In each test an independent small toy event sample
(representing the data sample of the real g.o.f. test) is compared to a corresponding large
toy MC sample. Only in this case the expected value for o7 is unity.

Since the background PDF factorises in cos #,,cos 6 and ¢, it can also be concluded
that the assumption of the factorisation of the angles holds. This test should be repeated
in upcoming analyses which use more data as the fit may become sensitive to potential
correlations.

A complementary test of the factorisation assumption has been performed for the
measurement of the g>-binned angular observables [1], via a method of moments analysis
on the upper mass side-band of the data. The angular distributions of the upper mass
side-band data were parameterised with fully correlated Legendre polynomials and were

also parameterised with factorised Legendre polynomials. It was found that all diagonal
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Determining g.o.f. for a side-band fit which ignores the Kup veto
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Figure 6.18: Results of 200 g.o.f. tests performed in (cosfy, cosfk, ¢) for a bad fit to the upper mass
side-band which ignores the effect of the Kpuu veto. Each test is done by simulating a large toy event
sample (with 10 times the number of events as the data sample) from the background PDF and comparing
the toy event sample to the upper mass side-band data, using the mixed event method to determine a

pull value. The mean pull value indicates that the fit PDF can be rejected at the 75% confidence level.

coefficients in the correlated Legendre polynomials are compatible with the correspond-
ing coefficients in the factorised Legendre polynomials. In other words no significant

correlations have been found [91].

Example of a rejected bad fit

To demonstrate the ability of the mixed sample g.o.f. test to reject bad fits, the side-band
fit is repeated but without applying the (cos Ok ,¢*,m'ss)-cut and without the corresponding
adjustment of the PDF (see section [6.4). An exemplary projection of this fit is shown
in figure [6.4, The g.o.f. test is carried out 200 times, as described above but the
(cos Ok ,q*,m’5)-cut is not applied to the data or the toy simulations. The resulting pull(T)
distribution is shown in figure [6.18] The mean pull value of —0.68 £ 0.05 indicates that

the fit can be rejected at the 75% confidence level.

6.7 Mass dependence of the background parameters

Since the background parameters are extrapolated along miss, any dependence of the

background parameters on mi; has to be considered in order to ensure an accurate

description of the background in the signal region.
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To this end, the fact that the side-band regions are fitted simultaneously is taken
advantage of. In each side-band region SB;, every background parameter pgg_ for x € (cos 6,
cosOx, ¢, ¢*) (i.e. all parameters in table except for the mis§ parameters and the

fractions) is reparameterised with:

PSR, = Pa + Dima X mcslBi (6.17)

where p? and p®; are fit parameters and m¢ is the distance of the center of region SB;
d
by the distance between the highest SB region (SB5) and the B° mass. The values of
m‘SlBi can be found the right column of table . This means, within each SB region,

factorisation of the angles and ¢? with migs is still assumed but the fit allows for a linear

to the B® mass. In order to ensure that p, and p,.q have comparable scales, m¢ is scaled

dependence of every background parameter from region to region.

The benefit of this reparameterisation of the background parameters is that it allows taking
a mass dependence into account while still giving the minimal number of background
parameters in the signal region (since mgignal = 0) which simplifies the combined signal
and background fit.

When reparameterising all background angular and ¢? parameters with equation [6.17]
the total number of floating parameter becomes 52. In this case, due to the high number
of floating parameters and the large correlations between most p? and pf ; parameters,
the uncertainties of the background parameters in the signal region increase significantly
(up to a factor 3). It is therefore preferential not to unnecessarily give additinoal freedom
to the fit model if the model with some of the pf ; parameters fixed to zero is also a good
description of the data.

The most significant dependence of the angular shape on the SB region is observed for
the cos 0 dimensionf} while the cos @, ¢ and ¢? shapes are consistent between SB regions.
Therefore, the nominal model allows mass dependence only in the cosfg dimension.
The alternative of parameterising the m5; dependence of all background parameters, is
considered as a systematic uncertainty as described in section

Mass dependence of the background fractions

Due to the different mi55 slopes of the three background components, the background

fractions fj, and fyeg) are different in each mass region. To take this into account, the

8Even after correcting for the effect of the K uu-veto.
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fraction in each side-band region fﬁ/]zi ( fws) is calculated as a function of the fraction in

the signal region f%w (fz(QS)) :

S fSBi PJ/w
5B Fip X JsPap
‘]/1/’Y B f . PJ f . Pcom
S SB; "I/ _rS SB;
f‘]/d) X fs PJ/’L/) (1 fJ/d’ ) X fS Pcom

(6.18)

where fS and fSB denote the 5-dimenstional integrals of the PDF over the signal region
and the side-band region SB; respectively. The expression for the 1(2S) fraction fw2s
analogous.

By replacing the background fractions ff}w and fi@ ) in equation @ with the above
expressions for f?ﬁi and filéis) respectively, the background fractions in the signal region
are direct fit parameters in the side-band fit, while equation [6.18| gives the background
fraction in each side-band region such that the background PDF can describe the side-band
data.

6.8 Determination of the signal fraction

The total PDF for the combined signal and background fit in the signal region
((5239.58 < mlss < 5319.58) MeV/c?) is given by

Plikg(ﬁqu) - 51g PSIg(Q q ) (1 - f51g) 7Dbkg(gz q ) (619)

where i indicates the ¢*-region i.e. low, mid, and high ¢? (see table 51g(Qa q*) denotes
the signal PDF which is given by the model described in chapter l, 3., convolved with the
resolution model (described in section and multiplied with the acceptance model
(described in section . Pbkg(ﬁ, q?) denotes the background PDF described throughout
this chapter. Note however, that in the fit to the signal region, mi55 is not included in
the fit. The differences between the signal PDFs in the three ¢? regions are the resolution
parameters (see section . The differences between the background PDF's in the three

q? regions are the different background components present in each region (see section

and equation .
siig
region in ¢® region i (i € {low ¢%, mid ¢, high ¢* }). These fractions need to be determined

The parameter in equation denotes the fraction of signal events in the signal

from data. They can be calculated with

N51gna1 region,i

[ QL. - S (6.20)

s1g signal region,i’
N, total
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Here Nf)iggnal "8t ¥ denotes the number of background events and NI "8 the sum of
signal events and background events in ¢? region 4 in the signal region. While the total
number of events in each ¢? region in the signal region is a priori known for the given
dataset, the number of background events in each ¢? region in the signal region needs to
be estimated from a fit.

There are two different approaches for estimating the number of background events in

the signal region.:

A) Using the slope parameters (s7 .. ST s$(25)) and the background fractions (fj,
fy(29)), obtained in the simultaneous 5D side-band fit, to extrapolate the yield of

each background component from the upper mass side-band into the signal region.

B) Performing separate fits to mlss in the full range (5220 < mis§ < 5840) MeV/ 2,
parameterising both the signal and background contributions and determining
ftuirange:  The number of background events in the full mis§-range can then be
calculated in each ¢* region using ff .g- These background yields are then

interpolated into the signal region using the fitted background slopes.

Both methods have been implemented and tested and are described below. However, due
to the superior statistical power obtained with method B, this method is chosen for the

analysis. Therefore method A is only outlined briefly.

6.8.1 Method A - using the slopes and fractions from the side-
band fit

m
comb?

ST Suasy)» all angular and ¢ parameters, as well as the background fractions f?/eiore’wt

and figiore’cut, where ‘before cut’ refers to both the Kpupu-veto (see equation m) and the

signal veto (see section [6.5) Furthermore, in each ¢* region, the number of background

The simultaneous side-band fit provides best fit values for the background slopes s

events after the K uu-veto and signal-veto (IV gfgerfg;t) is known in each side-band window.

In the mid ¢? region the number of background events in the signal region can therefore

131



be calculated with (for shortness m = m's)

5 beforecut m=s2
after cut fp ] fm:sl MJM’ (m dm

signal region, mid¢? i,/ )
kag - Z [fJﬂP after cut Ni7t0t f after cut m=b2 M d
SB;=1 i J /Y fm:bl Jpp (m)dm

m)dm

+ Z Naftercut f’])lbgforeCUt . fnT:_:f Mc( )
ot J/TZ) i,tot ffpzitercut fm:bQ Mc(m)dm

m=bl
(6.21)

where the first term calculates the number of J/ib background events in the signal region
and the second term calculates the number of fully combinatorial background events in
the signal region. The sum indicates the sum over the five SB regions (SBy,..., SB5). The
expression in the first square brackets calculates the number of background J/i) events in
SB; by multiplying the total number of background events in SB; with the value of the
J/ fraction in SB; (see equation and then correcting this yield for the effect of the
Kpup veto and signal veto by multiplying the yield with the ratio of the integrals of the
background J/iy PDF without and with adjustment for the missing phase-space. The sum
of veto-corrected J/i) yields is then extrapolated into the signal region using the ratio of
the integral of M. (which is simply an exponential with slope parameter 57, ) in the
signal region (s; = 5239.58 MeV/c?, so = 5319.58 MeV/c?) over the integral of M, in
the full side-band (b; = 5440 MeV/c?, by = 5840 MeV/c?). The second term *for the fully
combinatorial background) is analogous.

The calculation of the number of background events in the signal region in the high

q* region (NSEgnal region, high ¢* ) is done analogously to equation |6.21] The calculation of
Nﬁfgnal region, low ¢ 4 simpler, since there is only one background contribution and thus there

is only the second term containing the fully combinatorial background PDF and there is
no background fraction needed.

The advantage of this method is that it uses a correction for the effect of the Kpuu-
veto and signal veto and cleanly separates the individual background components, before
extrapolating the yield of each component using the corresponding slope. The disadvantage
is that the method only uses information from the upper mass side-band, and furthermore
uses an extrapolation down into the signal region along a steeply falling exponential.

The method is tested using toy simulations. To this end, 1000 toy samples with
~ 1 million events each (approximately equivalent to the number of events in the merged
Run 1 and Run 2 dataset) are generated using the full signal (including acceptance and
resolution effects) and background model. Each toy is fitted with the simultaneous side-

band fit described in this chapter, and the signal fraction in each ¢? region is calculated
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Method A - using upper mass sideband fit 1000 toys Method A - using upper mass sideband fit 1000 toys
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Figure 6.19: Distribution of the signal fraction per ¢ region determined via method A — using the
information from the simultaneous side-band fit — in fits to 1000 toy simulations of ~ 1 million events

each. Also shown are Gaussian fits to the distributions of the signal fractions.

for each fit. The resulting values for the signal fraction per ¢? region are shown in
figure along with Gaussian fits to the fg, distributions. Based on the standard
deviation obtained via the Gaussian fits, the precision on the signal fractions for the merged
Run 1+Run 2 dataset is 1.3% for fslfgWQQ, 0.02% for fglgidqQ, and 0.6% for fs}ilfggth. However,
the distributions of fZ, are slightly asymmetric, most notably for f;iogw q2, which would make
the uncertainties of the signal parameters asymmetric as well and therefore complicate the
interpretation of the results. Furthermore, the statistical power of method A is inferior to

the alternative method described in the following section.

6.8.2 Method B - Performing separate mj fits

In this method, one dimensional fits to mi55 are performed across the full range of

(5220 < m’ss < 5840) MeV/c? in each ¢* region, while modeling both the signal and
background components. The resulting background slopes and signal fractions are then

used to estimate the number of background events in the signal region.
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region short notation | ¢ range [GeV?/c?]

low-¢? QR1 018 < ¢ < 3.24
resonant mid-g? QR2,es 8.20 < ¢* < 10.6
. 3.24 < ¢ < 8.20

fully combinatorial mid-¢*> | QR2comb )
and 10.6 < ¢~ < 11.56
resonant high-¢? QR3,cs 124 < ¢*> < 144

11.56 < ¢2 < 12.4

fully combinatorial high-¢> | QR3comb
and 14.4 < ¢*> < 18

Table 6.5: ¢* regions for the simultaneous m'ss-fit. Unconstrained ¢? is used here.

Isolating the three background components

Since the three background components can have different m’s§ slopes, the mid-¢* and

high-¢? regions are split up into sub regions to isolate each component. The ¢ windows of
QR1, QR2comb, QR2:es, QR3comp, and QR3,s are given in table [6.5

Due to the effect of the mass constraint on the ¢? distribution of the background, described
in section [6.2] the unconstrained ¢? dimension is used for splitting up the data into these
regions. Using unconstrained ¢? allows choosing the ¢? ranges such that all events from
signal B® — Jhp K*0 (B® — ¢(25)K*") events as well as all background J/ (¢(29))
events are included in the resonant regions, while making the resonant regions as narrow as
possible. Since there are also fully combinatorial events (which may have a different slope)
contained in the resonant regions, there is a small inherent bias on the background slopes
with this method, which is taken into account as a systematic uncertainty as described in

section [7.2.11F]

91f the B°-mass constrained g would be used to split the data into ¢? regions, the position and widths

of the resonant background peaks would be correlated with mi3§. This would cause the background

peaks in the upper mass side-band to be shifted and to be wider than the signal BY — J/) K*? and
B%— 9(2S)K*Y peaks in the signal region. This would make it necessary to choose a much wider resonant
¢?> window to include both components fully, which would in turn dilute the sample of resonant events
with even more fully combinatorial events. In addition to decreasing the statistical precision of s? , this

would also increase the systematic uncertainty on S’J’} " and 53}(2 )"
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Simultaneous m5; fit

The m’S§ fit is performed simultaneously to the five ¢* regions defined in table The
total PDF in each ¢? region j (j € {QR1, QR2:es, QR2comb; QR3res, QR3comn }) is given by

Pthtal(mrBsg> _ ffull region,j Pj (mrgg) + (1 . ffull region, j) . ngg(mrgg)7 (622)

sig signal sig

where the signal component is parameterised by

P] (m|X) = fcorePCB(m|,ua 01, Q, n) + (1 - fcore)PCB<m|M7 02, (&, n)a (62?))

signal

i.e. a sum of two Crystal Ball functions with shared mean (x) and tail parameters («, n)
but different widths (o7 and o3). The background ngg(mrgg) is modelled with a falling
exponential with slope s7.

All parameters of the simultaneous m'5; fit are summarised in table . In the resonant
mid-q? and resonant high-¢? regions, the fit is sensitive to events from B? — J/) K*° and
BY— (25)K* decays respectively. Thus, in these regions, a second signal component is
included which uses the same parameterisation as given in equation [6.23| with a mean u
shifted by Am = m(BY) —m(B") = 87.19MeV/c? [30]. The fraction fgpo/p, of B decays
over BY decays is floated in the fit and shared between the regions QR2,¢ and QR3,cs. The
contribution from rare B?— K*°uTu~ decays is approximately 1% of the B®— K*0u*pu~
signal decays and can be neglected [100]. Therefore, no contributions from BY decays need
to be included in the regions QR1, QR2¢omp, and QR3comn-

As part of the analysis for Ref. [96], the ¢* dependence of the m's§ signal shape was
investigated using Monte Carlo simulated samples of B® — K*Oy*yu~ and B°— J/jp K*°
decays. It was found that all parameters except for the widths ¢ and o5 are independent
of ¢*. Based on the MC simulations, the widths are approximately 1.038 times wider in
the high-¢? region of (11.56 < ¢* < 18) GeV?/c* than in the lower ¢? regions [91]. Thus,
during the simultaneous m5s-fit in this analysis, all signal parameters are shared across
the five ¢* regions and the width parameters (o and ;) are multiplied with 1.038 in
QR3comp and QR3,.. The signal fractions fsfiug11 reiony are independently floating in all five
q? regions.

The background slopes in the regions QR1, QR2comn, and QR3comp have been found
to be statistically compatible and therefore the parameters s@%, s@R2comb  QR3comb gre
replaced with a single parameter which is shared across the three regions. Figure |6.20
shows the m’S§ distributions in the five ¢* regions as well as the projection of the PDFs

from the simultaneous fit to the data.
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name | QR1 | QR2comp | QR2pes | QR3comb QR3es
sQR1 b
SQRZcorm .
§QR2res .
sQR3comb X<
SQRSres X
R
FQR2-COMB <
FQR2RES <
f?RS,COMB <
FOR3RES -
um’Signal X X X X X
gmsignal X X X x (x1.038) | x (x1.038)
oysienal X X X x (x1.038) | x (x1.038)
amsgnal X X X X X
Jeore X x x X X
fBo/B, X X

Table 6.6: Fit parameters of the simultaneous m'5s fit. The region(s) in which each parameter is/are

determined is indicated. Parameters that are determined in several regions are shared parameters in
the fit. The sigma parameters are multiplied with 1.038 in the high ¢? regions to account for the g2

dependence of the B? peak as discussed in the text.

Calculation of the background yield in the signal region

The number of background events NZ&%! *8°%7 in the signal region in each of the five ¢2

regions (j € {QR1, QR2.es, QR2comb, QR31es; QR3comb }) is then calculated by interpolating

the background yield in the full m5§ range into the signal region with

mres=5319.58 MeV/c?

mrec
NSignal region,j _ (1 — ff_ull region,j) . NfUH region,j fmr;g =5239.58 MeV/c bkg( BO)

bkg sig total mgg =5840 MeV/c2? j rec
miee=5220 MeV/c2 Prg (M50

(6.24)
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Run1+2016+2017 data low-g? region Run1+2016+2017 data mid-¢2 region
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3
A
—4 —4E
5400 5600 5800 5400 5600 5800
miss [MeV/c?] miss [MeV/c?]
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Events
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miss [MeV/c?]

Figure 6.20: m'5S distribution in the five q? regions of the simultaneous m’ss fit of the merged Run 1 and
Run 2 data. Also shown are the projections of the simultaneous m$§-only fit to those regions. The signal
parameters are shared across all ¢ regions and the width parameters (o and o2) are multiplied with a
factor of 1.0385 in the high-¢ regions to account for the ¢?> dependence of the mgs resolution. The slope
of the fully combinatorial background is shared across low-, mid- and high-¢?, whereas the slopes in the

resonant regions are independent.

full region,j . : : rec J rec) ;
where N, ., is the total number of events within the full m5§ range. Pbkg(m BO) isa

falling exponential with slope s”.
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Finally, the number of background events in the signal region in the low ¢? region is

given by
signal region,low¢? signal region, QR1
kag - Ntotal ) (625)

while the number of background events in the signal region in the mid ¢? region is calculated
with

Nsiggnal region, mid ¢ _ Nts(i)%::fxl region, QR2;es + Nts;%;lal region, QRQComb' (626)

Analogously, the number of background events in the signal region in the high ¢? region is
calculated with
ignal region, high¢® __ ignal region, QR3res ignal region, QR3com
Nsi(ggna region, nigh q — N:;%;lla region _"_ N:;%;lla region b. (6_27)
These estimated numbers of background events in the signal region are then used to
calculate the signal fraction in the signal region using equation
Figure shows the signal fraction per ¢* region determined in fits to 1000 toy samples

with ~ 1 million events each. Also shown are Gaussian fits to the f&

sig
determine the mean and standard deviation of the signal fraction obtained with the method

distributions to

described in this section. The mean value of each f%_ is in good agreement with the true

sig
values of siig given by
true( £ ") = 0.8955 £ 0.0052 (6.28)
true(f1197) = 0.97303 = 0.0034
true( f2E7) = 0.9626 + 0.0063.

The true values were obtained by generating a single toy with 10 million events and counting
the number of signal and background events in the signal region. The uncertainties given
in equation [6.28) are the propagated Poisson uncertainties.

Based on the standard deviation obtained in the Gaussian fits in figure [6.21] the statistical

low ¢2

precision on the signal fractions for the merged Run 14+Run 2 dataset is 0.04% for fi," ",

0.003% for £™4¢ and 0.01% for fhishde’,

sig sig
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Method B - using mig-only fit 1000 toys Method B - using mig-only fit 1000 toys
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Figure 6.21: Distribution of signal fraction per ¢? region determined via method B — using the information
from the simultaneous mis fit — in fits to 1000 toy simulations of ~ 1 million events each. Also shown are

Gaussian fits to the f;ig distributions and the resulting mean u and o values.
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6.9 Summary of the fitting strategy

In this section, the fit strategy used in this thesis is briefly summarised.
(step 1) miss fit
(step 2) side-band fit

(step 3) signal-region fit.

In step 1, the mi fit is performed in five simultaneous q? regions as described in
section

In step 2, the 5D (cosp,cos O, ¢,¢* ,m’ss) side-band fit is performed simultaneously
in five SB regions and three ¢* regions, while applying the correction for the effect of the
K pp-veto (see section and the signal-veto (see section , and while allowing for a
mass dependence of the cos 0 parameters (see section .
During the fit in step 2, the mis-slope parameters of the three background components
are constrained to the slopes determined in step 1. All other parameters from step 1 are
also floated again and constrained using the full covariance matrix (14 x 14) determined
in step 1. The constraint is implemented by adding the constraint term ¢ to the log-

Likelihood, where ¢ is given by
c=—-0.5- Xdiv(K)T)}Xdiv)y (629)

where K is the covariance matrix from the simultaneous m's fit and Agiy is given by

m QR1
Scomb S
m QRZres
e m — Q2
Adiv = 87,!1(25’) §reores . (630)
ffull region,j ffull region,j
sig sig
NG i
signal model signal model

best fit values from step 1

with j € {QR1, QR2res; QR2comb, QR3res, QR3compb }- Note that sB! represents the single

slope parameter that is determined as a shared parameter in QR1, QR2¢omp, and QR3comp-
_WLI‘GC

P

signal model

Except for the slope parameters, the parameters from the simultaneous mss fit have

denotes the signal parameters from step 1.

no influence on the background parameters and are purely constrained from the covariance
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matrix. The reason for floating them again in step 2, is that the simultaneous side-band
fit then yields a single covariance matrix (46 x 46) containing all parameters from both
step 1 and step 2. This way all potential correlations are taken into account.

In step 3 the signal and background (cos 6y, cos g, ¢, ¢?) fit is performed in the signal
region ((5239.58 < m’s§ < 5319.58) MeV/c?). All parameters contained in the (46 x 46)
covariance matrix from step 2 are floated in this fit and constrained to the best fit values
from step 2 using the (46 x 46) covariance matrix. The information obtained from fitting
the side-band is therefore used via the constraint, while the background events in the
signal region are adding further information about the background shape. The signal
fraction is calculated for each likelihood call using the expressions in equations and
[6.24]

Since step 3 requires the full fit with the signal model, it cannot be carried out for
the merged Run 1+Run 2 dataset as explained in chapter [5} However, it is carried out for
the fit to Run 1 data presented in chapter [7]

6.10 Test of the background fit using toy simulations

To test the stability of the fits described in this chapter, a pull study is performed. For
this study, 1000 toy samples with ~ 1 million events each (approximately equivalent to
the number of events in merged the Run 1 and Run 2 dataset) are generated using the
full signal (including acceptance and resolution effects) and background model. Each toy
sample is fitted with the simultaneous m’ss fit and the simultaneous side-band fit, i.e. step
1 and step 2 described in section [6.9}

The (cos Ok, ¢*, m'ss)-cut which mimics the K pp-veto and the signal-veto are applied to
the simulated toys and the background PDF is adjusted accordingly.

The pull of each parameter is calculated for each of the 1000 fits using equation |6.10]
The pull distribution of each parameter is fitted with a Gaussian to determine the mean
tpun and standard deviation op,y. Table shows fipun and opyy for all background
parameters which were floating in the fits to the toy samples. The width of the pull
distribution of all parameters is compatible with unity, indicating that for each parameter
the statistical uncertainty obtained in the fit, agrees well with one standard deviation.
For an unbiased parameter one expects 1 = 0. Most parameters are unbiased. The
largest biases are observed for the slope parameters s ., S%ﬁ’ S@T(zs) which are due to

the fact that they are constrained to the slopes determined in the m/'s fit which are biased
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by construction (see section [6.8.2)). Note however, that the statistical uncertainties of the
slope parameters are on the order of 1-4%@

The biases of the background fractions fj, and fyos) are due to the fact that the
value of each background fraction in a given SB window depends on the slope parameters
(see equation and therefore the biases in the slopes lead to biases in the background
fractions. The small biases observed for some of the angular and ¢? parameters are due to
correlations of those parameters with the slopes and fractions.

The effect of the biases of the background parameters on the signal parameters is taken

into account as a systematic uncertainty as described in section [7.2.1}]

10Since the pull is the difference of the best fit value and the true value divided by the statistical

uncertainty, a bias of ppun &~ 2 equates to a 2-8% shift of the slope parameter values.
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Hpull Opull

s™ | 1.923 +0.033 | 1.038 + 0.024

com Hpull Opull

s, | -2.418 £ 0.032 | 0.993 + 0.024 5

I alpg | -0.008 + 0.032 | 1.010 + 0.023
S0 | -2.520 £ 0.034 | 1.034 £ 0.026 v

4 D) | -0-013 & 0.032 | 1.020 + 0.023
alb | 0.016 + 0.030 | 0.943 + 0.021 s

y ak g | -0.107 £ 0.032 | 1.005 + 0.022
L . 1 -0.005 % 0.031 | 0.994 + 0.022 v

o Do) | -0-161 % 0.031 | 0.968 + 0.022
a¥ . | 0.205 +0.032 | 1.016 £ 0.023 b

o a5 g | -0.010 £ 0.033 | 1.030 + 0.023
bK | 0.399 & 0.031 | 0.981 + 0.022 ;

p b)ms) | 0-027 £ 0.033 | 1.036 + 0.023
a’ 1 0.033 +0.032 | 1.019 £ 0.023 4
" 0.004 < 0,032 | 1094 + 0,023 sy | -0.050 +0.033 | 1.037 + 0.023
comb : . . . q?

o 0805 | -0.084 4 0.032 | 1.016 + 0.023
a’ | 0.035 + 0.032 | 1.013 £ 0.023

5 foe | -0.989 4 0.026 | 0.837 + 0.019
a%,, | -0.003 & 0.031 | 0.975 + 0.022

; fosy | -1.159 4 0.026 | 0.812 + 0.018
b 0.073 4 0.032 | 1.000 + 0.022

A X comn | -0.193 4 0.031 | 0.992 + 0.022
a%,. | -0.070 & 0.031 | 0.993 + 0.022 ’

A X | omn | ~0.374 £ 0.031 | 0.981 £ 0.022
b, | -0.118 £ 0.032 | 1.001 + 0.022 o

; aly s | 0.090 £ 0.032 | 1.004 + 0.022
a%, | -0.036 £ 0.032 | 1.026 + 0.023 o

; bR | 0120 £ 0.032 | 1.000 + 0.022
b%, | -0.005 + 0.032 | 0.997 =+ 0.022 o

g Ay y2s) | 0113 £ 0.032 | 1.000 + 0.022
Hy | 0014 £0.032 | 100840023 0

! K ioes) | 0188 £ 0.030 | 0.957 £ 0.021
0%, | -0.102 £ 0.031 | 0.983 + 0.022

o, | 0.008 £ 0.032 | 0.997 £ 0.022

Table 6.7: Fit results of Gaussian fits to the pull distributions of all background parameters in fits to 1000
toy simulations. For an unbiased parameter one expects p,,1 = 0. The observed biases are discussed in
the text. All values for o1 are compatible with 1, demonstrating that for each parameter the uncertainty

obtained by the fits agrees well with one standard deviation.
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6.11 Background fit to the merged Run 1 and Run 2
data

In this section the results of the background fit to the merged Run 1 and Run 2 dataset
are presented. As explained in section the simultaneous m’5s fit is performed first and
the projections of this fit is shown in figure [6.20f The results of all parameters floating
during the 5D simultaneous side-band fit are given in table

Figures [6.22] [6.23] and [6.24] show some exemplary distributions of the angular and ¢

distributions in some of the (m's, ¢?) regions as well as the corresponding projections

of the background PDF. The full set of distributions and fit projections for all five SB
regions and all three ¢? regions are shown in appendix[A.3] The background PDF describes
the data well in all kinematic windows. The mi; and q* dependent gap in the cosfg
distribution caused by the Kpuu veto is well described by the PDF. Furthermore, the

rec
BO~
rec

The background PDF does not seem to capture the slope of the data in the miss
distribution at m'ss < 5580 MeV in the mid ¢* region shown in figure The local
change in slope is most likely due to BY— J/ K*Y signal events leaking into the upper
mass side-band (see section which is not well described by the double Crystal Ball

o fit over the full mi5s

m'ss-region dependence of the shape of the cos @y distributions is well described.

function used to parameterise the signal peak. However, the m
range, shown in figure [6.20] demonstrates that this is a local issue and does not affect the

general description of the ms§ distribution of the signal and background.
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name result name fit result
st | (371 4 0.16)x 1073 @l ns) -0.141 + 0.070
sy | (5.847 £ 0.090)x107* b s 0.055 + 0.067
STog | (520 £ 0.21)x107° 1o 13.6147 + 0.0092
ak 0.074 4 0.057 4 s) 0.2073 + 0.0078
Do 0.223 & 0.051 Foo 0.9528 + 0.0043
a 0.25 4 0.20 Fo@s) 0.731 + 0.026
K 0.21 4 0.18 Ak comp -0.22 + 0.28
ad o -0.090 = 0.059 bK oo -0.11 + 0.26
v -0.005 + 0.056 a4 -0.05 & 0.10
all | 1.080 + 0.090 b o -0.83 + 0.11

L

aiw -0.028 + 0.021 A% oos) -0.16 + 0.38
bJ/w -0.500 + 0.023 DK 4s(25) -0.40 + 0.41
a%,, 0.242 + 0.066 FQR 0.755 + 0.013
bf,(/w 0.448 4 0.067 FAR2-COMB | ) 96685 + 0.00060
a%, 0.026 + 0.021 FQR3-COMB | () 658 + ().011
bﬁ/ . -0.022 + 0.020 FOR2ZRES |0 9494 4 0.0020
MJ/ . 9.6184 + 0.0019 FQR3-RES 0.774 + 0.010
aJ/ . 0.1467 + 0.0016 pmsienal 5980956 + .024
o, 0.965 + 0.039 gmosignal 15.738 4 0.083
@l os) -0.118 4 0.071 oyl 26.78 =+ 0.32
b s -0.502 + 0.080 amsignal |1 5589 4 (0.0080
ak 0.34 £ 0.25 f 0.721 + 0.012

( S) core
b s 0.03 £ 0.27 fro/s, | 0.98767 + 0.00021

Table 6.8: Fit results of the background parameters and the parameters describing the m'5s distribution

of the signal, for the merged Run 1 and Run 2 data. The uncertainties are statistical uncertainties.
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Figure 6.22: cos §x distributions in the mid, and high-¢? regions in SB1, SB3, and SB5 in the merged Run 1
and Run 2 data. Also shown are the projections of the simultaneous side-band fit. The m55-dependent
gap in the cos Ok distribution caused by the K ppu veto is well described by the PDF which is adjusted for

the missing phase space (see section See appendix for the full set of plots.
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Figure 6.23: ¢2 distributions in the low, mid, and high-¢? regions in SB1 and SB2 Also shown are the

projections of the simultaneous side-band fit. See appendix for the full set of plots. The gaps in the

¢? distribution in the mid-¢® region are caused by the signal veto explained in section
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Figure 6.24: cosf, and ¢ distributions in the low, mid, and high-¢? regions in SB1 in the merged Run 1
and Run 2 data. Also shown are the projections of the simultaneous side-band fit. See appendix [A-3] for
the full set of plots.
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7. Fit to Run 1 data

As described in chapter |5, the full fit with the signal model can currently only be carried
out for Run 1 dataﬂ The fit to the Run 1 data presented in this chapter, is to be seen as a
proof of concept to demonstrate the ability of the model to describe the data. Any physics
interpretations are preliminary and in order to draw real conclusions, the published result
which will use merged Run 1 and Run 2 data should be awaited.

The signal model, described in chapter [3| is convolved with the resolution model
(described in section and multiplied with the acceptance model (described in section
. The fit procedure is presented in section . For the fit to Run 1 data all three steps
of the fit procedure are carried out. The results of the background fit to the Run 1 data
are presented briefly in section [7.1] The systematic uncertainties are discussed in section
and the results of the full fit to Run 1 data are presented in section [7.3]

7.1 Background fit to Run 1 data

The fit procedure for the fit to the Run 1 data follows the steps outlined in section [6.9]
The projections of the simultaneous m’s fit (step 1) are shown in appendix [A.4]

Following the simultaneous m'sS fit, the simultaneous side-band fit is performed (step 2),

while floating the parameters of the simultaneous mis fit again and constraining them
to the results from step 1. The background parameters as well as the parameters of the
simultaneous m'ss fit are then floated again in the signal region fit (step 3) and constrained
to the best fit values from step 2.
The background events in the signal region therefore add an additional constraint to the
background parameters. This additional constraint is significant, since there are more
background events in the signal region than in the upper mass side-band. For example, in
the mid ¢ region there are ~ 4450 background events in the signal region and ~ 3150
events in the upper mass side-band. However, due to the large number of signal events
in the signal region (~ 256300 in the mid ¢? region) the fit is still less sensitive to the
background shapes in the signal region than in the upper mass side-band.

In order to study the effect of floating the background parameters in the signal region,

the background parameterisation obtained in the signal region fit (step 3) is compared to

!The averaged acceptance model for the merged Run 1 and Run 2 has yet to be determined which is

beyond the scope of this thesis.
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the background parameterisation obtained purely from side-band data (step 2).

Figure shows the cos O, cos 8y, and ¢ distributions of the Run 1 data in SB1 and SB2
in the mid-¢? region (the full set of figures for all dimensions and regions can be found in
appendix . The projections of the background PDF after the side-band fit (blue) and
after the signal region fit (red) are shown as dashed lines. The blue and red shaded areas
indicate the 68% confidence interval of each PDF, which was obtained by fluctuating all
parameters using the respective covariance matrix.

The background PDFs (after SB fit and after signal region fit) are in good general agreement
with some exceptions. The biggest discrepancies are observed for the cosf, and cos 0
distributions in SB1 and SB2 in the mid-¢? region, indicating a systematic uncertainty
related to the extrapolation of the background parameters from the side-band into the
signal region as discussed below. The projections in the ¢ dimension fully agree in all
regions.

Figure shows the ¢? distribution in SB1 in all three ¢* regions as well as the projections
and confidence intervals of the background PDF before and after the signal region fit. The
only minor disagreement between the two PDFs can be found in the lower tail of the J/
peak in the mid-¢? region.

The comparison of the background PDFs before and after the signal region fit also
constitutes a systematic check of the extrapolation of the background parameters along
the m5§ dimension (see section . As the background PDF's before and after the signal
region fits are not completely statistically compatible, a systematic uncertainty related to

the extrapolation of the background parameters is determined in section [7.2.1]
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Figure 7.1: cosfk, cosfy, and ¢ distributions in the first two upper side-band regions (SB1 and SB2)

in the mid-¢? region in Run 1 data. Also shown are the projections of the background PDF after the
simultaneous side-band fit (blue dashed line) as well as the PDFs’ 68% confidence interval (blue shaded

area), determined by varying all parameters using the covariance matrix obtained in the fit. Furthermore,

the background PDF after the signal region fit (red dashed line) and the respective 68% confidence interval

(red shaded area) are shown. Note that the background events in the signal region (not shown here) add

additional constraints on the background parameters in the signal region fit.
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Figure 7.2: ¢? distribution in SB1 in all three ¢? regions in Run 1 data. Also shown are the projections of
the background PDF after the simultaneous side-band fit (blue dashed line) as well as the PDFs’ 68%
confidence interval (blue shaded area) determined by varying all parameters using the covariance matrix
obtained in the fit. Furthermore, the background PDF after the signal region fit (red dashed line) and the
respective 68% confidence interval (red shaded area) are shown. Note that the background events in the

signal region (not shown here) add additional constraints on the background parameters in the signal

region fit.
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7.2 Systematic uncertainties

7.2.1 Backround parameterisation

There are two major sources of systematic uncertainties of the signal parameters caused by
the background parameterisation. Firstly, the fit procedure for determining the background
parameterisation results in small biases for some of the background parameters which then
can cause biases for the signal parameters. Secondly, the extrapolation of the background
parameters along m's; causes a systematic uncertainty.

Other sources of systematic uncertainties such as the choice of the parameterisation of
the background components were considered, for example higher orders of the Chebychev
polynomials, used to parameterise the angular distributions of the background. However,
the order chosen in this thesis gives the best agreement with the data. Fits with higher
orders are susceptible to over-fitting the data, exhibit large fluctuations of the PDF at the

borders of the distributions, and are therefore no reasonable variations of the fit strategy.

Biases from the fit procedure

The biases of the background parameters caused by the background fit procedure (see
chapter @ can cause biases of the signal parameters. These are treated as a source
of systematic uncertainty. To determine the systematic uncertainties caused by the
background fit procedure, a toy study is performed. One thousand toy samples of three
million events each are generated with the full signal and background model, including
resolution and acceptance effects. The signal and background events are generated
separately using the relative yields observed in data, and each event is labelled either

signal or background. Each toy sample is then fitted twice:
(A) The signal events are fitted with the signal only model.

(B) All events (signal and background) are fitted with the full three-step fit procedure
described in section [6.91

Then, the difference of each signal parameter obtained in fit (A) and fit (B) is calculated
for each toy sample, e.g. ACy = C§ 4 — CFtB.
Figure[7.3shows the distributions of ACy and ACyq as well as Gaussian fits to determine the

mean pa and width oa of the distributions. The absolute value of the mean shift i.e. [ual,
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Figure 7.3: ACy and ACj distributions (where ACy = CF'*4 — CF*B and analogously for ACyp). Each
distribution is fitted with a Gaussian to determine the ua which is taken as the systematic uncertainty

related to the background parameterisation.

is taken as the systematic uncertainty caused by the background parameterisationE] This
is done for all signal parameters. The resulting systematic uncertainties and the systematic
uncertainties as a fraction of the respective statistical uncertainty from the fit to Run 1
data are given in table E] Only the parameters with systematic uncertainties of at least
5% of the statistical uncertainty are shown. The systematic uncertainties for Cq and Cy
are 9% and 16% of the statistical uncertainty respectively. The real part] of the non-local
contribution to C7 in the Ay amplitude has a systematic uncertainty of 6% of the statistical
uncertainty. Also one of the FF parameters, a3, is affected at the level of 11% of the
statistical uncertainties, as are the resolution parameters in the mid-¢? region (%) and in
the high ¢? region (a®) at 14% and 13% of the statistical uncertainty.

2The widths of the ACy 1o distributions are correlated to the statistical uncertainty added by the
background, since no background events are included in fit (A).

3Technically, the “statistical” uncertainties here are the fit uncertainties which include the statistical
uncertainties as well as the theoretical uncertainties from the FF constrain.

4The fit was found to be more stable when fitting for the real and imaginary parts of the non-local

contribution to C7 instead of the corresponding magnitudes ¢:% and phases w0,
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A HA / O statistical

| A )] (-40.94 £ 2.13)x 1077 0.09
| AV, (-47.71 £ 2.39)x 1077 0.10
1AL 9| (-71.815 + 3.044)x10~7 0.12
Im(AY4Y (119.79 + 1.31)x 1077 0.05
FF ol 0.0547 £ 0.0035 0.11
| A4S, (-26.49 + 1.64)x 1077 0.05
|Cy -0.0236 + 0.0016 0.09
|Cy 0.0322 + 0.0019 0.16
Re(ACR0) (5.13 £+ 0.77)x 1073 0.06
resolution o?  (1.050 £ 0.064)x1073 0.14
resolution o®  (8.96 £ 0.34)x1073 0.13

Table 7.1: Systematic uncertainties of the signal parameters due to the background fitting procedure. The
systematic uncertainties are determined by generating 1000 high statistics toy samples and comparing the
fit results of a signal only fit to the results from the full signal and background fit. The absolute value
of the mean difference of the fit parameters (|ual, obtained with Gaussian fits) is taken as systematic
uncertainty. In the right column, the systematic uncertainties are given as a fraction of the statistical
uncertainty of the respective parameter. Only the parameters which have systematic uncertainties of at

least 5% of the statistical uncertainty are shown.
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Extrapolation of the background parameters

Since the background PDFs before and after the signal region fit are not fully statistically
compatible, as shown in figure [7.1] and figure[7.2] the systematic uncertainties related to the
extrapolation of the background parameters is determined. The systematic uncertainties

are estimated by using varied fit strategies to fit the data:
(A) The nominal fit as explained in section [6.9}

(B) The background parameters and the signal fractions are fixed to the best fit results

of the simultaneous m’5s fit and the simultaneous side-band fit.

(C) The same fit strategy as (A) except that all background parameters are reparame-

terised with psg. = py +phg X mgBi instead of just the cos @k parameters (see section

67).

Both variations constitute tests for the mi55 dependence of the background parameteri-
sation and the systematic uncertainties determined with the two methods are therefore
correlated. However, for the Run 1 only data, the number of events are too small to ensure
a stable fit with variation (C) which uses 52 free parameters to describe the background
(also see table for the number of events). Therefore, this method is omitted for the
Run 1 only fit, but could be used for the fit to the merged Run 1 and Run 2 data.

For this thesis, only the variation (B) is considered and each signal parameter from
fit (B) is compared to the respective value obtained in the nominal fit (A). The absolute
difference is taken as systematic uncertainty. The projections of the background PDF of
fit (A) and (B) can be compared in figures [7.1] and [7.2] as well as appendix [A.F]
The systematic uncertainties resulting from the extrapolation of the background parameters
along mi5s are given in table along with the systematic uncertainties as a fraction of
the statistical uncertainties in the nominal fit.
The systematic uncertainties are quite large, most notably for Cy and C;y where the
systematic uncertainties are 20% and 65% of the statistical uncertainties respectively.
The extrapolation of the background parameters along m'5s is therefore the dominant
systematic uncertainty for C,

However, the nominal fit uses background events in the signal regionf] and is therefore

less affected by the extrapolation of the background parameters than the study presented

®As stated before in the mid ¢? region, there are ~ 5215 background events in the signal region and

3156 background events in the upper mass side-band
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in this section suggests. In other words, it could be argued that the fit with the fixed
background is not an ideal variation of the fit strategy for determining a systematic
uncertainty. The variation is overestimating the ‘misunderstanding’ of the background,
since the varied fit simply ignores some of the information available in the data. Therefore,
the systematic uncertainties given in this section are likely overestimated. However, in
order to stay conservative, the systematic uncertainties are used as given in table This
method should be revisited for the fit to the merged Run 1 and Run 2 data.
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Usyst Usyst / Ostat

A1 1 0.000006  0.26

0;"" 0.003202  0.26

A7 ] 0.000002  0.09

J/ Osyst Osyst / Ostat

0; 0.093489  0.93 — — T oo
APC9] ] 0.000008 018 “o ‘ '

¥(25) oS 0.020461 0.05
1AY@9) 1 0.000007  0.15 i

»(25) |AY | 0.000034 |  0.66
o 0.126169  0.40 o

p(770) 07! 0.083515 |  0.83
145 0.000004  0.11 )

p(770) |Ag™’| 0.000013 0.25
0° 0.000003  0.06 s

Im(AZ"%) | 0.000003  0.20 9‘(’2’ 8‘(1);1(1):3(15 8';12
Re(Aﬁ’(?’m)) 0.000010  0.39 \09| 0‘130912 0'65
Im(A®™) | 0.000002  0.10 1 ' '

B(3770) Scale Swave V1 | 0.955726 0.41
Re(AY®7) 1 0.000001  0.06

»(3770) Scale Swave V2 | 1.025880 0.45
Im (A7) 1 0.000006  0.27

»(3770) Scale Swave T | 0.412042 0.35
Re(AY®T™) | 0.000004  0.13 b

(3770) RG(AC ) 0002409 012
Im(AY®7Y 1 0.000005  0.13 T

$(4040) Re(ACH) 0.015854 0.41
Re(A7 ") 1 0.000003  0.08 ar

‘ v0d0)s | ' Re(ACAO) 0.005057 | 0.06
Im(AY“9) 1 0.000003  0.12 "

(4040) Im(ACA%) | 0.002005 |  0.08
Re(AY“Y 1 0.000002  0.05 )

(4040) a 0.001761 |  0.23
Im (A 1 0.000004  0.09 ,

(4160) a 0.038108 |  0.54
Im (A ) | 0.000002  0.05
Re(AY™1%) | 0.000004  0.12
Re(AY™9) | 0.000005  0.13
Im(AY“%) 1 0.000006  0.16

Table 7.2: Systematic uncertainties related to the extrapolation of the background parameters along
mi5s. Also shown are the systematic uncertainties as a fraction of the statistical uncertainty. Only the

parameters with systematic uncertainties which are at least 5% of the statistical uncertainty are shown.
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Figure 7.4: cos 0k distribution of toy events generated with the model transformed into the helicity basis
including the exotic contributions (red), including the exotic contributions with doubled magnitudes

(green), and without exotic contributions (blue). Figure from Ref. [50].

7.2.2 Exotic charmonium-like states

Several exotic charmonium-like states with a quark content of ccud have been observed
in decays of B® mesons. The first observation was made by the Belle experiment by
measuring the Z(4430)~ state in the ¢(2S5)7" invariant mass spectrum of the BY —
P(2S)K 7 decay |101L,|102]. The existence of the Z(4430)~ was also confirmed by the
LHCb collaboration [103]. The Belle collaboration performed a full angular analysis of
the Z(4430)~ — ¢(2S)7™ decay [104]. Two more ccud states have been observed by the
Belle collaboration in the J/7* spectrum of the B — J/ip K~ n+ decay: Z(4330)" and
the Z(4200)* [105].

The presence of these exotic states in the J/7* spectrum of B®— Jip K—nt decays
can have an impact on the angular distributions as shown in Ref. [106], particularly adding
a peak in the cos Ak distribution at cos 0 < —0.5. Since the exotic charmonium-like states
are not included in the empirical model used in this thesis, a corresponding systematic
uncertainty is assigned. To this end, toy samples are simulated with an extended model
which includes the amplitudes corresponding to the Z(4430)* and Z(4200)" states, using
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the magnitudes and phases measured by the Belle collaboration [104,|105]. Since the
measurements were performed using the helicity amplitude basis (H%™7), the model
described in chapter [3]is transformed into the helicity formalism using the relations given
in Ref. [107], in order to allow the inclusion of the exotic contributions into the model.
Using the extended model, toy samples are generated while also including acceptance
and resolution effects (see sections and . These toy samples are labelled “exotic”
toys. Then, using the same model, but setting all exotic amplitudes to zeroﬁ the same
number of toy samples, labelled “non exotic” toys, are generated. Figure [7.4] shows the
cos O distribution of one of the exotic toy samples (red points) and of the corresponding
non-exotic toy sample (blue points). The effect of the presence of the exotic states is
clearly visible at cosf < —0.5.

Both the exotic and non-exotic toys are fitted with the nominal model described in
chapter [3| and the mean difference of the fit parameters is used as a systematic uncertainty.
The systematic uncertainties are given in table for the parameters most affected by
the presence of the exotic states. Also given are the systematic uncertainties divided by
the statistical uncertainties from the fit to Run 1 data. For the Wilson coefficients Cqg
and Cyo, the systematic uncertainty is on the order of 8% of the statistical uncertainty.
The systematic uncertainty of the phase of the J/ib amplitudes relative to the penguin
amplitudes is approximately 6% of the statistical uncertainty.

Since the measured magnitudes of the Z(4430)* and Z(4200)* amplitudes have large
uncertainties, a second toy study is performed where the magnitudes of the exotic ampli-
tudes are doubled. Figure [7.4] shows the cosff distribution of a toy sample with doubled
magnitudes of the exotic amplitudes (green points). The resulting systematic uncertainties,
shown in table are used for the final result presented in section [7.3|

6All other parameters remain unchanged and the same list of starting seeds are used for generating the

non-exotic toys as were used for generating the exotic toys.
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Parameter Systematic uncertainty Systematic uncertainty /statistical uncertainty

09, 5.92 x 1073 0.06
Col 2.07 x 10~ 0.08
’010’ 1.61 x 10_2 0.09

Table 7.3: The systematic uncertainties due to ignoring the presence of the charmonium-like exotic states
7(4430)* and Z(4200)" in the signal model. The systematic uncertainties as a fraction of the expected
statistical uncertainties from fit to Run 1 data are given in the right coloumn. The uncertainties are given

for the Cy, C19 and the phase 03/¢. The effect of the exotic states is found to be negligible for the other
parameters.

Parameter Systematic uncertainty Systematic uncertainty/statistical uncertainty

99/1,11 1.27 x 1072 0.13
1Co 4.88 x 1072 0.19
|010| 5.21 x 1072 0.26

Table 7.4: The systematic uncertainties due to ignoring the presence of the charmonium-like exotic states
7(4430)* and Z(4200)* in the signal model when doubling the magnitudes of the amplitudes of the exotic
states. The systematic uncertainties as a fraction of the statistical uncertainties from the fit to Run 1
data are given in the right column. The uncertainties are given for the Cg, C19 and the phase 9?, /o The

effect of the exotic states is found to be negligible for the other parameters.
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7.2.3 S-Wave form factors

As discussed in sections and [3.3] the signal model used in this thesis includes contribu-
tions from B°— K*%u" ™ decays in the S-Wave configuration. The S-Wave amplitudes
are expressed in terms of the two from factors F}(¢*) and Fr(g*) as shown in equation
2.40] The S-Wave form factors have not been studied very extensively and therefore have
large uncertainties. The nominal model in this thesis uses the values of the S-Wave form
factors coefficients F(0)7] ozllu’,T, and b}’T calculated in Ref. [43]. The authors did not
publish any uncertainties for these coefficients.

Therefore, a conservative estimate of the systematic uncertainties, caused by the lack
of understanding of the S-Wave form factors, is determined for the signal parameters. To
this end, toy simulations with 10 millions events each are produced using the nominal
signal model, including resolution and acceptance effects. Each toy sample is then fitted
twice, once with the nominal signal model, and once with a modified model where the
S-Wave from factors Fj p are replaced with the form factors that enter into the longitudinal
P-wave amplitude AS’R (see equation . Explicitly, F} is replaced with Ay and Fr is
replaced with T53. The motivation behind using the AS’R FFs instead of the S-Wave FF's
as a systematic variation, is that the K** in the S-Wave configuration is longitudinally
polarised just like the A[I;’R amplitude.

The mean difference of each fit parameter in the nominal fit and the fit with swapped
FFs is taken as a systematic uncertainty. The resulting systematic uncertainties as well as
the systematic uncertainties as a fraction of the statistical uncertainties from the fit to
Run 1 data are given in table[7.5] Only the parameters for which the systematic uncertainty
is at least 5% of the statistical uncertainty are given. The systematic uncertainties, are
significant for several parameters, for example for Cy where the systematic uncertainty is
~ 46% of the expected statistical uncertainty.

However, as shown in figure [7.5] the S-Wave FFs (blue line) and P-Wave FFs (dashed
black line and red area) are vastly different, indicating that the systematic uncertainties
obtained from swapping the S-Wave FFs for the P-Wave FFs are likely an overestimation.

Furthermore, figure shows the B — K™ form factors fy, f4, and fr, calculated
using lattice QCD |108]. The notation is such that f, corresponds to F; and fr corresponds
to Frr. fo denotes the scalar form factor which is not included in the model used in this
thesis. The similarity between the BT — K™ form factors and the S-Wave B — K*° form
factors, and the fact that the BT — K™ utu~ decay is also in an S-Wave configuration,

suggest that the BT — K+ form factors could be used as a systematic variation in order
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Figure 7.5: The S-Wave form factors I} and Fr as a function of ¢? using the nominal coefficients from
Ref. |43] (blue line). Also shown are the form factors of the P-Wave amplitude Ag: A1z (left) and Ths
(right) — shown with the dashed black line and the red area indicating the 68% confidence interval — with
which F; and Frp are replaced in order to estimate a systematic uncertainty associated to the S-Wave

form factors. Figures from Ref. [50].

to estimate the systematic uncertainties.

However, in order to avoid underestimating the systematic uncertainties, the more
conservative study outlined above is used in this thesis. Further theoretical calculations of
the S-Wave B° — K*° FFs could improve the precision of the fit with the model described

in this thesis.

e | [Fe=

0 5 10 15 20
¢*(GeV?)

Figure 7.6: The BT — KT form factors fo, f1, fr as a function of ¢?. Relating these to the B® — K*9
form factors, fi corresponds to F; and fr corresponds to Fp. fy is the scalar form factor which is not

included in the model used in this thesis. Figures from Ref. [108§].
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Parameter Systematic uncertainty —Systematic uncertainty/Statistical uncertainty
|Cy| 1.15 x 107! 0.46
|C1ol 2.12 x 1072 0.11
ng 2.86 x 1074 0.29
Myas) 2.02 x 1075 0.45
ni(QS) 2.41 x 107° 0.52
7]2}(25) 3.01 x 107° 0.50
7;3(225) 9.97 x 107¢ 0.20
Re(Ago) 6.35 x 107¢ 0.21
Im (Ago) 2.90 x 107 0.07
Re(Al 700)) 1.61 x 1076 0.06
Im(A w(3770)) 4.87 x 107 0.22
Re(Aw 4040) ) 2.82 x 107¢ 0.09
Im(ALL(4O4O)) 6.07 x 1076 0.15
Re(Ai 4040) ) 9.89 x 107 0.39
Im(Ai(404O)) 5.56 x 107 0.22
Re(Ag} 4040) ) 1.71 x 107° 0.05
Im(A%(4O4O)) 4.05 x 107 0.10
Re(Al;160)) 3.55 x 1076 0.09
Tm (Al 4160)) 6.69 x 1076 0.155
Re(Ai 4160) ) 1.04 x 1075 0.325
Im(Ai(uGo)) 7.38 x 107¢ 0.27
Im(A w(4160)) 5.55 x 1076 0.14
Re(¢lewll 7.76 x 1073 0.20
Re(¢tet) 1.27 x 1072 0.33
Im(¢tet) 6.16 x 1073 0.27
Re(¢Y%™0) 1.03 x 1071 1.18

Table 7.5: The systematic uncertainties associated to the poor understanding of the S-Wave form factors.
In the right column, the systematic uncertainties as a fraction of the statistical uncertainties from the fit
to the Run 1 data are given. Only parameters with a systematic uncertainty which is at least 5% of the

statistical uncertainty are given.
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Figure 7.7: Distributions of Afy, Afx and A¢ defined as the differences between the angles of the true
and reconstructed decay products in B® — K*9u %~ simulations. Also shown are fits with triple Gaussian

PDFs used to parameterise the angular resolution. Figure from Ref. [50].

7.2.4 Angular Resolution

As explained in section [5.3] the signal model used in this thesis is convolved with a
resolution model in ¢, but ignores resolution effects in the angles. This is due to the fact
that the ¢? distribution includes extremely narrow peaks which are much narrower than the
q¢? resolution but the angular distributions do not contain any such peaks and are varying
slower than the angular resolution. Nevertheless, ignoring the limited angular resolution
is a source of systematic uncertainty. The estimation of this systematic uncertainty is
presented in this section.

Firstly, simulated B®— K*°u* = events from the full MC simulation (see section
in the ranges (5239.58 < m’s§ < 5319.58) MeV /c? and (795.9 < my, < 995.9) MeV/c?

are used to a obtain a parameterisation of the angular resolution. Using the true (i.e.
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generator level) and the reconstructed four momenta of the final state particles, the true and
reconstructed angles are calculated. The distributions of the differences Az = z"¢¢ — g
for x € {cosOk, cos by, ¢} are then parameterised using triple Gaussian PDFs. The triple
Gaussian is defined as a sum of three Gaussians with independent means p; o 3, independent
widths 0123 and two fractions f; 5. The distributions of A cos#y, A cosfk, and A¢ along
with the respective triple Gaussian fit are shown in figure [7.7] The triple Gaussian PDFs
describe the distributions well. The resulting resolution parameters for the resolution in
cos By, cos Ok, and ¢ are given in tables and [7.8| respectively.

The angular resolution parameterisations are then used in a toy study designed to

determine a systematic uncertainty. Using the nominal signal model, including ¢>-resolution
and acceptance effects, toy simulation samples are generated with 10 million events each.
Each sample is then fitted twice. First, the events are fitted with the nominal model.
Then, the angles in the toy samples are smeared using the resolution parameterisations
shown in figure [7.7] and then fitted with the nominal model again. The mean difference
of the fit parameters in the two fits are taken as the systematic uncertainty related to
ignoring the angular resolution.
The resulting systematic uncertainties are given in table [7.9, The largest systematic
uncertainty is observed for the real part of the non-local contribution to the C; in the
longitudinal amplitude (Re(¢%™“?)), with a systematic uncertainty of 14% of the statistical
uncertainty. The systematic uncertainties of the Wilson Coefficients are small, with Cy
having the larger systematic uncertainty of 8% of the statistical uncertainty. With more
data, these systematic uncertainties will become more significant and therefore it may be
advisable to include the angular resolution model in the fit in future measurements which
include Run 3 data.
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Parameter

Value

01
02
03
21
H2
K3
hi
f2

3.99 x 1072 £ 4.69 x 107°
1.02 x 1072 4+ 2.57 x 10 ~*
1.28 x 1070 4+ 8.21 x 1073
-1.56 x 1072 4+ 3.43 x 10 —°
3.08 x 107° + 1.64 x 10 ~*
-2.34 x 1072 &£ 1.12 x 10 2
7.84 x 1071 £ 1.18 x 1072
6.81 x 107! £2.34 x 1073

Table 7.6: Result of the fit parameters from fitting a triple Gaussian to the distribution of A cosfy in

order to parameterise the cos 6, resolution.

Parameter

Value

01
02
03
M1
K2
M3
fi
f2

4.05 x 1072 £ 4.51 x 107°
1.07 x 1072 £ 2.75 x 10 ~*
3.69 x 1072 + 1.84 x 102
-1.62 x 1072 4+ 3.36 x 10 —°
4.01 x 107® £ 1.77 x 10 ~*
2.35 x 107t £ 1.57 x 10 !
7.98 x 107! £ 1.07 x 1072
6.83 x 107! £2.33 x 1073

Table 7.7: Result of the fit parameters from fitting a triple Gaussian to the distribution of A cosfy in

order to parameterise the cos 8k resolution.

Parameter

Value

01
02
3
k1
H2
M3
fi
fo

1.04 x 1072 +1.29 x 1074
3.08 x 1072 £+ 6.85 x 10 ~*
5.00 x 1072 + 3.77 x 102
6.99 x 107° £ 9.26 x 107°
2112 x 1074 4+ 4.43 x 1074
6.58 x 1072 £ 1.29 x 10 7!
743 x 1071 £ 1.02 x 1072
6.75 x 107! £2.38 x 107?

Table 7.8: Result of the fit parameters from fitting a triple Gaussian to the distribution of A cosf in

B?— K*9u% = simulations in order to parameterise the ¢ resolution.
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Parameter ~ Systematic uncertainty Systematic uncertainty/Statistical uncertainty

[ed 8.84 x 1073 0.04
|CIO| 1.59 x 1072 0.08
m 1.45 x 1076 0.06
My 1.36 x 1076 0.06
Mhos) 3.69 x 107 0.08
Mo(2s) 3.31 x 1076 0.05
Re(¢e™ ) 2.74 x 1073 0.07
Re((0e0) 1.24 x 1072 0.14

Table 7.9: The systematic uncertainties related to ignoring the angluar resolution in the model, and the
systematic uncertainties divided by the respective statistical uncertainties from the fit to Run 1 data. Only
parameters that have a systematic uncertainty which is at least 5% of the expected statistical uncertainty

are given.
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7.2.5 Acceptance

The acceptance parameterisation described in section [5.2]is dependent on the choice of
the orders of the Legendre polynomials. In order to avoid over-fitting and oscillations
at the edges of the distributions, the lowest set of orders is chosen with which the
acceptance parameterisation can still describe the acceptance effect well. In order to
ascertain the systematic uncertainty associated to the orders of the Legendre polynomials,
an alternative higher order acceptance parameterisation is determined, where each order
has been increased by 3. Toy event samples are generated from the signal model using the
higher order acceptance model and fitted with the nominal model and with the higher
order model. No significant difference between the two fits is observed for any of the signal
parameters, indicating that the systematic uncertainty associated to the choice of orders
of the acceptance function is negligible.

Furthermore, the limited number of simulated events used for determining the accep-
tance coefficients can be a cause of systematic uncertainty. This has been investigated
extensively for the measurement of the ¢*>-binned angular observables, which uses the
same acceptance parameterisation [1,91]. It was found that the systematic uncertainty
associated to the limited number of simulated events used for determining the acceptance
parameterisation is negligible. To crosscheck these findings with the model used in this
thesis, variations of the acceptance coefficients are created using their covariance matrix.
Then, toy simulations are generated using the nominal acceptance model and fitted with
the nominal model and with the varied acceptance. The differences of the signal parame-
ters caused by the varied acceptance is found to be negligible compared to the statistical
uncertainties of the signal parameters.

A further source of systematic uncertainties related to the acceptance model are due to
the fact that the full MC simulations, used to determine the acceptance parameterisation,
may not perfectly reproduce the data. The data driven corrections for the differences
between data and simulation are described in section 4.8.1, The PID resampling signif-
icantly improves the agreement of the PID variables between data and simulation. In
order to determine a corresponding systematic uncertainty, the small residual differences
between data and simulation are corrected by applying weights. The weights are calculated
based on sWeighted B — Jh) K*° data and the PID-resampled simulation. An alternative
acceptance parameterisation is determined based on the additionally weighted simulation.
Then, toy simulations are generated with the signal model using the nominal acceptance

model and fitted back with the nominal acceptance and the alternative acceptance. The
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differences of the signal parameters caused by the alternative acceptance model are negli-
gible compared to the statistical uncertainties.

The systematic uncertainty related to the kinematic reweighting is asssed by determining
three alternative acceptance parameterisations, where one of the three weights (used for
correcting the nTracks, x2,,, and pZ’ distributions respectively) is omitted in each one.
Then, toy simulation samples are generated with the signal model and each of the three
alternative acceptance functions. Each toy sample is fitted with the nominal acceptance
and the respective alternative acceptance model. The resulting systematic uncertainties

are negligible compared to the statistical uncertainties.

7.2.6 Residual Peaking Backgrounds

Not all of the vetos used to reject peaking backgrounds described in section [5.1.2] are
100% efficient, i.e. a small number of peaking background events are still contained in
the final event selection. In order to determine the systematic uncertainties related to
these residual peaking backgrounds, the (cos 6y, cosfk, ¢, ¢°, m'ss) distribution of each
peaking background component is modelled using simulations. Subsequently, toy event
samples are generated for each peaking background contribution and injected into signal
toy event samples, using the expected rate of each peaking background contribution. The
resulting peaking-background-enriched toy samples are then fitted using the nominal signal
model. No significant bias for any of the signal parameters was found, which is due to the
extremely small rate of the peaking backgrounds. Therefore, the systematic uncertainty

associated to ignoring the residual peaking backgrounds is considered to be negligible.
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7.2.7 Summary of the systematic uncertainties

A summary of the systematic uncertainties of the most important signal parameters, i.e.

the magnitudes of the Wilson Coefficients Cy and Cyo, and the magnitudes and phases of
the J/i and ¢(2S) P-Wave amplitudes, is given in table [7.10, The largest systematic

uncertainty of each parameter is printed in bold. The background extrapolation is the

dominant systematic uncertainty for most of the parameters shown in the table, except for

the magnitude of Cy and the magnitudes of the 1(2S) amplitudes for which the systematic

uncertainties related to the S-Wave FFs are dominant. As discussed in sections [7.2.1]
and [7.2.3] both the systematic uncertainties from the background extrapolation and the
systematic uncertainties related to the S-Wave FFs are conservative estimates, and should
be revisited for the planned fit of the merged Run 1 and Run 2 data.

bkg fit bkg extrapolation exotics S-wave FF  ang. resolution
| Cy| 2.36 x 1072 501 x 1072 488x 1072 1.15x 10"t 884 x 1073
1Crol | 322x1072 131x1071  521x1072 212x102 159 x 102
o) 1.15 x 1079 3.2x10°3 2.86 x 107
97" | 522x10°° 4.2 %107
07" 592x 107 935x1072 127 x 1072 8.92 x 10~
0/ | 395x107  1.08x10°°
gvC%) | 717x 107 1.43x 1073
0y*% | 6.9%x 1073 1.26 x 1071 5.84 x 1073
(AT 194 x 1077 6 x 1076 1.45 x 1076
A7) | 412 x 1078 2 x 1076 1.36 x 10~°
AFES| 14,09 % 107 8 x 107 2.02x 10"  1.39 x 10
|AYC)| | 477 x 1070 7 x 1076 241 x 107  3.69 x 107
1AY®)| | 719 x 1076 2 x 1076 3.01x1075  331x10°°

Table 7.10: Summary of the systematic uncertainties of the magnitudes of the Wilson Coefficients Cq
and Cyp, and the magnitudes and phases of the J/i and ¢ (25) P-Wave amplitudes. Only systematic

uncertainties which are at least 5% of the respective statistical uncertainty from the fit to Run 1 data are

included in the table. The largest systematic uncertainty of each parameter is printed in bold.
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7.3 Results of the fit to Run 1 data

The fit procedure used for the fit to the Run 1 data is described in section [6.9

The best fit values for the signal fractions are:

Flowa® — 0.8898 4 0.0006

ig

frmiaa® — 0.98292 + 0.00005 (7.1)
fhiehe® — 0.9722 + 0.0002,

where the uncertainties are estimated statistical uncertainties based on toy simulations,
since the signal fractions are not direct fit parameters in the fit (see section .

The cosf and cos 6, distributions in the three ¢? regions (low-, mid-, and high-¢?)
in the signal region ((5239.58 < mlss < 5319.58) MeV /c?) are shown in figure Also
shown are the projections of the total fit PDF (blue line) and the projections of the signal
component (dashed red line) and the background component (dotted and dashed black
line). The pull distributions are shown on the bottom of each plot, where the pull is
defined as the difference between each data point and the value of the projection of the
total PDF at the centre of the respective bin, divided by the uncertainty of the data. The
total PDF agrees well with the data, except for cos @ < —0.5. This discrepancy is due to
the presence of exotic charmonium-like states, such as the Z(4430), in the data, which are
ignored in the model. The corresponding systematic uncertainty is discussed in section
[7.2.2]

Figure shows the ¢ and ¢? distributions in the three ¢? regions in the signal region
along with the PDF projections. The total PDF describes the data well including the
q? regions of the higher ¢ resonances visible as broad peaks above the ¢(25) peak. Also
the p® and ¢(1020) resonances are visible in the low-¢* region and are well described by
the PDF. The large pulls at the J/i and 1(2S5) peaks are due to the coarse binning of
the data in the plot and the rapidly changing shape of the distribution. The model does
describe these peaks well, as demonstrated with the fit to the narrow J/i) region shown

with much finer binning in figure [5.6]
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Figure 7.8: cosfx and cosf, and distributions in the three ¢? regions in the signal region
((5239.58 < m'ss < 5319.58) MeV/c?) in Run 1 data. Also shown are the projections of the total
fit PDF (blue line) and the projections of the signal component (dashed red line) and the background
component (dotted and dashed black line). The pull is defined as the difference between the data and the

value of the projection of the total PDF at the centre of the respective bin divided by the uncertainty of
the data.
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Figure 7.9: ¢ and ¢®> and distributions in the three ¢? regions in the signal region
((5239.58 < m'S§ < 5319.58) MeV/c?) in Run 1 data. Also shown are the projections of the total
fit PDF (blue line) and the projections of the signal component (dashed red line) and the background
component (dotted and dashed black line). The pull is defined as the difference between the data and the
value of the projection of the total PDF at the centre of the respective bin divided by the uncertainty of
the data. The large pulls observed at the J/i) and 1(2S5) peak are due to the coarse binning of the data
and the steep slopes of the peaks. The PDF does describe the data well as demonstrated in the fit to the

narrow J/i region shown in figure
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results £0g; & Ogyst Osyst/ Okt | precision
|Cy| | 3.64 +0.25+0.14 0.55 0.078
|Cro| | 442 £ 0.20 £ 0.15 0.73 0.057
0;"" | 0.207 £ 0.012 % 0.0032 0.26 0.062
07" | -0.2411 + 0.0095 + 0.000067 0.01 0.039
6" | -1.63 + 0.10 + 0.095 0.94 0.085
0;/®% | -0.674 % 0.048 £ 0.0011 0.02 0.071
0v*%) | 22,6431 + 0.045 + 0.0016 0.04 0.017
oy | -1.72 £ 0.32 £ 0.13 0.40 0.198
A% 110.004344 £ 0.000023 & 0.0000062 |  0.27 0.005
1A | 0.004178 + 0.000024 £ 0.0000024 |  0.10 0.006
AP |10.001073 £ 0.000045 % 0.000022 | 0.50 0.046
1A% 1 0.001065 £ 0.000046 + 0.000026 |  0.56 0.050
14239 1 0.001596 =+ 0.000060 + 0.000031 |  0.52 0.042

Table 7.11: Fit results of the magnitudes of the Wilson Coefficients Cg and C1g and the magnitudes and
phases of the J/i and 1 (2S5) P-Wave amplitudes from the fit to Run 1 data. The uncertainties are the
fit uncertainties (including statistical uncertainties and theoretical uncertainties from the P-Wave FF
constraint) and systematic uncertainties. The ratio of the systematic uncertainties and the fit uncertainties
are given in the centre column. The precision, defined as the total uncertainty (fit uncertainties and
systematic uncertainties added in quadrature) divided by the best fit value, is given in the right column.
The results for the full set of floating signal parameters are given in table

The results from the fit to Run 1 data are given in table including the fit
uncertainties — consisting of the statistical uncertainties and the theoretical uncertainties
of the P-Wave FF constraint (see section [2.5) — and the combined systematic uncertainties.
The results are given for the magnitudes of the Wilson coefficients Cy and Cyo, and the
magnitudes and phases of the J/ib and 1(2S) P-Wave amplitudes. The results for the full
set of signal parameters are given in appendix [A.2]

The precision on the phase of the J/i (1(2S5)) amplitudes relative to the penguin
amplitudes i.e. Qg/w (08“25)) is on the level of 8.5% (19.8%) which is precise enough to
determine the level of the non-local contributions as shown in section [7.3.2]

The result for Cy can be compared to the value of Cy obtained from the measurement
of the ¢>-binned angular observables using the same Run 1 dataset [10]. In the paper the
authors present a x? fit to the angular observables using the EOS software package [109], to
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determine a best fit value for the real part of Cy. They report the best fit value for Re(Cy)
to be shifted by ARe(Cy) = —1.04 +0.25 from the SM central value of Re(Cy) = 4.27 [110],
corresponding to a 3.4 standard deviation discrepancy to the SM based on the difference
in y? of the best fit point to the SM point. However, a more recent fit of the ¢>-binned
angular observables from Run 1 using the FLAVIO package [111] with up to date SM
nuisance parameters gives a tension of 3.00 [1]. Therefore, the uncertainty of ARe(Cy)
reported in Ref. [10] is likely underestimated.

The best fit value obtained in the fit presented in this thesis, corresponds to ARe(Cy) =
—0.63 £ 0.29, where the uncertainty is the combined fit uncertainty and systematic
uncertainty. This value is closer to the SM model than the one obtained from the binned
angular observables, but still only agrees with the SM at 2.2 standard deviations. Based
on the SM value of Re(Cyg) = —4.17 [110], the best fit value for C;o obtained in the fit
presented in this thesis corresponds to ARe(Cyg) = —0.25 £ 0.25, which is compatible with
the SM at one standard deviation.

Figure shows the best fit point from this thesis (blue cross) in the 'Y - CNF' plane
as well as the 1o, 20 and 30 contours (blue areas) determined using the covariance matrix
from the fit and the systematic uncertainties. The SM values (C3" = C}’ = 0) are indicated
with dashed lines. The blue contours visualise the discrepancy of the measurement from
this thesis with the SM at 2.20 for Cy and 1o for Cyg. Also, the hypothesis of C3¥ = —C}Y,
which is commonly considered in global fits to b— s¢T¢~ measurements [16,[112], is likely
rejected by the fit presented in this thesis, since the results are only compatible with this
hypothesis at ~ 2.50 to 30.

In order to compare the result from this thesis to previous B — K*°u* i~ measurements
made with LHCb Run 1 data, the FLAVIO package is used to determine the allowed
region in the CYF — CIF plane based on the ¢*binned angular observables of B® —
K*u* = decays [10] and the measurement of the B® — K*°u* ;= branching fraction [40].
The branching fraction measurement is included to allow better comparability with the
measurement in this thesis. The signal model used in this thesis is sensitive to the
relative magnitudes of the penguin amplitudes and resonant amplitudes and therefore
uses branching fraction information from data. The 1o band obtained from the Run 1
¢*>-binned angular observables and branching fraction measurement is shown with the
orange area in figure [7.10
The measurement from this thesis achieves a better precision for both Cq and C;g. This is

because the analysis presented in this thesis uses more events than the previous analyses,
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Figure 7.10: Allowed region in the CF - CI¥' plane obtained using the best fit values, the covariance
matrix, systematic uncertainties in the fit to Run 1 data presented in this thesis (blue areas). Shown
are the 1o, 20 and 30 regions. The best fit values for (C5F, CNF) are indicated with a blue cross. Also
shown is the 1o region (orange area) obtained with the FLAVIO package using the ¢2-binned angular
observables of B® — K*%u+u~ decays from Run 1 and the measurement of the B — K*0u+t~
branching fraction as input.

by fitting the full ¢*> range and not omitting the resonant regions. Also, the analysis
presented in this thesis is the first analysis that uses the full information encapsulated in
the correlation of the events across ¢ by not binning the data. Furthermore, the non-local
contributions are determined from data such that no theoretical uncertainty associated to
these previously unknown contributions need to taken into account.

The latter point could also explain the fact that the central value of (C3¥,C}}) obtained
in this thesis is shifted with respect to the previous analyses. The SM calculations, which
are used in b— s¢T¢~ global fit packages such as EOS and FLAVIO, take the unknown
non-local contributions into account only by allowing for a systematic variation of the
angular observables, not by shifting the central values of the angular observables. Therefore,
when fitting the ¢>-binned angular observables with FLAVIO, the resulting central values

of the Wilson coefficients do not take potential non-local effects into account. In contrast
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to that, the fit presented in this thesis explicitly determines the relative contributions of
the penguin amplitudes and the resonant amplitudes from data such that the resulting

Wilson Coefficients are unaffected by the non-local contributionsﬂ

7.3.1 Comparing angular observables to ¢>-binned measurement

The model described in this thesis can be used to calculate the CP-averaged angular
observables S; (see equation and equation in section as a function of ¢?. This
allows the comparison of the results from this thesis to the published ¢2-binned angular
observables measured in Run 1 data [10].
Figure [7.11] shows the full set of CP-averaged angular observables Agg, F1,, S3, S4, S5, S7,
Sg, and Sy as a function of ¢* calculated with the model used in this thesis, after fitting
the model to Run 1 data. The blue shaded area depicts the 68% confidence level of the
model, determined by varying the parameters according to the covariance matrix obtained
in the fit. Also shown with the black data points are the measured values of the ¢?-binned
angular observables from Ref. [10]. Note, that this is not a fit of the unbinned model to
the binned observables, but rather it is a comparison of the results of two independent fits
to the same data — with the exception that the events in the resonant regions, containing
contain the ¢(1020), J/) and ¥(2S5) resonances, are omitted in the ¢>-binned fit, but are
included in the fit presented in this thesis.
The angular observables calculated with the fitted model from this thesis, are in good
general agreement with the directly measured binned angular observables. This is further
confirmation that the model used in this thesis is a good description of the data. The
fit from this thesis determines the angular observables with better precision than the
¢*-binned measurement, as expected from the comparison discussed in the previous section.
The discrepancies observed in the first ¢* bin are due to the fact that the model used
for the ¢-binned fit assumes massless leptons, which creates a redundancy between the
angular terms J; and J{ and therefore allows less information to be extracted from the
angular fit [113].

The SM predictions given in Ref. [112] (using FF input from Ref. [35]) are also shown
in figure [7.11] with green boxes. Since the systematic uncertainties are not included in the

confidence intervals for the measurement from this thesis in figure [7.11}, no quantitative

"However, as discussed in section the fit in this thesis does come with the caveat of being model
dependent.
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conclusions should be drawn from these comparisonsﬂ Still, the comparison allows
qualitative conclusions based on the central values.

The largest discrepancies between the ¢?-binned measurement and SM predictions have
been found in the third and fourth bin in S5 [10]. Even though the value of S5 at the
center of the fourth bin, calculated with the model from this thesis using the best fit values
from the fit to Run 1 data, is slightly closer to the SM than the ¢*>-binned measurement,
the discrepancies remain. In the second bin of S5 the discrepancy with the SM is increased
compared to the ¢?-binned measurement. Furthermore, the small discrepancies observed
for Apg remain. In terms of F}, the trend of a discrepancy between measurement and SM
prediction is clearer with the measurement from this thesis as the extremely high value of

F;, in the third bin, obtained in the ¢?>-binned measurement, is likely not confirmed.

8However, quantitative conclusions can be drawn from the direct measurement of the Wilson Coefficients

Cy and Cqg as described in the previous section.
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7.3.2 Effect of the non-local contributions

To illustrate the effect of the non-local contributions on the angular observables, figure
shows S5(¢?) calculated with three variations of the model from in this thesis (with
the parameters obtained in the fit to Run 1 data), as well as the measured values of S5 in
bins of ¢? from Ref. [10]. In the top left plot, only the penguin amplitudes are used to
calculate S5. The penguin amplitudes alone cannot describe the binned measurements
of S5, most notably in the range of (3 < ¢* < 8) GeV?/c*. In the top right plot, the
penguin amplitudes as well as the resonant amplitudes are used to calculate S5 but any
non-local effect on C; are ignored. The effect of the resonances and their interference
with the penguin amplitudes is clearly visible. The inclusion of the resonant amplitudes
in the model improves the agreement between the un-binned and binned measurement.
In the bottom plot in figure [7.12] the full model is used to calculate S5 giving the best
agreement with the binned measurement. This indicates that both the hadronic resonance
contributions to Cy as well as the non-local contributions to C7 are relevant in order to
describe B — K*Ou* ;= decays, even in the range of (3 < ¢ < 8) GeV?/c?, where the
penguin decays make up the largest contribution to the decay rate.

To demonstrate the effect of the non-local contributions on the decay rate of B® —
K*u* = decays, figure shows the differential decay rate of the P-Wave amplitudes
calculated from the model described in this thesis after fitting it to the Run 1 data. The
cyan band shows the decay rate obtained when including only the penguin amplitudes in the
model. The red band shows the decay rate obtained when including the penguin amplitudes
as well as resonance amplitudes in the model but omitting non-local contributions to
C7. The blue band shows the decay rate calculated with the full model, i.e. including
the penguin and resonance amplitudes as well as the non-local contributions to C%.
The resonances cause destructive interference in the regions (1 < ¢*> < 8) GeV?/¢* and
(11 < ¢* < 13) GeV?/c* while they cause constructive interference in the high ¢* region at
(16 < ¢? < 19) GeV?/c. The non-local contributions to C; cause a decrease of the decay
rate at the photon pole at ¢> < 1 GeV?/c* but a slight overall increase at ¢ > 1 GeV?/c?.
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Figure 7.12: Study of the effect of the non-local contributions on the angular observable S5(¢?). Shown
are the measured values of S5 in bins of ¢? (black points) from Ref. [10] as well as the calculation of
S5 as a function of ¢> made with the model described in this thesis using the best fit values from the
fit to Run 1 data (red lines). In the top left plot, the calculations are made including only the penguin
amplitudes. In the top right plot, the calculations are made including the penguin amplitudes as well as all
resonance amplitudes but omitting any non local contribution to C7. In the bottom plot the calculations
are made using the full model i.e. including the penguin and resonance amplitudes as well as the non-local

contributions to C'.
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the model described in this thesis after fitting it to the Run 1 data. The bands are obtained by varying
all parameters within the covariance matrix from the fit. The cyan band shows the decay rate obtained
when including only the penguin amplitudes in the model. The red band shows the decay rate obtained
when including the penguin amplitudes as well as resonance amplitudes in the model. The blue band
shows the decay rate calculated with the full model, i.e. including the penguin and resonance amplitudes

as well as the non-local contributions to Cs.
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8. Conclusions

This thesis presents a novel four dimensional fit to the angular and ¢? distributions of
B® — K*°u* = decays, including the resonant modes such as B® — J/i) K*°) in Run 1
data recorded by the LHCb detector. The empirical model used for the fit is based on the
decay amplitudes. This allows for the determination of the Wilson Coefficients Cg and Cy
as well as the relative magnitudes and phases of the resonant amplitudes relative to the
penguin amplitudes directly from data.
The best fit value for the magnitude of the Wilson coefficient Cy is |Co| = 3.64 + 0.25 + 0.14,
where the first uncertainty includes the statistical uncertainty and the theoretical uncer-
tainties (P-Wave form factors) and the second uncertainty is the systematic uncertainty.
The result corresponds to a shift of ARe(Cy) = —0.63 4 0.29 (where the uncertainty is
the combined statistical, theoretical, and systematic uncertainty) with respect to the SM
central value of Re(Cy) = 4.27. Therefore, the measurement agrees with the SM only at
2.2 standard deviations. This indicates that there remains a discrepancy between the
measured and predicted angular distributions of B®— K*°u* 1~ decays even when taking
the non-local contributions into account.
The empirical model is capable of determining the Wilson Coefficients Cy and Cyg with
better higher precision than previous analyses of B® — K*0u*p~, since it uses the full
information contained in the ¢> dependence and correlations of the angular observables.
The precision on the phases of the J/b and ¢(2S) amplitudes relative to the penguin am-
plitudes are on the level of 8.5% and 20%, which is precise enough to ascertain the level of
the non-local contributions. In terms of the P-Wave decay rate, the resonances lead to mild
destructive interference in the regions (1 < ¢* < 8) GeV?/c* and (10 < ¢* < 13) GeV?/¢?
and cause constructive interference in the high ¢* region at (16 < ¢* < 19) GeV?/c*.
Comparing the angular observables, calculated with the model from this thesis, to the ¢?
binned measurement of the angular observables [10] reveals that the penguin amplitudes
alone cannot describe the angular observables. Both the hadronic contribution to Cy as well
as the non-local contributions to C; are necessary to reproduce the ¢ binned measurement.
The merged Run 1 and Run 2 dataset contains approximately 3 times more events
than Run 1 only. Assuming that the statistical uncertainties scale with ~ 1/4/3, while the
systematic uncertainties and the central values remain the same, the expected precision
for Cy is ~ 5% and the precision for Cyq is ~ 4% for the fit to the merged Run 1 and Run 2
data.

184



Bibliography

1]

2]

[10]

[11]

[12]

LHCb, R. Aaij et al., Measurement of CP-averaged observables in the B® — K*Ou*pu~
decay, Phys. Rev. Lett. 125 (2020) 011802, arXiv:2003.04831.

T. Blake, U. Egede, P. Owen, K. A. Petridis, and G. Pomery, An empirical model to
determine the hadronic resonance contributions to B*— K**utu~ transitions, Eur,
Phys. J. C78 (2018) 453, arXiv:1709.03921.

M. Schumann, Dark Matter 2014, EPJ Web Conf. 96 (2015) 01027,
arXiv:1501.01200.

A. D. Sakharov, Violation ofCPin variance,casymmetry, and baryon asymmetry of
the universe, Soviet Physics Uspekhi 34 (1991) 392.

LHCb, R. Aaij et al., Differential branching fractions and isospin asymmetries of
B — KWyt p~ decays, JHEP 06 (2014) 133, arXiv:1403.8044.

LHCb, R. Aaij et al., Angular analysis and differential branching fraction of the
decay B? — ¢pTp~, JHEP 09 (2015) 179, [arXiv:1506.08777.

LHCb, R. Aaij et al., Differential branching fraction and angular analysis of A) —
Aptp~ decays, JHEP 06 (2015) 115, arXiv:1503.07138, [Erratum: JHEP 09, 145
(2018)).

LHCDb, R. Aaij et al., Differential branching fraction and angular analysis of the
decay B® — K*u*p~, JHEP 08 (2013) 131, arXiv:1304.6325.

LHCb, R. Aaij et al., Measurement of Form-Factor-Independent Observables in the
Decay B® — K*ut 1=, Phys. Rev. Lett. 111 (2013) 191801, arXiv:1308.1707.

LHCb, R. Aaij et al., Angular analysis of the B® — K*u*u~ decay using 3 o= of
integrated luminosity, JHEP 02 (2016) 104, arXiv:1512.04442.

LHCD, R. Aaij et al., Angular moments of the decay A} — Au*tp~ at low hadronic
recoil, JHEP 09 (2018) 146, arXiv:1808.00264.

LHCD, R. Aaij et al., Angular analysis of the B — K*%ete™ decay in the low-¢*
region, JHEP 04 (2015) 064, arXiv:1501.03038.

185


https://doi.org/10.1103/PhysRevLett.125.011802
http://arxiv.org/abs/2003.04831
https://doi.org/10.1140/epjc/s10052-018-5937-3
https://doi.org/10.1140/epjc/s10052-018-5937-3
http://arxiv.org/abs/1709.03921
https://doi.org/10.1051/epjconf/20159601027
http://arxiv.org/abs/1501.01200
https://doi.org/10.1070/pu1991v034n05abeh002497
https://doi.org/10.1007/JHEP06(2014)133
http://arxiv.org/abs/1403.8044
https://doi.org/10.1007/JHEP09(2015)179
http://arxiv.org/abs/1506.08777
https://doi.org/10.1007/JHEP06(2015)115
http://arxiv.org/abs/1503.07138
https://doi.org/10.1007/JHEP08(2013)131
http://arxiv.org/abs/1304.6325
https://doi.org/10.1103/PhysRevLett.111.191801
http://arxiv.org/abs/1308.1707
https://doi.org/10.1007/JHEP02(2016)104
http://arxiv.org/abs/1512.04442
https://doi.org/10.1007/JHEP09(2018)146
http://arxiv.org/abs/1808.00264
https://doi.org/10.1007/JHEP04(2015)064
http://arxiv.org/abs/1501.03038

[13]

[14]

[15]

LHCb, R. Aaij et al., Test of lepton universality with B® — K*°0*(~ decays, JHEP
08 (2017) 055, [arXiv:1705.05802.

LHCb, R. Aaij et al., Test of lepton universality using Bt — KT¢T{~ decays, Phys,
Rev. Lett. 113 (2014) 151601, arXiv:1406.6482.

LHCb, R. Aaij et al., Search for lepton-universality violation in BT — KT((~
decays, Phys. Rev. Lett. 122 (2019) 191801, arXiv:1903.09252.

M. Alguer6 et al., Emerging patterns of New Physics with and without Lepton
Flavour Universal contributions, Eur. Phys. J. C 79 (2019) 714, arXiv:1903.09578,
[Addendum: Eur.Phys.J.C 80, 511 (2020)].

B. Gripaios, M. Nardecchia, and S. A. Renner, Composite leptoquarks and anomalies
in B-meson decays, JHEP 05 (2015) 006, arXiv:1412.1791.

M. Thomson, Modern particle physics, Cambridge University Press, New York, 2013.

M. D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge Univer-
sity Press, 2014.

G. Cowan and T. Gershon, Tetraquarks and Pentaquarks, 2399-2891, IOP Publishing,
2018l

P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett!
13 (1964) 508.

F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons,
Phys. Rev. Lett. 13 (1964) 321.

G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Global conservation laws and
massless particles, Phys. Rev. Lett. 13 (1964) 585.

T. W. B. Kibble, Symmetry breaking in non-abelian gauge theories, Phys. Rev. 155
(1967) 1554.

N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531.

M. Kobayashi and T. Maskawa, CP-Violation in the renormalizable theory of weak
interaction, Prog. Theor. Phys. 49 (1973) 652.

186


https://doi.org/10.1007/JHEP08(2017)055
https://doi.org/10.1007/JHEP08(2017)055
http://arxiv.org/abs/1705.05802
https://doi.org/10.1103/PhysRevLett.113.151601
https://doi.org/10.1103/PhysRevLett.113.151601
http://arxiv.org/abs/1406.6482
https://doi.org/10.1103/PhysRevLett.122.191801
http://arxiv.org/abs/1903.09252
https://doi.org/10.1140/epjc/s10052-019-7216-3
http://arxiv.org/abs/1903.09578
https://doi.org/10.1007/JHEP05(2015)006
http://arxiv.org/abs/1412.1791
https://doi.org/10.1088/978-0-7503-1593-7
https://doi.org/10.1088/978-0-7503-1593-7
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRev.155.1554
https://doi.org/10.1103/PhysRev.155.1554
https://doi.org/10.1103/PhysRevLett.10.531
https://doi.org/10.1143/PTP.49.652

[27] L. Wolfenstein, Parametrization of the kobayashi-maskawa matriz, Phys. Rev. Lett,
51 (1983) 1945.

[28] Planck, P. A. R. Ade et al., Planck 2013 results. XXII. Constraints on inflation,
Astron. Astrophys. 571 (2014) A22, arXiv:1303.5082.

[29] Feynman Diagram Library, https://www.physik.uzh.ch/~che/FeynDiag/index.
php. Accessed: 2020-07-08.

[30] Particle Data Group, M. Tanabashi et al., Review of particle physics, Phys. Rev,
DI8 (2018) 030001

[31] K. G. Wilson, Non-lagrangian models of current algebra, Phys. Rev. 179 (1969)
1499,

[32] W. Altmannshofer et al., Symmetries and Asymmetries of B — K*u™u~ Decays in
the Standard Model and Beyond, JHEP 01 (2009) 019, arXiv:0811.1214.

[33] C. Bobeth, M. Misiak, and J. Urban, Photonic penguins at two loops and m,; depen-
dence of BR|B — X l1~], Nucl. Phys. B 574 (2000) 291, arXiv:hep-ph/9910220.

[34] M. Beneke, T. Feldmann, and D. Seidel, FEzclusive radiative and electroweak
b — d and b — s penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173,
arXiv:hep-ph/0412400.

[35] A. Bharucha, D. M. Straub, and R. Zwicky, B — V{T{~ in the Standard Model from
light-cone sum rules, JHEP 08 (2016) 098, arXiv:1503.05534.

[36] S. Descotes-Genon, A. Khodjamirian, and J. Virto, Light-cone sum rules for
B — Kr form factors and applications to rare decays, JHEP 12 (2019) 083,
arXiv:1908.02267.

[37] J. Gratrex, M. Hopfer, and R. Zwicky, Generalised helicity formalism, higher moments
and the B — K ;,.(— Kn){1ly angular distributions, Phys. Rev. D93 (2016) 054008,
arXiv:1506.03970.

[38] J. Matias, F. Mescia, M. Ramon, and J. Virto, Complete Anatomy of Bq— > K*°(— >
Km)l"l™ and its angular distribution, JHEP 04 (2012) 104, arXiv:1202.4266.

187


https://doi.org/10.1103/PhysRevLett.51.1945
https://doi.org/10.1103/PhysRevLett.51.1945
https://doi.org/10.1051/0004-6361/201321569
http://arxiv.org/abs/1303.5082
https://www.physik.uzh.ch/~che/FeynDiag/index.php
https://www.physik.uzh.ch/~che/FeynDiag/index.php
http://pdg.lbl.gov/
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRev.179.1499
https://doi.org/10.1103/PhysRev.179.1499
https://doi.org/10.1088/1126-6708/2009/01/019
http://arxiv.org/abs/0811.1214
https://doi.org/10.1016/S0550-3213(00)00007-9
http://arxiv.org/abs/hep-ph/9910220
https://doi.org/10.1140/epjc/s2005-02181-5
http://arxiv.org/abs/hep-ph/0412400
https://doi.org/10.1007/JHEP08(2016)098
http://arxiv.org/abs/1503.05534
https://doi.org/10.1007/JHEP12(2019)083
http://arxiv.org/abs/1908.02267
https://doi.org/10.1103/PhysRevD.93.054008
http://arxiv.org/abs/1506.03970
https://doi.org/10.1007/JHEP04(2012)104
http://arxiv.org/abs/1202.4266

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[50]

[51]

S. Descotes-Genon, J. Matias, M. Ramon, and J. Virto, Implications from clean
observables for the binned analysis of B— > K x u™p~ at large recoil, JHEP 01
(2013) 048, arXiv:1207.2753.

LHCb, R. Aaij et al., Measurements of the S-wave fraction in B® — Ktn~putu~
decays and the B — K*(892)°u™u~ differential branching fraction, JHEP 11 (2016)
047, arXiv:1606.04731, [Erratum: JHEP 04, 142 (2017)].

D. Becirevic and A. Tayduganov, Impact of B — KJ{T{~ on the New Physics search
in B — K*(*¢~ decay, Nucl. Phys. B 868 (2013) 368, arXiv:1207.4004.

R.-H. Li, C.-D. Lu, W. Wang, and X.-X. Wang, B — S Transition Form Factors in
the PQCD approach, Phys. Rev. D 79 (2009) 014013, arXiv:0811.2648.

M. Doring, U.-G. Meifiner, and W. Wang, Chiral Dynamics and S-wave Contributions
in Semileptonic B decays, JHEP 10 (2013) 011, arXiv:1307.0947.

J. Aebischer et al., B-decay discrepancies after Moriond 2019, Eur. Phys. J. C 80
(2020) 252, [arXiv:1903.10434.

T. Humair, Testing lepton universality in penguin decays of beauty mesons using the
LHCb detector, May, 2019. Presented 02 May 2019.

M. Beneke and T. Feldmann, Symmetry breaking corrections to heavy to light B meson
form-factors at large recoil, Nucl. Phys. B 592 (2001) 3, arXiv:hep-ph/0008255.

C. Bobeth, M. Chrzaszcz, D. van Dyk, and J. Virto, Long-distance effects in
B — K*Ul from analyticity, Eur. Phys. J. C 78 (2018) 451, arXiv:1707.07305.

J. Lyon and R. Zwicky, Resonances gone topsy turvy - the charm of QCD or new
physics in b — s{T0~ 2, arXiv:1406.0566.

LHCDb collaboration, R. Aaij et al., Measurement of the phase difference between
short- and long-distance amplitudes in the BT — K™ u*u~ decay, Eur. Phys. J. C77
(2017) 161, arXiv:1612.06764.

G. J. Pomery, Understanding the impact of non-local contributions to B° —
K*°u* = transitions, Sep, 2019. Presented 21 Nov 2019.

S. Braf}, G. Hiller, and I. Nisandzic, Zooming in on B — K*0{ decays at low recoil,
Eur. Phys. J. C 77 (2017) 16, arXiv:1606.00775.

188


https://doi.org/10.1007/JHEP01(2013)048
https://doi.org/10.1007/JHEP01(2013)048
http://arxiv.org/abs/1207.2753
https://doi.org/10.1007/JHEP11(2016)047
https://doi.org/10.1007/JHEP11(2016)047
http://arxiv.org/abs/1606.04731
https://doi.org/10.1016/j.nuclphysb.2012.11.016
http://arxiv.org/abs/1207.4004
https://doi.org/10.1103/PhysRevD.79.014013
http://arxiv.org/abs/0811.2648
https://doi.org/10.1007/JHEP10(2013)011
http://arxiv.org/abs/1307.0947
https://doi.org/10.1140/epjc/s10052-020-7817-x
https://doi.org/10.1140/epjc/s10052-020-7817-x
http://arxiv.org/abs/1903.10434
https://doi.org/10.1016/S0550-3213(00)00585-X
http://arxiv.org/abs/hep-ph/0008255
https://doi.org/10.1140/epjc/s10052-018-5918-6
http://arxiv.org/abs/1707.07305
http://arxiv.org/abs/1406.0566
https://doi.org/10.1140/epjc/s10052-017-4703-2
https://doi.org/10.1140/epjc/s10052-017-4703-2
http://arxiv.org/abs/1612.06764
https://doi.org/10.1140/epjc/s10052-016-4576-9
http://arxiv.org/abs/1606.00775

[52]

[53]

[55]

[56]

[58]

[59]

[60]

[61]

[62]

LHCb, R. Aaij et al., Measurement of the polarization amplitudes in B° —
J/K*(892)% decays, Phys. Rev. D 88 (2013) 052002, arXiv:1307.2782.

Belle, K. Chilikin et al., Fxperimental constraints on the spin and parity of the
Z(4430)", Phys. Rev. D88 (2013) 074026, arXiv:1306.4894.

BaBar, B. Aubert et al., Measurement of decay amplitudes of B — J /1 K* 1 (25)K*,
and xaK* with an angular analysis, Phys. Rev. D 76 (2007) 031102,
arXiv:0704.0522.

Belle, K. Chilikin et al., Observation of a new charged charmoniumlike state in
BY — J/¢K~mt decays, Phys. Rev. D 90 (2014) 112009, arXiv:1408.6457.

LHCD collaboration, R. Aaij et al., Measurement of polarization amplitudes and CP
asymmetries in B — ¢K*(892)°, | JHEP 05 (2014) 069, arXiv:1403.2888.

Belle, M. Prim et al., Angular analysis of B® — ¢K* decays and search for C'P
violation at Belle, Phys. Rev. D 88 (2013) 072004, arXiv:1308.1830.

BaBar, B. Aubert et al., Time-Dependent and Time-Integrated Angular Analysis of
B — ¢K,m° and B — ¢Ktn~, Phys. Rev. D 78 (2008) 092008, arXiv:0808.3586.

A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y.-M. Wang, Charm-loop effect
in B— KW+~ and B — K*y, JHEP 09 (2010) 089, arXiv:1006.4945.

D. Aston et al., A study of K~ 7" scattering in the reaction K~ p — K~ nt at 11
GeV/c, Nuclear Physics B 296 (1988) 493 .

A. Paul and D. M. Straub, Constraints on new physics from radiative b decays,
Journal of High Energy Physics 2017 (2017) 27.

A. Horvath, "The LHC experiments and the preaccelerators”; licensed under Creative
Commons Attribution- Share Alike 2.5 Generic license, Wikimedia Commons, 2006.

https://commons.wikimedia.org/wiki/File:LHC.svg.

O. S. Bruning et al., LHC Design Report Vol.1: The LHC Main Ring, 2004.
CERN-2004-003-V1.

ATLAS collaboration, G. Aad et al., The ATLAS Experiment at the CERN Large
Hadron Collider, JINST 3 (2008) S08003.

189


https://doi.org/10.1103/PhysRevD.88.052002
http://arxiv.org/abs/1307.2782
https://doi.org/10.1103/PhysRevD.88.074026
http://arxiv.org/abs/1306.4894
https://doi.org/10.1103/PhysRevD.76.031102
http://arxiv.org/abs/0704.0522
https://doi.org/10.1103/PhysRevD.90.112009
http://arxiv.org/abs/1408.6457
https://doi.org/10.1007/JHEP05(2014)069
http://arxiv.org/abs/1403.2888
https://doi.org/10.1103/PhysRevD.88.072004
http://arxiv.org/abs/1308.1830
https://doi.org/10.1103/PhysRevD.78.092008
http://arxiv.org/abs/0808.3586
https://doi.org/10.1007/JHEP09(2010)089
http://arxiv.org/abs/1006.4945
https://doi.org/https://doi.org/10.1016/0550-3213(88)90028-4
https://doi.org/10.1007/JHEP04(2017)027
https://commons.wikimedia.org/wiki/File:LHC.svg
https://commons.wikimedia.org/wiki/File:LHC.svg
https://commons.wikimedia.org/wiki/File:LHC.svg
https://doi.org/10.5170/CERN-2004-003-V-1
http://cds.cern.ch/record/782076/
https://doi.org/10.1088/1748-0221/3/08/S08003

[65]

[66]

[67]

[68]

[69]

CMS collaboration, S. Chatrchyan et al., The CMS Experiment at the CERN LHC,
JINST 3 (2008) S08004.

CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass
of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716 (2012) 30,
arXiv:1207.7235.

ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for
the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett,
B716 (2012) 1, jarXiv:1207.7214.

ALICE collaboration, K. Aamodt et al., The ALICE experiment at the CERN LHC,
JINST 3 (2008) S08002.

D. M. Jamil and P. J. T. Rhee, Quark—gluon plasma, by K. Yagi,
T. Hatsuda and Y. Miake, Contemporary Physics 50 (2009) 665,
https://doi.org/10.1080/00107510902978246.

LHCb collaboration, A. A. Alves Jr et al., The LHCb detector at the LHC, JINST 3
(2008) S08005.

T. Sjostrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1,
Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.

LHCb  collaboration, C. Elsasser, bb  production  angle  plots,
https: //lhcb.web.cern.ch/lhch /speakersbureau/html/bb_ProductionAngles.html,
Accessed: 2020-05-05.

LHCD collaboration, R. Aaij et al., Measurement of the b-quark production cross-
section in 7 and 18 TeV pp collisions, Phys. Rev. Lett. 118 (2017) 052002,
arXiv:1612.05140, [Erratum: Phys. Rev. Lett.119,n0.16,169901(2017)].

LHCb collaboration, LHCb VELO (VErtex LOcator): Technical Design Report,
CERN-LHCC-2001-011, LHCb-TDR-005.

R. Aaij et al., Performance of the LHCb Vertex Locator, JINST 9 (2014) P09007,
arXiv:1405.7808.

LHCDb collaboration, LHCb inner tracker: Technical Design Report, CERN-LHCC-
2002-029, LHCb-TDR-008.

190


https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1080/00107510902978246
https://doi.org/10.1080/00107510902978246
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
https://lhcb.web.cern.ch/lhcb/speakersbureau/html/bb_ProductionAngles.html
https://doi.org/10.1103/PhysRevLett.119.169901,10.1103/PhysRevLett.118.052002
http://arxiv.org/abs/1612.05140
http://cdsweb.cern.ch/search?p=CERN-LHCC-2001-011&f=reportnumber&action_search=Search&c=LHCb+Reports
https://doi.org/10.1088/1748-0221/9/09/P09007
http://arxiv.org/abs/1405.7808
http://cdsweb.cern.ch/search?p=CERN-LHCC-2002-029&f=reportnumber&action_search=Search&c=LHCb+Reports
http://cdsweb.cern.ch/search?p=CERN-LHCC-2002-029&f=reportnumber&action_search=Search&c=LHCb+Reports

[77] LHCD collaboration, LHCb outer tracker: Technical Design Report, CERN-LHCC-
2001-024, LHCb-TDR-006.

[78] LHCD collaboration, LHCb RICH: Technical Design Report, CERN-LHCC-2000-037,
LHCb-TDR-003.

[79] LHCb RICH Group, M. Adinolfi et al., Performance of the LHCb RICH detector at
the LHC, Eur. Phys. J. C 73 (2013) 2431, arXiv:1211.6759.

[80] J. Alves, A.A. et al., Performance of the LHCb muon system, JINST 8 (2013)
P02022, larXiv:1211.1346.

[81] LHCD collaboration, LHCb muon system: Technical Design Report, CERN-LHCC-
2001-010, LHCb-TDR-004.

[82] F. Archilli et al., Performance of the Muon Identification at LHCb, JINST 8 (2013)
P10020, arXiv:1306.0249.

[83] LHCD, R. Aaij et al., Design and performance of the LHCb trigger and full real-time
reconstruction in Run 2 of the LHC, JINST 14 (2019) P04013, arXiv:1812.10790.

[84] LHCb HLT project, J. Albrecht, V. V. Gligorov, G. Raven, and S. Tolk, Performance
of the LHCb High Level Trigger in 2012, |J. Phys. Conf. Ser. 513 (2014) 012001,
arXiv:1310.8544.

[85] R. Aaij et al., The LHCbH Trigger and its Performance in 2011, JINST 8 (2013)
P04022, [arXiv:1211.3055!

[86] T. Sjostrand, S. Mrenna, and P. Skands, PYTHIA 6./ physics and manual, JHEP
05 (2006) 026, arXiv:hep-ph/0603175.

[87] D. J. Lange, The evtgen particle decay simulation package, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 462 (2001) 152 , BEAUTY2000, Proceedings of the 7th Int.
Conf. on B-Physics at Hadron Machines.

[88] S. Agostinelli et al., Geant]—a simulation toolkit, Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 506 (2003) 250 .

191


http://cdsweb.cern.ch/search?p=CERN-LHCC-2001-024&f=reportnumber&action_search=Search&c=LHCb+Reports
http://cdsweb.cern.ch/search?p=CERN-LHCC-2001-024&f=reportnumber&action_search=Search&c=LHCb+Reports
http://cdsweb.cern.ch/search?p=CERN-LHCC-2000-037&f=reportnumber&action_search=Search&c=LHCb+Reports
https://doi.org/10.1140/epjc/s10052-013-2431-9
http://arxiv.org/abs/1211.6759
https://doi.org/10.1088/1748-0221/8/02/P02022
https://doi.org/10.1088/1748-0221/8/02/P02022
http://arxiv.org/abs/1211.1346
http://cdsweb.cern.ch/search?p=CERN-LHCC-2001-010&f=reportnumber&action_search=Search&c=LHCb+Reports
http://cdsweb.cern.ch/search?p=CERN-LHCC-2001-010&f=reportnumber&action_search=Search&c=LHCb+Reports
https://doi.org/10.1088/1748-0221/8/10/P10020
https://doi.org/10.1088/1748-0221/8/10/P10020
http://arxiv.org/abs/1306.0249
https://doi.org/10.1088/1748-0221/14/04/P04013
http://arxiv.org/abs/1812.10790
https://doi.org/10.1088/1742-6596/513/1/012001
http://arxiv.org/abs/1310.8544
https://doi.org/10.1088/1748-0221/8/04/P04022
https://doi.org/10.1088/1748-0221/8/04/P04022
http://arxiv.org/abs/1211.3055
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
https://doi.org/https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8

[39]

[90]

[99]

[100]

[101]

G. Corti, Software for the LHCb experiment, , Proceedings published in IEEE
Transactions on Nuclear Science, Vol.53, Issue 3(3), pp.1323-1328, 2006.

M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions,
Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083.

P. Alvarez Cartelle et al., Angular analysis of B® — K*u* = decays using Run 1
and 2016 data, LHCb-ANA-2017-055 (2020), LHCD internal.

C. Parkinson, The angular analysis of the B® — K*Ou* =~ decay at LHCb, Jun, 2013.
Presented 26 Jul 2013.

S. Coquereau et al., The B® — K*u*u~ selection for 3fb=1 of LHCb data, LHCb-
INT-2013-058 (2013), LHCb internal.

B. P. Roe et al., Boosted decision trees, an alternative to artificial neural networks,
Nucl. Instrum. Meth. A 543 (2005) 577, larXiv:physics/0408124.

LHCb collaboration, R. Aaij et al., Angular analysis of the B® — K*u*pu~ decay,
arXiv:1512.04442, submitted to JHEP.

LHCb, R. Aaij et al., Measurement of CP-averaged observables in the B — K*°pu*pu~
decay, arXiv:2003.04831.

S. U. Papoulis, Athanasios Papoulis; Pillai, Probability, Random Variables, and
Stochastic Processes (4th ed.), McGraw-Hill, Boston, 2002.

T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime
and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986,
DESY-F31-86-02.

M. Williams, How good are your fits? Unbinned multivariate goodness-of-fit tests in
high energy physics, JINST 5 (2010) P09004, arXiv:1006.3019.

LHCb, R. Aaij et al., Fvidence for the decay BY — F*O,u*;f, JHEP 07 (2018) 020,
arXiv:1804.07167.

Belle, S. K. Choi et al., Observation of a resonance-like structure in the 1" mass
distribution in exclusive B — Km*1)' decays, Phys. Rev. Lett. 100 (2008) 142001,
arXiv:0708.1790.

192


https://doi.org/10.1016/j.nima.2005.08.106
http://arxiv.org/abs/physics/0402083
https://doi.org/10.1016/j.nima.2004.12.018
http://arxiv.org/abs/physics/0408124
http://arxiv.org/abs/1512.04442
http://arxiv.org/abs/2003.04831
http://inspirehep.net/record/230779/
https://doi.org/10.1088/1748-0221/5/09/P09004
http://arxiv.org/abs/1006.3019
https://doi.org/10.1007/JHEP07(2018)020
http://arxiv.org/abs/1804.07167
https://doi.org/10.1103/PhysRevLett.100.142001
http://arxiv.org/abs/0708.1790

[102]

103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

Belle, R. Mizuk et al., Dalitz analysis of B — Krtv' decays and the Z(4430)+,
Phys. Rev. D80 (2009) 031104, arXiv:0905.2869.

LHCb, R. Aaij et al., Observation of the resonant character of the Z(4430)~ state,
Phys. Rev. Lett. 112 (2014) 222002, arXiv:1404.1903.

Belle, K. Chilikin et al., Fxperimental constraints on the spin and parity of the
Z(4430)", Phys. Rev. D88 (2013) 074026, arXiv:1306.4894.

Belle, K. Chilikin et al., Observation of a new charged charmoniumlike state in
B® — Jhp K—7+ decays, Phys. Rev. D90 (2014) 112009, arXiv:1408.6457.

LHCb, R. Aaij et al., Measurements of the S-wave fraction in B® — K*r—putu~
decays and the B — K*(892)°u* = differential branching fraction, JHEP 11 (2016)
047, arXiv:1606.04731, [Erratum: JHEP04,142(2017)].

J. Gratrex, M. Hopfer, and R. Zwicky, Generalised helicity formalism, higher moments
and the B — K ;,.(— Kn)l1{y angular distributions, Phys. Rev. D93 (2016) 054008,
arXiv:1506.03970.

J. A. Bailey et al., B — KI*l~ Decay Form Factors from Three-Flavor Lattice QCD,
Phys. Rev. D93 (2016) 025026, arXiv:1509.06235.

C. Bobeth, G. Hiller, and D. van Dyk, The Benefits of B— > K*I*l~ Decays at Low
Recoil, JHEP 07 (2010) 098, arXiv:1006.5013.

F. Beaujean, C. Bobeth, and D. van Dyk, Comprehensive Bayesian analysis
of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C 74 (2014) 2897,
arXiv:1310.2478, [Erratum: Eur.Phys.J.C 74, 3179 (2014)].

D. M. Straub, flavio: a Python package for flavour and precision phenomenology in
the Standard Model and beyond, arXiv:1810.08132.

W. Altmannshofer and D. M. Straub, New physics in b — s transitions after LHC
run 1, Eur. Phys. J. C 75 (2015) 382, arXiv:1411.3161.

U. Egede, T. Hurth, J. Matias, M. Ramon, and W. Reece, New observables in the
decay mode By — K*°I*1~, JHEP 11 (2008) 032, arXiv:0807.2589.

193


https://doi.org/10.1103/PhysRevD.80.031104
http://arxiv.org/abs/0905.2869
https://doi.org/10.1103/PhysRevLett.112.222002
http://arxiv.org/abs/1404.1903
https://doi.org/10.1103/PhysRevD.88.074026
http://arxiv.org/abs/1306.4894
https://doi.org/10.1103/PhysRevD.90.112009
http://arxiv.org/abs/1408.6457
https://doi.org/10.1007/JHEP11(2016)047, 10.1007/JHEP04(2017)142
https://doi.org/10.1007/JHEP11(2016)047, 10.1007/JHEP04(2017)142
http://arxiv.org/abs/1606.04731
https://doi.org/10.1103/PhysRevD.93.054008
http://arxiv.org/abs/1506.03970
https://doi.org/10.1103/PhysRevD.93.025026
http://arxiv.org/abs/1509.06235
https://doi.org/10.1007/JHEP07(2010)098
http://arxiv.org/abs/1006.5013
https://doi.org/10.1140/epjc/s10052-014-2897-0
http://arxiv.org/abs/1310.2478
http://arxiv.org/abs/1810.08132
https://doi.org/10.1140/epjc/s10052-015-3602-7
http://arxiv.org/abs/1411.3161
https://doi.org/10.1088/1126-6708/2008/11/032
http://arxiv.org/abs/0807.2589

A. Appendix

A.1 2D projections of the phase space affected by the
Bt — KTutu~ veto
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Figure A.4: (ms5, q?)-projections of the K u*u~ veto affected phase space in several bins in cos 0.
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Figure A.6: (ms5, q?)-projections of the K u*u~ veto affected phase space in several bins in cos 0.
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A.2 Full fit results of the fit to Run 1 data
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results +og; result +og;

A (4.344 + 0.023)x 103 Im(AYM9)Y 1 (6.982 + 27.141)x 10~
0;"" 0.207 + 0.012 Re(AY™M1)) | (2,186 + 4.037)x 1075
A7) (4.178 + 0.024)x 1073 Im(APU9) | (1,56 + 3.93)x107°
o7 -6.5243 4 0.0095 a! 0.2963 £ 0.0099
07" -1.63 + 0.10 ai 0.396 + 0.057
| A (1.073 + 0.045)x 1073 L 1.30 + 0.50
0 -0.674 + 0.048 a1 0.2682 + 0.0098
A4 (1.065 + 0.046)x 103 a2 0.536 & 0.068
§v5) 3.640 & 0.045 a1 0.47 4 0.39
AP 9] (1.596 =+ 0.060)x 103 ay 0.375 & 0.013
oy %) -1.72 + 0.32 oV -1.166 + 0.074
| A5 (8.04 + 3.29)x 1077 oy 2.5 4 1.3
g5 (770) (-16.953 4 41.249)x 10 | AT (2.990 + 0.051)x 103
Im (A1) (6.82 & 1.60)x 107 o -4.80 + 0.10
Re(A[°™™) (2.12 4 2.57)x107? | AL (1.060 + 0.052)x 1073
Im(AfPT) | (-13.777 £ 24.890)x 1076 o) -2.58 + 0.32
Re(AVBT) | (168.5287 + 217.2680) x 107 e 3.64 + 0.25
Im(AYPTON | (17578 4 21.653)x107° 1Co 442 4 0.20
Re(AYPTO) | (-81.584 =+ 34.212)x 1076 CS,/(Co — Cuo) 0.8 +2.3
Im(ALETO) (6.032 + 4.048)x 1075 CS,/(Co + Cio) 47 +23
Re(Af"™%) | (-34.833 & 33.120)x 10~ cs /e 17+ 1.2
Im(APY) | (3.127 £ 41.185)x10~° Re(ACAP) -0.009 + 0.038
Re(AVUM9) | (L17.250 + 26.129)x 1076 Im(ACAP) -0.041 4 0.020
Im (AU | (32.273 + 25.469)x 1076 Re(ACAP) -0.026 =+ 0.039
Re(ALUM9) (70,6644 + 32.0690) x 10~ Im(ACAP) -0.024 + 0.023
Im (AL (8.66 & 4.14)x 107" Re(ACAP) -0.102 + 0.087
Re(Af™*) | (-17.200 & 39.992)x 10~ Im(ACAP) -0.017 + 0.024
Im(AY™) | (7.594 & 43.102)x10° 0 1.1656 + 0.0076
Re(AVA190) (3.23 + 3.20)x 107" ad s 1.380 =+ 0.071

Table A.1: Fit results of all floating signal parameters from the fit to Run 1 data. The uncertainties are
the fit uncertainties, which include statistical uncertainties and theoretical uncertainties from the P-Wave

FF constraint and the AC; constraint.

202



A.3 Projections of the upper mass side-band fit in

merged Run 1 and Run 2 data
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Figure A.7: cosy distributions in each mass side-band region in the low-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.8: cosfy distributions in each mass side-band region in the mid-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.9: cosfy distributions in each mass side-band region in the high-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.10: cos#, distributions in each mass side-band region in the low-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.11: cos @, distributions in each mass side-band region in the mid-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.12: cos 6, distributions in each mass side-band region in the high-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter @
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Figure A.13: ¢ distribution in each mass side-band region in the low-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.14: ¢ distribution in each mass side-band region in the mid-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.15: ¢ distribution in each mass side-band region in the high-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.16: ¢ distribution in each mass side-band region in the low-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|

212



Run1+2016+2017 data mid-¢? region SBI Run1+2016+2017 data mid-¢? region SB2

[N RRALL B il L B |

3 6 8 10
g% [GeV¥c4]
Run1+2016+2017 data mid-¢2 region SB3 Run1+2016+2017 data mid-g? region SB4
D102 @10 4
10 -E 10 E|
i 13
- 1B =
£ %' A [ SSR. 2
—% o M W TR LT
4 6 8 10
g* [GeV?/c4]
Run1+2016+2017 data mid-¢? region SB5
2 [ ' ' ' i
2102
mYE E
10 E|
ot L
1
= 2 .
0
-2
—4

g% [GeV?¥c4]

Figure A.17: ¢? distribution in each mass side-band region in the mid-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.18: ¢? distribution in each mass side-band region in the high-¢? region. Also shown are the

projections of the simultaneous side-band fit described in chapter |§|
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Figure A.19: m}55 distribution in each q? region. Also shown are the projections of the simultaneous
side-band fit described in chapter |§|
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A.4 Projections of the simultaneous miz; fit in Run 1

data
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Figure A.20: m'5§ distribution in the five q? regions of the simulatenous m’gs fit in Run 1 data. Also
shown are the projections of the simultaneous mi5-only fit to those regions. The signal parameters are
shared across all ¢* regions and the width parameters (o and o5) are multiplied with a factor of 1.0385
in the high-¢? regions to account for the ¢ dependence of the m’ss resolution. The slope of the fully

combinatorial background is shared across low-, mid- and high-¢?, whereas the slopes in the resonant

regions are independent.

217



A.5 Projections of the upper mass side-band fit in
Run 1 data
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Figure A.21: cosfx distribution in each mass side-band region in the low-¢? region in Run 1 data. Also
shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)
as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.22: cosf distribution in each mass side-band region in the mid-¢? region in Run 1 data. Also

shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)

as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using

the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit

(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the

background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.23: cos @y distribution in each mass side-band region in the high-¢? region in Run 1 data. Also
shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)
as well as the PDFs’ 68% confidence interval (blue shaded area), obtained by varying the parameters
using the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region
fit (red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that
the background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.24: cos#, distribution in each mass side-band region in the low-¢? region in Run 1 data. Also
shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)
as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.25: cos @, distribution in each mass side-band region in the mid-¢? region in Run 1 data. Also
shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)
as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.26: cosf, distribution in each mass side-band region in the high-¢? region in Run 1 data. Also
shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)
as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.27: ¢ distribution in each mass side-band region in the low-¢? region in Run 1 data. Also shown
are the projections of the background PDF after the simultaneous side-band fit (blue dashed line) as
well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.28: ¢ distribution in each mass side-band region in the mid-¢? region in Run 1 data. Also shown
are the projections of the background PDF after the simultaneous side-band fit (blue dashed line) as
well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.29: ¢ distribution in each mass side-band region in the high-¢? region in Run 1 data. Also shown
are the projections of the background PDF after the simultaneous side-band fit (blue dashed line) as
well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.30: ¢? distribution in each mass side-band region in the low-¢? region in Run 1 data. Also shown
are the projections of the background PDF after the simultaneous side-band fit (blue dashed line) as
well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.31: ¢? distribution in each mass side-band region in the mid-¢? region in Run 1 data. Also
shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)
as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.32: ¢? distribution in each mass side-band region in the high-¢? region in Run 1 data. Also
shown are the projections of the background PDF after the simultaneous side-band fit (blue dashed line)
as well as the PDFs’ 68% confidence interval (blue shaded area) obtained by varying the parameters using
the covariance matrix obtained in the fit. Furthermore, the background PDF after the signal region fit
(red dashed line) and the respective 68% confidence interval (red shaded area) are shown. Note that the
background events in the signal region (not shown here) add additional constraints on the background

parameters in the signal region fit.
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Figure A.33: m'S5 distribution in each ¢? region in Run 1 data. Also shown are the projections of
the background PDF after the simultaneous side-band fit (blue dashed line) as well as the PDFs’ 68%
confidence interval (blue shaded area) obtained by varying the parameters using the covariance matrix
obtained in the fit. Furthermore, the background PDF after the signal region fit (red dashed line) and the
respective 68% confidence interval (red shaded area) are shown. Note that the background events in the
signal region (not shown here) add additional constraints on the background parameters in the signal

region fit.
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