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Chapter 1

Introduction

The nature of theoretical physics is to formulate theories that describe the physical world. Precisely

explaining elementary particles, their properties, and their interactions is the focus of fundamental

physics, specifically high energy theory. A deep understanding of quantum field theory (QFT), the

union of quantum mechanics and special relativity, has led to the most accurate description of the

microscopic world, the Standard Model of particle physics. The Standard Model correctly predicted

the existence of multiple particles including gluons, W and Z bosons, and the Higgs boson before

they were experimentally observed. Standard Model predictions for the fine structure constant have

been experimentally confirmed to eight decimal points of precision by measuring the electron Landé

g factor [1]!

The scattering amplitude is arguably the most important quantity that sheds light on under-

standing the quantum field theories used to describe nature. The interactions between elementary

particles are described using scattering amplitudes calculations. The study of scattering amplitudes

has revolutionized our understanding of elementary particles and their interactions. Beyond aiding

in the development of our current theoretical models, scattering amplitude calculations are crucial

to explain the background processes that occur in high-energy collider physics experiments. Modern

scattering amplitude research seeks to further identify the mathematical structure of scattering am-

plitudes, simplify calculations with the aid of new mathematical tools, extend our knowledge through

new calculations, and steer the direction of experimental collider experiments via predictions.

In this thesis, the focus will be scattering amplitudes inN = 4 supersymmetric Yang-Mills (SYM)

theory, which will be frequently abbreviated as N = 4 SYM [2]. N = 4 SYM is a supersymmetric

theory of massless particles. In four dimensions, N = 4 SYM is maximally supersymmetric. As

1



of this writing, supersymmetry has not been experimentally confirmed, but there are many Large

Hadron Collider searches for some forms of supersymmetry. Unlike the standard model of particle

physics, N = 4 SYM is not a theory of physically observable particles. However, N = 4 SYM is one

of the most important theories in the field of scattering amplitudes nevertheless.

It is a natural question to ask why N = 4 SYM is studied if the particles it describes are not

experimentally observed (and not expected to be). The study of N = 4 SYM is motivated by its

surprising simplicity. As we will see in this work, advances in the study of scattering amplitudes

have been accelerated by an increased understanding of N = 4 SYM . N = 4 SYM theory can arise

in the study of string theories via the AdS/CFT correspondence, which relates a string theory living

in the bulk of an anti-de Sitter (AdS) space to a CFT living on the boundary of that space. Research

in N = 8 supergravity has also benefited from N = 4 SYM results by expressing supergravity as a

double copy of SYM. N = 4 SYM has found uses it in unexpected places.

In the work to be presented, the most relevant connection to physics is the appearance of N = 4

SYM in relation to quantum chromodynamics (QCD) scattering amplitudes. QCD is the physical

theory of quarks and gluons describing the strong interaction. N = 4 SYM is commonly referred

to as the cousin of QCD. QCD calculations are significantly harder than N = 4 SYM calculations.

In fact much of the progress in QCD computations arise from advancements on the N = 4 SYM

side [3]. At tree level, QCD and N = 4 SYM pure gluon scattering amplitudes yield the same

results!1 The tree level component is often considered the most important component because it

provides valuable insight into the leading order behavior. The relationship between N = 4 SYM

and QCD amplitudes beyond tree level has been studied in the literature [4]. This work will not

detail the applicability of N = 4 SYM theory to QCD scattering amplitudes. The direct equivalence

is lost at loop level calculations, which is the focus of this work.

In addition to being extremely useful to describe real physical theories, the true value of N = 4

SYM lies in its computational power. Some of the most precise experiments to date match loop order

quantum field theory calculations. The mathematical properties of N = 4 SYM greatly simplify

scattering amplitude calculations in the theory allowing analytic results to be obtained for multiple

loop gluon scattering processes. To date, up to five loop calculations have been performed in N = 4

SYM [5]. N = 4 SYM is a conformal field theory (CFT). As with all conformal theories, N = 4

SYM is invariant under rescalings and all of the particles in the theory are massless. A conformal

theory does not depend on the choice of scale, allowing the most convenient scale for the given
1Note: To define asymptotic states and scattering amplitudes in N = 4 SYM , (4−2ε)-dimensional regularization

is used to slightly break the conformal invariance.
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problem to be selected. The ability to rescale variables in a given problem without changing the

physics is a useful property.

It is believed that N = 4 SYM in the planar limit (large number of colors) is exactly solvable.

The relative simplicity has led to N = 4 SYM being one of the most commonly used theories in

scattering amplitudes. The beauty of N = 4 SYM is realized through an understanding of symme-

tries arising from the mathematical structure of scattering amplitudes. The traditional Feynman

diagram approach to scattering amplitudes obscures the mathematical structure possessed by these

amplitudes. Much of the recent progress has been supercharged through a deeper knowledge of the

symmetries possessed by N = 4 SYM .

Overview of Thesis

There are many approaches leading from a standard physics graduate curriculum to modern scatter-

ing amplitude research in N = 4 SYM theory. However, a complete understanding is not required

to extract value from the results that are presented. In this thesis, I attempt to follow a pedestrian

path leading from a standard graduate physics curriculum to the main results of this work. Of

course, I strive to maintain coherency for the average reader as long as possible without sacrificing

mathematical rigor. A technically well-versed reader should find the later chapters self contained.

The focus of this work will be N = 4 SYM scattering amplitudes that are relevant to QCD,

gluon scattering amplitudes in the planar limit. Specifically, recent seven point four-loop maximally

helicity violating and three-loop next-to-maximally helicity violating will be presented. Chapter

2 reviews the field of scattering amplitudes leading to modern research. It includes a review of

the spinor helicity formalism, QCD, N = 4 SYM theory, twistor space, and modern loop ampli-

tudes. Chapter 3 reviews the mathematical tools and terminology necessary to understand the

main results presented. In Chapter 4 the recent results of seven- point gluon scattering amplitudes

obtained through collaboration with Lance Dixon, James Drummond, Andrew McLeod, Georgios

Papathanasiou, and Marcus Spradlin are presented. An investigation with Marcus Spradlin into the

cluster algebra structure of six- and seven- point gluon scattering amplitudes is detailed in Chapter

5. Finally, the last chapter concludes this thesis by presenting possible directions of future work.
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Chapter 2

Scattering Amplitudes

In a standard quantum mechanics course, a scattering amplitude is introduced as the amplitude of

an outgoing wave relative to an incoming plane wave in a stationary-state scattering process. In

quantum field theory, the scattering amplitude is the quantum mechanical amplitude for a process

to occur. The differential cross section for a scattering process is proportional to the square of

its scattering amplitude. A majority of a standard quantum field theory course is concerned with

how to calculate scattering amplitudes for various physical processes. In general, scattering ampli-

tudes cannot be calculated exactly so physicists resort to perturbatively expanding the scattering

amplitude.

In 1948, Richard Feynman introduced a beautiful method that uses diagrams to compute scat-

tering amplitudes [6]. In the Feynman diagram approach, each diagram represents a specific process

and contribution to the scattering amplitude. The tree-level diagrams, those with no loops, de-

termine the first term in the perturbative expansion of the scattering amplitude. The remaining

contributions to the perturbative expansion of the coupling constant can be identified by diagrams

with loops. As one would expect, the higher loop terms provide higher-order corrections to the

tree-level result. The Feynman rules for evaluating the diagrams are determined by the theory that

dictates the physical processes. Typically, the rules are derived from the Lagrangian of the theory.

The Feynman diagram approach has been the canonical way to calculate scattering amplitudes for

the past 50 years.

While it has proven indispensable to calculate the scattering amplitudes of countless physical scat-

tering processes, the Feynman diagram approach becomes intractable for processes with a large num-

ber of external particles. Using the standard Feynman diagram approach, a g+g → g+g+g+g gluon
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scattering amplitude at tree-level would require computing 220 diagrams. A g+g → g+g+g+g+g

requires 2485 diagrams and a g+g → g+g+g+g+g+g+g+g would require 10525900 diagrams[7]!

The number of diagrams grows quickly with the number of external legs. Surprisingly, the tree-level

n-gluon maximally helicity violating amplitude can be expressed in a single line using the Parke-

Taylor formula [8]. It is believed that such a simple form for the tree-level n-gluon amplitude is not

accidental and there must be a way to construct the theory so the answer is easily obtained. This

hope initiated research into the underlying mathematical structure of amplitudes.

The field of scattering amplitudes has transformed drastically over the past twenty years. Modern

research is heavily focused on discovering and exploiting the mathematical structure of amplitudes in

N = 4 SYM theory. Many of the greatest advancements have been driven by a deeper understanding

of the underlying mathematical structure. Additionally, the introduction of new mathematical tools,

such as the symbol, has revolutionized how modern amplitudes are computed. In this thesis, we will

focus on advancements in planar N = 4 SYM scattering amplitudes.

The scattering amplitude essentials are presented and recent achievements relevant to gluon scat-

tering amplitudes in N = 4 SYM theory will be outlined. The chapter starts off with a kinematics

section reviewing the spinor helicity formalism. Helicity classification of amplitudes is explained in

Section 2.2. Then, a slight detour in Section 2.3 is taken to provide a lightning review of the essen-

tials needed from quantum chromodynamics. N = 4 SYM superamplitudes are covered in Section

2.4. Section 2.5 reviews twistor space and the twistor variables. Loop amplitudes are reviewed in

Section 2.6, concluding the chapter.

2.1 Kinematics

External momenta of the scattering particles are the main input variables into scattering amplitudes

in any physical theory. While the complexities of amplitudes vary immensely with the theory, the

complexity of the form of a scattering amplitude is strongly dependent on the choice of variables

used to encode the external momenta information. Amplitudeologists learned early on in history of

the field of scattering amplitudes that enormous simplifications are obtainable through a change of

momenta variables. As a result, modern scattering amplitudes are expressed in a plethora of different

momenta variables. In this section, I hope to shed some light into how to relate these unusual (to

the inexperienced amplitudeologist) variables to the more familiar Lorentz four-momenta.

In the standard Feynman diagram approach to amplitudes, scattering amplitudes are expressed

as functions of the external particle kinematic data. Some kinematic variables of high importance
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are: spin, mass, polarization, and four-momenta pµi . For a given scattering amplitude, the physical

diagrams are drawn and the Feynman rules for external lines, propagators, and vertex rules depend

on the kinematic data. By using a spinor representation for the external momenta, many simplifica-

tions can be made leading to significant advancement in our ability to calculate scattering processes.

Let’s investigate how we can convert from the traditional momenta four-vectors to spinors.

From group theory we know that the Lorentz group transforms under a smaller spinor repre-

sentation. The conversion of Lorentz vectors to spinors is simply a mapping of the Lorentz vectors

in the SO(3, 1) representation to Weyl spinors in the
(

1
2 ,

1
2

)
spinor representation. We start off by

introducing the spinor helicity formalism for spin-1/2 particles and then introduce spinor helicity

for massless vectors by showing how polarizations are handled.

In this section, the transition from the traditional Feynman diagram approach to helicity ampli-

tudes will be motivated and explained. The recipe for constructing spinors from Lorentz four-vector

momenta, known as spinor helicity formalism, will be reviewed. The extension to massless vectors

will be shown by expressing polarization vectors in the spinor language. Finally, the conventional

amplitude helicity classification scheme will be explained and the difficulty of calculating an ampli-

tude will be classified by how helicity violating the process is.

2.1.1 Spinor Helicity Introduction

We begin by discussing how the traditional momenta four-vectors for massless particles are encoded

in modern scattering amplitude calculations. Throughout this chapter we adopt the conventions used

in Srednicki’s Quantum Field Theory textbook [9] and use the ηµν = diag(−1,+1,+1,+1) metric. As

we will show, the typical momenta four vectors used to describe the momenta of external particles

can be replaced with more a favorable spinor representation using a formalism known as Spinor

Helicity Formalism. We begin by quickly bridging the gap between a four-vector representation and

spinor representation of momenta.

For a given particle with momenta p, the components of the momenta are packaged into the four-

vector pµ = (p0, p1, p2, p3) which satisfies pµpµ = −m2. If the momenta-four vector pµ is contracted

with the gamma matrices γµ, then the resulting matrix /p = pµγ
µ contains all of the components

of the momenta four-vector. The /p matrix turns out to be extremely important since it appears

frequently in scattering amplitude computations. Additionally, it appears in the Dirac equation and
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Weyl equation. We will use the standard definition for the γµ matrices

γµ =

 0 σµ

σ̄µ 0

 (2.1.1)

where (σµ) = (1, ~σi) and (σ̄µ) = (1,−~σi) for µ = 0, . . . , 3. The σi are the standard Pauli spin

matrices where

σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 σ3 =

1 0

0 −1

 (2.1.2)

Contracting pµ with γµ, we get

/p =

 0 puσ
µ

puσ
µ 0

 (2.1.3)

The resulting matrix is block-diagonal consisting of following 2×2 matrices

puσ
µ =

−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

 (2.1.4)

and

puσ
µ =

−p0 − p3 −p1 + ip2

−p1 − ip2 −p0 + p3

 (2.1.5)

The determinant of each of these matrices gives the square of the mass

det(puσµ) = det(puσµ) = m2 (2.1.6)

For massless particles, the determinants of both of puσµ and puσµ vanish

det(puσµ) = det(puσµ) = 0 (2.1.7)

and both puσµ and puσµ are rank-one matrices. From linear algebra, we know that a 2×2 matrix

with rank one can be formed by the outer (also known as dyadic) product of two spinors. Such

matrices are commonly referred to as bispinors.

In order to understand how spinors will be used to represent the momenta bispinors appearing

in the /p matrix, we begin by reviewing how Dirac spinors can be composed of Weyl spinors. We

start with the general case of a massive particle and then restrict to massless particles. Relativistic
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spin-1/2 particles are described by the Dirac equation (with ~ = 1):

(−i/∂ +m)ψ = 0 (2.1.8)

where /∂ = γµ∂µ. If we multiply the Dirac equation by (i/∂ + m), we see that a Dirac spinor ψ

satisfying the Dirac equation also satisfies the Klein-Gordon equation:

(−∂2 +m2)ψ = 0 (2.1.9)

In order to solve for the Dirac spinor, we follow the traditional approach to solving the Klein-Gordon

equation and consider a plane wave solution of the form:

ψ(x) = u(p)eipx + v(p)e−ipx (2.1.10)

Using the plane wave solution above, the Dirac spinors u(p) and v(p) must satisfy the following

equations:

(/p+m)u(p) = 0 (2.1.11)

(−/p+m)v(p) = 0 (2.1.12)

Since we will be interested in forming spinor quantities that are invariant under Lorentz trans-

formations, we would like to be able to form Lorentz invariants from Dirac spinors. Multiplying

the Hermitian conjugate of a Dirac spinor and Dirac spinor does not produce a Lorentz invariant

quantity. Instead, we introduce the barred Dirac spinors known as the Dirac adjoint such that the

product of a Dirac adjoint and a Dirac spinor produce a Lorentz invariant quantity. The adjoint is

defined in the following way with:

u(p) ≡ u†γ0 (2.1.13)

v(p) ≡ v†γ0 (2.1.14)

where

γ0 =

0 I

I 0

 (2.1.15)
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The Dirac adjoints satisfy the following equations:

u(p)(/p+m) = 0 (2.1.16)

v(p)(−/p+m) = 0 (2.1.17)

At this point, we will restrict our story to massless particles. The equations for the Dirac spinors

u, v, u, and v become

/pu(p) = /pv(p) = u(p)/p = v(p)/p = 0 and p2 = 0 (2.1.18)

From the form of the plane wave, eq. (2.1.10), we can see that term involving v is the outgoing

Dirac spinor for an anti-fermion and the term involving u is for an incoming fermion. Similarly, v

corresponds to an incoming anti-fermion and u corresponds to an outgoing fermion. In scattering

amplitudes, we will often assume that all particles in a scattering event are outgoing and focus on v

and u.

When solving for the Dirac spinors u and v, each Dirac spinor can be expressed as two Weyl

spinors of opposite handedness (one left-handed and one right-handed). Following standard prac-

tices, we label an outgoing particle with momentum p by its helicity. A positive helicity is represented

using a square bracket |p]a and a negative helicity is represented using an angle bracket |p〉ȧ. The

indices on the angle and square brackets are written to express that these are spinor objects. Note

that the indices for angle brackets are written with a dot over them in order to distinguish from

indices belonging to a square bracket spinor. With this choice of angle and square bracket labeling,

v+(p) =

|p]a
0

 v−(p) =

 0

|p〉ȧ

 (2.1.19)

u+(p) =

(
[p|a 0

)
u−(p) =

(
0 〈p|ȧ

)
(2.1.20)

where |p]a, [p|a, |p〉ȧ, and 〈p|ȧ are two component Weyl spinors. The Weyl equations that each of

these spinors satisfies can be obtained by replacing v or u in eq. (2.1.18) with one of the spinors

above.

Under charge conjugation, fermions become anti-fermions and vise-versa. Therefore there is a

connection between the spinor of the same helicity with upper and lower indices. Expressed in terms

of the Dirac spinors,

Cu±(p)T = v±(p) (2.1.21)
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where C is the charge conjugation matrix. In the language of the angle and bracket spinors, the

spinors with upper indices can be found from the spinors with lower indices using the 2×2 antisym-

metric tensor εab where

εab = εȧḃ = −εab = −εȧḃ =

0 −1

1 0

 (2.1.22)

Expressed in the angle/square bracket language, the relationships between the spinors are shown

below

|p〉ȧ = εȧḃ〈p|ḃ (2.1.23)

|p]a = εab[p|b (2.1.24)

〈p|ȧ = εȧḃ|p〉ḃ (2.1.25)

[p|a = εab|p]b (2.1.26)

Now we are interested in how we can construct the /p matrix from the angle/square spinors.

Specific products of (massless) Weyl spinors can be related to the /p matrix in the following way

u±(p)u±(p) =
1

2
(1± γ5)(−/p) (2.1.27)

v±(p)v±(p) =
1

2
(1∓ γ5)(−/p) (2.1.28)

where γ5 is

γ5 =

−1 0

0 1

 (2.1.29)

The /p matrix may be expressed in terms of the Weyl spinors as

− /p = u±(p)u±(p) + v±(p)v±(p) (2.1.30)

Using the typical phase convention, the two types of particles can be related using

u∓(p) = v±(p) v±(p) = u∓(p) (2.1.31)
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In terms of the Weyl spinors defined in eqs. 2.1.19 and 2.1.20, /p can be expressed as

/p =

 0 −|p]a〈p|ȧ
−|p〉ȧ[p|a 0

 (2.1.32)

The two non-zero component objects are know as momentum bispinors. We define variables paȧ and

pȧa for the two momentum bispinors in the following way

paȧ = −|p]a〈p|ȧ pȧa = −|p〉ȧ[p|a (2.1.33)

Now, we have arrived at an expression for the /p matrix using Weyl spinors and using the com-

ponents of momenta four-vectors. The last step is to establish how the momenta can be expressed

in terms of Weyl spinors. We originally wanted to formulate a representation of the momenta four-

vectors in terms of Weyl spinors. If we look at the explicit form of /p in eq. 2.1.3, we notice that the

two nonzero terms can be explicitly written as products of two spinors.

puσ
µ =

−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

 =
t√

−p0 + p3

−p0 + p3

p1 + ip2

 t−1√
−p0 + p3

(
−p0 + p3 p1 − ip2

)
(2.1.34)

and

puσ
µ =

−p0 − p3 −p1 + ip2

−p1 − ip2 −p0 + p3

 =
t−1√
−p0 + p3

−p1 + ip2

−p0 + p3

 t√
−p0 + p3

(
−p1 − ip2 −p0 + p3

)
(2.1.35)

Now, we can eqs. 2.1.32-2.1.35 to express the angle and square spinors in terms of the components

of the momenta four-vector

|p]a =
t√

−p0 + p3

−p0 + p3

p1 + ip2

 〈p|ȧ =
t−1√
−p0 + p3

(
−p0 + p3 p1 − ip2

)
(2.1.36)

|p〉ȧ =
t−1√
−p0 + p3

−p1 + ip2

−p0 + p3

 [p|a =
t√

−p0 + p3

(
−p1 − ip2 −p0 + p3

)
(2.1.37)

Looking at the form of the spinors, we see that they satisfy the expected relations, eq. (2.1.23), for

raising/lowering spinor indices. As a result, the /p matrix can be parameterized with only |p〉ȧ and

|p]a.
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Finally, we have arrived at expressions for the momenta four-vector in terms of Weyl spinors.

Before we finish our review of Weyl spinors, it is important to express how the Lorentz-invariant

quantities can be expressed using the square and angle bracket spinors. Lorentz invariant quantities

are formed using

u−(p)v−(q) = 〈p|ȧ|q〉ȧ ≡ 〈pq〉 (2.1.38)

u+(p)v+(q) = [p|a|q]a ≡ [pq] (2.1.39)

We skip a review of all of the various properties obeyed by these spinors. For a thorough review of

spinor helicity formalism refer to [10].

2.1.2 Massless Vectors in Spinor Helicity

Now that we have discussed how to represent massless momenta four-vectors in the new spinor

language, we are interested in extending this language to describe spin. Amplitudes for particles

with spin are functions of the external momenta pi and polarization vectors εµi . When moving from

traditional momenta vectors to the momenta spinors, it is more convenient to express an amplitude

in terms of the helicities, eliminating the polarization vector dependence. In order to move to an

entirely spinor representation, the polarization vector must be written in the spinor language. Here,

the polarization vectors in the spinor language will be stated without proof. The polarization vectors

are given by

εµ+ = −〈q|γ
µ|p]√

2〈qp〉
εµ− = −〈p|γ

µ|q]√
2[qp]

(2.1.40)

where q is a reference spinor. Note: we have dropped the indices on the spinors. For each external

spin-one particle, a reference spinor q must be chosen so that q 6= p. The polarization vectors

contracted with γµ take the form

/ε
µ
+ = −

√
2

〈qp〉 (|p]〈q|+ |q〉p|) /ε
µ
− = −

√
2

[qp]
(|p〉[q|+ |q]〈p|) (2.1.41)

As discussed by Witten in [11], there is no natural way to pick a polarization vector associated with

a given particle momentum and helicity. However, given a spinor decomposition and a helicity, a

polarization vector up to a gauge transformation can be determined. More details associated with

picking negative/positive helicity polarization vectors can be found in [12, 7].

Equipped with a representation of the momenta and polarization vector in terms of Weyl spinors,

we can express scattering amplitudes of massless gauge bosons as a function of the spinors |p〉 and
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|p] and helicities hi = ±1 of the external particles. A general scattering amplitude will be written

as A(|i〉, |i], hi) where i represents the momentum of the ith particle.

2.2 Helicity Classification

In the scattering of n gluons, it is common to assume that all of the gluons are outgoing for simplicity.

Crossing symmetry, flipping the helicity of the particles when they are switched from outgoing to

incoming, can be used to yield the remaining amplitudes of interest from amplitudes where all

particles are outgoing. We will assume that all of the gluons are outgoing unless otherwise stated.

Classifying scattering amplitudes based on the helicity structure of the external particles proves to

be extremely useful for determining underlying mathematical structure since amplitudes belonging

to the same helicity classification share many similarities.

It is a well known result that the scattering amplitude of n outgoing gluons with the same helicity

vanishes. Additionally, the amplitude where one gluon helicity is different from all others is also zero

for n > 3.

Atree
n (1+2+3+ · · ·n+) = Atree

n (1−2+3+ · · ·n+) = 0 (2.2.1)

These results can be explained at tree level by looking at the general form of a gluon tree amplitude

in the spinor representation and counting the powers of momenta [10]. The first non-zero tree

amplitude, An(1−2−3+ · · ·n+), has n − 2 positive helicity gluons and 2 negative helicity gluons.

This amplitude is known as the “maximally helicity violating" amplitude, or MHV. As we will see,

this MHV amplitude is also the simplest tree level amplitude in N = 4 SYM.

For this discussion we will relax the assumption that all particles are outgoing. The notion of

“helicity violating” processes comes from considering 2→ n− 2 scattering processes. If the helicities

of the outgoing particles are identical to the helicities of the incoming particles, we say that there

is no helicity violation. Maximum helicity violation occurs when the maximum number of outgoing

particles have the opposite helicity as the helicity of the incoming particles. If all of the outgoing

particles have the opposite helicity as the incoming particles, crossing symmetry would bring the

amplitude to zero since it’s an n outgoing gluon amplitude where all the particles have the same

helicity. Similarly, an amplitude with only one outgoing particle helicity identical to the incoming

helicity would vanish as well.

The MHV process is the process where two of the outgoing particles have the same negative

helicity as the incoming particles and the remaining (n − 4) outgoing particles have the opposite
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Figure 2.2.1: Helicity Specification

positive helicity. Using crossing symmetry this is an n outgoing gluon amplitude where only two of

the particles have negative helicity and the remaining (n − 2) particles have positive helicity. We

could have equivalently chosen to define MHV processes where the helicity violation we are referring

to is helicity violation with respect to positive incoming particles, but those scattering amplitudes

are known in the literature as anti-MHV or MHV. Anti-MHV processes are those with n outgoing

particles with n−2 negative helicity gluons and 2 positive helicity gluons. The MHV can be obtained

from the MHV amplitude by flipping all the helicities. In explicit expressions consisting of angle

and square brackets, this is accomplished by exchanging the two spinors.

As soon as we flip at least one of the outgoing positive helicity gluon to a negative helicity

gluons in an MHV process (when considering 2→ n− 2 scattering), we arrive at more complicated

amplitudes known as next-to-maximally helicity violating (NMHV) amplitudes. Explicitly NMHV

is the process of n outgoing gluons with three negative helicity gluons and (n− 3) positive helicity

gluons. We can keep flipping positive helicities to negative helicities until we have only 2 outgoing

positive helicity gluons left (where we have arrived at the MHV amplitude. Each successive flip of a

positive helicity gluon to a negative helicity gluon in an MHV amplitude adds a “next-” to the name

of the resulting process. For simplicity, we express these names with powers of N . For example

N2MHV refers to the amplitude for n outgoing gluons with four negative helicity gluons and (n− 4)

positive helicity gluons. Generalizing further, a NkMHV amplitude has k+2 negative helicity gluons

and n− k − 2 positive helicity gluons.

Before moving on we now take a short detour and review quantum chromodynamics and detail

what an amplitude in the planar limit means.
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2.3 Lightning QCD Review

Using the spinor helicity formalism and the Feynman rules, multi-gluon scattering amplitudes can

be computed perturbatively in QCD. Perturbative computations are extremely challenging because

the number of diagrams grows very quickly with the number of external gluons. In this section, the

basics of quantum chromodynamics will be reviewed. We will briefly review how amplitudes can be

constructed from color-ordered partial amplitudes. The Feynman rules for QCD will not be given

here since we will not compute QCD scattering amplitudes. The Feynman rules for QCD can be

found in [9]. The all n-gluon tree amplitude will be presented. After discussing extensions to loop

amplitudes, we motivate the study of planar amplitudes and transition to N = 4 SYM .

Let’s start by off with a description of gluons in QCD. Gluons, in the absence of quarks,

are described with an SU(3) Yang-Mills theory. Full QCD results from coupling the gluons to

quarks (represented by fermionic fields). While the gauge group of the gluons is SU(3), it can

be generalized to SU(Nc) for Nc colors. Gluons in an SU(Nc) gauge theory have adjoint color

indices a = 1, 2, . . . , N2
C − 1. Quarks and antiquarks have indices i and j̄ respectively where

i, j̄ = 1, 2, . . . , NC . In the fundamental representation of QCD, the SU(NC) generators T a are

traceless hermitian NC × NC matrices. The commutation relations of these generators define the

structure constants fabc as [
T a, T b

]
= i
√

2fabcT c (2.3.1)

Using the standard quantum field approach, the Feynman rules for a Yang-Mills theory can be

derived from the Lagrangian

LYM = −1

4
Tr (FµνFµν) (2.3.2)

Looking at the Feynman rules, we can see that the group theory structure constants fabc appear for

pure gluon three-point vertices, products of the structure constants appear for pure gluon four-point

vertices, and factors of the generators appear for gluon-quark-antiquark vertices. Since the structure

constants are defined by the algebra, the structure constants that appear can be replaced with traces

of the generators using the following relation

i
√

2fabc = Tr(T aT bT c)− Tr(T aT cT b) (2.3.3)

After using the Feynman rules to compute an amplitude and replacing the structure constants with

the generators using the substitution above, a multi-gluon amplitude becomes a product of traces of
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some combination of the generators. Additionally, products of the generators arising from external

quarks can be reduced using the SU(NC) Fierz identity.

Tree level gluon amplitudes can then be reduced to a sum of single trace terms. An n-gluon tree

amplitude factors in the following way:

Atree
n (p1, ε1, . . . , pn, εn) = gn−2

∑
σ

Tr(T aσ(1)T aσ(2) · · ·T an)Atree
n (pσ(1), εσ(1), . . . , pσ(n), εσ(n)) (2.3.4)

where the coupling constant g2/(4π) = αs and σ is the set of all non-cyclic permutations of the

external momenta. More formally, σ = Sn/Zn where Sn is the set of all permutations of n elements

and Zn is the set of cyclic permutations of n elements. The Atree
n are known as the color-ordered

or partial amplitudes. They are functions of the kinematic information and are dressed by single

trace factors consisting of a product of the generators. These amplitudes are known as color-ordered

because the external gluons are labeled with a specific ordering (not necessarily sequential!). To

calculate the partial amplitude, we find every diagram with the desired color-ordering and include

all copies of those diagrams where the labels are cyclically permuted. Color-ordered amplitudes

contain all contributions with a specific cyclic ordering of the external gluons. We will be interested

in computing color-ordered partial amplitudes and often refer to them as amplitudes.

Color ordering of the external gluons leads to useful properties. Partial amplitudes are invariant

under cyclic permutations and parity transformations (flipping the helicities). Color ordering also

imposes strict constraints on the partial amplitude singularity structure. We will touch more on

this later. At loop level, we can extend the color decomposition for pure-gluon amplitudes. Looking

at the color factors for various terms, many color factors are inversely proportional to powers of

the number of colors Nc. Taking the limit of large Nc, the non-planar diagrams vanish since their

color factors are proportional to 1/Nc. This limit is known as the planar limit. In the planar limit,

the diagrams that survive have a specific ordering of external legs and can then be labeled. Color

ordered Feynman rules can be constructed without the appearance of color factors. More generic

QCD amplitudes can also be calculated using the color decomposition method that we applied to

pure-gluon amplitudes. However, we will not need these techniques.

Despite the simplicity obtained by considering partial amplitudes and taking the planar limit,

using the colored-ordered Feynman rules for QCD amplitudes is still a rather cumbersome process

for even relatively simple scattering gluon scattering amplitudes. As a result of this complexity,

amplitudes are calculated in a simpler theory known as N = 4 Super-Yang-Mills (SYM). Computa-

tions in N = 4 SYM can shed light onto the more complicated QCD amplitudes. In the following
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section, N = 4 SYM theory will be reviewed and its connection to QCD scattering amplitudes will

be discussed. We will see that tree level all gluon amplitudes in N = 4 SYM theory are identical to

the tree level QCD results.

2.4 N = 4 Super-Yang-Mills Theory

N = 4 Super-Yang-Mills Theory is a supersymmetric pure Yang-Mills theory. We study N = 4

because it contains the maximal amount of supersymmetry allowed in four dimensions. In N = 4

SYM , each gluon has four fermionic superpartners. To close the supersymmetry we also need to

introduce six scalar fields. The particle content of N = 4 SYM consists of two gluons G± (bosons),

six scalars (bosons), and eight gluinos (fermions). Helicities are ±1, ±1/2, and 0 for gluons, gluinos,

and scalars respectively.

The N = 4 SYM action is given by [13]

S =
1

g2
YM

∫
d4xTr

(
−1

4
FµνF

µν − (DµφAB)DµφAB − 1

2
[φAB , φCD][φAB , φCD]

+ψ
A

α̇σ
α̇α
µ DµψαA −

i

2
ψαA[φAB , ψαB ]− i

2
ψ
A

α̇ [φAB , ψ
α̇B

]

)
(2.4.1)

where gYM is the Yang-Mills coupling constant, φ are the antisymmetric scalars an ψ are the gluinos.

The greek letters α, α̇ run over 1, 2 and the latin letters A,B,C,D run over 1, 2, 3, 4.

N = 4 SYM is a conformal theory with SU(N) gauge invariance. The theory remains conformal

after quantization because the coupling constant is not renormalized. As a result, N = 4 SYM is free

from ultraviolet (UV) divergences. However, the theory still suffers from infrared (IR) divergences

resulting from radiative corrections. Throughout the course of this work we will be discussing

N = 4 SYM in the planar limit. We will be interested specifically in loop amplitudes. We now

review scattering amplitudes in N = 4 SYM .

2.4.1 Amplitudes in N = 4 SYM

As we saw earlier, a general n-particle scattering amplitude in the planar limit of N = 4 SYM has

the following form [14]:

An ({pi, hi, ai}) = (2π)
4
δ4

(
n∑
i=1

pi

) ∑
σ∈Sn/Zn

2n/2gn−2tr[taσ(1) · · · taσ(n) ]An
(
σ(1h1 , . . . , nhn)

)
(2.4.2)

17



Here we have explicitly included a delta function to enforce conservation of momenta (p2
i = 0). Here

we focus on the color-ordered amplitudes An
(
σ(1h1 , . . . , nhn)

)
that depend only on the helicities hi

and momenta of the external particles. The colored-ordered partial amplitudes can be perturbatively

expanded in powers of the ’t Hooft coupling constant a = g2
YMN/(8π

2).

Gluon amplitudes are the most commonly studied amplitudes in N = 4 SYM. We begin with the

simplest non-vanishing MHV tree-level amplitudes. A concise formula for the MHV tree amplitude

for n-gluons was formulated by Parke and Taylor [8] and proven by Berends and Giele [15]

AMHV
n;0 = An

(
1+ . . . i− . . . j− . . . n+

)
=

〈ij〉4
〈12〉〈23〉 · · · 〈n1〉 (2.4.3)

Note: this factor only depends on the angle brackets. The MHV tree-level is found by replacing the

angle brackets with square brackets. After perturbatively expanding the full n-gluon amplitude, the

Parke-Taylor factor, eq. (2.4.3), appears at all orders in the ’t Hooft coupling

AMHV
n

(
1+ . . . i− . . . j− . . . n+

)
= AMHV

n;0 + aAMHV
n;1 + a2AMHV

n;2 +O(a3) = AMHV
n;0 MMHV

n (2.4.4)

and can be factored out. The function MMHV
n depends on the Mandelstam invariants and the ’t

Hooft coupling constant, but does not depend on the positions of the negative helicity gluons i and

j. Calculating the MHV amplitude becomes the problem of determining MMHV
n to all orders in the

coupling constant a.

Going beyond MHV, the perturbative expansions of NMHV amplitudes no longer contain the

tree-level Parke-Taylor factor. The tree-level amplitude ANMHV
n;0 now depends on both the angle and

square brackets. Very often the angle and bracket spinor are represented using λ and λ̃ respectively.

Perturbatively expanding the NMHV amplitude in the coupling constant,

ANMHV
n

(
1+ . . . i− . . . j− . . . k− . . . n+

)
= ANMHV

n;0 (λ, λ̃) + a
∑
l

A
NMHV,(l)
n;1 (λ, λ̃)M

NMHV,(l)
n;1 +O(a2)

(2.4.5)

the new factors (ANMHV
n;0 , ANMHV,(l)

n;1 ) and the scalar Feynman integrals MNMHV,(l)
n;1 do not retain

the simple properties observed in the MHV case. All of these functions must be calculated for each

helicity configuration because they depend on the positions of the negative helicity gluons [4, 16, 17,

18, 19].

As one might expect, NkMHV amplitudes for k > 1 are more complex than NMHV amplitudes.

In [17] a general one-loop NMHV gluon amplitude was found. Using traditional unitarity cuts, ex-
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plicit next-to-next-to-MHV results were obtained by calculating scalar box integrals and the rational

function coefficients [18]. Often times these computations are challenging and so non-MHV results

for a given number of external particles are not as commonly computed as MHV amplitudes.

The simplicity of the MHV amplitudes led amplitudeologists to wonder if NMHV amplitudes

could also be written in a compact form. As it turns out, the discovery of a hidden symmetry, dual

(super)conformal symmetry [14], allowed NMHV amplitudes to be expressed in significantly simpler

forms than the forms computed using unitarity cuts. In order to understand how this symmetry was

realized and then utilized, we first review the on-shell superamplitude construction.

2.4.2 On-Shell Superamplitude Formulation

The space described in terms of the massless angle and square spinors is known as the “on-shell"

space because the particles are on-shell (p2
i=0). In order to construct an on-shell superamplitude,

we first package the field content into a single superfield Φ, as was done by Nair [20]. We introduce

Grassmann variables ηAi for each external particle with an SU(4) index A = 1, . . . , 4. Using these

Grassmann variables, all of the fields can be combined into a superfield Φ defined by

Φ = G+ + ηAψA +
1

2
ηAηBφAB +

1

3!
ηAηBηCεABCDψ

D
+

1

4!
ηAηBηCηDεABCDG

− (2.4.6)

where each of the fields where introduced at the beginning of this section. We define the superam-

plitude as

An(λ, λ̃, η) = An (Φ1, . . . ,Φn) (2.4.7)

Any amplitude can be extracted from the superamplitude above by taking derivatives with respect

to the Grassmann variables ηiA and then setting the remaining Grassmann variables to zero. For

example, the MHV amplitude can be obtained by

An(1+ · · · i− · · · j− · · ·n+) =

[
4∏
I=1

(
∂

∂ηIi

) 4∏
J=1

(
∂

∂ηJj

)
An (Φ1, . . . ,Φn)

] ∣∣∣∣
ηKk →0

(2.4.8)

Another way to think about this is that the superamplitude An contains the MHV pure gluon

amplitude as the term multiplying a specific product of the Grassmann variables. Explicitly,

An =
1

4!
ηAi η

B
i η

C
i η

D
i εABCD

1

4!
ηAj η

B
j η

C
j η

D
j εABCDAn(1+ · · · i− · · · j− · · ·n+) + · · · (2.4.9)
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The superamplitude also contains all of the amplitudes with fermions and scalars as well. The

supersymmetric version of the MHV tree level amplitude (eq. (2.4.3)) is [20]

AMHV
n;0 =

δ(4)

(
n∑
j=1

pj

)
δ(8)

(
n∑
i=1

λαi η
A
i

)
〈12〉〈23〉 · · · 〈n1〉 (2.4.10)

where δ8

(
n∑
i=1

λαi η
A
i

)
=

∏
α=1,2

4∏
A=1

λαi η
A
i . The term inside this delta function is the supermomentum

and the extra delta function enforces supermomentum conservation. The full tree-level superampli-

tude contains both MHV and all possible NkMHV superamplitudes as well.

When expressing the full tree-level superamplitude, the MHV superamplitude is factored out in

the following way

An;0 = AMHV
n;0 Pn;0 (2.4.11)

where Pn;0 can be expanded in terms of functions with varying Grassmann weight.

Pn;0 = 1 + PNMHV
n;0 + PN2MHV

n;0 + · · ·+ PMHV
n;0 (2.4.12)

In [14], the NMHV tree-level superamplitude was conjectured

ANMHV
n;0 = AMHV

n;0

∑
1<s<t<n

Rn;st (2.4.13)

and the form above was proven in [21]. In [22], tree-level superamplitudes in N = 4 SYM were

determined for all n. The Rn;st, known as R-invariants, are dual superconformal invariants that will

be defined later. First, we must introduce the dual coordinates and the associated symmetry.

2.4.3 Dual Conformal Symmetry

The conformal symmetry of N = 4 SYM theory is only half of the story. In addition to the standard

conformal symmetry, planar N = 4 SYM has a hidden symmetry known as dual superconformal

symmetry. When formulated in the appropriate dual superspace, all tree level MHV and NMHV

amplitudes in N = 4 SYM are found to have a dual superconformal symmetry. This new symmetry

is distinct from the typical conformal symmetry of N = 4 SYM theory. After introducing dual

coordinates xαα̇ expressed in terms of the particle momenta, a SO(2, 4) conformal group can be

defined with a linear action on the dual space coordinates. From the definition, the action of the

dual conformal symmetries on the spinor variables can be derived. We first introduce the dual
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coordinates.

Dual coordinates arise as an equivalent representation for the standard momenta. The dual

coordinates xi are defined to relate to the momenta by

pµi = xµi+1 − xµi (2.4.14)

for i = 1, . . . , n where α, α̇ are the same SU(2) indices we saw for the bispinors. As a result, the

xαα̇i are relate to the momentum bispinor pαα̇i in an analogous way.

pαα̇i = xαα̇i+1 − xαα̇i (2.4.15)

The dual coordinates satisfy momentum conservation by requiring xn+1 = x1. Note these dual coor-

dinates are not spacetime coordinates. Since we will be computing superamplitudes, it is convenient

to also introduce dual fermionic supermomenta θαAi defined by

qαAi = |θαAi+1〉 − |θαAi 〉 (2.4.16)

i = 1, . . . , n where α, α̇ are SU(2) indices and A are the SU(4) indices of the Grassmann ηi.

Supermomentum conservation requires |θαAn+1〉 = |θαA1 〉.

The ‘dual’ conformal symmetry is best presented in the dual space where the angle brackets

and ηi have been replaced with the dual momenta and supermomenta. When expressed in the dual

superspace, all tree-level MHV and NMHV amplitudes in N = 4 super-Yang-Mills theory exhibit

dual superconformal symmetry [14]. To explicitly construct the conformal group, we first need

conformal inversion. Conformal inversion of the dual coordinates is defined in a similar way to

standard conformal inversion.

I
[
xαβ̇

]
=
xβα̇
x2

(2.4.17)

The special conformal generators Kµ are found by after performing an inversion, an infinitesimal

translations, and another inversion. The rest of the conformal algebra is found by commuting the

special conformal generators with the infinitesimal generator of translation. More details regarding

how conformal inversion is defined for other quantities, like the momenta spinors, can be found in

[14].

Since we are interested in the conformal symmetry associated with Lorentz invariant scattering
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amplitudes, it is sufficient to provide the following conformal inversion properties

I
[
x2
ij

]
=

x2
ij

x2
ix

2
j

(2.4.18)

I [〈ii+1〉] =
(
x2
i

)−1 〈ii+1〉 (2.4.19)

I [[ii+1]] =
(
x2
i+2

)−1
[ii+1] (2.4.20)

More complicated dual conformally covariant quantities can be constructed, but we will not do so

here. Now that we have defined the dual coordinates, we still need twistors before defining the

R-invariants as they appear in eq. (2.4.13).

2.5 Twistor Space

While the spinor variables proved to be extremely useful to simplify scattering amplitudes, many

modern amplitude calculations are not written in the spinor variables. Instead, they are expressed in

terms of twistor variables and other physical variables constructed from twistors. With the conformal

group acting linearly in configuration space, the action in momentum space is rather complicated

because conformal boosts are generated by a second-order differential operator. In general, the

generators are functions of the spinor variables. The goal of introducing twistors is to introduce a

set of variables where the generators are linearized.

The complex projective three-space P3 is known as twistor space. The introduction of twistor

space to scattering amplitudes was first made by Penrose [23] where he detailed a twistor description

that is equivalent to complex Minkowski space-time (completed by a null cone at infinity). In his

twistor representation, a null line in complex Minkowski space-time is represented by a pair of two

component spinors packaged into a four component object called a twistor. One of the spinors

defines the direction of the line and the other can be geometrically interpreted as its moment about

an origin. In [11], Witten introduced his twistor string theory with tree-level amplitudes matching

those of N = 4 SYM theory. In this work, we will not stress the geometric interpretation of twistor

variables. Instead, we will use twistors constructed from the momenta spinors as a useful change of

variables that simplifies the form of scattering amplitudes.

Momentum twistors are not twistors associated with Minkowski space-time. Rather momentum

twistors are formed exactly like the twistors introduced by Penrose, but the dual coordinates are used

instead of the space-time coordinates. For this reason, they are referred to as momentum twistors.

Momentum twistors were introduced in [24]. Momentum twistors are four component objects formed
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from two spinors. In certain signatures, one of the two spinors packaged into a momentum twistor

can be thought of as a Fourier transform on the angle spinors. Momentum twistors are defined by

ZIi = (|i〉ȧ, [µi|a) (2.5.1)

where I = (ȧ, a) is an SU(2,2) index. The new spinor [µi|a is defined by the following equations

[µi|a = 〈i|ȧxȧai = 〈i|ȧxȧai+1 (2.5.2)

known as the incidence relations.

After defining the momenta twistors ZIi , the square brackets can be expressed in terms of the

angle brackets and the new [µi|a spinors. Let’s look at how the usual square and angle bracket

products can be expressed in the language of momenta twistors. Using a special skew two-index

twistor appearing in the twistor algebra IAB , we can write the angle and square brackets as

〈ij〉 = IABZ
A
1 Z

B
2 (2.5.3)

[ij] = IABW1AW2B (2.5.4)

where W are dual twistors that can be defined in terms of the Zs (definition can be found in [24]).

We can also define dual conformal invariants from momentum twistors using the Levi-Civita εABCD

in the following way

〈ijkl〉 = εABCDZ
A
i Z

B
j Z

C
k Z

D
l (2.5.5)

where the quantity 〈ijkl〉 is known as a four-bracket. The four-bracket is an extremely important

quantity that appears throughout the study of scattering amplitudes.

To form momentum twistors from the bosonic coordinates, the angle brackets were replaced with

the variables [µi| defined by the incidence relations. Following the same definition of the new bosonic

spinors, we can similarly define a new Grassmann variable χAi that is the fermionic analog of the

[µi| variables. The χAi are defined according to the incidence relations

χAi = 〈i|θAi 〉 = 〈i|θAi+1〉 (2.5.6)

We can package the momentum twistors with the new Grassmann variables χAi into a quantity
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known as a momentum supertwistor. The momentum supertwistors are defined as

Zi =
(
Zai , χ

A
i

)
=
(
λαi , x

αα̇
i λiα, θ

αA
i λiα

)
(2.5.7)

As we can see, the momentum supertwistors are formed from the angle spinors, the dual coordinates

xαα̇i , and the fermionic Grassmann variables θαAi .

As we saw earlier, dual superconformal invariants appear at tree-level amplitudes as soon as

NMHV processes are considered. Now that we have introduced momentum supertwistors, we can

define R-invariants.

Rn;jk = − δ4 (〈j−1, j, k−1, k〉χn + cyclic)
〈n, j−1, j, k−1〉〈j−1, j, k−1, k〉〈j, k−1, k, n〉〈k−1, k, n, j−1〉〈k, n, j−1, j〉 (2.5.8)

Since the R-invariant definition is cyclic in the labels, we define a five-bracket [n, j − 1, j, k − 1, k]

where

Rn;jk = [n, j − 1, j, k − 1, k] (2.5.9)

With these five-brackets, the tree-level n-gluon NMHV superamplitude can be written as

ANMHV
n;0 = AMHV

n;0

n−3∑
j=2

n∑
k=j+2

[n, j − 1, j, k − 1, k] (2.5.10)

At this point we have introduced most of the momenta variables we will need to describe the

scattering amplitudes presented in this work. We now review how loop amplitudes are formulated.

2.6 Loop Amplitudes in Planar N = 4 SYMTheory

Loop amplitudes in gauge theories have been the focus of much of modern scattering amplitude

research. In fact, there are many research programs dedicated to constructing loop integrands. We

will only touch upon work relevant to gluon scattering amplitudes. The first one-loop amplitude for

four external gluons N = 4 SYM theory was calculated in 1982 by Green, Schwarz, and Brink as

the low energy limit of a superstring amplitude [25]. In 1994, Bern, Dixon, Dunbar, and Kowoser

constructed an ansätze for n-point one-loop amplitudes and determined a general n-point gluon

one-loop amplitude in N = 4 SYM theory [3]. In this section, we will review some of the most

important advancements in loop calculations in the study of planar N = 4 SYM theory. We start

with the method of generalized unitarity and progress to multi-loop calculations.
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The method of generalized unitarity has played a crucial role in loop order computations. Gener-

alized unitarity is the process of constructing the full loop amplitude from unitarity cuts. By sending

loop momenta on-shell (known as a unitarity cut), loop amplitudes can be written as products of

lower weight amplitudes. Starting with a complete basis of integrals, computing a loop amplitude

can be reduced to the problem of computing the coefficients in the complete basis. The coefficients

can be determined by taking sets of unitarity cuts of the general ansatz in the complete integral

basis and comparing to the factorization of the loop amplitude into lower-point amplitudes. We will

not go into more details about the method of generalized unitarity, but more details can be found

in textbooks like [13].

Now we want to focus on planar N = 4 SYM loop amplitudes. As we saw earlier, N = 4 SYM

is a conformal theory free of ultraviolet divergences which cancel order by order in perturbation

theory. However, loop amplitudes in planar N = 4 SYM theory do have infrared divergences. The

IR divergences can be interpreted as loop-momenta becoming collinear with external momenta.

Typically one of the loop momenta going soft leads to a 1/ε factor. When one of each of the loop-

momenta become soft, the 1/ε2L behavior is obtained for an L-loop amplitude. Soft and collinear

limits have been well studied in massless gauge theories like N = 4 SYM. A modern treatment can

be found in the review article [26].

To handle the IR divergences, amplitudes are computed using D = 4 − 2ε dimensional regular-

ization where they are well understood. Dimensional regularization breaks the conformal and dual

conformal symmetries. Therefore, the complete loop order amplitudes are not (dual) conformally

invariant due to the IR divergent components. While this might sound like the the end of the con-

formal and dual conformal symmetries, we can construct IR-finite quantities. The IR divergences

in N = 4 SYM amplitudes have a universal form. After computing the 2-loop 4-point MHV ampli-

tude, Anastasiou, Bern, Dixon, and Kosower (ABDK) conjectured that higher loop MHV amplitudes

could be expressed in terms of the one-loop results [27]. Bern, Dixon, and Smirnov observed that the

iterative structure found by ABDK continued in the 3-loop 4-point computation [28]. The resulting

pattern was shown to exponentiate leading to the well-known ABDK/BDS ansatz

MMHV,BDS
n (ε) = exp

∞∑
L=1

aL
(
f (L)(ε)MMHV

n;1 (Lε) + C(L)
)

(2.6.1)

whereMMHV
n =

AMHV
n

AMHV
n;0

and ε is the dimensional regularization parameter. The remaining functions

will be explicitly defined later.

The 2-loop 5-point MHV amplitude [29, 30] matched the prediction from the BDS ansatz. At
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six-points and higher, the BDS ansatz fails to produce the correct result. Fortunately, the BDS

ansatz correctly captures the IR divergences and the ansatz can be corrected to match higher loop

results. The correction factor, known as the remainder function Rn, is a function of dual conformally

invariant cross ratios. Rn is defined as

AMHV
n = AMHV,BDS

n exp (Rn) (2.6.2)

The remainder function at loop order L is the difference between the amplitude and the BDS ansatz

Rn;L =MMHV
n;L (ε)−MMHV,BDS

n;L (ε) (2.6.3)

Paired with the BDS ansatz, the L-loop remainder function is sufficient to compute the n-point

L-loop MHV amplitude.

For NMHV superamplitudes the story is very similar because NMHV amplitudes have the same

infrared-divergent structure as MHV amplitudes. Dual conformal invariants can be constructed by

taking a ratio of the loop level and the tree-level superamplitudes. This ratio is known as the ratio

function P where

ANMHV
n = AMHV

n Pn (2.6.4)

Ratio functions, like remainder functions, are IR-finite. The ratio functions at tree-level can be

constructed from the R-invariants defined in eq. (2.5.8). Moving to loop level, the ratio function

is given by R-invariants multiplied by transcendental functions of dual conformal invariants. New

techniques for computing these loop level remainder and ratio functions will be presented in sub-

sequent chapters. In the following chapter, the mathematical machinery needed to calculate these

types of amplitudes will be discussed.
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Chapter 3

Amplitude Toolbox

Many advances in N = 4 SYM scattering amplitude calculations have been pioneered by identifying

important mathematical and physical properties they satisfy. MHV and NMHV amplitudes exhibit

remarkable mathematical structure beyond dual conformal invariance. In order to understand this

underlying structure, we must borrow results from mathematics. Amplitude research is growing

rapidly and new mathematical techniques are being applied to computations daily. Much of this

mathematical formalism is hiding in highly technical papers and at this point in time cohesive

reviews do not exist for many important topics. In this chapter, I hope to briefly provide some

of the essentials that will be needed to understand the cluster bootstrap computations and cluster

algebra structure presented in this thesis. An advanced reader could skip this chapter and move on

to the results presented in Chapters 4 and 5.

3.1 Polylogarithms

Polylogarithms functions play a crucial role in the scattering amplitude story for N = 4 SYM

scattering amplitudes. In planar N = 4 SYM theory, the rational functions appearing in the

remainder and ratio functions are often classical polylogarithms. It is believed that all L-loop MHV

and NMHV scattering amplitudes in planar N = 4 SYM can be represented as linear combinations

of weight 2L polylogarithms. Like typical classes of functions, there are many types of different

polylogarithms. First, we will discuss classical polylogarithms.

A classical polylogarithm is an iterative integral of logarithms. The weight of a classical poly-

logarithm can be thought of as the number of integrations from the starting 1/(1− z) function. A

27



classical polylogarithms of weight k is defined by

Lik(z) =

∫ z

0

Lik−1(t)dlog(t) (3.1.1)

where

Li1(z) = −log(1− z) (3.1.2)

Another class of polylogarithms appearing in amplitudes are known as Goncharov’s multiple poly-

logarithms [31] defined by

G(−→w ; z) =

∫ z

0

dt

t− aG(−→w ′; z) (3.1.3)

where −→w = (a,−→w ′)

G(
−→
0n; z) =

1

n!
lnn(z) (3.1.4)

In the case of Goncharov’s multiple polylogarithms, the weight is equal to the number of elements

of −→w .

Polylogarithms satisfy complicated multiplicative (functional) identities. In [32], Golden et. al.

present a 40 term trilogarithm identity. These nontrivial identities make working with analytic

forms difficult. When the six-point two-loop remainder function was presented [33, 34], it was a

seventeen page long expression in terms of the multiple polylogarithms defined above. It turns out

that the gigantic expression presented could actually be written in terms of classical polylogarithms.

By employing this mathematical tool called the symbol, Goncharov, Spradlin, Vergu, and Volovich

were able to reduce the 17 page long expression of the six-point two-loop remainder function to an

expression spanning only a few lines [35]. With higher loop computations depending on the more

complicated generalized polylogarithms, the symbol is a crucial tool.

3.2 Symbol

The symbol is a mathematical tool used to represent transcendental functions that appear in scat-

tering amplitudes. Some of the first works using symbols in physics can be found in [35, 36]. We

start by assuming that we have an arbitrary function F of weight k that can be represented by

iterative integrals in the following way

F =

∫ b

a

dlogF1 · · · dlogFk (3.2.1)
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where ∫ b

a

dlogF1 · · · dlogFk =

∫ b

a

(∫ t

a

dlogF1 · · · dlogFk−1

)
dlogFk(t) (3.2.2)

Given such a function, the symbol of F is defined by

S(F ) = F1 ⊗ F2 ⊗ · · · ⊗ Fk (3.2.3)

As we can see, the symbol of a weight k function is a k-fold tensor product. From the definition of

a classical polylogarithm, we see that

dLik(x) = −dlog(1− x)dlog(x) · · · dlog(x) (3.2.4)

ad the symbol is given by

S(Lik(x)) = −(1− x)⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
k−1 times

(3.2.5)

Using the definition of symbol, the symbols for more complicated polylogarithm functions can be

found be writing the function explicitly in the form of eq. 3.2.1.

Symbols in scattering amplitudes are used primarily to simplify complicated polylogarithm func-

tions. The symbol for a function is found by applying the definition and writing the k-fold tensor

product. Then a few mathematical properties are applied to the symbol. Terms in the symbol that

are products can be split apart in the following way

AB ⊗ C ⊗D = A⊗ C ⊗D +B ⊗ C ⊗D (3.2.6)

If one of the elements in the product is a constant, the same rule applies except the term containing

the constant disappears. This makes sense since each element of the symbol corresponds to a

differential term in the functional representation and the differential of a constant is zero.

cA⊗B ⊗D = A⊗B ⊗D (3.2.7)

These two rules are applied and the symbol is expanded out. In the process, many terms end up

canceling. Complicated, many-term polylogarithm identities are trivialized to algebraic identities at

the symbol level.

Given that functions composed of transcendental functions can be expressed in many ways, it is

sometimes difficult to determine if two functions are equivalent. Fortunately, symbols are uniquely
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defined. There is only one symbol for a given function. If two functions have different symbols, the

functions are not equivalent. A statement of equivalence of two symbols does not mean that the

two functions are equivalent. Often times the products of lower weight functions are removed to

simplify the overall symbol algebra. When this is done, two functions with identical symbols are

only equivalent up to products of lower weight functions. Reconstruction of a full amplitude from

its symbol is a nontrivial step. In the process of expanding the symbol, constant terms are lost.

Only a subset of all symbols even correspond to functions and those that do are known as integrable

functions. There are numerous methods for determining the beyond the symbol terms and rational

functions, but the details will not be covered here.

3.3 u Variables

As seen from dual conformal symmetry [37, 38, 39, 40, 41, 42, 43, 14], the n-particle SYM scattering

amplitude depends on 3(n − 5) dual conformal cross-ratios. These cross ratios are algebraically

independent and constructed by taking ratios of x2
ij where xij = xi − xj . Many modern amplitudes

are expressed in terms of variables known as u variables. They are defined as ratios of the squares

of the dual coordinates in the following way

uij =
x2
i,j+1x

2
i+1,j

x2
i,jx

2
i+1,j+1

, ui ≡ ui+1,i+4 =
x2
i+1,i+5x

2
i+2,i+4

x2
i+1,i+4x

2
i+2,i+5

(3.3.1)

where the indices are mod n. Each of the squares of the dual coordinates can be directly related to

the spinor variables or the familiar Mandelstam invariants.

si...j−1 = (pi + pi+1 + · · ·+ pj−1)2 = x2
ij =

〈i−1ij−1j〉
〈i−1i〉〈j−1j〉 (3.3.2)

The four-brackets are Plücker coordinates. The seven-point amplitudes will be expressed in another

set of variables known as cluster-A coordinates. These variables are known as cluster coordinates

because of their direct connection to cluster algebras, which we discuss now.

3.4 Cluster Algebras

Cluster algebras play a central role in planar N = 4 SYM theory because of the special functional

dependence of amplitudes on the momenta variables. Cluster algebras were first introduced in

mathematics literature in [44, 45] and their appearance in planar N = 4 SYM has recently been
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detailed in [32, 46, 47]. Cluster algebras have beautiful connections to Stasheff polytopes as well as

many other useful properties. In Chapter 5, some results describing the cluster algebraic structure

of two-loop six- and seven-point amplitudes will be presented. A more complete treatment of the

cluster structure of planar N = 4 SYM scattering amplitudes can be found in [32].

Here, we aim to give a simple definition of a cluster algebra and the types of coordinates. Formally,

a cluster algebra is a commutative ring. The rank n of the cluster algebra is the number of subsets

known as clusters. Replacing an element from a cluster with an element related by an exchange

relation yields another cluster. The elements of a cluster can then be related to the elements of

another cluster through a series of replacements using the exchange relation. For a finite cluster

algebra, this means that there are a finite number of variables existing within the clusters that can

related through the exchange relation.

We will focus on only a couple of the cluster algebras relevant to N = 4 SYM amplitudes for six

and seven particles. We start with one of the simplest cluster algebras known as A2. Starting with

a cluster consisting of two variables x1 and x2, we can mutate on one of the two variables in the

cluster using the mutation rule

xm+1 =
1 + xm
xm−1

(3.4.1)

In each cluster, we can mutate on the variable that was not previously mutated. Repeating this

process we generate the remaining cluster variables

x3 =
1 + x2

x1
(3.4.2)

x4 =
1 + x1 + x2

x1x2
(3.4.3)

x5 =
1 + 1+x1+x2

x1x2

1+x2

x1

=
1 + x1

x2
(3.4.4)

Figure 3.4.1, on the next page shows the resulting A2 cluster algebra.

Now, we can construct the A3 cluster algebra in the same way starting with a cluster containing

{x1, x2, x3}. After performing all of the possible mutations on the cluster variables in each cluster,

we find there are 15 unique variables. The variables, known as cluster-χ coordinates, are defined

in [46]. The cluster χ-coordinates live on the configuration space Confn(P3). More details about

how these cluster coordinates are formed from the momenta variables we have discussed so far is

provided in Section 5.1. We now take detour and discuss the Steinmann Relations.
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Figure 3.4.1: The figure shows the A2 cluster algebra. Each pair of coordinates form the clusters.

3.5 Steinmann Relations

The Steinmann relations provide information about the allowed discontinuity structure of scattering

amplitudes. Specifically, these relations restrict the space of allowed physical functions by imposing

constraints on the double discontinuities that may appear in an amplitude. Here a double disconti-

nuity is the discontinuity of a function after taking a discontinuity. As we have known for quite some

time, scattering amplitudes can have poles when consecutive momenta go on-shell. An equivalent

statement in the language of s-invariants would be that the amplitude is allowed to have physical

poles when s-invariants go to zero. When an amplitude factors into two lower point amplitudes,

we will say that a cut is not kinematically realizable if the factored amplitudes do not depend on a

particular s-invariant of interest.

The Steinmann relations forbid the appearance of a certain discontinuities following the disconti-

nuity in one channel (i.e. restricts which double discontinuities may appear). After taking a discon-

tinuity when an s-invariant goes to zero, the amplitude factors into a left amplitude dependent on

the the s-invariant and a right amplitude dependent on the remaining momenta and the s-invariant.

The factorization of the amplitude into lower point amplitudes then prohibits the appearance of

discontinuities that “cross" the factorization because the factored amplitude can only have physical

poles when consecutive momenta within the left or right amplitude go to zero. In other words, we

do not expect to see remaining discontinuities from s-invariants which share momenta across the
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factorization.

Let us consider the behavior of the scattering of six particles when discontinuities arise from

three particle invariants becoming zero. These relations prevent functions like ln(s123)ln(s234) from

appearing because the factored amplitude (after the s123 cut) cannot have a dependence on s234.

We say that the s234 cut is not kinematically realizable after the s123 cut. At this point, we will

not consider discontinuities arising from two particle invariants because the restrictions provided are

not well understood. By studying the three particle s-invariants discontinuity structure of scattering

amplitude functions, we can implement powerful constraints on the space of functions. At the symbol

level these restrictions constrain the s-invariants that may appear in the second entry based on the

first entry in the symbol. The restrictions from Steinmann relations are not too powerful when

considering the weight 2 hexagon functions, but are far more useful when looking into heptagon

functions.

3.5.1 Hexagon Functions

The symbol of hexagon functions (those appearing in six-point amplitudes) have entries drawn from

the nine-letter set:

{u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} (3.5.1)

These are the standard u’s and y’s used by Dixon et al [48, 49, 50, 51]. From their work, we know

that there are nine possible weight 2 hexagon functions. Out of the nine possible weight 2 hexagons,

only six of these functions are allowed by the Steinmann relations. The following functions are

allowed:

Li2(1− 1

ui
) (3.5.2)

ln2

(
uiui+2

ui+1

)
(3.5.3)

where i = 1, 2, 3 and the indices are mod 3. Consecutive ui are related by a cyclic permutation of

the momenta. The ui can be expressed in terms of Mandelstam invariants by

u1 =
s34s61

s234s345
, u2 =

s12s45

s123s345
, u3 =

s23s56

s234s456
=

s23s56

s123s234
(3.5.4)

and in terms of momentum twistors by

u1 =
〈3456〉〈1236〉
〈1346〉〈2356〉 , u2 =

〈1234〉〈1456〉
〈1245〉〈1346〉 , u3 =

〈2345〉〈1256〉
〈2356〉〈1245〉 (3.5.5)
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From these forms, we can see that functions of three particle invariants may have discontinuities

when one or more of the three particle invariants go to zero.

Let’s look at the first set of allowed weight 2 hexagon functions given by eq. (3.5.2). To consider

the discontinuity structure, we will look at the symbol of the functions. Recall that the symbol of a

classical polylogarithm is given by

S [Lin(z)] = −(1− z)⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
n−1 times

(3.5.6)

Therefore, the symbol of the functions in eq. (3.5.2) is given by

S

[
Li2(1− 1

ui
)

]
= − 1

ui
⊗ (1− 1

ui
) = ui ⊗ (1− 1

ui
) (3.5.7)

Since Lin(z) has a branch cut at z = 1, there will be a discontinuity in the Li2(1 − 1
ui

) function

when ui → ∞ or one of the three particle invariants goes to zero. As ui → ∞, the second entry in

the symbol remains finite (it goes to 1). This can be seen by noticing that the second entry of the

symbol Li2(1− 1
u1

) is

1− s234s345

s34s61
(3.5.8)

which inversely proportional to ui, placing the three particle invariants in the numerator. A three

particle invariant going to zero no longer produces a discontinuity in this term, so these types of

functions are allowed by the Steinmann relations.

Let’s look at the functions in eq. (3.5.3). Recall that the symbol of a product of natural logs is

given by the shuffle product of the arguments. Therefore,

S [lnA lnB] = A�B = A⊗B +B ⊗A (3.5.9)

For the natural log squared terms, the symbol is given by

S

[
ln2

(
uiui+2

ui+1

)]
= 2

uiui+2

ui+1
⊗ uiui+2

ui+1
(3.5.10)

We will consider the case of i = 1 since the others are obtained by permuting the indices. First, let’s

express this product in terms of s-invariants as

u2u1

u3
=

s12s45

s123s345

s34s61

s345s234

s234s123

s23s56
=
s12s45s34s61

s23s56s2
345

(3.5.11)
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where this product of ui only depends on one three particle invariant. One of the properties of

symbols allows entries to be inverted with a resulting negative sign. Signs inside the symbol don’t

matter, so the symbol of S
[
ln2
(
uiui+2

ui+1

)]
can be equivalently expressed as

S

[
ln2

(
u2u1

u3

)]
= 2

u3

u2u1
⊗ u3

u2u1
= 2

s23s56s
2
345

s12s45s34s61
⊗ s23s56s

2
345

s12s45s34s61
(3.5.12)

The natural logarithm of the complex variable z, ln(z), has a branch cut starting at z = 0. As we

take the limit s345 → 0, we run into a discontinuity. Upon first glance this may seem problematic

because we have a discontinuity in the second entry of the symbol. However, the discontinuity in

the second entry is the same discontinuity in the first entry, so the Steinmann relations do not rule

this type of term from appearing in the second entry.

Finally, we may wonder about terms like ln2 ui or lnui lnuj for i 6= j. Each ui contains two

overlapping three particle invariants. This prohibits the ln2 ui terms from appearing because the

second entry in the symbol would have a discontinuity in an overlapping three particle invariant,

which is ruled out by the Steinmann relations. Similarly, ui and uj for i 6= j also have overlapping

three particle invariants so these terms suffer from the same exact problem. Now that we have a

handle on the six point case, let’s consider the seven point case.

3.5.2 Heptagon Functions

The story becomes more interesting at seven points because there are more independent three particle

invariants than there were in the six point case. Let us first define the commonly used ui variables

used for seven points. The ui are

u1 =
s34s671

s234s345
, u2 =

s45s712

s345s456
, u3 =

s56s123

s456s567
, u4 =

s67s234

s567s671
, (3.5.13)

u5 =
s71s345

s671s712
, u6 =

s12s456

s712s123
, u7 =

s23s567

s123s234
(3.5.14)

These can be rewritten in terms of momenta twistors as

u1 =
〈3456〉〈2367〉
〈2356〉〈3467〉 , u2 =

〈4567〉〈1347〉
〈3467〉〈1457〉 , u3 =

〈1567〉〈1245〉
〈1457〉〈1256〉 (3.5.15)

u4 =
〈1267〉〈2356〉
〈1256〉〈2367〉 , u5 =

〈1237〉〈3467〉
〈2367〉〈1347〉 , u6 =

〈1234〉〈1457〉
〈1347〉〈1245〉 (3.5.16)

u7 =
〈2345〉〈1256〉
〈1245〉〈2356〉 (3.5.17)

35



When the alternate aij variables are introduced, expressions for ui in terms of aij will be provided.

Just like in the six point case, we are interested in determining all the weight 2 functions that are

allowed by the Steinmann relations. As discussed earlier, the Steinmann relations provide restrictions

on the three particle invariants that can appear within the discontinuity structure. Let’s consider the

types of classical polylogarithms that may exist at weight 2. Recall that terms with two overlapping

three particle invariants are allowed to appear inside a classical polylogarithm as long as the second

entry of the symbol doesn’t have discontinuities when a three particle invariant goes to zero. Specific

products of the ui can be taken to produce terms with only two three particle invariants in the

denominator. For example,

u1u4 =
s34s671

s234s345

s67s234

s567s671
=

s34s67

s345s567
(3.5.18)

and its cyclic images can appear inside a polylogarithm. Therefore, the allowed weight two classical

polylogarithms are

Li2
(

1− 1

u1

)
, Li2

(
1− 1

u1u4

)
(3.5.19)

and their cyclic images. The symbols are given by

u1 ⊗
(

1− 1

u1

)
, u1u4 ⊗

(
1− 1

u1u4

)
(3.5.20)

respectively. In terms of momenta twistors,

S

[
Li2
(

1− 1

ui

)]
=
〈3456〉〈2367〉
〈2356〉〈3467〉 ⊗

〈2346〉〈3467〉
〈3456〉〈2367〉 (3.5.21)

S

[
Li2
(

1− 1

u1u4

)]
=
〈3456〉〈2671〉
〈3467〉〈2561〉 ⊗

〈6(12)(34)(57)〉
〈3456〉〈2671〉 (3.5.22)

where 〈a(bc)(de)(fg)〉 = 〈abde〉〈acfg〉 − 〈acde〉〈abfg〉. The Li2
(

1− 1
ui

)
are allowed by the Stein-

mann relations for the exact same reason they were allowed in the six point example. Note these

types of arguments still cannot exist in log squared terms because they share overlapping three

particle invariants.

Now, we want to construct the weight two functions formed by taking products of natural log-

arithms. Products of natural logarithms of the momenta invariants that do not get eliminated by

the Steinmann relations must only be dependent on a single three particle invariant. For example,

u1u4u7

u2u6
=

s23s34s67

s45s12s234
(3.5.23)

36



together with its cyclic images are valid entries inside a natural logarithm squared term because it

contains only a single three particle invariant. A product of natural logarithms would be allowed if

the arguments of the two logarithms do not have overlapping momenta. For example, cycling the

product above, eq. (3.5.23), by three gives

u4u7u3

u5u2
=

s56s67s23

s71s45s567
(3.5.24)

which only depends on the three invariant s567. Then the product

ln

(
u1u4u7

u2u6

)
ln

(
u4u7u3

u5u2

)
(3.5.25)

and its cyclic images are acceptable weight 2 functions because the two arguments of the natural

logarithms have discontinuities when non-overlapping three particle invariants go to zero. Cycling

eq. (3.5.23) by four would also produce a term containing a non-overlapping three particle invariant

s456. That would suggest that

ln

(
u1u4u7

u2u6

)
ln

(
u5u1u4

u6u3

)
(3.5.26)

is also a valid weight two function. Indeed this is a valid weight two function, but it is a cyclic image

of eq. (3.5.25) (cycling by four). Now, the valid weight 2 functions that are products of natural

logarithms are given by

ln

(
u1u4u7

u2u6

)
ln

(
u4u7u3

u5u2

)
, ln2

(
u1u4u7

u2u6

)
(3.5.27)

plus cyclic images. The symbols are given by

(
u1u4u7

u2u6

)
⊗
(
u4u7u3

u5u2

)
+

(
u4u7u3

u5u2

)
⊗
(
u1u4u7

u2u6

)
, 2

(
u1u4u7

u2u6

)
⊗
(
u1u4u7

u2u6

)
(3.5.28)

respectively. In terms of momenta twistors,

S

[
ln

(
u1u4u7

u2u6

)
ln

(
u4u7u3

u5u2

)]
=
〈3456〉〈1267〉〈2345〉
〈2356〉〈1234〉〈4567〉 ⊗

〈1267〉〈2345〉〈1567〉
〈1256〉〈1237〉〈4567〉 (3.5.29)

+
〈1267〉〈2345〉〈1567〉
〈1256〉〈1237〉〈4567〉 ⊗

〈3456〉〈1267〉〈2345〉
〈2356〉〈1234〉〈4567〉 (3.5.30)

S

[
ln2

(
u1u4u7

u2u6

)]
= 2
〈3456〉〈1267〉〈2345〉
〈2356〉〈1234〉〈4567〉 ⊗

〈3456〉〈1267〉〈2345〉
〈2356〉〈1234〉〈4567〉 (3.5.31)

In summary, there are 28 weight two functions that satisfy the Steinmann relations out of the
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42 integrable weight two functions. They are given by the following four functions and their cyclic

images

Li2
(

1− 1

u1

)
, Li2

(
1− 1

u1u4

)
, ln

(
u1u4u7

u2u6

)
ln

(
u4u7u3

u5u2

)
, ln2

(
u1u4u7

u2u6

)
(3.5.32)

As shown by the reduction in the number of functions, the Steinmann relations significantly con-

strains the space of physical functions.

It is convenient to work with a set of projectively invariant ratios constructed out of the 42 n=7

cluster A-coordinates. The 42 cluster A-coordinates are given by

〈2367〉, 〈2567〉, 〈2347〉, 〈2457〉, 〈1(23)(45)(67)〉, 〈1(34)(56)(72)〉 (3.5.33)

plus cyclic copies where Zi → Zi+1. A convenient set of invariant ratios is formed by multiplying the

cluster A-coordinates with the appropriate 〈i i+1 i+2 i+3〉 Plücker coordinate factors. The ratios

are referred to as the aij variables and can expressed using momentum twistors in the following way

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉 , a41 =

〈2457〉〈3456〉
〈2345〉〈4567〉 , (3.5.34)

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉 , a51 =

〈1(23)(45)(67)〉
〈1234〉〈1567〉 , (3.5.35)

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉 , a61 =

〈1(34)(56)(72)〉
〈1234〉〈1567〉 (3.5.36)

Notice each of the 42 cluster A-coordinates are dressed by 〈i i+1 i+2 i+3〉 Plücker coordinate factors.

The entire set of 42 aij are found from the ai1 listed above by cyclically permuting the momenta.

Mathematically, the cyclic permutations are represented by

aij = ai1
∣∣
Zk→Zk+j−1

(3.5.37)

Since the Steinmann relations are expressed in the language of Mandelstam invariants, we can express

the a1j in the following way

a11 =
s23s67s712

s12s71s45
(3.5.38)

with the a1j given by cyclic permutations of a11. The remaining aij for i 6= 1 are not dependent on

three particle invariants.

We are interested in expressing the Steinmann relations in the language of the 42 aij because these

coordinates are far more convenient to use. Remembering that the Steinmann relations provide three
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particle invariant restrictions, the relations only prohibit the appearance of three particle momenta

in the second entry of the symbol of weight 2 functions if it contains a forbidden double discontinuity.

In the language of aij , Steinmann relations only prohibit specific a1j from appearing in the second

entry. The forbidden a1j are dependent on the a1i that appear in the first entry of the symbol.

Let’s formulate the restrictions in a more coherent fashion. Each a1i is proportional to a single three

particle invariant si−2,i−1,i. If a1i appears in the first entry of the symbol, then the second entry

must not depend on a three particle invariant containing overlapping momenta (i−2, i−1, or i).

However, the second entry is not prohibited from depending on the same three particle invariant,

so it is allowed to be a1i. The only other possibilities with non-overlapping momenta are a1,i+3 and

a1,i+4. The first entry condition forces the first entry of the symbol of heptagon functions to be one

of the a1i. Assuming the first entry of the symbol of a heptagon function is given by a1i, the second

entry of the symbol is not allowed to be a1j unless j = i, j = i+3, or j = i+4. This statement is

the formulation of the Steinmann relations in the language of the aij variables.

Now, let’s go back and verify that our formulation of the Steinmann relations in the aij language

agrees with the functions that live in the weight 2 Steinmann space. In order to do this, the ui must

be expressed in terms of the aij as

u1 =
a17

a13a14
, u2 =

a11

a14a15
, u3 =

a12

a15a16
, u4 =

a13

a16a17
(3.5.39)

u5 =
a14

a11a17
, u6 =

a15

a11a12
, u7 =

a16

a12a13
(3.5.40)

The special products of ui in the aij are

u1u4 =
1

a14a16
,

u1u4u7

u2u6
=

1

a13
,

u4u7u3

u5u2
=

1

a16
(3.5.41)

Now we express the symbols of the weight 2 functions living in the Steinmann space in our new

variables

S

[
Li2
(

1− 1

u1

)]
=

a17

a13a14
⊗ a24a33

a17
(3.5.42)

S

[
Li2
(

1− 1

u1u4

)]
=

1

a14a16
⊗ a65 = a14a16 ⊗ a65 (3.5.43)

S

[
ln2

(
u1u4u7

u2u6

)]
=2

1

a13
⊗ 1

a13
= 2a13 ⊗ a13 (3.5.44)

S

[
ln

(
u1u4u7

u2u6

)
ln

(
u4u7u3

u5u2

)]
=a13 ⊗ a16 + a16 ⊗ a13 (3.5.45)
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It is easy to see that these weight 2 symbols are allowed by the Steinmann relations as formulated

in the aij language. Starting with the complete set of 42 functions weight 2 functions, this basis

could be found by applying the formulation of the Steinmann relations in the language of the aij

variables. Now, we are ready to apply the Steinmann relations to obtain heptagon functions.
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Chapter 4

Heptagons from the Steinmann

Cluster Bootstrap

The desire to construct general scattering amplitudes from their analytic and physical properties has

been a goal since the birth of the analytic S-matrix program (see e.g. ref. [52]). More recently, such

a procedure has been applied in a perturbative context and referred to as bootstrapping. Aspects of

this approach have been applied to theories such as quantum chromodynamics at one loop [53, 54, 55]

and more recently at two loops [56, 57, 58]. However, the most powerful applications to date have

been to the planar limit of N = 4 super-Yang-Mills (SYM) theory in four dimensions [2, 59]. Fueled

by an increased understanding of the classes of analytic functions appearing in amplitudes in general

quantum field theories, as well as the stringent constraints obeyed by amplitudes in planar N = 4

SYM, it has been possible to advance as far as five loops [49, 60, 61, 62, 47, 5]. These results in turn

provide a rich mine of theoretical data for understanding how scattering amplitudes behave.

The planar limit of a large number of colors in N = 4 SYM has received a great deal of attention

because of the remarkable properties it exhibits. In addition to superconformal symmetry it respects

a dual conformal symmetry [43, 37, 38, 63, 42], and amplitudes are dual to polygonal light-like Wilson

loops [39, 40, 64, 41, 43, 65, 66]. Dual (super)conformal symmetry fixes the four-point and five-point

amplitudes uniquely to match the Bern-Dixon-Smirnov (BDS) ansatz [28], which captures all the

infrared divergences of planar scattering amplitudes. Starting at six points, the BDS ansatz receives

corrections from finite functions of dual conformal invariants [67, 68, 66, 65]. The correction to

the maximally helicity violating (MHV) amplitude has traditionally been expressed in terms of a

(BDS) remainder function [65, 66, 49, 50, 61], while the correction to the next-to-maximally helicity
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violating (NMHV) amplitude has traditionally been expressed in terms of the infrared-finite NMHV

ratio function [14, 21, 69, 48, 60, 70].

The cluster bootstrap program is built on the idea that certain scattering amplitudes can be

determined order by order in perturbation theory using a set of basic building blocks known as cluster

coordinates [71, 72]. Inspired by the results of refs. [35, 32], the bootstrap approach developed in

refs. [49, 60, 61, 62, 47, 5] assumes that the MHV and NMHV amplitudes at each loop order belong

to a particular class of iterated integrals, or generalized polylogarithms. More specifically, the L-loop

contribution to the remainder and ratio functions is expected to lie within the space spanned by

polylogarithms of weight 2L [73] whose symbols can be written in terms of cluster A-coordinates.

A further constraint on the relevant space of functions comes from the restriction that only physical

branch cuts can appear in the remainder and ratio functions [36].

To make use of this expectation, in the bootstrap program one first constructs a general linear

combination of the above set of functions to serve as an ansatz. Then one tries to determine all free

coefficients in the ansatz by imposing analytic and physical constraints. This procedure becomes

increasingly computationally expensive at higher loop orders, largely due to the fact that the number

of relevant functions increases exponentially with the weight. It is hoped that one day a constructive

procedure for determining these amplitudes can be developed that does not require constructing the

full weight-2L space as an intermediate step. A promising candidate in this respect is the Wilson loop

Operator Product Expansion (OPE) [74, 36, 75] and the Pentagon OPE program [76, 77, 78, 79, 80,

81, 82] which provides finite-coupling expressions for the amplitudes as an expansion around (multi-

)collinear kinematics. The main challenge in this framework is to resum the infinite series around

these kinematics; there has been progress recently in this direction at weak coupling [83, 84, 85].

Another potential constructive approach could involve the Amplituhedron [86, 87] description of the

multi-loop integrand. Perhaps one can extend the methods of ref. [88] for reading off the branch-point

locations, in order to enable reading off the entire function.

To date, six- and seven-point amplitudes have been computed in the cluster bootstrap program

through the study of so-called hexagon and heptagon functions. Both helicity configurations of

the six-point amplitude have been determined through five loops [5], while the MHV seven-point

amplitude has been determined at symbol level through three loops [61]. The seven-point NMHV

amplitude has not yet received attention in the bootstrap program, but it has been calculated

through two loops using slightly different methods [89]. Surprisingly, bootstrapping the seven-point

remainder function has thus far proven to be conceptually simpler (i.e. requiring the imposition of

fewer constraints) than bootstrapping its six-point counterpart. The collinear limit of the seven-point
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remainder function must be nonsingular and a well-defined hexagon function. This requirement

is so restrictive that it entirely determines the two-loop heptagon remainder function, up to an

overall scale. It similarly determines the three-loop remainder function, once the full implications of

dual superconformal symmetry are taken into account [61]. The corresponding hexagon remainder

function symbols may then be obtained by taking a collinear limit.

In a recent breakthrough [5], the classic work of Steinmann [90, 91] on the compatibility of

branch cuts in different channels has been used to supercharge the hexagon function bootstrap

program. The Steinmann relations dramatically reduce the size of the functional haystack one must

search through in order to find amplitudes, putting higher-loop amplitudes that were previously

inaccessible within reach. In this chapter we reformulate the heptagon bootstrap of ref. [61] to

exploit the power of the Steinmann relations. With their help, we are able to fully determine

the symbol of the seven-point three-loop NMHV and four-loop MHV amplitude in planar N = 4

SYM, using only a few simple physical and mathematical inputs. In a separate paper [92], we will

investigate various kinematical limits of these amplitudes in more detail, including the multi-Regge

limit [68, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], the OPE limit [74, 36, 75, 76, 77, 78, 79, 80],

and the self-crossing limit [104, 105]. In this chapter, we study one of the simpler limits, where the

NMHV seven-point amplitude factorizes on a multi-particle pole.

This chapter is organized as follows. In section 4.1 we begin by reviewing the general structure

of seven-particle MHV and NMHV (super)amplitudes, and different schemes for subtracting their

infrared divergences. Section 4.2 discusses the essential ingredients of the amplitude bootstrap for

constructing heptagon functions, which are believed to describe the nontrivial kinematical depen-

dence of these amplitudes. Section 4.3 focuses on the additional physical constraints that allow us

to single out the MHV or NMHV amplitude from this space of functions.

Our main results, including the analysis of the general space of heptagon symbols, and the

determination of the three-loop NMHV and four-loop MHV amplitude symbols, are presented in

section 4.4. Section 4.5 describes a sample kinematical limit, the behavior of the NMHV amplitude

as a multi-particle Mandelstam invariant vanishes. Finally, section 4.6 contains our conclusions, and

discusses possible avenues for future study.

Many of the analytic results in this chapter are too lengthy to present in the manuscript. Instead,

computer-readable files containing our results can be downloaded from [106].
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4.1 Seven-Particle Scattering Amplitudes

4.1.1 MHV: The Remainder Function

In planar N = 4 SYM, n-particle amplitudes are completely characterized by the color-ordered

partial amplitudes An, which are the coefficients of specific traces Tr(T a1T a2 · · ·T an) in the color

decomposition of the amplitudes. The MHV helicity configuration has precisely two gluons with

negative helicity and (n−2) with positive helicity (in a convention where all particles are outgoing).

The MHV amplitude is encoded in the remainder function Rn, which is defined by factoring out the

BDS ansatz ABDS
n [28] (reviewed in appendix A):

AMHV
n = ABDS

n exp [Rn] . (4.1.1)

The BDS ansatz captures all the infrared and collinear divergences [107, 108, 109] in the planar

amplitude, so the remainder function is infrared finite. It is also invariant under dual conformal

transformations [37, 38, 39, 63, 43]. Moreover, since the BDS ansatz accounts for collinear factor-

ization to all orders in perturbation theory [28], the n-point remainder function smoothly tends to

the (n−1)-point remainder function in its collinear limits, a fact that will prove to be an important

ingredient in the bootstrap program.

In the definition (4.1.1), Rn is the finite-coupling (or all-loop) remainder function. Here we will

be interested in its perturbative expansion. For any function F of the coupling, we denote the

coefficients of its perturbative expansion with a superscript according to the definition

F =

∞∑
L=0

g2LF (L) , (4.1.2)

where g2 = g2
YMN/(16π2), gYM is the Yang-Mills coupling constant, and N is the number of colors.

Elsewhere in the literature, the coupling constant a = 2g2 is often used. The L-loop contribution to

the remainder function, R(L)
n , is expected to be a weight-2L iterated integral.

The remainder function vanishes for the four- and five-particle amplitudes, because dual confor-

mally invariant cross ratios cannot be formed with fewer than six external lightlike momenta (in

other words, the BDS ansatz is correct to all loop orders for n = 4 or 5) [67, 66, 65]. The first

nontrivial case, the six-point remainder function, has been successfully computed at two loops [35],

three loops [49, 89, 50], four loops [51] and recently five loops [5]. At seven points, the remainder

function has been computed at two loops [110, 89, 111, 112] and its symbol has been computed at
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three loops [61]. The symbol of the four-loop seven-point MHV remainder function R(4)
7 is one of

the main results of this chapter.

4.1.2 NMHV: The Ratio Function and R-invariants

Beyond the MHV case, scattering amplitudes in SYM theory are most efficiently organized by

exploiting the (dual) superconformal symmetry [14] of the theory, as reviewed in ref. [113].

In a nutshell, one starts by packaging the on-shell particle content of the theory into a single

superfield Φ with the help of four Grassmann variables ηA, whose index transforms in the funda-

mental representation of the SU(4) R-symmetry group. In other words, all external states, gluons

G±, fermions ΓA and Γ̄A, and scalars SAB , can be simultaneously described by the superfield

Φ = G+ + ηAΓA + 1
2!η

AηBSAB + 1
3!η

AηBηCεABCDΓ̄D + 1
4!η

AηBηCηDεABCDG
− , (4.1.3)

which allows us to combine all n-point amplitudes into a superamplitude An(Φ1, . . . ,Φn).

Expanding the superamplitude in the Grassmann variables separates out its different helicity

components. The MHV amplitude is contained in the part of AMHV
n with 8 powers of Grassmann

variables, or Grassmann degree 8. Specifically, the MHV amplitude discussed in the previous sub-

section is given in the MHV superamplitude by the term

AMHV
n = (2π)4δ(4)

( n∑
i=1

pi

) ∑
1≤j<k≤n

(ηj)
4(ηk)4AMHV

n (1+... j−... k−... n+) + . . . , (4.1.4)

where we have shown only the pure-gluon terms explicitly. Similarly, the terms of Grassmann

degree 12 make up the NMHV superamplitude. Since NMHV amplitudes in this theory have the

same infrared-divergent structure as MHV amplitudes, the two superamplitudes can be related by

ANMHV
n = AMHV

n Pn , (4.1.5)

where the infrared-finite quantity Pn is called the NMHV ratio function and has Grassmann degree

4. On the basis of tree-level and one-loop amplitude computations, it was argued in ref. [14] that

Pn is dual conformally invariant.

At tree level, the dual conformal symmetry is enhanced to dual superconformal symmetry, and the

ratio function can be written as a sum of dual superconformal invariants or ‘R-invariants’ [14, 21].

These quantities, which carry the dependence on the fermionic variables, are algebraic functions of
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the kinematics and can be written as Grassmannian contour integrals [114]. From this representation

it is also possible to prove their invariance under ordinary superconformal transformations [115, 116],

or in other words their Yangian invariance [117].

As shown in ref. [114], R-invariants are most easily expressed in terms of the momentum super-

twistors Zi defined by1 [24]

Zi = (Zi |χi) , Zα,α̇i = (λαi , x
βα̇
i λiβ) , χAi = θαAi λiα . (4.1.6)

Their fermionic components χi are associated with the fermionic dual coordinates θi in the same way

that the bosonic twistors Zi are associated with the bosonic dual coordinates xi. Differences between

color-adjacent dual coordinates xi and θi are related to the external momenta pi and supermomenta

qi, respectively:

pαα̇i = λαi λ̃
α̇
i = xαα̇i+1 − xαα̇i , qαAi = λαi η

A
i = θαAi+1 − θαAi . (4.1.7)

Given any set of five supertwistors Za,Zb,Zc,Zd,Ze, we may define a corresponding NMHV R-

invariant as a 5-bracket

[abcde] =
δ0|4(χa〈bcde〉+ cyclic

)
〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉 , (4.1.8)

in terms of dual conformally invariant bosonic 4-brackets

〈ijkl〉 ≡ 〈ZiZjZkZl〉 = εABCDZ
A
i Z

B
j Z

C
k Z

D
l = det(ZiZjZkZl) , (4.1.9)

and a fermionic delta function δ0|4(ξ) = ξ1ξ2ξ3ξ4 for the different SU(4) components of ξ. The orig-

inal definition of the R-invariants [14, 21] (there denoted Rr;ab) in normal twistor space corresponds

to the special case Rr;ab = [r, a−1, a, b−1, b].

From the definition (4.1.8), we can see that R-invariants are antisymmetric in the exchange

of any pair of supertwistor indices (hence also invariant under cyclic permutations). They are

also manifestly dual conformally invariant, since they don’t depend on spinor products 〈ij〉. The

aforementioned Grassmannian contour integral representation in momentum twistor space [114]

makes the full dual conformal invariance manifest. It also allows one to prove more transparently

the following important identity between R-invariants: Given any six momentum supertwistors
1The indices α, α̇ = 1, 2 denote the components of the spinor representation of the Lorentz group SO(3, 1) '

SL(2,C).
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Za,Zb,Zc,Zd,Ze,Zf , their R-invariants are related by [14]

[abcde]− [bcdef ] + [cdefa]− [defab] + [efabc]− [fabcd] = 0 . (4.1.10)

For n-particle scattering, there exist
(
n
6

)
such equations for the

(
n
5

)
distinct R-invariants; however,

it turns out that only
(
n−1

5

)
are independent. So in the end we are left with

# linearly independent n-particle R-invariants =

(
n

5

)
−
(
n− 1

5

)
=

(
n− 1

4

)
. (4.1.11)

For example, there are 5, 15, and 35 independent R-invariants relevant for 6-, 7- and 8-particle

NMHV scattering amplitudes, respectively.

Let us now focus on the seven-particle NMHV superamplitude. For compactness we may ex-

press the corresponding R-invariants in terms of the particle indices that are not present in the

5-brackets (4.1.8), for example

[12345] = (67) = (76) , (4.1.12)

where (by convention) the 5-bracket on the left-hand side of this definition is always ordered, so

ordering on the right-hand side doesn’t matter.

In this notation, the representation for the tree-level ratio function found in ref. [21] may be

rewritten as

P(0)
7 =

3

7
(12) +

1

7
(13) +

2

7
(14) + cyclic . (4.1.13)

Following the same reference, we find it convenient to use a basis of 15 independent R-invariants

consisting of P(0)
7 together with (12), (14), and their cyclic permutations. (Because P(0)

7 is totally

symmetric, it has no independent cyclic images.) In particular, the remaining R-invariants (i, i+ 2)

are related to this set by

(13) = − (15)− (17)− (34)− (36)− (56) + P(0)
7 , (4.1.14)

plus the cyclic permutations of this identity.

Beyond tree level, the independent R-invariants are dressed by transcendental functions of dual

conformal invariants, and the ratio function can be put in the form

P7 = P(0)
7 V0 +

[
(12)V12 + (14)V14 + cyclic

]
. (4.1.15)
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As we will review in section 4.3.2, P7 is symmetric under the dihedral group D7. The component

V0 inherits the full dihedral symmetry of P(0)
7 , whereas V12 and V14 are only invariant under the flip

i→ 3−i and i→ 5−i of their momentum twistor labels, respectively.

The dependence of P7 on the coupling enters only through the functions V0 and Vij . Their L-

loop contributions, V (L)
0 and V (L)

ij , like the remainder function, R(L)
7 , are expected to be weight-2L

iterated integrals. Using the notation introduced in eq. (4.1.2) we must have

V
(0)
0 = 1 , V

(0)
12 = V

(0)
14 = 0 (4.1.16)

at tree level. At one loop, these functions become [21]

V
(1)
0 = Li2 (1− u1)− Li2 (1− u1u4)− log u1 log u3 + cyclic ,

V
(1)
12 = −Li2 (1− u6) + Li2 (1− u1u4) + Li2 (1− u2u6) + Li2 (1− u3u6) ,

+ log u1 log u2 − log u3 log u2 + log u4 log u2 + log u1 log u3 + log u3 log u4

+ log u1 log u6 + log u4 log u6 − ζ2 ,

V
(1)
14 = Li2 (1− u1u4) + Li2 (1− u3u6) + log u1 log u3 + log u4 log u3 + log u1 log u6

+ log u4 log u6 − ζ2 .

(4.1.17)

See also ref. [118] for a more recent, compact representation of the same amplitude. In the above

relations and everything that follows, the cross ratios ui are defined by,

uij =
x2
i,j+1 x

2
i+1,j

x2
i,j x

2
i+1,j+1

, ui = ui+1,i+4 =
x2
i+1,i+5 x

2
i+2,i+4

x2
i+1,i+4 x

2
i+2,i+5

. (4.1.18)

The ui are dual conformally invariant combinations of the Mandelstam invariants, see eq. (4.1.7)

and also eq. (4.2.1) below.

Finally, the symbol of the two-loop NMHV heptagon has been computed in ref. [89] using the

same choice of independent R-invariants as in eq. (4.1.15), with the help of an anomaly equation for

the Q̄ dual superconformal symmetry generators. Here we will use the Steinmann cluster bootstrap

to push to three loops: The symbols of the functions V (3)
0 , V (3)

12 , and V (3)
14 constituting the three-loop

seven-point NMHV ratio function are another of the main results of this work.
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4.1.3 The BDS- and BDS-like Normalized Amplitudes

In the previous sections we mentioned that MHV and NMHV amplitudes have the same infrared-

divergent structure, which is accurately captured by the BDS ansatz. This fact allows us to define

the MHV and NMHV BDS-normalized superamplitudes,

Bn ≡
AMHV
n

ABDS
n

=
AMHV
n

ABDS
n

= exp [Rn] , (4.1.19)

Bn ≡
ANMHV
n

ABDS
n

=
ANMHV
n

AMHV
n

AMHV
n

ABDS
n

= Pn Bn , (4.1.20)

where ABDS
n is the superamplitude obtained from the bosonic BDS ansatz by replacing the tree-level

MHV Parke-Taylor factor [8, 15] it contains with its supersymmetrized version [20]. Indeed, normal-

izations (4.1.19), (4.1.20) were found to be more natural for the study of the dual superconformal

symmetry anomaly equation [89].

In what follows, it will prove greatly beneficial to define yet another set of infrared-finite quanti-

ties, using an alternate normalization factor that is compatible with the Steinmann relations. The

BDS ansatz is essentially the exponential of the full one-loop amplitude, which includes a finite part

with nontrivial dependence on Mandelstam invariants involving all possible numbers of external mo-

menta. Dividing by the BDS ansatz produces a quantity with altered dependence on three-particle

Mandelstam invariants. As we will see, such a quantity does not satisfy the Steinmann relations. In

the case of seven-particle scattering (indeed, whenever n is not a multiple of four), all the depen-

dence on the three-particle invariants (and higher-particle invariants) can be assembled into a dual

conformally invariant function Yn, which we may remove from the one-loop amplitude in order to

define a BDS-like ansatz,

ABDS-like
n ≡ ABDS

n exp

[
Γcusp

4
Yn

]
, (4.1.21)

where

Y6 = −Li2

(
1− 1

u

)
− Li2

(
1− 1

v

)
− Li2

(
1− 1

w

)
, (4.1.22)

Y7 = −
7∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
, (4.1.23)

and

Γcusp =

∞∑
L=1

g2LΓLcusp = 4g2 − 4π2

3
g4 +

44π4

45
g6 − 4

(
73π6

315
+ 8ζ2

3

)
g8 +O(g10) , (4.1.24)
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is the cusp anomalous dimension in the normalization of e.g. [77].2 In eq. (4.1.22), u, v, w are the

three cross ratios for six-point kinematics, defined below in eq. (4.5.1). The difference between

the BDS- and BDS-like-normalized ansätze for seven-point kinematics is reviewed in more detail in

appendix A. The utility of the BDS-like ansatz was first noticed in the strong coupling analysis of

amplitudes via the AdS/CFT correspondence [119] (see also ref. [120]). At weak coupling, it was

found to simplify the six-point multi-particle factorization limit [60], self-crossing limit [105] and

NMHV Q̄ relations [70], before its role in applying the six-point Steinmann relations was noticed [5].

We will see its advantages as well in our seven-point analysis.

When n is a multiple of four it is not possible to simultaneously remove the dependence on all

three-particle and higher-particle Mandelstam invariants in a conformally invariant fashion [121].

However, for n = 8 it is still possible to separately remove the dependence of all three-particle

invariants, or of all four-particle invariants, giving rise to two different BDS-like ansätze.

Restricting our attention to the case n - 4, we may thus define the BDS-like-normalized MHV

and NMHV amplitudes as

En ≡
AMHV
n

ABDS-like
n

=
AMHV
n

ABDS
n

ABDS
n

ABDS-like
n

= Bn exp

[
−Γcusp

4
Yn

]
= exp

[
Rn −

Γcusp

4
Yn

]
,

En ≡
ANMHV
n

ABDS-like
n

=
ANMHV
n

ABDS
n

ABDS
n

ABDS-like
n

= Bn exp

[
−Γcusp

4
Yn

]
= Pn En ,

(4.1.25)

where we have also spelled out their relation to the previously-considered normalizations. Note that

E(1)
n = −Yn , (4.1.26)

since Rn starts at two loops.

Because we will focus almost exclusively on heptagon amplitudes in this chapter, we will usually

drop the particle index n from of all of its associated quantities in order to avoid clutter, e.g. P7 → P,

E7 → E and E7 → E. In the NMHV case we will instead use subscripts to denote components

multiplying the different R-invariants. For example, the BDS-normalized and BDS-like-normalized

analogs of eq. (4.1.15) are

B = P(0)B0 +
[
(12)B12 + (14)B14 + cyclic

]
, (4.1.27)

E = P(0)E0 +
[
(12)E12 + (14)E14 + cyclic

]
. (4.1.28)

2In particular, Γcusp = γK/2 compared to the normalization of [28] and subsequent papers of Dixon and collabo-
rators.
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It is important to note that because the R-invariants are coupling-independent, the same coupling-

dependent factor that relates NMHV superamplitudes in different normalizations will also relate the

respective coefficient functions of the R-invariants. In other words,

E∗ = B∗ exp

[
−Γcusp

4
Y

]
= E V∗ , (4.1.29)

where ∗ can be any index, 0 or ij.

Given that in this chapter we will be focusing exclusively on symbols, it’s also worth emphasizing

that when expanding eq. (4.1.25) or equivalently eq. (4.1.29) at weak coupling, we may replace

Γcusp → 4g2, as a consequence of the fact that the symbol of any term containing a transcendental

constant, such as ζn, is zero. Thus, the conversion between the BDS-like-normalized quantities

F ∈ {E , E,E0, Eij} and the corresponding BDS-normalized quantities F ∈ {B, B,B0, Bij} at symbol

level and at fixed order in the coupling, simply becomes

F (L) =

L∑
k=0

F (k) (−Yn)L−k

(L− k)!
, F (L) =

L∑
k=0

F (k) Y L−kn

(L− k)!
. (4.1.30)

In particular, for R7, which sits in the exponent, its analogous conversion to E7 through four loops

is given by

E(2)
7 = R

(2)
7 +

1

2

(
E(1)

7

)2

,

E(3)
7 = R

(3)
7 + E(1)

7 R
(2)
7 +

1

6

(
E(1)

7

)3

, (4.1.31)

E(4)
7 = R

(4)
7 +

1

2

(
R

(2)
7

)2

+ E(1)
7 R

(3)
7 +

1

2

(
E(1)

7

)2

R
(2)
7 +

1

24

(
E(1)

7

)4

.

In summary, all the nontrivial kinematic dependence of seven-particle scattering can be encoded

in the four transcendental functions R7, B0, B12 and B14 using BDS normalization, or equivalently

E , E0, E12 and E14 using BDS-like normalization. (The other Eij that are needed are related to E12

and E14 by cyclic permutations.) These functions are all expected to belong to a very special class of

transcendental functions called heptagon functions, whose definition and construction we turn to in

the next section. However, we will see that it is only the BDS-like-normalized amplitudes that inherit

a specific analytic property from the full amplitudes: they satisfy the Steinmann relations. Taking

this restriction into account hugely trims the space of heptagon functions needed to bootstrap the

BDS-like normalized functions, thus allowing for a far more efficient construction of the amplitude.
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4.2 The Steinmann Cluster Bootstrap

The heptagon bootstrap approach we use in this chapter is a slight refinement of that used in ref. [61],

which in turn is a generalization of the hexagon function bootstrap [49, 48, 50, 51, 60, 62]. We begin

this section by reviewing some basics of the bootstrap approach and defining heptagon functions.

Then we express the seven-point Steinmann relations in the language of cluster A-coordinates.

We assume a basic working knowledge of both symbols [35, 122, 123, 124, 125, 126, 32, 46] and

momentum twistor notation [24].

4.2.1 Symbol Alphabet

In the cluster bootstrap program for n-point amplitudes in planar SYM theory, we assume that the

symbol alphabet consists of certain objects known as cluster A-coordinates. These coordinates have

been discussed extensively in the context of scattering amplitudes; see for example ref. [32]. Here we

will only briefly recall that the kinematic data for a scattering process in planar SYM theory may

be specified by a collection of n momentum twistors [24], each of which is a homogeneous coordinate

Zi on P3. The configuration space for SYM theory is Confn(P3) = Gr(4, n)/(C∗)n−1, and cluster

A-coordinates on this space can be expressed in terms of the Plücker coordinates of 4-brackets 〈ijkl〉,

which we defined in eq. (4.1.9).

Mandelstam invariants constructed from sums of cyclically adjacent external momenta pi, pi+1, . . . , pj−1

can be expressed nicely in terms of dual coordinates xi satisfying the relation pi = xi+1 − xi. Using

the notation xij = xi − xj , the Mandelstam invariant si,...,j−1 can be written as

si,...,j−1 = (pi + pi+1 + · · ·+ pj−1)2 = x2
ij =

〈i−1 i j−1 j〉
〈i−1 i〉〈j−1 j〉 . (4.2.1)

Here we have also shown how to express the Mandelstam invariant si,...,j−1 in terms of Plücker

coordinates and the usual spinor products 〈ij〉 = εαβλ
α
i λ

β
j , see also eq. (4.1.7). The denominator

factors in eq. (4.2.1) drop out of any dual conformally invariant quantity and so may be ignored for

our purposes. We will use eq. (4.2.1) to establish the connection between the cluster A-coordinates

(defined in terms of Plücker coordinates) and the Steinmann relations (formulated in terms of Man-

delstam invariants). More general Plücker coordinates 〈ijkl〉 not of the form 〈i−1 i j−1 j〉 have more

complicated (algebraic) representations in terms of Mandelstam invariants. (A systematic approach

for finding such representations was discussed in the appendix of ref. [127].)

In this chapter we focus on n = 7 where there are a finite number of A-coordinates. In addi-
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tion to the Plücker coordinates 〈ijkl〉 there are 14 Plücker bilinears of the form 〈a(bc)(de)(fg)〉 ≡

〈abde〉〈acfg〉−〈abfg〉〈acde〉. A convenient complete and multiplicatively independent set of 42 dual

conformally invariant ratios, introduced in ref. [61], is given in terms of these building blocks by

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉 , a41 =

〈2457〉〈3456〉
〈2345〉〈4567〉 ,

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉 , a51 =

〈1(23)(45)(67)〉
〈1234〉〈1567〉 , (4.2.2)

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉 , a61 =

〈1(34)(56)(72)〉
〈1234〉〈1567〉 ,

with aij for 1 < j ≤ 7 given by cyclic permutation of the particle labels; specifically,

aij = ai1
∣∣
Zk→Zk+j−1

. (4.2.3)

The Steinmann relations, to be reviewed in section 4.2.4, are expressed simply in terms of Mandel-

stam invariants. We therefore note that with the help of eq. (4.2.1) we can express a1j quite simply

as

a11 =
s23s67s712

s12s71s45
, (4.2.4)

with the remaining six a1j again given by cyclic permutations. The remaining 35 cluster A-

coordinates do not admit simple representations in terms of Mandelstam invariants because they

involve brackets not of the form 〈i−1 i j−1 j〉.

Finally, it is useful to relate the cross ratios ui, defined in eq. (4.1.18), to the letters aij . Eq. (4.2.4)

can alternatively be written as

a11 =
x2

24x
2
61x

2
73

x2
13x

2
72x

2
46

. (4.2.5)

Combining this equation with cyclic permutations of it, and using eq. (4.1.18), we find that

a11

a14a15
=
x2

73x
2
46

x2
74x

2
36

= u36 = u2 , (4.2.6)

plus cyclic permutations of this relation. Note that, although we can define 7 of these cross ratios ui

in seven-point kinematics, an n-point scattering process in this theory only has 3n−15 algebraically

independent dual conformal invariants. Thus only 6 of the 7 ui (or a1i) are algebraically independent.

The seven ui obey a single algebraic equation, the condition that a particular Gram determinant

vanishes, which restricts the kinematics to a six-dimensional surface within the seven-dimensional

space of cross ratios. We will not need the explicit form of the Gram determinant in this work.
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4.2.2 Integrability

The heptagon bootstrap is based on the working hypothesis that any seven-point L-loop amplitude

in planar N = 4 SYM theory can be expressed as a linear combination of weight-2L generalized

polylogarithm functions written in the 42-letter alphabet shown in eq. (4.2.2). Using this alphabet

one can write 42k distinct symbols of weight k. Fortunately, relatively few linear combinations of

these 42k symbols are actually the symbol of some function. A symbol S of the form

S(fk) =
∑

α1,...,αk

f
(α1,...,αk)
0 (φα1

⊗ · · · ⊗ φαk), (4.2.7)

where the φαj are letters, corresponds to an actual function only if it satisfies the integrability

condition

∑
α1,...,αk

f
(α1,...,αk)
0 (φα1 ⊗ · · · ⊗ φαk)︸ ︷︷ ︸

omitting αj⊗αj+1

dlogφαj ∧ dlogφαj+1 = 0 ∀j ∈ {1, 2, . . . , k−1} . (4.2.8)

A conceptually simple method for determining all integrable symbols of a given weight k is discussed

in appendix B, where the definition of the wedge product appearing in the above equation is also

given. The symbols of physical amplitudes have several additional properties, to which we will now

turn our attention.

4.2.3 Symbol Singularity Structure

Locality requires that amplitudes can only have singularities when an intermediate particle goes

on-shell. In a planar theory the momenta of intermediate particles can always be expressed as a sum

of cyclically adjacent momenta, and thresholds in massless theories are always at the origin. Hence

perturbative amplitudes in planar SYM theory can only have branch points when the corresponding

Mandelstam invariants si,...,j−1 = x2
ij vanish.

When some letter φ appears in the first entry of a symbol it indicates that the corresponding

function has branch points at φ = 0 and φ = ∞. Therefore the first entry of a symbol that

corresponds to a physical scattering amplitude must be a ratio of products of x2
ij [36]. We see from

eqs. (4.2.1) and (4.2.2) that only the seven a1j are valid first entries. The remaining 35 cluster

A-coordinates contain terms that may be zero (or infinite) without any intermediate particles going

on-shell. There is no possibility of cancellation in a sum over terms in a symbol since the letters of

the alphabet are multiplicatively independent. The restriction that the first entry of the symbol of
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any seven-point amplitude must be one of the seven a1j is called the first-entry condition.

4.2.4 Steinmann Relations

The classic work of Steinmann provided powerful restrictions on the analytic form of discontinu-

ities [90]. Expanding upon his work, Cahill and Stapp found that the generalized Steinmann re-

lations hold and that double discontinuities vanish for any pair of overlapping channels [128].3 A

channel is labelled by a Mandelstam invariant, but it also corresponds to an assignment of particles

to incoming and outgoing states. Two channels overlap if the four sets into which they divide the

particles – (incoming,incoming), (incoming,outgoing), (outgoing,incoming) and (outgoing,outgoing)

– are all non-empty. Fig. 4.2.1 shows a pair of overlapping channels for the seven-point process, s345

and s234. They overlap because they divide the seven particles into the four non-empty sets {2},

{3, 4}, {5}, and {6, 7, 1}.

Unlike two-particle invariants, three-particle invariants can cross zero “gently”, without any other

invariants having to change sign. Fig. 4.2.1 is drawn for the 3→ 4 configuration with particles 1, 2

and 3 incoming. Within that configuration, the left panel shows that s345 can be either negative or

positive. As s345 moves from negative to positive, a branch cut opens up, due to one or more on-shell

particles being allowed to propagate between the two blobs. The discontinuity in the amplitude

across the branch cut is given by the sum of all such on-shell intermediate-state contributions,

integrated over their respective phase space. The same is true for the s234 discontinuity illustrated

in the right panel. However, once one takes the s345 discontinuity, the resulting function cannot have

a second discontinuity in the s234 channel, because it is impossible for states to propagate on-shell

simultaneously in both the s345 and s234 “directions”. Thus we require the Steinmann conditions,

Discsi+1,i+2,i+3

[
Discsi,i+1,i+2

F
]

= Discsi+2,i+3,i+4

[
Discsi,i+1,i+2

F
]

= 0, (4.2.9)

to hold for all i = 1, 2, . . . 7.

In contrast, the s234 channel does not overlap the s567 channel (or the s671 channel). For example,

in the right panel of the figure, one can have a second discontinuity, after taking Discs234 , in the s567

channel, as particle 1 and the particles crossing the s234 cut rescatter into another set of intermediate

states, which then materializes into particles 5, 6 and 7. That is, the following double discontinuities
3The implications of the Steinmann relations for the multi-Regge limit of amplitudes in planar N = 4 SYM have

been analyzed in refs. [129, 130, 68, 93].
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Figure 4.2.1: The figure on the left (right) shows the discontinuity of an amplitude in the s345 (s234)
channel due to the respective intermediate states. These two channels overlap, which implies that
the states that cross the first cut cannot produce a discontinuity in the second channel (or vice
versa).

can be nonvanishing,

Discsi+3,i+4,i+5

[
Discsi,i+1,i+2

F
]
6= 0, Discsi+4,i+5,i+6

[
Discsi,i+1,i+2

F
]
6= 0, (4.2.10)

and they provide us with no useful constraints. Also, the “self” double discontinuities are nonvan-

ishing,

Discsi,i+i,i+2

[
Discsi,i+1,i+2

F
]
6= 0, (4.2.11)

and are not of use to us. A recent analysis of the Steinmann relations, focusing on the six-point

case, can be found in ref. [5].

We will only consider restrictions imposed on the symbol letters aij by the Steinmann relations on

overlapping three-particle cuts, eq. (4.2.9). If there are any restrictions imposed by using two-particle

cuts, they are considerably more subtle for generic kinematics. Flipping the sign of a two-particle

invariant generally entails moving a particle from the initial state to the final state, or vice versa,

and other invariants can flip sign at the same time, making it hard to assess the independence of

the two-particle discontinuities.

Because the discontinuities of a symbol are encoded in its first entries, double discontinuities

are encoded by the combinations of first and second entries that appear together. Correspond-

ingly, the Steinmann relations tell us that the symbol of an amplitude cannot have any terms in

which overlapping three-particle Mandelstam invariants appear together as first and second entries.

Eqs. (4.2.1)–(4.2.2) imply that this only imposes a constraint on the letters a1j , since the other

letters do not contain three-particle Mandelstam invariants si−1,i,i+1 ∝ 〈i−2 i−1 i+1 i+2〉. More

specifically, we see in eq. (4.2.4) that each a1i is proportional to a single three-particle invariant
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si−1,i,i+1, so a first entry of a1i cannot be followed by a second entry of a1,i+1, a1,i+2, a1,i+5, or

a1,i+6, all of which contain a three-particle invariant involving pi−1, pi, or pi+1. A first entry of a1i

can be followed by a second entry of a1i, a1,i+3, a1,i+4, or any aki for k > 1 (subject to the constraint

of integrability).

Everything stated thus far about the Steinmann constraint applies to full, infrared-divergent

amplitudes. However, the BDS-like-normalized amplitudes straightforwardly inherit this constraint,

due to the fact that the BDS-like ansatz, given explicitly in eqs. (A.0.14) and (A.0.15), contains no

three-particle invariants; it therefore acts as a spectator when taking three-particle discontinuities,

e.g.

Discsi−1,i,i+1AMHV
7 = Discsi−1,i,i+1

[
ABDS-like

7 E
]

= ABDS-like
7 Discsi−1,i,i+1

E . (4.2.12)

This is no longer true for the BDS-normalized amplitude, which according to eq. (4.1.25) comes with

an extra factor of exp[
Γcusp

4 Yn]. When expanded at weak coupling this factor will produce powers of

Yn. The function Yn is itself Steinmann since Yn = −E(1)
n . However, products of Steinmann functions

are not generically Steinmann functions, because overlapping discontinuities can arise from different

factors in the product. Indeed, once we observe that Yn has a cut in one three-particle channel,

and that it is dihedrally invariant, we know it has cuts in all three-particle channels. Whereas Yn

itself is a sum of terms having cuts in overlapping channels, it is the cross terms in (Yn)2, or higher

powers of Yn, that violate the Steinmann relations. Similarly, the ratio function V∗ = E∗/E , when

expanded out perturbatively, contains products of Steinmann functions and therefore does not obey

the Steinmann relations. The lesson here is that the proper normalization of the amplitude is critical

for elucidating its analytic properties.

To summarize, the Steinmann relations require that any BDS-like-normalized seven-point func-

tion F , such as E7 or E7, must satisfy

Disca1i
[
Disca1jF

]
= 0 if j 6= i, i+ 3, i+ 4 . (4.2.13)

At the level of the symbol, this statement is equivalent to requiring that the symbol of F contains

no first entries a1i followed by second entries a1,i+1, a1,i+2, a1,i+5, or a1,i+6.
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4.2.5 Absence of Triple Discontinuity Constraints

At the seven-point level, it is interesting to ask whether there could be new constraints on amplitudes

of the following type:

Disca17

[
Disca14

[
Disca11F

]]
?
= 0. (4.2.14)

The three-particle channels corresponding to a11 and a14 do not overlap, nor do the channels cor-

responding to a14 and a17. The channels corresponding to a11 and a17 do overlap, but the two

discontinuities are separated by the a14 discontinuity in between. (An analogous situation never

arises for three-particle cuts in the six-point case, because the only allowed double three-particle

cut in that case involves cutting the same invariant twice.) We have inspected the symbols of the

MHV and NMHV seven-point amplitudes, and we find that eq. (4.2.14) is generically non-vanishing.

The act of taking the non-overlapping second discontinuity of the amplitude apparently alters the

function’s properties enough that the third discontinuity is permitted.

4.2.6 Steinmann Heptagon Functions

We define a heptagon function of weight k to be a generalized polylogarithm function of weight k

whose symbol may be written in the alphabet of 42 cluster A-coordinates, eq. (4.2.2), and which

satisfies the first entry condition. These functions have been studied in ref. [61], where it was found

that the vector space of heptagon function symbols at weight k = 1, 2, 3, 4, 5 has dimension 7, 42,

237, 1288, 6763, respectively.

In this chapter our goal is to sharpen the heptagon bootstrap of ref. [61] by taking advantage of

the powerful constraint provided by the Steinmann relations. We thus define Steinmann heptagon

functions to be those heptagon functions that additionally satisfy the Steinmann relations (4.2.13).

This corresponds to a restriction on the second entry of their symbols, as discussed in section 4.2.4.

We stress again that while both BDS-normalized and BDS-like-normalized amplitudes are heptagon

functions, only the BDS-like-normalized ones, E , E0, and Eij , are Steinmann heptagon functions.

We will see in subsection 4.4.1 that a drastically reduced number of heptagon functions satisfy

the Steinmann relations. The reduction begins at weight 2, where there are 42 heptagon function

symbols, but only 28 that obey the Steinmann relations. The corresponding 28 functions fall into 4

orbits:

Li2

(
1− a13a14

a17

)
, Li2 (1− a14a16) , log2 a13 , log a13 log a16 , (4.2.15)

together with their cyclic permutations. This fractional reduction, by one third, is the same as in the
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hexagon case [5], where the number of weight-2 functions was reduced from 9 to 6. At higher weight,

we will see that the reductions are much more dramatic, and even more so for heptagon functions

than hexagon functions. This reduction in the number of relevant functions vastly decreases the size

of our ansatz, making this version of the bootstrap program more computationally tractable than

its predecessor.

4.3 MHV and NMHV Constraints

In appendix B we provide an algorithm for generating a basis for the symbols of weight-k Steinmann

heptagon functions, which serve as ansätze for the MHV and NMHV amplitudes. We then impose

known analytic and physical properties as constraints in order to identify the amplitudes uniquely.

Here we review these properties and the constraints they impose.

4.3.1 Final Entry Condition

The final entry condition is a restriction on the possible letters that may appear in the final entry of

the symbol of an amplitude. As a consequence of the dual superconformal symmetry of SYM, the

differential of an MHV amplitude must be expressible as a linear combination of d log〈i j−1 j j+1〉

factors [110]. The differential of a generalized polylogarithm of weight k factors into linear com-

binations of weight-(k−1) polylogarithms multiplied by d log φ terms where φ is the final entry of

the symbol. Therefore the final entries of the symbol of an MHV amplitude must be composed

entirely of Plücker coordinates with three adjacent momentum twistors, 〈i j−1 j j+1〉. In the sym-

bol alphabet (4.2.2) we have chosen, the final entries can only be drawn from the set of 14 letters

{a2j , a3j}.

The MHV final entry condition we just described can be derived from an anomaly equation for

the Q̄ dual superconformal generators [89]. The same anomaly equation can also be used to constrain

the final entries of the symbol of the NMHV superamplitude E. In particular, using as input the

leading singularities of the N2MHV 8-point amplitude obtained from the Grassmannian [115], and

refining the Q̄ equation so as to act on the BDS-like normalized amplitude rather than the BDS-

normalized one, Caron-Huot has found [131] that only 147 distinct (R-invariant) × (final entry)
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combinations are allowed in E, namely these 21:

(34) log a21, (14) log a21, (15) log a21, (16) log a21, (13) log a21, (12) log a21,

(45) log a37, (47) log a37, (37) log a37, (27) log a37, (57) log a37, (67) log a37,

(45) log
a34

a11
, (14) log

a34

a11
, (14) log

a11a24

a46
, (14) log

a14a31

a34
, (4.3.1)

(24) log
a44

a42
, (56) log a57, (12) log a57, (16) log

a67

a26
,

(13) log
a41

a26a33
+ ((14)− (15)) log a26 − (17) log a26a37 + (45) log

a22

a34a35
− (34) log a33 ,

together with their cyclic permutations.4

4.3.2 Discrete Symmetries

The n-particle superamplitudes An are invariant under dihedral transformations acting on the ex-

ternal particle labels. The generators of the dihedral group Dn are the cyclic permutation i→ i+ 1

and the flip permutation i → n + 1 − i of the particle labels, or equivalently of the momentum

twistors. For the heptagon a-letters (4.2.2), these correspond to

Cyclic transformation: ali → al,i+1 ,

Flip transformation:


a2i ↔ a3,8−i

ali → al,8−i for l 6= 2, 3 .

(4.3.2)

MHV and MHV amplitudes differ only in their tree-level prefactors. Hence the functions En and

Rn must remain invariant under spacetime parity transformations. Parity maps NMHV amplitudes

to NMHV ones and therefore acts nontrivially on E0, E12 and E14. In the language of our symbol

alphabet (4.2.2), a parity transformation leaves the letters a1i and a6i invariant. The remaining

letters transform under parity according to

Parity transformation: a21 ←→ a37, a41 ←→ a51, (4.3.3)

and the cyclic permutations thereof.

The parity and dihedral symmetries of the (super)amplitude are inherited by its BDS(-like)

normalized counterpart because the BDS(-like) ansätze are also dihedrally invariant.
4We thank Simon Caron-Huot for sharing these results with us.
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4.3.3 Collinear Limit

So far we have primarily focused on the BDS-like normalized amplitude and the Steinmann functions

describing it. However for the study of collinear limits it proves advantageous to switch, using

eq. (4.1.30), to the BDS-normalized amplitude, since in the limit the former becomes divergent,

whereas the latter remains finite.

In more detail, the BDS ansatz ABDS
n entering eq. (4.1.1) is defined in such a way that the n-point

BDS-normalized amplitude (or equivalently the remainder function for MHV) reduces to the same

quantity but with one fewer particle:

lim
i+1||i

Rn = Rn−1 ,

lim
i+1‖i

Bn = Bn−1 .

(4.3.4)

To take one of these collinear limits, one of the si,i+1 must be taken to zero. From eq. (4.2.1), we

see that this can be accomplished by taking a limit of one of the momentum twistor variables. In

the case of the NMHV superamplitude we also need to specify the limit of the fermionic part of the

supertwistors (4.1.6). The (MHV degree preserving) 7||6 collinear limit can be taken by sending

Z7 → Z6 + ε
〈1246〉
〈1245〉Z5 + ετ

〈2456〉
〈1245〉Z1 + η

〈1456〉
〈1245〉Z2 , (4.3.5)

for fixed τ , and by taking the limit η → 0 followed by ε→ 0.

Of course for bosonic quantities, only the bosonic part Zi → Zi of the supertwistor is relevant. As

noted in ref. [61], in the limit (4.3.5) the heptagon alphabet (4.2.2) reduces to the hexagon alphabet,

plus the following 9 additional letters,

η , ε , τ , 1 + τ ,

〈1235〉〈1246〉+ τ〈1236〉〈1245〉 , 〈1245〉〈3456〉+ τ〈1345〉〈2456〉 ,

〈1246〉〈2356〉+ τ〈1236〉〈2456〉 , 〈1246〉〈3456〉+ τ〈1346〉〈2456〉 ,

〈1235〉〈1246〉〈3456〉+ τ〈1236〉〈1345〉〈2456〉 . (4.3.6)

Therefore the collinear limits of heptagon functions are not generically hexagon functions. We say

that a heptagon symbol has a well-defined 7||6 limit only if in this limit it is independent of all 9 of

the additional letters (4.3.6).

We must also take the limit (4.3.5) of the R-invariants. Since these invariants are antisymmetric
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under the exchange of any pair of twistor indices, the invariants that contain both indices 6 and 7

will vanish. All other invariants reduce to six-point R-invariants. Denoting the six-point invariants

by

[12345] = (6) (4.3.7)

and its cyclic permutations (under the six-point dihedral group), and solving the single identity of

type (4.1.10) among them to eliminate (6), we deduce that

lim
7‖6

B =(1)[B̂17 + B̂67 + B̂0] + (2)[B̂26 − B̂67] + (3)[B̂36 + B̂37 + B̂67 + B̂0]

+ (4)[B̂47 − B̂67] + (5)[B̂56 + B̂67 + B̂0] ,

(4.3.8)

where the hats denote the collinear limit of the corresponding bosonic functions.

Finally, we should note that in this work we will be focusing on collinear limits of dihedrally

invariant functions. Therefore it will be sufficient to consider the 7||6 limit shown above, and

the remaining i+1 ‖ i collinear limits will be automatically satisfied as a consequence of dihedral

symmetry.

4.4 Results

4.4.1 Steinmann Heptagon Symbols and Their Properties

As defined in section 4.2.6, a Steinmann heptagon function of weight k is a polylogarithm of weight

k that has a symbol satisfying the following properties:

(i) it can be expressed entirely in terms of the heptagon symbol alphabet of eq. (4.2.2),

(ii) only the seven letters a1i appear in its first entry,

(iii) a first entry a1i is not followed by a second entry a1j with j ∈ {i+ 1, i+ 2, i+ 5, i+ 6}.

We will frequently use the term ‘Steinmann heptagon symbol’ to mean the symbol of a Steinmann

heptagon function. We begin by investigating how the number of Steinmann heptagon symbols

compares to the number of heptagon symbols reported in ref. [61] through weight 5.

Table 4.1 presents the number of Steinmann heptagon symbols through weight 7, computed us-

ing the bootstrapping procedure outlined in appendix B. The total number of Steinmann symbols

through weight 5 can be compared to 7, 42, 237, 1288, and 6763 linearly independent heptagon sym-

bols at weights 1 through 5, respectively [61]. By weight 5, the size of the Steinmann heptagon space
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Weight k = 1 2 3 4 5 6 7 7′′

parity +, flip + 4 16 48 154 467 1413 4163 3026
parity +, flip − 3 12 43 140 443 1359 4063 2946
parity −, flip + 0 0 3 14 60 210 672 668
parity −, flip − 0 0 3 14 60 210 672 669

Total 7 28 97 322 1030 3192 9570 7309

Table 4.1: Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying the
MHV next-to-final entry condition at weight 7.

has already been reduced by a factor of six compared to the size of the standard heptagon space!

(The corresponding reduction factor for hexagon symbols at weight 5 is only about 3.5.)

The total number of Steinmann heptagon symbols at each weight was calculated without imposing

spacetime parity or dihedral symmetries. The first four rows show the number of Steinmann heptagon

symbols that have the specified eigenvalue under the Z2×Z2 generators of parity and the dihedral flip

symmetry. There are many more parity even (parity +) Steinmann heptagon functions than parity

odd. At each weight there are approximately the same number of flip + as flip −. Up through

weight 7, there are an equal number of flip + and flip − parity odd functions.

Table 4.1 has two columns for weight 7. The column 7′′ counts the number of weight 7 symbols

that satisfy an additional constraint we call the MHV next-to-final entry condition. Paired with

the MHV final entry condition, which requires the final entry of the symbol to be a2j or a3j ,

integrability imposes an additional constraint that prohibits the seven letters a6i from appearing in

the next-to-final entry of any MHV symbol. Symbols satisfying this additional constraint are useful

for bootstrapping the four-loop MHV heptagon, to be discussed in subsection 4.4.3 below.

The fact that there are many more parity-even than parity-odd Steinmann heptagon functions

is also true in the hexagon case [5]. In that case, it is possible to give a closed-form construction of

an infinite series of parity-even “K” functions. The K functions apparently saturate the subspace

of Steinmann hexagon functions having no parity-odd letters. This series of functions can also be

repurposed, with appropriate arguments, to describe some, but not all, of the Steinmann heptagon

symbols having no parity-odd letters.

Before concluding this section, let us emphasize that we are here counting integrable symbols,

not functions. We expect each such symbol to be completable into a function. However, there are

other functions (with vanishing symbol) obtained by multiplying lower-weight functions by multiple

zeta values. When we impose physical constraints on the full function space, parameters associated
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with these additional functions will also have to be determined. On the other hand, sometimes the

function-level constraints are more powerful than the symbol-level constraints. As first observed in

the case of the 3-loop MHV hexagon [49, 50], the number of n-gon functions obeying additional con-

straints, such as well-defined collinear limits, may be smaller than the number of the corresponding

symbols. That is, completing a symbol to a function with proper branch cuts may require adding to

it functions of lower weight that don’t have a well-defined collinear limit, even if the symbol does.

We leave the problem of upgrading our heptagon bootstrap from symbol to function level to a later

work.

4.4.2 The Three-Loop NMHV Heptagon

Once we have constructed the Steinmann heptagon symbol space, we can assemble it into an ansatz

for the seven-particle amplitude and apply the constraints outlined in section 4.3 to fix the free

parameters. Let us describe the steps of this computation in the NMHV case.

Loop order L = 1 2 3

Steinmann symbols 15× 28 15×322 15× 3192

NMHV final entry 42 85 226
Dihedral symmetry 5 11 31
Well-defined collinear 0 0 0

Table 4.2: Number of free parameters after applying each of the constraints in the leftmost column,
to an ansatz for the symbol of the L-loop seven-point NMHV BDS-like-normalized amplitude. The
first row in column L is equal to the last line of column k = 2L of table 4.1, multiplied by 15 for the
15 linearly independent R-invariants.

The NMHV amplitude is a linear combination of 15 transcendental functions multiplying the

independent R-invariants. Therefore the initial number of free parameters at L loops, shown in

table 4.2, is given by 15 times the entry in table 4.1 that counts the total number of Steinmann

heptagon symbols of weight 2L.5

We then impose the heptagon NMHV final entry condition discussed in subsection 4.3.1. Similarly

to the NMHV hexagon case [70], the list of allowed final entries in eq. (4.3.1) can be translated

into relations between the 42 different {k− 1, 1} coproduct components for each of the 15 functions

multiplying the independent R-invariants, for a total of 42×15 = 630 independent objects. Note that
5If we had imposed dihedral symmetry first, we would have had only three independent functions E0, E12 and

E14 to parametrize, each with some dihedral symmetry, and there would have been fewer than 3 times the number
of independent Steinmann heptagon symbols in the first line of the table. This part of the computation is not a
bottleneck either way. This alternative procedure would also give rise to a different set of numbers in the second line
of table 4.2.
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eq. (4.3.1) contains all 21 distinct R-invariants, so in order to obtain the aforementioned equations

we first need to eliminate the dependent R-invariants with the help of eqs. (4.1.13) and (4.1.14).

In principle, one can impose the NMHV final entry equations at L = k/2 loops on the ansatz of

weight-k integrable symbols appearing in the first line of table 4.2. In practice, we have found it more

efficient to solve these equations simultaneously with the weight-k integrability equations (4.2.8),

namely the equations imposing integrability on the last two slots of an ansatz for E. The number of

free parameters after imposing this condition (using either method) is reported in the second line of

table 4.2. We see that the final entry condition is already very restrictive; out of the 47880 possible

NMHV symbols with generic final entry at three loops, only 226 of them obey the NMHV final entry.

Next we impose invariance of E under dihedral transformations, as discussed in subsection 4.3.2.

The dihedral restriction leads to the small number of remaining free parameters reported in the

third line of table 4.2.

We then examine the behavior of the amplitude in the collinear limit. To this end, we recall

from subsection 4.3.3 that it is advantageous to convert to the BDS normalization, since the BDS-

normalized amplitude is finite in the collinear limit, while the BDS-like normalized one becomes

singular. Converting our partially-determined ansatz for E to an equivalent ansatz for B with the

help of eq. (4.1.30), we then take its collinear limit using eq. (4.3.5).

Quite remarkably, demanding that the right-hand side of eq. (4.3.8) be well-defined, namely

independent of the spurious letters (4.3.6) (and thus also finite), suffices to uniquely fix B through 3

loops! Even an overall rescaling is not allowed in the last line of table 4.2, because the condition of

well-defined collinear limits, while homogeneous for BDS-normalized amplitudes, is inhomogeneous

for the BDS-like normalization with which we work. We did not need to require that the collinear

limit (4.3.8) of the solution agrees with the six-point ratio function computed at three loops in

ref. [60], but of course we have checked that it does agree.

In this manner, we arrive at a unique answer for the symbol of the NMHV heptagon through

three loops. Our results can be downloaded in a computer-readable file from [106]. The one- and

two-loop results match the amplitudes computed in refs. [21] and [89], respectively. The fact that

six-point boundary data is not even needed to fix the symbol through three loops points to a strong

tension between the Steinmann relations, dual superconformal symmetry (in the guise of the final

entry condition), and the collinear limit.
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4.4.3 The Four-Loop MHV Heptagon

For the MHV remainder function at L = k/2 loops, we could in principle start from an ansatz for

E(L)
7 involving all heptagon Steinmann symbols of weight k. As with the NMHV case, however, it

is simpler to impose the MHV final-entry condition discussed in section 4.3.1 at the same time as

integrability on the last two entries of the symbol. In fact, our initial four-loop MHV ansatz was

constructed using not just the MHV final-entry condition, but also the MHV next-to-final entry

condition discussed in section 4.4.1.

Loop order L = 1 2 3 4

Steinmann symbols 28 322 3192 ?
MHV final entry 1 1 2 4
Well-defined collinear 0 0 0 0

Table 4.3: Free parameter count after applying each of the constraints in the leftmost column to an
ansatz for the symbol of the L-loop seven-point MHV BDS-like-normalized amplitude.

In the first line of table 4.3, we reiterate the number of Steinmann heptagon functions with

general final entry. In the second line of the table, we report the number of symbols that satisfy

the MHV final entry condition. Clearly, there are only a few Steinmann heptagon functions at

each weight that satisfy even these few constraints. Note that we have not even imposed dihedral

invariance, nor that the symbol have even spacetime parity.

To determine the third line of the table, we convert the ansatz to one for the BDS normalized

amplitude, using eq. (4.1.30) and the symbol of Y7. We then ask that this quantity have a well-

defined collinear limit. As in the NMHV case, there is a unique solution to this constraint, this time

through four loops, as reported in the last line of table 4.3; this unique solution must be the symbol

of E(L)
7 . Our results can be downloaded in computer-readable files from [106]. Again the overall

normalization is fixed because the last constraint is an inhomogeneous one for a BDS-like normalized

amplitude. The symbols of the two- and three-loop seven-point BDS remainder functions R(2)
7 , R(3)

7

are known [110, 61]. We have converted these quantities to the BDS-like normalization with the

help of eq. (4.1.31), and they agree with our unique solutions. At four loops, when we convert our

unique solution for E(4)
7 (which has 105,403,942 terms) to R(4)

7 (which has 899,372,614 terms), we

find that its well-defined collinear limit agrees perfectly with the symbol of the four-loop six-point

MHV remainder function R(4)
6 computed in ref. [51]. Because we did not need to impose dihedral

invariance, nor spacetime parity, we can say that even less input is needed to fix the symbol of the

MHV amplitude through four loops than was needed for the three-loop NMHV amplitude!
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Before concluding, let us note that although we used the Steinmann constraint to tightly constrain

the space of symbols through which we had to sift in order to find the four-loop MHV heptagon, it

is possible that the same result could have been obtained (in principle, with much more computer

power), without it. In the second row of table 4.3 we see, for example, that at weight 6 there are

precisely 2 Steinmann heptagon symbols satisfying the MHV final-entry condition. Ref. [61] imposed

the MHV final-entry condition, without considering the Steinmann relations, and found 4 different

symbols at weight 6: (Y7)3, Y7R
(2)
7 , R(3)

7 and one more. Modulo the reducible (product) functions

(Y7)3 and Y7R
(2)
7 , heptagon functions satisfying the MHV final-entry condition automatically satisfy

the Steinmann relations as well, at least at weight 6! We cannot rule out the possibility that the

Steinmann constraint is also superfluous at weight 8 (or, perhaps, even higher), but certainly the

complexity of the computation is significantly reduced if one allows oneself to input this knowledge.

4.4.4 Three Loops from Dihedral Symmetry

In this subsection we consider dropping the final entry condition, which derives from dual super-

conformal invariance. One motivation for doing this is to check independently the NMHV final

entry conditions detailed in eq. (4.3.1). Another possible motivation, in the MHV case, is to try to

widen the applicability of the bootstrap approach to the study of (bosonic) light-like Wilson loops

in weakly-coupled conformal theories with less supersymmetry than N = 4 SYM.

Let us consider adding general L-loop Steinmann heptagon symbols Ẽ(L)
7 (with no restrictions on

the final entry) to the known answer E(L)
7 and see whether we can preserve the conditions of dihedral

symmetry and good collinear behavior. We can ask this question through three loops, because we

have a complete basis of Steinmann heptagon symbols up to (and beyond) weight six. Since such

symbols appear additively in the BDS-normalized quantity B(L)
7 , we need the Steinmann symbols

Ẽ(L)
7 themselves to be well-defined in the collinear limit. The numbers of Steinmann heptagon sym-

bols obeying the successive conditions of cyclic invariance, flip symmetry, and well-defined collinear

behavior are detailed in table 4.4.

We find that the first dihedrally invariant Steinmann symbol with well-defined collinear limits

appears at weight six, i.e. at three loops. We denote this symbol by Ẽ7. In fact the collinear limit of

Ẽ7, which we denote by Ẽ6, automatically turns out to possess six-point dihedral invariance as well.

Furthermore the collinear limit of Ẽ6 from six points to five is vanishing. Therefore the symbol Ẽ7
could be added to that for E(3)

7 (and simultaneously Ẽ6 to E(3)
6 ) without breaking dihedral symmetry

or good collinear behavior either at seven points or at six points.

67



Neither Ẽ7 nor Ẽ6 obey the MHV final entry condition, as required to be consistent with the

results of section 4.4.3. Thus at the three-loop order, Q̄-supersymmetry is really fixing only a single

parameter, after the consequences of the Steinmann relations, dihedral symmetry and good collinear

behavior are taken into account. A different criterion that can be used to uniquely determine E(3)
7

is that the three-loop remainder R(3)
6 should have at most a double discontinuity around the locus

u = 0 where u is one of three the cross ratios available at six points. The double discontinuity is

in fact predicted from the original implementation of the Wilson line OPE [36], which we will not

delve into here. We may simply observe that Ẽ6 has a triple discontinuity and hence we can rule out

adding Ẽ7 to E(3)
7 on these grounds.

Loop order L = 1 2 3

Steinmann symbols 28 322 3192
Cyclic invariance 4 46 456
Dihedral invariance 4 30 255
Well-defined collinear 0 0 1

Table 4.4: Number of linearly independent Steinmann heptagon symbols obeying, respectively: cyclic
invariance, dihedral invariance, and well-defined collinear behavior together with dihedral symmetry.

We may similarly examine the consequences of dihedral symmetry and collinear behavior for

the NMHV amplitude. In this case there are some additional conditions which we can impose,

from requiring the absence of spurious poles. We recall the form of the NMHV ratio function

given in eq. (4.1.15), or equivalently the form of E given in eq. (4.1.28). The tree-level amplitude

P(0) obviously possesses only physical poles, but the individual R-invariants have spurious poles.

Requiring that the NMHV amplitude as a whole has no spurious poles leads us to the following

conditions:

Spurious I: E47|〈1356〉=0 = 0 , (4.4.1)

Spurious II: E23|〈1467〉=0 = E25|〈1467〉=0 . (4.4.2)

In table 4.5 we detail the number of Steinmann symbols obeying the successive conditions of

cyclic symmetry, absence of spurious poles, well-defined collinear behavior, and flip symmetry. At

weight two, we find a single combination obeying all conditions, which is precisely the combination

B(1) itself, which is therefore determined up to an overall scale by these conditions. Note that unlike

the B(L) for L > 1, the function B(1) obeys the Steinmann relations.
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At weight four, we find no Steinmann symbols obeying all the conditions. This is not in contradic-

tion with the results of section 4.4.2: we recall that the quantity E(2) does not exhibit well-defined,

finite collinear behavior; rather it is the (non-Steinmann) function B(2) which manifests this. The

zero in the final row of the L = 2 column in table 4.5 rather reflects the fact that there is no Stein-

mann symbol which could be added to E(2) while preserving the good collinear behavior of B(2),

even if we are willing to abandon the NMHV final entry condition.

At weight six, we find a single Steinmann symbol with all the properties listed in table 4.5. It

is precisely the same symbol Ẽ7 appearing in table 4.4 multiplied by the tree-level amplitude P(0).

Hence it only appears as a potential contribution to E(3)
0 . In other words, the symbols of E(3)

12 and

E
(3)
14 are uniquely fixed by the constraints of dihedral symmetry, absence of spurious poles and correct

collinear behavior. The appearance of the same ambiguity Ẽ7 in E
(3)
0 is to be expected since the

only additional criterion imposed in table 4.5, that of spurious-pole cancellation, cannot constrain

potential contributions to E0. Finally, we note that the addition of Ẽ7 in E
(3)
0 is connected to its

addition to E(3)
7 by the NMHV to MHV collinear limit which relates E7 to E6. Thus dropping the

final entry condition from Q̄-supersymmetry allows only a single potential contribution at weight 6

in all of the heptagon and hexagon amplitudes.

Loop order L = 1 2 3

Steinmann symbols 15× 28 15×322 15× 3192

Cyclic invariant 4 + (2× 28) 46 + (2× 322) 456 + (2× 3192)

Spurious vanishing I 4 + 1 + 28 46 + 19 + 322 456 + 208 + 3192
Spurious vanishing II 4 + 6 46 + 89 456 + 927
Well-defined collinear 1 0 11
Flip invariant 1 0 1

Table 4.5: Number of Steinmann heptagon symbols entering the NMHV amplitude obeying re-
spectively cyclic invariance, vanishing on spurious poles, well-defined collinear behavior and flip
symmetry.

We conclude that, up to three loops, starting from an ansatz of Steinmann heptagon functions,

all heptagon amplitudes and hence all hexagon amplitudes (by collinear limits) in planar N =

4 SYM can be determined just by imposing dihedral symmetry and well-defined collinear limits,

combined with the requirement of no triple discontinuity in R(3)
6 and no spurious poles in the NMHV

amplitudes. These results provide an independent check of the NMHV final entry conditions (4.3.1).

It would be interesting to investigate whether the ambiguity functions Ẽ7 and Ẽ6 could play a role in

the perturbative expansion of any weakly-coupled conformal theories with less supersymmetry than
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Figure 4.5.1: Factorization of a seven-point amplitude in the limit s345→0. Notice that the collinear
limit p7 ‖ p1 can be taken “inside” the factorization limit.

N = 4 SYM.

4.5 The Multi-Particle Factorization Limit

One of the kinematic limits we can study using our explicit seven-point results is the multi-particle

factorization limit. In this limit, one of the three-particle invariants goes on shell, si,i+1,i+2 → 0.

Figure 4.5.1 shows the limit s345 → 0. In this limit the seven-point NMHV amplitude factorizes

at leading power into a product of four-point and five-point amplitudes, multiplied by the 1/s345

pole. The seven-point MHV amplitude vanishes at leading power. Indeed, all supersymmetric MHV

amplitudes are required to vanish at leading power when a three-particle (or higher-particle) invariant

goes on shell. This result holds because all possible helicity assignments for the intermediate state

require at least one lower-point amplitude to have fewer than two negative-helicity gluons; such

amplitudes vanish by supersymmetry Ward identities [132, 133]. For the same reason, MHV tree

amplitudes [8] have no multi-particle poles.

Before turning to the behavior of the seven-point NMHV amplitude, we recall the multi-particle

factorization behavior of the BDS-like-normalized six-point NMHV amplitude [60]. As s345 → 0,

two of the six-point R-invariants become much larger than the rest, and they become equal to each

other. Therefore the singular behavior of the six-point amplitude is controlled by a single coefficient

function, which we denote by U6 and whose limiting behavior takes an especially simple form.6

Up to power-suppressed terms, the limit of U6 was found to be a polynomial in log(uw/v), whose

coefficients are rational linear combinations of zeta values, and whose overall weight is 2L. Here, u,

v, and w are the three dual conformal invariant cross ratios for the hexagon, whose expressions in
6The function U6 can be identified with the function E in refs. [70, 5], but we prefer to adopt a different notation

here to emphasize that this function is not the BDS-like-normalized NMHV superamplitude E6.
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terms of six-point kinematics are

u =
x2

13 x
2
46

x2
14 x

2
36

=
s12 s45

s123 s345
, v =

x2
24 x

2
51

x2
25 x

2
41

=
s23 s56

s234 s123
, w =

x2
35 x

2
62

x2
36 x

2
52

=
s34 s61

s345 s234
. (4.5.1)

The six-point limit s345 → 0 sends uw/v →∞.

The logarithm of U6, called U in ref. [60], has an even simpler behavior than U6. The L-loop

contribution U (L) is also a polynomial in log(uw/v), but it has only degree L at L loops, for L > 1.

This three-loop result was later found to hold also at four and five loops [70, 5]. Because U (L) has

weight 2L, but a maximum of L powers of log(uw/v) for L > 1, every term in it contains zeta values,

and its symbol vanishes. The only exception is the one-loop result,

U (1)(u, v, w)
s345→0−−−−−−→ − 1

2
log2

(uw
v

)
− 2ζ2 , (4.5.2)

where we have converted the result in ref. [60] to that for expansion parameter g2. The results

for U (L) agree with the perturbative expansion of an all-orders prediction based on the Pentagon

OPE [134, 135].

Ref. [60] also made a prediction for the multi-particle factorization behavior of NMHV n-point

amplitudes, which we can now test at 7 points at the symbol level. Define the factorization function

Fn by

ANMHV
n (ki)→ Aj−i+1(ki, ki+1, . . . , kj−1,K)

Fn(K2, sl,l+1)

K2
An−(j−i)+1(−K, kj , kj+1, . . . , ki−1) ,

(4.5.3)

as K2 → 0, or in the seven-point case,

ANMHV
7 (ki)

s345→0−−−−−−→ A5(k6, k7, k1, k2,K)
F7(K2, sl,l+1)

K2
A4(−K, k3, k4, k5) , (4.5.4)

where K = k3 + k4 + k5, K2 = s345. Then F7 was predicted to have the form

[logF7]
(L)
symbol = δL,1

{
1

8ε2

[(
(−s712)(−s34)

(−s56)

)−ε
+

(
(−s45)(−s671)

(−s23)

)−ε]
− 1

2
log2

(
(−s712)(−s34)

(−s56)

/
(−s45)(−s671)

(−s23)

)
− 1

2
log2

(
x2

73x
2
35x

2
46x

2
62

x2
57x

2
24(x2

36)2

)}
. (4.5.5)

For simplicity, we have dropped all terms that vanish at symbol level, which kills all terms in logF7

71



beyond one loop, and we have converted to the g2 expansion parameter.

We should now convert this prediction to one for the BDS-like normalized amplitude. Apart

from trivial tree-level factors, we have

logF7 = log

(
ANMHV

7

ABDS
5 ABDS

4

)
= log

(
ANMHV

7

ABDS−like
7

)
− log

(
ABDS

5 ABDS
4

ABDS−like
7

)
. (4.5.6)

So to obtain log(ANMHV
7 /ABDS−like

7 ) we need to add to [logF7](1) the quantity

− M̂ (1)
7 +M

(1)
5 +M

(1)
4 , (4.5.7)

where M̂7 is given in eq. (A.0.14), and M (1)
4 and M (1)

5 are the four- and five-point MHV amplitudes,

for the kinematics shown in fig. 4.5.1, and normalized by their respective tree amplitudes.

Adding eqs. (4.5.6) and (4.5.7), we find, in terms of dual variables,

log

(
ANMHV

7

ABDS−like
7

)(1)

→ −1

2
log2

(
x2

73x
2
35x

2
46x

2
62

x2
57x

2
24(x2

36)2

)
− 1

2
log2

(
x2

46x
2
72x

2
13

x2
73x

2
24x

2
61

)
− 1

2
log2

(
x2

35x
2
72x

2
61

x2
62x

2
57x

2
13

)
,

(4.5.8)

at symbol level, and a vanishing contribution to the logarithm beyond one loop. Note that the first

term in eq. (4.5.8) comes directly out of eq. (4.5.5), and is the “naive” generalization of − 1
2 log2(uw/v)

to the seven-point case. The first term diverges logarithmically as s345 = x2
36 → 0, while the last

two terms are finite in this limit.

The one-loop factorization behavior in eq. (4.5.8) could have been extracted, of course, from

the one-loop seven-point amplitude. Thus the symbol-level content of the prediction is really the

vanishing of the logarithm beyond one loop. Beyond symbol level, the all-loop-order prediction of

ref. [60] is that (up to an additive constant) the first term gets upgraded to the function appearing

in the six-point limit, namely U(x), where x = (x2
73x

2
35x

2
46x

2
62)/(x2

57x
2
24(x2

36)2), while the last two

terms should simply get multiplied by the cusp anomalous dimension.

Now let us test the symbol-level prediction (4.5.8) by taking the limit s345 → 0 of the seven-point

NMHV amplitude. Referring back to (4.2.1), we have

s345 = x2
36 =

〈2356〉
〈23〉〈56〉 → 0. (4.5.9)

Keeping s23 and s56 generic requires us to take this limit by sending 〈2356〉 → 0. This limit can be
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accomplished using the replacement

Z2 → Z3 + a
〈1436〉
〈1456〉Z5 + b

〈1453〉
〈1456〉Z6 + ε

〈3456〉
〈1456〉Z1 (4.5.10)

where a, b ∈ C are generic and ε is a regulator. In the limit ε→ 0, a14 vanishes while the other aij

map into a space of 31 finite letters.

The map works out to be

a25 → a11a17

a21a24
, a33 →

a17

a24
, a34 →

a21a24

a17
, a37 →

a11a17

a21
a42 → a24 ,

a46 → a21a24

a17
, a52 →

a17

a24
, a56 →

a11a17

a21a24
, a63 → −1, a65 → −1, (4.5.11)

which removes 10 of the 42 letters, leaving a14 and the 31 finite letters.

We also need the limiting behavior of the seven-point R-invariants. Referring back to their

definition (4.1.8), we see that the invariants (71), (14) and (47) become singular as 〈2356〉 → 0 while

all others remain finite. The finite R-invariants are suppressed in the identities (4.1.10) in this limit,

giving us

(71)s345→0 = (14)s345→0 = (47)s345→0 . (4.5.12)

The function controlling the behavior of E7 as s345 → 0 is thus given by the sum of functions

multiplying these singular invariants in eq. (4.1.28), corresponding to the combination

U7 ≡
[
E71 + E14 + E47 + E0

]
s345→0

. (4.5.13)

Note that from eq. (4.1.13), the coefficient of E0 receives a 3/7 contribution from (71), and 2/7+2/7

from (14) and (47).

Ignoring the tree amplitude, the quantity U7 is the exponential of log(ANMHV
7 /ABDS−like

7 ), whose

prediction is given in eq. (4.5.8). Using eq. (4.5.11) to compute U7 from eq. (4.5.13) in terms of the
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letters aij , we find at one, two, and three loops,

U (1)
7 = −1

2
log2

(
a2

14

a11a17

)
− 1

2
log2 a11 −

1

2
log2 a17 , (4.5.14)

U (2)
7 =

(
U (1)

7

)2

2!
, (4.5.15)

U (3)
7 =

(
U (1)

7

)3

3!
. (4.5.16)

Hence U7 exponentiates at symbol level, as predicted by eq. (4.5.8). Substituting eq. (4.2.5) for a11,

and its cyclic permutations, into eq. (4.5.14), we find perfect agreement with eq. (4.5.8). We can

also express the result in terms of the cross ratios ui:

U (1)
7 = −1

2
log2

(
u1u2

u3u7

)
− 1

2
log2

(
u1u4u5

u3u6

)
− 1

2
log2

(
u2u6u5

u7u4

)
. (4.5.17)

Once this analysis is repeated at function level, we expect the first term in U (1)
7 to receive higher-loop

zeta-valued contributions, dictated by the six-point function U(x), while the last two terms simply

get multiplied by the cusp anomalous dimension.

The last two terms in eq. (4.5.14) or eq. (4.5.17) do not diverge in the factorization limit. On the

other hand, they play an essential role in endowing U7 with the correct behavior as p7 and p1 become

collinear. Fig. 4.5.1 shows that this collinear limit is well away from the factorization pole, in the

sense of color ordering. So it should be possible to take this collinear limit “inside” the s345 → 0

multi-particle factorization limit, i.e. as a further limit of it.

The p7 ‖ p1 collinear limit takes x2
72 → 0, and hence the cross ratio u5 → 0. Equation (4.5.17)

shows that the last two terms of U (1)
7 diverge logarithmically in this collinear limit, while the first

term behaves smoothly. Recall that the n-point BDS ansatz smoothly tends to the (n − 1)-point

BDS ansatz in all collinear limits. However, this is not true for the BDS-like ansatz; that is, Y7 6→ Y6

in collinear limits, rather it diverges logarithmically. Essentially, the last two terms of eq. (4.5.14)

account for this non-smooth behavior. In the p7 ‖ p1 collinear limit,

−1

2
log2

(
a2

14

a11a17

)
p7‖p1−−−−−→ −1

2
log2

(
uw

v

)
, (4.5.18)

−1

2
log2 a11 −

1

2
log2 a17 + Y7

p7‖p1−−−−−→ Y6 . (4.5.19)

Thus the last two terms in eq. (4.5.14) precisely account for the non-smooth collinear behavior of

the BDS-like-normalized amplitude at seven points, within the multi-particle factorization limit.
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4.6 Discussion

Following the inclusion of the Steinmann relations in the hexagon function bootstrap program [5],

we have applied these constraints to heptagon symbols, in order to drastically reduce the number of

symbols needed to bootstrap seven-point scattering amplitudes. We have been able to construct a

basis of Steinmann heptagon symbols through weight 7, and those which further satisfy the MHV

final-entry condition at weight 8. In order to apply the Steinmann relations transparently, we have

shifted our focus from the familiar BDS-normalized amplitudes to BDS-like normalized analogues.

The simple conversions (4.1.30) and (4.1.31) between functions in these two normalizations allow us

to simultaneously take advantage of the smaller space of Steinmann heptagon symbols, and utilize

the simple behavior exhibited by BDS-normalized functions near the collinear limit. With these

advances, we have completely determined, in a conceptually simple manner, the symbols of the

seven-point three-loop NMHV and four-loop MHV amplitudes in planar N = 4 SYM theory.

Calculating the symbol of these particular component amplitudes is only the tip of the Steinmann

iceberg. The main limiting factor in applying the bootstrap at higher weight is the computational

complexity resulting from the size of the space of Steinmann heptagon functions, which still grows

close to exponentially, despite its small size relative to the general heptagon function space. This

growth can be especially prohibitive when generating the general basis of Steinmann heptagon sym-

bols at each higher weight. At the same time, nearly the entire space of Steinmann heptagon symbols

is needed to describe the amplitudes we have bootstrapped – including derivatives (coproducts) of

higher-loop amplitudes. That is, the full space of Steinmann heptagon symbols is spanned by the

derivatives of our amplitudes at weights 2 and 3. Only 15 of the 322 Steinmann heptagon symbols

are absent from the span of these derivatives at weight 4. This situation resembles what is observed

in the hexagon function bootstrap [5], where the derivatives of the five-loop six-point amplitude also

span the full weight-2 and weight-3 Steinmann hexagon symbol spaces, while only 3, 12, and 30

symbols are absent from the span of these derivatives at weights 4, 5, and 6. In the hexagon case,

all of these symbols are observed to drop out due to lower-weight restrictions on the appearance

of zeta values (i.e. the zeta values only appear in certain linear combinations with other hexagon

functions, and this leads to symbol-level restrictions at higher weights). We expect that a similar set

of function-level restrictions will explain why a small set of weight-4 Steinmann heptagon symbols

are not needed to describe the seven-point amplitude. (Only 386 of the 1030 weight-5 Steinmann

heptagon symbols are currently needed to describe the four-loop MHV and three-loop NMHV am-

plitudes, but here we expect significantly more of these symbols to be needed to describe coproducts
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of yet higher-loop contributions.) No physical explanation for the restrictions on the occurrence of

zeta values at six points has yet been discerned, indicating that there remains some physics to be

discovered.

More generally, the task of upgrading our symbol-level results to full functions will be left to

future work. A full functional representation would be valuable for checking seven-point predictions

in both the near-collinear [75, 76, 77, 78, 79, 80, 81, 82] and multi-Regge limits [68, 93, 94, 96, 97, 98,

95, 99, 100, 101, 102, 103]. An important problem is to generalize the all-loop results for six-point

scattering in the multi-Regge limit [136] to the seven-point case. The full functional form of the

seven-point amplitude could assist the construction of an all-loop multi-Regge heptagon formula.

Bootstrapping amplitudes with eight or more external legs will require more than a simple exten-

sion of the heptagon bootstrap presented in this work. Both the hexagon and heptagon bootstrap

approaches depend on the assumption that the weight-2L generalized polylogarithms can be built

from a finite symbol alphabet, corresponding to an appropriate set of cluster A-coordinates. Going

to n = 8, we move into a cluster algebra with infinitely many A-coordinates. It is expected that

only a finite number of letters will appear at any finite loop order, but it is currently unknown how

to characterize what sets may appear. In principle, this information ought to follow from a careful

consideration of the Landau singularities of these amplitudes (see for example refs. [137, 88] for

recent related work). There is hope that patterns may emerge at currently accessible loop orders,

which may provide insight into the letters appearing for n > 7.
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Chapter 5

Cluster Algebra Structure Scattering

Amplitudes

Several recent papers following [32] have explored the connection between (multi-loop) scattering

amplitudes in planar N = 4 super-Yang-Mills (SYM) theory and cluster algebras, a subject of great

interest to mathematicians. This line of research has two closely related branches: (1) investigating

purely mathematical questions having to do with the classification of functions with certain cluster

algebraic properties, i.e. “how rare are special functions of the type we see in SYM theory?”, and

(2) exploiting these mathematical properties, together with physical input as needed, to carry out

calculations of new, previously intractable amplitudes, i.e. “how far can we get by exploiting the

special properties of cluster algebras?”.

The most basic aspect of the observed connection, supported by all evidence available to date,

is that n-point scattering amplitudes in SYM theory have singularities only at points in Confn(P3)

(the space of massless n-point kinematics modulo dual conformal invariance) where some cluster

coordinate of the associated Gr(4, n) cluster algebra vanishes. More specifically, all known multi-

loop amplitudes may be expressed as linear combinations of generalized polylogarithm functions

written in the symbol alphabet consisting of such cluster coordinates. We expect this to be true to

all loop order for all MHV and NMHV amplitudes.

Deeper connections to the underlying cluster algebra have been found for the two-loop MHV

remainder functions R(2)
n . The algebra of generalized polylogarithm functions modulo products

admits a cobracket δ satisfying δ2 = 0, giving it the structure of a Lie coalgebra [123]. It has been

observed that δR(2)
n has a very rigid connection to the Poisson structure on the kinematic domain
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Confn(P3). Specifically, the (2, 2) component of δR(2)
n can always be written as a linear combination

of Li2(−xi) ∧ Li2(−xj) for pairs of cluster coordinates having Poisson bracket {log xi, log xj} = 0,

while the (3, 1) component can always be written as a linear combination of Li3(−xi) ∧ log(xj) for

pairs having {log xi, log xj} = ±1. These mathematical properties are tightly constraining: it has

been argued in [47] that, when combined with a few physical constraints, they uniquely determine

the (2, 2) component of δR(2)
n for all n.

It is an interesting open problem to determine whether (and, if so, precisely how) the structure

of more general amplitudes may be dictated by the underlying Poisson structure on Confn(P3).

This is a difficult question to address because data on multi-loop amplitudes is very hard to come

by—beyond the two-loop MHV amplitudes, explicit results for complete amplitudes at fixed loop

order are available only for n = 6 [48, 49, 50, 51, 62, 60, 70] (in addition, the symbol of the two-

loop n = 7 NMHV amplitude has been computed in [89], and that of the three-loop n = 7 MHV

amplitude in [61]). With only a handful of results available it may be difficult to identify a pattern

which might let one tease out the underlying structure. Moreover, accidental simplifications may

occur at small n which can obscure the general structure. (For example, the (2, 2) component of

δR
(2)
6 is identically zero [35].) It is known that the (3, 3) component of δR(3)

6 is not expressible in

terms of cluster X -coordinates [138], but there could be some more deeply hidden structure in this

amplitude.

The primary goal of this chapter is to further explore the taxonomy of two-loop cluster functions,

as defined in [46], for n = 6, 7. We are particularly interested in the interplay between various math-

ematically natural but physically obscure conditions that certain functions can satisfy (such as the

tight cluster constraints satisfied by all two-loop MHV amplitudes, mentioned above) and physically

natural constraints, such as the requirement that amplitudes can only have physical branch points

on the principal sheet (the so-called “first-entry condition” [36]). In previous work including [47] it

has been remarked that the mathematical and physical constraints on MHV amplitudes seem almost

orthogonal. One of our goals here is to explore this question quantitatively by fully classifying the

dimensions of function spaces satisfying various properties.

We begin in Section 2 with a lightning review to set some notation and terminology. In Sections 3

and 4 respectively we exhaustively analyze the spaces of cluster functions on the Gr(4, 6) and Gr(4, 7)

cluster algebras respectively of relevance to n = 6, 7-point amplitudes in planar SYM theory.
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5.1 Review and Notation

A kinematic configuration of n massless on-shell particles, with a cyclic order (which comes naturally

in gauge theories when one looks at planar scattering amplitudes), can be parameterized in terms of

n momentum twistors [24], Zi ∈ P3, i = 1, . . . , n. The dual conformal symmetry of planar n-point

amplitudes in SYM theory further implies that that they are functions not on (P3)n but on the

smaller space Confn(P3) ∼= Gr(4, n)/(C∗)n−1 [32].

Viewing each Zi as a four-component vector of homogeneous coordinates, the Plücker coordinates

are defined by 〈ijkl〉 ≡ det(ZiZjZkZl). Functions on Confn(P3) may be written in terms of ratios

of Plücker coordinates such as
〈ijkl〉〈abcd〉
〈ijcd〉〈abkl〉 , (5.1.1)

or more generally in terms of ratios of homogeneous polynomials in Plücker coordinates having total

weight zero under rescaling any of the Zi.

Such objects form the building blocks for the Gr(4, n) Grassmannian cluster algebra [72, 139],

which is the algebra generated by certain preferred sets of coordinates on Gr(4, n). These coordinates

come in two related varieties: the A-coordinates, which consist of the Plücker coordinates and

certain homogeneous polynomials in them, and the X -coordinates [71], which consist of certain

scale-invariant ratios of A-coordinates.

In this chapter we focus on the cases n = 6, 7, for which the corresponding cluster algebras have

respectively 15, 49 A-coordinates and 15, 385 X -coordinates1. The reader may find these coordinates

tabulated in [32]. Of course, the X -coordinates are not algebraically independent since the dimension

of Confn(P3) is only 3(n − 5). A “cluster” is a particular choice of 3(n − 5) cluster X -coordinates

in terms of which all others may be determined by a simple set of rational transformations called

mutations.

A still mysterious but apparently important role is played by the fact that Confn(P3) admits a

natural Poisson structure, which it inherits from the Grassmannian [72]. A characteristic feature of

cluster coordinates is that within each cluster, the X -coordinates are log-canonical with respect to

this Poisson structure, i.e.

{log xi, log xj} = Bij , i, j = 1, . . . , 3(n− 5) , (5.1.2)

where B is an antisymmetric integer-valued matrix (which for n = 6, 7 only takes the values 0,±1).
1In some applications it is sensible to count x and 1/x separately, in which case these numbers would be 30, 770.

79



We expect all six- and seven-point L-loop scattering amplitudes in planar SYM theory to be

(generalized) polylogarithm functions of uniform transcendental weight 2L whose symbols may be

written in terms of the Gr(4, n) cluster coordinates. For the purpose of writing a symbol alphabet

the relevant question is not how many coordinates are algebraically independent, but how many

are multiplicatively independent—we say that a finite collection {y1, . . . , ym} is multiplicatively

independent if there is no collection of integers {n1, . . . , nm} such that
∏
ynii = 1, i.e. if the collection

{log y1, . . . , log ym} is linearly independent over Z.

As mentioned above there are respectively 15 (385) cluster X -coordinates xi for n = 6 (n = 7),

but the corresponding sets of log xi only span spaces of dimension 9 (42). Choosing bases for these

spaces provides a collection of 9 (42) multiplicatively independent ratios to serve as symbol alphabets

for building cluster polylogarithm functions.

5.1.1 The Gr(4, 6) Cluster Algebra

For six-point amplitudes the relevant cluster algebra is Gr(4, 6), which is isomorphic to the A3 cluster

algebra. Its 15 cluster A-coordinates are just the Plücker coordinates 〈ijkl〉. This algebra has 15

X -coordinates. In the notation of [46] these are named vi, x±i for i = 1, 2, 3 and ei for i = 1, . . . , 6.

The reader may find explicit formulas for these as ratios of Plücker coordinates in [46]. Since one

of the goals of this chapter is to make contact with the work of Dixon et. al. we will instead provide

this information via the connection to the variables u, v, w, yu, yv, yw used in [48, 49, 50, 51, 62, 60,

70].

The three-dimensional kinematic configuration space Conf6(P3) may be parameterized in terms

of the three coordinates

yu =
〈1236〉〈1345〉〈2456〉
〈1235〉〈1246〉〈3456〉 , yv =

〈1235〉〈1456〉〈2346〉
〈1234〉〈1356〉〈2456〉 , yw =

〈1246〉〈1356〉〈2345〉
〈1256〉〈1345〉〈2346〉 . (5.1.3)

Note that a cyclic rotation Zi → Zi+1 maps

yu → 1/yv , yv → 1/yw , yw → 1/yu , (5.1.4)

while reflection Zi → Z1−i (all indices are understood to be cyclic modulo 6) takes

yu → yv , yv → yu , yw → yw . (5.1.5)
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The spacetime parity operator acts on momentum twistors as2

Zi →Wi = ∗(Zi−1 ∧ Zi ∧ Zi+1) , (5.1.6)

which transforms the cross-ratios defined in (5.1.3) according to

yu → 1/yu , yv → 1/yv , yw → 1/yw . (5.1.7)

It is a curious accident that for n = 6 spacetime parity reversal is equivalent on Confn(P3) to an

element (namely, shift-by-three) of the cyclic group.

Three other variables used by Dixon et. al. may be defined in terms of these via

u =
yu(1−yv)(1−yw)

(1−yuyv)(1−yuyw)
, v =

yv(1−yu)(1−yw)

(1−yuyv)(1−yvyw)
, w =

yw(1−yu)(1−yv)
(1−yuyw)(1−yvyw)

. (5.1.8)

Central to our investigations is the Poisson structure on Conf6(P3), which may be expressed in terms

of the y variables as

{log yu, log yv} = {log yv, log yw} = {log yw, log yu} =
(1−yu)(1−yv)(1−yw)

1−yuyvyw
. (5.1.9)

It is invariant under the full cyclic group (and hence, it is parity symmetric) but antisymmetric

under reflection.

In terms of these variables, the cluster X -coordinates may be expressed as

v1 =
1− v
v

, v2 =
1− w
w

, v3 =
1− u
u

,

x+
1 =

yv(1− yuyw)

1− yv
, x+

2 =
yw(1− yuyv)

1− yw
, x+

3 =
yu(1− yvyw)

1− yu
,

x−1 =
1− yuyw

yuyw(1− yv)
, x−2 =

1− yuyv
yuyv(1− yw)

, x−3 =
1− yvyw

yvyw(1− yu)
, (5.1.10)

e1 =
1− yv

yv(1− yu)
, e2 =

yv(1− yw)

1− yv
, e3 =

1− yu
yu(1− yw)

,

e4 =
yu(1− yv)

1− yu
, e5 =

1− yw
yw(1− yv)

, e6 =
yw(1− yu)

1− yw
.

Note that under a cyclic shift Zi → Zi+1 we have

vi → vi+1 , x±i → x∓i+1 , ei → ei+1 , (5.1.11)

2The notation means that Wi spans the one-dimensional subspace orthogonal to the 3-plane spanned by
Zi−1, Zi, Zi+1 in C4.
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while under parity the vi are invariant and

x±i → x∓i , ei → ei+3 . (5.1.12)

Of particular importance are pairs x1, x2 of distinct X -coordinates with simple Poisson brackets.

By “simple” we mean specifically that {log x1, log x2} is either 0 or ±1. There are three pairs with

Poisson bracket zero,

{log x+
i , log x−i } = 0 , (5.1.13)

and 30 pairs with Poisson bracket +1,

{log ei, log ei+4} = {log x±i+1, log vi} = {log vi+1, log x±i } = {log x±i+1, log ei} = 1 (5.1.14)

together with their cyclic images, for 6 + 6 + 6 + 12 = 30 pairs. The remaining 72 pairs have

“complicated” Poisson brackets (specifically, non-integer-valued; see for example (5.1.9)).

5.1.2 The Gr(4, 7) Cluster Algebra

For seven-point amplitudes the relevant cluster is algebra is Gr(4, 7), which is isomorphic to the E6

algebra. The 49 cluster A-coordinates consist of the 35 Plücker coordinates 〈ijkl〉 together with

14 homogeneous polynomials denoted by 〈1(23)(45)(67)〉, 〈2(13)(45)(67)〉 (and their cyclic images),

where

〈i(i−1, i+1)(j, j+1)(k, k+1)〉 = 〈i−1 i j j+1〉〈i i+1 k k+1〉 − 〈i−1 i k k+1〉〈i i+1 j j+1〉 . (5.1.15)

One can build from these 49 A-coordinates a total of 385 cluster X -coordinates (or 770 if we count

their multiplicative inverses). These are tabulated on pages 40–41 of [32]. Out of 1
2 ·385 ·384 = 73920

pairs of X -coordinates, 2520 have Poisson bracket ±1 while 833 have Poisson bracket zero.

5.1.3 The Cobracket and Bloch Groups

We recall that the algebra A of generalized polylogarithm functions admits a coproduct giving it

the structure of a Hopf algebra [123]. When we work with the quotient space L of polylogarithm

functions modulo products of functions of lower weight, the coproduct descends onto the quotient

space to a cobracket δ which satisfies δ2 = 0. We review here only the barest essentials, and refer

the reader to [32, 46] for additional details.
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The cobracket of a weight-4 function has two components,

δL4 ∈ (B3 ⊗ C∗)⊕ (B2 ∧B2) , (5.1.16)

where the Bloch group Bk is, for our purposes, the free abelian group generated by functions of the

form {x}k ≡ −Lik(−x), where Lik is the classical polylogarithm function and x is a function on

Confn(P3) which is rational in Plücker coordinates.

The fact that δ2 = 0 and that δ has trivial cohomology means that if a ∈ B3⊗C∗ and b ∈ B2∧B2,

then there exists a function f whose cobracket components are a⊕b if and only if δ31(a)+δ22(b) = 0.

As explained in [46], this condition can be used to explicitly enumerate cluster functions, at least on

algebras of finite type. For such algebras B3 ⊗ C∗ and B2 ∧B2 are finite dimensional vector spaces

on which δ acts linearly, so the space of cluster A-functions is simply the kernel of δ.

At weight 4 a general polylogarithm can be expressed in terms of the classical functions Lik if and

only if its B2∧B2 cobracket component vanishes. We will often be interested in counting the number

of non-classical functions, since the classical ones (which correspond to solutions of δ31(a) = 0) are

trivial to enumerate. To answer this question we compute the dimension of the subspace of B2 ∧B2

such that the equation δ31(a) + δ22(b) = 0 is solvable for some a ∈ B3 ⊗ C∗.

One final piece of terminology concerns the interplay between the Poisson structure on the

Grassmannian cluster algebras and the cobracket of polylogarithm functions. We recall that two

cluster X -coordinates x, y have {log x, log y} ∈ Z only if there exists a cluster containing either x

or 1/x, and either y or 1/y. As reviewed in [32], the combinatorics of mutations is encoded in a

graph called the (generalized) Stasheff polytope associated to the algebra. We therefore say that a

function has “Stasheff local” B2 ∧ B2 if it can be expressed as a linear combination of terms of the

form {x}2 ∧{y}2 for pairs having integer Poisson bracket (for Gr(4, 6) and Gr(4, 7), this integer will

always be in the set {−1, 0,+1}).

5.2 The Cluster Structure of Hexagon Functions at Weight 4

5.2.1 Setup

In this section we consider cluster functions on the A3
∼= Gr(4, 6) cluster algebra. The term “cluster

A-function” introduced in [46] refers, in the present application, to an integrable symbol written in

the 9-letter alphabet of cluster coordinates (specifically, this means any multiplicatively independent

set of X -coordinates; or equivalently, homogeneous ratios of A-coordinates) on Gr(4, 6).
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Any linear combination of cluster A-functions with the property that only the three variables

u, v, w appear in the first-entry of the symbol, reflecting the physically allowed branch points for

a scattering amplitude [36], is called a “physical function” or, following the terminology of [50], a

“hexagon function”. These have been studied through high weight in the series of papers [48, 49, 50,

51, 62, 60, 70], but we restrict our analysis to weight 4 as our aim is to explore connections between

the cobrackets and the cluster Poisson structure of these functions.

Let Ak denote the vector space of all weight-k cluster A-functions. Such functions are easy to

count for any Am type cluster algebra (see [124, 140]); for A3 we have the generating function

fA3
(t) = 1 +

∞∑
k=1

tk dim(Ak) =
1

1− 2t

1

1− 3t

1

1− 4t
, (5.2.1)

so that

dim(Ak) = 9, 55, 285, 1351, . . . k = 1, 2, 3, 4, . . . . (5.2.2)

Let Lk denote the quotient of Ak by products of functions of lower weight. The number of such

functions can be computed by taking the plethystic logarithm of the generating function fA3
(t) (see

for example [141]), which gives

dim(Lk) = 9, 10, 30, 81, . . . k = 1, 2, 3, 4, . . . . (5.2.3)

Finally we denote by Bk the subspace of Lk generated by the classical polylogarithms (we do not

yet restrict their arguments to be cluster X -coordinates). We have

dim(Bk) = 10, 30, 45, . . . k = 2, 3, 4, . . . . (5.2.4)

For k < 4 the agreement with (5.2.3) reflects the fact that all such generalized polylogarithms can be

expressed in terms of the classical functions; for higher k these numbers can be obtained by choosing

a basis for Lk and computing dim ker δ as described in the previous section.

5.2.2 The Non-Classical Functions

Beginning at k = 4 we can distinguish between classical and non-classical functions. At weight

k = 4, the “non-classicalness” of a function is completely characterized by its B2 ∧ B2 cobracket

component (see for example [32]). Since B2 has dimension 10 according to (5.2.4), B2∧B2 evidently

has dimension 45. However, a random element of this vector space is not guaranteed to be the B2∧B2
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cobracket component of any cluster A-function—there is a nontrivial integrability constraint.

In fact, by comparing (5.2.4) to (5.2.3) we see that there are 81 functions in all, minus 45 classical

functions, for a total of 36 non-classical functions. We conclude that in the 45-dimensional space

B2 ∧B2 spanned by objects of the form {x}2 ∧{y}2, for cluster coordinates x and y, only the linear

combinations lying in a particular 36-dimensional subspace correspond to cobracket components of

actual cluster A-functions.3 We will shortly characterize this 36-dimensional space completely.

Let us write PB0 to denote the subspace of B2 ∧B2 spanned by objects of the form {x}2 ∧ {y}2
for pairs having Poisson bracket {log x, log y} = 0. In what follows we will for example say that a

function “lives in PB0” if its B2 ∧B2 cobracket component can be expressed in terms of such pairs.

Similarly, let PB1 be the subspace spanned by pairs having Poisson bracket 1, and let us also use the

shorthand PB∗ = B2∧B2, meaning that the Poisson bracket can be anything. We found in (5.1.13)

and (5.1.14) that there are respectively 3, 30 pairs with Poisson bracket 0, 1. It is simple to check

that the corresponding elements are linearly independent in B2 ∧B2, so we have that dimPB0 = 3

and dimPB1 = 30, while of course dimPB∗ = dimB2 ∧B2 = 45.

With this notation in hand let us now summarize our findings on the 36 non-classical cluster

A-functions at weight four, which we find fall into two broad groups:

(A) 6 of these functions are the “A2 cluster functions” introduced in [46]. There is one such

function for each A2 subalgebra of A3; these subalgebras and the associated functions are represented

visually in equation (4.3) of that paper. These six functions have additional “cluster structure”: their

B3 ⊗ C∗ cobracket components can be expressed entirely in terms of cluster X -coordinates—this

means that they are “cluster X -functions” in the terminology of [46]. General elements of this six-

dimensional space are not Stasheff local—their B2∧B2 cobracket components are not expressible in

terms of pairs of coordinates with Poisson bracket 0,±1. Only one particular linear combination of

these 6—the one called the A3 function in [46]—has a nice B2 ∧ B2, in fact lying inside PB0. The

B2 ∧B2 cobracket component of this A3 function is

3∑
i=1

{x+
i }2 ∧ {x−i }2 . (5.2.5)

This quantity is parity-odd so it cannot possibly appear in the two-loop six-point MHV remainder

function, which is parity-even. This “explains” why the hypothesis that two-loop MHV remainder

functions must live in PB0, which we know to be true for all n [47], implies that the case n = 6

3Linear combinations which fall outside this 36-dimensional subspace are certainly integrable [142], but they
integrate to functions with symbols involving letters which are not cluster coordinates, for example differences of
X -coordinates xi − xj , which does not in general factor into a product of cluster coordinates. Hence they are not
cluster A-functions.
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must be classical.

(B) The remaining 30 functions are sort of the opposite: no linear combination of these 30 has

a B3 ⊗ C∗ content which can be expressed entirely in terms of X -coordinates, so none of them are

cluster X -functions. On the other hand, all of them are Stasheff local—they all have “nice” B2 ∧B2,

in fact they span exactly the 30-dimensional subspace PB1 ⊂ B2 ∧B2.

5.2.3 The Physical (Hexagon) Functions

Dixon et. al. find that there are precisely 15 functions at weight 4 (modulo products of functions

of lower weight) satisfying the first-entry condition, which they call hexagon functions. Let us put

aside 9 which are purely classical and focus on the two types of functions named Ω2 and F1 in [50].

(A) The function F1 is parity-odd and comes in three cyclic permutations (i.e., i → i+2 and

i→ i+4). These functions are rather interesting; each of them has a B2 ∧B2 coproduct component

given by (5.2.5) plus additional terms which cannot be expressed in terms of pairs having simple

Poisson bracket. Since (5.2.5) is invariant under i→ i+2, we can throw out these terms by taking the

difference between any two pairs of the three permutations of F1. Indeed such linear combinations

have appeared in the literature, as in (B.18) and (B.20) of [50] which define the function Ṽ by

8Ṽ = −F1(u, v, w) + F1(w, u, v) + products of lower-weight functions. (5.2.6)

Hence only two of the three distinct cyclic permutations of Ṽ are linearly independent.

(B) Next we look at the parity-even function Ω2 which also comes in three cyclic permutations.

At the level of B2 ∧ B2, where we can ignore all terms involving only classical polylogarithms, the

function Ω2 is equivalent (modulo an overall multiplicative factor) to the function called V by Dixon

et. al.; see for example (7.1) through (7.3) of [48]. In that paper it was also observed that the three

cyclic permutations of this function add up to a purely classical function, so the three different

permutations of V span only a two-dimensional subset of B2 ∧B2.

To summarize, we find that the subspace of B2 ∧ B2 spanned by physical (hexagon) functions

has dimension 5. Two dimensions are spanned by the parity-even functions of type V , while three

dimensions are spanned by the parity-odd functions of type F1. Although a generic vector in the

three-dimensional parity-odd subspace has terms with “bad” Poisson brackets, there is something

especially nice about the subspace spanned by the permutations of V and Ṽ together. To see this

we exhibit here a formula for their cobracket components, which we find are most simply packaged
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in the formula

δ|2,2(V + Ṽ ) =
1

2
{v2}2 ∧ {x−1 }2 −

1

2
{v1}2 ∧ {x−3 }2 −

1

2
{x+

1 }2 ∧ {v3}2 +
1

2
{x+

2 }2 ∧ {v1}2. (5.2.7)

Since V , Ṽ have parity even and odd, respectively, δ|2,2(V − Ṽ ) is given by the same formula but

with x± → x∓. We now see that each term in (5.2.7) involves only the PB1 pairs listed in (5.1.14)!

Moreover, it is trivial to check directly from (5.2.7) and the cyclic transformations (5.1.11) that the

six functions V , Ṽ altogether span only a four-dimensional subspace of PB1.

5.2.4 Summary

The results of this section can be summarized in the following classification of weight-4 cluster

functions on A3
∼= Gr(4, 6):

There are a total of 81 irreducible weight-four cluster A-functions

�

45 classical, 10 of which are physical

�

36 non-classical, 5 of which are physical (three permutations of F1 and two of Ω2)
�

30 PB1 functions, 4 of which are physical (two permutations each of V, Ṽ )

�

6 A2 functions; these are all of the cluster X -functions

�

1 PB0 function, the A3 function

�

5 PB∗ functions

Let us emphasize that these numbers count only irreducible functions, and that starting from the

third line they moreover count functions modulo the classical function Li4 (i.e., the numbers refer

to dimensions of subspaces of B2 ∧B2). When we say that a function is physical modulo additional

terms, we mean that it is possible to choose the additional terms to render the function physical.

5.2.5 The Two-Loop Hexagon MHV Amplitude

Let us now comment on the relevance of these functions to the two-loop six-point MHV remainder

function R(2)
6 , which was found to be expressible in terms of the classical polylogarithm functions

Lik in [35] (a fact that we “explained” below (5.2.5)). In fact, this amplitude is even more special

because it is a cluster X -function, which means that it can be expressed in entirely in terms of the

Lik(−x); the Lik(1 + x) and Lik(1 + 1/x) functions, whose B3 ⊗ C∗ cobracket components are not
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expressible in terms of cluster X -coordinates, are not needed [32].

Above we tabulated our finding that (modulo products of lower-weight functions) there are only

10 physical and classical polylogarithms at weight four. In this space we now search for functions

whose coproducts are expressible entirely in terms of the Lik(−x). We find that there is a unique

linear combination that is invariant under the discrete symmetries (parity and dihedral invariance)

that MHV amplitudes must possess. That linear combination is proportional to the two-loop MHV

remainder function

R
(2) MHV
6 =

3∑
i=1

[
Li4(−x+

i ) + Li4(−x−i )− 1

2
Li4(−vi)

]
+ products of lower-weight functions, (5.2.8)

in agreement with the known result [35]. (This argument, of course, does not fix the overall coeffi-

cient.) Of course, in this case it is very well known that the product terms are also completely fixed

by simple considerations, but our focus in this chapter is on the leading term.

5.2.6 The Two-Loop Hexagon NMHV Amplitude

The n = 6 NMHV two-loop ratio function is given by [48]

P(2)
6,NMHV = [23456][V (u, v, w) + Ṽ (yu, yv, yw)] + cyclic (5.2.9)

where [23456] is the R-invariant

[abcde] =
δ4 (χa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉 (5.2.10)

and V , Ṽ are the two generalized polylogarithm functions of uniform transcendental weight four

reviewed in Section 3.3 above. These two functions were computed explicitly in [48] (see also [140]

for a different presentation of these functions). The B2 ∧ B2 component of the cobracket of this

amplitude was computed in (5.2.7), where it was found to be expressible entirely in terms of pairs

living in PB1
4.

The NMHV ratio function provides us (at the level of B2 ∧ B2) with a total of four linearly

independent non-classical functions of weight 4 (as reviewed above, each of V and Ṽ comes in three

cyclic permutations, but the cyclic sum of each is separately zero inside B2 ∧B2). We see from the

summary in Section 5.2.4 that precisely 5 functions of this type exist. Only four linear combinations
4This observation was first made by C. Vergu [138].

88



of them, however, actually appear in the amplitude—these are precisely the four linear combinations

which live in PB1! The one additional non-classical weight-4 hexagon function which exists but does

not appear in the amplitude, F1 by itself, has terms with “bad” Poisson brackets (i.e., non-Stasheff

local terms) in its B2 ∧B2 content.

5.3 The Cluster Structure of Heptagon Functions at Weight 4

5.3.1 Setup

In this section the term “cluster function” refers to an integrable symbol written in the 42-letter al-

phabet of cluster coordinates on Gr(4, 7). Any linear combination of such symbols with the property

that only the Plücker coordinates of the form 〈i i+1 j j+1〉 appear in the first entry of the symbol,

reflecting the physically allowed branch points for a scattering amplitude, is called (the symbol of) a

“physical function” or a “heptagon function” following the terminology of [61] where they have been

studied through weight six. The analysis here, where we aim to make finer statements about the

connection to the Poisson bracket of the cluster algebra, is again restricted to weight 4, of relevance

to two-loop amplitudes.

Let Ak denote the vector space of all weight-k functions. In contrast to the Am cluster algebras

and the example shown in (5.2.1), we do not know of any generating function which counts the

number of cluster functions for the E6 algebra. These may be tabulated through weight 3 by explicit

enumeration, but at higher weight these numbers must be computed by analyzing the integrability

constraint. This boils down to a linear algebra problem, since counting the number of cluster

functions at weight k is the same as finding how many linear combinations of the 42k weight-k

symbols satisfy the integrability constraint. (This calculation can be rendered more manageable by

imposing integrability at the level of the cobracket rather than at the level of the symbol.) We have

carried this out at k = 4 to find that

dim(Ak) = 42, 1035, 19536, 312578, . . . k = 1, 2, 3, 4, . . . . (5.3.1)

Let Lk denote the quotient of Ak by products of functions of lower weight. As in (5.2.3) taking the

plethystic logarithm [141] gives

dim(Lk) = 42, 132, 748, 4193, . . . k = 1, 2, 3, 4, . . . . (5.3.2)
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Finally we denote by Bk the subspace of Lk generated by the classical polylogarithms (we do not

yet restrict their arguments to be cluster X -coordinates). We have

dim(Bk) = 132, 748, 1155, . . . k = 2, 3, 4, . . . . (5.3.3)

As mentioned before, agreement of these numbers with (5.3.2) is guaranteed for k < 4, and we

obtained the value 1155 for k = 4 by computing dim ker δ as described in Section 2.

Before we turn to weight 4, a minor interesting comment about k = 3 is in order. It is simple to

write down classical cluster functions of the form Lik(−x), Lik(1+x) and Lik(1+1/x) for any weight

k, where x runs over the set of 385 X -coordinates. For k = 3, this set of functions is overcomplete

due to the identity

Li3(−x) + Li3(1 + x) + Li3(1 + 1/x) = 0 mod products of lower-weight functions. (5.3.4)

Among the 385 functions of type Li3(−x) there are exactly 22 additional linear relations. These

were discovered in [32], where they were called D4 identities since the simplest manifestation of this

identity occurs for theD4 algebra. Altogether then these identities account for the 3×385−385−22 =

748 linearly independent weight-3 cluster A-functions tabulated in (5.3.2).

5.3.2 The Non-Classical Functions

Let us now repeat the analysis done in the beginning of Section 5.2.2 for the E6 algebra. Since

B2 has dimension 132, B2 ∧ B2 has dimension 8646. We again use the notation PB0, PB1, and

PB∗ = B2 ∧B2 to denote the subspaces spanned by elements of the form {x}2 ∧ {y}2 for pairs x, y

having Poisson bracket 0, ±1, or “anything.” We find that PB0 has dimension 455 and PB1 has

dimension 2520.

A quick glance at (5.3.2) and (5.3.3) reveals that there are 4193 − 1155 = 3038 non-classical

cluster functions at weight k = 4. We find that these fall into three groups:

(A) First, there are the A2 functions. We recall from (for example) [32] that E6 has 1071 A2

subalgebras, so one can construct 1071 A2 functions according to the definition given in [46], but

only 448 of these are linearly independent inside B2 ∧ B2
5. These functions are moreover cluster

X -functions: their B3 ⊗ C∗ cobracket components can be expressed entirely in terms of cluster X -

coordinates, but their B2 ∧B2 content is, in general, not Stasheff local—not expressible in terms of
5This result was first obtained in the undergraduate thesis of A. Scherlis.

90



pairs with Poisson bracket 0,±1.

There are no linear combinations of these 448 functions which live in PB1—these are covered in

(B) just ahead—but we find that 195 linear combinations live in PB0. This 195-dimensional space

is spanned by the set of A3 functions associated to the various A3 subalgebras of E6.

(B) There are 2520 functions which span the 2520-dimensional subspace PB1 ⊂ B2 ∧ B2. We

found the same phenomenon in the six-point case discussed in the previous section. There we

furthermore found that no linear combination of these PB1 functions had a B3 ⊗ C∗ component

that could be expressed entirely in terms of X -coordinates. We have not repeated this analysis for

the 2520 seven-point functions; the computation seems formidable.

(C) There are an additional 3038 − 448 − 2520 = 70 functions which we can tabulate explicitly

(at least at the level of their cobrackets), but seem to have no nice characterization.

5.3.3 The Physical (Heptagon) Functions

It was found in [61] that there are precisely 1288 functions at weight 4 satisfying the first-entry

condition, which are called physical, or heptagon functions. We have computed the B2∧B2 cobracket

of each of them, and found that there are only 126 non-zero linear combinations. This means that

there are 1162 classical heptagon functions and 126 non-classical heptagon functions at weight 4.

We have found that these 126 heptagon functions fall into three types:

(A) A total of 105 of these functions live in PB0; they come in 15 families related by cyclic

permutations.

(B) A total of 14 of these functions live in PB1; they come in 2 families related by cyclic

permutations.

(C) There is one remaining family of 7 functions related by cyclic permutations. No linear

combination of these is Stasheff local (i.e., lives within the union of PB0 and PB1).
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5.3.4 Summary

The results of this section can be summarized in the following classification of weight-4 cluster

functions on E6
∼= Gr(4, 7):

There are a total of 4193 irreducible weight-four cluster A-functions

�

1155 classical, 770 of which are physical

�

3038 non-classical, 126 of which are physical

�

2520 PB1 functions, 105 of which are physical

�

448 A2 functions; these are all of the cluster X -functions

�

195 PB0 function, 14 of which are physical

�

253 PB∗ functions

�

70 other PB∗ functions

Again let us emphasize that these numbers count only irreducible functions, and that starting from

the third line they moreover count functions modulo the classical function Li4 (i.e., the numbers refer

to dimensions of subspaces of B2 ∧B2). When we say that a function is physical modulo additional

terms, we mean that it is possible to choose the additional terms to render the function physical.

5.3.5 The Two-Loop Heptagon MHV Amplitude

The symbol of the two-loop seven-point MHV remainder function R(2)
7 was computed in [110], and

its cobracket was computed in [32], where it was observed to be a cluster X -function living in PB0.

An analytic formula for R(2)
7 was obtained in [112] and checked against the earlier numerical results

of [143].

If we start from the hypothesis that R(2)
7 should be a cluster X -function living in PB0, then we

see from the above chart that there are only 14 physical functions with these properties. It was

shown in [47] that only one linear combination of these has the dihedral symmetry required of the

amplitude, is well-defined in the collinear limit, and satisfies the “last-entry” condition [110] required

by supersymmetry.

In fact these constraints, while all true, are vastly stronger than necessary to pin down R
(2)
7 :

in [61] it was found that the symbol of R(2)
7 is the unique weight-4 heptagon function (up to an

overall multiplicative factor) which is well-defined in all i+1 ‖ i collinear limits!
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5.3.6 The Two-Loop Heptagon NMHV Amplitude

The symbol of the seven-point 2-loop NMHV ratio function P(2)
7,NMHV was first computed in [89]. It

may be expressed as a linear combination of the 21 seven-point NMHV R-invariants (of which 15 are

linearly independent), with coefficients that have uniform transcendentality weight 4. Due to the

linear relations between R-invariants there is some freedom in how to represent the amplitude (i.e.,

one can shift terms from one transcendental function to another by adding zero to the amplitude in

various ways).

Despite this freedom, we find that it impossible to write the B2 ∧B2 cobracket of this amplitude

in a Stasheff local manner, i.e. in terms of {x}2 ∧ {y}2 for pairs x, y having Poisson bracket 0,±1.

The local terms having “good” Poisson brackets may be expressed (in one particular representation

of the amplitude) as

δ22P(2)
7,NMHV|“good” = (f12R12 + f13R13 + f14R14) + cyclic, (5.3.5)

where the quantities f12, f13 and f13 are presented explicitly in the appendix, and Rij is the R-

invariant whose arguments are 1234567 (in that order) but with i and j omitted—this is the same

as the notation used in [48]. Meanwhile the “bad” terms are given by:

δ22P(2)
7,NMHV|“bad” = (R25 −R26 +R37 −R47)B1 + cyclic (5.3.6)

in terms of a single element B1 ∈ B2∧B2 (also given in the appendix) which is not expressible solely

in terms of pairs having Poisson bracket zero or one.

In fact we can point our finger directly at the “offending” function corresponding to B1 in the

summary presented at the end of Section 5.3.4. There we found that of the 126 non-classical weight-4

heptagon functions, 105 live in PB1 while 14 live in PB0, leaving 127− 105− 14 = 7 unaccounted

for. These other seven functions have B2∧B2 cobracket components given exactly by B1 in its seven

cyclic arrangements.

5.4 Conclusion

In this chapter we have studied in detail the taxonomy of weight-4 cluster functions on the cluster

algebras relevant for 6- and seven-point amplitudes in planar SYM theory. In particular we have

counted the numbers of linearly independent functions satisfying various mathematical constraints
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on their cobrackets, and the physical “first-entry” constraint which specifies the locations where

amplitudes are permitted to have branch points on the principal sheet. These results are summarized

in Sections 5.2.4 and 5.3.4.

For n = 6 the story is very simple: there is no non-classical weight-4 generalized polylogarithm

function which is consistent with the discrete symmetries of the MHV amplitude and whose B2∧B2

cobracket component is expressible in terms of pairs of cluster X -coordinates having Poisson bracket

0. This “explains” why the two-loop six-point MHV remainder function “must be” expressible in

terms of classical polylogarithms [35].

Meanwhile, there are precisely 4 linearly independent non-classical functions which satisfy the

first-entry condition and are Stasheff local (they have B2∧B2 cobracket components are expressible

in terms of pairs of cluster X -coordinates having Poisson bracket 1). These are precisely the (non-

classical parts of the) 4 independent functions which appear in the two-loop six-point NMHV ratio

function [48].

For n = 7, as has already been observed in [47, 61], the cobracket (indeed, the whole symbol) of

the two-loop MHV amplitude is uniquely determined by a simple list of mathematical and physical

constraints. However the story for the two-loop NMHV ratio function is a little more complicated.

We find that the cobracket of this amplitude is not expressible in a Stasheff local manner (that

means, in terms of pairs having Poisson bracket 0,±1). It would be very interesting to learn if there

is some other question one may ask about the cluster structure of this amplitude, to which a more

affirmative answer may be given. We expect to be the case since it is known that there is a cluster

structure at the level of the integrand (aspects of which have been explored in [73, 144]), of which

some echo ought to remain for integrated amplitudes.

One of our results might be of more mathematical than physical interest. For both the A3 and E6

cluster algebras, we find that for any pair of X -coordinates with Poisson bracket {log x, log y} = 1,

there exists a weight-4 cluster A-function (that is, an integrable symbol whose letters are drawn

from the alphabet of cluster coordinates) whose B2 ∧ B2 cobracket component is {x}2 ∧ {y}2. It

would be interesting to learn if there is a mathematical explanation for this fact, and whether it is

valid for more general cluster algebras (in particular, for ones of infinite type). In contrast, pairs

of X -coordinates having Poisson bracket 0 are rarely integrable in this manner; the two-loop MHV

amplitudes of planar SYM theory remarkably provide functions of this relatively rare type.

In the introduction to this chapter we mentioned that in previous work including [47] it has

been remarked that the mathematical and physical constraints on MHV amplitudes seem almost

orthogonal. This is both good and bad. On the one hand it is good to discover a short list of
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simple criteria which uniquely, or almost uniquely, determine an amplitude of interest—this is the

core goal of the S-matrix program. On the other hand it is bad when there is no known formalism

which simultaneously manifests both types of constraints. We do not yet know of any way, besides

explicit enumeration, to actually identify and write down functions satisfying both the physical

and mathematical we expect amplitudes to possess. Explicit results for higher loop planar SYM

amplitudes remain, at least for the moment, difficult needles to find.
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Appendix A

The BDS and BDS-like Ansätze

The BDS ansatz [28] for the n-particle MHV amplitude (with the Parke-Taylor tree amplitude scaled

out) is given by

Mn ≡
An

A
(0)
n

= exp

[ ∞∑
L=1

aL
(
f (L)(ε)

1

2
M (1)
n (Lε) + C(L)

)]
(A.0.1)

with

f (L)(ε) = f
(L)
0 + εf

(L)
1 + ε2f

(L)
2 , (A.0.2)

and where ε is the dimensional regularization parameter in D = 4− 2ε. Here f (L)
0 is the planar cusp

anomalous dimension with

f
(L)
0 =

1

4
γ

(L)
K =

1

2
Γ(L)

cusp , (A.0.3)

according to the definition (4.1.24). However, note that in the above relation the superscript L refers

to coefficients in the expansion with respect to a = 2g2, and not g2.

For n = 7, the BDS ansatz takes the form

ABDS
7 = A

MHV(0)
7 exp

[ ∞∑
L=1

aL
(
f (L)(ε)

1

2
M

(1)
7 (Lε) + C(L)

)]
. (A.0.4)

Here we have explicitly factored out 1/2 from the definition of M (1)
7 (ε) appearing in the original

BDS paper. The seven-particle one-loop MHV amplitude (again with the tree amplitude scaled out)

appearing in the BDS ansatz is given by

M
(1)
7 (ε) = − 1

ε2

7∑
i=1

(
µ2

−si,i+1

)ε
+ F

(1)
7 (0) +O(ε) (A.0.5)
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where

F
(1)
7 (0) =

7∑
i=1

[
− log

( −si,i+1

−si,i+1,i+2

)
log

( −si+1,i+2

−si,i+1,i+2

)
+D7,i + L7,i +

3

2
ζ2

]
(A.0.6)

with

D7,i = −Li2

(
1−si,i+1 si−1,i,i+1,i+2

si,i+1,i+2 si−1,i,i+1

)
(A.0.7)

and

L7,i = −1

2
log

( −si,i+1,i+2

−si,i+1,i+2,i+3

)
log

( −si+1,i+2,i+3

−si−1,i,i+1,i+2

)
. (A.0.8)

Notice that all of the dependence on the three-particle Mandelstam invariants is contained within

F
(1)
7 (0), so we will focus on determining its dependence. We can replace the four-particle invariants

with three-particle invariants in both D7,i and L7,i. The two equations then become

D7,i = −Li2

(
1− si,i+1si+3,i+4,i+5

si,i+1,i+2si−1,i,i+1

)
, L7,i = −1

2
log

(
si,i+1,i+2

si+4,i+5,i+6

)
log

(
si+1,i+2,i+3

si+3,i+4,i+5

)
. (A.0.9)

At this point, it is convenient to switch to the n = 7 dual conformal cross ratios ui, defined in

terms of the Mandelstam variables by

ui = ui+1,i+4 =
si+2,i+3 si+5,i+6,i+7

si+1,i+2,i+3 si+2,i+3,i+4
, (A.0.10)

where all indices are understood mod 7. We can see from this definition that D7,i can be ex-

pressed simply in the ui variables as D7,i = −Li2 (1−ui−2). Using the dilogarithm identity Li2(z) +

Li2(1−1/z) = − 1
2 log2 z, we then rewrite D7,i = Li2 (1−1/ui−2) + 1

2 log2 ui−2, and express F (1)
7 (0)

as

F
(1)
7 (0) =

7∑
i=1

[
− log

(
si,i+1

si,i+1,i+2

)
log

(
si+1,i+2

si,i+1,i+2

)
+ Li2 (1−1/ui) +

1

2
log2 ui

−1

2
log

(
si,i+1,i+2

si+4,i+5,i+6

)
log

(
si+1,i+2,i+3

si+3,i+4,i+5

)
+

3

2
ζ2

]
.

(A.0.11)

After some algebra, F (1)
7 (0) can be shown to be

F
(1)
7 (0) =

7∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

+ log si,i+1 log

(
si,i+1si+3,i+4

si+1,i+2si+2,i+3

)
+

3

2
ζ2

]
. (A.0.12)
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In this form, we have conveniently isolated all of the three-particle invariants in the first two terms.

Now we would like to factor out the three-particle invariants from F
(1)
7 (0) because this removes

their dependence from M
(1)
7 as well. We define the function

Y7 = −
7∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
(A.0.13)

so that adding the term Y7 removes the three-particle invariants from M
(1)
7 :

M̂
(1)
7 (ε) ≡ M

(1)
7 (ε) + Y7

=

7∑
i=1

[
− 1

ε2

(
µ2

−si,i+1

)ε
+ log si,i+1 log

(
si,i+1 si+3,i+4

si+1,i+2 si+2,i+3

)
+

3

2
ζ2

]
. (A.0.14)

The BDS-like ansatz is defined to be the BDS ansatz with M (1)
7 replaced by with M̂ (1)

7 , which does

not depend on any three-particle invariant:

ABDS-like
7 = A

MHV(0)
7 exp

[ ∞∑
L=1

aL
(
f (L)(ε)

1

2

(
M

(1)
7 (Lε) + Y7

)
+ C(L)

)]
, (A.0.15)

Factoring out the BDS ansatz explicitly, we have

ABDS-like
7 = ABDS

7 exp

[ ∞∑
L=1

aL

2

(
f (L)(ε)Y7

)]
. (A.0.16)

Recall that in the BDS ansatz formulation, the limit ε → 0 is taken. Since Y7 is independent of ε,

we can set ε→ 0 in eq. (A.0.2) and rewrite the BDS-like ansatz as simply

ABDS-like
7 = ABDS

7 exp

[
Y7

4

∞∑
L=1

aLΓ(L)
cusp

]
, (A.0.17)

where we have used the definition (A.0.3). After introducing Γcusp =
∑∞
L=1 a

LΓ
(L)
cusp, defined in

eq. (4.1.24), we finally arrive at a simple representation of the BDS-like ansatz as a function of the

BDS ansatz, the cusp anomalous dimension Γcusp, and Y7,

ABDS-like
7 = ABDS

7 exp
[

Γcusp

4
Y7

]
. (A.0.18)

This result can be generalized to any n for which a suitable BDS-like ansatz exists, see eq. (4.1.21).
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Appendix B

A Matrix Approach For Computing

Integrable Symbols

We provide here a conceptually simple method for generating a basis of integrable symbols, given

the set of symbol letters on which they depend. This algorithm is iterative, and assumes that one

has seeded the algorithm with a basis at low weight. For general heptagon symbols, this seed is

provided at weight 1 by the first entry condition reviewed in section 4.2.3. It consists of the 7

weight-1 symbols corresponding to log a1i. For Steinmann heptagon symbols, the seed is provided

by the 28 weight-2 heptagon symbols of the functions shown in eq. (4.2.15).

Let B(k) denote a basis of symbols at weight k, and let bk = dimB(k). Let us also denote the

i-th element of B(k) by B(k)
i . Given B(k), we can make an ansatz for symbols of weight (k+1) of

the form
bk∑
i=1

|Φ|∑
q=1

ciq B
(k)
i ⊗ φq , (B.0.1)

where the sum over q runs over all letters in the symbol alphabet Φ, i.e. φq ∈ Φ, and the ciq are unde-

termined rational coefficients. The number of letters is denoted by |Φ|. The quantity (B.0.1) will be

the symbol of some weight-(k+1) function only if it satisfies the integrability constraints of eq. (4.2.8)

for all j. By construction, these constraints are automatically satisfied for j = 1, 2, . . . , k − 1, be-

cause the elements of B(k) are already valid, integrable symbols. It therefore remains only to impose

integrability in the final two entries at weight (k+1), i.e. for j = k.
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Each B(k)
i can of course be expressed as

B
(k)
i =

bk−1∑
j=1

|Φ|∑
p=1

fijp B
(k−1)
j ⊗ φp (B.0.2)

for some known coefficients fijp, so we can rewrite our ansatz as

bk∑
i=1

bk−1∑
j=1

|Φ|∑
p,q=1

ciqfijp B
(k−1)
j ⊗ φp ⊗ φq . (B.0.3)

Denoting

Fpq =

bk∑
i=1

bk−1∑
j=1

ciqfijp B
(k−1)
j , (B.0.4)

the quantity (B.0.2) satisfies integrability in the final two entries only if

|Φ|∑
p,q=1

Fpq d log φp ∧ d log φq = 0 , (B.0.5)

where the wedge product between two letters φp, φq that are functions of the independent variables

xi is defined as

d log φp ∧ d log φq =
∑
m,n

[
∂ log φp
∂xm

∂ log φq
∂xn

− ∂ log φp
∂xn

∂ log φq
∂xm

]
dxm ∧ dxn . (B.0.6)

The term in brackets above will be a rational function of the independent variables, which can be

turned polynomial by multiplying with the common denominator, without altering the equations

(B.0.5). Each independent polynomial factor of the xi times their differentials must vanish separately,

which leads to distinct rational equations for the Fpq. If the number of linearly independent equations

is r, then we may equivalently write eq. (B.0.5) as

|Φ|∑
p,q=1

FpqWpql = 0 , ∀l ∈ {1, 2, . . . , r} , (B.0.7)

in terms of a rational tensor Wpql. Taking the tensor product of the indices p, q we may think of

W as a |Φ|2 × r matrix, or rather a
(|Φ|

2

)
× r matrix after taking into account its antisymmetry in

p↔ q.

Since the B(k−1)
j are elements of the basis B(k−1) of weight-(k−1) symbols, they are linearly

independent. Each term in the sum over j in (B.0.4) must therefore vanish separately. In this

100



manner, we finally arrive at the following set of r× bk−1 linear constraints on the |Φ| × bk unknown

coefficients ciq:

bk∑
i=1

∑
p,q

ciqfijpWpql = 0 , ∀j ∈ {1, 2, . . . , bk−1} , l ∈ {1, 2, . . . , r} . (B.0.8)

We now specialize to the case of interest by adopting the 42-letter symbol alphabet presented in

eqs. (4.2.2) and (4.2.3). There are 132 vanishing linear combinations of the 861 objects d log φp ∧

d log φq, i.e. there are 132 irreducible weight-2 integrable symbols (these are in correspondence with

elements of the so-called Bloch group B2; see for example ref. [32]). This means that there are

r = 861 − 132 = 729 nontrivial integrability constraints for the heptagon symbol alphabet. In

solving the linear constraints (B.0.8) for the ciq, we are free to replace W by any matrix which spans

the same image as W without changing the content of the constraints. It is highly advantageous

to choose a basis for the image of W that is as sparse as possible, and which has numerical entries

as simple as possible. In our bootstrap we used a representation of the image of W as a 861× 729

matrix1 with only 1195 nonzero entries having values ±1.

Finally, then, the integrability constraints shown in eq. (B.0.8) take the form of 729 bk−1 linear

equations on the 42 bk unknowns ciq. Finding a basis for the nullspace of this 729 bk−1× 42 bk linear

system provides a basis for B(k+1), the integrable symbols at weight k + 1. For the purposes of the

Steinmann heptagon bootstrap, we have further cut down the weight-2 basis yielded by this proce-

dure to only those 28 symbols that satisfy the Steinmann relations before proceeding to weight 3.

We have carried out the large linear algebra problems necessary for the heptagon bootstrap with the

help of the SageMath system [145], which employs the IML integer matrix library [146]. As a double

check, we also fed the weight-7 integrability constraint matrix into A. von Manteuffel’s FinRed pro-

gram, which independently generated a basis for the 9570-dimensional weight-7 Steinmann heptagon

space reported in table 4.1.

B.1 Two-Loop Heptagon NMHV Coproduct Data

In the first three subsections we list the Stasheff local contributions to the B2 ∧ B2 cobracket

component of the two-loop heptagon NMHV ratio function, in terms of the quantities f12, f13,

and f14 appearing in (5.3.5). Specifically, these contain all terms of the form {x}2 ∧ {y}2 for pairs

x, y having Poisson bracket 0,±1. The additional “bad” contributions to the cobracket are shown
1To orient the reader already familiar with the hexagon bootstrap: there the symbol alphabet has size |Φ| = 9,

and there are 10 irreducible weight-2 integrable symbols, so the W matrix for the hexagon alphabet has size 36× 26.
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in (5.3.6) and given explicitly in the fourth subsection.

B.1.1 f13

This function is cyclically invariant and lives entirely in PB1. We find

δ22f13 =
1

7

({ 〈1367〉〈2347〉
〈1237〉〈3467〉

}
2

∧
{ 〈1367〉〈2347〉〈4567〉
〈1467〉〈2367〉〈3457〉

}
2

−
{ 〈1247〉〈1256〉
〈1245〉〈1267〉

}
2

∧
{ 〈1245〉〈1567〉
〈1257〉〈1456〉

}
2

+

{ 〈1256〉〈2345〉
〈1235〉〈2456〉

}
2

∧
({ 〈1236〉〈1245〉
〈1234〉〈1256〉

}
2

−
{ 〈1235〉〈1567〉〈2456〉
〈1257〉〈1456〉〈2356〉

}
2

)
+

{ 〈1247〉〈1345〉
〈1234〉〈1457〉

}
2

∧
({ 〈1345〉〈1467〉
〈1347〉〈1456〉

}
2

−
{ 〈1245〉〈1467〉
〈1247〉〈1456〉

}
2

)
+

({ 〈1247〉〈1345〉〈1567〉
〈1257〉〈1347〉〈1456〉

}
2

−
{ 〈1247〉〈1256〉〈1345〉
〈1234〉〈1257〉〈1456〉

}
2

)
∧
({
− 〈1267〉〈1345〉
〈1(27)(34)(56)〉

}
2

+

{
− 〈1237〉〈1456〉
〈1(27)(34)(56)〉

}
2

)
+

({ 〈1247〉〈1256〉〈1346〉
〈1234〉〈1267〉〈1456〉

}
2

−
{ 〈1237〉〈1345〉〈1567〉
〈1257〉〈1347〉〈1356〉

}
2

)
∧
{
− 〈1234〉〈1567〉
〈1(27)(34)(56)〉

}
2

)
+ cyclic.

B.1.2 f12

If we first define the quantity X1 by

X1 =

{ 〈1367〉〈2347〉
〈1237〉〈3467〉

}
2

∧
{ 〈1267〉〈3467〉
〈1467〉〈2367〉

}
2

+

{ 〈1467〉〈2347〉
〈1247〉〈3467〉

}
2

∧
{ 〈1347〉〈4567〉
〈1467〉〈3457〉

}
2

−
{ 〈1247〉〈1345〉
〈1234〉〈1457〉

}
2

∧
{ 〈1245〉〈3457〉
〈1457〉〈2345〉

}
2

−
{ 〈1457〉〈2347〉
〈1247〉〈3457〉

}
2

∧
{ 〈1347〉〈4567〉
〈1467〉〈3457〉

}
2

+

{ 〈1256〉〈2345〉
〈1235〉〈2456〉

}
2

∧
{ 〈1236〉〈1245〉〈2567〉
〈1235〉〈1267〉〈2456〉

}
2

−
{ 〈1267〉〈2356〉
〈1236〉〈2567〉

}
2

∧
{ 〈1236〉〈2345〉〈2567〉
〈1235〉〈2367〉〈2456〉

}
2

+

({ 〈1234〉〈1467〉〈3457〉
〈1247〉〈1345〉〈3467〉

}
2

−
{ 〈1245〉〈1467〉〈3457〉
〈1247〉〈1345〉〈4567〉

}
2

)
∧
{
− 〈1467〉〈2345〉
〈4(12)(35)(67)〉

}
2

+

{ 〈1467〉〈2367〉〈2457〉
〈1267〉〈2347〉〈4567〉

}
2

∧
{
− 〈1237〉〈4567〉
〈7(16)(23)(45)〉

}
2

−
{ 〈1467〉〈2367〉〈3457〉
〈1367〉〈2347〉〈4567〉

}
2

∧
{
− 〈1267〉〈3457〉
〈7(16)(23)(45)〉

}
2

+ 2

{ 〈1245〉〈2467〉〈3457〉
〈1247〉〈2345〉〈4567〉

}
2

∧
{
− 〈1234〉〈4567〉
〈4(12)(35)(67)〉

}
2
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and X2, . . . , X7 by taking i→ i+ 1, then we find

δ22f12 =
1

7
(3,−4, 3,−4, 3,−4, 3) · (X1, X2, X3, X4, X5, X6, X7)

+

{ 〈1237〉〈1246〉
〈1234〉〈1267〉

}
2

∧
({ 〈1246〉〈1345〉
〈1234〉〈1456〉

}
2

+

{ 〈1234〉〈1467〉〈3456〉
〈1246〉〈1345〉〈3467〉

}
2

+

{ 〈1467〉〈3456〉
〈1346〉〈4567〉

}
2

+

{ 〈1246〉〈1345〉〈4567〉
〈1245〉〈1467〉〈3456〉

}
2

)
+

{ 〈1457〉〈3456〉
〈1345〉〈4567〉

}
2

∧
({ 〈1234〉〈1457〉
〈1247〉〈1345〉

}
2

+

{ 〈1234〉〈1267〉〈1457〉
〈1237〉〈1245〉〈1467〉

}
2

+

{ 〈1237〉〈1467〉
〈1267〉〈1347〉

}
2

+

{ 〈1237〉〈1345〉〈1467〉
〈1234〉〈1367〉〈1457〉

}
2

+

{ 〈1257〉〈1456〉
〈1245〉〈1567〉

}
2

)
+

{ 〈1267〉〈2356〉
〈1236〉〈2567〉

}
2

∧
{ 〈1236〉〈2345〉〈3567〉
〈1235〉〈2367〉〈3456〉

}
2

−
{ 〈1247〉〈1345〉
〈1234〉〈1457〉

}
2

∧
{ 〈1247〉〈1567〉〈3457〉
〈1257〉〈1347〉〈4567〉

}
2

+

({ 〈1247〉〈1256〉〈1345〉
〈1234〉〈1257〉〈1456〉

}
2

+

{ 〈1257〉〈1347〉〈1456〉
〈1247〉〈1345〉〈1567〉

}
2

)
∧
{
− 〈1247〉〈1567〉〈3456〉
〈4567〉〈1(27)(34)(56)〉

}
2

+

({ 〈1235〉〈2367〉〈2456〉
〈1236〉〈2345〉〈2567〉

}
2

−
{ 〈1235〉〈1267〉〈2456〉
〈1236〉〈1245〉〈2567〉

}
2

)
∧
{
− 〈1236〉〈2345〉〈4567〉
〈3456〉〈2(13)(45)(67)〉

}
2

+

{ 〈1467〉〈3457〉
〈1347〉〈4567〉

}
2

∧
({ 〈1237〉〈1467〉
〈1267〉〈1347〉

}
2

−
{ 〈1267〉〈1347〉〈4567〉
〈1247〉〈1567〉〈3467〉

}
2

)
+

{ 〈2367〉〈3456〉
〈2346〉〈3567〉

}
2

∧
({ 〈1234〉〈2367〉
〈1237〉〈2346〉

}
2

+

{ 〈1234〉〈2367〉〈3456〉
〈1236〉〈2345〉〈3467〉

}
2

)
+

4

7

({ 〈1257〉〈1456〉〈2356〉
〈1235〉〈1567〉〈2456〉

}
2

∧
{
− 〈1235〉〈4567〉
〈5(17)(23)(46)〉

}
2

+

{ 〈1357〉〈1456〉〈2356〉
〈1235〉〈1567〉〈3456〉

}
2

∧
{
− 〈1567〉〈2345〉
〈5(17)(23)(46)〉

}
2

)
+

4

7

({ 〈1247〉〈1256〉〈1345〉
〈1234〉〈1257〉〈1456〉

}
2

∧
{
− 〈1237〉〈1456〉
〈1(27)(34)(56)〉

}
2

−
{ 〈1367〉〈2347〉〈3456〉
〈1347〉〈2346〉〈3567〉

}
2

∧
{
− 〈1367〉〈2345〉
〈3(17)(24)(56)〉

}
2

)
− 3

7

({ 〈1367〉〈1457〉〈2347〉
〈1237〉〈1467〉〈3457〉

}
2

∧
{
− 〈1267〉〈3457〉
〈7(16)(23)(45)〉

}
2

+

{ 〈1236〉〈2567〉〈3467〉
〈1267〉〈2346〉〈3567〉

}
2

∧
{
− 〈1567〉〈2346〉
〈6(12)(34)(57)〉

}
2

)
− 3

7

({ 〈1235〉〈2367〉〈2456〉
〈1236〉〈2345〉〈2567〉

}
2

∧
{
− 〈1234〉〈2567〉
〈2(13)(45)(67)〉

}
2

+

{ 〈1245〉〈1467〉〈3457〉
〈1247〉〈1345〉〈4567〉

}
2

∧
{
− 〈1247〉〈3456〉
〈4(12)(35)(67)〉

}
2

)
+

({ 〈1235〉〈2367〉〈4567〉
〈2567〉〈3(12)(45)(67)〉

}
2

−
{
− 〈1237〉〈2345〉〈4567〉
〈3457〉〈2(13)(45)(67)〉

}
2

+
4

7

{ 〈1235〉〈2367〉〈2457〉
〈1237〉〈2345〉〈2567〉

}
2

)
∧
{
− 〈1267〉〈2345〉
〈2(13)(45)(67)〉

}
2

−
{ 〈1256〉〈2345〉
〈1235〉〈2456〉

}
2

∧
{ 〈2567〉〈3456〉
〈2356〉〈4567〉

}
2
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+

({ 〈1237〉〈1345〉〈4567〉
〈3457〉〈1(23)(45)(67)〉

}
2

−
{ 〈1236〉〈1345〉〈4567〉
〈3456〉〈1(23)(45)(67)〉

}
2

−
{ 〈1237〉〈1456〉
〈1(23)(45)(67)〉

}
2

)
∧
{ 〈1267〉〈1345〉
〈1(23)(45)(67)〉

}
2

+

{
− 〈1234〉〈1567〉
〈1(27)(34)(56)〉

}
2

∧
({
− 〈1237〉〈1567〉〈3456〉
〈3567〉〈1(27)(34)(56)〉

}
2

−
{ 〈1257〉〈1347〉〈3456〉
〈1345〉〈7(12)(34)(56)〉

}
2

+
3

7

{ 〈1247〉〈1256〉〈1346〉
〈1234〉〈1267〉〈1456〉

}
2

)
+

{ 〈1237〉〈3456〉
〈3(12)(45)(67)〉

}
2

∧
({ 〈1267〉〈1345〉〈3467〉
〈1467〉〈3(12)(45)(67)〉

}
2

+

{ 〈1234〉〈1367〉〈4567〉
〈1467〉〈3(12)(45)(67)〉

}
2

−
{ 〈1234〉〈1267〉〈1345〉〈4567〉
〈1245〉〈1467〉〈3(12)(45)(67)〉

}
2

)
+

({ 〈1234〉〈1267〉〈3457〉〈4567〉
〈1247〉〈3467〉〈5(12)(34)(67)〉

}
2

+

{
− 〈1234〉〈1267〉〈3456〉
〈1236〉〈4(12)(35)(67)〉

}
2

−
{
− 〈1247〉〈3456〉
〈4(12)(35)(67)〉

}
2

−
{ 〈4567〉〈3(12)(45)(67)〉
〈3467〉〈5(12)(34)(67)〉

}
2

−3

7

{ 〈1245〉〈2467〉〈3457〉
〈1247〉〈2345〉〈4567〉

}
2

)
∧
{
− 〈1234〉〈4567〉
〈4(12)(35)(67)〉

}
2

+

({ 〈1234〉〈1267〉〈3456〉〈3567〉
〈1236〉〈3467〉〈5(12)(34)(67)〉

}
2

+

{
− 〈1234〉〈1267〉〈3567〉
〈1237〉〈6(12)(34)(57)〉

}
2

+

{ 〈3467〉〈5(12)(34)(67)〉
〈3456〉〈7(12)(34)(56)〉

}
2

−3

7

{ 〈1246〉〈2567〉〈3467〉
〈1267〉〈2346〉〈4567〉

}
2

)
∧
{
− 〈1267〉〈3456〉
〈6(12)(34)(57)〉

}
2

+

({
− 〈1267〉〈3457〉
〈7(16)(23)(45)〉

}
2

+
4

7

{ 〈1367〉〈1457〉〈2357〉
〈1237〉〈1567〉〈3457〉

}
2

−
{ 〈1467〉〈2367〉〈3457〉
〈1367〉〈2347〉〈4567〉

}
2

)
∧
{
− 〈1237〉〈4567〉
〈7(16)(23)(45)〉

}
2

+

({
− 〈1234〉〈3567〉
〈3(17)(24)(56)〉

}
2

− 3

7

{ 〈1347〉〈1356〉〈2346〉
〈1234〉〈1367〉〈3456〉

}
2

+

{ 〈1367〉〈2347〉〈3456〉
〈1347〉〈2346〉〈3567〉

}
2

)
∧
{
− 〈1237〉〈3456〉
〈3(17)(24)(56)〉

}
2

.
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B.1.3 f14

This function lives entirely in PB1. If we first define the quantity

Y =

{ 〈2347〉〈2356〉
〈2345〉〈2367〉

}
2

∧
{ 〈2346〉〈3567〉
〈2367〉〈3456〉

}
2

+

{ 〈1367〉〈2347〉
〈1237〉〈3467〉

}
2

∧
{ 〈2347〉〈3567〉
〈2367〉〈3457〉

}
2

+

{ 〈1257〉〈1456〉
〈1245〉〈1567〉

}
2

∧
{ 〈1257〉〈1456〉〈2345〉
〈1235〉〈1457〉〈2456〉

}
2

−
{ 〈1367〉〈1457〉〈2347〉
〈1237〉〈1467〉〈3457〉

}
2

∧
{ 〈1347〉〈4567〉
〈1467〉〈3457〉

}
2

−
{ 〈1237〉〈2356〉
〈1235〉〈2367〉

}
2

∧
{ 〈1236〉〈2567〉
〈1267〉〈2356〉

}
2

−
{ 〈1256〉〈2345〉
〈1235〉〈2456〉

}
2

∧
{ 〈1235〉〈2567〉
〈1257〉〈2356〉

}
2

+

{ 〈1257〉〈1456〉〈2345〉
〈1235〉〈1457〉〈2456〉

}
2

∧
{
− 〈1235〉〈4567〉
〈5(17)(23)(46)〉

}
2

−
{ 〈1257〉〈1456〉〈2356〉
〈1235〉〈1567〉〈2456〉

}
2

∧
{
− 〈1235〉〈4567〉
〈5(17)(23)(46)〉

}
2

+

{ 〈1235〉〈2367〉〈2457〉
〈1237〉〈2345〉〈2567〉

}
2

∧
{
− 〈1267〉〈2345〉
〈2(13)(45)(67)〉

}
2

−
{ 〈1367〉〈1457〉〈2347〉
〈1237〉〈1467〉〈3457〉

}
2

∧
{
− 〈1567〉〈2347〉
〈7(16)(23)(45)〉

}
2

+

{ 〈1357〉〈2347〉〈2356〉
〈1237〉〈2345〉〈3567〉

}
2

∧
{
− 〈1237〉〈3456〉
〈3(17)(24)(56)〉

}
2

−
{ 〈1467〉〈2367〉〈3457〉
〈1367〉〈2347〉〈4567〉

}
2

∧
{
− 〈1567〉〈2347〉
〈7(16)(23)(45)〉

}
2
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then we find

δ22f14 =
2

7
(Y + cyclic)− 2Y

+

({ 〈1257〉〈1456〉
〈1245〉〈1567〉

}
2

−
{ 〈1267〉〈2356〉
〈1236〉〈2567〉

}
2

−
{ 〈1257〉〈2456〉
〈1245〉〈2567〉

}
2

+

{ 〈1235〉〈1267〉〈2456〉
〈1236〉〈1245〉〈2567〉

}
2

)
∧
{ 〈1256〉〈2345〉
〈1235〉〈2456〉

}
2

+

{ 〈1235〉〈2367〉〈2456〉
〈1236〉〈2345〉〈2567〉

}
2

∧
({ 〈1267〉〈2356〉
〈1236〉〈2567〉

}
2

−
{
− 〈1267〉〈2345〉
〈2(13)(45)(67)〉

}
2

)
+

({ 〈1235〉〈2367〉〈2456〉
〈1236〉〈2345〉〈2567〉

}
2

+

{ 〈1236〉〈1245〉〈2567〉
〈1235〉〈1267〉〈2456〉

}
2

)
∧
{
− 〈1237〉〈2456〉
〈2(13)(45)(67)〉

}
2

−
{ 〈1367〉〈1457〉〈2357〉
〈1237〉〈1567〉〈3457〉

}
2

∧
{
− 〈1237〉〈4567〉
〈7(16)(23)(45)〉

}
2

−
{ 〈1367〉〈2347〉〈3456〉
〈1347〉〈2346〉〈3567〉

}
2

∧
{
− 〈1237〉〈3456〉
〈3(17)(24)(56)〉

}
2

+

({ 〈1367〉〈2347〉〈2356〉
〈1237〉〈2346〉〈3567〉

}
2

+

{ 〈1347〉〈2346〉〈3567〉
〈1367〉〈2347〉〈3456〉

}
2

)
∧
{
− 〈1367〉〈2345〉
〈3(17)(24)(56)〉

}
2

−
{ 〈2346〉〈3567〉
〈2367〉〈3456〉

}
2

∧
{ 〈1237〉〈2346〉〈3567〉
〈1367〉〈2347〉〈2356〉

}
2

+

(
−
{ 〈1457〉〈2456〉
〈1245〉〈4567〉

}
2

−
{ 〈1567〉〈2456〉
〈1256〉〈4567〉

}
2

)
∧
{ 〈1257〉〈1456〉
〈1245〉〈1567〉

}
2

−
{ 〈1457〉〈2357〉〈2456〉
〈1257〉〈2345〉〈4567〉

}
2

∧
{
− 〈1567〉〈2345〉
〈5(17)(23)(46)〉

}
2

+

(
−
{ 〈1567〉〈2357〉〈2456〉
〈1257〉〈2356〉〈4567〉

}
2

−
{ 〈1567〉〈2357〉〈3456〉
〈1357〉〈2356〉〈4567〉

}
2

)
∧
{
− 〈1567〉〈2345〉
〈5(17)(23)(46)〉

}
2

+

({ 〈1347〉〈1567〉
〈1367〉〈1457〉

}
2

+

{ 〈1567〉〈3467〉
〈1367〉〈4567〉

}
2

)
∧
{ 〈1467〉〈3457〉
〈1347〉〈4567〉

}
2

+

(
−
{ 〈1347〉〈2346〉〈3567〉
〈1367〉〈2347〉〈3456〉

}
2

+

{ 〈2346〉〈3567〉
〈2367〉〈3456〉

}
2

+

{ 〈1347〉〈3567〉
〈1367〉〈3457〉

}
2

−
{ 〈1347〉〈4567〉
〈1467〉〈3457〉

}
2

)
∧
{ 〈1237〉〈3467〉
〈1367〉〈2347〉

}
2

+

({ 〈1237〉〈1467〉〈3457〉
〈1367〉〈1457〉〈2347〉

}
2

+

{ 〈1567〉〈2367〉〈2457〉
〈1267〉〈2357〉〈4567〉

}
2

+

{ 〈1567〉〈2367〉〈3457〉
〈1367〉〈2357〉〈4567〉

}
2

+

{ 〈1367〉〈2347〉〈4567〉
〈1467〉〈2367〉〈3457〉

}
2

)
∧
{
− 〈1237〉〈4567〉
〈7(16)(23)(45)〉

}
2

.

B.1.4 B1

Here we display the non-Stasheff local contributions to the B2 ∧ B2 coproduct component of the

two-loop seven-point NMHV ratio function (5.3.6). Exceptionally in this formula we make use of
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the cross-ratios aij defined in eq. (2.1) of [61]. We find that

B1 = (a12 ∧ a16) ∧ (a12 ∧ a61) + (a12 ∧ a16) ∧ (a17 ∧ a61)− (a12 ∧ a23) ∧ (a12 ∧ a61)

− (a12 ∧ a23) ∧ (a17 ∧ a61)− (a12 ∧ a32) ∧ (a12 ∧ a61)− (a12 ∧ a32) ∧ (a17 ∧ a61)

− (a12 ∧ a61) ∧ (a13 ∧ a16) + (a12 ∧ a61) ∧ (a13 ∧ a23) + (a12 ∧ a61) ∧ (a13 ∧ a32)

− (a12 ∧ a61) ∧ (a16 ∧ a23)− (a12 ∧ a61) ∧ (a16 ∧ a32) + (a13 ∧ a16) ∧ (a17 ∧ a61)

− (a13 ∧ a23) ∧ (a17 ∧ a61)− (a13 ∧ a32) ∧ (a17 ∧ a61)

+ (a16 ∧ a23) ∧ (a17 ∧ a61) + (a16 ∧ a32) ∧ (a17 ∧ a61)

where we follow the slight abuse of notation explained in [46] of writingB1 not explicitly as an element

of B2 ∧ B2, but rather by writing the result of the iterated coproduct acting on B1 according to

{a}2 ∧ {b}2 7→ (a ∧ (1 + a)) ∧ (b ∧ (1 + b)) and then expanding all multiplicative terms out using

the usual symbol rules. In other words, the above formula represents the symbol of the function B1

antisymmetrized according to a⊗ b⊗ c⊗ d 7→ (a ∧ b) ∧ (c ∧ d).
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