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Chapter 1

Introduction

The nature of theoretical physics is to formulate theories that describe the physical world. Precisely
explaining elementary particles, their properties, and their interactions is the focus of fundamental
physics, specifically high energy theory. A deep understanding of quantum field theory (QFT), the
union of quantum mechanics and special relativity, has led to the most accurate description of the
microscopic world, the Standard Model of particle physics. The Standard Model correctly predicted
the existence of multiple particles including gluons, W and Z bosons, and the Higgs boson before
they were experimentally observed. Standard Model predictions for the fine structure constant have
been experimentally confirmed to eight decimal points of precision by measuring the electron Landé
g factor [1]!

The scattering amplitude is arguably the most important quantity that sheds light on under-
standing the quantum field theories used to describe nature. The interactions between elementary
particles are described using scattering amplitudes calculations. The study of scattering amplitudes
has revolutionized our understanding of elementary particles and their interactions. Beyond aiding
in the development of our current theoretical models, scattering amplitude calculations are crucial
to explain the background processes that occur in high-energy collider physics experiments. Modern
scattering amplitude research seeks to further identify the mathematical structure of scattering am-
plitudes, simplify calculations with the aid of new mathematical tools, extend our knowledge through
new calculations, and steer the direction of experimental collider experiments via predictions.

In this thesis, the focus will be scattering amplitudes in A = 4 supersymmetric Yang-Mills (SYM)
theory, which will be frequently abbreviated as A'=4 SYM [2]. N'=4 SYM is a supersymmetric

theory of massless particles. In four dimensions, N' = 4 SYM is maximally supersymmetric. As



of this writing, supersymmetry has not been experimentally confirmed, but there are many Large
Hadron Collider searches for some forms of supersymmetry. Unlike the standard model of particle
physics, N' = 4 SYM is not a theory of physically observable particles. However, N’ = 4 SYM is one
of the most important theories in the field of scattering amplitudes nevertheless.

It is a natural question to ask why A = 4 SYM is studied if the particles it describes are not
experimentally observed (and not expected to be). The study of A/ = 4 SYM is motivated by its
surprising simplicity. As we will see in this work, advances in the study of scattering amplitudes
have been accelerated by an increased understanding of AV =4 SYM . N' = 4 SYM theory can arise
in the study of string theories via the AdS/CFT correspondence, which relates a string theory living
in the bulk of an anti-de Sitter (AdS) space to a CFT living on the boundary of that space. Research
in A/ = 8 supergravity has also benefited from N = 4 SYM results by expressing supergravity as a
double copy of SYM. A =4 SYM has found uses it in unexpected places.

In the work to be presented, the most relevant connection to physics is the appearance of N' = 4
SYM in relation to quantum chromodynamics (QCD) scattering amplitudes. QCD is the physical
theory of quarks and gluons describing the strong interaction. N = 4 SYM is commonly referred
to as the cousin of QCD. QCD calculations are significantly harder than A" = 4 SYM calculations.
In fact much of the progress in QCD computations arise from advancements on the N' = 4 SYM
side [3]. At tree level, QCD and A = 4 SYM pure gluon scattering amplitudes yield the same
resultsﬂ The tree level component is often considered the most important component because it
provides valuable insight into the leading order behavior. The relationship between N' = 4 SYM
and QCD amplitudes beyond tree level has been studied in the literature [4]. This work will not
detail the applicability of A/ = 4 SYM theory to QCD scattering amplitudes. The direct equivalence
is lost at loop level calculations, which is the focus of this work.

In addition to being extremely useful to describe real physical theories, the true value of ' = 4
SYM lies in its computational power. Some of the most precise experiments to date match loop order
quantum field theory calculations. The mathematical properties of N = 4 SYM greatly simplify
scattering amplitude calculations in the theory allowing analytic results to be obtained for multiple
loop gluon scattering processes. To date, up to five loop calculations have been performed in N = 4
SYM [5]. N =4 SYMis a conformal field theory (CFT). As with all conformal theories, N' = 4
SYM is invariant under rescalings and all of the particles in the theory are massless. A conformal

theory does not depend on the choice of scale, allowing the most convenient scale for the given

INote: To define asymptotic states and scattering amplitudes in N' =4 SYM , (4—2¢)-dimensional regularization
is used to slightly break the conformal invariance.



problem to be selected. The ability to rescale variables in a given problem without changing the
physics is a useful property.

It is believed that A/ = 4 SYM in the planar limit (large number of colors) is exactly solvable.
The relative simplicity has led to N' = 4 SYM being one of the most commonly used theories in
scattering amplitudes. The beauty of A/ =4 SYM is realized through an understanding of symme-
tries arising from the mathematical structure of scattering amplitudes. The traditional Feynman
diagram approach to scattering amplitudes obscures the mathematical structure possessed by these
amplitudes. Much of the recent progress has been supercharged through a deeper knowledge of the

symmetries possessed by N =4 SYM .

Overview of Thesis

There are many approaches leading from a standard physics graduate curriculum to modern scatter-
ing amplitude research in A" = 4 SYM theory. However, a complete understanding is not required
to extract value from the results that are presented. In this thesis, I attempt to follow a pedestrian
path leading from a standard graduate physics curriculum to the main results of this work. Of
course, | strive to maintain coherency for the average reader as long as possible without sacrificing
mathematical rigor. A technically well-versed reader should find the later chapters self contained.
The focus of this work will be N' = 4 SYM scattering amplitudes that are relevant to QCD,
gluon scattering amplitudes in the planar limit. Specifically, recent seven point four-loop maximally
helicity violating and three-loop next-to-maximally helicity violating will be presented. Chapter
reviews the field of scattering amplitudes leading to modern research. It includes a review of
the spinor helicity formalism, QCD, A’ = 4 SYM theory, twistor space, and modern loop ampli-
tudes. Chapter [3| reviews the mathematical tools and terminology necessary to understand the
main results presented. In Chapter [4] the recent results of seven- point gluon scattering amplitudes
obtained through collaboration with Lance Dixon, James Drummond, Andrew McLeod, Georgios
Papathanasiou, and Marcus Spradlin are presented. An investigation with Marcus Spradlin into the
cluster algebra structure of six- and seven- point gluon scattering amplitudes is detailed in Chapter

Bl Finally, the last chapter concludes this thesis by presenting possible directions of future work.



Chapter 2

Scattering Amplitudes

In a standard quantum mechanics course, a scattering amplitude is introduced as the amplitude of
an outgoing wave relative to an incoming plane wave in a stationary-state scattering process. In
quantum field theory, the scattering amplitude is the quantum mechanical amplitude for a process
to occur. The differential cross section for a scattering process is proportional to the square of
its scattering amplitude. A majority of a standard quantum field theory course is concerned with
how to calculate scattering amplitudes for various physical processes. In general, scattering ampli-
tudes cannot be calculated exactly so physicists resort to perturbatively expanding the scattering
amplitude.

In 1948, Richard Feynman introduced a beautiful method that uses diagrams to compute scat-
tering amplitudes [6]. In the Feynman diagram approach, each diagram represents a specific process
and contribution to the scattering amplitude. The tree-level diagrams, those with no loops, de-
termine the first term in the perturbative expansion of the scattering amplitude. The remaining
contributions to the perturbative expansion of the coupling constant can be identified by diagrams
with loops. As one would expect, the higher loop terms provide higher-order corrections to the
tree-level result. The Feynman rules for evaluating the diagrams are determined by the theory that
dictates the physical processes. Typically, the rules are derived from the Lagrangian of the theory.
The Feynman diagram approach has been the canonical way to calculate scattering amplitudes for
the past 50 years.

While it has proven indispensable to calculate the scattering amplitudes of countless physical scat-
tering processes, the Feynman diagram approach becomes intractable for processes with a large num-

ber of external particles. Using the standard Feynman diagram approach, a g+g — g+g+g+g gluon



scattering amplitude at tree-level would require computing 220 diagrams. A g+g — g+g+g+g+g
requires 2485 diagrams and a g+g9 — g+g+g+g+9+g+g+g would require 10525900 diagrams|7]!
The number of diagrams grows quickly with the number of external legs. Surprisingly, the tree-level
n-gluon maximally helicity violating amplitude can be expressed in a single line using the Parke-
Taylor formula [8]. It is believed that such a simple form for the ¢ree-level n-gluon amplitude is not
accidental and there must be a way to construct the theory so the answer is easily obtained. This
hope initiated research into the underlying mathematical structure of amplitudes.

The field of scattering amplitudes has transformed drastically over the past twenty years. Modern
research is heavily focused on discovering and exploiting the mathematical structure of amplitudes in
N =4 SYM theory. Many of the greatest advancements have been driven by a deeper understanding
of the underlying mathematical structure. Additionally, the introduction of new mathematical tools,
such as the symbol, has revolutionized how modern amplitudes are computed. In this thesis, we will
focus on advancements in planar N = 4 SYM scattering amplitudes.

The scattering amplitude essentials are presented and recent achievements relevant to gluon scat-
tering amplitudes in N' = 4 SYM theory will be outlined. The chapter starts off with a kinematics
section reviewing the spinor helicity formalism. Helicity classification of amplitudes is explained in
Section [2.2] Then, a slight detour in Section [2.3]is taken to provide a lightning review of the essen-
tials needed from quantum chromodynamics. N = 4 SYM superamplitudes are covered in Section
24 Section reviews twistor space and the twistor variables. Loop amplitudes are reviewed in

Section concluding the chapter.

2.1 Kinematics

External momenta of the scattering particles are the main input variables into scattering amplitudes
in any physical theory. While the complexities of amplitudes vary immensely with the theory, the
complexity of the form of a scattering amplitude is strongly dependent on the choice of variables
used to encode the external momenta information. Amplitudeologists learned early on in history of
the field of scattering amplitudes that enormous simplifications are obtainable through a change of
momenta variables. As a result, modern scattering amplitudes are expressed in a plethora of different
momenta variables. In this section, I hope to shed some light into how to relate these unusual (to
the inexperienced amplitudeologist) variables to the more familiar Lorentz four-momenta.

In the standard Feynman diagram approach to amplitudes, scattering amplitudes are expressed

as functions of the external particle kinematic data. Some kinematic variables of high importance



are: spin, mass, polarization, and four-momenta p!'. For a given scattering amplitude, the physical
diagrams are drawn and the Feynman rules for external lines, propagators, and vertex rules depend
on the kinematic data. By using a spinor representation for the external momenta, many simplifica-
tions can be made leading to significant advancement in our ability to calculate scattering processes.
Let’s investigate how we can convert from the traditional momenta four-vectors to spinors.

From group theory we know that the Lorentz group transforms under a smaller spinor repre-

sentation. The conversion of Lorentz vectors to spinors is simply a mapping of the Lorentz vectors
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in the SO(3,1) representation to Weyl spinors in the ( ) spinor representation. We start off by
introducing the spinor helicity formalism for spin-1/2 particles and then introduce spinor helicity
for massless vectors by showing how polarizations are handled.

In this section, the transition from the traditional Feynman diagram approach to helicity ampli-
tudes will be motivated and explained. The recipe for constructing spinors from Lorentz four-vector
momenta, known as spinor helicity formalism, will be reviewed. The extension to massless vectors
will be shown by expressing polarization vectors in the spinor language. Finally, the conventional

amplitude helicity classification scheme will be explained and the difficulty of calculating an ampli-

tude will be classified by how helicity violating the process is.

2.1.1 Spinor Helicity Introduction

We begin by discussing how the traditional momenta four-vectors for massless particles are encoded
in modern scattering amplitude calculations. Throughout this chapter we adopt the conventions used
in Srednicki’s Quantum Field Theory textbook [9] and use the 17, = diag(—1,+1,+1,+1) metric. As
we will show, the typical momenta four vectors used to describe the momenta of external particles
can be replaced with more a favorable spinor representation using a formalism known as Spinor
Helicity Formalism. We begin by quickly bridging the gap between a four-vector representation and
spinor representation of momenta.

For a given particle with momenta p, the components of the momenta are packaged into the four-
vector p* = (p¥, pt, p?, p?) which satisfies Ppu = —m?. If the momenta-four vector P, is contracted
with the gamma matrices v*, then the resulting matrix p = p,y" contains all of the components
of the momenta four-vector. The p matrix turns out to be extremely important since it appears

frequently in scattering amplitude computations. Additionally, it appears in the Dirac equation and



Weyl equation. We will use the standard definition for the v* matrices

0 o#
= (2.1.1)
ot 0
where (0#) = (1,5*) and (6#) = (1,—3") for 4 = 0,...,3. The o' are the standard Pauli spin

matrices where

ol = o? = o3 = (2.1.2)

Contracting p, with v*, we get
p= (2.1.3)
Pyt 0
The resulting matrix is block-diagonal consisting of following 2x2 matrices

04,3 1 _ ;2
—p +p p—p
puot = (2.1.4)

pl + Zp2 _pO _ p3

and

0 3 1 -2
- —p> —p'+ip

DT = (2.1.5)
—pt—ip* —p+p?

The determinant of each of these matrices gives the square of the mass
det(pyo*) = det(p,a") = m? (2.1.6)
For massless particles, the determinants of both of p,o* and p,d" vanish
det(pyot) = det(p,a*) =0 (2.1.7)

and both p,c* and p,d" are rank-one matrices. From linear algebra, we know that a 2x2 matrix
with rank one can be formed by the outer (also known as dyadic) product of two spinors. Such
matrices are commonly referred to as bispinors.

In order to understand how spinors will be used to represent the momenta bispinors appearing
in the p matrix, we begin by reviewing how Dirac spinors can be composed of Weyl spinors. We

start with the general case of a massive particle and then restrict to massless particles. Relativistic



spin-1/2 particles are described by the Dirac equation (with &= 1):

(—id +m)p =0 (2.1.8)

where @ = 4#9,. If we multiply the Dirac equation by (i@ + m), we see that a Dirac spinor 1

satisfying the Dirac equation also satisfies the Klein-Gordon equation:

(=0* +m*)p =0 (2.1.9)

In order to solve for the Dirac spinor, we follow the traditional approach to solving the Klein-Gordon

equation and consider a plane wave solution of the form:

P(z) = u(p)e™ + v(p)e” " (2.1.10)

Using the plane wave solution above, the Dirac spinors u(p) and v(p) must satisfy the following

equations:

(p+mulp) =0 (2.1.11)

(=p+m)u(p) =0 (2.1.12)

Since we will be interested in forming spinor quantities that are invariant under Lorentz trans-
formations, we would like to be able to form Lorentz invariants from Dirac spinors. Multiplying
the Hermitian conjugate of a Dirac spinor and Dirac spinor does not produce a Lorentz invariant
quantity. Instead, we introduce the barred Dirac spinors known as the Dirac adjoint such that the
product of a Dirac adjoint and a Dirac spinor produce a Lorentz invariant quantity. The adjoint is

defined in the following way with:

a(p) = u4y° (2.1.13)
o(p) = viq? (2.1.14)
where
0 I
7 = (2.1.15)
I 0



The Dirac adjoints satisfy the following equations:

u(p)(p+m) =0 (2.1.16)

o(p)(=p+m)=0 (2.1.17)

At this point, we will restrict our story to massless particles. The equations for the Dirac spinors
u, v, u, and ¥ become

pu(p) = po(p) = u(p)p = v(p)p = 0 and p* = 0 (2.1.18)

From the form of the plane wave, eq. (2.1.10), we can see that term involving v is the outgoing
Dirac spinor for an anti-fermion and the term involving u is for an incoming fermion. Similarly, v
corresponds to an incoming anti-fermion and @ corresponds to an outgoing fermion. In scattering
amplitudes, we will often assume that all particles in a scattering event are outgoing and focus on v
and 7.

When solving for the Dirac spinors @ and v, each Dirac spinor can be expressed as two Weyl
spinors of opposite handedness (one left-handed and one right-handed). Following standard prac-
tices, we label an outgoing particle with momentum p by its helicity. A positive helicity is represented
using a square bracket |p], and a negative helicity is represented using an angle bracket |p)¢. The
indices on the angle and square brackets are written to express that these are spinor objects. Note
that the indices for angle brackets are written with a dot over them in order to distinguish from

indices belonging to a square bracket spinor. With this choice of angle and square bracket labeling,

v =" ew=] (21.19)

0 2%

ww=(pr o) 0= (0 o) (21.20)

where |pla, [p|%, |p)%, and (p|; are two component Weyl spinors. The Weyl equations that each of
these spinors satisfies can be obtained by replacing v or u in eq. with one of the spinors
above.

Under charge conjugation, fermions become anti-fermions and vise-versa. Therefore there is a
connection between the spinor of the same helicity with upper and lower indices. Expressed in terms

of the Dirac spinors,

Cux(p)” = vi(p) (2.1.21)



where C' is the charge conjugation matrix. In the language of the angle and bracket spinors, the
spinors with upper indices can be found from the spinors with lower indices using the 2x2 antisym-

metric tensor €?? where

eab = edl} = —eab = _edi) = (2.1.22)

Expressed in the angle/square bracket language, the relationships between the spinors are shown

below

Ip)® = e pl; (2.1.23)
Pla = €as[p|” (2.1.24)
(pla = e5Ip)" (2.1.25)
[pl* = € [pls (2.1.26)

Now we are interested in how we can construct the p matrix from the angle/square spinors.

Specific products of (massless) Weyl spinors can be related to the # matrix in the following way

ws (P (p) = 5 (1 +75)(~) (2.1.27)
vt (p)o+(p) = %(1 F5)(—p) (2.1.28)
where 5 is
V5 = o (2.1.29)
0 1

The p matrix may be expressed in terms of the Weyl spinors as

— P = ux(p)ux(p) + v+ (p)v£(p) (2.1.30)

Using the typical phase convention, the two types of particles can be related using

uz(p) =ve(p)  Vx(p) =ux(p) (2.1.31)
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In terms of the Weyl spinors defined in egs. [2.1.19[and [2.1.20} p can be expressed as

. 0 —[pPla(pla .132)

~p)*[pl® 0
The two non-zero component objects are know as momentum bispinors. We define variables p,, and

p3 for the two momentum bispinors in the following way

Paa = —Pla(pla P = —|p)*[p|* (2.1.33)

Now, we have arrived at an expression for the p matrix using Weyl spinors and using the com-
ponents of momenta four-vectors. The last step is to establish how the momenta can be expressed
in terms of Weyl spinors. We originally wanted to formulate a representation of the momenta four-
vectors in terms of Weyl spinors. If we look at the explicit form of p in eq. we notice that the

two nonzero terms can be explicitly written as products of two spinors.

L i t —p° +p? 1 ( o a . 2)
puc’ = = —— "+ p'—ip
pttip? —pt—pt) VPP playip? | VP A
(2.1.34)
and
. - —p*  —p'+ip? =1 —p' +ip? t ,
PuT" = = —— ' = " +p’
—pt —ip?  —p0 4B v/ —p° + p? O +p3 |V —p0 + p3
(2.1.35)

Now, we can eqs. to express the angle and square spinors in terms of the components

of the momenta four-vector

t —p? 4 p? =1

[S—— W= s (P 4p? o) (2030)
V=03 | g2 V-1 +p?

. 1 —p' +ip? . t
Ip)® = [p|* = ———— (pl —ip?  —p° +p3) (2.1.37)

/7p0 +p3 _p0+p3 /7p0 +p3

Looking at the form of the spinors, we see that they satisfy the expected relations, eq. (2.1.23)), for

raising/lowering spinor indices. As a result, the p matrix can be parameterized with only [p)® and

P]a-
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Finally, we have arrived at expressions for the momenta four-vector in terms of Weyl spinors.
Before we finish our review of Weyl spinors, it is important to express how the Lorentz-invariant
quantities can be expressed using the square and angle bracket spinors. Lorentz invariant quantities

are formed using

a_(p)v—(q) = (plala)* = (pg) (2.1.38)
Uy (p)v+(a) = [p*|qla = [pd] (2.1.39)

We skip a review of all of the various properties obeyed by these spinors. For a thorough review of

spinor helicity formalism refer to [I0].

2.1.2 Massless Vectors in Spinor Helicity

Now that we have discussed how to represent massless momenta four-vectors in the new spinor
language, we are interested in extending this language to describe spin. Amplitudes for particles
with spin are functions of the external momenta p; and polarization vectors e/. When moving from
traditional momenta vectors to the momenta spinors, it is more convenient to express an amplitude
in terms of the helicities, eliminating the polarization vector dependence. In order to move to an
entirely spinor representation, the polarization vector must be written in the spinor language. Here,
the polarization vectors in the spinor language will be stated without proof. The polarization vectors
are given by

o= _lahtl e _(eh"ld (2.1.40)

V2(qp) ‘ V2[qp]

where ¢ is a reference spinor. Note: we have dropped the indices on the spinors. For each external
spin-one particle, a reference spinor ¢ must be chosen so that ¢ # p. The polarization vectors

contracted with 7, take the form

i V2 i V2
¢h= T (Ipl{g| + lg)pl) ¢ = Tl (Ip)lal + lq){pl) (2.1.41)

As discussed by Witten in [IT], there is no natural way to pick a polarization vector associated with
a given particle momentum and helicity. However, given a spinor decomposition and a helicity, a
polarization vector up to a gauge transformation can be determined. More details associated with
picking negative/positive helicity polarization vectors can be found in [12 [7].

Equipped with a representation of the momenta and polarization vector in terms of Weyl spinors,

we can express scattering amplitudes of massless gauge bosons as a function of the spinors |p) and
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|p] and helicities h; = £1 of the external particles. A general scattering amplitude will be written

as A(li), |¢], h;) where i represents the momentum of the ith particle.

2.2 Helicity Classification

In the scattering of n gluons, it is common to assume that all of the gluons are outgoing for simplicity.
Crossing symmetry, flipping the helicity of the particles when they are switched from outgoing to
incoming, can be used to yield the remaining amplitudes of interest from amplitudes where all
particles are outgoing. We will assume that all of the gluons are outgoing unless otherwise stated.
Classifying scattering amplitudes based on the helicity structure of the external particles proves to
be extremely useful for determining underlying mathematical structure since amplitudes belonging
to the same helicity classification share many similarities.

It is a well known result that the scattering amplitude of n outgoing gluons with the same helicity
vanishes. Additionally, the amplitude where one gluon helicity is different from all others is also zero
for n > 3.

Aree(1H+3% gty = Afree(1m2t3t . pt) = 0 (2.2.1)

These results can be explained at tree level by looking at the general form of a gluon tree amplitude
in the spinor representation and counting the powers of momenta [I0]. The first non-zero tree
amplitude, A,(17273%---nT), has n — 2 positive helicity gluons and 2 negative helicity gluons.
This amplitude is known as the “maximally helicity violating" amplitude, or MHV. As we will see,
this MHV amplitude is also the simplest tree level amplitude in A" = 4 SYM.

For this discussion we will relax the assumption that all particles are outgoing. The notion of
“helicity violating” processes comes from considering 2 — n — 2 scattering processes. If the helicities
of the outgoing particles are identical to the helicities of the incoming particles, we say that there
is no helicity violation. Maximum helicity violation occurs when the maximum number of outgoing
particles have the opposite helicity as the helicity of the incoming particles. If all of the outgoing
particles have the opposite helicity as the incoming particles, crossing symmetry would bring the
amplitude to zero since it’s an n outgoing gluon amplitude where all the particles have the same
helicity. Similarly, an amplitude with only one outgoing particle helicity identical to the incoming
helicity would vanish as well.

The MHV process is the process where two of the outgoing particles have the same negative

helicity as the incoming particles and the remaining (n — 4) outgoing particles have the opposite
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MHV

(k—1)F G+D*

Figure 2.2.1: Helicity Specification

positive helicity. Using crossing symmetry this is an n outgoing gluon amplitude where only two of
the particles have negative helicity and the remaining (n — 2) particles have positive helicity. We
could have equivalently chosen to define MHV processes where the helicity violation we are referring
to is helicity violation with respect to positive incoming particles, but those scattering amplitudes
are known in the literature as anti-MHV or MHV. Anti-MHV processes are those with n outgoing
particles with n—2 negative helicity gluons and 2 positive helicity gluons. The MHV can be obtained
from the MHV amplitude by flipping all the helicities. In explicit expressions consisting of angle
and square brackets, this is accomplished by exchanging the two spinors.

As soon as we flip at least one of the outgoing positive helicity gluon to a negative helicity
gluons in an MHV process (when considering 2 — n — 2 scattering), we arrive at more complicated
amplitudes known as next-to-maximally helicity violating (NMHV) amplitudes. Explicitly NMHV
is the process of n outgoing gluons with three negative helicity gluons and (n — 3) positive helicity
gluons. We can keep flipping positive helicities to negative helicities until we have only 2 outgoing
positive helicity gluons left (where we have arrived at the MHV amplitude. Each successive flip of a
positive helicity gluon to a negative helicity gluon in an MHV amplitude adds a “next-” to the name
of the resulting process. For simplicity, we express these names with powers of N. For example
N2MHYV refers to the amplitude for n outgoing gluons with four negative helicity gluons and (n — 4)
positive helicity gluons. Generalizing further, a N*MHV amplitude has k+ 2 negative helicity gluons
and n — k — 2 positive helicity gluons.

Before moving on we now take a short detour and review quantum chromodynamics and detail

what an amplitude in the planar limit means.
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2.3 Lightning QCD Review

Using the spinor helicity formalism and the Feynman rules, multi-gluon scattering amplitudes can
be computed perturbatively in QCD. Perturbative computations are extremely challenging because
the number of diagrams grows very quickly with the number of external gluons. In this section, the
basics of quantum chromodynamics will be reviewed. We will briefly review how amplitudes can be
constructed from color-ordered partial amplitudes. The Feynman rules for QCD will not be given
here since we will not compute QCD scattering amplitudes. The Feynman rules for QCD can be
found in [9]. The all n-gluon tree amplitude will be presented. After discussing extensions to loop
amplitudes, we motivate the study of planar amplitudes and transition to A" =4 SYM .

Let’s start by off with a description of gluons in QCD. Gluons, in the absence of quarks,
are described with an SU(3) Yang-Mills theory. Full QCD results from coupling the gluons to
quarks (represented by fermionic fields). While the gauge group of the gluons is SU(3), it can
be generalized to SU(N,.) for N, colors. Gluons in an SU(N.) gauge theory have adjoint color
indices @ = 1,2,...,N2 — 1. Quarks and antiquarks have indices i and j respectively where
i,j = 1,2,...,Nc. In the fundamental representation of QCD, the SU(N¢) generators T are
traceless hermitian No X N¢o matrices. The commutation relations of these generators define the

structure constants ¢ as

[T, T"] = iva2feeTe (2.3.1)

Using the standard quantum field approach, the Feynman rules for a Yang-Mills theory can be
derived from the Lagrangian

1
Lyyi =~ Tr (F"F) (2.3.2)

Looking at the Feynman rules, we can see that the group theory structure constants ¢ appear for
pure gluon three-point vertices, products of the structure constants appear for pure gluon four-point
vertices, and factors of the generators appear for gluon-quark-antiquark vertices. Since the structure
constants are defined by the algebra, the structure constants that appear can be replaced with traces

of the generators using the following relation
V2% = Te(T*TPT¢) — Tr(TT°T?) (2.3.3)

After using the Feynman rules to compute an amplitude and replacing the structure constants with

the generators using the substitution above, a multi-gluon amplitude becomes a product of traces of
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some combination of the generators. Additionally, products of the generators arising from external
quarks can be reduced using the SU(N¢) Fierz identity.
Tree level gluon amplitudes can then be reduced to a sum of single trace terms. An n-gluon tree

amplitude factors in the following way:
A:Lree(pl, €15---5Dn, en) = gn72 Z Tr(Ta(’“)Taa@) e Tan)Af'Lree(pO'(l)a €o(1)r- -1 Po(n)s ea(n)) (234)

where the coupling constant g?/(47) = as and o is the set of all non-cyclic permutations of the
external momenta. More formally, o = S,,/Z,, where S, is the set of all permutations of n elements
and Z,, is the set of cyclic permutations of n elements. The A are known as the color-ordered
or partial amplitudes. They are functions of the kinematic information and are dressed by single
trace factors consisting of a product of the generators. These amplitudes are known as color-ordered
because the external gluons are labeled with a specific ordering (not necessarily sequentiall). To
calculate the partial amplitude, we find every diagram with the desired color-ordering and include
all copies of those diagrams where the labels are cyclically permuted. Color-ordered amplitudes
contain all contributions with a specific cyclic ordering of the external gluons. We will be interested
in computing color-ordered partial amplitudes and often refer to them as amplitudes.

Color ordering of the external gluons leads to useful properties. Partial amplitudes are invariant
under cyclic permutations and parity transformations (flipping the helicities). Color ordering also
imposes strict constraints on the partial amplitude singularity structure. We will touch more on
this later. At loop level, we can extend the color decomposition for pure-gluon amplitudes. Looking
at the color factors for various terms, many color factors are inversely proportional to powers of
the number of colors N.. Taking the limit of large N., the non-planar diagrams vanish since their
color factors are proportional to 1/N,. This limit is known as the planar limit. In the planar limit,
the diagrams that survive have a specific ordering of external legs and can then be labeled. Color
ordered Feynman rules can be constructed without the appearance of color factors. More generic
QCD amplitudes can also be calculated using the color decomposition method that we applied to
pure-gluon amplitudes. However, we will not need these techniques.

Despite the simplicity obtained by considering partial amplitudes and taking the planar limit,
using the colored-ordered Feynman rules for QCD amplitudes is still a rather cumbersome process
for even relatively simple scattering gluon scattering amplitudes. As a result of this complexity,
amplitudes are calculated in a simpler theory known as N = 4 Super-Yang-Mills (SYM). Computa-

tions in N =4 SYM can shed light onto the more complicated QCD amplitudes. In the following
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section, A/ = 4 SYM theory will be reviewed and its connection to QCD scattering amplitudes will
be discussed. We will see that tree level all gluon amplitudes in N' = 4 SYM theory are identical to

the tree level QCD results.

2.4 N = 4 Super-Yang-Mills Theory

N = 4 Super-Yang-Mills Theory is a supersymmetric pure Yang-Mills theory. We study N = 4
because it contains the maximal amount of supersymmetry allowed in four dimensions. In A = 4
SYM , each gluon has four fermionic superpartners. To close the supersymmetry we also need to
introduce six scalar fields. The particle content of A" = 4 SYM consists of two gluons G* (bosons),
six scalars (bosons), and eight gluinos (fermions). Helicities are £1, +1/2, and 0 for gluons, gluinos,
and scalars respectively.

The N =4 SYM action is given by [13]

1 1 1
S=—— [ daTx (—F,“,FW — (Dupap) D' — Z[dap, dop)[o??, o7
9oMm 4 2

AT D v — 03607 sl - JUA0an DY) (240

where gy is the Yang-Mills coupling constant, ¢ are the antisymmetric scalars an ¢ are the gluinos.
The greek letters a, & run over 1,2 and the latin letters A, B, C, D run over 1,2,3,4.

N =4 SYM is a conformal theory with SU(N) gauge invariance. The theory remains conformal
after quantization because the coupling constant is not renormalized. As a result, N' =4 SYM is free
from ultraviolet (UV) divergences. However, the theory still suffers from infrared (IR) divergences
resulting from radiative corrections. Throughout the course of this work we will be discussing
N = 4 SYM in the planar limit. We will be interested specifically in loop amplitudes. We now

review scattering amplitudes in N/ =4 SYM .

2.4.1 Amplitudes in N' =4 SYM

As we saw earlier, a general n-particle scattering amplitude in the planar limit of N'= 4 SYM has

the following form [I4]:

An ({pi, hiyai}) = (27T)4 54 <Z pi> Z 2"/29”_2&[1&“”(1) St A, (O’(lhl ey nh”))
i=1

0E€ESn/Zn
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Here we have explicitly included a delta function to enforce conservation of momenta (p? = 0). Here
we focus on the color-ordered amplitudes A, (J(lhl, . 7nh”)) that depend only on the helicities h;
and momenta of the external particles. The colored-ordered partial amplitudes can be perturbatively
expanded in powers of the 't Hooft coupling constant a = g3,,N /(872).

Gluon amplitudes are the most commonly studied amplitudes in N' = 4 SYM. We begin with the
simplest non-vanishing MHV tree-level amplitudes. A concise formula for the MHV tree amplitude

for n-gluons was formulated by Parke and Taylor [8] and proven by Berends and Giele [15]

.. 4
AMIY () = ST 2.4.3
n;0 n ! J n’) (12)(23) - - - (nl1) ( )
Note: this factor only depends on the angle brackets. The MHYV tree-level is found by replacing the
angle brackets with square brackets. After perturbatively expanding the full n-gluon amplitude, the

Parke-Taylor factor, eq. (2.4.3]), appears at all orders in the 't Hooft coupling

AMEV (1+ R A I ) AMHV + aAMHV AMHV +0(a®) = AMHVM}:AHV (2.4.4)
and can be factored out. The function MMHV depends on the Mandelstam invariants and the ’t
Hooft coupling constant, but does not depend on the positions of the negative helicity gluons ¢ and
j. Calculating the MHV amplitude becomes the problem of determining MM®V to all orders in the
coupling constant a.

Going beyond MHV, the perturbative expansions of NMHV amplitudes no longer contain the
tree-level Parke-Taylor factor. The tree-level amplitude ANMHV now depends on both the angle and
square brackets. Very often the angle and bracket spinor are represented using A and A respectively.
Perturbatively expanding the NMHV amplitude in the coupling constant,

ANMEV (15 Tk T) = ANMEV() X —i—aZANMHV O, NMIMEV-O 4 0(g2)

n;l

(2.4.5)

NMHYV, (1)

(ANHHY, AS}\I/IHV’(Z)) and the scalar Feynman integrals M, ;

the new factors do not retain
the simple properties observed in the MHV case. All of these functions must be calculated for each
helicity configuration because they depend on the positions of the negative helicity gluons [4 [16] 17
18, [19].

As one might expect, N*MHV amplitudes for £ > 1 are more complex than NMHV amplitudes.

In [T7] a general one-loop NMHV gluon amplitude was found. Using traditional unitarity cuts, ex-
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plicit next-to-next-to-MHYV results were obtained by calculating scalar box integrals and the rational
function coefficients [I8]. Often times these computations are challenging and so non-MHV results
for a given number of external particles are not as commonly computed as MHV amplitudes.

The simplicity of the MHV amplitudes led amplitudeologists to wonder if NMHV amplitudes
could also be written in a compact form. As it turns out, the discovery of a hidden symmetry, dual
(super)conformal symmetry [14], allowed NMHV amplitudes to be expressed in significantly simpler
forms than the forms computed using unitarity cuts. In order to understand how this symmetry was

realized and then utilized, we first review the on-shell superamplitude construction.

2.4.2 On-Shell Superamplitude Formulation

The space described in terms of the massless angle and square spinors is known as the “on-shell"
space because the particles are on-shell (p?=0). In order to construct an on-shell superamplitude,
we first package the field content into a single superfield ®, as was done by Nair [20]. We introduce
Grassmann variables n#! for each external particle with an SU(4) index A = 1,...,4. Using these
Grassmann variables, all of the fields can be combined into a superfield ® defined by
1 1 -p 1 _

®=G" +ntps+ 577A77B¢AB + gﬂAanCEABCDw + IWAanCanABCDG (2.4.6)
where each of the fields where introduced at the beginning of this section. We define the superam-
plitude as

An(N A n) = Ay (B1,...,®,) (2.4.7)

Any amplitude can be extracted from the superamplitude above by taking derivatives with respect
to the Grassmann variables 7;4 and then setting the remaining Grassmann variables to zero. For

example, the MHV amplitude can be obtained by

(2.4.8)

o i) = T (O N1 (2 )
A1 o) lﬂ(an{)ﬂ<anj>An<¢,...,cbn)]

77,5%0

Another way to think about this is that the superamplitude 4, contains the MHV pure gluon

amplitude as the term multiplying a specific product of the Grassmann variables. Explicitly,

1 1 L .
A, = Eﬁfﬁfﬁ?nzpéwwEﬁfﬁfﬂfﬂfﬁABCDAn(ﬁ T T T (2.4.9)
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The superamplitude also contains all of the amplitudes with fermions and scalars as well. The

supersymmetric version of the MHV tree level amplitude (eq. (2.4.3)) is [20]

g (i pj) ) <Z A )
MHV _ J=1 i=1

Anio (12)(23) - - - (nl)

(2.4.10)

n 4
where §8 (Z A?mA) = [I TI A¢n*. The term inside this delta function is the supermomentum
a=1,2 A=1

and the extra delta function enforces supermomentum conservation. The full tree-level superampli-

i=1

tude contains both MHV and all possible N*MHV superamplitudes as well.
When expressing the full tree-level superamplitude, the MHV superamplitude is factored out in

the following way

Anzo = AN Pso (2.4.11)

where P,,.0 can be expanded in terms of functions with varying Grassmann weight.
Pro = 1+ PNAIV 4 pNIMIV 4 pMITV (2.4.12)

In [T4], the NMHYV tree-level superamplitude was conjectured

AE}(\)/IHV - EL/IOHV Z Rn st (2413)

1<s<t<n
and the form above was proven in [2I]. In [22], tree-level superamplitudes in N' = 4 SYM were
determined for all n. The R, s, known as R-invariants, are dual superconformal invariants that will

be defined later. First, we must introduce the dual coordinates and the associated symmetry.

2.4.3 Dual Conformal Symmetry

The conformal symmetry of A/ = 4 SYM theory is only half of the story. In addition to the standard
conformal symmetry, planar A/ = 4 SYM has a hidden symmetry known as dual superconformal
symmetry. When formulated in the appropriate dual superspace, all tree level MHV and NMHV
amplitudes in ' = 4 SYM are found to have a dual superconformal symmetry. This new symmetry
is distinct from the typical conformal symmetry of N' = 4 SYM theory. After introducing dual
coordinates x,4 expressed in terms of the particle momenta, a SO(2,4) conformal group can be
defined with a linear action on the dual space coordinates. From the definition, the action of the

dual conformal symmetries on the spinor variables can be derived. We first introduce the dual
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coordinates.
Dual coordinates arise as an equivalent representation for the standard momenta. The dual

coordinates x; are defined to relate to the momenta by
Pl =l —al (2.4.14)

for i = 1,...,n where a, & are the same SU(2) indices we saw for the bispinors. As a result, the

%% are relate to the momentum bispinor p¢®

>¢ in an analogous way.

ot =2 — e (2.4.15)
The dual coordinates satisfy momentum conservation by requiring x,,.1 = z1. Note these dual coor-
dinates are not spacetime coordinates. Since we will be computing superamplitudes, it is convenient

to also introduce dual fermionic supermomenta 684 defined by
¢t = 10741) — 1624) (2.4.16)

t = 1,...,n where a,& are SU(2) indices and A are the SU(4) indices of the Grassmann 7;.
Supermomentum conservation requires |094) = [694).

The ‘dual’ conformal symmetry is best presented in the dual space where the angle brackets
and 7; have been replaced with the dual momenta and supermomenta. When expressed in the dual
superspace, all tree-level MHV and NMHYV amplitudes in N/ = 4 super-Yang-Mills theory exhibit
dual superconformal symmetry [I4]. To explicitly construct the conformal group, we first need
conformal inversion. Conformal inversion of the dual coordinates is defined in a similar way to
standard conformal inversion.

T34

Iz,,] = (2.4.17)

2

The special conformal generators K* are found by after performing an inversion, an infinitesimal
translations, and another inversion. The rest of the conformal algebra is found by commuting the
special conformal generators with the infinitesimal generator of translation. More details regarding
how conformal inversion is defined for other quantities, like the momenta spinors, can be found in
[14].

Since we are interested in the conformal symmetry associated with Lorentz invariant scattering
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amplitudes, it is sufficient to provide the following conformal inversion properties

I[af] = =% (2.4.18)
T(i+1)] = (22) ™" (1) (2.4.19)
I lii+1)) = (22,5) 7 [ii+1] (2.4.20)

More complicated dual conformally covariant quantities can be constructed, but we will not do so

here. Now that we have defined the dual coordinates, we still need twistors before defining the

R-invariants as they appear in eq. (2.4.13).

2.5 Twistor Space

While the spinor variables proved to be extremely useful to simplify scattering amplitudes, many
modern amplitude calculations are not written in the spinor variables. Instead, they are expressed in
terms of twistor variables and other physical variables constructed from twistors. With the conformal
group acting linearly in configuration space, the action in momentum space is rather complicated
because conformal boosts are generated by a second-order differential operator. In general, the
generators are functions of the spinor variables. The goal of introducing twistors is to introduce a
set of variables where the generators are linearized.

The complex projective three-space P? is known as twistor space. The introduction of twistor
space to scattering amplitudes was first made by Penrose [23] where he detailed a twistor description
that is equivalent to complex Minkowski space-time (completed by a null cone at infinity). In his
twistor representation, a null line in complex Minkowski space-time is represented by a pair of two
component spinors packaged into a four component object called a twistor. One of the spinors
defines the direction of the line and the other can be geometrically interpreted as its moment about
an origin. In [I1], Witten introduced his twistor string theory with tree-level amplitudes matching
those of N/ =4 SYM theory. In this work, we will not stress the geometric interpretation of twistor
variables. Instead, we will use twistors constructed from the momenta spinors as a useful change of
variables that simplifies the form of scattering amplitudes.

Momentum twistors are not twistors associated with Minkowski space-time. Rather momentum
twistors are formed exactly like the twistors introduced by Penrose, but the dual coordinates are used
instead of the space-time coordinates. For this reason, they are referred to as momentum twistors.

Momentum twistors were introduced in [24]. Momentum twistors are four component objects formed
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from two spinors. In certain signatures, one of the two spinors packaged into a momentum twistor

can be thought of as a Fourier transform on the angle spinors. Momentum twistors are defined by
zh = (1) [mi) (2.5.1)

where I = (a,a) is an SU(2,2) index. The new spinor [u;|* is defined by the following equations
[1il* = (ilazi® = (ilazify (2.5.2)

known as the incidence relations.

After defining the momenta twistors Z!, the square brackets can be expressed in terms of the
angle brackets and the new [u;|* spinors. Let’s look at how the usual square and angle bracket
products can be expressed in the language of momenta twistors. Using a special skew two-index

twistor appearing in the twistor algebra I4p, we can write the angle and square brackets as

(i) = IapZ* Z§ (2.5.3)

[ij] = TP W1 aWap (2.5.4)

where W are dual twistors that can be defined in terms of the Zs (definition can be found in [24]).
We can also define dual conformal invariants from momentum twistors using the Levi-Civita esgcp
in the following way

(ijkl) = eapcp 2 ZP 2 ZF (2.5.5)

where the quantity (ijkl) is known as a four-bracket. The four-bracket is an extremely important
quantity that appears throughout the study of scattering amplitudes.

To form momentum twistors from the bosonic coordinates, the angle brackets were replaced with
the variables [u;| defined by the incidence relations. Following the same definition of the new bosonic
spinors, we can similarly define a new Grassmann variable ' that is the fermionic analog of the

[;| variables. The Xf‘ are defined according to the incidence relations
xit = (il67) = (il6f) (2.5.6)

We can package the momentum twistors with the new Grassmann variables XiA into a quantity

23



known as a momentum supertwistor. The momentum supertwistors are defined as

Zi = (28,x3") = (A, 28 Nia, 074 Nia) (2.5.7)

K2

As we can see, the momentum supertwistors are formed from the angle spinors, the dual coordinates
2$%, and the fermionic Grassmann variables 4.
As we saw earlier, dual superconformal invariants appear at tree-level amplitudes as soon as

NMHYV processes are considered. Now that we have introduced momentum supertwistors, we can

define R-invariants.

0* (51,4, k=1, k) xn + cyclic)
(n.5=1,4. k=1 (=1, 4, k=1, k) (G, k=L, k. n) (k=1 K, n, j=1) (k. n, 1, )

Rk = — (2.5.8)
Since the R-invariant definition is cyclic in the labels, we define a five-bracket [n,j — 1,7,k — 1, k|

where

Ryjk = [n,j — 1,5,k — 1 K] (2.5.9)

With these five-brackets, the tree-level n-gluon NMHYV superamplitude can be written as

n—3 n
ANV = AV TN [ — 15,k — 1K (2.5.10)
=2 k=j+2
At this point we have introduced most of the momenta variables we will need to describe the

scattering amplitudes presented in this work. We now review how loop amplitudes are formulated.

2.6 Loop Amplitudes in Planar N =4 SYM Theory

Loop amplitudes in gauge theories have been the focus of much of modern scattering amplitude
research. In fact, there are many research programs dedicated to constructing loop integrands. We
will only touch upon work relevant to gluon scattering amplitudes. The first one-loop amplitude for
four external gluons N' = 4 SYM theory was calculated in 1982 by Green, Schwarz, and Brink as
the low energy limit of a superstring amplitude [25]. In 1994, Bern, Dixon, Dunbar, and Kowoser
constructed an ansétze for n-point one-loop amplitudes and determined a general n-point gluon
one-loop amplitude in N' = 4 SYM theory [3]. In this section, we will review some of the most
important advancements in loop calculations in the study of planar N' = 4 SYM theory. We start

with the method of generalized unitarity and progress to multi-loop calculations.
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The method of generalized unitarity has played a crucial role in loop order computations. Gener-
alized unitarity is the process of constructing the full loop amplitude from unitarity cuts. By sending
loop momenta on-shell (known as a unitarity cut), loop amplitudes can be written as products of
lower weight amplitudes. Starting with a complete basis of integrals, computing a loop amplitude
can be reduced to the problem of computing the coefficients in the complete basis. The coefficients
can be determined by taking sets of unitarity cuts of the general ansatz in the complete integral
basis and comparing to the factorization of the loop amplitude into lower-point amplitudes. We will
not go into more details about the method of generalized unitarity, but more details can be found
in textbooks like [I3].

Now we want to focus on planar A/ = 4 SYM loop amplitudes. As we saw earlier, N' =4 SYM
is a conformal theory free of ultraviolet divergences which cancel order by order in perturbation
theory. However, loop amplitudes in planar A/ = 4 SYM theory do have infrared divergences. The
IR divergences can be interpreted as loop-momenta becoming collinear with external momenta.
Typically one of the loop momenta going soft leads to a 1/e factor. When one of each of the loop-
momenta become soft, the 1/¢2 behavior is obtained for an L-loop amplitude. Soft and collinear
limits have been well studied in massless gauge theories like A" =4 SYM. A modern treatment can
be found in the review article [26].

To handle the IR divergences, amplitudes are computed using D = 4 — 2¢ dimensional regular-
ization where they are well understood. Dimensional regularization breaks the conformal and dual
conformal symmetries. Therefore, the complete loop order amplitudes are not (dual) conformally
invariant due to the IR divergent components. While this might sound like the the end of the con-
formal and dual conformal symmetries, we can construct IR-finite quantities. The IR divergences
in A/ =4 SYM amplitudes have a universal form. After computing the 2-loop 4-point MHV ampli-
tude, Anastasiou, Bern, Dixon, and Kosower (ABDK) conjectured that higher loop MHV amplitudes
could be expressed in terms of the one-loop results [27]. Bern, Dixon, and Smirnov observed that the
iterative structure found by ABDK continued in the 3-loop 4-point computation [28]. The resulting

pattern was shown to exponentiate leading to the well-known ABDK/BDS ansatz

MMHVBDS (o) — oy, Z (f(L M{IV(LE) + C(L)) (2.6.1)

AI\AH
MMHV AMHV and € is the dimensional regularization parameter. The remaining functions

where
will be explicitly defined later.

The 2-loop 5-point MHV amplitude [29] B0] matched the prediction from the BDS ansatz. At
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six-points and higher, the BDS ansatz fails to produce the correct result. Fortunately, the BDS
ansatz correctly captures the IR divergences and the ansatz can be corrected to match higher loop
results. The correction factor, known as the remainder function R,,, is a function of dual conformally

invariant cross ratios. R,, is defined as
AMEV — JMHV.BDS o5 (R,) (2.6.2)
The remainder function at loop order L is the difference between the amplitude and the BDS ansatz
Ry = MY (€) — MYV EPS(e) (2.6.3)

Paired with the BDS ansatz, the L-loop remainder function is sufficient to compute the n-point
L-loop MHV amplitude.

For NMHYV superamplitudes the story is very similar because NMHV amplitudes have the same
infrared-divergent structure as MHV amplitudes. Dual conformal invariants can be constructed by
taking a ratio of the loop level and the tree-level superamplitudes. This ratio is known as the ratio
function P where

ANMAV — qMEVD (2.6.4)

Ratio functions, like remainder functions, are IR-finite. The ratio functions at tree-level can be
constructed from the R-invariants defined in eq. . Moving to loop level, the ratio function
is given by R-invariants multiplied by transcendental functions of dual conformal invariants. New
techniques for computing these loop level remainder and ratio functions will be presented in sub-
sequent chapters. In the following chapter, the mathematical machinery needed to calculate these

types of amplitudes will be discussed.
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Chapter 3

Amplitude Toolbox

Many advances in N’ = 4 SYM scattering amplitude calculations have been pioneered by identifying
important mathematical and physical properties they satisfy. MHV and NMHV amplitudes exhibit
remarkable mathematical structure beyond dual conformal invariance. In order to understand this
underlying structure, we must borrow results from mathematics. Amplitude research is growing
rapidly and new mathematical techniques are being applied to computations daily. Much of this
mathematical formalism is hiding in highly technical papers and at this point in time cohesive
reviews do not exist for many important topics. In this chapter, I hope to briefly provide some
of the essentials that will be needed to understand the cluster bootstrap computations and cluster
algebra structure presented in this thesis. An advanced reader could skip this chapter and move on

to the results presented in Chapters [4 and

3.1 Polylogarithms

Polylogarithms functions play a crucial role in the scattering amplitude story for A' = 4 SYM
scattering amplitudes. In planar N' = 4 SYM theory, the rational functions appearing in the
remainder and ratio functions are often classical polylogarithms. It is believed that all L-loop MHV
and NMHYV scattering amplitudes in planar A" = 4 SYM can be represented as linear combinations
of weight 2L polylogarithms. Like typical classes of functions, there are many types of different
polylogarithms. First, we will discuss classical polylogarithms.

A classical polylogarithm is an iterative integral of logarithms. The weight of a classical poly-

logarithm can be thought of as the number of integrations from the starting 1/(1 — z) function. A
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classical polylogarithms of weight k is defined by

Lij(z) = /0 L1 (t)dlog(t) (3.1.1)

where

Li (2) = —log(1 — 2) (3.1.2)

Another class of polylogarithms appearing in amplitudes are known as Goncharov’s multiple poly-

logarithms [31] defined by

G(TW:2) = /0 t‘ftaa(w’;z) (3.1.3)
where @ = (a, W)
G(O_>n;z) = %ln"(z) (3.1.4)

In the case of Goncharov’s multiple polylogarithms, the weight is equal to the number of elements
of W.

Polylogarithms satisfy complicated multiplicative (functional) identities. In [32], Golden et. al.
present a 40 term trilogarithm identity. These nontrivial identities make working with analytic
forms difficult. When the six-point two-loop remainder function was presented [33, [34], it was a
seventeen page long expression in terms of the multiple polylogarithms defined above. It turns out
that the gigantic expression presented could actually be written in terms of classical polylogarithms.
By employing this mathematical tool called the symbol, Goncharov, Spradlin, Vergu, and Volovich
were able to reduce the 17 page long expression of the six-point two-loop remainder function to an
expression spanning only a few lines [35]. With higher loop computations depending on the more

complicated generalized polylogarithms, the symbol is a crucial tool.

3.2 Symbol

The symbol is a mathematical tool used to represent transcendental functions that appear in scat-
tering amplitudes. Some of the first works using symbols in physics can be found in [35, B6]. We
start by assuming that we have an arbitrary function F' of weight k& that can be represented by

iterative integrals in the following way

b
F = / dlogF? - - - dlogF}, (3.2.1)
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where

b b t
/ dlogF - - - dlogFy, = / (/ dlogF - - - dlong1> dlogFy(t) (3.2.2)

Given such a function, the symbol of F' is defined by
S(F)=FQ®FRk®- & F (3.2.3)

As we can see, the symbol of a weight k function is a k-fold tensor product. From the definition of

a classical polylogarithm, we see that

dLix(z) = —dlog(1 — z)dlog(z) - - - dlog(x) (3.2.4)
ad the symbol is given by
S(Li =—(1- 3.2.5
(Lip(z)) = -(1-2)0z0 -0 (3.2.5)
k—1 times

Using the definition of symbol, the symbols for more complicated polylogarithm functions can be
found be writing the function explicitly in the form of eq.

Symbols in scattering amplitudes are used primarily to simplify complicated polylogarithm func-
tions. The symbol for a function is found by applying the definition and writing the k-fold tensor
product. Then a few mathematical properties are applied to the symbol. Terms in the symbol that

are products can be split apart in the following way

AB®C@D=A®C@D+B2C®D (3.2.6)

If one of the elements in the product is a constant, the same rule applies except the term containing
the constant disappears. This makes sense since each element of the symbol corresponds to a

differential term in the functional representation and the differential of a constant is zero.

cARB®D=A®B®D (3.2.7)

These two rules are applied and the symbol is expanded out. In the process, many terms end up
canceling. Complicated, many-term polylogarithm identities are trivialized to algebraic identities at
the symbol level.

Given that functions composed of transcendental functions can be expressed in many ways, it is

sometimes difficult to determine if two functions are equivalent. Fortunately, symbols are uniquely
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defined. There is only one symbol for a given function. If two functions have different symbols, the
functions are not equivalent. A statement of equivalence of two symbols does not mean that the
two functions are equivalent. Often times the products of lower weight functions are removed to
simplify the overall symbol algebra. When this is done, two functions with identical symbols are
only equivalent up to products of lower weight functions. Reconstruction of a full amplitude from
its symbol is a nontrivial step. In the process of expanding the symbol, constant terms are lost.
Only a subset of all symbols even correspond to functions and those that do are known as integrable
functions. There are numerous methods for determining the beyond the symbol terms and rational

functions, but the details will not be covered here.

3.3 u Variables

As seen from dual conformal symmetry [37, 38|, 39, 40], 4T, 42], [43], [14], the n-particle SYM scattering
amplitude depends on 3(n — 5) dual conformal cross-ratios. These cross ratios are algebraically
independent and constructed by taking ratios of x?j where z;; = x; — x;. Many modern amplitudes
are expressed in terms of variables known as u variables. They are defined as ratios of the squares
of the dual coordinates in the following way

2 2 2 2
Lij+1%it1,5 Lit1,i+5%i42,i+4

U; = WUi41,i44 = (331)

’U,ij =

3 3 ) 3 p
i Tit1,5+1 Zi11,i+4%542,i45

where the indices are mod n. Each of the squares of the dual coordinates can be directly related to
the spinor variables or the familiar Mandelstam invariants.

o _ (i—lij—1j)

Si..j—1 = (pi +Piy1 + - +pj—1)2 =T = <i—1i><j—1j> (332)

The four-brackets are Pliicker coordinates. The seven-point amplitudes will be expressed in another
set of variables known as cluster-A coordinates. These variables are known as cluster coordinates

because of their direct connection to cluster algebras, which we discuss now.

3.4 Cluster Algebras

Cluster algebras play a central role in planar A/ = 4 SYM theory because of the special functional
dependence of amplitudes on the momenta variables. Cluster algebras were first introduced in

mathematics literature in [44], [45] and their appearance in planar N' = 4 SYM has recently been
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detailed in [32] [46, [47]. Cluster algebras have beautiful connections to Stasheff polytopes as well as
many other useful properties. In Chapter [5] some results describing the cluster algebraic structure
of two-loop six- and seven-point amplitudes will be presented. A more complete treatment of the
cluster structure of planar " = 4 SYM scattering amplitudes can be found in [32].

Here, we aim to give a simple definition of a cluster algebra and the types of coordinates. Formally,
a cluster algebra is a commutative ring. The rank n of the cluster algebra is the number of subsets
known as clusters. Replacing an element from a cluster with an element related by an exchange
relation yields another cluster. The elements of a cluster can then be related to the elements of
another cluster through a series of replacements using the exchange relation. For a finite cluster
algebra, this means that there are a finite number of variables existing within the clusters that can
related through the exchange relation.

We will focus on only a couple of the cluster algebras relevant to N' = 4 SYM amplitudes for six
and seven particles. We start with one of the simplest cluster algebras known as A,. Starting with
a cluster consisting of two variables x; and x5, we can mutate on one of the two variables in the

cluster using the mutation rule
14z,

Tm—1

(3.4.1)

Tm+1 =

In each cluster, we can mutate on the variable that was not previously mutated. Repeating this

process we generate the remaining cluster variables

1
- ;“72 (3.4.2)
1
o Ltaita (3.43)
T1T2
1+ 1tz +xo 1+{,C1
py= o mE (3.4.4)

T J»‘Q

Figure on the next page shows the resulting Ay cluster algebra.

Now, we can construct the Ag cluster algebra in the same way starting with a cluster containing
{x1,22,23}. After performing all of the possible mutations on the cluster variables in each cluster,
we find there are 15 unique variables. The variables, known as cluster-x coordinates, are defined
in [46]. The cluster x-coordinates live on the configuration space Conf,,(P?). More details about
how these cluster coordinates are formed from the momenta variables we have discussed so far is

provided in Section We now take detour and discuss the Steinmann Relations.
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Figure 3.4.1: The figure shows the Ay cluster algebra. Each pair of coordinates form the clusters.

3.5 Steinmann Relations

The Steinmann relations provide information about the allowed discontinuity structure of scattering
amplitudes. Specifically, these relations restrict the space of allowed physical functions by imposing
constraints on the double discontinuities that may appear in an amplitude. Here a double disconti-
nuity is the discontinuity of a function after taking a discontinuity. As we have known for quite some
time, scattering amplitudes can have poles when consecutive momenta go on-shell. An equivalent
statement in the language of s-invariants would be that the amplitude is allowed to have physical
poles when s-invariants go to zero. When an amplitude factors into two lower point amplitudes,
we will say that a cut is not kinematically realizable if the factored amplitudes do not depend on a
particular s-invariant of interest.

The Steinmann relations forbid the appearance of a certain discontinuities following the disconti-
nuity in one channel (i.e. restricts which double discontinuities may appear). After taking a discon-
tinuity when an s-invariant goes to zero, the amplitude factors into a left amplitude dependent on
the the s-invariant and a right amplitude dependent on the remaining momenta and the s-invariant.
The factorization of the amplitude into lower point amplitudes then prohibits the appearance of
discontinuities that “cross" the factorization because the factored amplitude can only have physical
poles when consecutive momenta within the left or right amplitude go to zero. In other words, we

do not expect to see remaining discontinuities from s-invariants which share momenta across the
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factorization.

Let us consider the behavior of the scattering of six particles when discontinuities arise from
three particle invariants becoming zero. These relations prevent functions like In(s123)in(s234) from
appearing because the factored amplitude (after the sj23 cut) cannot have a dependence on sasq4.
We say that the so34 cut is not kinematically realizable after the sio3 cut. At this point, we will
not consider discontinuities arising from two particle invariants because the restrictions provided are
not well understood. By studying the three particle s-invariants discontinuity structure of scattering
amplitude functions, we can implement powerful constraints on the space of functions. At the symbol
level these restrictions constrain the s-invariants that may appear in the second entry based on the
first entry in the symbol. The restrictions from Steinmann relations are not too powerful when
considering the weight 2 hexagon functions, but are far more useful when looking into heptagon

functions.

3.5.1 Hexagon Functions

The symbol of hexagon functions (those appearing in six-point amplitudes) have entries drawn from
the nine-letter set:

{uavaw’l7ua171}717w’yuayv,yw} (351)

These are the standard u’s and y’s used by Dixon et al [48] [49, [50, [5I]. From their work, we know
that there are nine possible weight 2 hexagon functions. Out of the nine possible weight 2 hexagons,

only six of these functions are allowed by the Steinmann relations. The following functions are

allowed:
1
Lio(1 — — 3.5.2
(1= ) (3.52)
In2 (“@“*+2> (3.5.3)
Ui4-1

where ¢ = 1,2,3 and the indices are mod 3. Consecutive u; are related by a cyclic permutation of

the momenta. The u; can be expressed in terms of Mandelstam invariants by

534561 512545 523556 523556
U = ——, Uy = —————, Uz = = (3.5.4)
52345345 51235345 52345456 51235234

and in terms of momentum twistors by

(3456) (1236) (1234)(1456) (2345)(1256)

(1316)(2356)° >~ (1245)(1346)°  "* " (2356)(1245) (3.5.5)

Uy =
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From these forms, we can see that functions of three particle invariants may have discontinuities
when one or more of the three particle invariants go to zero.

Let’s look at the first set of allowed weight 2 hexagon functions given by eq. . To consider
the discontinuity structure, we will look at the symbol of the functions. Recall that the symbol of a

classical polylogarithm is given by

SLi,2)]=-1-2)02z2® - ®z (3.5.6)

n—1 times
Therefore, the symbol of the functions in eq. (3.5.2) is given by

s {Lig(l - 1)] - Llea-Youea- (3.5.7)

7 Us Us Us

Since Li,(2) has a branch cut at z = 1, there will be a discontinuity in the Lis(1 — u%) function
when u; — 0o or one of the three particle invariants goes to zero. As u; — oo, the second entry in
the symbol remains finite (it goes to 1). This can be seen by noticing that the second entry of the

symbol Lis(1 — %) is

u

52345345

1— (3.5.8)

534561
which inversely proportional to u;, placing the three particle invariants in the numerator. A three
particle invariant going to zero no longer produces a discontinuity in this term, so these types of
functions are allowed by the Steinmann relations.
Let’s look at the functions in eq. . Recall that the symbol of a product of natural logs is

given by the shuffle product of the arguments. Therefore,
ShAnB|=AwWB=A®B+B®A (3.5.9)

For the natural log squared terms, the symbol is given by

g {hﬁ <uu+2)] e (3.5.10)
Ui+1 Ui+1 Ui+1

We will consider the case of ¢ = 1 since the others are obtained by permuting the indices. First, let’s

express this product in terms of s-invariants as

UgU1 512545 534561 52345123 512545534561 (3.5.11)

2
us 51235345 S3455234 523556 5235565345
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where this product of u; only depends on one three particle invariant. One of the properties of
symbols allows entries to be inverted with a resulting negative sign. Signs inside the symbol don’t

matter, so the symbol of S [ln2 (uuuif)} can be equivalently expressed as

2 2
U2Uq us us 5235565 5235565
S {m? <>] =2 ® =2 Mg 345 (3.5.12)
UgUy UgUq 512545534561 512545534561

The natural logarithm of the complex variable z, In(z), has a branch cut starting at z = 0. As we
take the limit s345 — 0, we run into a discontinuity. Upon first glance this may seem problematic
because we have a discontinuity in the second entry of the symbol. However, the discontinuity in
the second entry is the same discontinuity in the first entry, so the Steinmann relations do not rule
this type of term from appearing in the second entry.

Finally, we may wonder about terms like In?u; or Inw;In u; for ¢ # j. Each u; contains two
overlapping three particle invariants. This prohibits the In? u; terms from appearing because the
second entry in the symbol would have a discontinuity in an overlapping three particle invariant,
which is ruled out by the Steinmann relations. Similarly, u; and u; for ¢ # j also have overlapping
three particle invariants so these terms suffer from the same exact problem. Now that we have a

handle on the six point case, let’s consider the seven point case.

3.5.2 Heptagon Functions

The story becomes more interesting at seven points because there are more independent three particle
invariants than there were in the six point case. Let us first define the commonly used w; variables

used for seven points. The u; are

8348671 8455712 _ S56S5123 _ S67S234
U = —-, Uy = —————, Uy = ————, Uy = ———, (3.5.13)
52345345 53455456 54565567 55675671
8715345 5125456 5235567
Us = ——, Ug = —, Uy = ——— (3.5.14)
56715712 57125123 51235234

These can be rewritten in terms of momenta twistors as

3456)

DO
w
=2}
3

u, — (3456)(2367) = (4567)(1347) . — (1567)(1245) (3.5.15)
1T (2356)(3467) 27 (3467)(1457) > 7 (1457)(1256) "
~ (1267)(2356) (1237)(3467) (1234)(1457) 25 16
U4 = 1956Y(2367) U5 = 19367)(1347) U6 = 11347Y(1245) (8:5.16)
_(2345)(1256)
U7 11245)(2356) (3:5.17)
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When the alternate a;; variables are introduced, expressions for u; in terms of a;; will be provided.

Just like in the six point case, we are interested in determining all the weight 2 functions that are
allowed by the Steinmann relations. As discussed earlier, the Steinmann relations provide restrictions
on the three particle invariants that can appear within the discontinuity structure. Let’s consider the
types of classical polylogarithms that may exist at weight 2. Recall that terms with two overlapping
three particle invariants are allowed to appear inside a classical polylogarithm as long as the second
entry of the symbol doesn’t have discontinuities when a three particle invariant goes to zero. Specific
products of the u; can be taken to produce terms with only two three particle invariants in the

denominator. For example,

5345671 S675234 534567
UrUg = = (3518)
52345345 S5675671 53455567

and its cyclic images can appear inside a polylogarithm. Therefore, the allowed weight two classical

1 1
Lis (1 — ) , Li, (1 - ) (3.5.19)
U1 U1U4

and their cyclic images. The symbols are given by

polylogarithms are

1 1
U X <1 — > R ULUg X <1 — ) (3520)
(5% Ur1Ug

respectively. In terms of momenta twistors,

- 1\]  (3456)(2367) _ (2346)(3467)
° [L12 (1 - u)] = (2356)(3467) © (3456)(2367) (3.5.21)
i 1] _ (3456)(2671)  (6(12)(34)(57))
S [ng (1 - mm)] ~(3467)(2561) ~  (3456)(2671) (3.5.22)

where (a(be)(de)(fg)) = (abde){acfg) — (acde){abfg). The Lis (1 - ui) are allowed by the Stein-
mann relations for the exact same reason they were allowed in the six point example. Note these
types of arguments still cannot exist in log squared terms because they share overlapping three
particle invariants.

Now, we want to construct the weight two functions formed by taking products of natural log-
arithms. Products of natural logarithms of the momenta invariants that do not get eliminated by

the Steinmann relations must only be dependent on a single three particle invariant. For example,

ULUAUT  $23534567 (3.5.23)

U2Ug 5455125234
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together with its cyclic images are valid entries inside a natural logarithm squared term because it
contains only a single three particle invariant. A product of natural logarithms would be allowed if

the arguments of the two logarithms do not have overlapping momenta. For example, cycling the

product above, eq. (3.5.23]), by three gives

UqgU7U3  S56567523 (3.5.24)
UsU2 5715458567

which only depends on the three invariant ssg7. Then the product

I (W) I (uwm) (3.5.25)
UgUe UsU2
and its cyclic images are acceptable weight 2 functions because the two arguments of the natural

logarithms have discontinuities when non-overlapping three particle invariants go to zero. Cycling

eq. (3.5.23)) by four would also produce a term containing a non-overlapping three particle invariant

i () g (ot (3.5.26)
UUg UsU3

is also a valid weight two function. Indeed this is a valid weight two function, but it is a cyclic image

s456- That would suggest that

of eq. (3.5.25)) (cycling by four). Now, the valid weight 2 functions that are products of natural

logarithms are given by

n <u1u4u7> I <U4U7U3> L 2 (“1“4“7) (3.5.27)
UgUg UsUz Uzue

plus cyclic images. The symbols are given by

ULU4U UqU7U, UqU7U, ULU4U ULU4U ULU4U
(147>®<473>+(473)®(147), 2<147>®<147) (3528)
U2Ue uUsU2 UusU2 U2Ue U2Ue U2Ue

respectively. In terms of momenta twistors,

w1tgtuy wgugus \ ] (3456)(1267)(2345)  (1267)(2345)(1567)

s [ln< uaus )m( ustia ) = (2356)(1234)(4567) * (1256)(1237) (4567) (3:5.29)
(1267)(2345)(1567) _ (3456) (1267) (2345)

T 1256)(1237) (4567) * (2356)(1234) (4567) (3:5.:30)
o (uwiugur\] . (3456)(1267)(2345) _ (3456)(1267)(2345

s [1“ ( iy ) = 2 12356) (1234) (45067)  (2356)(1234) (4567) (3:5:31)

In summary, there are 28 weight two functions that satisfy the Steinmann relations out of the
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42 integrable weight two functions. They are given by the following four functions and their cyclic

images

1 1
Lis (1 _ ) Ly (1 - ) n () In () m? () (3.5.32)
(5% U1U4 U2Ue usU U2Ue

As shown by the reduction in the number of functions, the Steinmann relations significantly con-

strains the space of physical functions.
It is convenient to work with a set of projectively invariant ratios constructed out of the 42 n=7

cluster A-coordinates. The 42 cluster .A-coordinates are given by

(2367), (2567), (2347), (2457), (1(23)(45)(67)), (1(34)(56)(72)) (3.5.33)

plus cyclic copies where Z; — Z; 1. A convenient set of invariant ratios is formed by multiplying the
cluster A-coordinates with the appropriate (ii+1i42i+3) Pliicker coordinate factors. The ratios

are referred to as the a;; variables and can expressed using momentum twistors in the following way

(1234)(1567)(2367) _(2457)(3456) _—
= 1237)(1267)(3456) 41 = 19345 (4567) (8:5.34)
o {1234)(2567) L (1(23)(45)(67)) (35.35)

2L (1267)(2345) oL (1234 (1567) -
o {1567)(2347) o (L34)(56)(72) (35.36)
31 (1237 (4567) o1 T (1234)(1567) -

Notice each of the 42 cluster A-coordinates are dressed by (i i+1i+24+3) Pliicker coordinate factors.
The entire set of 42 a;; are found from the a;; listed above by cyclically permuting the momenta.
Mathematically, the cyclic permutations are represented by

(3.5.37)

aij = ail|Zk—>Zk+j71

Since the Steinmann relations are expressed in the language of Mandelstam invariants, we can express
the a1; in the following way
5235675712

ap = =200 (3.5.38)
512571545

with the a1; given by cyclic permutations of a1;. The remaining a;; for 7 # 1 are not dependent on
three particle invariants.
We are interested in expressing the Steinmann relations in the language of the 42 a;; because these

coordinates are far more convenient to use. Remembering that the Steinmann relations provide three
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particle invariant restrictions, the relations only prohibit the appearance of three particle momenta
in the second entry of the symbol of weight 2 functions if it contains a forbidden double discontinuity.
In the language of a;;, Steinmann relations only prohibit specific a;; from appearing in the second
entry. The forbidden a;; are dependent on the a;; that appear in the first entry of the symbol.
Let’s formulate the restrictions in a more coherent fashion. Each ay; is proportional to a single three
particle invariant s;_s;_1;. If a1; appears in the first entry of the symbol, then the second entry
must not depend on a three particle invariant containing overlapping momenta (i—2, i—1, or 7).
However, the second entry is not prohibited from depending on the same three particle invariant,
so it is allowed to be a;;. The only other possibilities with non-overlapping momenta are aq ;43 and
a1,54+4. The first entry condition forces the first entry of the symbol of heptagon functions to be one
of the aq;. Assuming the first entry of the symbol of a heptagon function is given by ai;, the second
entry of the symbol is not allowed to be ay; unless j =i, j = i+3, or j = i+4. This statement is
the formulation of the Steinmann relations in the language of the a;; variables.

Now, let’s go back and verify that our formulation of the Steinmann relations in the a;; language
agrees with the functions that live in the weight 2 Steinmann space. In order to do this, the u; must

be expressed in terms of the a;; as

air a1 a12 a13

Uy = 5 U9 = s us = s Uy = (3539)
a13a14 14015 15016 16017
a14 ais a16
Us = , ug = , uy = (3.5.40)
aj1aiy a11a12 12013
The special products of u; in the a;; are
1 U ULUT 1 ULUT U3 1
ULUy = ; =—, = — (3.5.41)
a14016 U2Ug a13 UsU2 ai6

Now we express the symbols of the weight 2 functions living in the Steinmann space in our new

variables

17 ®a24a33 (3.5.42)

] a13a14 a17

1 | 1
S |:Li2 (1 - > = X ags = 14016 Q ags (3543)

ayaaie
1 1
=2— Q® — = 2a13 ® a3 (3.5.44)
a13 a13

=a13 ® a16 + a16 @ a13 (3.5.45)
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It is easy to see that these weight 2 symbols are allowed by the Steinmann relations as formulated
in the a;; language. Starting with the complete set of 42 functions weight 2 functions, this basis
could be found by applying the formulation of the Steinmann relations in the language of the a;;

variables. Now, we are ready to apply the Steinmann relations to obtain heptagon functions.
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Chapter 4

Heptagons from the Steinmann

Cluster Bootstrap

The desire to construct general scattering amplitudes from their analytic and physical properties has
been a goal since the birth of the analytic S-matrix program (see e.g. ref. [52]). More recently, such
a procedure has been applied in a perturbative context and referred to as bootstrapping. Aspects of
this approach have been applied to theories such as quantum chromodynamics at one loop [53] 54 [55]
and more recently at two loops [56], 57, [58]. However, the most powerful applications to date have
been to the planar limit of A" = 4 super-Yang-Mills (SYM) theory in four dimensions |2, [59]. Fueled
by an increased understanding of the classes of analytic functions appearing in amplitudes in general
quantum field theories, as well as the stringent constraints obeyed by amplitudes in planar N = 4
SYM, it has been possible to advance as far as five loops [49] [60} [61), (62, 47, [5]. These results in turn
provide a rich mine of theoretical data for understanding how scattering amplitudes behave.

The planar limit of a large number of colors in N' = 4 SYM has received a great deal of attention
because of the remarkable properties it exhibits. In addition to superconformal symmetry it respects
a dual conformal symmetry [43}, 37, [38], 63, [42], and amplitudes are dual to polygonal light-like Wilson
loops [39, 40, [64], [4T], (43, 65 66]. Dual (super)conformal symmetry fixes the four-point and five-point
amplitudes uniquely to match the Bern-Dixon-Smirnov (BDS) ansatz [28], which captures all the
infrared divergences of planar scattering amplitudes. Starting at six points, the BDS ansatz receives
corrections from finite functions of dual conformal invariants [67) 68 [66, 65]. The correction to
the maximally helicity violating (MHV) amplitude has traditionally been expressed in terms of a

(BDS) remainder function [65] 66, 49, 50, [61], while the correction to the next-to-maximally helicity
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violating (NMHV) amplitude has traditionally been expressed in terms of the infrared-finite NMHV
ratio function [14} 2], [69] 48] [60, [70].

The cluster bootstrap program is built on the idea that certain scattering amplitudes can be
determined order by order in perturbation theory using a set of basic building blocks known as cluster
coordinates [71, [72]. Inspired by the results of refs. [35] [32], the bootstrap approach developed in
refs. [49, [60] [61) [62] 47, 5] assumes that the MHV and NMHV amplitudes at each loop order belong
to a particular class of iterated integrals, or generalized polylogarithms. More specifically, the L-loop
contribution to the remainder and ratio functions is expected to lie within the space spanned by
polylogarithms of weight 2L [73] whose symbols can be written in terms of cluster .A-coordinates.
A further constraint on the relevant space of functions comes from the restriction that only physical
branch cuts can appear in the remainder and ratio functions [36].

To make use of this expectation, in the bootstrap program one first constructs a general linear
combination of the above set of functions to serve as an ansatz. Then one tries to determine all free
coefficients in the ansatz by imposing analytic and physical constraints. This procedure becomes
increasingly computationally expensive at higher loop orders, largely due to the fact that the number
of relevant functions increases exponentially with the weight. It is hoped that one day a constructive
procedure for determining these amplitudes can be developed that does not require constructing the
full weight-2L space as an intermediate step. A promising candidate in this respect is the Wilson loop
Operator Product Expansion (OPE) [74] [36, [75] and the Pentagon OPE program [76l, [77, [78], [79] [80]
811, [82] which provides finite-coupling expressions for the amplitudes as an expansion around (multi-
)collinear kinematics. The main challenge in this framework is to resum the infinite series around
these kinematics; there has been progress recently in this direction at weak coupling [83, 84] [85].
Another potential constructive approach could involve the Amplituhedron [86] [87] description of the
multi-loop integrand. Perhaps one can extend the methods of ref. [88] for reading off the branch-point
locations, in order to enable reading off the entire function.

To date, six- and seven-point amplitudes have been computed in the cluster bootstrap program
through the study of so-called hexagon and heptagon functions. Both helicity configurations of
the six-point amplitude have been determined through five loops [5], while the MHV seven-point
amplitude has been determined at symbol level through three loops [61]. The seven-point NMHV
amplitude has not yet received attention in the bootstrap program, but it has been calculated
through two loops using slightly different methods [89]. Surprisingly, bootstrapping the seven-point
remainder function has thus far proven to be conceptually simpler (i.e. requiring the imposition of

fewer constraints) than bootstrapping its six-point counterpart. The collinear limit of the seven-point
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remainder function must be nonsingular and a well-defined hexagon function. This requirement
is so restrictive that it entirely determines the two-loop heptagon remainder function, up to an
overall scale. It similarly determines the three-loop remainder function, once the full implications of
dual superconformal symmetry are taken into account [6I]. The corresponding hexagon remainder
function symbols may then be obtained by taking a collinear limit.

In a recent breakthrough [5], the classic work of Steinmann [90, 91] on the compatibility of
branch cuts in different channels has been used to supercharge the hexagon function bootstrap
program. The Steinmann relations dramatically reduce the size of the functional haystack one must
search through in order to find amplitudes, putting higher-loop amplitudes that were previously
inaccessible within reach. In this chapter we reformulate the heptagon bootstrap of ref. [61] to
exploit the power of the Steinmann relations. With their help, we are able to fully determine
the symbol of the seven-point three-loop NMHV and four-loop MHV amplitude in planar N = 4
SYM, using only a few simple physical and mathematical inputs. In a separate paper [92], we will
investigate various kinematical limits of these amplitudes in more detail, including the multi-Regge
limit [68] 93, 04, [95] 96, 97, 98], [99], 100, 10T, 102} 103], the OPE limit [74, [36], [75] [76], [7'7, [78, [79, [80],
and the self-crossing limit [T04) [I05]. In this chapter, we study one of the simpler limits, where the
NMHYV seven-point amplitude factorizes on a multi-particle pole.

This chapter is organized as follows. In section we begin by reviewing the general structure
of seven-particle MHV and NMHV (super)amplitudes, and different schemes for subtracting their
infrared divergences. Section [£.2] discusses the essential ingredients of the amplitude bootstrap for
constructing heptagon functions, which are believed to describe the nontrivial kinematical depen-
dence of these amplitudes. Section focuses on the additional physical constraints that allow us
to single out the MHV or NMHV amplitude from this space of functions.

Our main results, including the analysis of the general space of heptagon symbols, and the
determination of the three-loop NMHV and four-loop MHV amplitude symbols, are presented in
section Section describes a sample kinematical limit, the behavior of the NMHV amplitude
as a multi-particle Mandelstam invariant vanishes. Finally, section [4.6] contains our conclusions, and
discusses possible avenues for future study.

Many of the analytic results in this chapter are too lengthy to present in the manuscript. Instead,

computer-readable files containing our results can be downloaded from [106].
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4.1 Seven-Particle Scattering Amplitudes

4.1.1 MHYV: The Remainder Function

In planar N/ = 4 SYM, n-particle amplitudes are completely characterized by the color-ordered
partial amplitudes A,, which are the coefficients of specific traces Tr(T**T?2---T%") in the color
decomposition of the amplitudes. The MHYV helicity configuration has precisely two gluons with
negative helicity and (n—2) with positive helicity (in a convention where all particles are outgoing).
The MHV amplitude is encoded in the remainder function R,,, which is defined by factoring out the

BDS ansatz ABPS [28] (reviewed in appendix [A)):
AMBV — ABDS oxp[R,]. (4.1.1)

The BDS ansatz captures all the infrared and collinear divergences [107) 108 [109] in the planar
amplitude, so the remainder function is infrared finite. It is also invariant under dual conformal
transformations [37, [38], [39] 63, 43]. Moreover, since the BDS ansatz accounts for collinear factor-
ization to all orders in perturbation theory [28], the n-point remainder function smoothly tends to
the (n—1)-point remainder function in its collinear limits, a fact that will prove to be an important
ingredient in the bootstrap program.

In the definition , R,, is the finite-coupling (or all-loop) remainder function. Here we will
be interested in its perturbative expansion. For any function F' of the coupling, we denote the

coefficients of its perturbative expansion with a superscript according to the definition

)
F=Y g*r®, (4.1.2)
L=0
where g2 = ¢2,,N/(167?), gy ur is the Yang-Mills coupling constant, and N is the number of colors.
Elsewhere in the literature, the coupling constant a = 2¢2 is often used. The L-loop contribution to
the remainder function, R%L), is expected to be a weight-2L iterated integral.

The remainder function vanishes for the four- and five-particle amplitudes, because dual confor-
mally invariant cross ratios cannot be formed with fewer than six external lightlike momenta (in
other words, the BDS ansatz is correct to all loop orders for n = 4 or 5) [67, (66} [65]. The first
nontrivial case, the six-point remainder function, has been successfully computed at two loops [35],

three loops [49, [89] 50], four loops [5I] and recently five loops [5]. At seven points, the remainder

function has been computed at two loops [I10} 89, [TTT], I12] and its symbol has been computed at
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three loops [61]. The symbol of the four-loop seven-point MHV remainder function R$4) is one of

the main results of this chapter.

4.1.2 NMHV: The Ratio Function and R-invariants

Beyond the MHV case, scattering amplitudes in SYM theory are most efficiently organized by
exploiting the (dual) superconformal symmetry [I4] of the theory, as reviewed in ref. [I13].

In a nutshell, one starts by packaging the on-shell particle content of the theory into a single
superfield ® with the help of four Grassmann variables 7, whose index transforms in the funda-
mental representation of the SU(4) R-symmetry group. In other words, all external states, gluons

G*, fermions I'y and T4, and scalars Sy, can be simultaneously described by the superfield
& =G+ 77AFA + %nAﬁBSAB + %nAanCGABCDf‘D + %nAananGABCDG_ , (4.1.3)

which allows us to combine all n-point amplitudes into a superamplitude A, (®1,...,®,).
Expanding the superamplitude in the Grassmann variables separates out its different helicity

components. The MHV amplitude is contained in the part of AMHY

with 8 powers of Grassmann
variables, or Grassmann degree 8. Specifically, the MHV amplitude discussed in the previous sub-

section is given in the MHV superamplitude by the term

n

A%HV:(%)%(‘*)(ZM) S ) ) AT k) (4.1.4)

=1 1<j<k<n

where we have shown only the pure-gluon terms explicitly. Similarly, the terms of Grassmann
degree 12 make up the NMHYV superamplitude. Since NMHV amplitudes in this theory have the

same infrared-divergent structure as MHV amplitudes, the two superamplitudes can be related by
AN = AV P, (4.1.5)

where the infrared-finite quantity P, is called the NMHYV ratio function and has Grassmann degree
4. On the basis of tree-level and one-loop amplitude computations, it was argued in ref. [I4] that
P, is dual conformally invariant.

At tree level, the dual conformal symmetry is enhanced to dual superconformal symmetry, and the
ratio function can be written as a sum of dual superconformal invariants or ‘R-invariants’ [14] 21].

These quantities, which carry the dependence on the fermionic variables, are algebraic functions of
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the kinematics and can be written as Grassmannian contour integrals [I14]. From this representation
it is also possible to prove their invariance under ordinary superconformal transformations [1T5] [1T6],
or in other words their Yangian invariance [117].

As shown in ref. [IT4], R-invariants are most easily expressed in terms of the momentum super-

twistors Z; defined byﬂ [24]
Zi=(Zilxi), 270 =002 "Ne), X =00 Na (4.1.6)

Their fermionic components y; are associated with the fermionic dual coordinates 6; in the same way
that the bosonic twistors Z; are associated with the bosonic dual coordinates x;. Differences between
color-adjacent dual coordinates x; and 6; are related to the external momenta p; and supermomenta
i, respectively:

PPY = APAS =2l — a2, gt = At = 07 — 07 (4.1.7)

7 A

Given any set of five supertwistors Z,, 2y, 2., Z4, Z., we may define a corresponding NMHV R-

invariant as a 5-bracket
5014 (Xa(bede) 4 cyclic)

bede] = 4.1.8
[abede] (abcd) (bede) (cdea)(deab) {eabc) ’ ( )

in terms of dual conformally invariant bosonic 4-brackets
(ijkl) = (Z:;Z;Zu20) = €apepZ{ ZP Z§ ZP = det(Z:2;Z1.21) (4.1.9)

and a fermionic delta function 6°14(&) = £1¢2£3¢* for the different SU(4) components of €. The orig-
inal definition of the R-invariants [14} [2I] (there denoted R,.,;) in normal twistor space corresponds
to the special case R,.q. = [r, a—1, a, b—1, b].

From the definition , we can see that R-invariants are antisymmetric in the exchange
of any pair of supertwistor indices (hence also invariant under cyclic permutations). They are
also manifestly dual conformally invariant, since they don’t depend on spinor products (ij). The
aforementioned Grassmannian contour integral representation in momentum twistor space [114]
makes the full dual conformal invariance manifest. It also allows one to prove more transparently

the following important identity between R-invariants: Given any six momentum supertwistors

IThe indices o, & = 1,2 denote the components of the spinor representation of the Lorentz group SO(3,1) ~

SL(2,0).
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Za, 2, Zc, 24, Ze, Zy, their R-invariants are related by [14]
[abcde] — [bede f] + [cdefa] — [defab] + [efabe] — [fabed] = 0. (4.1.10)

For n-particle scattering, there exist (g) such equations for the (g) distinct R-invariants; however,

it turns out that only (";1) are independent. So in the end we are left with

—1 —1
# linearly independent n-particle R-invariants = (Z) — (n 5 ) = (n 4 ) . (4.1.11)

For example, there are 5, 15, and 35 independent R-invariants relevant for 6-, 7- and 8-particle
NMHYV scattering amplitudes, respectively.

Let us now focus on the seven-particle NMHV superamplitude. For compactness we may ex-
press the corresponding R-invariants in terms of the particle indices that are not present in the

5-brackets (4.1.8]), for example
[12345] = (67) = (76), (4.1.12)

where (by convention) the 5-bracket on the left-hand side of this definition is always ordered, so
ordering on the right-hand side doesn’t matter.

In this notation, the representation for the tree-level ratio function found in ref. [2I] may be
rewritten as

1 2
PO = Z(12) + = (13) + = (14) +cyclic, (4.1.13)

| w

Following the same reference, we find it convenient to use a basis of 15 independent R-invariants
consisting of P%O) together with (12),(14), and their cyclic permutations. (Because 79§0) is totally
symmetric, it has no independent cyclic images.) In particular, the remaining R-invariants (4,4 + 2)

are related to this set by
(13) = — (15) — (17) — (34) — (36) — (56) + P, (4.1.14)

plus the cyclic permutations of this identity.
Beyond tree level, the independent R-invariants are dressed by transcendental functions of dual

conformal invariants, and the ratio function can be put in the form

Pr =P Vo + [(12) Vig + (14) Vig + cyclic] . (4.1.15)
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As we will review in section Pr is symmetric under the dihedral group D7. The component
Vo inherits the full dihedral symmetry of P§O)7 whereas V12 and Vi4 are only invariant under the flip
i — 3—i and i — 5—i of their momentum twistor labels, respectively.

The dependence of P; on the coupling enters only through the functions Vy and V;;. Their L-
loop contributions, VO(L) and VigL), like the remainder function, R(7L), are expected to be weight-2L

iterated integrals. Using the notation introduced in eq. (4.1.2)) we must have
vi9=1, v =v® =0 (4.1.16)
at tree level. At one loop, these functions become [21]

Vo(l) =Lis (1 —uy) — Lis (1 — uyuq) — logug logus + cyclic,
Vl(zl) = —Liy (1 — UG) + Lis (1 — U1U4) + Lis (1 — ’U,Q’LLG) + Lis (1 — U3’LL6) R

+ log u1 log us — log ug log us + log ug log us + log uy log ug + log us log uy
(4.1.17)

+ log u1 log ug + log ug logug — (o,
V1(41) = L12 (1 - U1U4) + L12 (1 — U3’LL6) + IOg Ul log us + IOg U4 log us + IOg U log Ug

+ log ug4 log ug — (o .

See also ref. [IT8] for a more recent, compact representation of the same amplitude. In the above
relations and everything that follows, the cross ratios u; are defined by,

2 2 2 2
Lij+1Lit1,5 Tit1,i4+5 Tit2,i+4

Uij = ) Ui = Ui41,i+4 =

(4.1.18)

2 2 2 2 :
Tig Tig1,5+1 Lit1,i+4 Tit2,it+5

The u; are dual conformally invariant combinations of the Mandelstam invariants, see eq.
and also eq. below.

Finally, the symbol of the two-loop NMHV heptagon has been computed in ref. [89] using the
same choice of independent R-invariants as in eq. 7 with the help of an anomaly equation for
the Q dual superconformal symmetry generators. Here we will use the Steinmann cluster bootstrap
to push to three loops: The symbols of the functions VO(3), V1(23 ), and Vl(f ) constituting the three-loop

seven-point NMHYV ratio function are another of the main results of this work.
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4.1.3 The BDS- and BDS-like Normalized Amplitudes

In the previous sections we mentioned that MHV and NMHV amplitudes have the same infrared-
divergent structure, which is accurately captured by the BDS ansatz. This fact allows us to define

the MHV and NMHV BDS-normalized superamplitudes,

AMHV  gMHV
B, = DS = “ABDS =exp[R,], (4.1.19)
ANMHV 4 NMHV 4AMHV
B, = AnEDS = .%CI\L/IHV AHEDS =P, B,, (4.1.20)

where ABDPS is the superamplitude obtained from the bosonic BDS ansatz by replacing the tree-level
MHYV Parke-Taylor factor [8,[I5] it contains with its supersymmetrized version [20]. Indeed, normal-
izations , were found to be more natural for the study of the dual superconformal
symmetry anomaly equation [89].

In what follows, it will prove greatly beneficial to define yet another set of infrared-finite quanti-
ties, using an alternate normalization factor that is compatible with the Steinmann relations. The
BDS ansatz is essentially the exponential of the full one-loop amplitude, which includes a finite part
with nontrivial dependence on Mandelstam invariants involving all possible numbers of external mo-
menta. Dividing by the BDS ansatz produces a quantity with altered dependence on three-particle
Mandelstam invariants. As we will see, such a quantity does not satisfy the Steinmann relations. In
the case of seven-particle scattering (indeed, whenever n is not a multiple of four), all the depen-
dence on the three-particle invariants (and higher-particle invariants) can be assembled into a dual
conformally invariant function Y,,, which we may remove from the one-loop amplitude in order to

define a BDS-like ansatz,

1 FCLIS
ABDS-like — ABDS o1y [4"Yn] , (4.1.21)
where
1 1 1
Y = —Liy (1 - ) — Li, (1 - ) — Li, (1 - ) , (4.1.22)
u v w
7 Uu U;
Y, = Lig (1 - — 71 22 )10 u] 4.1.23
7 ;{ 2 ( ) (quu s g ( )
and
= 472 4474 7376
Leusp = Z 9 ey = 49" = —-9" + — 9" — 4 ( S1E ) 9° +0(g"), (4.1.24)
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is the cusp anomalous dimension in the normalization of e.g. [77]E| In eq. 7 u,v,w are the
three cross ratios for six-point kinematics, defined below in eq. . The difference between
the BDS- and BDS-like-normalized ansétze for seven-point kinematics is reviewed in more detail in
appendix [A] The utility of the BDS-like ansatz was first noticed in the strong coupling analysis of
amplitudes via the AdS/CFT correspondence [119] (see also ref. [120]). At weak coupling, it was
found to simplify the six-point multi-particle factorization limit [60], self-crossing limit [105] and
NMHYV Q@ relations [70], before its role in applying the six-point Steinmann relations was noticed [5].
We will see its advantages as well in our seven-point analysis.

When n is a multiple of four it is not possible to simultaneously remove the dependence on all
three-particle and higher-particle Mandelstam invariants in a conformally invariant fashion [121].
However, for n = 8 it is still possible to separately remove the dependence of all three-particle
invariants, or of all four-particle invariants, giving rise to two different BDS-like ansétze.

Restricting our attention to the case n 1 4, we may thus define the BDS-like-normalized MHV

and NMHV amplitudes as

B ArI\L/IHV .AnMHV AEDS Pcusp Fcusp
En = ABDSTike — _4BDS /BDS-like _ By exp | — 1 Y| =exp |Rn — TY" ,
n n n
ANMHV  /NMHV ~ 4BDS r (4.1.25)
En = n i _ n n i — Bn exp |: cusp Yn:| — an gn ’
ABDS-Tike ABDS_{BDS-Tike 4

where we have also spelled out their relation to the previously-considered normalizations. Note that
EW =y, (4.1.26)

since R, starts at two loops.

Because we will focus almost exclusively on heptagon amplitudes in this chapter, we will usually
drop the particle index n from of all of its associated quantities in order to avoid clutter, e.g. P7 — P,
& — £ and E; — E. In the NMHYV case we will instead use subscripts to denote components

multiplying the different R-invariants. For example, the BDS-normalized and BDS-like-normalized

analogs of eq. (4.1.15) are

B =P By + [(12) Bia + (14) B4 + cyclic] , (4.1.27)

E =P By + [(12) Bra + (14) E14 + cyclic] . (4.1.28)

2In particular, Pcusp = YK /2 compared to the normalization of [28] and subsequent papers of Dixon and collabo-
rators.

50



It is important to note that because the R-invariants are coupling-independent, the same coupling-
dependent factor that relates NMHV superamplitudes in different normalizations will also relate the

respective coefficient functions of the R-invariants. In other words,
Fcusp
E, = B,exp fTY =&V, (4.1.29)

where * can be any index, 0 or 4j.

Given that in this chapter we will be focusing exclusively on symbols, it’s also worth emphasizing
that when expanding eq. or equivalently eq. at weak coupling, we may replace
Teusp — 497, as a consequence of the fact that the symbol of any term containing a transcendental
constant, such as (,, is zero. Thus, the conversion between the BDS-like-normalized quantities
F € {&,E, Ey, E;;} and the corresponding BDS-normalized quantities F € {88, B, By, B;; } at symbol

level and at fixed order in the coupling, simply becomes

L—k L
n

(D) N~ 7 (“Ya) ) w Yu

In particular, for R7, which sits in the exponent, its analogous conversion to £ through four loops

is given by

@ _ p@ , Lam)?
& = rP + 5 (&),

1 3
& = B + eV RP + < (V) (4.131)
@ _ p@ Lo\ | cmp® LN p@ |, 1 (c)?
& = B+ S (RP) + e RY + S (&) B + (&)

In summary, all the nontrivial kinematic dependence of seven-particle scattering can be encoded
in the four transcendental functions R7, By, Bis and By using BDS normalization, or equivalently
&, Ey, B2 and Eq4 using BDS-like normalization. (The other E;; that are needed are related to Eqa
and E14 by cyclic permutations.) These functions are all expected to belong to a very special class of
transcendental functions called heptagon functions, whose definition and construction we turn to in
the next section. However, we will see that it is only the BDS-like-normalized amplitudes that inherit
a specific analytic property from the full amplitudes: they satisfy the Steinmann relations. Taking
this restriction into account hugely trims the space of heptagon functions needed to bootstrap the

BDS-like normalized functions, thus allowing for a far more efficient construction of the amplitude.
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4.2 The Steinmann Cluster Bootstrap

The heptagon bootstrap approach we use in this chapter is a slight refinement of that used in ref. [61],
which in turn is a generalization of the hexagon function bootstrap [49, 48|, [50, 511 [60} [62]. We begin
this section by reviewing some basics of the bootstrap approach and defining heptagon functions.
Then we express the seven-point Steinmann relations in the language of cluster .4-coordinates.
We assume a basic working knowledge of both symbols [35 122 [123] 124, 125, [126] B2, [46] and

momentum twistor notation [24].

4.2.1 Symbol Alphabet

In the cluster bootstrap program for n-point amplitudes in planar SYM theory, we assume that the
symbol alphabet consists of certain objects known as cluster A-coordinates. These coordinates have
been discussed extensively in the context of scattering amplitudes; see for example ref. [32]. Here we
will only briefly recall that the kinematic data for a scattering process in planar SYM theory may
be specified by a collection of n momentum twistors [24], each of which is a homogeneous coordinate
Z; on P3. The configuration space for SYM theory is Conf, (P?) = Gr(4,n)/(C*)"~1, and cluster
A-coordinates on this space can be expressed in terms of the Pliicker coordinates of 4-brackets (ijkl),
which we defined in eq. .

Mandelstam invariants constructed from sums of cyclically adjacent external momenta p;, pi11, - . .
can be expressed nicely in terms of dual coordinates x; satisfying the relation p; = x;11 — x;. Using
the notation z;; = x; — x;, the Mandelstam invariant s; . ;_; can be written as

o _ (i—lij—1j)

Sivjo1=(Pi +Pig1 + -+ pj1)’ =x; = G G=1) " (4.2.1)

Here we have also shown how to express the Mandelstam invariant s; . ;j_1 in terms of Pliicker
coordinates and the usual spinor products (ij) = eaﬁ)\f‘)\f , see also eq. . The denominator
factors in eq. drop out of any dual conformally invariant quantity and so may be ignored for
our purposes. We will use eq. to establish the connection between the cluster A-coordinates
(defined in terms of Pliicker coordinates) and the Steinmann relations (formulated in terms of Man-
delstam invariants). More general Pliicker coordinates (ijkl) not of the form (i—14¢j—1 j) have more
complicated (algebraic) representations in terms of Mandelstam invariants. (A systematic approach
for finding such representations was discussed in the appendix of ref. [127].)

In this chapter we focus on n = 7 where there are a finite number of A-coordinates. In addi-
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tion to the Pliicker coordinates (ijkl) there are 14 Pliicker bilinears of the form (a(bc)(de)(fg)) =
(abde){acfg) — (abfg){acde). A convenient complete and multiplicatively independent set of 42 dual

conformally invariant ratios, introduced in ref. [61], is given in terms of these building blocks by

(1234) (1567) (2367) (2457)(3456)
A 937Y(1267)(3456) U1 = 19345 (4567)
(1234)(2567) (1(23)(45)(67))
421 = 11967 (2345) 451 = T1934)(1567) (42.2)
_ (1567)(2347) (1(34)(56)(72))
451 = 11237 (4567) 461 = T 1934)(1567)

with a;; for 1 < j <7 given by cyclic permutation of the particle labels; specifically,

aij = ai1|Zk,_>Zk+j—1 . (4.2.3)
The Steinmann relations, to be reviewed in section [£.2.4] are expressed simply in terms of Mandel-

stam invariants. We therefore note that with the help of eq. (4.2.1) we can express a1; quite simply

as
5235675712
_ (4.2.4)
512871545

a1l =

with the remaining six ai; again given by cyclic permutations. The remaining 35 cluster A-

coordinates do not admit simple representations in terms of Mandelstam invariants because they
involve brackets not of the form (i—1ij—17).

Finally, it is useful to relate the cross ratios u;, defined in eq. (4.1.18)), to the letters a;;. Eq. (4.2.4)

can alternatively be written as

2 .2 .2
To4Xg1 T
aj; = 246173 (4.2'5)

2337355
Combining this equation with cyclic permutations of it, and using eq. (4.1.18]), we find that
ai 757

=5 5 — Use = U2, (426)
a14015 T74T36

plus cyclic permutations of this relation. Note that, although we can define 7 of these cross ratios u;
in seven-point kinematics, an n-point scattering process in this theory only has 3n — 15 algebraically
independent dual conformal invariants. Thus only 6 of the 7 u; (or a1,) are algebraically independent.
The seven u; obey a single algebraic equation, the condition that a particular Gram determinant
vanishes, which restricts the kinematics to a six-dimensional surface within the seven-dimensional

space of cross ratios. We will not need the explicit form of the Gram determinant in this work.
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4.2.2 Integrability

The heptagon bootstrap is based on the working hypothesis that any seven-point L-loop amplitude
in planar A/ = 4 SYM theory can be expressed as a linear combination of weight-2L generalized
polylogarithm functions written in the 42-letter alphabet shown in eq. . Using this alphabet
one can write 42% distinct symbols of weight k. Fortunately, relatively few linear combinations of

these 42F symbols are actually the symbol of some function. A symbol S of the form

Sy = > £ (fay @ ® ), (4.2.7)

Q1,0

where the ¢, are letters, corresponds to an actual function only if it satisfies the integrability

condition

3 ) (G © - ® By ) dlogda, Adlogha,., =0 Vi€ {12, k=1}.  (4.2.8)

Q1 5ee0, Ok

omitting a;®a;i1

A conceptually simple method for determining all integrable symbols of a given weight & is discussed
in appendix [B] where the definition of the wedge product appearing in the above equation is also
given. The symbols of physical amplitudes have several additional properties, to which we will now

turn our attention.

4.2.3 Symbol Singularity Structure

Locality requires that amplitudes can only have singularities when an intermediate particle goes
on-shell. In a planar theory the momenta of intermediate particles can always be expressed as a sum
of cyclically adjacent momenta, and thresholds in massless theories are always at the origin. Hence
perturbative amplitudes in planar SYM theory can only have branch points when the corresponding
Mandelstam invariants s; . j_1 = x?j vanish.

When some letter ¢ appears in the first entry of a symbol it indicates that the corresponding

function has branch points at ¢ = 0 and ¢ = oo. Therefore the first entry of a symbol that

corresponds to a physical scattering amplitude must be a ratio of products of xfj [36]. We see from

egs. (4.2.1) and (4.2.2)) that only the seven a;; are valid first entries. The remaining 35 cluster

A-coordinates contain terms that may be zero (or infinite) without any intermediate particles going
on-shell. There is no possibility of cancellation in a sum over terms in a symbol since the letters of

the alphabet are multiplicatively independent. The restriction that the first entry of the symbol of

54



any seven-point amplitude must be one of the seven a,; is called the first-entry condition.

4.2.4 Steinmann Relations

The classic work of Steinmann provided powerful restrictions on the analytic form of discontinu-
ities [90]. Expanding upon his work, Cahill and Stapp found that the generalized Steinmann re-
lations hold and that double discontinuities vanish for any pair of overlapping channels [128]E| A
channel is labelled by a Mandelstam invariant, but it also corresponds to an assignment of particles
to incoming and outgoing states. Two channels overlap if the four sets into which they divide the
particles — (incoming,incoming), (incoming,outgoing), (outgoing,incoming) and (outgoing,outgoing)
— are all non-empty. Fig. shows a pair of overlapping channels for the seven-point process, s345
and sa34. They overlap because they divide the seven particles into the four non-empty sets {2},
{3,4}, {5}, and {6,7,1}.

Unlike two-particle invariants, three-particle invariants can cross zero “gently”, without any other
invariants having to change sign. Fig. [£:2.1]is drawn for the 3 — 4 configuration with particles 1, 2
and 3 incoming. Within that configuration, the left panel shows that s345 can be either negative or
positive. As s345 moves from negative to positive, a branch cut opens up, due to one or more on-shell
particles being allowed to propagate between the two blobs. The discontinuity in the amplitude
across the branch cut is given by the sum of all such on-shell intermediate-state contributions,
integrated over their respective phase space. The same is true for the so34 discontinuity illustrated
in the right panel. However, once one takes the s345 discontinuity, the resulting function cannot have
a second discontinuity in the s34 channel, because it is impossible for states to propagate on-shell

simultaneously in both the s345 and ss34 “directions”. Thus we require the Steinmann conditions,
Dlscsi+1,i+2,i+3 I:Dlscs'i.'i+1.'i+2F] = Dlscsi+2,i+3,i+4 [Dlscsi,i+1,'i+2Fj| = 07 (42'9)

to hold for alli =1,2,...7.

In contrast, the so34 channel does not overlap the s567 channel (or the sg71 channel). For example,
in the right panel of the figure, one can have a second discontinuity, after taking Discs,,,, in the 567
channel, as particle 1 and the particles crossing the sa34 cut rescatter into another set of intermediate

states, which then materializes into particles 5, 6 and 7. That is, the following double discontinuities

3The implications of the Steinmann relations for the multi-Regge limit of amplitudes in planar N’ = 4 SYM have
been analyzed in refs. [129, [130l [68] 93].
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VS.

7 7

Figure 4.2.1: The figure on the left (right) shows the discontinuity of an amplitude in the s345 (S234)
channel due to the respective intermediate states. These two channels overlap, which implies that
the states that cross the first cut cannot produce a discontinuity in the second channel (or vice
versa).

can be nonvanishing,
DISCSi+3,i+4,i+5 [Dlscsi,i+l,i+2F] # 07 DISCSi+4,i+5,i+6 [Dlscsi,i+l,i+2F] # 07 (4'2']‘0)

and they provide us with no useful constraints. Also, the “self” double discontinuities are nonvan-
ishing,
Discs, .., .0 [DisCs, 11,0 F] #0, (4.2.11)

and are not of use to us. A recent analysis of the Steinmann relations, focusing on the six-point
case, can be found in ref. [5].

We will only consider restrictions imposed on the symbol letters a;; by the Steinmann relations on
overlapping three-particle cuts, eq. . If there are any restrictions imposed by using two-particle
cuts, they are considerably more subtle for generic kinematics. Flipping the sign of a two-particle
invariant generally entails moving a particle from the initial state to the final state, or vice versa,
and other invariants can flip sign at the same time, making it hard to assess the independence of
the two-particle discontinuities.

Because the discontinuities of a symbol are encoded in its first entries, double discontinuities
are encoded by the combinations of first and second entries that appear together. Correspond-
ingly, the Steinmann relations tell us that the symbol of an amplitude cannot have any terms in
which overlapping three-particle Mandelstam invariants appear together as first and second entries.
Eqgs. 7 imply that this only imposes a constraint on the letters a,;, since the other
letters do not contain three-particle Mandelstam invariants s;,_1 ;41 o (i—2i—14+1i+2). More

specifically, we see in eq. (4.2.4) that each ay; is proportional to a single three-particle invariant
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8i—1,ii+1, sO a first entry of a;; cannot be followed by a second entry of aj ;i1,a1,i+2,a1,i+5, OF
a1,i+6, all of which contain a three-particle invariant involving p;_1, p;, or p;41. A first entry of ay;
can be followed by a second entry of a1;, @143, a1,i+4, Or any ax; for k > 1 (subject to the constraint
of integrability).

Everything stated thus far about the Steinmann constraint applies to full, infrared-divergent

amplitudes. However, the BDS-like-normalized amplitudes straightforwardly inherit this constraint,

due to the fact that the BDS-like ansatz, given explicitly in egs. (A.0.14) and (A.0.15)), contains no

three-particle invariants; it therefore acts as a spectator when taking three-particle discontinuities,

e.g.

: MHV : BDS-lik BDS-lik :
DISCSi_l‘i,i_FlA? = DISCSi—l,i,i+1 [A7 tee S:l - A7 e DlSCsi_lyin_lg . (4.2.12)

This is no longer true for the BDS-normalized amplitude, which according to eq. (4.1.25)) comes with

an extra factor of exp[rcfp Y.]. When expanded at weak coupling this factor will produce powers of
Y,,. The function Y,, is itself Steinmann since Y;, = —&(Ll). However, products of Steinmann functions

are not generically Steinmann functions, because overlapping discontinuities can arise from different
factors in the product. Indeed, once we observe that Y,, has a cut in one three-particle channel,
and that it is dihedrally invariant, we know it has cuts in all three-particle channels. Whereas Y,
itself is a sum of terms having cuts in overlapping channels, it is the cross terms in (Y;,)?, or higher
powers of Y,,, that violate the Steinmann relations. Similarly, the ratio function V, = E, /€, when
expanded out perturbatively, contains products of Steinmann functions and therefore does not obey
the Steinmann relations. The lesson here is that the proper normalization of the amplitude is critical
for elucidating its analytic properties.

To summarize, the Steinmann relations require that any BDS-like-normalized seven-point func-

tion F', such as & or Fr, must satisfy

Discq,, [Disca,, F| =0 if j #4,i+3,i+4. (4.2.13)

At the level of the symbol, this statement is equivalent to requiring that the symbol of F' contains

no first entries a,; followed by second entries a1 11, 1,42, @1,i+5, OF G1 i46-
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4.2.5 Absence of Triple Discontinuity Constraints

At the seven-point level, it is interesting to ask whether there could be new constraints on amplitudes
of the following type:

?

Disca, {Discau [DiscanFH 0. (4.2.14)

The three-particle channels corresponding to a;; and a4 do not overlap, nor do the channels cor-
responding to ai4 and ai7. The channels corresponding to ai; and ai7 do overlap, but the two
discontinuities are separated by the a4 discontinuity in between. (An analogous situation never
arises for three-particle cuts in the six-point case, because the only allowed double three-particle
cut in that case involves cutting the same invariant twice.) We have inspected the symbols of the
MHYV and NMHYV seven-point amplitudes, and we find that eq. is generically non-vanishing.
The act of taking the non-overlapping second discontinuity of the amplitude apparently alters the

function’s properties enough that the third discontinuity is permitted.

4.2.6 Steinmann Heptagon Functions

We define a heptagon function of weight k to be a generalized polylogarithm function of weight k
whose symbol may be written in the alphabet of 42 cluster A-coordinates, eq. (4.2.2), and which
satisfies the first entry condition. These functions have been studied in ref. [6I], where it was found
that the vector space of heptagon function symbols at weight k£ = 1, 2, 3, 4, 5 has dimension 7, 42,
237, 1288, 6763, respectively.

In this chapter our goal is to sharpen the heptagon bootstrap of ref. [61] by taking advantage of
the powerful constraint provided by the Steinmann relations. We thus define Steinmann heptagon
functions to be those heptagon functions that additionally satisfy the Steinmann relations (4.2.13]).
This corresponds to a restriction on the second entry of their symbols, as discussed in section
We stress again that while both BDS-normalized and BDS-like-normalized amplitudes are heptagon

functions, only the BDS-like-normalized ones, £, Ey, and F;;, are Steinmann heptagon functions.

a5

We will see in subsection that a drastically reduced number of heptagon functions satisfy
the Steinmann relations. The reduction begins at weight 2, where there are 42 heptagon function
symbols, but only 28 that obey the Steinmann relations. The corresponding 28 functions fall into 4
orbits:

Lig (1 — a13a14> y L12 (]. - a14a16) s 10g2 ais, IOg ais 10g aie (4215)
air

together with their cyclic permutations. This fractional reduction, by one third, is the same as in the
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hexagon case [5], where the number of weight-2 functions was reduced from 9 to 6. At higher weight,
we will see that the reductions are much more dramatic, and even more so for heptagon functions
than hexagon functions. This reduction in the number of relevant functions vastly decreases the size
of our ansatz, making this version of the bootstrap program more computationally tractable than

its predecessor.

4.3 MHYV and NMHYV Constraints

In appendix [B] we provide an algorithm for generating a basis for the symbols of weight-k Steinmann
heptagon functions, which serve as ansétze for the MHV and NMHV amplitudes. We then impose
known analytic and physical properties as constraints in order to identify the amplitudes uniquely.

Here we review these properties and the constraints they impose.

4.3.1 Final Entry Condition

The final entry condition is a restriction on the possible letters that may appear in the final entry of
the symbol of an amplitude. As a consequence of the dual superconformal symmetry of SYM, the
differential of an MHV amplitude must be expressible as a linear combination of dlog(i j—1 7 j+1)
factors [I10]. The differential of a generalized polylogarithm of weight & factors into linear com-
binations of weight-(k—1) polylogarithms multiplied by dlog ¢ terms where ¢ is the final entry of
the symbol. Therefore the final entries of the symbol of an MHV amplitude must be composed
entirely of Pliicker coordinates with three adjacent momentum twistors, (i j—17 j+1). In the sym-
bol alphabet we have chosen, the final entries can only be drawn from the set of 14 letters
{az;, as;}.

The MHV final entry condition we just described can be derived from an anomaly equation for
the Q dual superconformal generators [89]. The same anomaly equation can also be used to constrain
the final entries of the symbol of the NMHV superamplitude E. In particular, using as input the
leading singularities of the N2MHV 8-point amplitude obtained from the Grassmannian [I15], and
refining the @ equation so as to act on the BDS-like normalized amplitude rather than the BDS-

normalized one, Caron-Huot has found [I3I] that only 147 distinct (R-invariant) x (final entry)
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combinations are allowed in E, namely these 21:

(34)logas1, (14)logasi, (15)logasr, (16)logas, (13)logasr, (12)logas,

(45)logasy, (47)logasr, (37)logasr, (27)logasy, (57)logasr, (67)logasy,

(45)log 24, (14)log 224, (14)log 21924 (14)log L1483 (4.3.1)
ail ari Q46 a34
(24)log =, (56)logasr,  (12)logasz,  (16)log ",
42 a26
a41 a22
(13) log + ((14) — (15)) log ase — (17) log asgasy + (45) log — (34) log ass ,
26033 34035

together with their cyclic permutationsﬁ

4.3.2 Discrete Symmetries

The n-particle superamplitudes 4,, are invariant under dihedral transformations acting on the ex-
ternal particle labels. The generators of the dihedral group D,, are the cyclic permutation i — i+ 1
and the flip permutation ¢ — n + 1 — i of the particle labels, or equivalently of the momentum

twistors. For the heptagon a-letters (4.2.2)), these correspond to

Cyclic transformation: a;; — a;41,

G2i <> A3.8—; (4.3.2)
Flip transformation:

Al — ] 8—; for 1 7é 2,3.

MHYV and MHV amplitudes differ only in their tree-level prefactors. Hence the functions &, and
R,, must remain invariant under spacetime parity transformations. Parity maps NMHV amplitudes
to NMHV ones and therefore acts nontrivially on Ey, Fio and E14. In the language of our symbol
alphabet , a parity transformation leaves the letters ay; and ag; invariant. The remaining

letters transform under parity according to
Parity transformation: ag; <— asr, a41 < as1, (4.3.3)

and the cyclic permutations thereof.
The parity and dihedral symmetries of the (super)amplitude are inherited by its BDS(-like)

normalized counterpart because the BDS(-like) anséitze are also dihedrally invariant.

4We thank Simon Caron-Huot for sharing these results with us.
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4.3.3 Collinear Limit

So far we have primarily focused on the BDS-like normalized amplitude and the Steinmann functions
describing it. However for the study of collinear limits it proves advantageous to switch, using
eq. , to the BDS-normalized amplitude, since in the limit the former becomes divergent,
whereas the latter remains finite.

In more detail, the BDS ansatz ABPS entering eq. is defined in such a way that the n-point
BDS-normalized amplitude (or equivalently the remainder function for MHV) reduces to the same

quantity but with one fewer particle:

lim R, = Ry,—1 ;

it1]li

i (4.3.4)
lim B, = B, ;.
il

To take one of these collinear limits, one of the s; ;11 must be taken to zero. From eq. , we
see that this can be accomplished by taking a limit of one of the momentum twistor variables. In
the case of the NMHYV superamplitude we also need to specify the limit of the fermionic part of the
supertwistors . The (MHV degree preserving) 7||6 collinear limit can be taken by sending

(1246) (2456) , . (1456)

2 - 2,
T syt T Tyt T 24y

(4.3.5)

for fixed 7, and by taking the limit n — 0 followed by € — 0.
Of course for bosonic quantities, only the bosonic part Z; — Z; of the supertwistor is relevant. As
noted in ref. [61], in the limit (4.3.5)) the heptagon alphabet (4.2.2)) reduces to the hexagon alphabet,

plus the following 9 additional letters,

n, €, T, 147,
(1235)(1246) + 7(1236)(1245) ,  (1245)(3456) + 7(1345)(2456) ,
(1246)(2356) + 7(1236)(2456) , (1246)(3456) + 7(1346)(2456) ,

(1235)(1246) (3456) -+ 7(1236) (1345) (2456) . (4.3.6)

Therefore the collinear limits of heptagon functions are not generically hexagon functions. We say

that a heptagon symbol has a well-defined 7||6 limit only if in this limit it is independent of all 9 of

the additional letters (4.3.6]).
We must also take the limit (4.3.5)) of the R-invariants. Since these invariants are antisymmetric
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under the exchange of any pair of twistor indices, the invariants that contain both indices 6 and 7
will vanish. All other invariants reduce to six-point R-invariants. Denoting the six-point invariants
by

[12345] = (6) (4.3.7)

and its cyclic permutations (under the six-point dihedral group), and solving the single identity of
type (4.1.10) among them to eliminate (6), we deduce that
lim B Z(l)[Bl7 + é67 + Bo] + (2)[326 - B67] + (3)[336 + B37 + B67 + Bo]

7|16 (4.3.8)

+ (4)[Bar — Ber] + (5)[Bss + Ber + B,

where the hats denote the collinear limit of the corresponding bosonic functions.

Finally, we should note that in this work we will be focusing on collinear limits of dihedrally
invariant functions. Therefore it will be sufficient to consider the 7||6 limit shown above, and
the remaining i+1 || 4 collinear limits will be automatically satisfied as a consequence of dihedral

symmetry.

4.4 Results

4.4.1 Steinmann Heptagon Symbols and Their Properties

As defined in section a Steinmann heptagon function of weight & is a polylogarithm of weight

k that has a symbol satisfying the following properties:
(i) it can be expressed entirely in terms of the heptagon symbol alphabet of eq. ,
(ii) only the seven letters aj; appear in its first entry,
(ili) a first entry aq; is not followed by a second entry aq; with j € {i + 1,7+ 2,7+ 5,7 + 6}.

We will frequently use the term ‘Steinmann heptagon symbol’ to mean the symbol of a Steinmann
heptagon function. We begin by investigating how the number of Steinmann heptagon symbols
compares to the number of heptagon symbols reported in ref. [61] through weight 5.

Table [I.1] presents the number of Steinmann heptagon symbols through weight 7, computed us-
ing the bootstrapping procedure outlined in appendix [Bl The total number of Steinmann symbols
through weight 5 can be compared to 7,42, 237,1288, and 6763 linearly independent heptagon sym-

bols at weights 1 through 5, respectively [61]. By weight 5, the size of the Steinmann heptagon space
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Weightk;:‘1‘2‘3‘4‘5‘6‘7‘7//‘

parity +, flip + 4 16 48 | 154 | 467 | 1413 | 4163 | 3026
parity +, flip — 3 12 43 | 140 | 443 | 1359 | 4063 | 2946
parity —, flip + 0 3 14 60 | 210| 672 668
parity —, flip — 0 3 14 60 | 210 | 672 669
Total | 7| 28| 97| 322] 1030 | 3192 | 9570 [ 7309 |

Table 4.1: Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying the
MHYV next-to-final entry condition at weight 7.

has already been reduced by a factor of six compared to the size of the standard heptagon space!
(The corresponding reduction factor for hexagon symbols at weight 5 is only about 3.5.)

The total number of Steinmann heptagon symbols at each weight was calculated without imposing
spacetime parity or dihedral symmetries. The first four rows show the number of Steinmann heptagon
symbols that have the specified eigenvalue under the Zy X Zs generators of parity and the dihedral flip
symmetry. There are many more parity even (parity +) Steinmann heptagon functions than parity
odd. At each weight there are approximately the same number of flip + as flip —. Up through
weight 7, there are an equal number of flip + and flip — parity odd functions.

Table has two columns for weight 7. The column 7" counts the number of weight 7 symbols
that satisfy an additional constraint we call the MHV next-to-final entry condition. Paired with
the MHV final entry condition, which requires the final entry of the symbol to be aq; or asj,
integrability imposes an additional constraint that prohibits the seven letters ag; from appearing in
the next-to-final entry of any MHV symbol. Symbols satisfying this additional constraint are useful
for bootstrapping the four-loop MHV heptagon, to be discussed in subsection [£.4.3] below.

The fact that there are many more parity-even than parity-odd Steinmann heptagon functions
is also true in the hexagon case [5]. In that case, it is possible to give a closed-form construction of
an infinite series of parity-even “K” functions. The K functions apparently saturate the subspace
of Steinmann hexagon functions having no parity-odd letters. This series of functions can also be
repurposed, with appropriate arguments, to describe some, but not all, of the Steinmann heptagon
symbols having no parity-odd letters.

Before concluding this section, let us emphasize that we are here counting integrable symbols,
not functions. We expect each such symbol to be completable into a function. However, there are
other functions (with vanishing symbol) obtained by multiplying lower-weight functions by multiple

zeta values. When we impose physical constraints on the full function space, parameters associated
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with these additional functions will also have to be determined. On the other hand, sometimes the
function-level constraints are more powerful than the symbol-level constraints. As first observed in
the case of the 3-loop MHV hexagon [49, [50], the number of n-gon functions obeying additional con-
straints, such as well-defined collinear limits, may be smaller than the number of the corresponding
symbols. That is, completing a symbol to a function with proper branch cuts may require adding to
it functions of lower weight that don’t have a well-defined collinear limit, even if the symbol does.
We leave the problem of upgrading our heptagon bootstrap from symbol to function level to a later

work.

4.4.2 The Three-Loop NMHYV Heptagon

Once we have constructed the Steinmann heptagon symbol space, we can assemble it into an ansatz
for the seven-particle amplitude and apply the constraints outlined in section to fix the free

parameters. Let us describe the steps of this computation in the NMHV case.

Loop order L = 1 2 3 ‘
Steinmann symbols 15 x 28 15x322 | 15 x 3192
NMHYV final entry 42 85 226
Dihedral symmetry 5 11 31
Well-defined collinear 0 0 0

Table 4.2: Number of free parameters after applying each of the constraints in the leftmost column,
to an ansatz for the symbol of the L-loop seven-point NMHV BDS-like-normalized amplitude. The
first row in column L is equal to the last line of column k& = 2L of table multiplied by 15 for the
15 linearly independent R-invariants.

The NMHV amplitude is a linear combination of 15 transcendental functions multiplying the
independent R-invariants. Therefore the initial number of free parameters at L loops, shown in
table 2] is given by 15 times the entry in table [{.1] that counts the total number of Steinmann
heptagon symbols of weight 2LE|

We then impose the heptagon NMHYV final entry condition discussed in subsection[d.3.1} Similarly
to the NMHV hexagon case [70], the list of allowed final entries in eq. can be translated
into relations between the 42 different {k — 1,1} coproduct components for each of the 15 functions

multiplying the independent R-invariants, for a total of 42x15 = 630 independent objects. Note that

51f we had imposed dihedral symmetry first, we would have had only three independent functions Ep, E12 and
FE14 to parametrize, each with some dihedral symmetry, and there would have been fewer than 3 times the number
of independent Steinmann heptagon symbols in the first line of the table. This part of the computation is not a
bottleneck either way. This alternative procedure would also give rise to a different set of numbers in the second line

of table @
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eq. (4.3.1) contains all 21 distinct R-invariants, so in order to obtain the aforementioned equations

we first need to eliminate the dependent R-invariants with the help of egs. (4.1.13) and (4.1.14).

In principle, one can impose the NMHYV final entry equations at L = k/2 loops on the ansatz of
weight-k integrable symbols appearing in the first line of table[{.2] In practice, we have found it more
efficient to solve these equations simultaneously with the weight-%k integrability equations ,
namely the equations imposing integrability on the last two slots of an ansatz for E. The number of
free parameters after imposing this condition (using either method) is reported in the second line of
table [f.2] We see that the final entry condition is already very restrictive; out of the 47880 possible
NMHYV symbols with generic final entry at three loops, only 226 of them obey the NMHYV final entry.
Next we impose invariance of E under dihedral transformations, as discussed in subsection [1.3.2]
The dihedral restriction leads to the small number of remaining free parameters reported in the
third line of table

We then examine the behavior of the amplitude in the collinear limit. To this end, we recall
from subsection [£.3:3] that it is advantageous to convert to the BDS normalization, since the BDS-
normalized amplitude is finite in the collinear limit, while the BDS-like normalized one becomes
singular. Converting our partially-determined ansatz for F to an equivalent ansatz for B with the
help of eq. , we then take its collinear limit using eq. .

Quite remarkably, demanding that the right-hand side of eq. be well-defined, namely
independent of the spurious letters (and thus also finite), suffices to uniquely fix B through 3
loops! Even an overall rescaling is not allowed in the last line of table [£.2] because the condition of
well-defined collinear limits, while homogeneous for BDS-normalized amplitudes, is inhomogeneous
for the BDS-like normalization with which we work. We did not need to require that the collinear
limit of the solution agrees with the six-point ratio function computed at three loops in
ref. [60], but of course we have checked that it does agree.

In this manner, we arrive at a unique answer for the symbol of the NMHV heptagon through
three loops. Our results can be downloaded in a computer-readable file from [106]. The one- and
two-loop results match the amplitudes computed in refs. [21I] and [89], respectively. The fact that
six-point boundary data is not even needed to fix the symbol through three loops points to a strong
tension between the Steinmann relations, dual superconformal symmetry (in the guise of the final

entry condition), and the collinear limit.
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4.4.3 The Four-Loop MHV Heptagon

For the MHV remainder function at L = k/2 loops, we could in principle start from an ansatz for
SéL) involving all heptagon Steinmann symbols of weight k. As with the NMHYV case, however, it
is simpler to impose the MHV final-entry condition discussed in section at the same time as
integrability on the last two entries of the symbol. In fact, our initial four-loop MHV ansatz was
constructed using not just the MHV final-entry condition, but also the MHV next-to-final entry

condition discussed in section A.4.1]

Loop order L = ‘ 1 2 3 4
Steinmann symbols 28 322 3192 ?
MHYV final entry 1 1 2 4
Well-defined collinear 0 0 0

Table 4.3: Free parameter count after applying each of the constraints in the leftmost column to an
ansatz for the symbol of the L-loop seven-point MHV BDS-like-normalized amplitude.

In the first line of table [£.3] we reiterate the number of Steinmann heptagon functions with
general final entry. In the second line of the table, we report the number of symbols that satisfy
the MHV final entry condition. Clearly, there are only a few Steinmann heptagon functions at
each weight that satisfy even these few constraints. Note that we have not even imposed dihedral
invariance, nor that the symbol have even spacetime parity.

To determine the third line of the table, we convert the ansatz to one for the BDS normalized
amplitude, using eq. and the symbol of Y7. We then ask that this quantity have a well-
defined collinear limit. As in the NMHYV case, there is a unique solution to this constraint, this time
through four loops, as reported in the last line of table this unique solution must be the symbol
of 57(L). Our results can be downloaded in computer-readable files from [106]. Again the overall
normalization is fixed because the last constraint is an inhomogeneous one for a BDS-like normalized
amplitude. The symbols of the two- and three-loop seven-point BDS remainder functions Rg), RSS)
are known [I10, [6I]. We have converted these quantities to the BDS-like normalization with the
help of eq. , and they agree with our unique solutions. At four loops, when we convert our
unique solution for 554) (which has 105,403,942 terms) to R;4) (which has 899,372,614 terms), we
find that its well-defined collinear limit agrees perfectly with the symbol of the four-loop six-point
MHYV remainder function Rgl) computed in ref. [5I]. Because we did not need to impose dihedral
invariance, nor spacetime parity, we can say that even less input is needed to fix the symbol of the

MHYV amplitude through four loops than was needed for the three-loop NMHV amplitude!
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Before concluding, let us note that although we used the Steinmann constraint to tightly constrain
the space of symbols through which we had to sift in order to find the four-loop MHV heptagon, it
is possible that the same result could have been obtained (in principle, with much more computer
power), without it. In the second row of table we see, for example, that at weight 6 there are
precisely 2 Steinmann heptagon symbols satisfying the MHV final-entry condition. Ref. [61] imposed
the MHYV final-entry condition, without considering the Steinmann relations, and found 4 different
symbols at weight 6: (Y7)?, Y7 17%(72)7 R(73) and one more. Modulo the reducible (product) functions
(Y7)? and Y7 R;Z), heptagon functions satisfying the MHV final-entry condition automatically satisfy
the Steinmann relations as well, at least at weight 6! We cannot rule out the possibility that the
Steinmann constraint is also superfluous at weight 8 (or, perhaps, even higher), but certainly the

complexity of the computation is significantly reduced if one allows oneself to input this knowledge.

4.4.4 Three Loops from Dihedral Symmetry

In this subsection we consider dropping the final entry condition, which derives from dual super-
conformal invariance. One motivation for doing this is to check independently the NMHYV final
entry conditions detailed in eq. . Another possible motivation, in the MHV case, is to try to
widen the applicability of the bootstrap approach to the study of (bosonic) light-like Wilson loops
in weakly-coupled conformal theories with less supersymmetry than N =4 SYM.

Let us consider adding general L-loop Steinmann heptagon symbols 5~§L) (with no restrictions on
the final entry) to the known answer 57(L) and see whether we can preserve the conditions of dihedral
symmetry and good collinear behavior. We can ask this question through three loops, because we
have a complete basis of Steinmann heptagon symbols up to (and beyond) weight six. Since such
symbols appear additively in the BDS-normalized quantity BgL), we need the Steinmann symbols
géL) themselves to be well-defined in the collinear limit. The numbers of Steinmann heptagon sym-
bols obeying the successive conditions of cyclic invariance, flip symmetry, and well-defined collinear
behavior are detailed in table [1.41

We find that the first dihedrally invariant Steinmann symbol with well-defined collinear limits
appears at weight six, i.e. at three loops. We denote this symbol by &;. In fact the collinear limit of
&7, which we denote by &, automatically turns out to possess six-point dihedral invariance as well.
Furthermore the collinear limit of & from six points to five is vanishing. Therefore the symbol &;
could be added to that for 57(3) (and simultaneously & to 5é3)) without breaking dihedral symmetry

or good collinear behavior either at seven points or at six points.
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Neither & nor & obey the MHYV final entry condition, as required to be consistent with the
results of section Thus at the three-loop order, Q-supersymmetry is really fixing only a single
parameter, after the consequences of the Steinmann relations, dihedral symmetry and good collinear
behavior are taken into account. A different criterion that can be used to uniquely determine 5§3)
is that the three-loop remainder Rég) should have at most a double discontinuity around the locus
u = 0 where u is one of three the cross ratios available at six points. The double discontinuity is
in fact predicted from the original implementation of the Wilson line OPE [36], which we will not
delve into here. We may simply observe that & has a triple discontinuity and hence we can rule out

adding &; to 553) on these grounds.

Loop order L = 1 2 3
Steinmann symbols 28 322 3192
Cyclic invariance 4 46 456
Dihedral invariance 4 30 255
Well-defined collinear 0 0 1

Table 4.4: Number of linearly independent Steinmann heptagon symbols obeying, respectively: cyclic
invariance, dihedral invariance, and well-defined collinear behavior together with dihedral symmetry.

We may similarly examine the consequences of dihedral symmetry and collinear behavior for
the NMHV amplitude. In this case there are some additional conditions which we can impose,
from requiring the absence of spurious poles. We recall the form of the NMHV ratio function
given in eq. (4.1.15)), or equivalently the form of E given in eq. . The tree-level amplitude
PO) obviously possesses only physical poles, but the individual R-invariants have spurious poles.
Requiring that the NMHV amplitude as a whole has no spurious poles leads us to the following

conditions:

Spurious I Ex7]1356)=0 = 0, (4.4.1)

Spurious II: E23|(1467):0 = E25‘(1467):0 . (442)

In table we detail the number of Steinmann symbols obeying the successive conditions of
cyclic symmetry, absence of spurious poles, well-defined collinear behavior, and flip symmetry. At
weight two, we find a single combination obeying all conditions, which is precisely the combination
BW itself, which is therefore determined up to an overall scale by these conditions. Note that unlike

the B for L > 1, the function B(!") obeys the Steinmann relations.
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At weight four, we find no Steinmann symbols obeying all the conditions. This is not in contradic-
tion with the results of section we recall that the quantity F(?) does not exhibit well-defined,
finite collinear behavior; rather it is the (non-Steinmann) function B(®) which manifests this. The
zero in the final row of the L = 2 column in table L5 rather reflects the fact that there is no Stein-
mann symbol which could be added to E® while preserving the good collinear behavior of B,
even if we are willing to abandon the NMHYV final entry condition.

At weight six, we find a single Steinmann symbol with all the properties listed in table [£5 It
is precisely the same symbol & appearing in table multiplied by the tree-level amplitude P(©).
Hence it only appears as a potential contribution to Eé3). In other words, the symbols of ES) and
Eﬁ) are uniquely fixed by the constraints of dihedral symmetry, absence of spurious poles and correct
collinear behavior. The appearance of the same ambiguity & in E(()S) is to be expected since the
only additional criterion imposed in table .5 that of spurious-pole cancellation, cannot constrain
potential contributions to Ey. Finally, we note that the addition of & in E((J3) is connected to its
addition to 553) by the NMHV to MHV collinear limit which relates E7 to &. Thus dropping the
final entry condition from Q-supersymmetry allows only a single potential contribution at weight 6

in all of the heptagon and hexagon amplitudes.

Loop order L = ‘ 1 ‘ 2 ‘ 3 ‘
Steinmann symbols 15 x 28 15x322 15 x 3192
Cyclic invariant 4+ (2 x 28) 46 + (2 x 322) 456 + (2 x 3192)
Spurious vanishing I 4+1+428 46 + 19 + 322 456 + 208 + 3192
Spurious vanishing IT 4+6 46 + 89 456 + 927
Well-defined collinear 1 0 11
Flip invariant 1 0 1

Table 4.5: Number of Steinmann heptagon symbols entering the NMHV amplitude obeying re-
spectively cyclic invariance, vanishing on spurious poles, well-defined collinear behavior and flip
symmetry.

We conclude that, up to three loops, starting from an ansatz of Steinmann heptagon functions,
all heptagon amplitudes and hence all hexagon amplitudes (by collinear limits) in planar N/ =
4 SYM can be determined just by imposing dihedral symmetry and well-defined collinear limits,
combined with the requirement of no triple discontinuity in Rés) and no spurious poles in the NMHV
amplitudes. These results provide an independent check of the NMHYV final entry conditions .

It would be interesting to investigate whether the ambiguity functions &r and & could play a role in

the perturbative expansion of any weakly-coupled conformal theories with less supersymmetry than
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Sgs—> 0
6 5

Figure 4.5.1: Factorization of a seven-point amplitude in the limit s345—0. Notice that the collinear
limit p7 || p1 can be taken “inside” the factorization limit.

N =4 SYM.

4.5 The Multi-Particle Factorization Limit

One of the kinematic limits we can study using our explicit seven-point results is the multi-particle
factorization limit. In this limit, one of the three-particle invariants goes on shell, s; ;41,542 — 0.
Figure shows the limit sg45 — 0. In this limit the seven-point NMHV amplitude factorizes
at leading power into a product of four-point and five-point amplitudes, multiplied by the 1/s345
pole. The seven-point MHV amplitude vanishes at leading power. Indeed, all supersymmetric MHV
amplitudes are required to vanish at leading power when a three-particle (or higher-particle) invariant
goes on shell. This result holds because all possible helicity assignments for the intermediate state
require at least one lower-point amplitude to have fewer than two negative-helicity gluons; such
amplitudes vanish by supersymmetry Ward identities [I32] [133]. For the same reason, MHV tree
amplitudes [§] have no multi-particle poles.

Before turning to the behavior of the seven-point NMHV amplitude, we recall the multi-particle
factorization behavior of the BDS-like-normalized six-point NMHV amplitude [60]. As s3z45 — 0,
two of the six-point R-invariants become much larger than the rest, and they become equal to each
other. Therefore the singular behavior of the six-point amplitude is controlled by a single coefficient
function, which we denote by Us and whose limiting behavior takes an especially simple formE]
Up to power-suppressed terms, the limit of Us was found to be a polynomial in log(uw/v), whose
coeflicients are rational linear combinations of zeta values, and whose overall weight is 2L. Here, u,

v, and w are the three dual conformal invariant cross ratios for the hexagon, whose expressions in

6The function Us can be identified with the function E in refs. [0} [5], but we prefer to adopt a different notation
here to emphasize that this function is not the BDS-like-normalized NMHYV superamplitude Eg.
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terms of six-point kinematics are

_ 55%3 %2;6 _ S12545 _ 3, x§1 _ 523556 _ x§5 f%z _ 534561
2 2 ) v 2 2 ) w R . (4.5.1)
T4 T3 5123 5345 L5 Tyq 5234 5123 T36 Lo 5345 5234
The six-point limit s345 — 0 sends uw/v — oo.

The logarithm of U, called U in ref. [60], has an even simpler behavior than Us. The L-loop
contribution U®) is also a polynomial in log(uw/v), but it has only degree L at L loops, for L > 1.
This three-loop result was later found to hold also at four and five loops [70, 5]. Because U has
weight 2L, but a maximum of L powers of log(uw/v) for L > 1, every term in it contains zeta values,

and its symbol vanishes. The only exception is the one-loop result,

s 1
UD (y, v, w) 22220, 3 log® (%) —2(s, (4.5.2)

where we have converted the result in ref. [60] to that for expansion parameter g2>. The results
for UX) agree with the perturbative expansion of an all-orders prediction based on the Pentagon
OPE [134, [135].

Ref. [60] also made a prediction for the multi-particle factorization behavior of NMHV n-point

amplitudes, which we can now test at 7 points at the symbol level. Define the factorization function

F, by
F, (K2, s
AT () — Ajipa(kis kg, oo Ky, K)in( K2l’l+1)An,(j,i)+1(—K, kjvkivi, . kio1),
(4.5.3)
as K? — 0, or in the seven-point case,
s (K2
ANMBY gy 501520 o 4 (ke ko oy, kQ,K)%M—K, ks, ka, ks) | (4.5.4)
where K = kg + k4 + ks, K2 = s345. Then Fy; was predicted to have the form
1 (—s712)(—s34) \ ° (—s45)(—s671) | ©
108 Fzlsymbo 1 8e (—s56) " (—s23)
_ 110g2((—8712)(—534)/(—345)(—5671))
2 (—s56) (—s23)
1 N e
_ 10g2< 733546 62) _ 455
2 23725, (236)? ( )

For simplicity, we have dropped all terms that vanish at symbol level, which kills all terms in log F»
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beyond one loop, and we have converted to the g2 expansion parameter.
We should now convert this prediction to one for the BDS-like normalized amplitude. Apart

from trivial tree-level factors, we have

ANMEY ANMEV ABDS ABDS
log Iy = log| —smc—n=c | = log| —w2c—— ] —log| 2nc—7— | . 4.5.6
g L'7 ) <A153Ds ABDS > g <A7BDS—11ke> g( A7BDS—hke > ( )

So to obtain log( ANMHV /ABPS=Ike) e need to add to [log Fr](V) the quantity
S VASUNES VAU Vo (4.5.7)

where My is given in eq. (A.0.14), and Mil) and Mél) are the four- and five-point MHV amplitudes,

for the kinematics shown in fig. and normalized by their respective tree amplitudes.

Adding eqs. (4.5.6) and (4.5.7), we find, in terms of dual variables,

AI;IMHV W 1. 5 x§3x§5x36x§2 1. 5 %21695%25”%3 1.5 953595%25”(231
lOg(ABDS—like> — —;log <2> —5log <2> —glog (2> ;
7

2 2 \2 2 2 2 .2
T2, 754 (136) T73L24T61 Leal57L13
(4.5.8)

at symbol level, and a vanishing contribution to the logarithm beyond one loop. Note that the first
term in eq. comes directly out of eq. , and is the “naive” generalization of f% log? (uw/v)
to the seven-point case. The first term diverges logarithmically as s3s5 = 235 — 0, while the last
two terms are finite in this limit.

The one-loop factorization behavior in eq. could have been extracted, of course, from
the one-loop seven-point amplitude. Thus the symbol-level content of the prediction is really the
vanishing of the logarithm beyond one loop. Beyond symbol level, the all-loop-order prediction of
ref. [60] is that (up to an additive constant) the first term gets upgraded to the function appearing
in the six-point limit, namely U(z), where z = (22;23;2%522,)/(22,23,(2%)?), while the last two
terms should simply get multiplied by the cusp anomalous dimension.

Now let us test the symbol-level prediction by taking the limit s345 — 0 of the seven-point
NMHYV amplitude. Referring back to , we have

5345 = Tag = <;23::?562> — 0. (4.5.9)

Keeping so3 and ssg generic requires us to take this limit by sending (2356) — 0. This limit can be
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accomplished using the replacement

(1436)
(1456)

(1453) (3456)
(1456) ¢ ™ (156)

Z9 — Zg “+a 25 +b Z1 (4510)

where a,b € C are generic and € is a regulator. In the limit € — 0, a4 vanishes while the other a;;
map into a space of 31 finite letters.

The map works out to be

aiiair a17 21024 aipiair
ass — ————, asz — —, asqg — —————, asy — ——— 42 — Q24 ,
a210a24 24 aiy a21
a210G24 air aiiair
aqe — —, asgy — —, aseg — —, ags — 71, ags — 71, (4511)
a7 a24 21024

which removes 10 of the 42 letters, leaving a14 and the 31 finite letters.

We also need the limiting behavior of the seven-point R-invariants. Referring back to their
definition (4.1.8)), we see that the invariants (71), (14) and (47) become singular as (2356) — 0 while
all others remain finite. The finite R-invariants are suppressed in the identities in this limit,

giving us
(71)8345H0 = (14)5345H0 = (47>8345%0' (4'5'12)

The function controlling the behavior of E7 as sy — 0 is thus given by the sum of functions

multiplying these singular invariants in eq. (4.1.28)), corresponding to the combination

Ur; = |:E71 + By + Ey7 + Eo] . (4513)

83450

Note that from eq. (4.1.13)), the coefficient of Ej receives a 3/7 contribution from (71), and 2/742/7
from (14) and (47).

Ignoring the tree amplitude, the quantity Uz is the exponential of log( ANMHV /ABPSlike

prediction is given in eq. (4.5.8]). Using eq. (4.5.11)) to compute U7 from eq. (4.5.13) in terms of the

, whose
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letters a;;, we find at one, two, and three loops,

1 1 a? 1 1
Y = g log® (L) Jlea?on g lea?or (45.19)
()
u® - \7 4.5.15
P = (4.5.15)
m)*
u® — (u7 ) (4.5.16)
W=l 5.

Hence U7 exponentiates at symbol level, as predicted by eq. (4.5.8). Substituting eq. (4.2.5]) for aq1,
and its cyclic permutations, into eq. (4.5.14)), we find perfect agreement with eq. (4.5.8). We can

also express the result in terms of the cross ratios u;:

1 1 1
UMD = Dog? (12 L Dz (1Atals ) 1y o0 (U2l6ls ) (4.5.17)
2 usur 2 U3 Ue 2 U7Uyg

Once this analysis is repeated at function level, we expect the first term in L[7(1) to receive higher-loop

zeta~valued contributions, dictated by the six-point function U(z), while the last two terms simply
get multiplied by the cusp anomalous dimension.

The last two terms in eq. or eq. do not diverge in the factorization limit. On the
other hand, they play an essential role in endowing U7 with the correct behavior as p; and p; become
collinear. Fig. shows that this collinear limit is well away from the factorization pole, in the
sense of color ordering. So it should be possible to take this collinear limit “inside” the s345 — 0
multi-particle factorization limit, i.e. as a further limit of it.

The p7 || p1 collinear limit takes x2, — 0, and hence the cross ratio us — 0. Equation
shows that the last two terms of Z/l7(1) diverge logarithmically in this collinear limit, while the first
term behaves smoothly. Recall that the n-point BDS ansatz smoothly tends to the (n — 1)-point
BDS ansatz in all collinear limits. However, this is not true for the BDS-like ansatz; that is, Y7 /4 Yg
in collinear limits, rather it diverges logarithmically. Essentially, the last two terms of eq.

account for this non-smooth behavior. In the p7 || p; collinear limit,

1 2 i 1
— = log? 14 & — = log? u , (4.5.18)
2 a11a17 2 v
1 1 1
3 log2 ail — 3 log2 a7+ Yz & Ys. (4.5.19)

Thus the last two terms in eq. (4.5.14]) precisely account for the non-smooth collinear behavior of

the BDS-like-normalized amplitude at seven points, within the multi-particle factorization limit.
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4.6 Discussion

Following the inclusion of the Steinmann relations in the hexagon function bootstrap program [5],
we have applied these constraints to heptagon symbols, in order to drastically reduce the number of
symbols needed to bootstrap seven-point scattering amplitudes. We have been able to construct a
basis of Steinmann heptagon symbols through weight 7, and those which further satisfy the MHV
final-entry condition at weight 8. In order to apply the Steinmann relations transparently, we have
shifted our focus from the familiar BDS-normalized amplitudes to BDS-like normalized analogues.
The simple conversions and between functions in these two normalizations allow us
to simultaneously take advantage of the smaller space of Steinmann heptagon symbols, and utilize
the simple behavior exhibited by BDS-normalized functions near the collinear limit. With these
advances, we have completely determined, in a conceptually simple manner, the symbols of the
seven-point three-loop NMHV and four-loop MHV amplitudes in planar N' = 4 SYM theory.
Calculating the symbol of these particular component amplitudes is only the tip of the Steinmann
iceberg. The main limiting factor in applying the bootstrap at higher weight is the computational
complexity resulting from the size of the space of Steinmann heptagon functions, which still grows
close to exponentially, despite its small size relative to the general heptagon function space. This
growth can be especially prohibitive when generating the general basis of Steinmann heptagon sym-
bols at each higher weight. At the same time, nearly the entire space of Steinmann heptagon symbols
is needed to describe the amplitudes we have bootstrapped — including derivatives (coproducts) of
higher-loop amplitudes. That is, the full space of Steinmann heptagon symbols is spanned by the
derivatives of our amplitudes at weights 2 and 3. Only 15 of the 322 Steinmann heptagon symbols
are absent from the span of these derivatives at weight 4. This situation resembles what is observed
in the hexagon function bootstrap [5], where the derivatives of the five-loop six-point amplitude also
span the full weight-2 and weight-3 Steinmann hexagon symbol spaces, while only 3, 12, and 30
symbols are absent from the span of these derivatives at weights 4, 5, and 6. In the hexagon case,
all of these symbols are observed to drop out due to lower-weight restrictions on the appearance
of zeta values (i.e. the zeta values only appear in certain linear combinations with other hexagon
functions, and this leads to symbol-level restrictions at higher weights). We expect that a similar set
of function-level restrictions will explain why a small set of weight-4 Steinmann heptagon symbols
are not needed to describe the seven-point amplitude. (Only 386 of the 1030 weight-5 Steinmann
heptagon symbols are currently needed to describe the four-loop MHV and three-loop NMHV am-

plitudes, but here we expect significantly more of these symbols to be needed to describe coproducts
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of yet higher-loop contributions.) No physical explanation for the restrictions on the occurrence of
zeta values at six points has yet been discerned, indicating that there remains some physics to be
discovered.

More generally, the task of upgrading our symbol-level results to full functions will be left to
future work. A full functional representation would be valuable for checking seven-point predictions
in both the near-collinear |75} [76], [77] [78], [79], [80] [8T], [82] and multi-Regge limits [68, 93] [94] 96, 7 98],
95, [99], [100], 1011, [102], 103]. An important problem is to generalize the all-loop results for six-point
scattering in the multi-Regge limit [I36] to the seven-point case. The full functional form of the
seven-point amplitude could assist the construction of an all-loop multi-Regge heptagon formula.

Bootstrapping amplitudes with eight or more external legs will require more than a simple exten-
sion of the heptagon bootstrap presented in this work. Both the hexagon and heptagon bootstrap
approaches depend on the assumption that the weight-2L generalized polylogarithms can be built
from a finite symbol alphabet, corresponding to an appropriate set of cluster A-coordinates. Going
to n = 8, we move into a cluster algebra with infinitely many A-coordinates. It is expected that
only a finite number of letters will appear at any finite loop order, but it is currently unknown how
to characterize what sets may appear. In principle, this information ought to follow from a careful
consideration of the Landau singularities of these amplitudes (see for example refs. [I37, [88] for
recent related work). There is hope that patterns may emerge at currently accessible loop orders,

which may provide insight into the letters appearing for n > 7.
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Chapter 5

Cluster Algebra Structure Scattering

Amplitudes

Several recent papers following [32] have explored the connection between (multi-loop) scattering
amplitudes in planar N = 4 super-Yang-Mills (SYM) theory and cluster algebras, a subject of great
interest to mathematicians. This line of research has two closely related branches: (1) investigating
purely mathematical questions having to do with the classification of functions with certain cluster
algebraic properties, i.e. “how rare are special functions of the type we see in SYM theory?”, and
(2) exploiting these mathematical properties, together with physical input as needed, to carry out
calculations of new, previously intractable amplitudes, i.e. “how far can we get by exploiting the
special properties of cluster algebras?”.

The most basic aspect of the observed connection, supported by all evidence available to date,
is that n-point scattering amplitudes in SYM theory have singularities only at points in Conf,, (P?)
(the space of massless n-point kinematics modulo dual conformal invariance) where some cluster
coordinate of the associated Gr(4,n) cluster algebra vanishes. More specifically, all known multi-
loop amplitudes may be expressed as linear combinations of generalized polylogarithm functions
written in the symbol alphabet consisting of such cluster coordinates. We expect this to be true to
all loop order for all MHV and NMHYV amplitudes.

Deeper connections to the underlying cluster algebra have been found for the two-loop MHV
remainder functions Rg). The algebra of generalized polylogarithm functions modulo products
admits a cobracket § satisfying 62 = 0, giving it the structure of a Lie coalgebra [123]. It has been

observed that 6R£12) has a very rigid connection to the Poisson structure on the kinematic domain
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Conf, (P?). Specifically, the (2,2) component of 5R512) can always be written as a linear combination
of Lis(—x;) A Lig(—x;) for pairs of cluster coordinates having Poisson bracket {logz;,logz;} = 0,
while the (3,1) component can always be written as a linear combination of Lig(—z;) A log(x;) for
pairs having {log x;,logx;} = +1. These mathematical properties are tightly constraining: it has
been argued in [47] that, when combined with a few physical constraints, they uniquely determine
the (2,2) component of SR for all n.

It is an interesting open problem to determine whether (and, if so, precisely how) the structure
of more general amplitudes may be dictated by the underlying Poisson structure on Conf,, (P?).
This is a difficult question to address because data on multi-loop amplitudes is very hard to come
by—beyond the two-loop MHV amplitudes, explicit results for complete amplitudes at fixed loop
order are available only for n = 6 [48|, [49] [50] 5], [62] [60% [70] (in addition, the symbol of the two-
loop n = 7 NMHV amplitude has been computed in [89], and that of the three-loop n = 7 MHV
amplitude in [61]). With only a handful of results available it may be difficult to identify a pattern
which might let one tease out the underlying structure. Moreover, accidental simplifications may
occur at small n which can obscure the general structure. (For example, the (2,2) component of
5Ré2) is identically zero [35].) It is known that the (3,3) component of §Ré3) is not expressible in
terms of cluster X'-coordinates [I38], but there could be some more deeply hidden structure in this
amplitude.

The primary goal of this chapter is to further explore the taxonomy of two-loop cluster functions,
as defined in [46], for n = 6,7. We are particularly interested in the interplay between various math-
ematically natural but physically obscure conditions that certain functions can satisfy (such as the
tight cluster constraints satisfied by all two-loop MHV amplitudes, mentioned above) and physically
natural constraints, such as the requirement that amplitudes can only have physical branch points
on the principal sheet (the so-called “first-entry condition” [36]). In previous work including [47] it
has been remarked that the mathematical and physical constraints on MHV amplitudes seem almost
orthogonal. One of our goals here is to explore this question quantitatively by fully classifying the
dimensions of function spaces satisfying various properties.

We begin in Section 2 with a lightning review to set some notation and terminology. In Sections 3
and 4 respectively we exhaustively analyze the spaces of cluster functions on the Gr(4,6) and Gr(4,7)

cluster algebras respectively of relevance to n = 6, 7-point amplitudes in planar SYM theory.
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5.1 Review and Notation

A kinematic configuration of n massless on-shell particles, with a cyclic order (which comes naturally
in gauge theories when one looks at planar scattering amplitudes), can be parameterized in terms of
n momentum twistors [24], Z; € P?, i = 1,...,n. The dual conformal symmetry of planar n-point
amplitudes in SYM theory further implies that that they are functions not on (P3)™ but on the
smaller space Conf,(P?) = Gr(4,n)/(C*)"~1 [32].

Viewing each Z; as a four-component vector of homogeneous coordinates, the Pliicker coordinates
are defined by (ijkl) = det(Z;Z;Zy2;). Functions on Conf, (P3) may be written in terms of ratios

of Pliicker coordinates such as
(ijkl){(abed)
(1jcd){abkl)’

(5.1.1)
or more generally in terms of ratios of homogeneous polynomials in Pliicker coordinates having total
weight zero under rescaling any of the Z;.

Such objects form the building blocks for the Gr(4,n) Grassmannian cluster algebra [72] [139],
which is the algebra generated by certain preferred sets of coordinates on Gr(4,n). These coordinates
come in two related varieties: the A-coordinates, which consist of the Pliicker coordinates and
certain homogeneous polynomials in them, and the X-coordinates [T1], which consist of certain
scale-invariant ratios of A-coordinates.

In this chapter we focus on the cases n = 6,7, for which the corresponding cluster algebras have
respectively 15, 49 A-coordinates and 15, 385 X —coordinatesﬂ The reader may find these coordinates
tabulated in [32]. Of course, the X-coordinates are not algebraically independent since the dimension
of Conf,(P?) is only 3(n — 5). A “cluster” is a particular choice of 3(n — 5) cluster X-coordinates
in terms of which all others may be determined by a simple set of rational transformations called
mutations.

A still mysterious but apparently important role is played by the fact that Conf,(P3) admits a
natural Poisson structure, which it inherits from the Grassmannian [(2]. A characteristic feature of
cluster coordinates is that within each cluster, the X'-coordinates are log-canonical with respect to

this Poisson structure, i.e.

{log z;,log x;} = B;;, i,j=1,...,3(n—=5), (5.1.2)

where B is an antisymmetric integer-valued matrix (which for n = 6,7 only takes the values 0, +1).

1Tn some applications it is sensible to count x and 1/x separately, in which case these numbers would be 30, 770.
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We expect all six- and seven-point L-loop scattering amplitudes in planar SYM theory to be
(generalized) polylogarithm functions of uniform transcendental weight 2L whose symbols may be
written in terms of the Gr(4,n) cluster coordinates. For the purpose of writing a symbol alphabet
the relevant question is not how many coordinates are algebraically independent, but how many
are multiplicatively independent—we say that a finite collection {yi,...,y,} is multiplicatively
independent if there is no collection of integers {n1,...,ny,} such that [[y;" = 1, i.e. if the collection
{logy1,...,log ¥y} is linearly independent over Z.

As mentioned above there are respectively 15 (385) cluster X-coordinates z; for n =6 (n =7),
but the corresponding sets of log x; only span spaces of dimension 9 (42). Choosing bases for these
spaces provides a collection of 9 (42) multiplicatively independent ratios to serve as symbol alphabets

for building cluster polylogarithm functions.

5.1.1 The Gr(4,6) Cluster Algebra

For six-point amplitudes the relevant cluster algebra is Gr(4, 6), which is isomorphic to the As cluster
algebra. Its 15 cluster A-coordinates are just the Pliicker coordinates (ijkl). This algebra has 15
X-coordinates. In the notation of [46] these are named v;, xli fori=1,2,3and e; fori=1,...,6.

The reader may find explicit formulas for these as ratios of Pliicker coordinates in [46]. Since one
of the goals of this chapter is to make contact with the work of Dixon et. al. we will instead provide
this information via the connection to the variables w, v, w, Yy, Y», Y used in [48] [49] B0, B1), 62, 60,
70).

The three-dimensional kinematic configuration space Confg(P3) may be parameterized in terms

of the three coordinates

_(1236)(1345) (2456) _(1235)(1456) (2346) _(1246)(1356)(2345) (513)
Yo T 11235Y(1246)(3456) © 70 T (1234)(1356)(2456) © U T (1256)(1345)(2346) -
Note that a cyclic rotation Z; — Z;; maps
Yu = 1/yo Yo = 1/Yuw Yuw = 1/Yu (5.1.4)
while reflection Z; — Z;_; (all indices are understood to be cyclic modulo 6) takes
Yu = Yo » Yy = Yu Yw — Yw - (515)
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The spacetime parity operator acts on momentum twistors asﬂ

Zi — Wl = *(Zi,1 A\ Zz AN ZiJrl) s (516)

which transforms the cross-ratios defined in (5.1.3)) according to

Yo = Vyus Yo =10y Y= 1/Yu. (5.1.7)

It is a curious accident that for n = 6 spacetime parity reversal is equivalent on Conf,, (P?) to an
element (namely, shift-by-three) of the cyclic group.

Three other variables used by Dixon et. al. may be defined in terms of these via

yu(l_yv)(l_yw) v = yv(l_yu)(l_yw) w = yw(l_yu)(l_yv) (5 1 8)
(1_yuyv)(1_yuyw) ’ (1_yuyv)(1_yvyw) ’ (1_yuyw)(1_yvyw) ' o

Central to our investigations is the Poisson structure on Confg(P?), which may be expressed in terms

of the y variables as

1_yu 1_?!1) 1_yw
{logyuvlogyv} = {logyvalogyw} = {logywalogyu} = ( :[)(y Y L( ) (519)

It is invariant under the full cyclic group (and hence, it is parity symmetric) but antisymmetric
under reflection.

In terms of these variables, the cluster X'-coordinates may be expressed as

1—w 1—w 1—u
v = ’ Vg = —, U3 = )
v w u
+ Yo(l = YuYuw) + Yu (1 = yulu) + Yu(l = Yo Yuw)
331 =, .’132 =, J}3 =,
]-_yv ]-_yw 1_yu
— 1- YuYw — 1- YuYv — 1- YvYw
r = ————, Ty = —————, = 5.1.10
Uy (1= ) 2 (1 — yu) 2 (1 — yu) ( )
e = 1—yy 62:%)(1_%11) €3 = 1 —yy
yv(l - yu) ’ 1- Yv ’ yu(l - yw) ’
_ yu(l_yv) _ ]-_yw _ yw(l_yu)
€4 = =0, €5 = — €6 = "7 -
1_yu yw(l_yv) 1_yw

Note that under a cyclic shift Z; — Z;;1 we have

+
Vi — Vit+1, T; — J?jjrl s € — €i+1, (5.1.11)

2The notation means that W; spans the one-dimensional subspace orthogonal to the 3-plane spanned by
Zi1,Z;, Ziy1 in CH.
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while under parity the v; are invariant and

+

Ty =], €; — €it+3. (5.1.12)

Of particular importance are pairs z1, zs of distinct X-coordinates with simple Poisson brackets.
By “simple” we mean specifically that {logx1,logxs} is either 0 or 1. There are three pairs with
Poisson bracket zero,

{logz;,logz; } =0, (5.1.13)

and 30 pairs with Poisson bracket +1,

{loge;,loge; 14} = {log zﬁl,log v;} = {logvit1,logai} = {log zﬁl,log et =1 (5.1.14)

together with their cyclic images, for 6 + 6 + 6 + 12 = 30 pairs. The remaining 72 pairs have

“complicated” Poisson brackets (specifically, non-integer-valued; see for example (5.1.9)).

5.1.2 The Gr(4,7) Cluster Algebra

For seven-point amplitudes the relevant cluster is algebra is Gr(4, 7), which is isomorphic to the Eg
algebra. The 49 cluster A-coordinates consist of the 35 Pliicker coordinates (ijkl) together with
14 homogeneous polynomials denoted by (1(23)(45)(67)), (2(13)(45)(67)) (and their cyclic images),

where
(i(i—1,i+1) (4, j+1) (k, k+1)) = (i—1ij j+1) (e i+1 kk+1) — (i—1¢ kk+1){(ii+155+1). (5.1.15)

One can build from these 49 A-coordinates a total of 385 cluster X'-coordinates (or 770 if we count
their multiplicative inverses). These are tabulated on pages 4041 of [32]. Out of 1 -385-384 = 73920

pairs of X-coordinates, 2520 have Poisson bracket 1 while 833 have Poisson bracket zero.

5.1.3 The Cobracket and Bloch Groups

We recall that the algebra A of generalized polylogarithm functions admits a coproduct giving it
the structure of a Hopf algebra [123]. When we work with the quotient space L of polylogarithm
functions modulo products of functions of lower weight, the coproduct descends onto the quotient
space to a cobracket § which satisfies 62 = 0. We review here only the barest essentials, and refer

the reader to [32] 46] for additional details.
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The cobracket of a weight-4 function has two components,
0Ly € (B3 ®@C*) @ (Bz A Ba), (5.1.16)

where the Bloch group By is, for our purposes, the free abelian group generated by functions of the
form {z}, = —Lig(—x), where Lij is the classical polylogarithm function and z is a function on
Conf,, (P?) which is rational in Pliicker coordinates.

The fact that 62 = 0 and that ¢ has trivial cohomology means that if a € B3®@C* and b € By A By,
then there exists a function f whose cobracket components are a®b if and only if d31(a) 4+ d22(b) = 0.
As explained in [46], this condition can be used to explicitly enumerate cluster functions, at least on
algebras of finite type. For such algebras Bs ® C* and By A By are finite dimensional vector spaces
on which ¢ acts linearly, so the space of cluster A-functions is simply the kernel of §.

At weight 4 a general polylogarithm can be expressed in terms of the classical functions Liy if and
only if its By A By cobracket component vanishes. We will often be interested in counting the number
of non-classical functions, since the classical ones (which correspond to solutions of d31(a) = 0) are
trivial to enumerate. To answer this question we compute the dimension of the subspace of By A Bs
such that the equation d31(a) + d22(b) = 0 is solvable for some a € By ® C*.

One final piece of terminology concerns the interplay between the Poisson structure on the
Grassmannian cluster algebras and the cobracket of polylogarithm functions. We recall that two
cluster X-coordinates z,y have {logz,logy} € Z only if there exists a cluster containing either z
or 1/x, and either y or 1/y. As reviewed in [32], the combinatorics of mutations is encoded in a
graph called the (generalized) Stasheff polytope associated to the algebra. We therefore say that a
function has “Stasheff local” By A Bs if it can be expressed as a linear combination of terms of the
form {x}2 A{y}2 for pairs having integer Poisson bracket (for Gr(4,6) and Gr(4,7), this integer will

always be in the set {—1,0,+1}).

5.2 The Cluster Structure of Hexagon Functions at Weight 4

5.2.1 Setup

In this section we consider cluster functions on the As = Gr(4, 6) cluster algebra. The term “cluster
A-function” introduced in [46] refers, in the present application, to an integrable symbol written in
the 9-letter alphabet of cluster coordinates (specifically, this means any multiplicatively independent

set of X-coordinates; or equivalently, homogeneous ratios of .A-coordinates) on Gr(4, 6).

83



Any linear combination of cluster A-functions with the property that only the three variables
u, v, w appear in the first-entry of the symbol, reflecting the physically allowed branch points for
a scattering amplitude [36], is called a “physical function” or, following the terminology of [50], a
“hexagon function”. These have been studied through high weight in the series of papers [48] 49, [50),
511 [62] [60% [70], but we restrict our analysis to weight 4 as our aim is to explore connections between
the cobrackets and the cluster Poisson structure of these functions.

Let Ay denote the vector space of all weight-k cluster A-functions. Such functions are easy to

count for any A, type cluster algebra (see [124] [140)]); for A3 we have the generating function

ad 1 1 1
(=1 k di = 2.1
Fas(t) +;t dim(Ay) = =T T (52.1)
so that
dim(Ay) = 9,55,285,1351, ... k=1,2,3,4,.... (5.2.2)

Let Ly denote the quotient of Ay by products of functions of lower weight. The number of such
functions can be computed by taking the plethystic logarithm of the generating function fa,(t) (see

for example [I41]), which gives

dim(L;) = 9,10,30,81,...  k=1,2,3,4,.... (5.2.3)

Finally we denote by Bj the subspace of £, generated by the classical polylogarithms (we do not

yet restrict their arguments to be cluster X-coordinates). We have

dim(Bg) = 10,30,45,...  k=2,3,4,.... (5.2.4)

For k < 4 the agreement with (5.2.3)) reflects the fact that all such generalized polylogarithms can be
expressed in terms of the classical functions; for higher k£ these numbers can be obtained by choosing

a basis for £ and computing dimker § as described in the previous section.

5.2.2 The Non-Classical Functions

Beginning at k¥ = 4 we can distinguish between classical and non-classical functions. At weight
k = 4, the “non-classicalness” of a function is completely characterized by its Bs A Bs cobracket
component (see for example [32]). Since By has dimension 10 according to (5.2.4), Ba A By evidently

has dimension 45. However, a random element of this vector space is not guaranteed to be the BoA By
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cobracket component of any cluster A-function—there is a nontrivial integrability constraint.

In fact, by comparing (5.2.4)) to we see that there are 81 functions in all, minus 45 classical
functions, for a total of 36 non-classical functions. We conclude that in the 45-dimensional space
By A Bs spanned by objects of the form {z}5 A {y}2, for cluster coordinates x and y, only the linear
combinations lying in a particular 36-dimensional subspace correspond to cobracket components of
actual cluster A—functionsEI We will shortly characterize this 36-dimensional space completely.

Let us write PBy to denote the subspace of By A By spanned by objects of the form {z}2 A {y}2
for pairs having Poisson bracket {logz,logy} = 0. In what follows we will for example say that a
function “lives in PBy” if its By A By cobracket component can be expressed in terms of such pairs.
Similarly, let PB; be the subspace spanned by pairs having Poisson bracket 1, and let us also use the
shorthand PB, = Bs A By, meaning that the Poisson bracket can be anything. We found in
and that there are respectively 3, 30 pairs with Poisson bracket 0, 1. It is simple to check
that the corresponding elements are linearly independent in By A Bs, so we have that dim PBy = 3
and dim PB; = 30, while of course dim PB, = dim By A By = 45.

With this notation in hand let us now summarize our findings on the 36 non-classical cluster
A-functions at weight four, which we find fall into two broad groups:

(A) 6 of these functions are the “As cluster functions” introduced in [46]. There is one such
function for each A5 subalgebra of As; these subalgebras and the associated functions are represented
visually in equation (4.3) of that paper. These six functions have additional “cluster structure™: their
B3 ® C* cobracket components can be expressed entirely in terms of cluster X'-coordinates—this
means that they are “cluster X-functions” in the terminology of [46]. General elements of this six-
dimensional space are not Stasheff local—their By A By cobracket components are not expressible in
terms of pairs of coordinates with Poisson bracket 0,+1. Only one particular linear combination of
these 6—the one called the A3 function in [46]—has a nice Ba A Ba, in fact lying inside PBy. The

By N\ By cobracket component of this A function is

3
S {af b A a7 ) (5.2.5)
=1

This quantity is parity-odd so it cannot possibly appear in the two-loop six-point MHV remainder
function, which is parity-even. This “explains” why the hypothesis that two-loop MHV remainder

functions must live in PBy, which we know to be true for all n [47], implies that the case n = 6

3Linear combinations which fall outside this 36-dimensional subspace are certainly integrable [142], but they
integrate to functions with symbols involving letters which are not cluster coordinates, for example differences of
X-coordinates x; — x;, which does not in general factor into a product of cluster coordinates. Hence they are not
cluster A-functions.
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must be classical.

(B) The remaining 30 functions are sort of the opposite: no linear combination of these 30 has
a B3y ® C* content which can be expressed entirely in terms of X'-coordinates, so none of them are
cluster X-functions. On the other hand, all of them are Stasheff local—they all have “nice” By A B,

in fact they span exactly the 30-dimensional subspace PB; C By A Bs.

5.2.3 The Physical (Hexagon) Functions

Dixon et. al. find that there are precisely 15 functions at weight 4 (modulo products of functions
of lower weight) satisfying the first-entry condition, which they call hexagon functions. Let us put
aside 9 which are purely classical and focus on the two types of functions named Q5 and F in [50].

(A) The function F is parity-odd and comes in three cyclic permutations (i.e., ¢ — i+2 and
1 — i+4). These functions are rather interesting; each of them has a By A By coproduct component
given by plus additional terms which cannot be expressed in terms of pairs having simple
Poisson bracket. Since is invariant under ¢ — ¢+2, we can throw out these terms by taking the
difference between any two pairs of the three permutations of F}. Indeed such linear combinations

have appeared in the literature, as in (B.18) and (B.20) of [50] which define the function V by
8V = —Fy (u, v, w) + Fi (w, u,v) + products of lower-weight functions. (5.2.6)

Hence only two of the three distinct cyclic permutations of V are linearly independent.

(B) Next we look at the parity-even function €2 which also comes in three cyclic permutations.
At the level of By A By, where we can ignore all terms involving only classical polylogarithms, the
function 5 is equivalent (modulo an overall multiplicative factor) to the function called V' by Dixon
et. al.; see for example (7.1) through (7.3) of [48]. In that paper it was also observed that the three
cyclic permutations of this function add up to a purely classical function, so the three different
permutations of V' span only a two-dimensional subset of By A Bs.

To summarize, we find that the subspace of By A By spanned by physical (hexagon) functions
has dimension 5. Two dimensions are spanned by the parity-even functions of type V', while three
dimensions are spanned by the parity-odd functions of type Fj. Although a generic vector in the
three-dimensional parity-odd subspace has terms with “bad” Poisson brackets, there is something
especially nice about the subspace spanned by the permutations of V' and 1% together. To see this

we exhibit here a formula for their cobracket components, which we find are most simply packaged

86



in the formula

Slon(V + V) = %{w}z AT e — %{UI}Q A ds — %{xf}g A{vshs + %{x;}g Aot (527)

Since V, V have parity even and odd, respectively, 6|2 2(V — ‘7) is given by the same formula but
with 2% — 2F. We now see that each term in (5.2.7) involves only the PB; pairs listed in ([5.1.14))!
Moreover, it is trivial to check directly from (5.2.7) and the cyclic transformations (5.1.11)) that the

six functions V, 1% altogether span only a four-dimensional subspace of PBj.

5.2.4 Summary

The results of this section can be summarized in the following classification of weight-4 cluster

functions on Az = Gr(4, 6):

There are a total of 81 irreducible weight-four cluster A-functions
L 45 classical, 10 of which are physical
L 36 non-classical, 5 of which are physical (three permutations of F; and two of €25)
L 30 PB; functions, 4 of which are physical (two permutations each of V, f/)
L 6 As functions; these are all of the cluster X-functions
L 1 PBy function, the A3 function

L 5 PB, functions

Let us emphasize that these numbers count only irreducible functions, and that starting from the
third line they moreover count functions modulo the classical function Lis (i.e., the numbers refer
to dimensions of subspaces of By A B2). When we say that a function is physical modulo additional

terms, we mean that it is possible to choose the additional terms to render the function physical.

5.2.5 The Two-Loop Hexagon MHV Amplitude

Let us now comment on the relevance of these functions to the two-loop six-point MHV remainder
function R((f), which was found to be expressible in terms of the classical polylogarithm functions
Li; in [35] (a fact that we “explained” below (5.2.5))). In fact, this amplitude is even more special

because it is a cluster X-function, which means that it can be expressed in entirely in terms of the

Lig(—x); the Lig(1 4+ ) and Lig(1 4+ 1/2) functions, whose B3 ® C* cobracket components are not
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expressible in terms of cluster X-coordinates, are not needed [32].

Above we tabulated our finding that (modulo products of lower-weight functions) there are only
10 physical and classical polylogarithms at weight four. In this space we now search for functions
whose coproducts are expressible entirely in terms of the Lig(—x). We find that there is a unique
linear combination that is invariant under the discrete symmetries (parity and dihedral invariance)
that MHV amplitudes must possess. That linear combination is proportional to the two-loop MHV

remainder function

3
1
Ré2) MHV _ Z {Liél(:c;") + Liy(—z;) — §Li4(7vi) + products of lower-weight functions, (5.2.8)
i=1

in agreement with the known result [35]. (This argument, of course, does not fix the overall coeffi-
cient.) Of course, in this case it is very well known that the product terms are also completely fixed

by simple considerations, but our focus in this chapter is on the leading term.

5.2.6 The Two-Loop Hexagon NMHV Amplitude

The n = 6 NMHV two-loop ratio function is given by [48]
Py = [23456][V (u,v,w) + V (Y, Yo, yu)] + cyelic (5.2.9)

where [23456] is the R-invariant

§* (xa(bede) + cyclic)
(abed) (bede) (cdea) {deab){eabc)

[abede] = (5.2.10)

and V, V are the two generalized polylogarithm functions of uniform transcendental weight four
reviewed in Section 3.3 above. These two functions were computed explicitly in [48] (see also [I40]
for a different presentation of these functions). The Bs A By component of the cobracket of this
amplitude was computed in (5.2.7)), where it was found to be expressible entirely in terms of pairs
living in PBlH

The NMHV ratio function provides us (at the level of By A Bs) with a total of four linearly
independent non-classical functions of weight 4 (as reviewed above, each of V' and V comes in three
cyclic permutations, but the cyclic sum of each is separately zero inside Bs A By). We see from the

summary in Section [5.2.4] that precisely 5 functions of this type exist. Only four linear combinations

4This observation was first made by C. Vergu [138].
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of them, however, actually appear in the amplitude—these are precisely the four linear combinations
which live in PB;! The one additional non-classical weight-4 hexagon function which exists but does
not appear in the amplitude, F; by itself, has terms with “bad” Poisson brackets (i.e., non-Stasheff

local terms) in its By A By content.

5.3 The Cluster Structure of Heptagon Functions at Weight 4

5.3.1 Setup

In this section the term “cluster function” refers to an integrable symbol written in the 42-letter al-
phabet of cluster coordinates on Gr(4, 7). Any linear combination of such symbols with the property
that only the Pliicker coordinates of the form (ii+1j j+1) appear in the first entry of the symbol,
reflecting the physically allowed branch points for a scattering amplitude, is called (the symbol of) a
“physical function” or a “heptagon function” following the terminology of [6I] where they have been
studied through weight six. The analysis here, where we aim to make finer statements about the
connection to the Poisson bracket of the cluster algebra, is again restricted to weight 4, of relevance
to two-loop amplitudes.

Let Ay denote the vector space of all weight-k functions. In contrast to the A,, cluster algebras
and the example shown in , we do not know of any generating function which counts the
number of cluster functions for the Fg algebra. These may be tabulated through weight 3 by explicit
enumeration, but at higher weight these numbers must be computed by analyzing the integrability
constraint. This boils down to a linear algebra problem, since counting the number of cluster
functions at weight k is the same as finding how many linear combinations of the 42% weight-k
symbols satisfy the integrability constraint. (This calculation can be rendered more manageable by
imposing integrability at the level of the cobracket rather than at the level of the symbol.) We have

carried this out at £ = 4 to find that
dim(Ay) = 42,1035,19536, 312578, . .. k=1,2,3,4,.... (5.3.1)

Let L denote the quotient of Aj by products of functions of lower weight. As in (5.2.3)) taking the

plethystic logarithm [T41] gives

dim(Ly,) = 42,132,748,4193,...  k=1,2,3,4,.... (5.3.2)
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Finally we denote by Bj the subspace of £, generated by the classical polylogarithms (we do not

yet restrict their arguments to be cluster X-coordinates). We have

dim(Bg) = 132,748,1155,...  k=2,3.4,.... (5.3.3)

As mentioned before, agreement of these numbers with is guaranteed for k < 4, and we
obtained the value 1155 for k = 4 by computing dim ker § as described in Section 2.

Before we turn to weight 4, a minor interesting comment about k£ = 3 is in order. It is simple to
write down classical cluster functions of the form Lig(—z), Lix(1+ ) and Lig (14 1/x) for any weight
k, where = runs over the set of 385 X'-coordinates. For k = 3, this set of functions is overcomplete

due to the identity

Liz(—x) + Liz(1 + ) + Liz3(1 + 1/2) =0 mod products of lower-weight functions. (5.3.4)

Among the 385 functions of type Liz(—z) there are exactly 22 additional linear relations. These
were discovered in [32], where they were called D, identities since the simplest manifestation of this
identity occurs for the D4 algebra. Altogether then these identities account for the 3x385—385—22 =

748 linearly independent weight-3 cluster A-functions tabulated in (5.3.2)).

5.3.2 The Non-Classical Functions

Let us now repeat the analysis done in the beginning of Section for the Eg algebra. Since
B> has dimension 132, Bs A B has dimension 8646. We again use the notation PBy, PB;, and
PB, = By A Bs to denote the subspaces spanned by elements of the form {z}2 A {y}2 for pairs z,y
having Poisson bracket 0, £1, or “anything.” We find that PBjy has dimension 455 and PB; has

dimension 2520.

A quick glance at (5.3.2) and (5.3.3]) reveals that there are 4193 — 1155 = 3038 non-classical

cluster functions at weight &k = 4. We find that these fall into three groups:

(A) First, there are the Ay functions. We recall from (for example) [32] that Eg has 1071 Ag
subalgebras, so one can construct 1071 A, functions according to the definition given in [46], but
only 448 of these are linearly independent inside By A Bzﬂ These functions are moreover cluster
X-functions: their B3 ® C* cobracket components can be expressed entirely in terms of cluster X-

coordinates, but their Bo A By content is, in general, not Stasheff local—mnot expressible in terms of

5This result was first obtained in the undergraduate thesis of A. Scherlis.
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pairs with Poisson bracket 0, +1.

There are no linear combinations of these 448 functions which live in PB;—these are covered in
(B) just ahead—but we find that 195 linear combinations live in PBy. This 195-dimensional space
is spanned by the set of A3 functions associated to the various Az subalgebras of Fy.

(B) There are 2520 functions which span the 2520-dimensional subspace PB; C By A By. We
found the same phenomenon in the six-point case discussed in the previous section. There we
furthermore found that no linear combination of these PB; functions had a B3 ® C* component
that could be expressed entirely in terms of X-coordinates. We have not repeated this analysis for
the 2520 seven-point functions; the computation seems formidable.

(C) There are an additional 3038 — 448 — 2520 = 70 functions which we can tabulate explicitly

(at least at the level of their cobrackets), but seem to have no nice characterization.

5.3.3 The Physical (Heptagon) Functions

It was found in [6I] that there are precisely 1288 functions at weight 4 satisfying the first-entry
condition, which are called physical, or heptagon functions. We have computed the By A By cobracket
of each of them, and found that there are only 126 non-zero linear combinations. This means that
there are 1162 classical heptagon functions and 126 non-classical heptagon functions at weight 4.
We have found that these 126 heptagon functions fall into three types:

(A) A total of 105 of these functions live in PBy; they come in 15 families related by cyclic
permutations.

(B) A total of 14 of these functions live in PBj; they come in 2 families related by cyclic
permutations.

(C) There is one remaining family of 7 functions related by cyclic permutations. No linear

combination of these is Stasheff local (i.e., lives within the union of PBy and PBy).
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5.3.4 Summary

The results of this section can be summarized in the following classification of weight-4 cluster

functions on Fg = Gr(4,7):

There are a total of 4193 irreducible weight-four cluster A-functions
L 1155 classical, 770 of which are physical
L 3038 non-classical, 126 of which are physical
L 2520 PB; functions, 105 of which are physical
L 448 A, functions; these are all of the cluster X'-functions
L 195 PBy function, 14 of which are physical
L 253 PB, functions

L 70 other PB, functions

Again let us emphasize that these numbers count only irreducible functions, and that starting from
the third line they moreover count functions modulo the classical function Liy (i.e., the numbers refer
to dimensions of subspaces of By A Bz). When we say that a function is physical modulo additional

terms, we mean that it is possible to choose the additional terms to render the function physical.

5.3.5 The Two-Loop Heptagon MHV Amplitude

The symbol of the two-loop seven-point MHV remainder function Rgz) was computed in [110], and

its cobracket was computed in [32], where it was observed to be a cluster X-function living in P By.

) was obtained in [I12] and checked against the earlier numerical results

An analytic formula for R(72
of [143].

If we start from the hypothesis that R(72) should be a cluster X-function living in PBy, then we
see from the above chart that there are only 14 physical functions with these properties. It was
shown in [47] that only one linear combination of these has the dihedral symmetry required of the
amplitude, is well-defined in the collinear limit, and satisfies the “last-entry” condition [I10] required
by supersymmetry.

In fact these constraints, while all true, are vastly stronger than necessary to pin down Rg):

in [6I] it was found that the symbol of R(72) is the unique weight-4 heptagon function (up to an

overall multiplicative factor) which is well-defined in all i41 || ¢ collinear limits!
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5.3.6 The Two-Loop Heptagon NMHV Amplitude

The symbol of the seven-point 2-loop NMHYV ratio function 77§72131MHV was first computed in [89)]. It
may be expressed as a linear combination of the 21 seven-point NMHV R-invariants (of which 15 are
linearly independent), with coefficients that have uniform transcendentality weight 4. Due to the
linear relations between R-invariants there is some freedom in how to represent the amplitude (i.e.,
one can shift terms from one transcendental function to another by adding zero to the amplitude in
various ways).

Despite this freedom, we find that it impossible to write the By A By cobracket of this amplitude
in a Stasheff local manner, i.e. in terms of {x}> A {y}2 for pairs z,y having Poisson bracket 0, +1.
The local terms having “good” Poisson brackets may be expressed (in one particular representation

of the amplitude) as

6227)%,2121MHV|“g00d” = (fizRi2 + fisRi3 + fiaRia) + cyclic, (5.3.5)

where the quantities fi2, fi3 and fi3 are presented explicitly in the appendix, and R;; is the R-
invariant whose arguments are 1234567 (in that order) but with ¢ and j omitted—this is the same

as the notation used in [48]. Meanwhile the “bad” terms are given by:
622,P$,2131MHV|“bad” = (R25 — Rag + R37 — Ryr) By + cyclic (5.3.6)

in terms of a single element B; € By A By (also given in the appendix) which is not expressible solely
in terms of pairs having Poisson bracket zero or one.

In fact we can point our finger directly at the “offending” function corresponding to B; in the
summary presented at the end of Section[5.3.4] There we found that of the 126 non-classical weight-4
heptagon functions, 105 live in PB; while 14 live in PBy, leaving 127 — 105 — 14 = 7 unaccounted
for. These other seven functions have By A Bs cobracket components given exactly by Bj in its seven

cyclic arrangements.

5.4 Conclusion

In this chapter we have studied in detail the taxonomy of weight-4 cluster functions on the cluster
algebras relevant for 6- and seven-point amplitudes in planar SYM theory. In particular we have

counted the numbers of linearly independent functions satisfying various mathematical constraints
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on their cobrackets, and the physical “first-entry” constraint which specifies the locations where
amplitudes are permitted to have branch points on the principal sheet. These results are summarized
in Sections 5.2.4] and [£.3.4

For n = 6 the story is very simple: there is no non-classical weight-4 generalized polylogarithm
function which is consistent with the discrete symmetries of the MHV amplitude and whose By A By
cobracket component is expressible in terms of pairs of cluster X'-coordinates having Poisson bracket
0. This “explains” why the two-loop six-point MHV remainder function “must be” expressible in
terms of classical polylogarithms [35].

Meanwhile, there are precisely 4 linearly independent non-classical functions which satisfy the
first-entry condition and are Stasheff local (they have By A By cobracket components are expressible
in terms of pairs of cluster X-coordinates having Poisson bracket 1). These are precisely the (non-
classical parts of the) 4 independent functions which appear in the two-loop six-point NMHV ratio
function [48].

For n = 7, as has already been observed in [47, [61], the cobracket (indeed, the whole symbol) of
the two-loop MHV amplitude is uniquely determined by a simple list of mathematical and physical
constraints. However the story for the two-loop NMHYV ratio function is a little more complicated.
We find that the cobracket of this amplitude is not expressible in a Stasheff local manner (that
means, in terms of pairs having Poisson bracket 0, +1). It would be very interesting to learn if there
is some other question one may ask about the cluster structure of this amplitude, to which a more
affirmative answer may be given. We expect to be the case since it is known that there is a cluster
structure at the level of the integrand (aspects of which have been explored in [73, [144]), of which
some echo ought to remain for integrated amplitudes.

One of our results might be of more mathematical than physical interest. For both the A3 and Fg
cluster algebras, we find that for any pair of X-coordinates with Poisson bracket {logz,logy} =1,
there exists a weight-4 cluster A-function (that is, an integrable symbol whose letters are drawn
from the alphabet of cluster coordinates) whose By A By cobracket component is {z}a A {y}a. It
would be interesting to learn if there is a mathematical explanation for this fact, and whether it is
valid for more general cluster algebras (in particular, for ones of infinite type). In contrast, pairs
of X-coordinates having Poisson bracket 0 are rarely integrable in this manner; the two-loop MHV
amplitudes of planar SYM theory remarkably provide functions of this relatively rare type.

In the introduction to this chapter we mentioned that in previous work including [47] it has
been remarked that the mathematical and physical constraints on MHV amplitudes seem almost

orthogonal. This is both good and bad. On the one hand it is good to discover a short list of
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simple criteria which uniquely, or almost uniquely, determine an amplitude of interest—this is the
core goal of the S-matrix program. On the other hand it is bad when there is no known formalism
which simultaneously manifests both types of constraints. We do not yet know of any way, besides
explicit enumeration, to actually identify and write down functions satisfying both the physical
and mathematical we expect amplitudes to possess. Explicit results for higher loop planar SYM

amplitudes remain, at least for the moment, difficult needles to find.
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Appendix A

The BDS and BDS-like Ansatze

The BDS ansatz [28] for the n-particle MHV amplitude (with the Parke-Taylor tree amplitude scaled

out) is given by

A, >
M, @ =P > at (f<L ()3 MV (Le) + C<L>) (A.0.1)
n L=1
with
FE (&) = (7 +ef 1 1P, (A.0.2)

and where € is the dimensional regularization parameter in D = 4 — 2¢. Here féL) is the planar cusp
anomalous dimension with

1 1
() _ ZV%) 1rw (A.0.3)

2 cusp ’

according to the definition (4.1.24)). However, note that in the above relation the superscript L refers
to coefficients in the expansion with respect to a = 2¢2, and not ¢2.

For n = 7, the BDS ansatz takes the form

o0

Z oL (f(L)(e);Mél)(Le) + C(L))

L=1

ABDS AyHV(O)exp l (A.0.4)

Here we have explicitly factored out 1/2 from the definition of M7(1)(e) appearing in the original
BDS paper. The seven-particle one-loop MHV amplitude (again with the tree amplitude scaled out)

appearing in the BDS ansatz is given by

>€ + F(0) + O(e) (A.0.5)

1 7
M (e) = 2Z<

—S; ,i41
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where

7
—8: - —8 . 3
F7(1) =S Z |:— log (MH> log <Z+1’1+2) + D77i + L7’1‘ + 2C2:| (AOG)
= —S8i,i+1,i+2 —84,i+1,i+2
with
Dri— —Liy <1_ Siit1 57:—1,7:,1'+1,7:+2> (A.0.7)
Siyit1,i+2 Si—1,i,i+1
and
L;;=—-log (S“H’ZH ) log (ZH’ZH’ZH ) . (A.0.8)
2 —84,i+1,i+2,i+3 —Si—1,i,i+1,i+2

Notice that all of the dependence on the three-particle Mandelstam invariants is contained within
F7(1)(0), so we will focus on determining its dependence. We can replace the four-particle invariants

with three-particle invariants in both D7 ; and L7 ;. The two equations then become

. Si,i+15i43,i4+4,i+5 1 Si,i+1,i+2 Si4+1,i4+2,i+3
Dri = —Lig (1_ i,i+15i43,i+4,i+ ) L7 =—=log (Wr) log (“r”“r> . (A.0.9)
Siyi+1,i4+25i—1,i,i+1 2 Si4+4,i+5,i+6 Si+3,i+4,i+5

At this point, it is convenient to switch to the n = 7 dual conformal cross ratios u;, defined in

terms of the Mandelstam variables by

Si+2,i+3 Si+5,i4+6,i+7 (A 0 10)

Ui = Uit1,i44 = s
Si+41,i+2,i+3 Si+2,i+3,i+4

where all indices are understood mod 7. We can see from this definition that D7 ; can be ex-
pressed simply in the u; variables as D7 ; = —Lis (1—u;_2). Using the dilogarithm identity Liz(z) +

Lix(1-1/2) = —% log? z, we then rewrite D7, = Lis (1-1/uj—2) + %log2 Uui_2, and express F7(1)(0)

as
! Siyit1 Si+1,i+2 . 1. 5
:Z —log | —— log { ——— + Liy (1—1/ui)+§log U;
P Sii+1,i+42 Sii+1,i+2 (A.O.ll)
1 4yt i+1,i42,i 3
—log( Si,it1,i+2 ) log (8 +1,i42, +3> N Cz} .
2 Sitd,it5,i16 Si43,i44,it5 2
After some algebra, F7(1)(0) can be shown to be
7
F(l) |:Ll (1—) 71 ( it2li-2 ) log u;
7 ; 2 Ui+3U;U;—3
8i,i+18i+3,i 3
+ log s; ;41 log (W) + 42:|. (A.0.12)
Si41,i4+25i42,i+3 2
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In this form, we have conveniently isolated all of the three-particle invariants in the first two terms.
Now we would like to factor out the three-particle invariants from F7(1)(O) because this removes

their dependence from M7(1) as well. We define the function

7
Y, = — Z [Lig (1 - ul) + %log (uHQM> logui] (A.0.13)

Py i Ui+ 3UiUi—3

so that adding the term Y7 removes the three-particle invariants from M7(1):

M) = MY+ Yy

7 €
1 2 Siji+1 Si+3,i 3
= Z{_e? ( K ) + log s; ;41 log (W> + 2C2} - (A.0.14)

=1 —Sii+1 Si4+1,i42 Si42,i+3

The BDS-like ansatz is defined to be the BDS ansatz with M7(1) replaced by with Mél), which does

not depend on any three-particle invariant:

, = 1
ABDS-like _ 4MHV(O0) o, [Z ok (f(L)<€)2 (M7(1)(L6) + Y7) T C<L)> , (A.0.15)
L=1
Factoring out the BDS ansatz explicitly, we have
BDS-like BDS — a® (L)
AL = APPSexp |- ( f (e)Y7) (A.0.16)
L=1

Recall that in the BDS ansatz formulation, the limit ¢ — 0 is taken. Since Y7 is independent of e,

we can set € — 0 in eq. (A.0.2)) and rewrite the BDS-like ansatz as simply

cusp

' Y- oo
BDS-like _ 4BDS 7 L(L)
A7 €= A7 exp [4 Lgila r ] , (A.0.17)

where we have used the definition (A.0.3). After introducing Feusp = D70, aLrﬁﬁs)p, defined in
eq. (4.1.24)), we finally arrive at a simple representation of the BDS-like ansatz as a function of the

BDS ansatz, the cusp anomalous dimension I'¢ysp, and Y7,
BDS-like BDS [eusp
A7 = A2 exp TY7 . (A.0.18)

This result can be generalized to any n for which a suitable BDS-like ansatz exists, see eq. (4.1.21)).
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Appendix B

A Matrix Approach For Computing

Integrable Symbols

We provide here a conceptually simple method for generating a basis of integrable symbols, given
the set of symbol letters on which they depend. This algorithm is iterative, and assumes that one
has seeded the algorithm with a basis at low weight. For general heptagon symbols, this seed is
provided at weight 1 by the first entry condition reviewed in section It consists of the 7
weight-1 symbols corresponding to log ay;. For Steinmann heptagon symbols, the seed is provided
by the 28 weight-2 heptagon symbols of the functions shown in eq. .

Let B®) denote a basis of symbols at weight k, and let b, = dim B*). Let us also denote the
i-th element of B®*) by Bi(k). Given B we can make an ansatz for symbols of weight (k+1) of

the form
br [P

S Y e BM @6y, (B.0.1)

i=1 g=1
where the sum over g runs over all letters in the symbol alphabet ®, i.e. ¢, € ®, and the ¢;, are unde-
termined rational coefficients. The number of letters is denoted by |®|. The quantity will be
the symbol of some weight-(k+1) function only if it satisfies the integrability constraints of eq.
for all j. By construction, these constraints are automatically satisfied for j = 1,2,...,k — 1, be-
cause the elements of B(¥) are already valid, integrable symbols. It therefore remains only to impose

integrability in the final two entries at weight (k+1), i.e. for j = k.
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Each BZ-(k) can of course be expressed as

br—1 |4>‘

k k—
BY =33 fun B V@0, (B.0.2)

Jj=1p=1
for some known coefficients f;;,, so we can rewrite our ansatz as

b be—1 [P

YD ki B V@6, @9, (B.0.3)

=1 j=1 p,g=1

Denoting
br br—1

k—
Foo=3_ " cigfiip BY Y, (B.0.4)

i=1 j=1
the quantity (B.0.2)) satisfies integrability in the final two entries only if

||
> Fyydlog, Adloggy =0, (B.0.5)

p,g=1

where the wedge product between two letters ¢, ¢, that are functions of the independent variables

2" is defined as

0log ¢, 0log ¢q B 0log ¢, 0log ¢q
ox™  Oz" ox™  Ox™

dlog gy Adlogdy = {

m,n

dz™ Ndx™. (B.0.6)

The term in brackets above will be a rational function of the independent variables, which can be
turned polynomial by multiplying with the common denominator, without altering the equations
(B.0.5). Each independent polynomial factor of the x; times their differentials must vanish separately,

which leads to distinct rational equations for the Fj,,. If the number of linearly independent equations

is r, then we may equivalently write eq. (B.0.5) as

||
> FpWpu =0, VIe{l,2,...,r}, (B.0.7)
p,q=1
in terms of a rational tensor W,q. Taking the tensor product of the indices p,q we may think of
W as a |®|? x r matrix, or rather a (1) x 7 matrix after taking into account its antisymmetry in
p<q.
Since the Bj(.kfl) are elements of the basis B*~1) of weight-(k—1) symbols, they are linearly

independent. Each term in the sum over j in (B.0.4) must therefore vanish separately. In this
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manner, we finally arrive at the following set of 7 x by _; linear constraints on the |®| x by unknown

coefficients c;4:
by
SN ciafiipWoa =0,  Vie{l2,... by}, le{l,2,....r}. (B.0.8)

i=1 p,q

We now specialize to the case of interest by adopting the 42-letter symbol alphabet presented in

egs. ((4.2.2) and (4.2.3]). There are 132 vanishing linear combinations of the 861 objects dlog ¢, A

dlog ¢, i.e. there are 132 irreducible weight-2 integrable symbols (these are in correspondence with
elements of the so-called Bloch group Bs; see for example ref. [32]). This means that there are
r = 861 — 132 = 729 nontrivial integrability constraints for the heptagon symbol alphabet. In
solving the linear constraints for the c;q, we are free to replace W by any matrix which spans
the same image as W without changing the content of the constraints. It is highly advantageous
to choose a basis for the image of W that is as sparse as possible, and which has numerical entries
as simple as possible. In our bootstrap we used a representation of the image of W as a 861 x 729
matrixEI with only 1195 nonzero entries having values +1.

Finally, then, the integrability constraints shown in eq. take the form of 729 by _1 linear
equations on the 42 by unknowns c;,. Finding a basis for the nullspace of this 729 by x 42 by, linear
system provides a basis for B(**1) the integrable symbols at weight k + 1. For the purposes of the
Steinmann heptagon bootstrap, we have further cut down the weight-2 basis yielded by this proce-
dure to only those 28 symbols that satisfy the Steinmann relations before proceeding to weight 3.
We have carried out the large linear algebra problems necessary for the heptagon bootstrap with the
help of the SageMath system [145], which employs the IML integer matrix library [I46]. As a double
check, we also fed the weight-7 integrability constraint matrix into A. von Manteuffel’s FinRed pro-
gram, which independently generated a basis for the 9570-dimensional weight-7 Steinmann heptagon

space reported in table [£.1]

B.1 Two-Loop Heptagon NMHYV Coproduct Data

In the first three subsections we list the Stasheff local contributions to the Bs A By cobracket
component of the two-loop heptagon NMHV ratio function, in terms of the quantities fi2, fi3,
and f14 appearing in (5.3.5). Specifically, these contain all terms of the form {z}s A {y}2 for pairs

x,1y having Poisson bracket 0,+1. The additional “bad” contributions to the cobracket are shown

ITo orient the reader already familiar with the hexagon bootstrap: there the symbol alphabet has size |®| = 9,
and there are 10 irreducible weight-2 integrable symbols, so the W matrix for the hexagon alphabet has size 36 x 26.
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in (5.3.6) and given explicitly in the fourth subsection.

B.1.1 fi;

This function is cyclically invariant and lives entirely in PB;. We find

(1367)(2347) (1367)(2347)(4567)
O22f13 = 7 ( { (1237)(3467) } A { (1467)(2367)(3457) }2

(tmmizs) | {uzmien)
(lmomny () _ (1)
(el (maen) (i)
(i) _goam iy ), (7w

+{ 1237 1456 } )
) 2
~({s 1323 iiiéﬁih (s 1) - aemenoon).)

+ cyclic.

B.1.2  fi

If we first define the quantity X; by

=t e ),
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)(1345) (1245)(3457)
(1234)(1457) } { (1457)(2345) } {
(1256)(2345) (1236)(1245) (2567)

(1235)(1267) (2456) {
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N
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+
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(
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1345 (4567)

+

+

+

+

+

.., X7 by taking ¢ — i + 1, then we find

1
=(3,-4,3,—4,3,-4,3) - (X1, X2, X3, X4, X5, X, X7)

\]
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B.1.3  fu

This function lives entirely in PBy. If we first define the quantity
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then we find

9202 f14 = = (Y + cyclic) — 2Y
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B.1.4 B

Here we display the non-Stasheff local contributions to the By A By coproduct component of the

two-loop seven-point NMHYV ratio function (5.3.6). Exceptionally in this formula we make use of
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the cross-ratios a;; defined in eq. (2.1) of [6I]. We find that

By = (a12 A aie) A (ar2 A agr) + (a2 A agg) A (a7 A aer) — (a2 A ags) A (a12 A aer)
— (a12 A ag3) A (a17 A ag1) — (@12 A azz) A (a12 A aer) — (a12 A asz) A (a7 A aer)
— (a12 N ag1) A (a13 A are) + (a12 A ag1) A (a13 A agz) + (ar2 A agt) A (a13 A azz)
— (a12 AN ag1) A (aie A agz) — (a12 A ag1) A (a6 A azz) + (a13 A ase) A (a17 A aer)
— (a13 A az3) A (a17 A agr) — (a13 A asz) A (a17 A agr)

+ (a16 N a23) A (a17 A a61) + (a16 N a32) AN (a17 A CL61)

where we follow the slight abuse of notation explained in [46] of writing B; not explicitly as an element
of By A\ By, but rather by writing the result of the iterated coproduct acting on B; according to
{a}a AN{b}2 — (@A (1+a))A(DA(1+Db)) and then expanding all multiplicative terms out using
the usual symbol rules. In other words, the above formula represents the symbol of the function By

antisymmetrized according to a ® b®@ c @ d+— (a Ab) A (¢ A d).
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