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Abstract—In this work the Abrasion-Ablation Monte Carlo for Colliders model with and without MST-clus-
tering was employed to characterise the momentum distribution of produced spectator fragments. The sim-
ulation results suggest that pre-equilibrium fragmentation with accounting for Coulomb interaction between
charged spectator fragments lead to an increase of their mean transverse momentum , bringing the calcu-
lations closer to experimental data. The pseudorapidity distributions of H, He, Li spectator fragments from
3.26  GeV XeВ collisions at the BM@N were calculated.
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1. INTRODUCTION
The understanding of the momentum distributions

of spectator fragments in relativistic nucleus-nucleus
collisions is necessary for the estimation of the perfor-
mance of forward detectors, in particular FHCal and
SciWall at the BM@N [1]. To correctly simulate their
response, a model providing realistic momentum dis-
tributions of charged spectator fragments is needed,
so it is required to account for the Coulomb repulsion
in the fragmentation [2, 3]. Furthermore, in the

MeV Xe + Sn reaction, a discrepancy between
QMD calculations and experimental data, in particu-
lar, lower kinetic energies and stronger in-plane f low
of fragments, was attributed to the neglect of Coulomb
repulsion [3].

In this work the Abrasion-Ablation Monte Carlo
for Colliders model with (AAMCC-MST) and with-
out (AAMCC) pre-equilibrium clusterization was
employed to simulate the production of spectator frag-
ments [4]. Previous studies show that pre-equilibrium
fragmentation improves the agreement between
AAMCC results and experimental data on the yields of
spectator protons, neutrons, and He fragments [4].
However, the momentum of the spectator fragments
was not analysed in details previously. In this work
Goldhaber model [5] is used to account for the intra-
nuclear motion of removed nucleons. The Coulomb
repulsion of the charged fragments were considered at
the last stage of MST-clusterization. Obtained pseud-

orapidity and  distributions of spectator fragments
were compared with data from the KLMM collabora-
tion [6, 7]. Finally, the pseudorapidity distributions of
spectator neutrons, protons, He and Li fragments in

 GeV XeВ collisions at BM@N were calcu-
lated and the fraction of the undetected fragments
were estimated.

2. OUR MODEL ABRASION-ABLATION 
MONTE CARLO FOR COLLIDERS

In the AAMCC the first stage of nucleus-nucleus
collisions are modelled by means of Glauber Monte
Carlo [8]. It is assumed that excited spectator frag-
ments (prefragments) are formed by non-participating
nucleons. The excitation energy of the prefragment is
estimated as described in [4]. The MST-clustering
algorithm is employed to model the pre-equilibrium
fragmentation [4], while the Statistical model of mul-
tifragmentation (SMM), Weisskopf-Ewing evapora-
tion model and Fermi break up model in realization of
Geant4 [9] are used to model the decay of the excited
fragments after the MST-clustering. In the MST-clus-
tering, nucleons are represented by vertices in a com-
plete graph, with edge weights as distances between
them. Nucleons  and  are clustered if , form-
ing prefragments. Following the method by Kopylov
[10], the excitation energy of free spectator nucleons is
converted into kinetic energy of the formed prefrag-
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Fig. 1. The pseudorapidity distribution of spectator He fragments in the 158A GeV Pb + Pb collisions (left) and the transverse
momentum  distribution of spectator He fragments in 10.6A GeV Au + Au collisions (right) for AAMCC (dotted line),
AAMCC-MST (dashed line), AAMCC-MST with Coulomb repulsion (solid line) models.
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ments and nucleons. The prefragment expansion is
emulated in the MST-clustering by decreasing the
clustering parameter . The ratio between distance

and nuclear density is assumed to be . The den-
sity parametrization is a piecewise function based on
experimental data, as described by the following equa-
tion:

Parameters are obtained by fit of the experimental
data on excited nuclear density [11]: d0 = 2.7 fm, α = 2.24,
β = 3.18 MeV, γ = 0.99, δ = 0.29, εs = 2.17 MeV.

According to the Goldhaber statistical model [5]
the removed nucleons total momentum distribution is
assumed to be Gaussian with

where  is the mass of the colliding nuclei,  and
 are corresponding spectator and participant

numbers. The  MeV is model parameter and
was chosen to correspond to the Fermi momentum of
the nucleons in heavy nucleus.

To efficiently simulate the Coulomb repulsion of
the prefragments after the MST-clusterization the
Barnes-Hut algorithm was employed. It approximates
the force calculations by grouping nearby protons into
a single charge [12]. For a distant region with center ,
size  and the center of charge , if the condition

 is met, internal protons are approximated
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as a single charge at . The simulation of the motion
of the charged fragments lasts until the velocities of the

fragments are established, that takes . The

cutoff parameter  is set to 0.3. The adaptive time step
is set to value such that momentum change of any pro-
ton or prefragment is restricted by 5%, but less than

.

3. MOMENTUM AND PSEUDORAPIDITY 
DISTRIBUTIONS OF THE LIGHT

SPECTATOR FRAGMENTS
As it can be seen in Fig. 1 (left) the pseudorapidity

distribution of spectator He fragments from 158  GeV
Pb+Pb collisions by AAMCC-MST is close to the one
obtained from AAMCC, but both versions underesti-
mate the width of the distribution. However, the
inclusion of Coulomb interactions, as described in
Section 2, between charged fragments leads to a better
agreement with the experimental data. The transverse
momentum  distribution of spectator He fragments
in 10.6  GeV Au+Au collisions, Fig. 1 (right), is over-
estimated for  MeV/c and underestimated for

 MeV/c by both AAMCC and AAMCC-
MST models. But with accounting for the Coulomb
repulsion the underestimation of fragments with

 MeV/c is reduced, bringing the AAMCC-
MST model calculations closer to the experimental
data. The SciWall at the BM@N can detect spectator
nucleons and fragments with  in the  cen-
trality collisions, while the hole inside it limits pseud-
orapidity of the detected fragments to  [1].
Pseudorapidity distributions for spectator fragments in
3.26A GeV XeВ collisions at  centrality for H,
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Fig. 2. The pseudorapidity distribution of spectator H
(dotted line), He (dashed line), and Li (solid line) frag-
ments from Xe + CsI 3.26A GeV collisions with centrality
0–60%.

0

0.7

0.6

0.5

0.4

0.2

0.1

0.3

8 96 754

1 
dN

/N
 d
�

�

Z = 1
Z = 2
Z = 3
He, and Li were calculated by means of AAMCC-MST
with accounting for Coulomb repulsion, see Fig. 2. The
estimated fractions of undetected spectator fragments
are 27% for H, 34% for He, and 45% for Li. An
increase of the average pseudorapidity with an
increase of the fragment charge is obtained, suggesting
the higher acceleration of the lighter fragments in the
Coulomb interactions.

4. CONCLUSIONS
In this study, the momentum distributions of spec-

tator fragments produced in relativistic collisions were
simulated using the Abrasion-Ablation Monte Carlo
for Colliders (AAMCC) model. Coulomb interactions
between prefragments in the MST clustering were also
considered. The results suggest that the pre-equilib-
rium fragmentation and Coulomb interactions
between spectator fragments increase the mean  of
light spectator fragments by approximately 20 MeV/c
as a result of their repulsion from heavier fragments,
that brings the simulation results closer to the experi-
mental data. The pseudorapidity distributions of spec-
tator H, He, and Li fragments were calculated for
3.26  GeV . The model predicts a signifi-
cant fraction of undetected fragments by the SciWall
detector at the BM@N, in particular, 27% for H, 34%
for He, and 45% for Li.
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