EPJ Web of Conferences 223, 01018 (2019)
NSD2019

https://doi.org/10.1051/epjcont/201922301018

Chiral three-body force and monopole properties of shell-model Hamiltonian
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Abstract. So far, the nature of three-nucleon forces (3NFs) derived by the chiral effective field theory has been
intensively investigated by various theoretical approaches. In this work, to address the chiral 3NF within the
shell-model framework, three-body matrix elements are formulated in terms of the harmonic oscillator basis
functions, by adopting the nonlocal regulator. We perform a benchmark test for p-shell nuclei in order to
confirm our framework. Then we show that the contribution of the 3NF to the monopole component of the
effective shell model Hamiltonian plays an essential role to account for the shell evolution of fp-shell nuclei.

1 Introduction

The realistic shell model (RSM) employing a realistic nu-
clear force is one of the theoretical tools describing the
nuclear structure microscopically and exploring the nature
of the nuclear force. As regards obtaining the state-of-the-
art nuclear force, the chiral effective field theory [1] has a
great advantage that many-body forces appear on an equal
footing.

Zuker suggested by a phenomenological way that the
RSM Hamiltonian consisting of a realistic two-nucleon
force (2NF) needs to be corrected due to the absence of
three-nucleon forces (3NFs) [2]. In particular, the correc-
tion to its monopole component, which is responsible for
the evolution of the spherical mean field, was found to be
crucial. Indeed, it was shown that, by the RSM calcula-
tions, 3NFs play a significant role to explain the neutron
drip line of the oxygen isotope [3]. The effect of the chiral
3NF on the Ca isotopes was also investigated [4], but how
its monopole correction is important in this region remains
unclear.

We aim to clarify the 3NF contribution to the
monopole Hamiltonian for fp-shell nuclei including the
Ca isotopes. To this end, we derive new formalism of the
three-body matrix element and perform a benchmark test
for p-shell nuclei.

2 Theoretical Framework

Within the RSM framework, we separate the Hilbert space
into two parts, the valence-nucleon and inert-core parts,
and explicitly address the valence nucleons only. First, we
need to compute the three-body matrix element with the
harmonic oscillator (HO) basis functions as follows:
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(1) Transformation from the three-body J7T-coupled HO
states into the Jacobi-HO states [5], by Talmi transfor-
mation [6—11], with the separation of the center-of-mass
and relative motions.

(2) Antisymmetrization of the Jacobi-HO states by diago-
nalizing the three-body antisymmetrizer [12, 13].

(3)Evaluation of the three-body matrix element regularized
by the nonlocal regulator with the Jacobi-HO basis at the
chiral next-to-next-to-leading order (N>LO) [14].

The steps (1) and (2) are essentially same as those re-
ported in Ref. [15], whereas the step (3) is newly de-
veloped by the present work [16]. Next, the three-body
operator appearing in the Hamiltonian is reduced to the
one- and two-body operators by the normal-ordering ap-
proximation [17]. Then, in order to incorporate the chi-
ral two-body interaction at next-to-next-to-next-to-leading
order [14] and the normal-ordered three-body interaction
into the RSM, we adopt the many-body perturbation the-
ory [18], and thus obtain the effective Hamiltonian associ-
ated with the valence-nucleon space.

The further description of our theoretical framework is
reported in Refs. [16, 19], as well as the model spaces and
parameters adopted for the calculations.

3 Results
3.1 Benchmark test for p-shell nuclei

Figure 1 shows the energy spectra relative to the ground
state (g.s.) for the selected p-shell nuclei, °Li and '°B. Our
results obtained by the RSM are compared with the exper-
imental data (Exp) [20] and those by the ab initio no-core
shell model (NCSM) [21, 22]. One finds from Figs. 1(a)
and (c) that, even with the 2NF only, the RSM gives the
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Figure 1. The comparison of the low-lying energy spectra of
®Li and '°B computed by the RSM and NCSM, together with the
experimental data. See text for details.

low-lying spectra comparable to those by the NCSM, al-
though they are not consistent with the data. Indeed, both
models at the 2NF level cannot provide the correct g.s. for
1B, Then, as shown in Figs. 1(b) and (d), the inclusion
of the 3NF plays a significant role on the spectra and im-
proves the levels consistent with the data, with the correct
g.s. of '9B. The similar results are obtained also for Li,
8Be, ®B, !B, '?C, and 3C [16].

In Fig. 2(a), the consistency between the RSM and
NCSM at the 2NF level is also confirmed from the g.s.
energy E, ¢ of the p-shell nuclei as a function of the mass
number A. We select the systems with the neutron number
equal to the proton number. The 2NF only is not enough
to gain Egy consistent with the experimental data. The
NCSM with the 3NF significantly improves the results,
which coincide with the data, while the RSM with the 3NF
remains overestimate the data, represented in Fig. 2(b).
This may suggest that the normal-ordering approximation
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Figure 2. The g.s. energy for the selected p-shell nuclei obtained
with (a) the 2NF only and (b) 2NF plus 3NF in both models.
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Figure 3. The individual contribution of each term of the 3NF to
E, of °Li. See text for details.

is not sufficient for E , although it works for the relative
energy spectra. As mentioned above, we adopt the normal-
ordering approximation for the three-body operator in the
RSM, whereas the NCSM explicitly addresses it without
the approximation. It is required to make the approxima-
tion more precise.

The chiral 3NF at N?LO can be decomposed into five
terms associated with each low-energy constant (LEC).
The two-pion exchange term involves the three LECs, cy,
c3, and ¢4, while the one-pion exchange plus contact term
(the contact term) has the LEC c¢p (cg). Figure 3 expresses
the individual contribution of each of those terms to E s of
®Li. The experimental value is shown by the dashed line
and the calculated result only with the 2NF is given by
the cross-hatched bar. We see that the ¢4 term (declining-
hatched bar) has the largest contribution to E. This is
consistent with the fact that the two-pion exchange term is
the most dominant component in the chiral 3NF at N’LO
(see, for example, Ref. [23]). It is also clearly exhibited
that there is a large coherent effect when all the terms ex-
ist, since an incoherent sum of each ¢; contribution, which
is always attractive except for the c3 one, does not repro-
duce the full result (soaring-hatched bar).

3.2 Shell evolution on fp-shell nuclei

In the RSM calculations for the fp-shell nuclei, we adopt
the single-particle energy corrected by the 3NF [19], and
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Figure 4. The comparison of the measured data [20] and RSM
results on the two-neutron separation energy S, and the 2% ex-
citation energy E,+ for the Ca isotopes. Three types of the RSM
calculations are performed: the 2NF only (triangle), 2NF plus
3NF (filled square), and 2NF with the monopole correction by
the 3NF (open square).
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Figure 5. Same as Fig. 4 but for the Ni isotopes.

thus, in the following we discuss the 3NF effect on the
two-body term. Figure 4 shows the two-neutron separa-
tion energy S ,, and the 2* excitation energy E,+ as a func-
tion of the neutron number N for the Ca isotopes. One sees
that experimental S ,,, (circle) suddenly drops from N = 28
to 30 owing to filling the neutron Of;7,, orbit. The RSM
performed with the 2NF plus 3NF (filled square) satisfac-
tory simulates this behavior, as well as the 2NF calculation
with the monopole correction by the 3NF (open square), in
contrast to the calculation only with 2NF (triangle) failing
to explain this sudden drop. This clearly presents that the
3NF plays an important role to be responsible for the shell
evolution on the Ca isotopes, and the 3NF contribution to
the monopole Hamiltonian is essential. For E+, all the
calculations give the similar results, which are slightly un-
derestimated compared to the measured data. However,
the experimental E,- at N = 28 coincides well with the
RSM results by the 3NF and 2NF with the monopole cor-
rection, while the result of the 2NF only remains lower
than the data. Thus we find that the 3NF is substantial to
depict the closure property.

We show in Fig. 5 the comparison of the RSM results
with the measured data for S ,, and E5+ of the Ni isotopes.
The RSM globally underestimates the measured S,, but
the 3NF result well reproduces the drop of S,, at N = 30,
the result of the 2NF with the monopole correction as well.
In contrast, the 2NF calculation cannot describe this fea-
ture. The above consequence obtained from S5, is quali-
tatively consistent with that for the Ca isotopes. For E;-,
however, we obtain results very different from the Ca case.
The RSM only with the 2NF gives smaller values of E;-,
specifically at N = 28, compared to the other two calcu-
lations, which provide E,+ consistent with the measured
data. Thus we find the 3NF responsible for the closure
property of the Ni isotopes is more prominent than that of
the Ca case. This can be interpreted by scrutinizing the
effective single-particle energy (ESPE).

The ESPE is the evolved single-particle energy due
to the monopole interaction, which is the angular-
momentum averaged two-body interaction (see, for in-
stance, Ref. [24]). Using the ESPE, we are able to eluci-
date how the single-particle structure evolves as the num-
ber of neutrons increases.

Figure 6 displays the neutron ESPEs relevant for the
Ca isotopes as a function of N. The distance between each
ESPE is almost constant as N increases, and they are well
separated from each other. In particular, we see the large
gap between the 0f7/, and 1p3,; ESPEs, which accounts
for the closure property at N = 28. The inclusion of the
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Figure 6. The neutron ESPEs calculated with the 2NF plus 3NF
(filled symbols) and the 2NF only (open symbols), for the Ca
isotopes as a function of N.

3NF enlarges this gap by about 0.7 MeV at N = 28, al-
though each ESPS remains isolated from the others. This
induces the more substantial shell closure.

The neutron and proton ESPEs of the Ni isotopes as
a function of N are presented in Fig. 7. We find that the
neutron 0f7/, ESPE is well separated from the other three
ESPEs. This makes the shell closure stronger on °Ni. In
contrast, the grouping of the neutron ESPEs of the 1ps,,
1p1/2, and Ofs/, orbits enhances the collectivity reducing
the closure. The similar feature is observed also in the pro-
ton ESPEs. Consequently, due to the interplay of these op-
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Figure 7. The neutron and proton ESPEs calculated with the
2NF plus 3NF (filled symbols) and the 2NF only (open symbols),
for the Ni isotopes as a function of N.
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posite effects, the shell closure on °Ni is slightly smaller
than that on *Ca, evidenced by the value of E,+ of SONj
that is about 1 MeV smaller than that of *3Ca.

When we include the 3NF, the gap between the 0f7,,
and 1ps/, orbits increases by about 1 MeV in both neutron
and proton ESPEs. Moreover, the Ofs/, orbit of the proton
ESPE is strongly enhanced by the 3NF at N = 28. There-
fore, the 3NF effect observed on E,- of the Ni isotopes is
more distinguished than that of the Ca case.

This fact is also understood by the property of the two-
pion exchange contributions. As presented in Fig. 3 as an
example, the 3NF is generally dominated by the c4 term.
However, due to the charge conservation, the ¢4 term van-
ishes when the three particles are identical. Naively, such
situation in the Ca isotopes is relatively important than that
in the Ni case, and thus we can explain the different behav-
ior of the 3NF on the Ca and Ni isotopes.

4 Perspectives

We require a prescription beyond the normal-ordering ap-
proximation, which is equivalent to the first-order term in
the perturbative expansion of the interaction. The inclu-
sion of the second-order terms in addition to the normal-
ordering approximation would modify the single-particle
energies. We expect, therefore, that the second-order con-
tribution meliorates the simulation of Eg , as well as S,
and E,+. In order to systematically investigate the contri-
bution of the 3NF, we plan to apply the present framework
to heavier systems, such like candidates of the neutrino-
less double-beta decay. The implementation of the chiral
3NF into the Gamow shell model [25-29] is also interest-
ing since both 3NF and continuum effects are expected to
be crucial for neutron-rich nuclei near drip lines. Indeed,
the oxygen drip line is explained by a repulsive property
of the 3NF [3], while the continuum degrees of freedom
act as a attractive nature [30]. The interplay of the 3NF
and the continuum effects needs to be clarified.
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