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Abstract of the Dissertation

Theory of nuclear matter of neutron stars and core
collapsing supernovae

by

Yeunhwan Lim

Doctor of Philosophy
in
Physics
Stony Brook University
2012

Nuclear astrophysics is essential to microphysics for the complex hydrodynamics
simulation of numerical supernovae explosions and neutron star merger calcu-
lations. Because many aspects of equation of state (hereafter, EOS) including
symmetry and thermal properties are uncertain and not well constrained by ex-
periments, it is important to develop EOS with easily adjustable parameters.

The purpose of this thesis is to develop the nuclear matter theory and an EOS
code for hot dense matter. This thesis has two major parts. In the first part, we
develop a Finite-Range Thomas Fermi (hereafter, FRTF) model for supernovae
and neutron star matter based on the nuclear model of Seyler and Blanchard,
and Myers and Swiatecki. The nuclear model is extended to finite temperature
and a Wigner-Seitz geometry to model dense matter. We also extend the model
to include additional density dependent interactions to better fit known nuclear
incompressibilities, pure neutron matter, and the nuclear optical potential.

Using our model, we evaluate nuclear surface properties using a semi-infinite
interface. The coexistence curve of nuclear matter for two-phase equilibrium
is calculated. Furthermore we calculate energy, radii, and surface thickness of
closed shell nuclei in which the spin-orbit interactions can be neglected. To get an
optimized parameter set for FRTF, we explore the allowed ranges of symmetry
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energy and the density derivative of symmetry energy. We summarize recent ex-
perimental results, astrophysical inference, and theoretical pure neutron matter
calculations. The correlation between symmetry energy and the surface symme-
try energy in liquid droplet model is also obtained. The beta equilibrium matter
is used to model the neutron star crust.

The second part of the thesis is devoted to construction of a code to compute
the nuclear EOS for hot dense matter that would be distributed to astrophysics
community. With this code, users will be able to generate tables with adjustable
parameters describing the symmetry, incompressibility, and thermal properties
of nuclear matter. We use the liquid droplet approach to generate thermody-
namically consistent nuclear EOS. table. Compared to previous attempts, we
include neutron skin, Coulumb diffusion, and Coulomb exchange. In addition,
we compute the surface tension as a function of proton fraction and temperature
consistently with the bulk energy. For comparison, we generate an EOS table
using the SLy4 non-relativistic Skyrme force model. For both FRTF and SLy4,
more than 10 % of entries of EOS tables consists of nuclei, alpha particles, and
nucleons.

v



To Jaenyeong, Jonghyun, and Jongbum



Contents

1 f Matl cal | Physical Svmbold i
| List of Tables XV
|_A_an9_wdedgﬂmen1§ xVvi

—

ot

NoBES BEN e =2

11
|2_’% Properties of Uniform Matted . . . . . . . . . . . .. ... ... ... 14
E 3.4 The Zero-Temperature Limitl . . . . . . . . . . . ... ... ... 14
16
19
20
21
22
23
23
32
32
35
38

3.2 Alternate Modification . . . . . . . . . 42

vi



4.1.1  FEnergy density functional . . . . . . . ...
[4.1.2 FEffective mass, Potential, and Thermodynamic nroper‘ries] .......

|4 3 uclear matter and nuclel . . . . . . ..
431 Specificheatl . . . . . ...
432 Nucleiat T=0MeVl . . . . . .. . i

4.3.3 Heavy nuclei in the neutron star gmsﬂ .................
44 Phase transitiol . . . . . . oo

4.4.1  Uniform matten . . . . . . . . . .

M42 Quark mattenl . . . . . . ..o

Astrophyvsical applicationl . . . . . . . .o

§l

5.1 Nuclear ener ] jonal . . .. ..o
5.2  Binding enerev of single nuclend . . . . . . . . .. ...

5.3 Neutron Star Crusl . . . . . . . ..

5.4 Mass-Radius of a cold neutron stanl . . . . . .o oo e e

5.5 Conclusion . . . . . ..

Nuclear Equation of State for Hot Dense Matten

6.1 Construction of BOS . . o oo v

6.2 Liquid Droplet Model as a numerical techniqud . . . . . . . .. ... ....
6.3 Choice of nuclear force model . . . . . . . . . ...

6.3.1  Pure neutron matten . . . . . . ..

6.3.2 _ Maximum mass of a cold neutron stay . . . . . ...

0.4 TEC CHCIOVL . o v v v o o

ﬁA2 Coulomb energwl . . . . . . . ...

6.4.3  Nuclear surface CHETEY .+ o

6.4.4 Nuclear translational energyl . . . . . . . . ... ... ... ... ...
6.4.5  Alpha particled . . . . . . . . ...

vil

52
52
52
o4
95
o8
o8
60
60
61
61
64
64
66
69
69
69
71



l6.5.1  Equilibrium conditiond . . . . .. ... 95
6.5.2 Determination of Coulomb surface shape parameter D . . . . . . . . 99
6.5.3 Solving the equilibrium equation;] .................... 99

6.6 Resultl . . . .. ... 100
W ....................... 101

| ed 101
6.6.3 _Atomic number in the heavy nuclel . ..o 101

6.7 Conclusiond . . ... ... 102
[7__Conclusions 104
106

107

107

110

116

121

124

125

125

127

127

130

viil



List of Figures

Surfa sion and 90 1rfa ness
Eé gj;%é%e tension and neutron skin thickness . . . . . . . . .. ... ... ...

E 10_The surface tension of symmetric matter as a function of T . . . . . . . . . .

3.1 S.and L contour plotl . . . . .

3.2 Confidence interval of S, and IJ

4.3 Specific heat of uniform nuclear matten . . . . . . . . . . . . .. .. .. ...

4.4 Density profiles of the close shell

nuclel . . ...

4.10 Mass-radius

4.5  Heavv nuclei in dense matten . .

of cold neutron stars

4.11 Moment of inertia of a cold neutron staff . . . . . .. ... ... ... ...

X



§ OIOADOO.__.__-AIO.A'IIOIIO‘D‘Q...O.O.‘IIO .....
0 ontour plot of S. /S, and S, in compressible liquid droplet model . . . . . .

Pure neutron matter pressure of Skvrme force model . . . . . . ... .. ..
ﬁ.LMamquq of neutron star of Skvrme force model . . . . . .. ... ..
6.5 Mass and radius of neutron stars from Skvrme force model . . . . . . . . . .




Symbols

Nuclear Physics Symbol
& energy density (MeV/fm?)
P pressure (MeV/fm?)
B binding energy per baryon at saturation density (MeV)

K nuclear incompressibility (MeV)

K’ density derivative of nuclear incompressibility (MeV)
p baryon number density (fm™*)
£o nuclear saturation density (fm™?)

T temperature (MeV)
fn(ftp)  neutron (proton) chemical potential (MeV)

7.(7,)  neutron (proton) momentum density (1/fm?)

HBu Hg7 %07 HJ
Hamiltonian density contribution from bulk, gradient, Coulomb, and spin-orbit
coupling respectively

to, 11, l2, U3, o, X1, T2, T3
coefficients in the Skyrme force model

Qrmu Q;n;nu an

density gradient interaction coefficients
J, J,, J, spin-orbit interaction
P nuclear wave function
o Pauli spin matrix
9w 9p» §o  coupling constant in the relativistic mean field model

A, photon field

X1



Py Wy, 0

mp7mOJ7m0'

a

12, P12

Cru

p, w, o field respectively

mass of p, w, and o boson respectively
tensor field

zero temperature Fermi-momentum (MeV/c)
zero temperature kinetic energy (MeV)

total interaction energy (MeV)

nuclear diffuseness parameter

relative distance and relative momentum

interaction energy density functional

aru,Bru,oLusMLu

coefficient in the finite range Thomas Fermi model
Gaussian finite range integral

Yukawa-like distance function

average density

momentum integrals

finite range integral

Fermi integral

effective mass for type ¢ nucleon

nuclear potential for type t nucleon

optical potential

degeneracy parameter for type t nucleon

pressure (MeV/ fm?)

Fermi-Dirac distribution function for type ¢ nucleon
entropy density (kp/fm?)

symmetry energy (MeV)

density derivative of symmetry energy (MeV)

surface tension of nuclear matter (MeV /fm?)

xii



ws

Loo—10

Q
t

T

PN

Taylor expansion coefficient in surface tension
surface thickness of 90% -10% nuclear matter density
gradient term in finite range Thomas Fermi model
neutron skin thickness (fm)

critical temperature (MeV)

pure neutron matter pressure (MeV /fm?)

ViLw, Voru, Varu, VL, Voru, VsL,u, t3

coefficient for Gaussian type nuclear force model

ky Fermi wave number
Dy, Dyyp. Dy
gradient terms in thermodynamic instability
v metric function in general relativity
1 momentum of inertia of rotating neutron star
mout density of in and out of nucleus in parameterized density profile
E, surface energy in liquid droplet model
Egg Coulomb diffuseness coefficient in liquid droplet model
Ee Coulomb exchange coefficient in liquid droplet model
Egen  nuclear shell effect energy in liquid droplet model
Ss surface symmetry energy
N, number of neutrons on the surface of nuclei in liquid droplet model
A nuclear energy gap (MeV)
fns fo, fa free energy per baryon contribution from heavy nuclei, outside nucleons, alpha

particles

fbulka fCoub fsurf> ftrans

vy

N

free energy per baryon from bulk, Coulomb interaction, surface, and translation
repectively

skin density of type ¢ nucleon in liquid droplet model
radius of heavy nuclei in liquid droplet model

total proton fraction in liquid droplet model

xiil



Tio proton fraction of heavy nuclei, outside nucleons
Pa alpha particle density
Vg volume of alpha particle
B, alpha particle binding energy
u volume fraction of heavy nuclei to Wigner-Seitz cell in liquid droplet model

h(xz,T) surface tension function in liquid droplet model

>

Hon — Hp

s(u), c(u), D(u), D(u)
geometric functions in liquid droplet model

Xiv



List of Tables

3.1 The critical temperature analvtic fitting functionl . . . . . . . . ... .. .|

3.2 Surface tension analytic fitting function for finite range model . . . . . . . .

4.1 Interaction parameter set in Gaussian model . . .. ...
4.2  Numerical and experimental result of Closed shell nuclei

4  Neutron drip densitie lels
5.5 Phase transition points to uniform nuclear matted . . . . . . . . . . . . . ..

5.0 Fittinwwd -------
5.7 Fitting formulae for number of neutrons after the neutron dri

XV



Acknowledgements

I deeply appreciate my advisor, Prof. James M. Lattimer, that he taught me nuclear astro-
physics and how I could simplify the complex problems. His door was always open and I
could get invaluable advice.

I would also like to thank Prof. Alan Calder who always listened to my questions and helped
me to get answers. | appreciate Prof. Mike Zingale for serving as my committee chairperson
and trying to help me when I had important things. I also want to thank Prof. Dominik
Schneble and Prof. Daniel M. Davis for serving on my thesis committee.

My nuclear astrophysics group friends (Dr.Chris Malone, Dr.Aaron Jackson, Brendan,
Adam, Rahul, ...) were always there for me. I can’t express my appreciation enough.

Last but not least, I would like to thank my family, Jaenyeong, Jonghyun, and Jongbum.
They always made me happy and encouraged me to finish my Ph.D.



Chapter 1
Introduction

Stars give us light by burning hydrogen fuel. The simple Einstein’s equation, E = mc? is

behind sun’s energy. Hydrogen turns into helium and helium burns into carbon, nitrogen,
and oxygen. Finally, the neutron rich elements iron is formed. After an iron core forms, a
star begins to collapse since it cannot support itself against gravitational collapse. During
this process, which as known as a Type II supernova explosion, a neutron star is formed if
the mass of main sequence star is about 8 ~ 20 M. Stars with greater than 20 M., are
thought to form black holes. An enormous amount of energy (~ 10° erg) is released from
supernova explosion. The source of the energy is gravitational binding energy and the most
of the energy is carried away by neutrinos. Right after core collapse, the initial temperature
of neutron star is believed to be 10K @] Neutron stars cool down quickly by neutrino
emission. After the temperature drops below the Fermi temperature, neutron star is cold.
The existence of neutron stars was first suggested by Walter Baade and Fritz Zwicky in 1934
| only a year after the discovery of neutrons by James Chadwick. Landau, Bohr, and
Rosenfeld discussed the idea of one giant nuclei in the core of a star before the discovery of
neutron @] but their paper was not published.
A neutron star has mostly neutrons (~90%), protons and electrons. If the chemical poten-
tial of electrons is greater than the rest mass of kaon, there might be kaon condensation so
the kaon replaces the role of electrons for charge neutrality. As the density increases, the
chemical potential of neutrons and protons can be greater than the rest mass of hyperons,
then hyperons (379 A, =7) might appear.
A neutron star is divided into an inner core, outer core, inner crust and outer crust. The
outer crust consists of lattice nuclei with free gas of electrons. As density increase, the chem-
ical potential of neutrons becomes greater than zero and neutrons drip out of heavy nuclei.
Thus, the inner crust has a free gas of neutrons with lattice nuclei. Between the boundary
of inner crust and outer core, heavy nuclei become exotic. Because of high pressure, the
spherical nuclei become oblate to minimize the energy, and as the density increases more,
oblate nuclei merge together to become a cylindrical phase, a cylindrical phase becomes a
slab phase, a slab phase turns into a cylindrical hole, and a cylindrical hole becomes a spher-
ical hole, and finally a spherical hole can become uniform nuclear matter. The outer core
thus does not have any nuclei structure. The inner core, which is more dense than the outer
core, is believed to have exotic nuclear matter. Some nuclear physicists argue that there
might be quark matter in the core of neutron stars. Many of them use the MIT bag model



to explain the existence of quark matter but it’s still an open question. MIT bag model
describes the quarks are freely moving in a bag. If the distance between quarks is increases,
the force increases so strong that they cannot get out of the bag. To maintain the bag,
negative pressure is introduced, which is known as the bag constant (B). Since we cannot do
any experiment to reveal the existence of quark matter at such high densities on the earth
yet, the theoretical prediction of quark matter depends on the parameters, especially the
bag constant in quark matter.

One thing is for sure is that the densities of neutron stars are extremely high. It is believed
that the central density of the core in neutron stars is 4py ~ 10p, where a pg is the nuclear
saturation density, 3 x 1014g/cm3.

The typical radius of neutron star is around 10km. The mass of neutron is about 1.2Mg to
2.0 Mg . Since neutron stars are so compact, the surface gravity of neutron stars is extremely
high, about 2 x 10 times earth gravity. In these conditions, general relativity is essential to
find out the mass-radius relation of neutron stars. The Tolman-Oppenhimer-Volkov (TOV)
equation solves the internal structure of spherically symmetric neutron stars. Thus, the
nuclear physics and the TOV equation play together to give mass-relation of neutron stars.
The nuclear physics beyond pq is not known well and the central density is much higher than
po, various nuclear force models give different mass-radius relation of neutron stars. Fig.

Mass (Mg)

8 10 12 14 16
Radius (km)

Figure 1.1: Mass and radius relation of cold neutron stars @] Each nuclear force model
shows different mass-radius relation of neutron stars.

[T shows the mass-radius relation of cold neutron stars using various nuclear force models.

Tpo ~ 0.16fm 3. py denotes nuclear saturation density which is central density of heavy nuclei. But, in
general, it is a nuclear parameter to be determined from standard nuclear matter properties.
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Since the mass of neutron star is dominated by its core and the density of the core is much
beyond the nuclear saturation density, the nuclear force models should be investigated more
than the current level of understanding.

In contrast to neutron stars, supernovae explosions and neutron star mergers result in ex-
tremely high temperature. Thus, we need to know thermodynamic properties of nuclear
matter for a wide range of densities (107 ~ 1.6/fm?) , temperature (0 ~ 30 MeV), and
proton compositions (0 ~ 0.56). This thesis concerns nuclear physics under such extreme
conditions, which are far beyond those achievable by nuclear physics experiments on earth.
Hence, a theoretical extrapolation is needed for high density, high temperature, and low pro-
ton fraction. For zero temperature, the extrapolation of nuclear properties at high density
density (< 10pp) can be checked by the mass-radius relation of neutron stars @] Un-
fortunately, the extrapolation to high temperature cannot be checked with anything from
experiment or astrophysical observations at this time.

The nuclear thermodynamic information is called ‘Nuclear Equation Of State’ (EOS) and
provided as a tabulated form because of memory constraints. The table should contain free
energy density, pressure, entropy as a function of baryon number density, proton fraction,
and temperature.

For the simulations of supernovae explosions, only a few EOS tables available now. The most
famous one is Lattimer & Swesty [22] (LS) EOS in which they combined non-relativistic po-
tential model with liquid droplet approach. In their EOS they considered phase transitions
from three dimensional nuclei to three dimensional bubble. It is difficult in their code to
arbitrarily vary nuclear parameters.

H. Shen et al. @] (STOS) built a table using relativistic mean field model (RMF) and
Thomas Fermi approximation. To perform the Thomas Fermi approximation, they employed
the parametrized density profile method, in which density profile follows a mathematical
polynomial (see chapter [) so to avoid the numerical difficulty of differential equations. A
new version is available now and it contains hyperon interactions.

G. Shen et al. E] (SHT) provided a few version of tables using RMF parameter sets. They
employed the Hartree approximation to find the nuclear density profile. It is difficult and
very time consuming to develop another table using their code. Table [ show the range of

Table 1.1: Range of Tables

LS 220 STOS SHT
p(fn?) 10 °~1 (121) 7.58 x 10X ~ 6.022 (110) 10~° ~ 1.496 (328)
Y,  0.01~05(50) 0 ~ 0.65 (66) 0~ 0.56 (57)
T (MeV) 0.3 ~ 30 (50) 0.1 ~ 398.1 (90) 0 ~ 75.0 (109)

the independent variables and the number of grid points (number in the parenthesis). STOS
tables deals wide range of densities and temperature. The number of grid points, however,
is small so that the interpolations from that table might not be suitable for the simulation,
which needs high thermodynamic consistencies. That is, except for the LS EOS, the pres-
sure and entropy densities from STOS and SHT are obtained from the numerical derivatives

(P = —p2§—1;, S = —%). But this numerical formalism might not give enough accuracy for
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the thermodynamic identity, P = p,p, + pppp — F' if the grid spacing is relatively large. On
the other hand, the LS EOS, which used the liquid droplet approach, provides analytic solu-
tions for thermodynamic variables. The liquid droplet approach enables us to get algebraic
solutions for all thermodynamic derivatives. All three approaches used Wigner-Seitz cell
method in which one heavy nucleus presents at the center of the cell and electrons, nucleons,
and alpha particle exist around the heavy nucleus.

Recently, researchers are trying to build EOS using multi-component nuclei. That is, for
given independent variables (p, Y,,T), several types of nuclei are assumed present. Since the
electron capture or neutrino weak process are depends on average mass number ((A)), it is
assumed that this multi-component nuclei method would give better EOS than the single
heavy nucleus method. Hempel et al. @, @] used relativistic mean field models (TMI,
TMA, FSU Gold) and nuclear statistical equilibrium method to add the alpha, deutron, and
triton. Blinnikov et al. ﬂ@] used Saha equation to find the fraction of multi-component
nuclei and nuclear mass formula. Furusawa et al. @] also used Saha equation and rela-
tivistic mean filed model. They also considered phase transition using geometric function.
Except for Hempel et al., these EOS tables are under construction. Hempel et al. EOS
provides the fraction of alpha, deutron, and triton fraction ; however, their fraction are so
small that their presence does not effect (A) very much. Furthermore, even though the idea
of multi-component nuclei may provide better information for weak interaction, their choice
of nuclear force model might not satisfy observations of the mass-radius relation of neutron
stars. The recent discovery of a 1.97Mg, neutron star (PSR J16142230) and the Steiner et al.

3.0 —— T

- — J1614-2230
- N = TMT
= 257 -~ v o[ — TvA
e - - ) "}T v | === FSUgold
S L0k \ 1 |==NL3
% /-—-..., '\ 1 = = DD2
s —"\ "\ ', | —-Ls1s0
= 15t NHARE LS220
s | N STOS
L2 4ot V! d Steiner et al.
g I :
E h/
S o5t RN ]
) s\,
0.0 ' - - : :
8 10 12 14 16 18 20

Radius R [km]

Figure 1.2: Mass and radius relation of cold neutron stars in EOS table. ﬂﬁ] Only LS220
can satisfy 1.97M neutron star and the mass-radius criteria.

@] mass-radius criteria exclude most of the tabulated EOSs. Fig. [[.2lshows the mass-radius
relation in which we can find from EOS table. Since the Shen et al. use TM1 parameter, they
gives the same mass-radius relation. In general, RMFs give larger radii for given neutron
star’s mass than the non-relativistic potential models. FSU Gold was invented to reduce the
radius for a given mass of neutron star, but it cannot reproduce 1.97M neutron star. As



shown in Fig. [[L2] LS220 is the only one EOS which satisfy both astrophysical phenomena.
Our research starts from inadequacy of current EOS to model allowable variation in uncer-
tain nuclear physics. For this end, we investigate the nuclear force model (Finite Range
model) and extract the best parameter set which explains nuclear phenomena such as ener-
gies and radii, as well as pure neutron matter and astrophysical data. With the improved
nuclear physics model, we build the new EOS tables which can be used for proto-neutron
star, supernovae explosions, and binary mergers which involves neutron star.

We extend the Lattimer-Swesty @] approach to produce user friendly code to incorporate
additional physics and adjustable parameters. User will be able to generate tables with only
a few cpu hours to compute. This code development (Chapter 6) is contained in the second
part of the thesis.

In order to calibrate this liquid droplet formalism, we employ the FRTF model which per-
mits the computation of nuclei immersed in dense matter. This is a more sophisticated
approach but still too computationally intensive to generate a complete table. In addition,
it, as well as the tables of H.Shen and G.Shen, predicts complex behaviors of matter near
the transition between nuclei and uniform matter. This complex behavior results from very
small free energy difference between configurations with different mass numbers. In reality,
matter near the transition will be smoothed because of the thermal fluctuation. The liquid
droplet approach is more suitable in this region. However, it is necessary to calibrate to
liquid droplet model so that it successfully models at low densities where laboratory data
is available. Another great advantage of making tables using the liquid droplet approach
is that it allows the analytic prediction of thermodynamically consistent derivatives. The
table would have the wide range of variables such as p : 10719 ~ 1.6 fm=3, T : 0 ~ 60MeV,
Y, : 0 ~ 0.6 with more grid points than other tables.

1.1 Organization of Chapters

This work focuses on developing a Finite Range force model and its application to neutron
star and making nuclear equation of state (EOS) table. Chapter 2 explains the Finite
Range Thomas Fermi model of Yukawa type using a truncated model. Chapter 3 improves
the truncated model in Chapter 2. Chapter 4 investigates another type of Finite Range
model - the Gaussian type. Chapter 5 illustrate nuclear physics and neutron stars. Finally,
Chapter 6 is devoted to making nuclear EOS table. The appendix describes some numerical
approximations that we developed.



Chapter 2

The Finite-Range Force Model

T Nuclear physics plays an important role in the understanding of astrophysical phenomena
such as neutron stars and supernovae explosions. As described in the introduction, it is
really important to choose the good nuclear force model to make E.O.S. tables. There are a
lot of kind of nuclear force models, and different types of nuclear physics model can describe
the same or different nuclear phenomena. However, the number of models can be used to
make E.O.S. table is limited. We explain some of nuclear force models which is related with
making E.O.S. table briefly. Our finite-range force model will then be described after the
brief explanation.

2.1 Schematic Nuclear force model

Near the nuclear saturation density at small temperatures, the energy density of the uniform
nuclear matter can be approximated by @],

K p p ) <po)2/3 2]
Ep,T,x) = —B—l——(l——)—l—SU—l—Zr +al— T 2.1
1) =p|-B+ 5 (1 £) + 8.0 207 40 (2 21

where B ~ —16 MeV is the binding energy per baryon, x is the proton fraction, S, is the
symmetry energy, K(~ 230MeV) is the nuclear incompressibility, and a(~ 1/15MeV 1) is
the nuclear level density parameter. Mathematically, this is just a Taylor expansion for p,
x,and T at p = p,, x = 1/2, and T = 0 MeV.

From thermodynamic derivatives, we can find the pressure, chemical potentials, and entropy

TThis chapter is based on Y. Lim and J.M. Lattimer’s work. This part will be submitted to the journal
Nuclear Physics A.



density:

2 K ) 2/3
p:p—{— (ﬁ— )—l—Sv(l 2%)2} +2 <'0—> T,
Pol 9 \Po
K ] 2/3
18 o o P (2.2)
j=48,201—21),
Po

These schematic model quantities give reasonable features of nuclear matter, such as the
pressure vanishes both at p, and zero density, and becomes negative between them. The
proton and neutron chemical potentials approach negative infinity in the limit of low density.
This schematic model can be used for a test problem to generate coexistence curve of dense
and dilute matter and to find the critical temperature of coexistence. This model gives
qualitative numbers so we can estimate the range of validity of realistic models.

2.2 Realistic nuclear force model

Even though the schematic nuclear model can give a good estimation of nuclear matter, it
can not be used in the low density (p < 0.01fm™®) and high temperature (T' > 5 MeV)
region. Instead we need to rely on more sophisticated models which explain both the high
and low density regions, namely the widely used non-relativistic potential and relativistic
mean field models of the nuclear force.

As pointed out in Steiner et al. @], the total Hamiltonian density is the sum of the
kinetic energy density and local density dependent interaction energy density. These local
properties simplify the numerical calculation of nuclei and nuclear matter since we can apply
the variational principle without any mathematical or numerical difficulties.

Both potential and mean field models explain the properties of a single nucleus very well.
However, we need to be careful when applying those models in high density regions (see

section [6.3)).

2.2.1 Non-Relativistic Potential Model

The non-relativistic potential model, which is often called the ‘Skyrme force model’; is a
density and momentum density functional in a mathematical sense. In this model, the
Hamiltonian density is composed of bulk, gradient, Coulomb energy, and spin-orbit coupling
components,

H:HB+H9+HC+HJ. (2.3)



The bulk part is divided by kinetic energy density, two-body interaction, and many body
interactions of nucleons @],

Mo =g Tt o
tl €T tg i)
& T0rg) w4+ 3)
+ p(7, +Tp)[4<+2 +7 Ut 3 }
ty /1 t1 /1
=(= ——(= 2.4
+(T"p"+7”p”){4<2+x2> 4(2+x1>] (2:4)

to ( To\ 9 1 2 2

S0 (o)

t3 L3\ 2 1 2 2

S0 ool
where xg, ..., t3, and € are parameters specifying the interaction strengths, which are deter-
mined from nuclear data fitting.

The density gradient term, which is responsible for the surface tension of a single nucleus,
is given by [32]

1
Hy = 5 [Qun (Vo) + 2QupV 0.V + @V (25)
where the () parameters are given by
3
nn — pp:1_6 1 —T1) — U2 Z2)| ,
Qnn = Q t1(1—21) — fa(1 + 22)

an:Qpn:%[?)ﬁ(l—F%)—t2<1+%>].

(2.6)

The Coulomb energy interaction is

He(r) = e’ py(r) / P R (§ )1/3 o ()43 (2.7)

2 r—r| 4 \«

where the first term is a classical Coulomb energy interaction, and the second term is an
exchange Coulomb interaction.
The spin-orbit interaction is given by

W,
HJ:—TO(an-JnijpV-Jp—l—pV-J)
(2.8)
t t
+ 1—%(.13; +I2 -2, J?) - %(Ji +J2 4+ 2,37

where J,, = Zm @bja x V;, J = J,, +J,. There are more than 100 parameter set in this
Skyrme force model. Combined with the Hartree-Fock' approximation, this Skyrme force

"In the Hartree-Fock or Hartree Approximation, the trial wave function is assumed as initial guess and
keep iterating until Eny41 — En < J, where ¢ is a tolerance for energy difference. This is a mathematical
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nuclear energy density functional is quite successful in demonstrating the binding energy,
root mean square radius, and charged radius of a single nucleus. This force model, however,
should be chosen carefully when studying high density (2 po) region (see section [6.3]).

2.2.2 Relativistic Mean Field Model

At high density, for example n = pg, the Fermi momentum at zero temperature is given as
pre = he(3m%pg)"? ~ 330MeV . (2.9)

Therefore, the expansion of the total energy /m?c! + p?c? to me® + £ is not valid anymore,
and the relativistic effects need to be considered.

The relativistic mean field model explains the origin of nuclear force from p, w, and o
meson exchanges. In the mean field model, the Lagrangian formalism satisfies relativity and
causality, and is given by @]

- 1 1
=i —gup-T— M + g,0 — 5(1 +7)A| U + 5(0M0)2
1.1 1 L1 1 )
— V(o) — qu,,f“ + §miw“wu — ZBWB” + émip“pu — ZFWF“ (2.10)
¢ §
+ ﬂgf}(wuwu)z + g;l(p pu) + gif(aﬁ wuwﬂ)pﬂ ’ pu

where V(o) and f(o,w,w") are

1 A
V(o) =5meo” + £(9:0)° + Z(,0)",
6 3 ' (2.11)
(o, wuwh) = Z a;o’ + Z(wﬂw“)J
i=1 j=1

Here, A, is photon field, f,, = 0w, — O,w,, B, = 9,p, — 0,p,, and F,, = 9, A, — 0, A,.
Like a non-relativistic potential model, the RMF is useful to study single nucleus’ properties.
It seems that the RMF should be used to study nuclear physics at high density region since it
is relativistic and the hyperon’s appearance can be controlled by coupling constant. However,
it does not show the proper mass and radius relation of neutron stars. Therefore, we are not
focused on this RMF formalism anymore.

2.3 Finite-Range Model and its Extension to Finite
Temperature

The interaction between nucleons is short ranged, on the order of 1 ~ 2 fm. To take into
account this short ranged interaction, we need to add the density dependent interaction form.
The 7 meson exchange model was successful in accounting for the nuclear interactions, and

analogue of ‘Cauchy criterion’
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we can get the interaction form from the 7 exchange model. This idea was enlarged
by several authors ﬂﬂ, ] We re-examine this idea and add new interaction terms to reflect
the recent nuclear experiments and to explain the mass and radius of cold neutron stars.

2.3.1 The Interaction Energy

We begin with the truncated version of the Myers & Swiatecki @] finite-range model,
which is an extended version of the Seyler & Blanchard @, @] finite-range model. We will
generalize this force to finite temperatures. Initially, we ignore the Coulomb contributions to
the total energy. The symmetric matter saturation density is p,, and the zero-temperature
Fermi momentum P, is (P,/h)* = 37%p,/2. The zero-temperature kinetic energy is T, =
P?/2my, where my, is the baryon mass. We will assume the interaction energy is

1
W = _ﬁ ds?”l/dgﬁf(?”lz/a)Zl/ CLftlft2d3pt1d3pt2+/CUftlft’2d3pt1d3pt’2 (2-12)
t

where f;; is the Fermi occupation function for particle i T. The position index 7 = 1 or 2 and
the isospin index t = n or p. The notation is such that if ¢ = n then ¢ = p and vice versa.
Py is the momentum of the nucleon at position ¢ of species t. The finite-range function is
taken to be Yukawa-like,

1
4mri9a?

e T2/ o = |r1 — 7. (2.13)

f(ria/a) =

The finite-range function f is normalized so that [ d*raf(r12/a) = 1 for all 1. The range
parameter a will be determined by fitting matter surface profiles or surface energies to
laboratory values. The quantities C y are momentum- and density-dependent interaction
functionals for like (L) and unlike (U) pairs of particles. Myers & Swiatecki chose them,
with some changes in notation, to be

h? 3

2 . 2/3
2
Cru(pi,p2,p) = ZTOP"(W)2 [QL,U —Bru <%) —oLu (p_p) ] (2.14)

where ay,, ay, B, Bu, o, oy are constants. These constants are to be determined by fitting
saturation properties of cold nuclear matter and other considerations. In Eq. (ZI4) , p12 =
|p1 — p2|.- The quantity p(r) is the mean density, which is chosen to be

P = (02 4 %) )2 (2.15)

where p; and py are the baryon densities at positions r; and ry, respectively.

ft indicates proton or neutron and i represents position of the particle.

10



2.3.2 Thermodynamic Quantities

The total energy is the sum of the free particle kinetic energy and the interaction energy,
which can be expressed as

E= /dg’f’lh—2(7' +7' opo/dg /d ’f’gf 7’12/0,
2mb " b

Z [OéLfl(Ptl, pe2) — Brla(pu, Tty pr2, Ti2) — o la(purs pr2)+ (2.16)

t

ayly (,Ot1, Pt’z) - 5U12(Pt1, Te1, Pr'2, Tt'2) - UUI4(Pt1, pt’2)} )

where the double momentum integrals Iy, I and I, are analytic and are expressed as

2
I (p1, p2) (4 P3) / f1d3p1/ Fod¥py — ( ) oo,
Iy (pr, 71, p2, 72) :(Fpog) /0 f1d3p1/0 f2d3p2<z%j)

:< 2h )2(71[,2 + i), (2.17)

polPs

L3 L(2)" (5 + )
]4(,01,P2):§ 47rP3) Py /fldplf fod®pa

1 2 8/3
() et “5/3)-

(]

In the Thomas-Fermi approximation, the number and kinetic densities have their usual forms
in finite temperature matter:

1 > 3. 1 - 2 13
ptzm/o ftdp7 thmfo ftpdp7 (2-18)

where the Fermi occupation function is

f, = [1+exp (Et;“t)]_l. (2.19)

The single particle energies ¢;, which are functions of the momentum p, and the nucleon
densities, are evaluated below. The nucleon chemical potentials are ;.
The total energy, beginning with Eq. (238) and using the results in Eqs. (2.I7) and

11



(ZI8), becomes

/ dr, Z{—Tt _ % / Prof (112 a) x

[OéLpﬂpm + aypuprs — Br(paTiz + prti) — 5&(/%1%'2 + praTit) (2.20)

2/3 2/3
— 0P Pr2 (ptl/ + Pt2/ ) T PP (ptl/ + pt’/2 )] }

where we introduce the new constants

g =po( 2" o, o (2)”
Lo PR B2, ) U2 \p, )

The energy density is then the integrand of the d3r; integration in Eq. (2.20):

h? T, PP -
€)= Z{—Tt - [pt(O‘LPt + aupy) — BL(Tepe + peTi)

27fnb Po
! (2.21)

= Bu(peTe + Tipy) — oppe (ﬁtpt/ + p?/3> — 0Pt (Pt/ P + pi/3>] },
where we define the finite-range integral as

g(r) = / & f (| — 'l /a)g(r) (2.22)

where the notation changes from r, — r and ro — 7’. Using the definitions for the effective
masses m; and the potential V; in

6E:/d3r65 Z/dr

we find, after noting that r and 7’ can be reversed within double integrals,

‘/t(spt‘l— h 67}], (223)

h? h? 2T, N ;-
+ —(BLoe + Bype),

2my 2mb

27, . N - -
Vi=— {awt + aupy — BT — Byt (2.24)

o

d 2/3. 3 d 2/3. 5/3
_U,L<3pt/ Pt‘l‘PS/ ) _U;J<3pt/ P+ Py / )}

In addition, we note that at zero temperature, the total potential felt by a neutron at the

12



point r and with momentum p is

27,

[

[BLﬁn - 511/34 <£)2. (2.25)

Up(r,p) = Vu(r) + P,

With these explicit relations, one can now employ the methodology of Lattimer & Raven-
hall ] to determine thermodynamic quantities. The single-particle energy is

p2

*
2m;

+ V. (2.26)

€ —

It follows from Eq. (2.I8) that the densities and kinetic densities are

1 <2m§T
Pt

5/2
- (2 ) Fya(1y), (2.27)

3/2 *
1 /2m;T
) F1/2(‘I’t)> Tt = < .

2m2\ R
where W, = (u; — V;)/T is the degeneracy parameter. The inversion of the first of these
yields the chemical potential:

pe = Vi +TF 5|20y <2m:§T) . (2.28)
The entropy density S; is given by Landau’s quasi-particle formula @]
5h? e — Vi
Si= 5 [ d[ i1 L= f)n(1 = /)] = = . 2.29
t s p|feln fe + (1 — fi) In(1 = f) 6mj§TTt T P (2.29)
The pressure follows from the thermodynamic identity
D= Z(Ntﬂt +TS;) - €&
t
"= Lo i+ avi) — 8 (i + 2
= —T— — ! aypy) — Ti + =P
| 3, T pelarpy UPt L\ PeTe T P (2.30)
T T 93 573 7 ~ 53
— By (pm/ + gpm) — L <§p3/3pt + pf/3) — oy <§P§/3Pt’ + pf/s) H :
The pressure relation can be simplified, upon eliminating the terms involving pt5 / 3, to

R’ p T, _ _ 2 - -
p= Z lgmzi + gl =T+ ([ﬁzpt + Byl + 50 oL p+ aapﬂ])] (231

13



2.3.3 Properties of Uniform Matter

For the case of uniform matter, § = g, the energy density becomes

gz{

= Z{—Tt - —pt [am +appy —2 (52% + By + 0, o e + Ubﬂt/])} }

me

- _Pt (OéLpt +aypy — QU,LP?/S - 2UUPE’/?’> }

(2.32)

Here, the effective masses are

ROR 2T, ,
- - 4 e ). 2.
omi ~ 2m + o (BLpe + Bypr) (2.33)

Note that the energy density reduces to a Skyrme-like model. The potentials become

2T, 8 5t
Vi=— |:04Lpt + aypy — BT — ﬁUTt' - gU/Lﬂ?/s - prt (3@?/3 + /)tz/g)} (2.34)
The pressure can then be written as
h2T, 10 53
p= Z{ 3m py {O‘Lpt +appy — 2(By7 + ByTe) — ?pt/ (UILPt + prt’)

) (2.35)
h Ty 1, 10 / / 2/371 1 /
= Z — — _pt arLps + aypy — 3 (BLTt + ByTe + py [ULPt + UUPt'D .

The chemical potentials and entropy density are given by Eqs. (2.28)) and (2.29)), respectively.

2.3.4 The Zero-Temperature Limit

The zero-temperature limit is needed in order to establish the parameters of the force from
experimental constraints. In the zero-temperature limit, one finds from limiting expressions

for the Fermi integrals:
! <2mt (e w>)3/2
Pt = 39 )

2 2
7T1 9 (h V) 52 g (2.36)
Ty \ e t N 2\2/3 5/3
i = ﬂ(—hz ) Lo

Furthermore, for the case of symmetric nuclear matter (p, = p, = p,/2), one obtains

h2
= —T7
—12 2 g

_3
10

T, po- (2.37)

p=po,x=1/2
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Thus, in the case of zero temperature, the energy density is

2/3
2 1 - -
E =T, E pt{ (pt) __|:05Lpt+05Upt’_

Po (2.38)
1/2\** 2/3 5/3 2/3 5/3
5([)—) (Z{pt pr + py :|+BU{pt Py + Py D]}
where 236 6
Po 2/3
fre = (2) [5(3”2) Bl + QUEL,U)] = Bewm o (2.39)

The potentials at zero temperature become

2T,
V= -

X 12\ 5 i i
OéLpt‘i‘OéUpt/ — 5(p_) ( " 5/3+B5 ?//3) - gpf/ (U/Lﬂt‘i‘U{]/)t/) (240)

The expression for the effective mass of Eq. (233)) is still valid, so the Euler equations at
zero temperature, using Eq. (2.30), take the form

= 20\ 2T,
i = (3729 4 Vi = T(pt) LN

Qm* po po
! » - (2.41)
. - 1/2 vl 53 O 235 53, D a3
arpy + aupy — B ,0_ A2 3P + B0\ i+ =y pu .
The pressure at zero temperature, using the notation u; = p;/p,, becomes
P =pols Z L0 [ 22/3 — apuy — ayly
(2.42)

+2—1/3[ Z(uf/3+§ 2%0) + Byl + ;uQ/?’at,)H.

—_—

Once again eliminating terms involving p;? / 3, the pressure relation can be simplified to

. et 2/3 T 55 - 1
p—pOZu 5 + (2uy) 7T, 3 —l—?ut ~ 10 (2.43)

t
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2.3.5 Uniform Matter at Zero Temperature and the Saturation
Constraints

Next, we consider uniform matter at zero temperature. Using the notation u = (p,, + p,)/po
and « = p,/(pn + pp), the bulk energy density at zero temperature is

&= Topo{§22/3u5/3 [(1 —z)%3 + 935/3} — u? <aL[(1 —z)? + 2% + 20p(1 — x)x)
(2.44)
+?ﬁmﬁggwfﬂwﬁ+xwﬂ+mnu—xﬂu—xfﬁ+ﬁﬁb}.

40T
30
20+

10}

E (MeV)

—10|

00 1m0
0.0 0.5 1.0 .
©/Po ©/Po

Figure 2.1: The energy per baryon E and pressure p for zero-temperature matter as a
function of composition Y,. The assumed saturation constraints are: p, = 0.16545 fm ™3,
E, = -16.533 MeV, p, =0, S, = 31.63 MeV and S! = 17.93 MeV.

Fig. 2T shows the energy per nucleon E' = £/p and the pressure p of uniform matter as a
function of density and composition Y), for the case of zero-temperature matter. Obviously,
there are substantial regions in which the incompressibility, (0P/0n)ry,, is negative and the
matter is hydrodynamically unstable. It is straightforward to show that the free energy can
be lowered if matter spontaneously divides into two phases of differing densities with the
same temperature. For asymmetric matter, each phase has differing compositions as well.
These phases are in bulk equilibrium, which is described in the next section.
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For standard nuclear matter, v = 1 and z = 1/2. Letting @« = ay + ay and g" =
"+ B0, = (6/5)B+ 0, using 8 = P+ Sy and 0 = o, + oy, and defining the binding energy
as B = —E&,/p,, one finds the energy per particle to be

&, 3 a
= _B=T,|=—=+2|, 2.45
Po [5 2" 2 } (245)
while the pressure becomes
2 a 5
o =0=p,T,]|= — = _”7 2.46
po=0=pT|3 =54 25" (2.40)
and the incompressibility parameter reduces to
dP
K,=9— = T,[6 — 9a + 208"]. (2.47)
dp
p=po,x=1/2
These can be combined as 9
K, = gTo + 15B ~ 316 MeV, (2.48)
and 9 5B 3 3B
=_ ~ 3.995 "= -4+ — ~10917 2.49
5T ’ 57T, ’ (2.49)

using T, ~ 37.68 MeV and B ~ 16.54 MeV. (For the purposes of illustration, we use the
parameter set established by Myers & Swiatecki @]) The bulk symmetry parameter is

_1d(€/p)

S = 8 da?

1 Qay ay, 5 " "
= To -4 — 4 = 2}3 —Pu)l- 2.50

p=po,x=1/2

The derivatives of the symmetry energy and the incompressibilities at saturation are

d3(E/p) 2 ay—oay 25
g = Po —T |2 AL D ggr g 2.51
v 8 dpdx? R +27( L= Bl (2:51)
p=po,x=1/2
dK d?
P p=po,x=1/2 P/ p=pow=1/2 (2.52)

1
T, {4 — 9a + %5'/] = 3—59T0 + 558 ~ 1204 MeV .

In order to specify given values of S, and S], one can manipulate Eqs. (250) and (2.51)):

7 5B+39 — 55, 2 5B 459, -39
ar =g+ 2T, =gt 2, !
.3 10B+9S —09S, 3 20B+9S,— 99 (2.53)
Pr=10* o, et 07,
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For values of S, = 31.63 MeV and S/ = 17.93 MeV established by Myers & Swiatecki for
the truncated model, one finds oy ~ 1.112, ay ~ 2.882, 57 ~ 0.417, B, ~ 1.505. Note
that for zero temperature uniform matter, £, P and p, depend only on oy, ay, 57 and 5.
To constrain other the parameters one has to consider the properties of non-uniform matter
and finite-temperature matter.

The specific heat of degenerate nucleonic matter depends on the nucleon effective masses.
The symmetric matter effective mass at saturation density is

h? h? m* 1

= 4 T8 ), - = 2.54
2m* me + (ﬁL + ﬁU) my 1 + ﬁ ( )

A reasonable value for m*/my, is 0.724 which implies 5 ~ 0.381.
A related consideration is the optical model potential. The single particle potentials in
standard uniform nuclear matter at zero temperature are obtained from Eq. (240). One

obtains . A
Vn:%:_To{a_gﬁ_go} :_B_To(l_‘_ﬁ)? (255)
where o and o can be eliminated by using the saturation conditions Eqs. (2:45) and (2:46).

Thus, the potential felt by a neutron with momentum p in standard nuclear matter is given

by combining Eqs. (2.25]) and (2.55):
Un(p):—B+TO[—1—6+5(%>2]. (2.56)

Setting FE,, = U, + T,(p/P,)* to be the total energy of the neutron, one can write

B
Vo) = 155~ Tt %Enuo). (257)

This results in a linear relation between U,, and E,, with a slope of 5/(1+ ) =1 —m*/my,.
The value m*/m;, = 0.724 therefore implies a slope of 0.276, a result supported by experiment
ﬂﬂ] . In addition, the value of the potential for a zero-momentum neutron is —(7,(1 + ) +
B) ~ —68.59 MeV which is also supported by experiment. For § ~ 0.381, one obtains
o=p"—(6/5)p ~ 1.460.
The truncated model predicts the neutron and proton effective masses in pure neutron
matter to be
my, 1 My 1

mb_l—l—ﬁL’ E_l-i-ﬁ[]’
but these cannot be established without further input. In the original Myers & Swiatecki
model @], the 8 and o parameters are not independent, but are related by

(2.58)

o o
o —oy = (B — Pu)5 = (B — By)—, ~ —0.833, (2.59)
B g
using the above values. While it is not necessary to constrain this parameter this way, in
the absence of additional observables for fitting we follow the method of Myers & Swiatecki.
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a ar ay BL Bu o
0.5882 | 1.1124 | 2.8823 | 0.08182 | 0.2991 | 1.4597

00 B m*/my, Wo S, S!
0.16545 | 16.539 | 0.7241 1.250 | 31.633 | 17.931

To Ko K(/) t90—10,0 Ws to Tco
37.6794 | 315.91 | 1203.54 | 1.910 3.640 | 1.391 | 174

Table 2.1: Truncated parameter set. The first row contains parameters of the force model.
The second row contains the assumed saturation properties of matter. The third row contains
implied bulk matter and surface properties. Units are expressed in MeV and fm.

We therefore have

oLy = %(1 + %) (2.60)
or o, ~ 0.313 and oy ~ 1.146. Also,
BL,U = g(ﬁZ,U - UL,U), (2-61)
Br, ~ 0.0818 and [y ~ 0.299. These lead to
Mo ~ (.924, ) ~ 0.770, (2.62)

my my

The parameters and the implied physical properties of matter and interfaces at saturation
are contained in Table 2.1

In summary, the binding energy, saturation density, symmetry energy, symmetry energy
derivative and effective mass can constrain 5 of the 6 independent parameters of the truncated
model, namely oz, vy, B(z,v), 0 and a. The parameter a can be determined by the symmetric
matter surface energy or the surface diffuseness. In the truncated model, these choices
determine the incompressibility parameter and its derivative as well as the surface symmetry
energy parameter. Adjusting the incompressibility, its derivative, and surface symmetry
energy parameters requires additional density-dependent terms in the interaction energy.
This will be explored in the succeeding sections.

2.4 Two-Phase Equilibrium of Bulk Matter

In the general case of asymmetric matter and finite temperature, for two phases to be in bulk
equilibrium, one minimizes the total free energy density for a given temperature, density and
average proton fraction. We assume the electrons remain uniformly distributed so they need
not be considered for this minimization. We also ignore the fact that protons are charged,
an omission that will be included when we consider finite nuclei. We label the denser phase
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as inside or [ and the other phase as outside or 1. The total free energy density is
f = Up]f] + (1 — U)pIIFII (263)
where the average density p and proton fraction = satisfy

p=uvpr+ (1 —v)pr, pr =vprrr + (1 —v)prrxyg, (2.64)

where v is the volume fraction occupied by the dense phase. Minimizing F for a given p and
x results in three bulk equilibrium conditions:

Pr = P11 = Po, Honl = Hnll = Hn, Hpr = fipI1 = [p (2.65)

Note that these conditions do not involve p, x or v. For a given value of x; = p,;/ps, the bulk
equilibrium conditions therefore determine p,r, p,rr and pprr. Phase equilibrium is possible
for a given values of p, T and z if the resulting value of v € (0, 1).

The phase equilibrium of dense matter using a Skyrme interaction at finite temperature
was studied by Kiipper, Wegmann & Hilf ﬂﬂ for symmetric matter, and by Lattimer &
Ravenhall ], Buchler, J. R. & Barranco d], Barranco & Buchler ﬂa] , and by Lamb,
Lattimer, Pethick & Ravenhall @] for the general case. The phase equilibrium of dense
matter using a relativistic field-theoretical interaction has been studied by Glendenning,
Csernai & Kapusta ﬂﬁ] for symmetric matter and Miiller and Serot ﬂﬁ] for asymmetric
matter. Phase equilibrium with the finite-range force has heretofore not been previously
studied for the general case of asymmetric hot matter.

2.4.1 Zero-Temperature Two-Phase Equilibrium

In the case of zero-temperature, j,; >~ —16 MeV < 0 and ji,,; >~ —16 MeV < 0 for z; ~ 0.5,
so ppir = pnrr = 0. Two-phase equilibrium at zero temperature is then determined by
ignoring the fi,,; = pnrr and p,r = pprr conditions. However, for x; < 0.34, p,r > 0 so
pnrr > 0 and neutron drip occurs. In this regime, equilibrium is determined by ignoring the
tpr = pprr condition. Note from Eq. (241) that as long as p,;; = 0, the proton chemical
potential in the uniform light phase is determined by the local neutron density, i.e.,

" 2 n 5/3 n
ppr1(pprr = 0) = pe = 1o, <7U (M> - QOéUp H)- (2.66)
Lo Lo

This critical chemical potential (y.) represents the threshold for proton drip’. When g, >
e, it becomes energetically favorable for protons to drip. This occurs near x; ~ 0.09. The
behavior of the chemical potentials, densities and pressure in bulk equilibrium are shown in
Fig. as a function of the proton fraction in the dense phase.

Note that for very small values of x;, the densities in the two uniform phases approach
each other. For x; < 0.035, in this model, bulk equilibrium becomes impossible and matter
exists in a single uniform phase.

TAt zero temperature, proton drip does not happen in neutron star crust but free protons exist in case
of uniform nuclear matter if the phase transition happens in the outer core of neutron stars.
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Figure 2.2: Bulk equilibrium of T" = 0 asymmetric nuclear matter. The solid curves u; =
pr/po and ur;r = prr/po show the densities at T = 0 for two phases in bulk equilibrium for
various values of x;, the proton fraction in the dense phase. The dashed curves show p,, and
fp; neutron drip T occurs when g, > 0, or zy ~ 0.34 for the truncated finite-range model.
Proton drip occurs when 1, > ., shown by the dashed-dot curve. Another solid curve shows
the value of x;;, the proton fraction in the low-density phase. A dashed curve shows the
pressure in bulk equilibrium. All units are in MeV and fm.

2.4.2 Finite-Temperature Symmetric Matter, the Critical Tem-
perature, and the Coexistence Curve

Pressure isotherms are shown in Fig. for the case of symmetric matter. For each temper-
ature displayed, bold dots represent the two densities u; and u,, found from the solution of
Eq. (2.63)), that coexist in bulk equilibrium. Both phases have equal proton fractions. Matter
with an average density u that satisfies u, < u < w; lies within the coexistence region; the
pressure of this matter is constant as the density is varied as indicated by the dotted lines
connecting the bold dots. Coexistence is only possible up to the critical point, indicated by
the open circle. It is clear from this figure that the critical point is defined by

dp 0*p

T

which is located at T, ~ 17.3 MeV and u., >~ 0.350. The critical pressure is p., >~ 0.315
MeV fm~2 for the truncated interaction. The coexistence region in the temperature-density
plane is illustrated in the upper panel of Fig. 2.3l Dotted lines connect the two panels by
indicating the two densities that coexist at each temperature or pressure below the critical
values.
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Figure 2.3: Pressure isotherms are shown in the lower panel. Bold dots indicate the boundary
densities of the two-phase coexistence region. The upper panel shows the coexistence region
in a density-temperature plot. The critical point is illustrated in each panel with an open
circle.

2.4.3 Finite-Temperature Asymmetric Matter and Coexistence Curves

At finite temperature and arbitrary average proton fraction, the phase coexistence is de-
termined by the conditions Eq. (265). The coexistence curves are the boundaries of the
two-phase region determined by the conditions v = 0 or v = 1. In contrast to the symmetric
matter case, the densities in each phase vary with the filling factor v at fixed 7" and Y,. The
coexistence curves are shown in Fig. 2.4l Along the phase boundary, the density of one phase
is shown by the solid (coexistence) curve and the density of the other phase is shown by the
corresponding dotted curve. Along the coexistence curve for each Y, there is a critical point
where the two phases have equal densities, p; = p,. As shown in Lattimer & Ravenhall ],
the critical point for asymmetric matter is determined from

d?pu,

dx?
p,T

ditn
dx

= 0. (2.68)

p,T

The critical temperature as a function of dense-phase proton fraction z; is shown in Fig. 2.5
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Figure 2.4: Coexistence curves for asymmetric matter for the truncated model at finite
temperature. Solid curves show the boundary of the two-phase region for dense phase proton
fractions ranging from z; = 0.5 (upper-most curve) to x; = 0.02 (lower-most curve) in
increments of 0.04. At each density along a solid curve, matter with the indicated x; is in
bulk equilibrium with a less dense phase (which has a different proton fraction z;;) whose
densities are indicated by the dotted curves. The densities of the two phases are equal at
the critical points, indicated by solid dots.

2.5 The Nuclear Surface in the Semi-Infinite Approx-
imation

A useful approximation for the nuclear surface is to treat the interface between two phases

in bulk equilibrium in the limit that the curvature vanishes and Coulomb interactions are

neglected. The surface is thus treated in a one-dimensional semi-infinite planar geometry,

and the density profiles in the surface region are found by minimization of the total free
energy.

2.5.1 The Euler Equations

The equilibrium matter distributions, p,(r), p,(r), for a given temperature 7" are obtained
by demanding that the total free energy F'is stationary with respect to variations dp, and
dp, subject to the constraints that the total neutron and proton numbers,

N = /d?’rpn, Z = /d37’pp, (2.69)
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T, (MeV)

Figure 2.5: Critical temperature as a function of dense-phase proton fraction for the trun-
cated model.

remain fixed. Note that, formally, F', N and Z diverge in the semi-infinite case since the
integrals extend to +o0o. This divergence is irrelevant, however, as is discussed below.

Free energy stationarity is equivalent to demanding that the neutron and proton chem-
ical potentials, p, = 0E/0p;, given by Eq. ([Z28), are spatially constant. For a specific
temperature and proton fraction in the dense phase far from the surface, x;, the chemi-
cal potentials are therefore equal to their corresponding values for bulk equilibrium, as in
Eq. (2.65). Thus, for the appropriate values for p, and pu,, Eq. ([2.28) becomes the Euler
equations which determine p, and p, at every point.

The surface thermodynamic potential for a semi-infinite interface is the difference between
the total thermodynamic potentials of the semi-infinite system in which two uniform phases
in bulk equilibrium exist with a discontinuous density jump at the interface and the system
in which the density varies according to free energy stationarity. Since u,, and p, are spatially
constant, this is equivalent to Ravenhall, Pethick & Lattimer @] and Kolehmainen, Prakash
& Lattimer ]

[e.e]

w= / TIE—T(Su+5,) — finp — tippy + poldz = — / p(2) —pld=.  (270)

o0 —00

The last equality is not generally true for a non-relativistic potential and relativistic field-
theoretical nuclear forces, but is true for the finite-range nucleon interaction. In general, a
thermodynamic potential is a function of temperature and chemical potentials, but in the
semi-infinite case one can write w = w(7, z;) since p, and pu, are themselves functions only
of T and z; in bulk equilibrium. In other words, the values of the average density p and
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proton fraction x are irrelevant for this calculation.

In practice, the integrals in Eqs. (2.69) and (2.70) are taken to extend from z;; to z;
which are located far to the right and left of the interface, respectively. The integrand of
Eq. (ZT0) must vanish far from the interface, according to Eq. (265), so these cutoffs do
not affect the value of w.

Surface Profiles and Tension for Zero-Temperature Symmetric Matter
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Figure 2.6: The density as a function of position for zero temperature symmetric matter is
shown by the solid curve. The zero point of the z—axis is arbitrary. The function u is shown
by the dashed curve.

In the case of zero temperature symmetric matter, the energy density and Euler equations
are

3 5/3 & B" 573 2/3 ~
E=T,p, [gu - i+ Zu(u 1B+ u u)}, (2.71)
" 5
p=-B=T, [u2/3 — ail + %(u5/3 + §u2/3ﬂ)]. (2.72)

The density as a function of position is shown in Fig. 26l The integrand of Eq. 270 is

2 " _— 7
Po—DP :Topo|: - gu5/3 + %Uﬁ — %U(U5/3 + §U2/3?~L):|
ot [Ty ~ -
:% [guz/s(l —u)+ B(1 - u2/3u)} :

(2.73)

where we used Eq. (Z72) to eliminate w53 and a, and Eq. (249) to eliminate 5”. The
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pressure, and also the integrand, must vanish at each extreme boundary, so that at one
extremity, u — 1 and at the other u — 0, as is shown in Fig. Obviously, in the limit
z — oo, one has u = 4 = 1 since du/dz — 0. From Eq. (272) one has p = —B =
To(1 —a+(4/3)8"), which also follows from Eq. (2:49). At the point where u = 0, however,
du/dx # 0 so @ # 0. In this case one has

"n____

= -B= TO< — i+ %u5/3> (2.74)

for which one finds @ ~ 0.126. The surface profile is shown in Fig. 2.6 found by solving Eq.
([272)) at each point in space. The function @ also is displayed in Fig. It is obvious that
since @ and u are both less than unity, the integrand Eq. ([2.73]) is always greater than or
equal to zero.

The surface thermodynamic potential or surface tension depends only on the parameters
a, 5" and a, so that given values for B and p,, the surface tension depends only upon a in the
absence of additional terms in the energy density. Myers & Swiatecki (1969) have noted that
the surface tension at zero temperature for symmetric matter depends almost linearly on a
and this is illustrated in Fig. 277 For the truncated model parameters, including a = 0.5882
fm, one obtains the physically reasonable value for the zero-temperature symmetric matter
surface tension, w(z = 1/2,T = 0) = w, ~ 1.25 MeV fm~2. However, the calculated surface
thickness is too small by about 20%, as will be shown below.

- x, = 0.50 1

Figure 2.7: Surface tension (solid curve) and 90-10 surface thickness (dashed curve) for
symmetric matter at zero temperature in the truncated finite-range Thomas Fermi model as
functions of the diffuseness parameter a. The slopes of each are nearly linear.

It is instructive to compare these results for the surface with those established from a
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potential model analogue for the Hamiltonian density of cold symmetric matter in which the
free energy density is assumed to be composed of a bulk matter part Fz(p) and a gradient
term:

F=Fg+ Ep’? (2.75)

In the above, @ is a constant and p' = dp/dz. Minimizing the total free energy for a fixed
number of particles introduces the Lagrangian parameter p,, which is equivalent to the
chemical potential —B for symmetric matter,

Q p

Fig = pop = 5" (2.76)

Therefore the density gradient can be determined as a function of density:

2
p=— oV Fp — piop. (2.77)

The 90-10 surface thickness, tgg_19 is defined as
too—10 = z(p = 0.9p;) — 2(p = 0.1p;) (2.78)

in the case that p, = 0. For Fz we substitute the free energy density of the truncated model
for uniform symmetric matter at zero temperature, for which p; = p,:

Fg — pop ( 1/3)2 B ( 1/3) <3B 3) 2/3( 1 1/3)
BT Rl — gy =1 — (142 T 1+ = 9.
o, fe=u u T + 2u + T + £ )u + Tk . (2.79)

which defines the dimensionless function fp(u). This leads to

0.9p0
t90—10,o = / dp/p/ = Ci—‘po ]t, (280)
0.1po o
where 00
’ U
I, = / ~ 3.042; (2.81)
" o V2F5

the numerical value is obtained using the truncated model with B = 16.539 MeV and
T, = 37.679 MeV. The symmetric matter surface tension is

Wo = /_OO [F — popldz = 2/00 [Fg — popldz = /QT,p1,, (2.82)

[e.9] — 00

where .
1, = / v/ 2fgdu ~ 0.2612, (2.83)
0

where the numerical value is obtained with the same assumptions as previously. The quantity
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@ can be eliminated by combining Eqs. (2.80) and (2.82]),
Wo = poToteo—10.01u/1; = 0.5353 tgy_10, MeV fm™* = 1.231 MeV fm ™2, (2.84)

where the truncated model and a realistic value of the surface thickness

(too—10,0 = 2.30 fm) is used. This value of w, agrees well with that obtained from the
numerical results for the truncated model (1.24 MeV fm™?). However, as noted before, the
calculated value of fgo_19, is 20% smaller than the realistic value. This discrepancy can
be traced to the unrealistically large value of the incompressibility parameter K, in the
truncated model.

Surface Profiles and Tension for Zero-Temperature Asymmetric Matter
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Figure 2.8: Neutron (solid line) and proton (dashed line) density profiles for the case z; = 0.4
and T' = 0 for a semi-infinite interface for the truncated interaction are indicated in the main
panel in logarithmic units. The inset shows normalized profiles u,, = pn/po, up = pp/po as
solid curves on a linear scale, and the quantities @, = p,/p, and @, = p,/p, are displayed by
dashed curves. The dotted lines indicate the positions of the squared-off neutron and proton
radii, R, and R, respectively.

The density profiles for neutrons and protons for cold asymmetric matter are displayed
in Fig. for the case x; = 0.4. Both the densities p; and the quantities p; are shown. The
squared-off radii R,, and R, are also shown; these are defined by

/ prdz = pi(Ry — z1) + perr(zrr — Re) (2.85)
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with the convention that z;; is the boundary in the dilute phase and z; is the boundary in
the dense phase. Clearly we must take z; << 0 and z;; >> 0, and in the calculation shown
in Fig. 2.8 these were respectively chosen to be -8 fm and +8 fm.

1.4 1 1.4
1.2 11.2
& 1.0 K
£ 1=
= 0.8 0.8 a
> ] o

@ ]

2 06 106 '
3 ] a'd
0.4 10.4
0.2] L 0.2
0.0 et et 0.0
0.500.450.40 0.350.30 0.50 0.45 0.40 0.35 0.30 0.25

X| X|

Figure 2.9: Surface tension (left panel) and neutron skin thickness (right panel) as functions
of dense phase proton fraction for zero-temperature semi-infinite surfaces are shown as solid
curves. In each case, dashed lines represent analytic estimates based on a simplified potential
model as described in the text.

The surface thermodynamic potential for asymmetric matter at zero temperature is
shown in Fig. Analytic estimates of the symmetric matter surface thermodynamic
potential w, and its dependence on proton fraction can be obtained from the potential ap-
proach discussed in section Z5.] In particular, specification of the symmetric matter surface
thickness parameter fgo_19,, determines w, via Eq. (2.84). The leading order dependence of
the surface tension on proton fraction is quadratic with a coefficient ws such that

W™~ w, — wsd, 0=1-2x;. (2.86)

In the potential approach, it can be shown in Steiner et al.@] that the parameter wjs is, to

lowest order,
_ /Q /po Sy ~1/2
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where E,,, is the density dependent symmetry energy. In the truncated model Ej,, is
Sy = Eagm = Su (1= u/?) x

X {1 +ul/3 P 3(527;7;9{,)&/3(1 +u1/3) — %(1 —u1/3) (1 + %ul/?’)].

(2.88)

Eliminating @ using Eq. (Z.82) and expressing the free energy density in terms of the trun-
cated model energy density, one finds

Sy I
ws = woiﬁ, (2.89)

where

I —/1 “ (S” —1)du~1024 (2.90)
5 ; 2fB Esym ~ ]. . .

The numerical value is obtained for the truncated model with the previously determined
parameters and leads to the ratio ws/w, ~ 3.293 and ws ~ 4.054 MeV fm~2. Tt is also easy
to show from Eq. (2.85) that the neutron skin thickness ¢ can be written, to lowest order
when p;r =0, as

“lon Py 2ws6
t=R,—R,= — = —|dz > ———. 2.91
b [ |ipnl pp1:| Svpo(l - 52) ( )

[e.e]

From this, we infer a normalized neutron skin thickness ¢, = #(1 —¢§2)/d§ which is predicted to
be insensitive to asymmetry. The analytic approximations for surface properties using Egs.
(280), (Z89) and Eq. (291)) are displayed in Fig. The agreement between the analytic
and numerical results is excellent. As an example, the difference between the numerical and
analytic values for ¢, is about 2-107° fm for small asymmetries. In addition, the dependence
of t on asymmetry is in good agreement with the analytical prediction of Eq. (2.91]).

Surface Tension for Finite-Temperature Matter

For the truncated model, the surface tension (thermodynamic potential density, w) and
surface thickness parameter (fgo_10) for finite-temperature symmetric matter are shown in
Fig. The truncated parameter set was employed. Both quantities vary as 7 for small
temperatures. The surface tension for symmetric matter can be well approximated for all
temperatures by the expression

Wiz =1/2,T) ~ w, [1 - (T/Tc)ﬂ " (2.92)

where T, ~ 17.4 MeV is the critical temperature for two-phase coexistence of symmetric
matter and w, = w(x = 1/2,7 = 0). This expression indicates the effective level density
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Figure 2.10: The surface tension of symmetric matter as a function of temperature is shown
by the solid curve for the truncated model. The three accompanying dashed /dotted curves,
labelled by the parameter p, show the temperature dependence w,[1 — (T'/T.,)*]P where
T., ~ 17.4 MeV is the critical temperature for two-phase coexistence of symmetric matter.
In addition, the surface thickness parameter tgy_19, scaled by a factor 10, is displayed. At
T,,, it tends to infinity.

parameter for nuclei has the approximate volume and surface contributions

2m* 7 m \1/3 47\ 1/310w
Qelf = "p2 (3,)0) (3/)3) T2 (2.93)
~ 0.0594 + 0.226A4%3 MeV~".

Note that for A &~ 64 the surface and volume contributions to the nuclear specific heat are
approximately equal.

For asymmetric matter, the temperature dependence of the surface tension is similar to
that of symmetric matter. As shown in Fig. 211l the temperature dependence can be well-
approximated by the relation Eq. (2.92) as long as T, is reduced to the value (approximately
16.1 MeV) appropriate for x;; = 0.3. This figure also shows the surface thickness parameter
t9o—10 and the neutron skin thickness R, — R,,.

Fig. shows the surface tension and the neutron skin thickness as functions of zj;
and T for the truncated model.
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Figure 2.11: The same as Fig. 210l except for an asymmetric case with a dense phase proton
fraction x; = 0.3. In this case, the critical temperature is T, ~ 16.1 MeV. The dashed line
shows the neutron skin thickness R,, — I, in fm.

2.6 Isolated Nuclei and Nucleil in Dense Matter

For the computation of finite nuclei, spherical symmetry and zero temperature are assumed
in this model. These restrictions will be relaxed in a future publication. The main point
of this model is to demonstrate the feasibility of efficiently computing the thermodynamic
properties of nuclei in a consistent Thomas-Fermi approximation without the simplifications
associated with the liquid droplet model. In contrast to the case of a semi-infinite interface,
it is preferable in the finite nucleus case to choose values for N and Z, together with the
temperature. The additional two constraints in Eq. (ZGH) then determine the chemical
potentials of the isolated nucleus, i.e., a nucleus in a zero density environment.

2.6.1 Isolated Nuclei

The total energy of a nucleus must include the electrostatic Coulomb energy

Eous — %2 /V Py /V g 100(r) = pe()]lop() = pe ()] (2.04)

=7

where the spatial integrals are over the entire volume. In the case of an isolated nucleus,
pe = 0, and the integrand is finite only within the nucleus. The contribution of the Coulomb
energy to the proton chemical potential can be found from a variation of E¢,,; with respect
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Figure 2.12: Contour plots of surface tesion and R,, — R,
Finite temperature asymmetric matter: (Left panel) A contour plot of the surface tension
(w, MeV-fm~?); (Right panel) A contour plot of the neutron skin thickness (R, — R,, fm).

to the proton density: Ap, = dEcou/dp,. One obtains

Een =5 [ @1 [ a0l = o]+ 00, Vp) ~ p D). (295

One can reverse the variables r and 7’ in the second term of the double integral, yielding

Binlr) = [ (o) = ()
o A (2.96)
—ire? [ [ 1,00 = e+ [ 00 = gl

where we assumed spherical symmetry in the second line and R, is taken to have a value
much larger than that of the nucleus. In the limit » — 0, the first integral vanishes. In the
limit r — R., one has Apu,(R.) = 0 because of charge neutrality. The quantity A, (r) must
be added to the nucleonic part of yu,(r).

The total Coulomb energy can be written

1

Bewa =5 [ 1(r) = pe () 0) 2.7
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Figure 2.13: Neutron and proton density profiles for the nuclei “°Ca, °Fe and 2®Pb in the
truncated model are shown as solid curves. The densities u; are scaled by the saturation
density ps. Dashed curves show the corresponding functions u;. The chemical potentials,
the charge radius R,, the neutron skin thickness 0R = R,, — R,, and the ground state energy
E are included in each subfigure. The vertical lines show R, and R,.

so that the Coulomb contribution to the energy density is just

1

Ecou = 5(Pp = Pe) Dbty (2.98)

Density profiles for the isolated nuclei “°Ca, *Fe and for 3*U are displayed in Fig.
for the truncated interaction model and assuming 7" = 0. The specific ground state energies,
charge radii and neutron skin thicknesses for these nuclei are included in the figure. The
charge radius is I, and the skin thickness is R?,, — R, and are defined by

R o (Lperdr i R (Jpridr 12 (2.99)
P fppd3r ' " fpnd?’r ) ’

The ground state energy is measured relative to A free neutrons, and hence includes the
energy —(m,, —m,)c*(Z/A) from the neutron-proton mass difference.

34



2.6.2 Dense Matter and the Wigner-Seitz Approximation

In the case of nuclei at finite density, such as those in a neutron star crust, it is convenient
to employ the Wigner-Seitz approximation in which a cell of radius R, contains a single
nucleus and sufficient electrons to neutralize the cell. In this paper, we will assume that
the Wigner-Seitz cell has a spherical geometry, but this assumption can be relaxed. In
the case of finite density, therefore, the density of electrons is finite and their distribution
must be considered in addition to those of the nucleons. The average density of the cell is
p=3(N+ Z)/(4rR?). In a neutron star crust, it is logical to specify the density p, and
optimize the beta-equilibrium energy per particle with respect to the density profiles and N
and Z, which determines R., p, and p,. The two additional equations needed, in addition
to the Euler equations Eq. (2.28)), are equivalent to the beta equilibrium condition

i — iy + (M —my)? = i (2.100)

oF
=0 2.101
(om), 2100
where beta equilibrium is assumed.

In a neutron star crust, where the density p >> 10° g em™ and T < 1 MeV, the
electrons are relativistic and degenerate. In this case, the electron density, which is modified
by the Coulomb potential, is given in terms of the electron chemical potential p. at the cell

boundary by
0 ar ! o) ,
— [ Re " =P\
pe(T) 5 2( e ) . (2.102)

Egs. (Z96) and (ZI02) must be solved by iteration. In beta equilibrium, one has p. =
pn(Re) — pp(Re) + (my, — my)c? since Ap,(R,) = 0.

Nuclei for several different locations in a neutron star crust at 7' = 0 are displayed in Fig.
214l For densities p > 0.00028 fm~3 the neutron chemical potential is positive and dripped
neutrons appear. In this case, the number of neutrons in the nucleus is estimated from

and the energy minimization

N — 47TancR2/3

Pno — anc

Nywe = pro (2.103)

where p,o is the neutron density at the nucleus center and p, z, is the neutron density at the
cell boundary. Note that when neutron drip does not occur, N, is not exactly equal to V.
In addition, in the case of dripped neutrons, the mean-square neutron radius is redefined to

be
f(pn — PnR )T2d3T 12
R, = < . 2.104
( f(pn - anC)dgr ( )

The trend is for proton number Z to decrease with increasing density, as is shown in
Fig. 215 The energy minimum is very sensitive to the neutron and proton numbers which

35



T T T
R, = 43.294 ] 8.70 R, = 49.416 ]
N=23239 ] N=1025 3]
Noe = 1053 ] : Nye = 92.0 ]
0.50 Z =41 3 0.50¢ Z2=1398 E
py = 1.5 u, = 0.04 3
= 0.40 My ==27.54 & 0.40F My =—24.70
> po = 29.98 ] > g = 26.03 ]
3 0.30 n =0.0010737 } < 030% n =0.0002815 }
p =0.0011780 } : p =0.0005089 }
0.20 Ri=Rp = 0.572 0.20¢ Ri—Rp = 0456
R, = 4571 ] : R, = 4.439 ]
0.10 E= 010252 ] 010k E = —1.66091 ]
: E, = 0.982 : Es = 0.441
0.00¢ ‘ 0.00E ‘ ‘
15 5 10 15
R, = 29.979
N =1087.5 3
Noe = 146.6
0.5k Z =411 3
= 44T
a 0.4 Mo =—37.46
° o = 43.16 3
303 n =0.0100000 3 n =0< 3
p =0.0159897 } : p =0.2412651 ]
02f R—R, = 0.917] 02f R—R, = 0.726]
R, = 4925 ] : R, = 4.655 ]
01 E= 281954 ] 0.1k E= 7.03691 ]
) = E F ™ E, = 7.179
E ] .
0.0k s 0.0k o
0 5 10 15 0 2 4 6 8 10
r r

Figure 2.14: Neutron and proton density profiles for nuclei in the cold crust of a neutron
star. The optimum nucleus for each density p (fm~3) is shown, together with the pressure p
(MeV fm™?), the total internal energy per baryon E (MeV), the charge radius R, (fm), the
neutron skin thickness R,, — R, and the chemical potentials j,,, 1, and p. (MeV). N, Z and
Ny are defined in the text. R, is the Wigner-Seitz cell size and Ej is the energy of uniform
nuclear matter in beta equilibrium.
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Figure 2.15: Proton number per unit Wigner-Seitz cell for dense matter for the truncated
model is shown by the solid curve. The energy advantage (MeV /baryon, multiplied by 100)
relative to uniform matter in beta equilibrium is shown by the dashed curve. The filling
factor u, defined in Eq. (2105 and multiplied by 100, is shown by the dotted curve.

accounts for the wiggles shown in this figure. This figure also shows the filling factor

u="F0 (2.105)
Po0 — PR,

which increases with density, and the energy advantage of nuclei over that of uniform nuclear
matter (both considered in beta equilibrium), AE = E — Ej, which decreases with density.
AFE decreases to zero before the filling factor approaches the value 1/2 for which matter
might expect to be turned inside out (Lamb et al.[17]).

In general, the Wigner-Seitz cell size R. decreases with increasing density and the nu-
clear filling factor in the absence of dripped nucleons, (R/R.)?, where R ~ (R, + R,)/2,
therefore increases. However, the nuclear mass fraction decreases with density because of
dripped neutrons and, as a result, the filling factor u increases less rapidly than it would oth-
erwise. The Coulomb energy decreases with density, and eventually nuclei become unstable
to deformations. In the simple analysis of Ravenhall et al.@], significant deformations from
sphericity occur when the filling factor is larger than about 1/8. From the results displayed
here, this occurs when p ~ 0.06 fm~3. At this point, the energy difference between nuclei
and uniform matter is small, being only about 0.13 MeV per baryon, and the energy differ-
ence even disappears by densities near p = 0.09 fm~3. Thus the density domain in which
significantly deformed nuclei appear is probably relatively small in this case. Lamb et al.@]
demonstrated that the nuclei will tend to turn “inside-out” when a filling factor larger than
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1/2 obtains, but this appears to be unlikely to ever occur for this model. To explore these
questions further requires one to consider non-spherical geometries for nuclei.

2.7 Conclusions

This chapter demonstrates the feasibility of employing a finite-range nuclear interaction to
efficiently compute nuclear properties in the Thomas-Fermi approximation, and it extends
these calculations to the computation of the properties of hot, dense matter using unit
Wigner-Seitz cells. The method is efficient enough to allow the computation of full tables that
are densely-enough spaced in density, temperature, and electron fraction for astrophysical
applications. Before such a table can be generated, however, there are a few details of the
model that may have to be modified.

The model described in this model does not adequately describe realistic nuclear incom-
pressibilities or the properties of nuclear surfaces. However, these items can be straightfor-
wardly corrected by the addition of density-dependent terms to the nuclear interactions. In
addition, better fits to nuclear effective masses and the optical model potential can be ac-
commodated by additional momentum-dependent terms. Future work will explore possible
modifications and will undertake a detailed comparison to the properties of nuclei.

In addition, Danielewicz ﬂﬂ] pointed out an apparent inconsistency with the liquid droplet
treatment developed by Myers & Swiatecki ﬂﬂ] and by Lattimer et al.ﬂﬁ]. with respect to
its incorporation of the symmetry and Coulomb properties of nuclei. Danielewicz proposed
an alternate formulation of the liquid droplet model. However, Steiner et al.[32] pointed
out discrepancies between the predictions of the two approaches concerning the symmetry
properties of extremely neutron-rich nuclei and neutron skin thickness. The present model
should be immune to any discrepancy involved with the liquid droplet model and, further-
more, should provide a suitable platform with which to resolve this controversy. This point
will be addressed in a future publication.

Following the resolution of these points, we intend to generate a series of three-dimensional
tables suitable for astrophysical simulations, and we will compare their properties to the
Lattimer-Swesty ﬂﬁ] and Shen et al.@] equations of state.
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Chapter 3
Modified model

T The truncated model is quite successful in representing isolated nuclei and dense matter.
However, the truncated model has a too large nuclear incompressibility and nuclear surface
tension. We added new density dependent interactions so that we can resolve them.

3.1 Original Modification to Myers & Swiatecki Model

We considered an alternative density dependent interaction term which has an energy density
contribution that is proportional to p'*<:

h3 3\’ 2\ /o5, + oS
=——"T,n, = el T M2
CnL 4 p (47TPC?) nL (po) ( 2 (3 1)

h3 3\’ 2\ [ p5 + 0l
Couv=—Tp, | — = Lt 2 g )
WS T <4wP3) " <p) ( 2

where 7)1, ny, and € are parameters. The total energy is altered by the amount

AFE 1L (2 )6/ dPrid’ry f(ria/a)x

20 \Po

> e pe(piy + piz)nupapra(pi + Pl - .
t
The contribution to the potential is
AV, = 3 (;) (ne [+ oo+ o] + [+ Qs +017]) . (33)
while the energy density contribution is
AE = %Z— (%)Ez;pt [m(piﬁﬁ/}/&) +nu(p§ﬁtf+/:§;ﬂ- (3.4)

TThis chapter is an improved version of the truncated model in Chapter 2. This work will be submitted
to the journal soon.
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In the case of uniform matter, the additional contribution to the energy density is
T, [ 2\° .
A& = . <,0_> ZPF [1Loe+ nupl] - (3.5)
° t

For standard nuclear matter (v = 1, = 1/2, T=0 MeV), one finds, after defining n =

€o 3 a [ 7
_:_B:TO - — — J— - ,
Py {5 ST

77L+77U7

2 o b i
o =0=p,T15, |- — = ~6"+ 3(1 )
pPo=0=p {5 5 Tl T3l +6)}

9
K, =T, {6 — 90+ 208" + 77’(1 Lo+ e)] ,

100 , 9
K =T, [4—9a+—5”+—n(1+6)2(2+6)} :
3 2 (3.6)
1 ay — A, 5 1 1
Sy =T, + L "L 4 228! —
14¢€
+ 2+ o 22— d)|,

2 ay—ap 2
s :TO{§+7QU T 3267~ BY)
(1+¢)?

T

Practical considerations' limit the value of € to the range 0 < € < 2/3. For a given value of
K,, a solution of Eq. ([B0) yields the consequence that K is nearly independent of e.

<m+4m—2m—¢wﬂ.

"To determine the range of €, we check the pressure behavior of pure neutron matter.
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We choose the value € = 1/3. One may show in this case that

9+5B+1 3+SB K, 18+QOB K,
o = — —_— — — — = — -
5 T, e\5 T, 3T, 5 T, T,
g (1_3) [ _3 _9B_ (9B 9

N 2 oT, 10 2T, 2T, 10
K, 6 12B

T, 5 T,

_ 1,8\ 3,58 K\ _ (3 5B K,
T 2 5T, 31,) "\5 T, 3T,)
14 3
K=K, =158 =T, +¢ (KO — 158 — gT)

=5K,—20B — gTO'

Therefore, to reduce K, from the truncated model value of 316 MeV to the experimental
value, e.g. 230 MeV, requires a value n ~ 172/T, ~ 4.3, and a and (" are respectively
changed by +7/2 and —n/2. In this case, K/ ~ 780 MeV.

For ¢ = 1/3, we find

1 « ) 5 4 )
Sv:To_ = S Yoonm  * < ’
{3 to—atgf—gf +am 977]
(3.8)
2 « 25 25 16 20
S/:TO_ = =y VA Y '
v [9 Ty ot 9 AL 275 + g 2777]

In practice, for K, ~ 230 MeV, " ~ 0 and both a ~ 6 and 1 ~ 4 are positive. Symmetric
matter therefore has positive pressure for v > 1. Pure neutron matter, on the other hand,
has pressure

2 ) 4
pn = Topott [g(Qu)w?’ —apu+ 522/35Zu5/3 - 521/377Lu4/3} : (3.9)

At p,, pny has a value about half of the non-interacting Fermi pressure, Combining this result
with reasonable values S, = 30 MeV and S = 15 MeV, one finds ay ~ 7.2, ]/ ~ —3.4 and
nr ~ 9.4. In the case S/ = 30 MeV, one finds ay ~ 13.3, 5/ ~ —6.3 and n;, ~ 17.5. In both
cases, py turns negative at low densities u < 2.5 because 7 < 0.

The problem can be more clearly observed if one forms the combination Q) = ey — e, — 9,

where ey is the neutron energy per baryon and e; = £/p is the symmetric matter energy per
baryon. Nominally, the magnitude of () evaluated at the saturation density, ()1 = Q(u = 1),
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is expected to be small, |Q;] < 1 MeV. In our case,

3 14 B D
Q — To |:gu2/3 (22/3 o 6) 4 |:18 (22/3 g) BZ:| u5/3

U 1/3 4 I+e
L 9l/3 _ =
i (20 -5) )]

Thus, for S, = 30 MeV and S! = 15 MeV, @)y ~ —6.5 MeV. Therefore, in general, the
non-quadratic terms involving 87 and 7, lead to neutron matter energy and pressure that
are not well-behaved at higher densities in comparison to symmetric energies and pressures.

(3.10)

Another possibility is to require that Q1 ~ 0, specifically

5” 2/3 5 n o, N 1/3 4 _

Using Eqs.[B.8) and (BI1]), we can evaluate o = —4.0, ff = —1.4, and 7, = 4.6 using
e =1/3, S, = 30 MeV, and S/ = 15 MeV. Once again, the negative value of 87 renders
neutron matter unstable at high densities.

3.2 Alternate Modification

Most Skyrme forces explicitly incorporate the n terms with a quadratic x dependence so
that they, unlike the « terms, vanish in Eq. (8I0), and the surviving 37 term can be made
small. It will be necessary for us to formulate a force with similar properties. One way to
do this is to make the extra terms in C}, ;y functionals of p; only (or py). For example,

h? 3 \° 2\ [+
CnL - __Topo <—3) nL (_) (u)
4 47TPO Po 2 (3 12)
n’ 3 N\ 2\ (pits |
contne () w (2 (552)
Then,
1T
AE dg’l“ld T2 f(’l“lg/a,)
2 Po
[(pl) + <p0> } Zptl [nmz ‘|’77U/0t’2] (3.13)
=—/d3 ( ) Zpt[nwﬂrnm/].
We find

A€ = % <po) Zt:pt [Wt + nuptf} ; (3.14)
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T, 1 ( p

‘ € - ~ ~ ~ ~ ~
AV, = =2 K—) [; >~ i+ npv) + e+ o |+ e+ nUpt’} :
t

Po Po

where

) = [ @rastrifa) (2) g

In uniform matter, one finds

T, [ p\°
A€ = o (p_> [UL(P% +p2) + 277Upnpp} )

€ 2 2

Ppntp n

AV, = (ﬂ) {6 (mip + oyt pp) + 2nLpr + 2%@] :
Po \ Po P P

|

T, [ p\°
Ap = P (p—) (1+¢) [m(pi + %) + 277Upnpp} :

In terms of the proton fraction,

AE
Po

= T,u't (77L [932 + (1 — 95)2} + 2npx(l — 95)) ;

Ap =T,pou”** (nL [SEQ +(1- x)ﬂ + 2npa(1 — x)) :

For standard nuclear matter, we now obtain

€ 3 a B oy
2 —_B=T |24 41
Po °l5 SR +2}
2 a 5 i
o =0=p,T1, |- — = —B"+ (1
po=0=nT |2 -5+ 25+ B+
9
[6 9o + 208" + 2(1+e)(2+e)]
K =T, l4 9a+ +9—"(1+e)2(2+e)}
¢ 2
1 o 5 n )
:T— = Ypn <
Sv o|:3+2 95 2 O‘L+36L+77L:|7
e b R n 25
S _To{9+2 275 (1+e)2 ar + 95L+(1+e)m
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Solving, we have

_9+5B 1 3+SB K, _18+2()B K,
“TETT 5T, 31,) 5T, T,
g OK/T, =39 4501+ 9B/T, K, 6 128
10 — 15¢ T, 5 T, '’
18— 10K/T,+ 150B/T, 18 30B 2K
15€¢(2 — 3¢) 5 T, T,
14
K =2k 15— 27,4+ (K, — 15— 21,
3 ) )
6
=5K,—20B — ETO.
The last expressions are obtained with e = 1/3. We also find, for e = 1/3,
1 « ) ) n
Sv:To_ @ Qo2 oan 7.
{3—{—2 CML+35L 9ﬁ + 1L 2}
(3.21)
2« 25 25 4 2
S/:To_ @ e A =V A _Znl.
v [9+2 04L+95L 275 +377L 377}
Pure neutron matter has pressure
2 )
pn = Topou {g(Qu)z/?’ —apu+ 522/35Zu5/3 +(1+ e)nLu4/3} (3.22)
(3.23)

At p,, pny has a value about half of the non-interacting Fermi pressure. Combining this result

with reasonable values S, = 30 MeV and S] = 15 MeV, and assuming ¢ = 1/3, one finds

ap ~ —4.4, p} ~ 3.6, and n;, ~ —10.7. In the case S = 30 MeV, one finds a; ~ —8.4,
7 ~ 6.7, and n;, ~ —19.9. In both cases, since 5/ > 0, the neutron matter pressure will

continuously rise with u.

However, we now observe that

3 14 4 5
o-n [ (- 5) ¢ [+ -] e

evaluated at the saturation density and using € = 1/3, S, = 30 MeV and S/ = 15 MeV, is
Q1 >~ —10.3 MeV. Obviously, the neutron matter properties and the symmetry properties
cannot be separately adjusted.

Most Skyrme forces have the properties that both ; and Q] = (dQ(u)/dInu); = [p, —
ps — S| have small magnitudes: if they don’t, their neutron matter has problems. Setting
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(@1 to a small number also results in small values for @}. since for e = 1/3, the value of 5"
is nearly zero, setting 57/ = 0 will ensure that @); is small. The coupled set of equations to
determine o, and 77, in this case are

Se 1 a n
T, 3 2
S 2 a4 2 4 (3.25)
T, 92 gl
These result in 5 1S _ 3G
S S R Y
372 2 T,
L » S—g (3.26)
=+ -3 v~ 11
=3ty T,

The neutron matter energy and pressure are now implicitly closely coupled to S, and S/
such that ey ~ S, — B and py1/p, ~ S.. For Hebler & Schwen ﬂfé] estimates of ex 1 >~ 14
MeV and pn1/po =~ 2 MeV, we find S, ~ 30 MeV and S] ~ 10 MeV. In this case, oy, >~ 1.2

and 1 ~ 0.7.

Alternatively, one could use a value of € < 1/3, resulting in 5” > 0. To ensure @); = 0,
a positive value for 7 is also obtained. This results in different values for o, and 7, and a
different relation between S, S; and en1, Py 1.
Thus, it would be interesting to fit nuclei to determine the correlation between S, and S/ for
a couple different values of €, such as 1/3 or 1/6. One could then also add the correlations
for S, and S; obtained from the relations reduced from theoretical studies of neutron matter
energy and pressure at the saturation density.

3.3 Optimized Parameter Set

Adding new density dependent interactions solves nuclear incompressibility, optical potential,
and pure neutron matter properties. To find an optimized parameter set, o, Srv, and,
Nr,u, we may compare the experimental binding energy of single nucleus with theoretical
calculation from the modified model. For this set, we fix 8” = 0, which gives proper nuclear
incompressibility (K ~ 235 MeV) and varies S, and S/ (= L/3). Since the experimental
error in the binding energy is extremely small, so that it is meaningless if we define x? in
conventional way, instead we define the y? as

1 Bewi — Bini \°
2 ex,i th,i

) ) .2
X NZ< o ) (3.27)

where N(= 2336) is the total number of nuclei in the calculation and o is a mean error
(arbitrary). The B, is the data @] and By, ; is the numerical calculation.

The yo has a unit of MeV so we can estimate the mean difference between B,, and By, in
each calculation. Even though our code is fast to calculate single nucleus’s properties, the
number of calculation for this contour plot is 2336 x 41 x 41 ~ 4 - 10° so we wrote a simple
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a=0.595fm, n=2336 nuclei, p,=0.158fm""

I o22= 7.54 ]

290 523150 ]

i L/3=18.90 ]
20 7
> r i
() ~ |
é L i
2 B _
. WS, i
J | -
WOT 7
57 | b | .\ | | | | | | L L | |

08 30 32 34 36

S, (MeV)

Figure 3.1: Solid line shows the contour plot of S, and L from FRTF II model. There is a
strong correlation between S, and L. The dotted ellipse at the center represent statistical
calculation from Eq. (3:28) ([3.29), which makes y? = 8.54.

parallel code for it. Fig. B.1lshows the contour plot of S, and L using FRTF II. The dotted
ellipse at the center is a statistical calculation from Eq. (328) and (329]), which makes
x? = 8.5 to compare with the contour plot from numerical calculation. This contour plot
implies strong correlation between S, and L. This strong correlation also implies the strong
correlation between S, and 5, in liquid droplet model when we extract the information of
Ss from semi-infinite nuclear matter using FRTF model.

The x%0? = 7.54 MeV? gives mean error v/7.54/100 ~ 0.027 MeV per nucleon. This y?o?
can be reduced upto 4.72 MeV? if we add semi-empirical formula for pairing 12/+/A and
shell effects. We used the Taylor expansion for x?¢? to find og, and o7 which are

2
o’ [X2(P) - X(Z)} = Z 5pz'j/\/lij5pij (3-28)

ij=1
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where p = (5,, L) and M,; = %Opﬁpj |p. Then the definition of og,, 01, and Rg, ; are given
by
Ug _ 28%9(2 o2
v 0% X2 0ix* — (0s,00X%)?

20% x* )

0L =7 2 22 127 (3.29)
95, x> 91 x* — (0s,0Lx?)
ds,0Lx*
Re ; — —_ US9LX
Sy,L %

Fig. shows the 95% confidence interval of S, and L from FRTF II and Kortelainen et
al. ] Our result has a simliar mean points of .S, and L with Kortelainen et al. but strong
correlation since Kortelainen et al. chose several parameters such as ps, R,,, K at the same
time. The S, and L are on the same line and very close to each other.

140 T T T T 3 T N T
confidence interval, Kortelainen et al
Mean of S, and L of Kotelainen et al
120 | confidence interval, FRTF N2, exchange pot-’--------
Mean of S, and L of FRTF N2, exchange pct o

100

80

60

L (MeV)

40

20

0+

-20 +

40 1 1 1 1 1 1
24 26 28 30 32 34 36 38
S, (MeV)

Figure 3.2: This figure shows 95% confidence interval from FRTF II and Kortelainen et al.
ﬂﬁi. The red (blue) ellipse is the result from Kortelainen et al. (FRTF II). Our result has the
similar slope with Kortelaine et al. but a stronger correlation. Kortelainen et al. assumed
o =2 MeV, for FRTF II we used 0 = 1.6 MeV.

Recently Lattimer and Lim ﬂﬁ] summarized the allowed region of S, and L and compared
those result with liquid droplet model. Our optimized values of S, and L are also inside the
overlapped region of S, and L from several experimentally allowed region.

Fig. shows S, and L allowed region. The blue sky region is the result from Sn neutron
skin [48]. GDR comes from giant dipole resonance ﬂb] There is a restriction from 2%Ph
dipole polarizability @] HIC represents the result from heavy ion collision @] Nuclear
masses is the result from Korelainen et al. ] The hatched region comes from neutron
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Figure 3.3: Several experimental result can restrict the S, and L. Our optimized S, and L
are in the white overlapped region in the middle of the figure ﬂﬁ]

star observations @] There are also pure neutron matter calculations with purple polygons

, @] This allowed region of S, and L will give important constraints to develop new
nuclear force model in the future.
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3.4 Nuclear Surface Tension

Compared with the truncated model, the modified model has a lower critical temperature
and surface tension. These properties will be used to construct E.O.S table using liquid
droplet approach. In the liquid droplet approach (chapter 6), the surface tension as a func-
tion of T" and proton fraction x is required.

The critical temperature for asymmetric nuclear matter occurs when the dilute and dense
matter have the same density and proton fraction. In general, the proton fractions in both
dense and dilute matter is different each other except for symmetric nuclear matter. The
surface tension can be obtained only numerically using Eq. (2.70).

The surface tension for nuclear matter at finite temperature and given proton fraction can
be approximated ﬂﬂ] by

(@ T) = wol;) {1 _ (%)T (3.30)

For both the truncated model and the new model, p = 5/3 explains the numerical behaviors
very well.

The critical temperature at which both the dilute and dense phase have the same density
and proton fraction, is approximated by

T.(x;) = To(z; = 0.5)(1 4+ a(l — 22;)* + b(1 — 2:)* + (1 — 22,)°). (3.31)

The a, b, and ¢ can be obtained by x? minimization between the numerical result and fitting

Table 3.1: The critical temperature analytic fitting function

Model Teo a b c
Truncated 17.354 -0.5006 0.66126 -1.33316
New 14.626 -0.4296 0.34216 -1.00298

function. Fig. B.4] shows the plot of critical temperature of numerical and fitting function.
This fitting function is used to calculate finite temperature surface tension in Eq. (330).
The surface tension at 7" = 0 MeV and Y}, = 0.5 is also a function of proton factions. wy can
be approximated with fractional function as in LS model,

2-2%+¢q

wo(l'i) = WO(xi = 0'5)1’-_0{ +q+ (1 _ x.)—a

(3.32)

The parameter « is left free so that we can choose from 2 to 4.0 and q is obtained from x?
minimization. For both models, the best a’s are 3.6 and 3.7.
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Figure 3.4: The critical temperature as a given proton fraction: Numerical result and analytic
fitting function.

Table 3.2: Surface tension analytic fitting function for finite range model

Model  wo(z; =0.5) « q
Truncated 1.25728 3.6 39.0552
New 1.02824 3.7 56.0479
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Figure 3.5: Surface tension at T'= 0 MeV as a given proton fraction: Numerical result and

analytic fitting function.
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Chapter 4

Gaussian Type Finite Range model

f The finite range force can be managed with Gaussian distance (f(r) ~ e~(7/7)%) depen-
dence. This distance dependence does not represent the repulsion when the distance between
nucleons so close (< 0.1fm) but it can be justified since the total interaction energy is ob-
tained from phase space integration. It also give a better representation of radii of nuclei
and neutron skin than the Yukawa type finite range model.

4.1 Nuclear Density Functional Theory

4.1.1 Energy density functional

The energy of nuclear matter is given by
E =Tyin+ Err+ Ezr+ Ec + Es 1, (4.1)

where Tyin, Err, Ezr, Ec, and Egp are the kinetic energy, nuclear finite-range interac-
tion, zero-range interaction, Coulomb interaction, and spin-orbit coupling respectively. The
kinetic energy contribution from nucleons is simply obtained by

h2
Tin = | & —7, 4.2
3 / r; 5T (4.2)

where t is the type of nucleons.
In this Gaussian nuclear density functional (GNDF') theory, the number and kinetic densities

are
1 o0 1 o
pt — W/; ft d3p, T = W/; ftp2 dgp, (43)

where f; is the Fermi-Dirac density function,

1

= e (4.4)

fi

TThis chapter is based on Y. Lim’s work, arXiv:1101.1194. This work will be modified and resubmitted.
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For the finite-range term, we use a Gaussian phenomenological model for the nuclear poten-
tial,

1
Brr =Y g [ e Vin(ron(es) + Viondrop(rs)
t
1 —T‘z 7“2 € € € €
+> e / dPrydProe /" [VzLW (r1)pi ™ (r2) + Vaupi (1) py" (7"2)]
t
1 T T
+Zm/dsrld37’26 f2/78 X
t

[/ oo d®pia fo froVarpis +/dgptldgpt’2ft1ft’2vz’,Up%2:| )

(4.5)

where pi1s = |p; — Py, r12 = |r1 — 72|, 7o is the length of interaction, and Vi, Viy, Var, Vau,
Vs, and Vap are interaction parameters to be determined. The last term is added to explain
the effective mass of nucleons in dense matter.

The zero-range term in the nuclear force can be regarded as the energy contribution from
three-body nuclear forces. The three-body force is quite important if the baryon density
increases beyond two or three times the saturation density. One possible form of the three-
body force is M]

Ezn=ts [ Eronnhny(r)o). (4.6)

where t3 is the interaction strength for a three-body force, p,, (p,) is neutron (proton) density,
and the p is total density.

The energy functional for the Coulomb interaction has an exchange term which is absent in
classical physics,

Ec = B¢’ + B¢
2 4.7

12 4

In bulk nuclear matter, the spin-orbit and Coulomb interactions constitute a small portion
of the total energy, so we neglect these two terms. Then the bulk density functional would

be
Ep = Tiin + Err + Ezp

= / d’rép(r), (48)
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where Ep is the energy density for bulk matter. Using Eq.([4.2), (4.3), and (.6]), we find

£y — kT, hsz
2m 2m
+ Vir(pn(pn) + pp(op)) + Viv(pn(op) + pplpn))
—|-V2 1+5< 1+5> _I_p1+5< 1+5>) ‘|'VQU( 1+e<p11)+e> _‘_p1+e<p711+e>)

% (4.9)
+ Var(pn{Tn) + Talpn) + pp(7p) + 7u(0p))
+ Vau (pn{mp) + Tulpp) + pp(Ta) + Tp(pn))
1
+ S taPnpp
where we defined the Gaussian-type integral using ‘(...)":
1 _7,,2 7,,2
<U(T1)> 73/27’ /d3T26 12/ OU(TZ) . (410)

4.1.2 Effective mass, Potential, and Thermodynamic properties

The effective mass of the nucleons at the nuclear saturation density is about 0.7mpg. Some
nuclear density functionals use the effective mass m* = mp. However, we introduce the mo-
mentum dependent interaction which describes the effective mass of nucleons. The functional
derivative 0 F'g gives us the effective masses and potentials in the nuclear density functional,

h2 h2
_ 3 _
OEp = /d r(Vn(Spn + széTn + V,0p, + 2m;§57_p> ) (4.11)

Now we get the effective mass for neutrons and protons,

S R 12

and the potentials

Vi, =2\ Vir{pe) + Vir(pw) + (1 + €)p (Var (pi ™€) + Vaur (pi™))
(4.13)

1
+ Var(m) + V3U<7—t’>} + Zt3(2pt + p)py -
The thermodynamic properties are extremely important to properly describe the hot dense
matter. The degeneracy parameter, which is in the Fermi-Dirac distribution function is the
key, to open the thermodynamic properties. Using the Fermi-integral, we get the baryon
number density and kinetic density with degeneracy parameter ¢, = (s — V4) /7T,

1 (2m;T\*"? 1 omrT\ /2
pt = ﬁ( h; ) Fl/2(¢t)? Tt - %< h; ) F3/2(¢t) . (414)
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Landau’s quasi-particle formula gives us the entropy density S;, which tell us how to find
the pressure in this density functional,

2 552 v
—o5 [ @plfnfit (1= f) (1= f)] = 7 He - L. (4.15)
t

St:

From the thermodynamic identity and entropy density given above, we can get pressure,

D = nPn + tppp + TS, + TS, —E
5h?

:Z( *Tt+‘/;€pt)_5
— \ 6m;

_ RPm, PP

=5 5 L Vin(palon) + pplon)) + Viv(on(op) + pplon))

+ Var(1+26)(p (") + 0, (0 ™))
1+e/ 1+e 1+e/ 1+e (416)

+ Var(pn(Tn) + z wlpn) + pp(Tp) + z »(Pp))

3 3
7 7
+ V})U(/)n<7'p> + ng<p;n> + /);n<7'n> + ng<pn>)
1
+ §t3ppnpp :

At zero temperature non uniform matter, the chemical potential of the proton and neutron
are given by,

h2

= (3772Pt)2/3 +V;

*
t

(37 p)*" + 2(Var(pe) + Vau{pw)) (372p1)/° (4.17)

2m
h2
" 2m
+ 2| Vairlpe) + Vir(pw) + (1 + €)p (Var{pit) + Varr (pp7)) + Var () + Vau (1)

1
+ Zt3(2pt + pe)py -

4.2 Parameters for the Gaussian nuclear density func-
tional

Every nuclear model should reproduce five nuclear matter properties: binging energy, pres-
sure, nuclear incompressibility, symmetry energy and effective mass, m*. We use the satu-
ration properties of nuclear matter to determine the parameters of the density functional.
For zero-temperature uniform nuclear matter, we have the energy density as a function of
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u=p/po and x = p,/p,

& 3
ﬁ _ g22/3u5/3[(1 _ x)s/s + x5/3} 4+ [U1L($2 + (1 —2)%) + 2vpa(l — :c)}
000
+ QIR 2R2 [y (22026 4 (1 = 3)22) - Qa1 — )] (4.18)

+ 22/38/3 [ng(:c8/3 +(1- SL’)8/3) + vgp(z(1 — x)5/3 + :c5/3(1 — :c))}

1
+ Ztgugx(l —z),

where we define the parameters

h? Po L/ po\1t2e
T — —(372p0/2)3/2 _ Py, :_<_> V.
0 2m( 7T/)o/) ,  UViLu T, 1L,U > UV2LU o\ 2 2L,.U

(4.19)

4 - 35/371'4/3 00 5/3 p2

- ° <_> =10
3L,U » 3

— 04,
5T, 2 T,

UsL,u =
Now we assume that the momentum-dependent interaction is blind to the type of nucleon,
so V3 = Vay(vs = vsp + vsy). The binding energy of symmetric nuclear matter (u = 1,
x = 1/2) is then given by

50 3 UlL—l-'UlU (R} tg
O =712 il -4+ = 4.20
o 0 0[5+ 5 +U2L+U2U+2+16 ; (4.20)

where By = 16MeV is the binding energy per baryon at the nuclear saturation density.

The pressure at the saturation density vanishes, which means that the energy per baryon
has its minimum at the saturation density,

2 vt D 1
Po = pQTQ [g + % + (1 + 26)(U2L + UQU) + 6'113 + gt/g:| =0. (421)

The incompressibility parameter at the saturation density is given by

dp
Ky =9—
0 dp

P=pP0
27 (4.22)
= T() [6 + 9(’111[, + UlU) + 9(1 + 26)(2 + 26)(U2L + UQU) + 20U3 + —tg]

8
= 265 MeV .

26



The symmetry energy in nuclear matter is defined as

1d*(€/p)
Sy =c— 5
1w —w 5 1 (4.23)
=T [g + % (14 (1 +20)ar — vap) + 7203 = 75T
= 28 MeV .
Another parameter, which is related to symmetry energy, is given by
I — 3po d*(€/p)
Y 2
8 dpdx p=po,i=1/2
2 3 25 3,1 (424
= Tg g + §(U1L — UlU) + 3(1 + 26)(1 + 6)((1 + 26)U2L — U2U) + 1—8@3 - éts
=54 MeV .

We choose the effective mass at the saturation density as 0.78m; and use this number in the

Eq. @12),

m
= = 0.78my . 4.25
m 1+ 2mpoVs/h? o ( )

Thus we can easily recover vz from Eq. (£19). From Eqs. ([£20), (@21, and ([£22), we can

_ /.
have v; = vy, + var, V2 = vVor, + vy and 5 :

. 5K0/T0 + 5U3(1 — 36) — T2 — QOBO/TO(]. + 26) —12

. 45¢
12 + 9OBO/TO — 5K0/T0 — 5U3
= 4.26
2 90e(1 — 2¢) (4.26)
168, 48
té = —8U1 — 16’112 — 8U3 — TO — g .
Then we can manipulate Eq. (£.23), and (4.24]) to get vy, and vy,
1 +1 5(1 — 3e) +2€—1t,+(1+26)sv L 1+6e
v = =U1 + — v - — =
TR DY SR T T 3, 9
(4.27)

Vo =

1 1{5 thva

21t I+ eZ|27” 16 T, 3, 9

and we can have vy = v; — vy, and vy = vy — Var,.
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Table 4.1: Interaction parameters when € = 1/6, K = 265 MeV, S, = 28MeV, L = 54MeV.

/
v1L vy Vo, Voys U3L,U I3 o (fm)

-1.766 -3.472 0.410 0.931 0.169 1.177 1.205

4.2.1 Determination of the 1 + ¢ power

We added in Eq. (3 the auxiliary density interaction with the 1 + ¢ power. We might
regard 1+ € as the many-body effect—for example, a three-body force if € > % It is known,
however, that interactions among more than three-bodies are unimportant in dense matter
@] Thus we can restrict the € to be less than % As € changes, the t3 parameter changes
sign, which means that the three-body force can be attractive or repulsive. In the general
Skyrme model with the three-body force, the t3 parameter is positive. We choose € = 1/6 so
that the interaction has the form of p;/ 0 ,0:2/ % In zero-temperature, uniform matter, we have
u"/? terms in the energy density. From Eq. ([@IX), the energy density has u®/3, u?, u™/3, u8/3,
and u? terms if we have ¢ = 1/6 so we can use a statistical approach in uniform matter. Fig
@1l shows the energy per baryon from GNDF and APR [35] EOS. We can see that as the

density increases, the pressure from the two models agrees very well.

—20F ‘ ‘ ‘ ‘

000 005 010 015 020 025
p (fm™)

Figure 4.1: The solid line represents the energy per baryon (uniform matter) using GNDF.
The upper (lower) curve represents the energy per baryon of pure neutron matter (symmetric
nuclear matter). The energy per baryon (dotted line) from the APR ﬂ@] EOS is added for
comparison.

4.2.2 The effective range of the nuclear force : r,

In the Gaussian-interaction model, we can see that the effective range of the force is given
by 7o, which is approximately ~ 1 to 2 fm. We do not have an analytic form of rg, so we
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Figure 4.2: The left figure shows the quantity py — p(z) at the semi-infinite nuclear surface
when 7o = 1.205 fm and Y, = 0.5. The surface tension from this configuration is w = 1.250
MeV fm~2. The right figure shows the surface tension (solid line) and tgg_1o thickness (dashed
line) as a function of ro. When 79 = 1.205, tg9_10 = 2.412 fm. The surface tension and tgp_19
thickness are both linear functions of rg.

need to rely on the numerical solution of the surface tension of semi-infinite nuclear matter:

W= / (& =T8S, =TS, — pnpn — tppp + po|dz = —/ [p(z) = poldz, (4.28)
where pg is the pressure at 2 = —o0 or z = +00. In one-dimensional, semi-infinite nuclear

matter, we assume that the nuclear density depends only on the z-axis. The Gaussian
integral then becomes

ﬁ/i%ng / Pru(r) = —— / " duz). (4.29)

71-1/2710 —00

Experimental values for the surface tension and surface thickness are w = 1.250 MeV fm~2
and tgg_19 = 2.3 fm. Fig. shows the numerical calculation, which says that ro = 1.205
fm from the surface tension and ro = 1.149 from tgy_1o thickness. There is a 5% discrepancy
between the two results. Table [4.1] shows the interaction parameters which we use in this
paper when K = 265 MeV, S, = 28 MeV, L = 54 MeV, and € = 1/6. The simple density
dependent interactions (vir ) are attractive. On the other hand, the auxiliary density
dependent interactions (ver ), momentum dependent interactions (vsz ) three-body force
(t3) are repulsive in our model.
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4.3 Nuclear matter and nuclei

4.3.1 Specific heat

The specific heat of uniform nuclear matter can be obtained by

Cy=T

85) _OE (430)

or|,” ar|,

For a non-interacting Fermi gas, the specific heat increases linearly with temperature. When
the temperature is low enough, we expect that the specific heat of the nuclear matter tends
to behave like a free Fermi gas. The specific heat formula for the degenerate gas is given by

134]

1
Cy = grn>*<1<;pl~ﬁgir, (4.31)

where m* is the effective mass of a nucleon, kr is the Fermi momentum, and kg is the
Boltzman constant.

However, as the temperature increases, non-linear behavior of the specific heat becomes
apparent so that the degenerate gas formula is no longer valid, due to the excitation of
nucleons deep inside the Fermi surface.

1.5
1.0 ]
—~ F i -
= -
[ - 51
2 T g atm
: ST e
&) - I
T p=0.5fm™
L 1 L L L L
15 20

Figure 4.3: This figure shows the specific heat per nucleon of uniform matter for different
densities. If the temperature is low enough, the specific heat behaves linearly with temper-
ature.

To calculate the specific heat of uniform nuclear matter, we use the Johns, Ellis, and Lat-
timer (JEL) method @], which enables us to get the pressure, energy density and entropy
density for a given degeneracy parameter. Fig. shows the specific heat per nucleon of
uniform nuclear matter. It shows the linear relation between the specfic heat and tempera-
ture at low temperature region as in Eq. ([{.31]).
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Figure 4.4: This figure shows the basic properties of the closed-shell nuclei which can be
obtained from the GNDF. The solid (dotted) line indicates the neutron (proton) density as
a function of radius. As the number of nucelons in the nuclei increase, the neutron skin
thickness (R, — R,) increases.

A detailed calculation of the specific heat at sub-nuclear density in the neutron star needs to
take into account the beta-equilibrium condition and heavy nuclei with a neutron gas. The
specific heat plays an important role in the cooling process of neutron stars. In the neutron
star crust, there are heavy nuclei and a free-neutron gas. The effective masses of protons
and neutrons are different from the center of the heavy nuclei and dilute neutron gas, so
we cannot use Eq. (A3I]). In this case the specific heat at the neutron star crust can be
calculated numerically by changing temperature and comparing the total energy change.

4.3.2 Nuclei at T'=0 MeV

We can use the GNDF theory and the Lagrange multiplier method to find the radius and
binding energy per nucleon for a single nucleus using the Winger-Seitz cell method. In the
Lagrange multiplier method, the chemical potentials of protons and neutrons are constant
in the Wigner-Seitz cell to minimize the total free energy. Fig. 4 shows the radius and
binding energy of the closed-shell nuclei obtained using this method. These results agree well
with the experiment @] “0Ca has a larger charge radius than the neutron radius because
of the Coulomb repulsion between protons. The solid (dotted) line denotes the neutron
(proton) density. As the atomic number increases, the central density of neutrons increases;
on the other hand the central density of protons decreases. The difference between charge
and neutron radii increases and the neutron skin becomes thicker as the atomic number
increases. In 2°*Pb nuclei, the central density of protons is lower than the proton density of
the outer part of nuclei (r =4 — 5 fm) because of proton Coulomb repulsion.

Table shows the proton and neutron radii and binding energy per baryon of closed
shell nuclei from various nuclear models. The calculation from GNDF theory agrees well
with experimental results.

4.3.3 Heavy nuclei in the neutron star crust

In the neutron star crust, heavy nuclei are formed with a free-neutron gas. These heavy nuclei
are suspected to form a body centered cubic (BCC) structure. In the static equilibrium state,
we calculate the density profile of heavy nuclei with a neutron gas using the Wigner-Seitz
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Table 4.2: Comparsion of the results from Steiner (Potential & Field Theoretical) et al.@]
, FRTF I(truncated), FRTF II(modified) and the GNDF

Nucleus Property Experiment Potential FT ~ FRTF I FRTF II GNDF
208py e, (fm) 5.50 5.41 5.41 5.38 5.45 5.44
BE/A(MeV) 7.87 7.87 7.7 8.01 8.17 8.02
OR(fm) 0.12 £ 0.05 0.19 0.20 0.15 0.13 0.14
0.20 £+ 0.04
07y Ten, (fm) 4.27 4.18 4.17 4.10 4.15 4.17
BE/A(MeV) 8.71 8.88 8.65 8.77 9.00 8.72
OR(fm) 0.09 £+ 0.07 0.075 0.093  0.064 0.054 0.057
0Ca ren (fm) 3.48 3.40 3.34 3.22 3.26 3.31
BE/A(MeV) 8.45 8.89 8.61 8.47 8.77 8.33
OR(fm) -0.06 £ 0.05  -0.044  -0.046 -0.036 -0.039  -0.042
-0.05 £ 0.04

Cell method. The plot on the left side of Fig. shows the proton (dotted line) and neutron
density (solid line) profiles from the center (r=0 fm) of heavy nuclei when p = 0.01fm=3.
There are dripped neutrons outside of the heavy nuclei. The cell size (Rc), which is a rough
estimate of the distance between neighboring heavy nuclei, is determined by nuclear density
and beta equilibrium conditions (p,, = p, + pe). There is a wave function overlap at the
boundary of the Wigner-Seitz cell. The actual distance between heavy nuclei is (87/3)/*Re.
The right side of Fig. shows the binding energy per baryon as a function of Wigner-Seitz
cell size. As the density decreases, the cell size increases and the energy per baryon converges

to —8.0 MeV.
Table 4.3: Nuclear properties in the neutron star crust
p (fm?) p (MeV /fm?) e (MeV/fm?) Niue Z Re (fm)
5.623x 1072 0.181 53.06 271.6 89.51 25.12
5.012x1072 0.147 47.27 218.0 32.18 18.70
3.981x1072 9.332x1072 37.52 137.8 21.69 18.06
2.512x1072 3.965x 1072 23.65 145.3 27.93 22.77
1.585x1072 1.976x1072 14.91 150.7 32.07 26.36
1x1072 1.081x1072 9.405 147.7 34.29 29.15
1x1073 7.988x107* 9.383x107! 116.3 38.50 40.71
1x1074 6.945x107° 9.352x 1072 79.23 38.31 65.47
1x1075 1.480%x107° 9.326x 1073 58.02 36.98 131.4
1x10°¢ 2.362x107° 9.311x10~* 47.90 35.14 270.6
1x1077 1.714x107° 9.303x107° 43.37 34.10 569.7

Table shows the thermodynamic properties and physical dimensions of nuclei in the
neutron star crust. N, and Z are the number of neutrons and protons of heavy nuclei in
the Wigner-Seitz Cell respectively. The atomic number of heavy nuclei remains Z ~ 35 for
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Figure 4.5: In a neutron star, heavy nuclei exist. The left figure shows the density profile
of proton (dotted line) and neutron (solid line). » = 0 fm means the center of heavy nuclei.
Outside the heavy nuclei, there are dripped neutrons. As density decreases, the cell size
increases and the energy per baryon converges to —8.0 MeV.

a large range of densities before the phase transition to uniform matter. This means that
the proton fraction decreases as the density increases. For a narrow range of densities, the
atomic number suddenly increases and the heavy nuclei merge with free neutrons to form
uniform nuclear matter.

E n = 0.001/fm?
o 09t R, = 40.283fm
>~ f
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Figure 4.6: Effective mass of nucleons in the Wigner-Seitz cell as a function of radial distance
from the center of heavy nuclei. Since the nuclear interaction is weak at the boundary of the
cell, the effective mass of nucleon and the pure mass of a nucleon become equal.

Fig. shows the effective mass of nucleons in the Wigner-Seitz cell. The effective mass
of nucleons in the Wigner-Seitz cell is given by Eq. ([£I2]) and Eq. (£I9) combining to give,

m

5 (4, 2t AN
1+ 3 <U3Lp0 + v3y p0>

m; =

(4.32)
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Since we assume that the momentum interaction is blind with respect to isospin, the effective
mass is identical for different isospin nucleons. The effective mass to pure mass ratio of
nucleons is 0.78 at the center of the heavy nuclei and becomes 1 at the outer region of the
Wigner-Seitz cells since the density of nuclear matter is low at the outside of the heavy
nuclei, the interaction energy of nuclear matter is weak.

4.4 Phase transition

In the neutron star, we can see two types of phase transitions: one is the phase transition
from nuclei with a neutron gas to uniform matter, and the other is the phase transition
from uniform nuclear matter to quark matter. During the first phase transition, we can see
the nuclear pasta phase ] . That is, spherical nuclei become ellipsoidal, then cylindrical,
and finally slab phase before nuclear matter becomes uniform matter. However, the energy
difference is quite small, so that the effects on the large scale physics are negligible. On the
other hand, the second phase transition is quite dramatic. The energy and pressure change
significantly from nuclear matter to quark matter.

4.4.1 Uniform matter

To check the phase transition points from heavy nuclei with a neutron gas to uniform nuclear
matter, we can simply compare the energy per baryon of uniform nuclear matter with the
energy per baryon of nuclei with a neutron gas since the nuclear matter exists in the lowest
energy states. The energy per baryon in uniform matter can be easily obtained by changing
the (...)" integrals to non integral form from Eq. ([@I]]) since the Gaussian integrations in
uniform matter become unity. Typically there is a phase transition around 0.5p.

We know that in the outer crust of the neutron star the nuclei have a BCC structure.
If we assume that the pasta phase exists in the low-density region, we may use the density
perturbation to see the phase transition from nuclei with a neutron gas to uniform nuclear
matter. We use the wave number perturbation to see the energy exchange, which has contri-
butions from the volume effects, gradient effects, and Coulomb energy can be approximated

2],

4Ame?

@+ ki
where ¢ is the sinusoidal variation of the wave number in the spatially periodic density
perturbation. The volume term is given by

2

8/);0 (aﬂn/ﬁpn> .

v(q) =~ v+ Bg* + (4.33)

T Around 1/2pg, spherical nuclei is deformed to be oblate nuclei, cylindrical phase, slab, cylindrical hole,
and bubble phase to minimize the total free energy density. Since its shape resembles Italian pasta, it is
called ‘nuclear pasta’ phase.
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The energy exchange from the gradient has the form

_ 2 _

(4.35)

where the coefficients of the gradient terms are given by D,, = D,, = D,,, = 132MeV - fm®
HE] The krp in the Coulomb interaction represents the inverse Thomas-Fermi screening
length of the electrons. When we see the change in the sign of v, the uniform matter phase
is more stable than the periodic structure of the nuclei. The v has a minimum at

Umin = Vo + 2(477-625)1/2 - Bk%F ) (436)

when q7,;, = (4me?/B)'/2 — kip.

Another way to see the phase transition is to use the thermodynamic instability. The
thermodynamic stability condition can be described using the inequalities NE, ],

—(%—P) >0,
U/

(4.37)

where P = P, + P, is the total pressure from electrons and baryons and p = g, — p, is
the difference between the neutron and proton chemical potentials, which is the electron
chemical potential in beta-stable matter. ¢. is defined as ¢. = z, — p./p. Mathematically,
the inequalities in Eq. (A37) show that the energy per baryon is convex. Eq. (£37) can be
verified to be [18, [1]

(OP\ _ OE(p, xy) 2 2B (p, ) _ E(p, ) ’ O E(p, )
(811 )M -7 {Qp op e op? 0pozx, r / o3 >0,

0 PE - 2
(G _(TEw)y T ke
dq. ), ox? m2h3p
The second of Eq. ([A38)) always holds, so the first will determine the phase transition in the

neutron star crust. Xu et al.[18], use a simple equation to determine the instability using
the thermodynamic relation,

(4.38)

2 2 10 92 2 2 2
20E 0°E  0E 0°E <8E) _8un8up_<3ﬂn). (4.39)

I _l_ — —

p Op Oxz  Op? Ox3 opoz, Opn Opy opy
Eq. ([E39) is equivalent to the volume part of the thermodynamic perturbation Eq. (34
method except that there is a du, /Jp,, difference. Comparing the two methods (pertubation

and thermodynamic instability) shows the effects of the gradient and Coulomb terms in the
perturbation method on the transition densities. Fig. .7 shows transition densities using
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the perturbation method and thermodynamic instability. The perturbation method has a
lower transition density (0.355p0) than thermodynamic instability method (0.406p).
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Figure 4.7: We can see the transition density from nuclei with a neutron gas to nuclear
matter. The solid line denotes the curve from the perturbation method. The dotted line
corresponds to the thermodynamic instability method, equivalent to vy in the perturbation
method. The solid line has a transition density of 0.355p, and the dotted line has a transition
density of 0.406p.

4.4.2 Quark matter

In this model, we do not consider the appearance of hyperons ﬂﬁ] since it is not clear how the
hyperons and nucleons interact. Thus we simply consider the phase transition from uniform
matter to quark matter. We use the MIT bag model ﬂﬁ] for the quark matter equation of
state. At T=0 MeV, the pressure and energy density are given by [37]

1 2 4\1/2 2 4
p:_B+ZW|:Mf(Mf mfc)/(:uf_imfc>
f

3 + mic 1/2
+—mfccgln<uf (/"Lf - ) ):|
2 myc

(4.40)
3
e=DB+ E W{Mf(ﬂ me )1/2(:uf_§mffc4)

1 + m /2
_—m;lcc8ln<uf ('uf ) ):|>

myc?

66



12007 ; ; ; ; - -
: i ] 200
1000 r b

a
o
T

800 .

€ (MeV/fm?)
)
S
T

p (MeV/fm?)

600 1

400 .

200F - N
C L L L L L |

00 02 04 06 08 10 12 00 02 04 06 08 10 12
p (fm™) p (fm™)

Figure 4.8: The left panel shows the energy density of nuclear matter (dotted line), quark
matter (dashed) and mixed phase (solid). The right panel shows the pressure of nuclear
matter (dotted lined), quark matter (dashed) and mixed phase (solid).

where the density for each quark flavor is given by

(= i)

PI= e (4.41)

For the pure-quark phase we use m, = mg = 0, my; = 150 MeV and B = 100 MeV fm =31, In
the mixed phase of uniform nuclear matter and quark matter, we apply Gibb’s conditions
to minimize the free-energy density with two constraints, which are related to total number
density and charge neutrality,

po = xpn + (1= x)pq
Q=xQn+(1-x)Qe=0,

where x is the volume fraction of the uniform nuclear matter in the mixed phase and the
subscript N (Q) represents nuclear (quark) matter. In the mixed phase, the total charge is
globally neutral in contrast to pure nuclear matter and quark matter. From minimizing the
free energy, we have

(4.42)

PN = DPq
Pp = 2by + fla

then we have the energy density of the mixed phase

€ = XEN + (1 — X)EQ . (444)

THere B is the bag constant for the MIT bag model not the binding energy per baryon for nuclear matter.
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Figure 4.9: The left panel shows the mass-radius relation of the neutron stars (dotted line)
from the GNDF and the hybrid stars (solid line). The right panel shows the number density
profile of a hybrid star which have M= 1.44M.. At r ~ 5.0 km, the phase transition to
nuclear matter takes place, and protons and neutrons exit. When r=8.2 km, the phase
transition to nuclear matter is completed and there is no more quark matter.

As in the case of uniform matter, we assume beta-stable matter so that the chemical poten-
tials of the nuclear matter and quark matter have the relation

Hn = fp + He

(4.45)
Hd = s = Mo T fe -

Fig. shows the energy density and pressure as a function of number density. The dotted
(dashed) line represents nuclear (quark) matter. The solid line denotes the mixed phase.
The phase transition begins when the baryon density becomes 1.386p, and all nucleons turn
into quark matter when the baryon density becomes 5.236py.

If there is a phase transition in the core of a cold neutron star, the mass and radius are
quite different from the case of a pure-nuclear-matter neutron star. The left panel of Fig.
shows the mass-radius relation of the neutron stars (dotted line) and hybrid stars (solid
line). The right panel shows the number density profiles of a quark matter and nuclear
matter of 1.44Mg, hybrid star. The maximum mass of a cold neutron star with mixed phase
(hybrid star) is 1.441Mg, and the central density of the neutron star is 9.585p,. The mass and
radius curve with the mixed phase indicates where the mixed phase exists. As the distance
from the center of the hybrid star increases, the phase transition to nuclear matter takes
place so that neutrons and protons appear (r ~ 5.0km). Far from the center, the phase
transition is completed (r = 8.2km); pure nuclear matter exists only for larger radii. The
existence of quark matter in the hybrid star can be explained by angular momentum loss
of the proto-neutron star. That is, a fast-rotating neutron stars loses angular momentum
because of magnetic dipole radiation; the central density of the neutron star increases due
to the decrease in centripetal force, then quark matter appears. Since quark matter has a
lower energy density than pure nuclear matter, we might expect heating of the neutron star
from latent heat from quark matter.
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4.5 Astrophysical application

4.5.1 Mass-radius relation of a cold neutron star

We know that the typical radius of a neutron star is ~ 10km and the mass is ~ 1.4M. In
this system, the degeneracy pressure of the neutrons provides support against gravitational
collapse. We can apply our model to calculate the mass and radius of neutron stars for
a given central density. We use the Tolman-Oppenheimer-Volkov (TOV) equations which
describe general relativistic hydrostatic equilibrium:

dp _ G(M(r) +4mr’p/c®)(e + p)

dr r(r —2GM(r)/c?)c?

(r = 2GM(r)/) )
am e ,
W = 471';7" .

Fig. shows the mass-radius relation for a cold neutron star. In the GNDF model, the
maximum mass of a cold neutron star is 2.163M,, and the corresponding radius is 10.673km.
The maximum mass from the GNDF model is in between the FRTF truncated model (FRTF
I) and the modified model of the FRTF (FRTF II)
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Figure 4.10: Mass-radius relation for a cold neutron star. The mass of a cold neutron star
from the Gaussian density functional model has a maximum mass of (2.163M) when the
central density is 6.74py.

4.5.2 Moment of inertia of the neutron star

In the slow-motion approximation, the moment of inertia is given by @]

8w [T 4 (A=1v)/2
I= N (p+Dpe wdr, (4.47)
0
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where A = —In(1 — 2m/r) and v are the metric coefficients and w is the rotational drag
function. In terms of the function j = e~M**)/2_ the rotational drag satisfies

d( ,.dw 5 dj
= 432 4.4
dr(r‘]dr) " (4.48)
with the boundary conditions
21 dw
=1-— — ] =0. 4.4
wr RS <dr ) . 0 (4.49)

Therefore, the moment of inertia can be written as

2 [, dj I dj RYd
I = ——/ 3w dr = —/ d(riw? ) =™
3 Jo dr 6 /o dr 6 dr
We note that the second-order differential equation that w satisfies, Eq. (£48]), can be instead
written as a first order differential equation in terms of the function ¢ = dlnw/dInr,

. (4.50)

d 0] dln j
D Lot -aro (4.51)
dr r dr
where Tl dorr?
n j r
= — 4.52
o (D), (4.52)
with the boundary condition ¢(0) = 0. The moment of inertia becomes
R3
I= F%wR = ¢—;(R3 —2I), (4.53)
using the boundary condition for w. This simplifies to
RPor
= : 4.54
6+ 2¢p ( )

Lattimer and Schutz proposed an empirical approximation for the moment of inertia ﬂﬁ],

Mkm

I~ (0.237 4+ 0.008)MR?*|1 + 4.2
( ) + VLR

(4.55)

+90<Mkm)} .

MR
Fig. [A.11] shows the moment of inertia of a cold neutron star. The color band represents

upper and lower boundaries of the empirical approximation. FRTF I, II and GNDF agree
quite well with this empirical approximation.
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Figure 4.11: Moment of inertia of a cold neutron star. The color band represents the upper
and lower boundaries of the empirical approximation eq (f55]). Three different models show
different curves; however, they represent the empirical results quite well.

4.6 Conclusions

In the GNDF model, the total energy consists of the kinetic energy, the finite-range effect,
the zero-range effect, and the Coulomb energy. Using the Lagrange multiplier method, we
find the potential energy, pressure, chemical potential and thermodynamic properties. The
interaction parameters are obtained from the properties of infinite nuclear matter. We are
able to obtain the charge radius and binding energy per baryon of the closed-shell nuclei.
The Wigner-Seitz cell size increases as the density decreases and the binding energy per
baryon approaches -8.0MeV. The effective mass becomes 0.78mpg at the center of the heavy
nuclei and becomes m outside of heavy nuclei. We are also able to find the pressure of
uniform symmetric nuclear matter and neutron matter. For finite temperature, we can see
the specific heat of nuclear matter follows the general trend of the free fermions. Thus
the GNDF model is a good nuclear matter model to study for both low and high nuclear
densities. We can improve the current model if we have more exact experimental results
and we add additional interaction terms to explain the experimental results. The phase
transition was studied using the GNDF model. The density perturbation suggested that the
phase transition from non-uniform nuclear matter to uniform matter takes place at densities
less than 0.5p9. When we take into account the phase transition from uniform nuclear matter
to quark matter, we see that there is a drastic change in the maximum mass of a neutron
star, since the pressure and energy density of quark matter are significantly different from
nuclear matter. The maximum mass of the hybrid star is less than 1.5Mg. Since the bag
constant is fixed in this study, we need to investigate the mass of hybrid star by varying the
bag constant.
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Chapter 5

Nuclear Energy Density Functional
and Neutron Stars

In this chapter, we study single nucleus, heavy nuclei in dense matter and mass-radius of
neutron stars using an energy density functional with parametrized density profile. Three
different models are used and each model shows similar nuclear properties in the subnuclear
density regions (p < 0.07 fm™3). Analytic formulae for the Wigner-Seitz cell size, number of
neutrons, and number of protons in the cell is given using least x? fitting between numerical
calculation and fitting function. The maximum mass of a neutron star is investigated,
revealing differences among the models.

5.1 Nuclear energy density functional

In the nuclear energy density functional, the interaction energy comes from the contact force
so the Hamiltonian density is a functional of number density and momentum density. For
comparison with a finite range force, we used three energy density functional models. The
first model is from Ref. ] (EKO), the second one is the Skyme-type Potential Model
(SPM) @], and the last one is the Skyrme-Lyon force (SLy4).

In EKO, the Hamiltonian density is composed of homogeneous and inhomogeneous terms,
H =Hp(pn, pp) + Hy(pns Pp, Von, V) + He. (5.1)

The homogeneous term has the form

i +h—2 + (1 = 0%)vy(p) + v, (p) (5.2)
S T Qmpr vs(p Un(p), .

Ho =

where p = p, + pp, and 6 = (p, — p,)/p. The quantities vy(p) and v, (p) are potential energy
density, which represents the potential contribution from symmetric nuclear matter and pure
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neutron matter respectively. Those contribution are given by

a
vs(p) = arp? + 22
1 + asp (5 3)
by p? .
a(p) = bip® + 20
1+ bgp

The inhomogeneity (gradient) term H, which is responsible for the surface tension of nuclei
is being used as

H, = Fo|Vp|?. (5.4)
The Coulomb energy density is given by
Bo= S [ @) = p) ) ~ 00 (5.5)
¢T3 i — P e)\Pp e) >

In SPM and SLy4, the Hamiltonian density is given in Eq. (2.3 Z4R252.62.7)

For all three models, we use a parametrized density profile (PDP) T for protons and neutrons
before a phase transition to uniform nuclear matter takes place.

In PDP, we assume that nuclear density follows ﬂﬂ],

3
t;
in _ pout) ] _ (L) out <R;
(pl pl )|: R; :| +p2 Y r (56)
ngtu r Z Rz

pi(r) =

The momentum density is simplified to
3
Tup = = (87°) 7 (pn)"? (5.7)

in the Thomas-Fermi approximation.

Table 5.1: Parameters in EKO

aq a9 as bl b2 b3 FO
—458.384 2072.775 3.1668 —227.049 1058.942 2.608 61.917

Table [(5.1], show the parameters of models which we used in this study.
To find the parameters in EKO, we used standard nuclear matter properties such as £/A =
—16 MeV, K = 235 MeV, p(p = po,x = 1/2) = 0 MeV/fm?, S, = 33.21 MeV, L = 68 MeV.
For b3, we used least x? fitting to FPS pure neutron matters. [} is also found from least y?
fitting of 2336 nuclei binding energy data.

TThe parametrized density profile is not the actual solution of the Thomas Fermi approximation. The
PDP is used to avoid the numerical difficulties of Vp.
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Table 5.2: Parameters in SPM & SLy4

Parameters SPM SLy4

to 2719.7 -2488.91
t 417.64  486.82
ts -66.687  -545.39
t5 15042 13777.0
: 0.14416 1/6
20 0.16154  0.834
1 -0.047986  -0.344
22 0.027170  -1.000
3 0.13611  1.354

5.2 Binding energy of single nucleus

We calculate the binding energy of a single nucleus such as “°Ca, °Zr, and 2*Pb. These
nuclei have closed shells so we can neglect shell effects.

In a single nucleus, pg“; = 0 since there are no dripped nucleons.

Charge density of 208py,
0.1 T T T

EDIF —_—
Potential -------
SLy4 --------

Pn P, (M)

10

r (fm)

Figure 5.1: Proton density profile of 2°8Pb.

Table shows the properties of a single nucleus from both experimental results and a
model calculation. In table B3] r., is the charge radius, BE/A is the binding energy per
baryon, and R is defined as r,, — rp, where 7, is the root-mean-square radius of neutron
and proton. The density profiles for the single nucleus are given in Fig 5.1 Each model
agrees well with the experimental result. The PDP shows the maximum baryon density at
the center of the nucleus because of its mathematical expression. However, many of heavy
nuclei with large number of protons (e.g. *Pb) have maximum baryon density off the center
because of Coulomb repulsion. Thus PDP cannot show the exact density profile of a single
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Table 5.3: Nuclear properties of single nucleus

Nucleus Exp EKO SPM  Sly4
UCa 1., (fm) 3.48 3.36 337 342
BE/A (MeV) 8.45 851 851 814
R —0.06+0.05, —0.05+£0.04 —0.03 —0.04 —0.04

NZr 1y, (fm) 4.27 423 423 428
BE/A (MeV) 8.71 8.74  8.68 842
R 0.09+0.07 0.05 0.06  0.05
2¥Pb 1y, (fm) 5.50 551 550  5.55
BE/A (MeV) 7.87 7.85 7.714  7.56
OR (fm) 0.12+0.05, 0.20£0.04 0.11  0.14  0.12

nucleus. Except for the density profile, PDP can be used as an approximated density profile
to find the charge radius, binding energy per baryon, and JR.

5.3 Neutron Star Crust

In a neutron star, as the density increases, the pressure from degenerate electrons reaches a
point where the electrons can no longer support the gravitational collapse and the neutrons
replace the role of electrons soon after the neutron drip. The neutron drip divides the outer
crust and inner crust of the neutron star. There is a phase transition around 0.5 p ﬂﬂ]
between inner crust and liquid core since the nuclear system favors the lowest energy state.
Even though there might be sequential phase transition from spherical nuclei with a free of
neutron gas, cylindrical phase, slab, cylindrical hole, bubble to uniform matter, the difference
in the energy density and press is negligible. Thus we consider the phase transition from
spherical nuclei phase to uniform nuclear matter. We can simply compare the energy density
of uniform nuclear matter with heavy nuclei with a free of neutron gas.

5.3.1 Neutron drip

The neutron drips from heavy nuclei as their density increases. The drip point can be
searched from a lower baryon density region. As the density increases, the neutron chemical
potential increases, becomes positive, and neutrons start to drip. In case of protons, the
chemical potential remains negative so there are never any dripped protons at T=0 MeV.
Table [5.4] shows the neutron drip density for different models. In case of EKO, the neutrons
start to drip when p = 2.26 x 107* fm 3.

Before the neutron drip, the total pressure comes from only electron contribution and
soon after the neutron drip, the pressure from dripped neutrons overwhelm the electron
contribution.
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Table 5.4: Neutron drip densities for all 3 models

EKO SPM SLy4
p (fm=2) 2.2504x10~7 2.4491x10~% 2.0749x 102

5.3.2 Phase transition to uniform nuclear matter

To see the phase transition from lattice nuclei with a gas of free neutrons, we compare the
energy per baryon for each model. Since it is believed that the energy differences arise be-
tween various pasta phases, we simply compare the energy per baryon from lattice nuclei
with neutron gas with one from uniform nuclear matter. We may use the Maxwell construc-
tion to find the phase transition points between two phases. The total energy density of two
phases in Ref. [22] can be written as

E=vE,+ (1 —-v)E, (5.8)

where p = vp, + (1 — v)p;. The high and low density of the boundary can be found from
solving py, = p; and p,, = iy at the same time. A numerical calculation does not yield an
exact intersection for the solution.

Table 5.5: Phase transition points to uniform nuclear matter

EKO Potential SLy4
p (fm=3) 0.0759  0.0670  0.0742

5.3.3 Statistical formulae for heavy nuclei in the neutron star
crust

We compare the model calculation with a statistical formula for number of protons and
neutrons in heavy nuclei and Wigner-Seitz cell size. Fitting formulae for the number of
protons and neutrons can be used in neutron star cooling process. That is, neutrinos are
emitted through e — Z bremsstahlung @] in the crust,

Z% ([ p
€z =2.1x 1020 <—) TS erg/cm? /s, (5.9)
A \po

where Ty = T//10° K. For this, we present two formulae before and after the neutron drip
for each curve (Zpue, Npue, and R, vs p) since the derivative of each curve w.r.t pg is not
continuous. After the neutron drip, we suggest different types of formulae! for each curve

TFitting functions in this study are introduced to reflect the numerical result correctly. Since the number
of protons increases suddenly before the uniform matter phase transition, cg is added.
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which are

2 3 4 5
fr. = ap + a1x + asx” + azx” + asx” + azx

Fwue = Do+ brz + by2? + by2® + byt + bya® (5.10)

c
onuc =ct+cz+ 0222 + 0323 + C4Z4 + C5Z5 + - .
NE
where z = In(pfm®) and z = 100p fm?.
All a’s, b’s, and ¢’s parameters can be found from the least y? square fitting, in which y? is
given by
N

2 - %Z fmodel . (511)

Table 5.6: Fitting formulae for Wigner-Seitz cell size after the neutron drip

Qo a7 a9 as Qg as
EKO -30.812 —-30.344 —8.004 —1.428 —0.131 —4.561 x 107°
SPM  -39.193 -30.239 -5.414 0.631 —4.313x107% —1.334x 107
SLy4  20.120 13.383 6.504 0.918 5.748%x1072 1.367x1073

Table 5.7: Fitting formulae for number of neutrons in the heavy nuclei after the neutron
drip

bo by by bs by bs
EKO 77.737 93.069 -52.346 20.942 -3.740 0.251
SPM  76.989 75.456 -49.337 21.835 -4.239 0.311
SLy4 87.680 86.728 -12.821 3.396 -0.560 6.366x1072

Table 5.8: Statistical formulae for number of protons in the heavy nuclei after the neutron
drip

c EKO SPM SLy4

o 36.947 34.619 40.389

o 1877 —2.306 5.447

¢, —2921  5854x1072  —4.265
c; 0942 -4.286x1072 1.362

ci  —0.143  5375x107%  —0.214
s 8.195x1073 : 1.301 x10~2
s —0.171 —0.131 ~0.203
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Before the neutron drip, another type of formula fits the numerical calculations since the
behavior of Winger-Seitz cell size, number of neutrons, and number of protons in the cell is
relatively simple.

fr. = exp(ag + a1z + azx?)

FNnue = o+ b1 (z = 0)" + by(x — 20)° (5.12)

where z = In(pfm®) and xy = In(1074).

Table 5.9: Fitting formulae before the neutron drip

EKO SPM SLy4
ao 1.2571 1.2489 1.2909
a —0.3028 —0.3027 —0.3020
as  6.2495x 1074 6.2487x10~* 6.3943x 10~
bo 34.1418 33.2440 36.8709

by 3.2976x107° 4.1044 x107° 3.6671 x10~?
by  1.1095 x10~''  9.3710 x10~*2 1.2652x10~ 11
co 27.8058 26.9215 29.7386

e 2.9168x107° 3.2463 x107? 3.1409 x10~*
ey —1.8428 x 10712 —2.8772 x 10712 —1.6480 x 10~'2

Fig. shows the atomic number in neutron star crust after the neutron drip happens.
The fitting function works very well for EKO, SPM, and SLy4. The full Thomas Fermi
approximation is added in case of truncated FRTF model. In the general case, a full Thomas
Fermi numerical calculation has such a wiggle because of multiple minima *.

5.4 Mass-Radius of a cold neutron star

The uniform nuclear matter exists in the core of a neutron star as a result of a nuclear phase
transition. The matter in the core is in the beta equilibrium state to minimize the total
energy density. Mathematically, the beta equilibrium state equation can be obtained from
a Lagrange multiplier method, which says

fin = [y + e (5.13)

where p, . are chemical potentials of the neutron, proton, and electron respectively.
Nuclear matter beyond the nuclear saturation densities exists in the core of neutron stars.
This means that the mass-radius relation of neutron stars can be a good barometer of nuclear
models. TOV equation (Eq. B0 is used to construct the neutron star’s mass and radius.

iSince the Wigner-Seitz cell size is unknown and to be found numerically, R, does not smooth near the
phase transition density.
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Figure 5.2: This figure shows the number of protons in neutron star crust from numerical
calculation and fitting function. Truncated model calculation is added for comparison.
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Figure 5.3: Mass and radius relation of cold neutron star from energy density functional

The simple EKO does not satisfy the 2.0M neutron star. Other models show that the
maximum mass of neutron stars is greater than 2.0M.. Nuclear matter at high densities
cannot be described by simple mathematical density functional but we need to consider more
complex nuclear force arising from many body effects or QCD (quantum chromodynamics)
effects.

5.5 Conclusion

PDP can be used to study a single nucleus and nuclei in dense matter. Even though PDP
is not a true solution of density profiles, it can give enough accuracy in the total energy and
continuous properties in Wigner-Seitz cell calculation like liquid droplet approach. Therefore,
PDP is an alternative method to construct a nuclear equation of state for hot dense matter.
Even though all three models show similar properties of nuclear matter such as binding energy
of single nucleus, phase transition points, proton fractions, and Wigner-Seitz cell size, each
model shows the different maximum mass of neutron star. For example, the simple EKO
model cannot describe 2.0 M neutron star. That means that the potential energy in EKO
should be replaced with a more realistic force model.

The simple division of symmetric potential and pure neutron potential does not work, such
that the § term in the potential should have more than §2 interaction. This also means that
the extrapolation beyond the nuclear saturation density is still an open problem which needs
to be checked by mass and radius relation of neutron stars.
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Chapter 6

Nuclear Equation of State for Hot
Dense Matter

T There are many demands for a nuclear equation of state for hot dense matter. Core collaps-
ing supernova explosions, neutron star binary mergers, and proto-neutron star simulation
need a highly thermodynamically consistent EOS table. The recent development of technol-
ogy enables us to develop full 3D simulations of the above phenomenon. However, only a
few EOS tables are available. Furthermore, except for L.S220 @], no EOS tables can satisfy
the mass and radius relation of neutron stars and nuclear experiments at the same time.
Our EOS follows the methodology of LPRL ﬂﬁ] and Lattimer & Swesty ﬂﬁ] We employ
FRTF and SLy4 as a nuclear force model and the Liquid Droplet approach as a numerical
technique.

6.1 Construction of EOS

To construct the EOS table, we need two basic tools. One is the nuclear force model. Another
is a numerical technique.
For a nuclear force model, we can use (see chapter [, 2, & B]) the following,

e Non-relativistic potential model

e Relativistic mean field model

e Finite-Range Thomas Fermi model .
As a numerical technique, we might choose,

e Liquid Droplet Approach

e Thomas Fermi Approximation

e Hartree (Fock) Approximation .

TThis chapter is based on J.M. Lattimer and Y. Lim’s work. We are checking the thermodynamic
consistencies and will submit our work and provide the new EOS table soon.
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These two tools can be combined to construct a Nuclear EOS Publicly available EOS tables
are

o LS EOS [22]
- Combines Skyrme type force model with Liquid droplet model,
- Disregard consider neutron skin,
- Consider phase transion using geometric function,
- LS 220 is the best until now,

e STOS [5]
- Uses RMF and semi-Thomas Fermi approximation (parametrized density profile.)
- Awkward grid spacing,
- New version available (2011), added hyperon interactions,

e SHT @]

- Uses RMF and Hartree Approximation,
- Larger radius for given mass of neutron stars,

For constructing our EOS table, we reconsider the LPRL numerical technique which includes
neutron skin. As an improvement, we add Coulomb diffusion and Coulomb exchange en-
ergy. The liquid droplet approach is the only method which can guarantee thermodynamic
consistency. We can obtain analytic derivatives for dp/dp, dp/0T, Op/dY,, etc.

The other approaches (Thomas Fermi, Hartree-Fock approximation) cannot give enough
accuracy in thermodynamics because they have convergence issues. The thermodynamic
derivatives can be obtained through the numerical derivatives in TF or HF. This can also
produce a thermodynamic inconsistency.

The numerical time needed to construct the whole table can also be a problem. In SHT @],
it took 6,000 CPU-days to calculate 107,000 grid points. If we use the LDM approach, it
takes less than 10 minutes to calculate 121 x 50 ~ 302,500 grid points. That means that
we can easily generate another table using a different nuclear force model. We also consider
phase transitions which occur in a neutron star’s inner crust, as was done in the LS models.

As a nuclear force model, we use FRTF models and SLy4. SLy4 is believed to be the
most accurate Skyreme-type nuclear force model. We choose it for comparison to check our
FRTF model parameters.

6.2 Liquid Droplet Model as a numerical technique
First, we demonstrate that the liquid droplet model adequately describes nuclei. The liquid

droplet model provides us with the energy per baryon of a single nucleus and nuclei in dense
matter. The idea behind it is that the energy contribution of nuclei comes from bulk, surface,
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Coulomb, and, symmetry part ﬂﬂ], in addition, there is a pairing effect such that @]

(1—22/A)? 72
E(A,Z)=— BA+ E,AY? 4 SuAT sAss, Ec—
(6.1)
72 AL A

+ Ediﬂ‘z + onT + aﬁ .
In the above equation, B is the binding energy per baryon in the bulk nuclear matter, F; is
the surface symmetry energy, Fc, Egg, and E., are energy coefficients in classical, diffusion,
and exchange Coulomb energy. The coefficient a is 1 for odd-odd nuclei, 0 for odd-even
nuclei, and -1 for even-even nuclei. The paring constant (A) is kept constant at 12 MeV.
This liquid droplet model can be extended by adding the nuclear shell effect. The empirical
formula for this shell effect is given by @]

1 1
Esholl = iam(Nv + Pv) + me(Nv + Pv)2 (62)

where N, and P, is the minimum difference for neutrons and protons between magic num-
ber, 2, 8, 20, 28, 50, 82, 126, and, 184. For example, A = 50,7 = 23, N = 27, then
Z,=123—-20=3, N, = |27 — 28| = 1.

The general way to minimize the total energy at 7' = 0 MeV' for a given Z and A, we
adopt the p, approach, in which only neutron skin exists on the surface of nuclei. pu,
method exists ﬂél]), however, it gives a different slope (Ss/S, vs S,) from the one 1, method.
We confirmed the slope from p,, is closed to the one from FRTF model.

For a given nuclear model, the total energy (excluding rest mass energy) is given by
E = fg(A— N,) + 47 R?0 (1) + p1n N, + Ec(R), (6.3)

where fp is the binding energy per baryon for a specific nuclear model and Ny is the total
number of neutrons on the surface. We include in Es the Coulomb, diffusive surface, and
exchange energies. We assume that fz = fz(p, x).

With two constraints,

oz
é;R]XS (6.4)
A-N, =5

we can find the minimum of total binding energy using the Lagrange multiplier method.

E(pin, N, R, p, 2, A1, A2) =f5(p,2)(A — Ny) + 47 R*0 (1) + p1n Ny + Eo(R)

At R? (6.5)

‘l')\l(A_Ns_ p)+)\2(Z—ZL'(A—NS))

'If T+ 0 MeV, we need to minimize the total free energy or free energy density because of entropy.
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The derivative of E with respect to the unknowns gives,

gi —0: 47R? (,ii +N,=0 (6.62)
Sizo; R W (6.6b)
g—g =0: 8StRo+ 80% — AT R*pA; = 0 (6.6¢)
g_f:o; %(A—NS)—M%TR?’:O (6.6d)
%gﬂpggm—mpMm—MFo (6.6¢)
g_fl:o; A—NS—%”R?’,O:O (6.61)
g%:o;Z—xm—Ngzu (6.6g)

We will correct E(A, Z) by the shell and pairing energies so these do not need to be included
in the above. From eq. (6.Ge) we have

_Ofs
do= 22 (6.7)
from eq. (6.6d) and (6.6f), we get
R
Using A1, Ao, and eq. (6.6D]), we obtain
_ ofg Ofp
,Un—fB+,00—p T (6.9)

If we assume that o depends on p,, through x not p, and o = 0y — (1 — 2x)%0;, we have four
equations to solve, which are

1
4T R*4(1 — 2 N, = 1
7 R24( x)aun/ax'+ 0 (6.10a)
ach afB
2 A R2 2B 1
8rR°0c + R TR*p o 0 (6.10Db)
4
A—N, - %Rgp =0 (6.10c)
Z—x(A—N,)=0. (6.10d)
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We can eliminate N, leading to three equations to solve,

167 R*(1 — 2x)05 + Otin <A — 4—7TR3p> =0 (6.11a)
Ox 3
OE. 0
8TR* (09 — (1 — 2x)%05) + R 47T11%2p28i;B =0 (6.11Db)
Z — %Rgpx =0. (6.11c)

In the case of the incompressible model where p in the nuclei is fixed for all nuclei, we are
left with one equation to solve (eq. [6.114) :

167 ( ’ )2/3 <5)2/3 (1 - 2z)05 + %’;" <A - 5) =0, (6.12)

47 pg x x

with u, = fg — m%f. In case of the simplest nuclear model,
2 K 2
fs=—B+ S,(1 —22) +1—8(1—u) . (6.13)

Fig. 7?7 and shows the contour plot of x? for S,/S, and S, space. The x? from total

Incompressible liquid droplet model

5.5 | ‘ ‘ o ]

- x’= 1.69 o .

300 S.=29.76 ]
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S

Figure 6.1: This is a contour plot of x? when py = 0.155/fm? from incompressible model.
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Compressible liquid droplet model

40, 7
X = 1.82 ;fr/
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- S./S,= 2.49 i
< oL 0a=21.62 -
C Oye= 1.43 ]
%l - Ryvgs/ey =0.9985 7 i
N, 250 -
%) i 1
2.0F -
1.5 -
100 ]
28 30 32 34 36 38

S

Figure 6.2: This is a contour plot of x? from compressible and incompressible model.

binding energy of nuclei is not much different in both cases but the least y? points with
respect to S, and Ss/S, are different. The og, and og,/s, | from the compressible liquid
droplet model are twice larger than the ones from the incompressible liquid droplet model,
which result in the larger contour plot when x? = 3. The correlations between S, and S, /S,
from two models are almost same so the slopes from both models are parallel.

x? from above two liquid droplet models are less than the one (y? = 4.75) from FRTF model.
This justifies the use of the liquid droplet approach as a numerical technique to construct
EOS tables.

6.3 Choice of nuclear force model

The nuclear force model to make the EOS table should represent both nuclear experiments
on Earth and neutron star’s mass and radius relation. Up to now, only L5220 @] fits both
of constraints. To a choose nuclear force model, we need to take several tests. We show
the result from non-relativistic potential (Skyrme force) model. There are more than 100
models and our tests were done on 62 models. As a model of single nucleus properties,
they are all good enough to represent binding energy and root-mean-square radius when we
use Hartree-Fock code. However, most of the model did not pass the simple test such as

"We adopted arbitrary og as 1.0 MeV in this case.
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pressure from pure neutron matter, maximum mass of a cold neutron star, and Steiner et
al.@] allowed area of mass and radius.

6.3.1 Pure neutron matter

The pressure in the pure neutron matter should increase as density increases since neutron
alone cannot be bound at all. However, some of nuclear force models cannot represent this
simple behaviour. Fig. shows pure neutron matter pressure from some of Skyrme force
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Figure 6.3: This figure shows the Skyrme force models which cannot make positive pressure
of pure neutron matter.

models. These models on the list cannot explain positivity and monotonic slope of pressure.
So, they should be excluded from the candidate of EOS nuclear force.

6.3.2 Maximum mass of a cold neutron star

Recently, PSR J16142230 @] was found to have a mass of 1.97My. Demorest et al.@] ana-
lyzed time delay data of the pulsar’s emission as it passed behind its white dwarf companion
(Shapiro delay). This mass now becomes the minimum of maximum mass of neutron stars.
Also this mass can be used to rule out the nuclear force model. Fig shows the maximum
mass of neutron star of some Skyrme force model. These models also cannot be used for
suitable nuclear force model at high density.

6.3.3 Allowed region of mass and radii of neutron stars

Steiner et al.@] analyzed the x-ray data and used atmosphere models of neutron stars to
find the allowed area of mass and radii of neutron stars. From these regions, we can choose
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Figure 6.4: This figure shows the Skyrme force models which cannot produce a 1.97Mg
neutron star.

final candidates for the nuclear force model of EOS table. Figl6.5l shows the Skyrme force
models which have too large radii for a given mass of neutron stars. Mathematically, these
happen because of large L so it should be emphasized that L is another important nuclear
constant which should be extracted from nuclear experiments or astrophysical observations.
Of all three tests, we can see that SLy0, ... , SLy10, and our FRTF I, II, Gaussian models
are good enough to be used as a nuclear force model. Figl6.6] shows the mass and radius
relation of Skyrme force models and our finite range force models, which are suitable for
make an EOS table.

We did not take a test with any relativistic mean field models', since they usually have large
L so they cannot make allowed regions of mass and radius in neutron stars.

To summarize (Appendix [E), the nuclear force models which pass the 3 tests would have

S, ~ 32 MeV, L ~ 46 MeV, K ~ 230 MeV, and p, ~ 0.16fm>.

6.4 Free energy

The fundamental idea of making an EOS table is to minimize free energy or free energy
density for a given p, T', and Y,. In the Liquid Droplet approach, the free energy in the
Wigner-Seitz cell consists of the contributions from finite nuclei and nucleons outside finite
nuclei. Fig. shows the schematic picture inside the Wigner-Seitz cell. The heavy nuclei is
in phase equilibrium with nucleons and alpha particles outside. The free energy per baryon
contribution from heavy nuclei can be divided into,

fN - fbulk + fCoul + fsurf + .ftrans (614)

TThe Ry .apg ox L% so RMF cannot make the allowed region.
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Figure 6.5: The Skyrme force models on the list have too large radii for given mass.

where f,.puk 18 the free energy contribution from inside of heavy nuclei, foou is the Coulomb
energy contribution, fy,¢ is the one from surface, and fi s comes from translational (or
Kinetic) parametrizedenergy of heavy nuclei. We assume that heavy nuclei have uniform
density from the center to the surface so we have the contribution from bulk and surface.

6.4.1 Bulk Matter inside and outside nuclei

The bulk free energy per baryon, fouk(pi, i, T) = foun/pi, is exactly that described in bulk
matter in the finite range model (or SLy4). The subscript (o) refers to the bulk nuclear
matter inside (outside) nuclei. The use of the same functional form for bulk matter both
inside the nuclei and the ‘dripped’ bulk matter outside the nuclei is necessary for a consistent
treatment. In general phase transition (which is often called, pasta phase) happen when the
overall density (p) approach 0.5py to minize total energy.

6.4.2 Coulomb energy

The coulomb free energy is the electrostatic energy needed to assemble the static charge con-
figuration. As an illustration, one could assume the positive charge of protons is distributed
uniformly within a spherical nuclear volume (radius ry), and this charge is neutralized by
an equal, but opposite, charge distributed within radius (r.) of a neutral (Wigner-Seitz) cell.
In this case, the number density of nuclei would be ny = 3/(47r?), and the atomic number
would be Z = 4nr3pix;/3. As shown by Baym et al.ﬂﬂ], the Coulomb energy density of
spherical nuclei is then given by

3 Z2%e? 3 1 4
foou = s :NpN (1 — §u1/3 + §u) = g(erixie)zD(U) (6.15)
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Figure 6.6: The left panel shows mass and radius relation of the Skyrme force models which
passes all tests. The right figure shows the one from our force models.

where u = (ry/r.)? is the fraction of space occupied by the nuclei. This relation defines the
function D(u).

As shown by Ravenhall et al.@] in many situations it may be energetically favorable for
nuclei to deform from spheres into cylinders or plates, or even turn ‘inside out’ to form rela-
tively vacuous bubbles surrounded by spherical nuclei and could also deform into spheroidal
shapes. In an attempt to account for varying shapes that would minimize the systematic
free energy, Lattimer & Swesty @] defined a Coulomb shape function c(u),

4m
foou = ?(TNpil'ie)zc(u) : (6.16)
In the low density limit in which nuclei are expected to be spherical, ¢(u) = uD(u). In the
limit in which nuclei are inside-out, but the resulting bubbles are spherical,
c=(1—-u)D(1—u).

6.4.3 Nuclear surface energy

In the liquid droplet model, the surface energy is not calculated dynamically, but is instead
parametrized as a leptodermous expansion in the curvature R~! where R is the nuclear ra-
dius. In this work, we keep only the lowest order term, which is the surface tension of a
semi-infinite, plane interface between two nuclear phases in mechanical and chemical equilib-
rium. The dense phase is characterized by the densities p,;, p; corresponding to those inside
the nucleus, while the light phase, characterized by the densities py,, ppo, corresponds to the
nuclear vapor outside nuclei. The neutron and proton chemical potentials for semi-infinite
matter must be equal in both phases, and they are denoted by p,, and p, respectively. At a
given temperature, the phase equilibrium is determined by a single quantity, which can be
taken to be the proton fraction x; in the dense phase, or by the neutron chemical potential
fn, Or by the neutron-proton chemical potential difference p,, — p1,. The surface tension is
actually a thermodynamic potential, and as a consequence it is formally a function of the
neutron and proton chemical potentials, as well as of the temperature. If finite-size effects
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Figure 6.7: In the Wigner Seitz cell, there are one heavy nuclei and nucleons, electrons, and
alpha particles outside. In this model, we have neutron skin on the surface of heavy nuclei.

such as the Coulomb forces can be ignored, the phase equilibrium dictates that the chemical
potentials follow a unique trajectory determined only by the temperature and proton frac-
tion in the dense phase. The work of Lattimer et al.[17] assumed that the surface tension
could be therefore treated directly as a function of x; and T

However, Coulomb and other finite-size effects are not negligible, and the surface tension
is modified by them. The approach we initially employ here is to treat the surface tension as
a function of the neutron chemical potential of the surface (and temperature), and in turn to
treat the neutron chemical potential of the surface as a function of the dense proton fraction
(and the temperature).

As in chapter 2] the surface tension ¢ is obtained by minimization of the total free energy
per unit area, and results in

7= [P tpa = o pi): (6.17)
where F' = H — T'Sp and p, is the pressure of the bulk matter (if any) in the dilute phase

in the limit z — oco.

We employ a simplified description following Lattimer et al.ﬂﬁ], but extend it to contain
three adjustable parameters: the surface tension of zero-temperature symmetric matter, the
zero-temperature surface symmetry parameter, and a parameter describing the entropy (or
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specific heat) of the surface of symmetric mater. This description is given below.

What appears in the liquid droplet model, however, is the surface free energy per unit
area o + fi,Vp, + [V, Where v, Tepresent the areal density of particles in the surface. It will
be found that these are determined by

= —— 1
Vg alut T’ (6 8)

as is expected from thermodynamics. Since our liquid droplet model takes the reference
interface to be located at the proton surface, this model explicitly considers a skin made
only of neutrons. There are no ‘surface protons’, and v, = 0 . This is consistent with
the statement above that, at a given temperature, the quantity o is a function of a single
quantity, p,. Therefore, the surface free energy per area is simply o(p,, T') + V. In what
follows, the neutron chemical potential for the surface is denoted by p, but it will be shown
that free energy minimization requires ps = fino.

The surface free energy density for spherical nuclei is thus

3u
Jourt = 47TT]2Vpn(U(/L8> T) + pstn) = E(U(Um T) + pstn) - (6.19)
Once again, following the discussion of Lattimer & Swesty @], the consequences of
nuclear deformation or shape change are taken into account by the surface shape factor s(u),
so that
3s(u)

N

fsurf =

Obviously, s(u) = u for a sphere. As is the case for ¢(u), the precise form for s(u) will be
required.

(ks T) + pisvn) - (6.20)

In practice, the results of plane-parallel surface energy calculations are most easily ren-
dered in terms of the functions o(x,T) and us(x,T), where z is the reference asymptotic
proton fraction of the dense phase. Note that = is equivalent to x; for a plane-parallel
surface, but is not necessarily equivalent to x; for a finite liquid droplet nucleus. The quan-
tity x is simply a convenient intermediate variable used to simplify the construction of o ().

As in section B4l we write the surface tension as a two-parameter function times a
temperature dependence:

(6.21)

a(:c,T)zan(x,T)( 22744 )

g+ (1 —x)
The quantity o, is the zero-temperature, symmetric matter, surface tension. In case of
Skyrme force model, the numerical calculation of surface tension is not stable since it is a

differential equation rather than an integral equation. The numerical method is described
in Ravenhall et al. @]
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Table 6.1: Surface tension analytic fitting function for SLy4

Model o¢(z; =0.5) « q
SLy4 1.13754 3.4 29.0494

The factor h(z,T) contains the explicit temperature dependence of the surface free energy,
and can approximated by @]

Bz, T) = {1 - (%)r (6.22)

where T,.(z) is the maximum temperature for which nuclei can exist for a given value of x.
For the truncate model and the modified model , p = 5/3 and T.(z) is given section 3.4l For
SLy4, we use p = 2 @] T.(x) for SLy4 is given by the same formula, e.g. Eq. ([B31), but
different coefficients.

Table 6.2: The critical temperature analytic fitting function for SLy4

Model — Tip a b c
SLy4 14.502 -0.3649 -0.02025 -0.34368

The neutron chemical chemical potential ug, for a given value of z; and T', is that which
applies to bulk phase equilibrium. For proton fractions larger than approximately 0.3 at
zero temperature, the phase outside the nucleus is a vacuum with p, = 0. If the free energy
is expanded about p = pg and T=0, the condition p = 0 results in

O fourc B T’

- o 2
o ot Su(l - 4e). (6.23)

ps(z,T) = fourx — 2

This formula works at low temperature and it cannot correctly represent neutron chemical
potential on the surface. So, we may use a fitting function for neutron chemical poten-
tial of dense matter for given proton fraction and temperature. With appropriate units of
coefficients,

ps(x, T) = =B+ a(l — 2z) + B(1 — 2z)* + 4T + 6(1 — 22)T* (6.24)

This fitting function is obtained from the numerical calculation of phase equilibrium. Table
shows the coefficients for the fitting function. Therefore, given that one of the equilib-
rium conditions will be s = p,,, the procedure is to determine the quantity = from pu,, and
T by solving a quadratic equation.

The surface neutron density is then found from Eq. (6I8]), or

oeln D) o) (D))
" opus o Ox ’

(6.25)
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Table 6.3: The chemical potential fitting function

Model B Q@ B ¥ )
Truncated 16.539 62.365 -28.900 -0.0455 -0.0414
Modified 16.000 79.627 -49.128 -0.0595 -0.1017

SLy4 15.987 63.963 -34.546 -0.0469 -0.0325

All surface thermodynamic quantities can then be evaluated. We again emphasize that for
surface quantities, x # x; but close each other.

6.4.4 Nuclear translational energy

The nuclei essentially form a non-degenerate, non-relativistic Boltzmann gas. The free energy
density of such a gas, ignoring any internal degrees of freedom, is

up; up;
ftrans = PN(,MH - T) - A T |}1’l (pQA5/2> — 1:| . (626)

Here pg = (mT/27h?)3/? | where m is the nucleon mass, and ppy represents a nuclear
chemical potential. As in Lattimer et al.ﬂﬁ], it is assumed that the translational energy
diminishes with temperature and disappears at 7, with the same behavior as the surface
energy. This is enforced with the function h(x;,T). Following Lattimer & Swesty @],
the simplifying assumption is made to replace A in Eq. (626) with a constant A, = 60
which is an approximation of mass number of heavy nuclei in neutron star crust. This
approximation simplifies the algebra surrounding the equilibrium conditions. In addition,
achieving a consistency in the limit © — 1, where an inside-out phase may replace ordinary
nuclei, u in Eq. ([6.20) is replaced by u(1 — u). These approximations are justifiable, given
that the translational energy is a relatively unimportant component. To summarize, the
translational free energy density and nuclear chemical potential are taken to be

u(l —u)p; w(l —u)p;
ftrans = %h(xlvT)(,uH - T)7 HWH = T In <(75/2p) . (627)
o pQAO

6.4.5 Alpha particles

To represent the thermodynamics of an ensemble of light nuclei, a gas of non-interacting,
but finite volume, alpha particles is assumed. The alpha particles have substantial thermo-
dynamic contributions in regions limited to those near the nuclear dissociation curves. The
alpha particles for those temperatures and densities may be treated as a non-interacting
Boltzmann gas. Alpha particles are bound relative to free neutrons by an energy B, = 28.3
MeV. Alpha particles also occupy a fairly large volume of space, v, = 24 fm~2 per alpha
particle, and the total volume they occupy must be considered. With these stipulations, the
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free energy density for the alpha particles is
F,=(1—u)pa(pta =T — Ba), (6.28)

where p, and p, are the number density and chemical potential of alpha particles, respec-
tively. It is assumed that the fractional volume u is already occupied by nuclei and is not
available for alpha particles to occupy. p, is related to p, by

fo =T 1n (8/;%@) : (6.29)

6.5 The Combined model

The free energy of each component of dense matter has been developed in the previous
sections. In dense matter, these components are present in varying concentrations, and one
has to allow for the volume occupied by nuclei and by alpha particles. In the most general
case, in which the four components H, n, p, a exists, the baryon conservation equation is

p=upi25(0) "+ (1= ) 4pa+ (1= puva)pe] (6.30)

The charge conservation equation is
pY, = uxip; + (1 — u)[2p0 + (1 — pava)Topo) - (6.31)

The total free energy density for the entire system becomes:

3;9“53) (o (s, T) + (2, Tvm) + %(TNpme)zc(u)

+ ftrans(ua Piy Tis T) + Fa(pau u, T) + (1 - u)(l - pava)pOfbulk(pm Lo, T) .

F =up; foux(pi, zi, T) + (6.32)

We neglect the free energy contribution from leptons and photons since we can treat them
separately in nuclear equilibrium.

6.5.1 Equilibrium conditions

The total free energy density is a function of the independent variables (p, Y,,7T"), but also a
function of the 9 independent variables (p;, T;, TN, s, Vn, U, Po, Tos Po)- Note that p, and z,
can be eliminated by the baryon and charge conservation equations:

B 1 p—up; — 3V, /TN
1= PaVa 1—u

pY, —uxip; — 2pa(1 — )
p—up; — 35U, )rn — 4pa(l —u)

Po - 4pa

(6.33)

Ty =

The specification of nuclear statistical equilibrium for the system demands that F' be min-
imized with respect to each of the 7 remaining dependent variables. It is convenient to use
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the seven (p;, x;, "N, T,V /TN, U, po) Variables set.
The derivative with respect to p, and z, can be resolved with

po u dr, u(xy — ;)

Ip (I =u)(1 = pava)’ Ip; Po(1 = u)(1 = pava)’

opo 0 oz, B up;

8@- - 8352 - po(l - u)(l - pava) ’
opo 3s(u) or, 3s(u)x,

O(vn/TN) Po(1 —u)(1 = pava) ’ O(Vn/TN) Po(1 —u)(1 = pava) ’ (6.34)
0po _ —pi — 35'(Vn/T) +4pa + Po(1 = pava) ’
ou (1 —u)(1 = pava) '
0r,  pi(To — 25) + 2pa(1l — 21,) + 38" w01y /TN
u Po(1 = u)(1 = pava) ’

Opo  Pola — 4 or,  4x,—2)
8pa 11— PaVla ’ apa po(l - pava> .
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Here s’ = 0s(u)/0u.

The minimizations are :

aF—O—u — Tifl; — +:£-A+E(1—u)
8pz — V= Hng il Hno ilo Ao HH
8m 9
+ ?(erie) pic(u) , (6.35a)
F
g:ci = 0= up;(Ho — fis) + %(TNpie)%iC(u)
+ h;%u(l —u)(py —T), (6.35b)
OF 3s(u)o 8w
e = 0=— =) + ?(pixie)zr]vc(u) , (6.35¢)
OF 3s(u)o (do Ops
9 _ 5 99 4, 9Hs) 6.35d
oz N <8x T (6.35d)
OF
7:O:3Su s — no) 6356
o) () (1ts = #no) (6.35¢)
oF . 3s
% =0= pz(fbulz(pz; wa) — Hno + Iiﬂo) + E o+ Vn(,uls — ,uno)]
4m 2 4 hip;
+ g(pi:ﬂmve) '+ (1 —2u) R + po + pa T, (6.35f)
OF .
% =0= (1 - U)(/La — B, — 4,uno + 2:“0 + Po'Uoz) . (635g)

Here ji = pu, — pip, hi = h(x;), b, = Oh(z;)/0x;, and ¢’ = dc(u)/Ou.

Eq. (635d) represents the Nuclear virial theorem, that the surface energy equals twice
the Coulomb energy. Solving for ry yields

15s(u)o

3
N 8 (pixie)’e(u)’ (6.36)
which can be written more succinctly as
90 (513 2437\ '3 2/3
TN = 25 (c) , g = ( E ) (pizioe)<” . (6.37)

Therefore ry can be eliminated from the equilibrium equations. It should be noted that
because of the Nuclear virial theorem, the total of the surface and Coulomb energy densities
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is

3o
where D(u) is defined @] The estimation of D(u) is described below.

fsurf + fCoul - ﬁ(cs2)l/3 (1 + M) = D(U) (1 + 2'“’31/”) ) (638)

Eq. ([6356) proves the earlier statement that the neutron chemical potential of the sur-
face p15 should be equal to p,,. Eq. ([6.35d) also proves the earlier definition of the surface
density of neutrons v,. Eq. determines the alpha particle density, reiterating that
the alpha particles are in nuclear statistical equilibrium. The last term of Eq. repre-
sents an effective repulsive interaction for the alpha particles because of the excluded volume.

The remaining three equilibrium equations can be manipulated into the expected re-
sults concerning equilibrium among chemical potentials and pressure. Together with the
conservation equations, the seven equations to be solved simultaneously are

2D up;h;
A =0 =p — _ T_ D _ 2= i1l )
1 0 Di Po Pa ﬁ ( 3U) + Ao HH , (6 39&)
1—u ,
Ay = 0= ftni = fing + —— [hmH — Wy — T)} , (6.39b)
28D 1—u
Az =0 = fip; — fipo + Spri + y [hi,uH + (1 — xy) i (e — T)} ; (6.39¢)
Ay =0=uzip; — pYp + (1 = u)(ppo + Tppa) , (6.39d)
28
As=0=up;=p+ 5 D+ (1-u) [pm + ppo+ (rn + r,,)pa} , (6.39€)
s = no (6.39f)
Ha = Ba + 2,uno + 2,upo — PoVa - (639g)
We defined the useful abbreviations
Tn = 2 — PnoVa Tp =2 — PpoUa - (6.40)

Note that the functions ¢ and s could be completely replaced in Eq. ([6.39) in favor of D be-
cause 3D" = uc /c+ 2us’/s. The nuclear equilibrium is determined only by the combination
cs?, or equivalently, by D.

Eq. illustrates that p,, and hence p,, is a function of p,, and p,, alone. In
addition, o and v,,, which are functions of z, are also determinable from p,,, and p,,, because
of Eq. (6:39g). Therefore, it is necessary to simultaneously solve the 5 equations A; = 0 and
the two supplementary constraints. Note that it would have been inconsistent to evaluate o
and v, directly as functions of z;, which seems the more straightforward procedure, because
this does not ensure the full minimization of F'.
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6.5.2 Determination of Coulomb surface shape parameter D

Following the work of Ravenhall et al.@], one can identify the dependence of surface and
Coulomb energies on the dimensionality d of the geometry. For d = 3, one has spheres of
radius ry, For d = 2, one has cylinders of radius ry. For d=1, one has plates of thickness
ry. The surface and Coulomb energy densities of an isolated configuration with dimension

d are then
udo 47

Jouwt = —, Jcou = —(pi$o7“N€)2Dd(U) (6-41)
rnN 5
where - y 49

Dy(u) = 1— a2 — Sy . 42
a(u) 21 5 T (6.42)

In the case d = 2, the limit of Dy becomes

5
Ds(u) = é[u —1—In(u)]. (6.43)

Thus, one has s(u) = ud/3 and c¢(u) = uDgy(u). In the event of inside-out matter, one simply
replaces v by 1 — u in these equations.

Both s and ¢ depend upon d. The minimization of F with respect to ry allows the
elimination of ry and the identification fqu.t 4+ foow = AD implies that

D=u (%) ” . (6.44)

The formulas Eq. (6.41)) are valid for integer values of d , but gradual deformations between
the integer states could be modeled by allowing d to vary @] The minimization of fg,¢ +
fcow = BD with respect to d then implies that d is determined from minimization of D,
or equivalently d?D,, at each value of u, subject to a maximum of 3 and a minimum of 1
for d. Fig. shows the geometric factor D. D does not depends on density so we can
find a fitting function. Lattimer & Swesty @] showed that a suitable approximation to this
minimization, but also allowing for the possibility of inside-out matter, is obtained by using

(1 —w)DY*(u) + uDy3(1 — u)

Pl = ull =) T ) 1 0621 —w)?

(6.45)

6.5.3 Solving the equilibrium equations

There are seven equilibrium equations, including the two conservation equations for baryon
number and charge, for seven variables, which can be taken to be p;, x;, %, Pno, Ppo; Po and .
Lattimer & Swesty @] chose to reduce an analogous system by eliminating two variables
with the conservation constraints. Even though we can reduce the number of equations to
solve, we may probably meet numerical difficulties since, for example, the density of outside
nucleons can be negative and code breaks. Thus, we do not eliminate the number of un-
knowns from the conservation properties but leave them to solve. However, as seen above,
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Figure 6.8: D as a function of u for given dimension(d = 1,2,3). The minimum can be
obtained the continuous change of d.

there are two trivial equilibrium conditions so that the variables y; = (pa, ) can be substi-
tuded in terms of p,, and pp,.

The most convenient form for the five dependent variables is
zi = (pi, 10 pro, I ppo, i, Inw). The ‘log” variables were introduced to prevent the variables
from becoming negative. It also handles the accuracy of the small number.

Solutions are obtained via Newton-Raphson iteration, in which successive changes Az; in
the independent variables z; are found from the matrix equation (summing over repeated
indices),

AZ]‘ = —(Bij)_lAi . (646)

Here A; is the vector of equations, defined in Eq. ([6.39), to be zeroed, and
04

E 8zj y,)\7

B (6.47)

where A = (p,Y,,T).

6.6 Result

As mentioned earlier in this chapter, our code is fast enough to generate an EOS table so we
can easily compare EOS tables with different force models. The liquid droplet approach also
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gives analytic derivatives of thermodynamic quantities. This means that we can guarantee
the thermodynamic consistency compared with the Thomas-Fermi or Hartree-Fock approxi-
mation, in which thermodynamic derivatives can be obtained numerically. For these reasons,
the liquid droplet approach is the most favorable method to make EOS tables.

For each point, we allow the independent variables change with small amounts of them since
we use the previous solution of the variable set. By doing this, we can avoid code breaking
and speed up the convergence. In the subroutine eos(p,T’,Y),) which consists of two sub-
routine, Newton-Rapshon code is to seek nucleons, alpha particle, and heavy nuclei (npaH)
solution at first, if it does not converge, try to find nucleons and alpha particle (npa) solu-
tion, if it does not exist, nucleons (np) solution is to be found.

Now we present some of the result from our table .

6.6.1 Energy density and pressure

At zero temperature, the energy density and pressure is a function of density for both FRTFs
and SLy4 since the Fermi-Dirac distribution function is frozen to 1 so we have a momentum
density as a function of density, Eq (218 23¢). For non-zero temperature, we need to
calculate degeneracy parameters using interpolation or JEL scheme [12], then we can find
energy density and pressure for given p, T', and Y,,.

6.6.2 Phase Boundaries

For a given density and proton fraction, the heavy nucleus dissolves into nucleons. This phe-
nomenon corresponds to phase equilibrium and critical temperature. Simply, if the critical
temperature of bulk equilibrium is high, the nucleus can exist in relatively high temperature.
Fig. shows the phase boundaries of hot dense matter for a given proton fraction (Y,). In
general in the region below the curve, there exist nucleons, alpha particle, and heavy nuclei
(npaH). On the upper left region, nucleons exist with alpha particle. On the right region of
the curve, only nucleons exist. FRTFs and SLy4 have the similar phase boundaries. In SLy4,
nuclei exist larger range of density than FRTFs. Nuclei can exist at higher temperature in
Truncated model because of higher critical temperature.

6.6.3 Atomic number in the heavy nuclei

The most stable nucleus on the earth is °Fe which has Z = 26. However, in the dense
matter or neutron star crust, there are lots of nucleons and leptons outside, so the interaction
among them may change the configuration of the most stable nuclei. Fig. shows the
atomic number as a function of density at given proton fraction (Y, = 0.45) and temperature
(T'=0.726 MeV). The phase transition in SLy4 has completed for large domain of density so
the atomic number increase abruptly for narrow range of density. SLy4 always have a large
number of protons in heavy nuclei for a given density, proton fraction, and temperature. In
case of FRTF II, the atomic number is the smallest because of low surface tension.

TThe result presented in this thesis is from beta version. We’ll post them on the website soon after
checking thermodynamic consistency.
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Phase diagram, Yp=0.45
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Figure 6.9: This figure shows the phase boundaries of dense matter when Y, = 0.45.

6.7 Conclusions

The liquid droplet approach is the most promising method to generate thermodynamically
consistent nuclear EOS table. The nuclear force model should be tested before making an
EOS table so that the table represents both nuclear experiments on Earth and astrophysical
observations.

To make the EOS consistent with the nuclear physics aspect, we have to use one nuclear
force model to calculate the energy contribution from heavy nuclei, nucleons outside, and
surface tension. In the thermodynamical sense, the derivatives in liquid droplet approach
are written analytically and can be compared with numerical derivatives.

We treat electrons and photons separately since they interact weakly. But we add them
to calculate total energy, pressure, entropy and their derivative with respect to temperature,
density, and proton composition.

For finite temperature, we have to calculate the Fermi integral (F} /2, F3/2) to obtain number
density and momentum density. The interpolation from the table cannot give enough accu-
racy at low temperature (7' < 1 MeV). JEL is a successful scheme to give enough accuracy
for all domains (relativistic vs. non-relativistic, degenerate and non-degenerate).

Phase transitions around half of nuclear saturation density (1/2po) can be achieved when we
employ the geometric function D and changing the dimension d continuously.

We should be able to combine the liquid droplet approach with a relativistic mean field
model in the near future if we handle the large L with acceptable values so new parameters
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Atomic number, Yp=0.45, T=0.726MeV
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Figure 6.10: The atomic number increases as density increases in general. Around phase
transition region, the atomic number drops and increases again.

in RMF can represent the allowed regions of mass and radius of neutron stars.
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Chapter 7

Conclusions

The nuclear equation of state is needed to simulate supernovae explosions, proto-neutron
stars, and compact binary mergers involving neutron stars. For these simulations, we need
thermodynamic information for given baryon density, proton fraction, and temperature.
Since the EOS should cover wide range of the above variables, we need to be careful when
we choose a nuclear force model to make the EOS table. A good nuclear force model
should represent both low and high densities nuclear phenomena as well as pure neutron and
astrophysical matter.

First of all, we study nuclear physics using Finite Range force model. In the Finite Range
force model, the nuclear interaction energy at density each point has the contribution from
every spacial point with weight factor (e7"/®). The first model that we investigated is the
truncated model (Chapter ). To find the parameters in the truncated model, we use the
standard nuclear matter properties of symmetric nuclear matter , such as £/A = —B ~ —16
MeV, P = 0 MeV/fm3, S, ~ 32 MeV, L ~ 60MeV. a, which is a nuclear diffuseness
parameter can be obtained from semi-infinite nuclear matter calculation. This truncated
model is improved by adding new density dependent interactions to fit optical potential,
nuclear incompressibility, and pure neutron matter. To get optimized parameter set for the
modified model, we compare the results of total binding energy of single nucleus from the
modified model with experimental values. The recent constraints of S, and L ﬂﬁ] confirm
that our parameter set for the modified model is a good choice.

Both the truncated and modified models model are used to calculate energy per baryon of
single nucleus and heavy nuclei in dense matter. Since the finite range model gives integral
equations instead of differential equations, the boundary condition has no difficulty and
the numerical calculation in the unit (Wigner-Seitz) cell is much easier to perform than
differential equations. Thomas-Fermi approximation is employed to find the nuclear density
profile. In TF, we are seeking the local density at each point instead of finding the full wave
functions. From the density profile, we find the plane wave so that we are able to calculate
momentum density to calculate Hamiltonian density or kinetic energy. At zero temperature,
the relation between the number density and momentum density is simple since the Fermi-
Dirac distribution function is frozen to 1. At finite temperature, however, we have to calculate
the Fermi integral which is not an analytic function. For example, from the number density,
we are supposed to find the degeneracy parameter (¢) from Fermi integral, F5/5(¢) and to get
the momentum density from Fermi integral, F5/;(¢). JEL scheme provides polynomial fits
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for Fermi integral. This fitting function has remarkably high accuracies to calculate Fermi
integral. We employ JEL scheme to calculate nuclear force at finite temperature.

To find the density profile of nuclei, we use Euler-Lagrange equations to minimize total
binding energy, and it gives that p,; and p,; are constant in the cell if we set the density
at each grid point as unknown. The multi-dimensional Newton-Raphson method is used
to solve the equations. If the initial guess is good enough, the number of iterations to get
solutions is only two or three so the code is fast enough to calculate binding energy of all
nuclei present on earth.

The bulk equilibrium calculation is an example of using JEL scheme. Bulk (dense-dilute)
matter equilibrium is the simplified case of heavy nuclei in dense matter. That is, if bulk
equilibrium is possible, that suggests there might be a phase of heavy nuclei in dense matter.
If bulk equilibrium does not exist, there would be uniform nuclear matter phase for given
density, proton fraction, and temperature. The conditions for bulk equilibrium are made by
minimizing the total free energy density, which are Py = Pry, finr = fnrr, and i, = plprr.
I(IT) represent dense (dilute) phase. From phase equilibrium calculations, we can get the
critical temperature in which both phases have the same density and proton fraction. Beyond
the critical temperature, phase equilibrium does not exist any more. Semi-infinite nuclear
matter density profile is obtained from the finite range force models. Since the curvature
effect of finite nuclei is small, the semi-infinite nuclear matter calculation is used to find the
surface tension for nuclei. With the critical temperature from phase equilibrium, semi-infinite
calculation gives analytic fitting function for surface tension formula (w = w(z,T)).

The importance of choosing of nuclear force model to make EOS table can also be seen
when we study neutron star crust. The nuclear potentials have a lot of different form. These
difference does not effect the pressure, energy density, and atomic number in neutron star
crust. If we extend the potentials, however, to high density, the difference in the mass-radius
relation of neutron stars is apparent.

Using the finite-range model with liquid droplet approach, we build EOS table for astro-
physical simulations. Thomas-Fermi and Hartree (Fock) approximation gives only numerical
quantities of thermodynamic quantities. On the other hand, liquid droplet approach gives
analytic thermodynamic quantities, that means thermodynamic consistency. Compared to
LS EOS and LPRL ﬂﬁ], our LDM approach contains neutron skins and surface diffuseness
to improve the liquid droplet formalism. The LDM approach is fast to build the full EOS
table so that we can manipulate different nuclear force model without difficulty and we can
make an EOS table with a large number of grid points. The atomic number at the lower
density region (~ 0.01/fm?®) remains around 30 and has experienced abrupt changes between
the phase transition regions (0.5p9). This is a general feature in both the non-relativistic
mean field model and relativistic mean field model. In the phase transition region, the
atomic number from RMF models is an order of magnitude greater than the one from the
non-relativistic potential models. Between SLy4 and finite range force model, the phase
transition to uniform matter happens later in SLy4. Since the truncated model has the
higher critical temperature than SLy4 and the modified model, nuclei can exist in higher
temperature in the truncated model.

It is necessary to compare the EOS tables using the same nuclear force model but with
different numerical techniques (LDM, TF, HF) to see how similar the each EOS table would
be. This work will be begun in the near future.
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Appendix A

Finite Range Integration

In the Yukawa type finite range force mode, one has

—_~—

90 = [ drafriafagtrs) = [ dra

e 2/ (ry) Al
pre LG (A1)

This integration is not converged easily. The integration which involves

[ f(z)e " dx has ~ 1/N? convergence properties, where N is number of grid points. Math-
ematically, we can increase N as much as possible, but the number of times to calculate the
integration increases as ~ N2 and the current ability of cpu may have numerical noise when
we increase the number of grid points.

One way to solve the convergence issues is to use mathematical induction, or, geometric
sequence. That is, the the error between gy and gon decreases as

. . . . 1 N . 1
Gon — gn = A, 94N_92N:ZA> 98N_94N:EA7--- (A-Q)
Thus we may have
1 1 4 4 1
Joo = ( A+-A+—A+...=g —A = —gony — —gn . A.
Joo =GN+ A+ A+ LA N+ 3 39en = 30N (A.3)

This induction shows enough accuracies when N = 50 and N = 100 for given Wigner seitz
cell(12fm). However, we need to calculate the integration twice to complete the convergence.
Now, we show the more efficient method to calculate this Yukawa type integration.
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A.1 Taylor expansion integration

The integrand in the Yukawa integration is expand to take into account the variation between
r and r + A. For example, for given interval (r;,r; + 0),

F) =00 + P = 73) + ) =) + 5 fOr)r = )+ -+

_ Jiv1 — fic Jiv1 = 2fi + fiaa
=fit g )+ 2?2

(A.4)
(r—r)?+---.

By doing this, we can eliminate the contamination in the integral between r; and 7,1, when
we use simple trapezoid rule (f;Jrl f(@)dz = SA(fi + firr) ).

A.1.1 1D plane parallel nuclear matter

The study of 1D parallel (semi-infinite) nuclear matter sheds light on how the surface tension
changes for a given temperature and proton fraction. In the semi-infinite nuclear matter,
without loss of generality, we can say g(r) = g(x,y, 2z) = g(2). Then the original finite range
integration becomes

3 ) oo S e—\/m2+y2+(z—zo)2/a
9(z) = dx dy dz - g(2). (A.5)

dra\/x2 + 2 + (2 — 2,)

Changing variables, 22 + y* = p?, [dx [dy =27 [ pdp give

B 1 [e's) g 00 —+/p2+(2—20)2/a
§(z) —5/ ) awm
- / dzg(2)(=)e~VPHE=P a0 (A.6)

=3 /_OO dzg(z)eF==l/a

With the above general equation in 1D plane parallel case, we apply Taylor expansion for
smooth distance dependent function wu.

]. # ! > !
u(z) = o [/ u(2)e® e dy + / u(2)eV 42 | = um (2) +ut(2) (A7)
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This equation can be calculated by iteration scheme.

1 Zi4+1

U =5, | w0

2a 2a
Zi+1
A/a — ‘l‘ _/ (z—zit1)/a dz .

For the integration at the end, we expand

u(?) = u; + UHIT(Z — )+ 0(A?)

then we have
w = fu; +Igu;+ 17w,

where
f :e—A/a
A —Al/a
e P
0 2a 0 A 2A
a —Al/a
I~ 1 iez/ae_A/adZZA—a—l—ae / |
Y2 ), A 2A
In the same manner, we have an equation for u;
w :i oou(z’)e(zi—Z’)/a dz
Y 2a
1 Zi+1 1 e’} ) N
= U(Z) (zi—2")/a dZ +— / u(z/>e(zi+1—z )/ae— /a dZ/
2a 2a -
1 Zit1 (n—2)a A/a .
% u(z)e dz+e ) .

With the first order Taylor expansion before, we have

+ ot + +
w; = fuipy + I u + I uiga

where A
1 Z\ _/a _
=g, | (1-%)e e =1
1 (22 2/a _
I+ 2a K€ / dZ/ = IO .

As a second order expansion, we have

Uit1 — 2U; + Uiy
2A?

Uiyl — Uj—1

R (= — %) + 0(&%)

u(z) = u; + (z —z) +
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(A.8)
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(A.13)
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i = fu; +Jygui—y + Jy w4+ Jy ui (A.16)
where
S Y A( z 22 ) / 2a% — aA — a(2a + A)e B/
—__ a = - z ad —
T =54¢ /0 oA Toar)t AN
— 1 —Ala 2 Z2 z/a _2a2 + 2aA + (2@2 — A2>€_A/a
A =5,¢ / /0 (1 - P)e e dy = A2 (A.17)
S Y /A< z 22 ) / 2a% — 3aA + 2A% — a(2a — A)e 2/e
_ a ~ = el dy = )
T =50 | \Ga T oaz)e 4 AN?
For u;,
uf = fufiy + T uwien + T+ Ty wig (A.18)
where
I z 22 2a% — aA — a(2a + A)e=A/a
+ _ = = e —z/ad _ _ -
Jo 2a/0 ( oA " 2A2)6 - AN? Jo
1 /A 22 A? —2a®  ala+ A)e B/
[ (1= _) 2/ gy — A19
i 2a/0 (1= Ra)e =S5+ T (A.19)
1 /A z 2N . 202 + a — (2A% + 3aA + 2A?)eA/e
2 J, \2A T 2AZ AN

For this second order expansion, we have to be careful for u] and u};_,, which will be
uy = fug + Iy uo + [T uguly_ = fud + Ifuy_y + Liuy (A.20)

because there will be no second order derivatives at i =1 and ¢ = N — 1.
For the test of accuracy of this tilde equation, we now compare analytic solution of u(z) =

- +iz 7= where a is chosen as 1 fm for the test problem.

u(z) = % (1 + Zez/“> - %(ez/“ — e In(1 + z/a). (A.21)

Fig [A.T.1] shows the error between the analytic solution and the numerical calculation.
This confirms that the second order expansion gives enough accuracy for integration tech-
nique.
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Figure A.1: The error between analytic solution and numerical calculation. The red (green,
blue) one represent the absolute error between analytic solution and trapezoidal (1st, 2nd
Taylor expansion) numerical integration. N is the number of zone in the given domain (-6,6)
The error decrease as N increases. The error from 2nd order expansion is always smaller

than any others.

A.1.2 3D radial symmetric nuclear matter

In the symmetric nuclei or nuclei with neutron gas matter, we need to calculate

a0 = / 1o f (r12/a)g(r2)

1 ™
= —6_”/“/ g(r)r(e’”/a - e‘”“) dr
0

2@7“1

1 R
+ — (e”/“ — e_”/“> / g(r)re_r/“dr

2ar;
1
2ar;

(A.22)

T1

+— (6”/“ — 6_”/a> / g(ryre="/edr .
R

The last integration represents the effect from out side nucleons. We now address the coef-
ficient from the second order Taylor expansion method.
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We separate the two integrals as in the 1D semi-infinite nuclear matter,

g(r) = §) + 30 ) + - (7 — ) e i a+ R)g(R) (A.23)

There is no difference in the finite range integration between finite nuclei and nuclei in dense
matter except the final tail term.
The discrete integration for §(=)(r;;1) has the form of

" L e [T ra _ rfa
3 i) = g S [ gyt - eriyar
. k=0 77k (A.24)

—) ~(_ 1 —(7r; a T’L+A r/a —r/a
= £ )(n)+72a(r,+A)€ it/ / g(r)r(e’® —e")dr
where fi(_) is given by
_ T _Ala

The right hand side integration can be extended by

gi+1 — Gi—1
2A

i1 — 29; + gi—
git1 — 20i + g 1( — )2,

(r=ri)+ 22

g(r)=gi+ (A.26)
We use the g = 2291 since this expansion has higher order (O(A®)) error than the
forward (f! = (fiz1 — fi)/A) and backward (f/ = (f; — fi_1)/A) error (O(A?)).

We can find coefficients which correspond to each g;_1, g;, and g;;1 through the integration
so that

§Z(H = 157 F wigio1 + Waugs + Wsigitr — Waigi1 — Wsigi — Weigit

Vo (A.27)
= fi( )92-( ) + (w1; — Wwa;)Gim1 + (Wo; — Wwsi)gi + (W3 — Wei) Git1
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where

ri+A
Wi — 1 —(rz-l-A)/a/ - _(7” — 1)
" 2a(r 4+ A) v
1 Ti+A
s — ~(rit2)/a / 1
Y 2a(r + A) v
i AT
Was = 1 —(n+A)/a/ - (r —mi)
5 2a(r; + A) v
T A
Was = ! —(n+A)/a/ " . (r—mi)
o 2a(r; + A) v
1 ri+A
s, — ~(ri+8)/a / 1
2a(r; + A) v
Ti AT
Wes — 1 e—(rz-l-A)/a/ - (r —mi)
% 2a(r; + A) v
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Each w; can be obtained

ae—A/a )
= — 2aA\ — 2ar; — Ar;
Wi IN(A 1 1) [6@ + 2a ar T
— eB/a (6@2 + A(A + ’I“i) — 2a(2A + 7“0)} ,
Wy = i —6a® + aA? + 2a’r; — A’
CO2A2(A + 1)
+ 2ae? (3@2 +AA+71;) —a(3A + m))] :
e—A/a 5
= — Ar; — 2a%(A + 1,
W, 4A2(A—|—7’,~)[6a + aAr; a“(A+1;)
— eB/e (6@3 — 2A%(A 4 1) — 2a%(4A 4 ;) + aA(BA + 37’,~))} :
ae2ri+h)/a 60>~ A(A +r1) — 2(2A 4 1)
Wy IAZA 1) a r; a
+ eA/a <6a2 — Ar; +2a(—A + rl)>]
e—2(ri+A)/a A
- Ja _g.3 2 9.2, 2,.
Ws; 2A2(A+r,~)[e ( 6a’ + a\ QaTZ—I—Ar,)
+ 2a(3a2 + AA+7;) +a(3A + 7’0)] ;
e—2(ri+A)/a A
= —— (64 + Ar; + 2a(A + 1,
Wei N [ae (6& + Ar; + 2a(A + m))

- (6&3 + 2A%(A +7y) 4+ 262 (4A + 7)) + aA(BA + 37’,~))} .

(A.29)
In the same manner, we have
N-1
1 Tk+1
§z§+) =-— (e”/“ — e_”/“> / g(r)yre™"adr
2ar; — I
ri+A (A.30)
= fz’(+)§i+1 + 5 (e”/“ — e_”/“> / g(r)re™"/%dr
ar; T

= fi(+)§i+1 + W7 Gi—1 + WgiGi + WoiGit1 ,
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where

) rmiH A enile—emi/a

(+
fi - r; elritA)/a _ o—(ri+A)/a
acosh(r;/a)e=ritA)/
W =
2A2%r;

X {—6@2 — A(A+7) —2a(2A + 1) + 22 (6&2 — Ar; 4+ 2a(—A + rl)ﬂ ,

cosh(r;/a)eritA)/a

Wg; = A2y,
(A.31)
X [eA/“ (—6@3 + alA? — 2a*r; + A27“i> + 2a <3a2 + A(A + 1)+ a(3A + r,))] :
cosh(r;/a)e”(ri+A)/a
Wi = 2A2r;
X [aeA/“ <6a2 + Ar; 4+ 2a(A + rl))
— (6a3 + 2A% (A +7y) + 262 (4A + 1) + aA(BA + 37"2-))] :
The initial points for g(g_) and g](\;r) are given by
g’ =0, g’ =0. (A.32)

Since g1 ) and g ) can’t have 3 points for numerical derivative, we use the first derivative
SO

_ 1 A
g§ ) = —QaAe_A/O g(r)r(er/“ — e_’"/“)dr

. ]- —A A gl gO 7‘/[1 —T/a
_Qa—Ae /O[gjt A r(e —e )dr

ae~B/a [Qa —2acosh(A/a) + A sinh(A/a)} (A.33)
= A2 Jo

Ao {(QQQ + A?) cosh(A/a) — 2a<a + Asinh(A/a))} .
A? |

A
S+ _ =) L rosa _m/a>/ r/a
9 =Jo '+ (6 —e r)yre " dr,
0 0o % 2ary ; g(r) (A.34)

_|_
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By expanding e*/® — ¢770/% in terms of ry, we have

fo = e (8.35)
and the integration becomes
~ ~ 1 4 —r/a
37 =199+ o [ gtryre e ar
0
I —
= é+)§§+) + o /0 {go + g A J0 7“] re~ " dr
(A.36)
eBla [2a + A+ (—2a+ A)eﬁ/a}
_ () =(+)
0o 9N + A 90
2a% — (202 + 2aA + A?)e=B/a
+ g1 -
al\

Fig [A1.2] shows the result of *Fe binding energy calculation as a function of number of
grids. The nuclear force used is FRTF II. The energy converges quickly if we use 2nd order
Taylor expansion. The right panel shows the log scale error and the error of 2nd order
Taylor expansion is less than 0.1% even in the 40 zones. These method is also used to find

Fe “re

L " Simpson ——
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Figure A.2: °Fe binding energy calculation and relative error in log scale. The Simpson
method doesn’t give the enough accuracy even in N=200.

the properties of heavy nuclei in the dense matter.
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Appendix B

JEL thermodynamic integration

To compute the properties of finite-temperature matter, it is necessary to calculate the Fermi
integrals I/, and F3/5. Directly calculating these integrals by usual integral methods is not
advisable for applications like hydrodynamics, which require a high degree of thermodynamic
consistency. The approach we adopt is due to Johns, Ellis & Lattimejﬂ] (hereafter referred
to as JEL), which is a modification of a less accurate scheme originated by Eggleton, Faulkner
& Flanneryﬂg These approaches involve polynomial interpolations for arbitrary degeneracy
and relativity. However, in the finite-range model, nucleons are treated non-relativistically,
so the interpolation method can be considerably simplified from the general case.

The degeneracy parameter W, and an associated variable f, are defined in terms of the
chemical potential and temperature as

_ / Vit fla=1
gtV L+~ L T FasT (B.1)

a _  fF
dv 1+ fla

In the above, a is a fitting parameter and is given in table [Bl The Fermi integrals are
expressed as polynomials in f with additional parameters p,,, where m = 0... M, that are
fixed by the requirements of yielding exact results for the pressure, energy and entropy in
the extremely degenerate and non-degenerate limits or by fitting intermediate results. Using

such that

J - (B2)
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M 3 2
a 0.433 1

Do (e?/a)\/m/32 = 5.34689 (e?/a)\/m/32 = 2.31520

P 16.8441 a V7% — 8 +56/(5a)]/3 = 44.35653
pe | a4 r? — 8 +88/(5a)]/3 = 17.4708 32a7°/* /15 = 2.13333

D3 32471 /15 = 6.07364 —

Table B.1: Non-relativistic fermion coefficients

the results of JEL, one finds

3f(1 1/4—Mm M
F35(V) = i J;3J/02> mefm’

m=0

_fA+EHIMS - h
F1/2(\I’) = V2 n;)pmf {1 +m— (M 4)1 T f:|7
F_l/g(\ll) - — f{c'_aFl/Q(\I/) (B3)
JO+HIM S )
1. f 3, f
— (M — Z)m(?nt?m — (M + Z)m) .

The parameters are given in Table [Bl for two cases, M = 2 and 3. With the 1 free parameter
of the M = 2 scheme (1.e., a), accuracy is better than 3%. With the 2 free parameters of
the M = 3 scheme, i.e., a and p;, accuracy improves about 100-fold.

For EOS table, we have a large range of temperature and density, so the electron can have
four different regimes such as, non-relativistic non-degenerate, non-relativistic degenerate,
relativistic non-degenerate, and relativistic degenerate. We treat electrons as non-interacting
fermions except for the Coulomb interaction. In this case, we add another parameter g to
account for relativistic effects. Then the pressure from electrons can be written, as

3 Fg°/3 o
i ) 1+ f)M(1 + g)N-372 menf : (B.4)

Me (Me
P=—=5\7
2

where

o= AT (B.5)

Me
and the electron’s degeneracy parameter is given eq. (B.Il). The coefficient p,,, is provided

in Ref. @]
Among the thermodynamic quantities in EOS table, we may calculate dp/dn, 0p/JdT, and

117



Dimn n=>0 n=1 n=2 n=3
m =0 5.34689 18.0517 21.3422 &8.53240
m=1 16.8441 55.7051 63.6901 24.6213
m=2 174708 56.3902 62.1319 23.2602
m=3 6.07364 18.9992 20.0285 7.11153

Table B.2: Fermion coefficients p,,, for M = N = 3; a=0.433

0s/0T. In JEL scheme, we treat f, g variables independent.

dp = df+@d
of
dn ——df+a—ndg
f
015
d +
f f
where T
= —— =t(1+ f)"2.
b= 5 9 t(1+ f)

The dp/0n can be obtained when we make dt = 0, then

9p 4 9pog ot
dp a5 T agor b dg o5
% 7@ on dg wnere a_f = _E

af ' g of dg

In this manner, we can show that

op Op dg 15]
@ L"’a_ga_f where @__a_?

at ot dg —  on
Ot 55t agof om 5

For 0S/0T, we have

S  glgd* on

ar T T 0g? dg |~
We can find the derivative of Op/df and dp/dg from eq. (B.4)

Jp mcne g°/? -
@ N (1+ f)M+2(1 +g)N—3/2 menf g [1 +m+ f(m— M)]
p _ me2n, fg3/?

dg  (1+ /HMH(1+g)N-

where n, = %

L ()’
We also need to fin
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(B.8)

(B.9)

(B.10)

(B.11)

d the derivatives of 9?p/0f?, 3*p/0fdg, and 9*p/dg?. In this case, instead



of find exact polynomial expression, we might use recursion relation, that is,

@__M+2@+ mcn, g°/? "
of ~ T T of T4 DL g
1
menfmg"l%er(m—M)ij—M},
Op? _(l_Mle)@_l_ mcne g*/? y
0109 \F " T+ F )0y " (L (1 + g) P B2
5 :
menfmg”m{n+§+g(4+n—]\7)},
@_ E_N_% @ mc2ncfg3/2 y
99> \29 149 )dg (1+ f)MI(1+g)N-12
4+ 3
menfmg”{%—l—n(llen—N)+(4+n—N)}.
From thermodynamic quantities, we can get
A\ _10f (o, e
S T\ow /), Top\of 0Ofdg
1 (1;;0\/1+f8_pJr f @) B13
mc2\g 1+ f/a 0f 2T+ f\/1+ f/a0y (B.13)
[ Op 1+ fop
ns—<aT)w ny = e dg ny .
The derivatives of the above items w.r.t f and g are given by
AR N, P o
aof f o 2a(l+ f/a) mc? 2gy/T+ fy/1+ f/a
Op Pp 1 g Op 9*p
(57 20+ N5~ 515 o+ 03707 )
on 1 f (_\/1+f@+\/1+f Pp 1 @) (B.14)
dg  me* \/1+ f/a 9> Of g 0fdg 21+ f0g*)’ '

d(ns) 1 1 dp VI1+f 0% _¢8_n_n\/1+f/a

0f omE VIt Tog  me ofog  Lof 7
8(ns)_\/1+f@_0_n¢
dg  me® 0¢® 0g

Finally we can get thermodynamic derivatives using the above formulae and constraints
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with differentials,

(8])) _<8p+ g 8p) <8n+ g 8n)_1
on of " 200+ f)og) \of 20+1)0

_l_
(5) 51 (5-558)°) (e 50 )
oT mc? of 8g@f g (14 f) 8f 8g
<6(ns)) __\/m<0(ns _ J(ns 8_n _n < >—1)_1
a1 ), me? of dg 0f 8 2(1 8f dg

(B.15)
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Appendix C

Phase coexistence

Bulk equilibrium of dense and dilute matter is the simplified case of heavy nuclei and nucleon
gas in neutron stars’ inner crust. This bulk equilibrium can be made by the free energy
minimization process.

For given density, we have total free energy density

F =uFi(pr) + (1 —w)Fi(prr) ,

C.1
p =upr + (1 —u)prs (€1

where u is the volume fraction of phase I and F; and Fj; are free energy density of each
phase. The free energy density should be minimized with respect to u, p;(prr). Then we

have

OF OF; oFy; %

et G = ulps — pur) = 0,
dp1 uapl ( B Oprr Opr u(,u; 'uH)
OF OF; Oprr
I R —Fy 41— Lo .
TR S rer (C2)
OF1r prr — pr
—F - Fy4+(1—- _
I 1+ ( u) dprr (1 —u)

From eq (C.2), we have pu; = py; and p; = pr;. In case of neutron and proton matter, this
can be generalized as

Mnl = HnIl, Mpl = Mpr, PI = DIT- (C.3)

To find the mixed phase of quark and nuclear matter, we use a similar method in nuclear
matter cases.

3 3
F=Fyu+ Fo(l —u)+ th(BﬂszxN)l/?’pNxNu + th(37r2prQ)1/3prQ(1 —u), (C.4)

where F' is the free energy density, u is the volume fraction of the nuclear matter, py is the
nuclear matter density, pg is the quark matter density, xy is electron fraction of nuclear
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matter, and z¢ is electron fraction of quark matter. There are two constrains which are

pB = pnu+ po(l —u)
pBY; = PNINU + prQ(l — u) .

We set G(pn, po, TN, 2o, )

G(pn, pg: TN, Tq, u) =F — alpp — pyu+ po(l — u))

— B(pBYe — pyznu + poro(l —u)),

and find the minimum of F' using Lagrangian multiplier method.
0G0z N gives
B = —fte,n
From 0G/0xqg = 0, we have
He, N = He,Q -
With py and pg, we have

0G
— = u+ hc(SWQpNxN)l/ngu +au+ Bryu=0,
dpn
thus
OFNn  0Fy
dpon  Opq

Furthermore, we get

0FN . 8,0n aFN i 0pp aFN
dpy  Opn Opn  Opn Opy

= (I —on5)tn + TNy

and
8FQ . 8pu 8FQ i 8pd 8FQ i 8ps 8FQ

Opq  Opg Opu  Opg Opa ~ Opq Ops

1 1
= (1 +2Q)pu + 5(2 — Q) + 5(2 — TQ) s

11
= Hu F Ha o+ fis + 2Q(fu = SHa = SHs)
= ftu + 2ftq + 1 (pu — f1a)

where we have used massless quark limits. Therefore

(L= an)ptn + TNy = flu + 2pta + TQ(ftu — 11d) -

The partial derivative of G w.r.t u simply gives pressure equations which are

0FN 8FQ o

Fyn —pn—=pv=1Fg —po7— =po-
N gy TN T T gpg
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(C.11)

(C.12)

(C.13)

(C.14)



To summarize, we need to solve 5 equations, which are

(L= an)pn + TNy = fu + 2pta + 2Q(ftu — 1) ,
He,N = He,Q >
PN =DPQ, (C.15)
pB = pNu+ po(l —u),
peYe = pnTNU + pro(l — u),

with 5 unknowns,
PN, PQ s EN ,ZQ,U. (C.16)

The above equations and unknown can be solved numerically using typical Newton-Raphson
method.
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Appendix D

Numerical Techniques in Heavy
Nuclei in Dense Matter

The heavy nuclei in dense matter exist in the narrow range of densities (2.0 x 107 ~
8.0 x 1072 /fm*). However, this is the most difficult part of calculations in FRTF model and
Nuclear E.O.S. table. We now explain the numerical techniques in FRTF model.

The total energy in the cell can be obtained from

Etot = /gnp + (98 + 80 dg’l“, (Dl)

where &,p is a nuclear energy density and

£ = JW [ae(202 + )V 71~ (e, + T+ 27)] (D.2a)
S0 = 5(pp — p)Duglr) (D.2b)
Here, 5
v = o =(31°pe)?, (D3)
and

1 r Rc

App = 4me? [_/ r? [/)p(rl> - Pe(rl)} dr’ "‘/ r’ [pp(rl> - Pe(rl)] dr’} : (D.4)
™ Jo r

If we assume that the inner cell or numerical boundary (R;) for computational purpose is

smaller than the actual Wigner-Seitz cell and the nuclear and electron densities are constant

outside the inner cell, then we have (r < R, < R,)

Ap(r) =dme’ [% /0 r2[pp(r') = pe(r')] dr' + / "

P [oplr") = pelr!)] |
— 26 peo(R2 — RY).

(D.5)
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D.1 Non-uniform electron density approximation

Total energy contribution from the outer cell T is given by

41 1
Eioto = —(R2 — R})(Enpo + o) — —/ PeoDpy (1) dPr (D.6)
3 2 Rb,RC
For Ry, <r < R,
2 2 3
Apy(r) = %(z —zl) - gezpevo <3R3 — 2% - 7°2> (D.7)

where 2/ is the total number of electrons in the inner cell. Then we can have

8 2
B = =76z = 2Dpeo R = RY) + 02 (2R~ SRIR +3R)) (D)

For energy minimization,

47
F = /Stot — )\1</(pn + pp) d°r — ?Ri’p) —)\2</pp d*r — /pe d37’> (D.9)

I chose unknowns with p,, pp, pe, and A; 2, then we have equations to solve

0=Fyn: Mn(ﬂmpp) — Hno =0
0= Fnyionr: ,Up(Pn, pp) + A:Up(pzh p@) — fno + pleo =0
0= Fonsognia s He(pps pe) — Dpip(pps pe) — e =0

s 4, (D.10)
0= F3ni3: (pn + pp)d°r — gchp:O
0= F3nuq: /ppd?’r — /ped?’r =0
D.2 Uniform electron density approximation
In case of constant electron density approximation,
1 r Ry
A, (r) =dme? [— / 2 p,(r') dr' + / ' pp(r') dr’
" Jo r (D.11)

2
- gﬂezpe(?)Rz —r?).

tWe divide the Wigner-Seitz cell by inner cell and outer cell. In the inner cell, the nuclear density profile
varies. On the other hand, the nuclear density profile is uniform in the outer cell. The radius for inner cell
is set to 15 fm for the numerical calculations.
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For R, < r < R., we have

ze* 2
Apy(r) = T gwezpe(?)RE —r?).

The energy contribution from outside the inner cell is given by

4 2
Eco = —m2pec® (R} = R)) + S (AR} — SRR} + R)).

For energy minimization, we have

F= /&eot - M(/(pn +pp) dr — %Ri’@ —M(/pp d’r — %Ri’pYe)

I chose unknowns with p,,, pp, Ye, ftn0, and g, o then we have equations to solve
0="Fon: HnlPnsPp) = fno =0
0= Fnyion+1: Hp(Pns Pp) — Hpo =0

4
0= Fonio: /(pn + pp)dPr — g?TRi’p =0

4
0= Fonys: /pp d*r — gwRi’pYe =0

0=Fonga: fino— fpo— fe(Ye) =0

(D.12)

(D.13)

(D.14)

(D.15)

In the lower density ( p < 0.01/fm® ) region, two methods give almost same result. As
density increases, the uniform electron density approximation is unstable numerically in

FRTF model.
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Appendix E

Nuclear Quantities in Non-relativistic
Models

We present nuclear properties of non-relativistic potential (Skyrme force) models. These
properties can be used to restrict nuclear parameters when we make new force models.

E.1 Mathematical relation between nuclear
parameters and quantities

Once we are given nuclear parameters (xo, ..., s, to, ..., t3) in Skyrme force model, we can
extract nuclear quantities (B, K, M*, S,, L, p,) from its mathematical expression of bulk
matter Hamiltonian densrcy@

In the standard Skyrme force models,

p(po) 2/3 o 3 t3 e+1
=0= _C’ 14+ =8p, —topo + — 1 , E.1
) 53O0\ 145000 | + Stopo + (€4 1)0 (E.1)
where 23
3n? ([ 3n? M 1

From the pressure expression, we can get p, using the Newton—Raphson method, with which
we can get the binding energy per baryon, effective mass, and nuclear incompressibility in
standard nuclear matter,

E 3t t
B=__"=_ 2/31 O__OO 3 14
M
M* = ,
L+ Bpo (E:3)
0?E/A Ot
K = 9p? —200%3 + 100 %3 + 1)p<tt.
P | Py +10Cp," + Spele + 1)1,
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Other important quantities, S, and L can be obtained

2 92
g _BPE/A 5, IOC’M[t2<1 5@)

T8 o2 9T T3 |6

iz (1 4e to 1
24<2+x3),00 1\ T %) Pos

3p, PE/A 10, , 50CM [t 5 1 .
L= ‘ = o+ T (1 P ) St | B2
S 09022 lpmpouerp 277 Pt Tome |5 T aT2) T gl

— 21 Z te _ 22 Z o] po,
24( ¢) (2 x?’) Po 4 (2 :):)p

In this way, we can obtain nuclear quantities in standard Skyrme force model.

As an inverse process to find xg, ..., t3 in Skyrme force model, we can use E/A, p(p,, x =
1/2) =0, Mx, K, S,, L, and p,. Since we only have 7 quantities for 8 parameters, we may
use the pure neutron matter effective mass M or the energy difference )1 = ey —eg — 5,
as described in section (B.2).

The maximum mass of the cold neutron star can be obtained using T.0.V equation and
varying the central density of neutron stars. To get a more precise maximum mass of neutron
stars, we may use numerical Newton Rapshon with numerical derivative of

My — M,

 Pe2 — Per (E5)

and find the solution which makes f = 0.
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Table E.1: Non-relativistic Skyrme force model and maximum mass of cold neutron star

Model B (MeV) S,(MeV) L (MeV) K (MeV) M*/M po (fm3) M/M,

Gs -15.6023  31.3749  94.0305  237.3811 0.7838  0.1576 2.192
M*(0.811) -15.6992  30.7657  79.3938  237.1923 0.8110  0.1609 2.114
M*(0.9)  -15.5659  27.7811  69.9636  240.2086 0.8957  0.1610 2.114
M*(1.0)  -15.4172  24.8108  59.5481  240.2216 1.0000  0.1611 2.087

Rs -15.6019  30.5851  85.7058  237.5088 0.7826  0.1578 2.177
SGI -15.9073 283271  63.8631  261.9091 0.6078  0.1545 2.287
SGII -15.6085  26.8270  37.6101  214.7885 0.7855  0.1584 1.663
SIV -15.9733  31.2164  63.4859  324.7265 0.4707  0.1510 2.391
Ska -16.0055  32.9103  74.6226  263.3100 0.6082  0.1554 2.244
SkI1 -15.9660  37.5327  161.0952 242.8726 0.6929  0.1604 2.242
SkI2 -15.7895  33.3788  104.3625 241.0820 0.6847  0.1576 2.255
SkI3 -15.9944  34.8366  100.5490 258.3483 0.5771 0.1578 2.339
Skl4 -15.9573  29.5010  60.3980  248.0753 0.6492  0.1602 2.236
SkIb -15.8603  36.6487  129.3675 255.9506 0.5785  0.1558 2.349
SkI6 -15.9310  30.0894  59.7002  248.7457 0.6396  0.1591 2.245

SkkT8 -15.9571 299178  33.6999  235.8483 0.8326  0.1607 1.691
SkM -15.7851  30.7446  49.3262  216.7496 0.7884  0.1604 1.680
SkM’ -15.5749  29.8860  70.3127  231.0207 0.6533  0.1571 2.148
SkM* -15.7851  30.0312  45.7590  216.7496 0.7884  0.1604 1.618
SkT1 -15.9935  32.0171  56.1694  236.3034 1.0000  0.1611 1.849

SkT1s -15.9921  32.0154  56.0964  236.1374 1.0000  0.1603  1.8517
SkT2 -15.9581  31.9977  56.1523  235.8796 1.0000  0.1611 1.848
SkT3 -15.9592  31.4965  55.3027  235.8903 1.0000  0.1611 1.854
SkT3s -15.9924  31.6811  55.8395  236.1412 1.0000  0.1603 1.860
SkT4 -15.9694 354579  94.1479  235.6446 1.0000  0.1591 2.128
SkT5H -16.0120  37.0107  98.5508  201.8260 1.0000  0.1641 1.920
SkT7 -15.9519  29.5138  31.0932  235.7859 0.8325  0.1607 1.431
SkT8 -15.9571 299178  33.6999  235.8483 0.8326  0.1607 1.698

SkT9 -15.8968  29.7525  33.7134  235.0521 0.8329  0.1604 1.704
SLy0 -15.9860  31.9800  47.1008  229.8049 0.6977  0.1604 2.067
SLy1 -15.9997  31.9905  47.0548  229.9593 0.6976  0.1604 2.067

SLy2 -16.0003  32.0018  47.4436  230.0627 0.6973  0.1606 2.068
SLy3 -15.9850  31.9894  45.2930  230.0423 0.6961  0.1605 2.057

SLy4 -15.9868  31.9986  45.9305  230.0602 0.6944  0.1596 2.070
SLyb -15.9991  32.0080  48.1339  230.0656 0.6973  0.1606 2.070
SLy6 -15.9342  31.9555  47.4365  230.0047 0.6897  0.1590 2.090

SLy7 -15.9145  31.9861  46.9306  229.8984 0.6878  0.1584 2.090
SLy8 -15.9828  31.9934  47.1634  230.0383 0.6958  0.1604 2.070

SLy9 -15.8081  31.9814  54.8507  229.9855 0.6655  0.1512 2.200
SLy10 -15.9159  31.9775  38.7279  229.8270 0.6832  0.1556 2.056
SV -16.0615  32.8243  96.1003  305.8488 0.3827  0.1551 2.510
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