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We perform quantum calculations of fluctuations of the electromagnetic fields in AA collisions
at RHIC and LHC energies. We find that in the quantum picture the field fluctuations are
much smaller than predictions of the classical Monte-Carlo simulation with the Woods-Saxon
nuclear density.

Non-central AA collisions at high energies can generate a very strong magnetic field per-
pendicular to the reaction plane 1,2. In this talk I present results of quantum calculations of
fluctuations of the electromagnetic fields in AA collisions at RHIC and LHC energies based on
the fluctuation-dissipation theorem (FDT) 3. This issue is very important in the context of the
chiral magnetic effect and charge separation 1,4,5in AA collisions because the fluctuations may
partly destroy the correlation between the magnetic field direction and the reaction plane, and
can lead to reduction of the B-induced observables 6. Previously the field fluctuations have been
addressed by Monte-Carlo (MC) simulation with the Woods-Saxon (WS) nuclear distribution
using the classical Lienard-Weichert potentials 7,8,6. But the WS nuclear distribution ignores
the collective quantum dynamics of the nuclear ground state. The classical treatment of the
electromagnetic field may also be inadequate because, similarly to the van der Waals forces 9, it
becomes invalid at large distances.

We consider the proper time region τ ∼ 0.2− 1 fm which is of the most interest for the B-
induced effects in the quark-gluon plasma (QGP). We ignore the electromagnetic fields generated
by the induced currents in the QGP fireball after interaction of the colliding nuclei 10. We
consider the right moving and left moving nuclei with velocities VR = (0, 0, V ) and VL =
(0, 0,−V ), and with the impact parameters bR = (−b/2, 0, 0) and bL = (b/2, 0, 0). We take
zR,L = ±V t. For each nucleus the electromagnetic field is a sum of the mean field and the
fluctuating field

Fµν = 〈Fµν〉+ δFµν . (1)

The mean fields 〈E〉 and 〈B〉 are given by the Lorentz transformation of the Coulomb field in
the nucleus rest frame. For two colliding nuclei the mean magnetic field at r = 0 has only y-
component. At t� RA/γ (here γ = 1/

√
1− V 2 is the Lorentz factor, RA is the nucleus radius)

in the region ρ� tγ 〈By(t,ρ, z = 0)〉 takes a simple ρ-independent form

〈By(t,ρ, z = 0)〉 ≈ Zeb/γ2t3 . (2)

The contribution of each nucleus to the correlators of the electromagnetic fields in the lab-
frame may be expressed via the correlators in the nucleus rest frame. For γ � 1 the dominating



fluctuations in the lab-frame are the ones of the transverse fields. The transverse components
of the correlators of the electric and magnetic fields can be written as

〈δEiδEk〉 = γ2
[
〈δEiδEk〉+ V 2e3ile3kj〈δBlδBj〉

]
rf
, (3)

〈δBiδBk〉 = γ2
[
〈δBiδBk〉+ V 2e3ile3kj〈δElδEj〉

]
rf
, (4)

where i, k are the transverse indices and the subscript rf on the right-hand side of (3), (4)
indicates that the correlators are calculated in the nucleus rest frame.

In calculations of the rest frame correlators 〈δElδEj〉, 〈δBiδBk〉 (hereafter we drop the
subscript rf) with the help of the FDT we follow the formalism of 11 (formulated in the gauge
δA0 = 0). It allows to relate the time Fourier component of the vector potential correlator

〈δAi(r1)δAk(r2)〉ω =
1

2

∫
dteiωt〈δAi(t, r1)δAk(0, r2) + δAk(0, r2)δAi(t, r1)〉 (5)

and that of the retarded Green’s function

Dik(ω, r1, r2) = −i
∫
dteiωtθ(t)〈δAi(t, r1)δAk(0, r2)− δAk(0, r2)Ai(t, r1)〉 . (6)

In the zero temperature limit the FDT relation between (5) and (6) reads 11

〈δAi(r1)δAk(r2)〉ω=−sign(ω)ImDik(ω, r1, r2). (7)

The time Fourier components of the electromagnetic field correlators in terms of that for the
the vector potential correlator (5) are given by

〈δEi(r1)δEk(r2)〉ω = ω2〈δAi(r1)δAk(r2)〉ω , (8)

〈δBi(r1)δBk(r2)〉ω = rot
(1)
il rot

(2)
kj 〈δAl(r1)δAj(r2)〉ω. (9)

In the time region of interest (t ∼> 0.2 fm in the lab-frame) for each nucleus the distance
between the observation point and the center of the nucleus (in its rest frame) is much bigger
than RA. It allows one to treat each nucleus as a point like dipole described by the dipole
polarizability αik(ω). The field fluctuations are described by correction to the retarded Green’s
function proportional to the dipole polarizability 11. The retarded Green’s function coincides
with the Green’s function of Maxwell’s equation 11. For the point like dipole at r = rA the
equation for the retarded Green’s function reads[

∂2

∂xi∂l
− δil4− δilω2 − 4πω2αil(ω)δ(r− rA)

]
Dlk(ω, r, r

′) = −4πδikδ(r− r′) . (10)

The correction to Dik due to αik reads 11

∆Dik(ω, r1, r2) = −ω2Dv
il(ω, r1, rA)αlm(ω)Dv

mk(ω, rA, r2) , (11)

where Dv
ik is the vacuum Green’s function given by

Dv
ik(ω, r1, r2) =

eiωr

r

[
−δik

(
1 +

i

ωr
− 1

ω2r2

)
+
xixk
r2

(
1 +

3i

ωr
− 3

ω2r2

)]
(12)

with r = r1 − r2.
For spherical nuclei the polarizability tensor can be written as αik(ω) = δikα(ω). α(ω) is

an analytical function of ω in the upper half-plane 9. It satisfies the relation α∗(−ω∗) = α(ω)
9. It means that on the upper imaginary axis α(ω) is real. Using this fact, one can express



the rest frame field correlators 〈δEi(t, r)δEk(t, r)〉, 〈δBi(t, r)δBk(t, r)〉 via integrals of the type

In =
∫∞
0 dξξne−ξα

(
iξ
2r

)
with n = 0− 4 12.

The function α(ω) reads 9

α(ω) =
1

3

∑
s

[
|〈0|d|s〉|2

ωs0 − ω − iδ
+
|〈0|d|s〉|2

ωs0 + ω + iδ

]
, (13)

where d =
(
eN

∑
p rp − eZ

∑
n rn

)
/A is the dipole operator. At ω > 0 the imaginary part of

α(ω) is connected with the dipole photoabsorption cross section

σabs(ω) = 4πωImα(ω) . (14)

For heavy nuclei the dipole strength is dominated by the giant dipole resonance (GDR) 13. It
appears as a broad peak in σabs at ω ∼ 14 MeV. We parametrize the dipole polarizability for
197Au and 208Pb nuclei by a single GDR state

α(ω) = c

[
1

ω10 − ω − iΓ/2
+

1

ω10 + ω + iΓ/2

]
. (15)

By fitting the data on the photoabsorption cross section from 14 for 197Au and from 15 for
208Pb we obtained the following values of the parameters: ω10 ≈ 13.6 MeV, Γ ≈ 4.38 MeV,
c ≈ 18.2 GeV−2 for 197Au, and ω10 ≈ 13.3 MeV, Γ ≈ 3.72 MeV, c ≈ 18.93 Gev−2 for 208Pb.
Fig. 1 illustrates the quality of our fit. Using these parameters we calculated the fluctuations of
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Figure 1 – Fit of the photoabsorption cross section in
the GDR region to the experimental data for 197Au and
208Pb targets. The data are from Refs.14 and 15, respec-
tively.
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Figure 2 – The t-dependence of the ratio 〈δB2
x〉1/2/〈By〉

at r = 0 for Au+Au collisions at
√
s = 0.2 TeV (left)

and for Pb+Pb collisions at
√
s = 2.76 TeV for the im-

pact parameters b = 3, 6 and 9 fm (from top to bottom).
Solid lines are for quantum calculations, dashed lines for
classical MC calculations with the WS nuclear density.

the nuclear dipole moment. From (13), (15) one can obtain

〈0|d2|0〉 =
3

π

∫ ∞
0

dωImα(ω) =
6c

π
arctg (2ω10/Γ) . (16)

This formula gives 〈0|d2|0〉 ≈ 1.91 fm2 and 〈0|d2|0〉 ≈ 2.02 fm2 for 197Au and 208Pb, respectively.
The classical MC calculation with the WS nuclear density gives for these nuclei the values
〈d2〉 ≈ 9.89 fm2 and 〈d2〉 ≈ 10.39 fm2. Thus, we see that the classical treatment overestimates
the dipole moment squared by a factor of ∼ 5.

At the center of the plasma fireball the fluctuations of the direction of the magnetic field
are dominated by the fluctuations of the component Bx that vanishes without fluctuations. In
Fig. 2 we show our quantum and classical results for t-dependence of the ratio 〈δB2

x〉1/2/〈By〉



at x = y = 0 for several impact parameters for Au+Au collisions at
√
s = 0.2 TeV and Pb+Pb

collisions at
√
s = 2.76 TeV. This figure shows that the quantum treatment gives 〈δB2

x〉1/2/〈By〉
smaller than the classical one by a factor of ∼ 5− 8 for RHIC and by a factor of ∼ 13− 27 for
LHC. Thus, we see that in the quantum picture both for RHIC and LHC fluctuations of the
direction of the magnetic field relative to the reaction plane should be very small. Of course,
experimentally the reaction plane itself cannot be determined exactly. In the event-by-event
measurements the orientation of the reaction plane is extracted from the elliptic flow in the
particle distribution 16,17 (it is often called the participant plane), and it fluctuates around
the real reaction plane. Calculations of the fluctuations of the direction of the magnetic field
relative to the participant plane require a joint analysis of the field fluctuations and of the
fluctuations of the initial entropy deposition that control the fluctuations of the orientation of
the participant plane in the hydrodynamical simulations of AA collisions. The initial entropy
distribution is sensitive to the long range fluctuations of the nuclear density. Besides the nuclear
fluctuations related to the GDR there are other collective nuclear modes 13 such as the giant
monopole resonance and the giant quadrupole resonance that may also be important for the
participant plane fluctuations. It would be of great interest to clarify the situation with the MC
simulation with the WS nuclear density for these collective modes. This is of great interest for
the event-by-event hydrodynamic simulations of AA collision.

In summary, we have performed a quantum analysis of fluctuations of the electromagnetic
field in AA collisions at RHIC and LHC energies. Our quantum calculations show that the
field fluctuations are very small. We have demonstrated that the classical picture overestimates
strongly the field fluctuations.
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