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Abstract The structure of the parafermion vertex operator algebra associated to
an integrable highest weight module for any affine Kac-Moody algebra is studied.
In particular, a set of generators for this algebra has been determined.

1 Introduction

This paper is a continuation of our study of the parafermion vertex operator al-
gebra associated to an integrable highest weight module for an arbitrary affine
Kac-Moody algebra. We determine a set of generators for these algebras. If the
affine Kac-Moody algebra is A(1)

1 , this result was obtained previously in (6).
The parafermion algebra was first studied in (27) in the context of conformal

field theory. It was clarified in (7) that the parafermion algebras are essentially the
Z-algebras introduced and studied earlier in (19; 20; 21) in the process of studying
the representation theory for the affine Kac-Moody Lie algebras. As it proved in
(7), the parafermion algebras generate certain generalized vertex operator alge-
bras. The partition functions for the parafermion conformal field theory have been
given in (13) and (12) in connection with the partition functions associated to the
integrable representations for the affine Kac-Moody Lie algebras. We refer the
reader to (1; 12; 13; 15; 24; 26; 27) for various aspects of parafermion conformal
field theory.

The parafermion vertex operator algebras which have roots in the parafermion
conformal field theory are realized as commutants of the Heisenberg vertex opera-
tor subalgebras in the vertex operator algebras associated to the integrable highest
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weight modules for the affine Kac-Moody Lie algebra (11; 14; 18). More pre-
cisely, let L(k,0) be the level k integrable highest weight module for affine Kac-
Moody algebra ĝ associated to a finite dimensional simple Lie algebra g. Then
L(k,0) has a vertex operator subalgebra M

ĥ
(k,0) generated by the Cartan subalge-

bra h of g. The commutant K(g,k) of M
ĥ
(k,0) in L(k,0) is called the parafermion

vertex operator algebra. Although the parafermion field theory has been studied
for more than two decades, the mathematical investigation of the parafermion ver-
tex operator algebras have been limited by a lack of understanding of the structural
theory of these algebras. The goals of this paper and (4; 5; 6) are to alleviate this
situation.

More importantly, it is widely believed that K(g,k) should give a new class of
rational, C2-cofinite vertex operator algebras although this can only been proved
in the case g = sl2 and k ≤ 6 (5). Most well known vertex operator algebras such
as lattice vertex operator algebras (2; 3; 10), the affine vertex operator algebras
(7; 11; 23) and the Virasoro vertex operator algebras (11; 25) can be understood
well using the underline lattices or Lie algebras. Unfortunately, the structures of
parafermion vertex operator algebras with weight one subspaces being zero are
much more complicated. It seems that a determination of a set of generators is the
first step in understanding parafermion vertex operator algebras and their repre-
sentation theory.

It is well known that L(k,0) is the irreducible quotient of the generalized
Verma module V (k,0) (see Sect. 2). So the structure of L(k,0) can be determined
by studying the maximal submodule of V (k,0) or the maximal ideal of V (k,0)
which is also a vertex operator algebra. The same idea can also be applied to
the study of parafermion vertex operator algebras. In fact, the Heisenberg vertex
operator algebra M

ĥ
(k,0) is also a subalgebra of V (k,0) and the parafermion ver-

tex operator algebra K(g,k) is the simple quotient of the commutant N(g,k) of
M

ĥ
(k,0) in V (k,0). The main part of this paper is to determine a set of generators

for V (k,0)(0) which is the weight zero subspace of V (k,0) under the action of the
Cartan subalgebra h. The generators for N(g,k) and K(g,k) will be found easily
then. Also, the maximal ideal of N(g,k) is generated by one vector. This result is
similar to that for the maximal ideal of V (k,0).

It is worth pointing out that the structure theory for the parafermion vertex
operator algebra is similar to the structure theory for the finite dimensional Lie
algebras or Kac-Moody Lie algebras. The building block of the Kac-Moody Lie
algebras is the 3-dimensional simple Lie algebra sl2 associated to any real root.
The generator results for the parafermion vertex operator algebras given in this
paper and (6) show that the parafermion vertex operator algebras associated to the
affine Lie algebra A(1)

1 are also the building block of general parafermion vertex
operator algebras. We hope this fact will be important in the future study of the
representation theory for the parafermion vertex operator algebra. So a complete
understanding of representation theory of K(g,k) in the case g = sl2 becomes
necessary.

The paper is organized as follows. In Sect. 2, we give the construction of the
vertex operator algebra V (k,0) associated to the affine Kac-Moody algebra ĝ from
(11). V (k,0) has a vertex operator subalgebra V (k,0)(0) which is the space of h-
invariants of V (k,0). A foundational result in this section is to determine a set of
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of generators for V (k,0)(0). In Sect. 3, we give a set of generators for the vertex
operator algebra N(g,k) which is the commutant of the Heisenberg vertex opera-
tor algebra M

ĥ
(k,0) in V (k,0). We also discuss the vertex operator subalgebra P̂α

generated by ωα ,W 3
α (which is defined in Sect. 3) associated to any positive root

α and prove that P̂α is isomorphic to N(sl2,kα), where kα = 〈θ ,θ〉
〈α,α〉k and θ is the

highest root. In fact, N(g,k) is generated by P̂α for positive roots α. In Sect. 4, we
give a set of generators for the parafermion vertex operator algebra K(g,k) which
is the simple quotient of N(g,k). We prove that the maximal ideal of N(g,k) is
generated by the vector x−θ (0)k+1xθ (−1)k+11, where xθ is the root vector as-
sociated to θ (see Sect. 2). We also show that the image Pα of P̂α in K(g,k) is
isomorphic to K(sl2,kα) and K(g,k) is generated by Pα for positive roots α. That
is, K(sl2,kα) are the building blocks of K(g,k).

We expect the reader to be familiar with the elementary theory of vertex oper-
ator algebras as found, for example, in (10) and (18).

We thank the referees for many excellent suggestions which improve and sim-
plify the proof of Theorem 21 greatly.

2 Vertex Operator Algebras V (k,0) and V (k,0)(0)

Let g be a finite dimensional simple Lie algebra with a Cartan subalgebra h. Let
∆ be the corresponding root system and Q the root lattice. Let 〈,〉 be an invariant
symmetric nondegenerate bilinear form on g such that 〈α,α〉 = 2 if α is a long
root, where we have identified h with h∗ via 〈,〉. As in (15), we denote the image
of α ∈ h∗ in h by tα . That is, α(h) = 〈tα ,h〉 for any h ∈ h. Fix simple roots
{α1, · · · ,αl} and denote the highest root by θ .

Let gα denote the root space associated to the root α ∈ ∆ . For α ∈ ∆+,
we fix x±α ∈ g±α and hα = 2

〈α,α〉 tα ∈ h such that [xα ,x−α ] = hα , [hα ,x±α ] =
±2x±α . That is, gα = Cxα +Chα +Cx−α is isomorphic to sl2 by sending xα to(

0 1
0 0

)
,x−α to

(
0 0
1 0

)
and hα to

(
1 0
0 −1

)
. Then 〈hα ,hα〉 = 2 〈θ ,θ〉

〈α,α〉 and

〈xα ,x−α〉= 〈θ ,θ〉
〈α,α〉 for all α ∈ ∆ .

Let ĝ = g⊗C[t, t−1]⊕CK be the corresponding affine Lie algebra. Let k ≥ 1
be an integer and

V (k,0) = Vĝ(k,0) = Indĝ
g⊗C[t]⊕CKC

the induced ĝ-module such that g⊗C[t] acts as 0 and K acts as k on 1= 1.
We denote by a(n) the operator on V (k,0) corresponding to the action of a⊗tn.

Then

[a(m),b(n)] = [a,b](m+n)+m〈a,b〉δm+n,0k

for a,b ∈ g and m,n ∈ Z.
Let a(z) = ∑n∈Z a(n)z−n−1. Then V (k,0) is a vertex operator algebra generated

by a(−1)1 for a ∈ g such that Y (a(−1)1,z) = a(z) with the vacuum vector 1 and
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the Virasoro vector

ωaff =
1

2(k +h∨)

(
l

∑
i=1

hi(−1)hi(−1)1+ ∑
α∈∆

〈α,α〉
〈θ ,θ〉

xα(−1)x−α(−1)1

)

of central charge k dimg
k+h∨ (e.g. (17; 18, Sect. 6.2)), where h∨ is the dual Coxeter

number of g and {hi|i = 1, . . . , l} is an orthonormal basis of h.
We will use the standard notation for the component operators of Y (u,z) for

u ∈V (k,0). That is, Y (u,z) = ∑n∈Z unz−n−1. From the definition of vertex opera-
tors, we immediately see that (a(−1)1)n = a(n) for a ∈ g. So in the rest of paper,
we will use both a(n) and (a(−1)1)n for a ∈ g and use un only for general u
without further explanation.

For λ ∈ h∗, set

V (k,0)(λ ) = {v ∈V (k,0)|h(0)v = λ (h)v,∀ h ∈ h}.

Then we have

V (k,0) =⊕λ∈QV (k,0)(λ ). (2.1)

Since [h(0),Y (u,z)] = Y (h(0)u,z) for h ∈ h and u ∈ V (k,0), from the defini-
tion of affine vertex operator algebra, we see that V (k,0)(0) is a vertex operator
subalgebra of V (k,0) with the same Virasoro vector ωaff and each V (k,0)(λ ) is a
module for V (k,0)(0).

Our first theorem is on a set of generators for V (k,0)(0).

Theorem 21 The vertex operator algebra V (k,0)(0) is generated by vectors αi(−1)1
and x−α(−2)xα(−1)1 for 1 ≤ i ≤ l,α ∈ ∆+.

Proof First note that V (k,0)(0) is spanned by the vectors

a1(−m1) · · ·as(−ms)xβ1(−n1)xβ2(−n2) · · ·xβt (−nt)1,

where ai ∈ h,β j ∈ ∆ ,mi > 0,n j > 0 and β1 + β2 + · · ·+ βt = 0. Let U be the
vertex operator subalgebra generated by αi(−1)1 and x−α(−2)xα(−1)1 for 1 ≤
i ≤ l,α ∈ ∆+. Clearly, αi(−1)1 and x−α(−2)xα(−1)1 ∈ V (k,0)(0) for 1 ≤ i ≤
l,α ∈ ∆+. It suffices to prove that V (k,0)(0)⊂U.

Since (h(−1)1)n = h(n) for h∈ h, we see that h(n)U ⊂U for h∈ h and n∈Z.
So we only need to prove u = xβ1(−n1)xβ2(−n2) · · ·xβt (−nt)1∈U with β1 +β2 +
· · ·+βt = 0. We will prove it by induction on t.

Clearly, t ≥ 2. If t = 2, it follows from Theorem 2.1 in (6) that

x−α(−m)xα(−n)1 ∈U

for m,n > 0. Note that if m ≥ 0, then

x−α(m)xα(n)1=−hα(m+n)1+mk〈xα ,x−α〉δm+n,01 ∈U.

We claim that x−α(m)xα(n)U ⊂U for all m,n ∈ Z. Let u ∈U. From Proposi-
tion 4.5.7 of (18), there exist nonnegative integers p,q such that

x−α(m)xα(n)u =
p

∑
i=0

q

∑
j=0

(
m−q

i

)(
q
j

)
(x−α(m−q− i+ j)xα(−1)1)n+q+i− ju.
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Since x−α(m−q− i+ j)xα(−1)1 ∈U , the claim follows.
From now on, we assume that t > 2 and that

xβ1(−n1)xβ2(−n2) · · ·xβν
(−nν)1 ∈U

with β1 +β2 + · · ·+βν = 0 for 2 ≤ ν ≤ t−1 and ni > 0. We have to show that

xβ1(−n1)xβ2(−n2) · · ·xβt (−nt)1 ∈U

with β1 +β2 + · · ·+βt = 0. We divide the proof into two cases.
Case 1. There exist 1 ≤ i, j ≤ t such that βi +β j ∈ ∆ . Note that if

xβ1(−n1)xβ2(−n2) · · ·xβt (−nt)1 ∈U,

then

xβi1
(−ni1)xβi2

(−ni2) · · ·xβit
(−nit )1 ∈U

by the induction assumption, where (i1, . . . , it) is any permutation of (1, . . . , t).
Without loss of generality, we may assume that β1 +β2 ∈ ∆ .

Let k,n be positive integers such that −k + n = −n2 and n > ni for i ≥ 3. Let
w = xβ1+β2(−k)xβ3(−n3) · · ·xβt (−nt)1 with β1 + β2 + · · ·+ βt = 0. Then w ∈U
by the induction assumption and xβ1(−n1)x−β1(n)w ∈U by the claim.

Let [x−β1 ,xβ1+β2 ] = λxβ2 for some nonzero λ . Then

xβ1(−n1)x−β1(n)w = λxβ1(−n1)xβ2(−n2)xβ3(−n3) · · ·xβt (−nt)1

+ xβ1(−n1)xβ1+β2(−k)[x−β1 ,xβ3 ](n−n3)xβ4(−n4) · · ·xβt (−nt)1

+ · · ·+ xβ1(−n1)xβ1+β2(−k)xβ3(−n3) · · · [x−β1 ,xβt ](n−nt)1.

Since n−ni > 0 for i ≥ 3, we see that

xβ1(−n1)xβ1+β2(−k)[x−β1 ,xβ3 ](n−n3)xβ4(−n4) · · ·xβt (−nt)1

+ · · ·+ xβ1(−n1)xβ1+β2(−k)xβ3(−n3) · · · [x−β1 ,xβt ](n−nt)1

lies in U by the induction assumption. As a result, xβ1(−n1)xβ2(−n2)xβ3(−n3)
· · ·xβt (−nt)1 ∈U.

Case 2. For any 1≤ i, j≤ t, βi +β j /∈∆ . We claim that there exist 1≤ i
′
, j

′ ≤ t such
that βi′ +β j′ = 0. Otherwise, βi +β j 6= 0 for all i, j. This implies that 〈βi,β j〉 ≥ 0
for all i, j, thus 〈β1,∑

t
j=2 β j〉 ≥ 0. On the other hand, since ∑

t
j=2 β j = −β1, we

have 〈β1,∑
t
j=2 β j〉< 0, a contradiction.

Without loss of generality, we may assume β1 +β2 = 0. Then β3 + · · ·+βt = 0.
By the induction assumption, xβ3(−n3) · · ·xβt (−nt)1 ∈U. It is immediate that

xβ1(−n1)xβ2(−n2)xβ3(−n3) · · ·xβt (−nt)1 ∈U

from the claim. The proof is complete. ut

Remark 22 Theorem 2.1 has been obtained in (6) previously in the case g = sl2.
The proof given here simplifies the proof of Theorem 2.1 in (6).
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Next we discuss some automorphisms of vertex operator algebras V (k,0) and
V (k,0)(0) for later purposes. It is well known that the automorphism group Aut(V (k,0))
is isomorphic to the automorphism group Aut(g). In fact, if σ ∈ Aut(g), then σ

lifts to an automorphism of V (k,0) in the following way:

σ(x1(−n1) · · ·xs(−ns)1) = (σx1)(−n1) · · ·(σxs)(−ns)1

for xi ∈ g and ni > 0. Let W (g) be the Weyl group of g. Then W (g) can naturally
be regarded as a subgroup of Aut(g) (16). It is easy to see that if σ(h) = h, then
σ(V (k,0)(0)) =V (k,0)(0) and the restriction of σ to V (k,0)(0) gives an automor-
phism of V (k,0)(0). In particular, any Weyl group element gives an automorphism
of V (k,0)(0). This fact will be used in later sections.

3 Vertex Operator Algebra N(g,k)

Let V
ĥ
(k,0) be the vertex operator subalgebra of V (k,0) generated by h(−1)1 for

h ∈ h with the Virasoro element

ωh =
1
2k

l

∑
i=1

hi(−1)hi(−1)1

of central charge l, where {h1, · · ·hl} is an orthonormal basis of h as before. For
λ ∈ h∗, let M

ĥ
(k,λ ) denote the irreducible highest weight module for ĥ with a

highest weight vector vλ such that h(0)vλ = λ (h)vλ for h ∈ h. Then V
ĥ
(k,0) is

identified with M
ĥ
(k,0).

Recall V (k,0)(λ ) from Sect. 2. Both V (k,0) and V (k,0)(λ ),λ ∈ Q are com-
pletely reducible V

ĥ
(k,0)-modules. That is,

V (k,0) = ⊕λ∈QM
ĥ
(k,λ )⊗Nλ , (3.1)

V (k,0)(λ ) = M
ĥ
(k,λ )⊗Nλ , (3.2)

where

Nλ = {v ∈V (k,0) |h(m)v = λ (h)δm,0v for h ∈ h,m ≥ 0}

is the space of highest weight vectors with highest weight λ for ĥ.
Note that N(g,k) = N0 is the commutant (11, Theorem 5.1) of V

ĥ
(k,0) in

V (k,0). The commutant N(g,k) is a vertex operator algebra with the Virasoro
vector ω = ωaff−ωh whose central charge is k dimg

k+h∨ − l.
Recall from Sect. 2, the 3-dimensional subalgebra gα for α ∈ ∆+. Then the

restriction 〈,〉gα of the bilinear form 〈,〉 to gα is equal to 〈θ ,θ〉
〈α,α〉 (,), where (,)

is the standard nondegenerate symmetric invariant bilinear form on gα such that
(hα ,hα) = 2. As a result, V (k,0) is a module for ĝα = gα ⊗C[t, t−1]⊕CK of level
kα = 〈θ ,θ〉

〈α,α〉k as we regard V (k,0) as a module for the subalgebra ĝα of ĝ. In other

words, V (k,0) is a ĝα -module of level 2k or 3k if α is a short root.
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Following (5), we let

ωα =
1

2k(k +2)
(−khα(−2)1−hα(−1)21+2kxα(−1)x−α(−1)1), (3.3)

W 3
α = k2hα(−3)1+3khα(−2)hα(−1)1+2hα(−1)31

−6khα(−1)xα(−1)x−α(−1)1

+3k2xα(−2)x−α(−1)1−3k2xα(−1)x−α(−2)1 (3.4)

if α ∈4+ is a long root. If α is a short root, we also define ωα ,W 3
α as in (3.3) and

(3.4) by replacing k by kα .

Let P̂α be the vertex operator subalgebra of N(g,k) generated by ωα and W 3
α .

Then P̂α is isomorphic to the W -algebra W (2,3,4,5) (1) by (6, Theorem 3.1) with
k replaced by kα , i.e., P̂α is isomorphic to N(sl2,kα).

The first main theorem of this paper is about the generators of N(g,k).

Theorem 31 The vertex operator algebra N(g,k) is generated by dimg− l vec-
tors ωα and W 3

α for α ∈ ∆+. That is, N(g,k) is generated by subalgebras P̂α for
α ∈ ∆+.

Proof We first prove that V (k,0)(0) is generated by vectors αi(−1)1,ωα and W 3
α

for i = 1, . . . , l and α ∈ ∆+. In fact, let U be the vertex operator subalgebra gener-
ated by h(−1)1,ωα and W 3

α for h ∈ h and α ∈ ∆+. Then x−α(−1)xα(−1)1 ∈U
and ωaff ∈U . Moreover, from the expression of W 3

α , we see that x−α(−1)xα(−2)1−
x−α(−2)xα(−1)1 ∈U . Set Laff(n) = (ωaff)n+1; we have

[Laff(m),a(n)] =−na(m+n)

for m,n ∈ Z,a ∈ g. Thus,

Laff(−1)x−α(−1)xα(−1)1= x−α(−2)xα(−1)1+ x−α(−1)xα(−2)1 ∈U.

Together with x−α(−1)xα(−2)1−x−α(−2)xα(−1)1∈U , we get x−α(−2)xα(−1)1∈
U , and so U is equal to V (k,0)(0) by Theorem 21.

Next we show that ωα ,W 3
α ∈ N(g,k) for α ∈ ∆ . Since 〈hα ,hα〉 6= 0, we have

decomposition h = Chα ⊕ (Chα)⊥, where (Chα)⊥ is the orthogonal complement
of Chα with respect to 〈,〉. From (6), we know that hα(n)ωα = hα(n)W 3

α = 0 for
n ≥ 0. If u ∈ (Chα)⊥, we clearly have u(n)ωα = u(n)W 3

α = 0 for n ≥ 0. This
implies that ωα ,W 3

α ∈ N(g,k).
Notice that Y (u,z1)Y (v,z2) = Y (v,z2)Y (u,z1) for u∈M

ĥ
(k,0) and v∈N(g,k).

Since V (k,0)(0) = M
ĥ
(k,0)⊗N(g,k),h(−1)1∈M

ĥ
(k,0) for h∈ h, and ωα ,W 3

α ∈
N(g,k) for α ∈ ∆+, we conclude that N(g,k) is generated by ωα ,W 3

α for α ∈ ∆+.
ut

Remark 32 Using the Z-algebra introduced and studied in (19) and (20; 21), we
can rewrite ωα and W 3

α in terms of Z-operators Zα(m) and Z−α(n). It is not too
hard to see that ωα = aα Zα(−1)Z−α(−1)1 and W 3

α = bα Zα(−2)Z−α(−1)1+
cα Z−α(−2)Zα(−1)1 for some constants aα ,bα ,cα ∈ C. One could determine
these constants explicitly using the definition of Z-operators.
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Remark 33 The vertex operator algebra N(g,k) and its quotient K(g,k) are of
moonshine type. That is, their weight zero subspaces are 1-dimensional and weight
one subspaces are zero.

Remark 34 We already know that each ωα is a Virasoro element and how to com-
pute the Lie brackets [Y (ωα ,z1),Y (W 3

α ,z2)], [Y (W 3
α ,z1),Y (W 3

α ,z2)] for α ∈ ∆+. It
is important to calculate the Lie brackets for vertex operators associated to vectors
in different P̂α . This will be done in a sequel to this paper where the representation
theory will be investigated.

Following the discussion given at the end of Sect. 2, we see that any Weyl
group element gives an automorphism of N(g,k).

4 Parafermion Vertex Operator Algebras K(g,k)

It is well known that the vertex operator algebra V (k,0) has a unique maximal
ideal J generated by a weight k+1 vector xθ (−1)k+11 (17), where θ is the high-
est root of g. The quotient vertex operator algebra L(k,0) = V (k,0)/J is a sim-
ple, rational vertex operator algebra associated to the affine Lie algebra ĝ. Again,
the Heisenberg vertex operator algebra V

ĥ
(k,0) generated by h(−1)1 for h ∈ h

is a simple subalgebra of L(k,0) and L(k,0) is a completely reducible V
ĥ
(k,0)-

module. We have a decomposition

L(k,0) =⊕λ∈QM
ĥ
(k,λ )⊗Kλ (4.1)

as modules for V
ĥ
(k,0), where

Kλ = {v ∈ L(k,0) |h(m)v = λ (h)δm,0v for h ∈ h,m ≥ 0}.

Set K(g,k) = K0. Then K(g,k) is the commutant of V
ĥ
(k,0) in L(k,0) and is

called the parafermion vertex operator algebra associated to the irreducible high-
est weight module L(k,0) for ĝ. As we mentioned in the Introduction, K(g,k) are
conjectured to be rational, C2-cofinite vertex operator algebras.

As a V
ĥ
(k,0)-module, J is completely reducible. From (3.1),

J =⊕λ∈QM
ĥ
(k,λ )⊗ (J ∩Nλ ).

In particular, Ĩ = J ∩N(g,k) is an ideal of N(g,k) and K(g,k) ∼= N(g,k)/Ĩ .
Following the same proof as (5, Lemma 3.1), we know that Ĩ is the unique max-
imal ideal of N(g,k). Thus K(g,k) is a simple vertex operator algebra.

We still use ωaff,ωh,ωα ,W 3
α to denote their images in L(k,0) = V (k,0)/J .

Remark 41 In the case k = 1, it follows from the construction of L(1,0) (9; 10)
that ω = 0 and K(g,k) = C if g is of ADE type.

The following result is a direct consequence of Theorem 31.

Theorem 42 The simple vertex operator algebra K(g,k) is generated by ωα ,W 3
α

for α ∈ ∆+.
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Next, we study the ideal Ĩ of N(g,k) in detail. The vector xθ (−1)k+11 /∈
N(g,k). From (5, Theorem 3.2) we know that hθ (n)x−θ (0)k+1xθ (−1)k+11= 0 for
n≥ 0. It is clear that if h∈ h satisfies 〈hθ ,h〉= 0, then h(n)x−θ (0)k+1xθ (−1)k+11=
0 for n ≥ 0. So we have proved the following

Lemma 43 x−θ (0)k+1xθ (−1)k+11 ∈ Ĩ .

Furthermore, we have

Proposition 44 The maximal ideal Ĩ of N(g,k) is generated by x−θ (0)k+1xθ (−1)k+11.

Proof The proof is similar to that of (6, Theorem 4.2 (1)). Recall gθ = Cxθ +
Chθ + Cx−θ is a subalgebra of g isomorphic to sl2.V (k,0) is an gθ -module where
a ∈ gθ acts as a(0). Each weight subspace of the vertex operator algebra V (k,0)
is a finite dimensional gθ -module and V (k,0) is completely reducible as a module
for gθ . Consider the gθ -submodule X of V (k,0) generated by xθ (−1)k+11. Since
xθ (0)xθ (−1)k+11= 0 and hθ (0)xθ (−1)k+11= 2(k+1)xθ (−1)k+11,xθ (−1)k+11

is a highest weight vector with highest weight 2(k + 1) for gθ . Then X is an irre-
ducible gθ -module with
basis x−θ (0)ixθ (−1)k+11,0 ≤ i ≤ 2(k + 1) from the representation theory of sl2.
This implies that the ideal J of the vertex operator algebra V (k,0) can be gener-
ated by any nonzero vector in X . In particular, J is generated by x−θ (0)k+1xθ (−1)k+11.
Then J is spanned by unx−θ (0)k+1xθ (−1)k+11 for u ∈V (k,0) and n ∈ Z by (8,
Cor. 4.2) or (22, Prop. 4.1).

Since vmu ∈ V (k,0)(λ + µ) for v ∈ V (k,0)(λ ),u ∈ V (k,0)(µ),λ ,µ ∈ Q and
m∈Z, we see that J ∩V (k,0)(0) is spanned by vectors of the form unx−θ (0)k+1xθ (−1)k+11
with u ∈ V (k,0)(0). Let u = v⊗w ∈ V (k,0)(0) = M

ĥ
(k,0)⊗N(g,k) with v ∈

M
ĥ
(k,0) and w ∈ N(g,k). Then Y (u,z) = Y (v,z)⊗Y (w,z) acts on M

ĥ
(k,0)⊗

N(g,k). As a result, we have that Ĩ is spanned by wnx−θ (0)k+1xθ (−1)k+11 for
w ∈ N(g,k) and n ∈ Z. That is, the ideal Ĩ of the vertex operator algebra N(g,k)
is generated by x−θ (0)k+1xθ (−1)k+11. The proof is complete. ut

For α ∈ ∆+, we let Pα be the vertex operator subalgebra of K(g,k) generated
by ωα and W 3

α . Then Pα is a quotient of P̂α . A natural question is whether or not
Pα is a simple vertex operator algebra. For this purpose, we recall our discussion
earlier on the automorphisms of the vertex operator algebra V (k,0) and N(g,k).
That is, any Weyl group element gives an automorphism of V (k,0) and N(g,k).

Clearly, any automorphism σ of V (k,0) induces an automorphism of L(k,0)
as σ maps the unique maximal ideal J to J . If σ ∈ W (g), then σ preserves
the unique maximal ideal Ĩ and σ gives an automorphism of the parafermion
vertex operator algebra K(g,k), Now let α ∈ ∆+ be a long root. Then there exists
σ ∈W (g) such that σθ = α (16). As a result,

σ(x−θ (0)k+1xθ (−1)k+11) = ax−α(0)k+1xα(−1)k+11

for some constant a. This implies from Lemma 43 that x−α(0)k+1xα(−1)k+11 ∈
Ĩ . Using (6, Theorem 4.2) we obtain:
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Proposition 45 For any long root α ∈ ∆+, the vertex operator subalgebra Pα of
K(g,k) is a simple vertex operator algebra isomorphic to the parafermion vertex
operator algebra K(sl2,k) associated to sl2.

We next deal with short roots α ∈ ∆+. As we mentioned already V (k,0) is a
level kα -module for the affine algebra ĝα . We need a different method to prove
the following which is a generalization of Proposition 45.

Proposition 46 Let α ∈ ∆+. Then the vertex operator subalgebra Pα of K(g,k) is
a simple vertex operator algebra isomorphic to the parafermion vertex operator
algebra K(sl2,kα) associated to sl2.

Proof As in the proof of Proposition 45 we only need to prove that

x−α(0)kα+1xα(−1)kα+11 ∈ Ĩ .

Clearly, L(k,0) is an integrable module for ĝα as xα(−1) is locally nilpotent on
L(k,0). In particular, the vertex operator subalgebra U of L(k,0) generated by
gα is an integrable highest weight module. That is, U is isomorphic to L(kα ,0)
associated to the affine algebra ĝα . As a result, we have xα(−1)kα+11 ∈ J . It
follows then immediately that x−α(0)kα+1xα(−1)kα+11 ∈ Ĩ , as desired. ut

Remark 47 We expect from Proposition 46 that the role of K(sl2,kα) played in the
theory of the parafermion vertex operator algebra is similar to the role of sl2 played
in the theory of Kac-Moody Lie algebras. So a study of structural and represen-
tation theory for K(sl2,kα) becomes extremely important for general parafermion
vertex operator algebras.
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