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Abstract The structure of the parafermion vertex operator algebra associated to
an integrable highest weight module for any affine Kac-Moody algebra is studied.
In particular, a set of generators for this algebra has been determined.

1 Introduction

This paper is a continuation of our study of the parafermion vertex operator al-
gebra associated to an integrable highest weight module for an arbitrary affine
Kac-Moody algebra. We determine a set of generators for these algebras. If the
affine Kac-Moody algebra is A(ll), this result was obtained previously in (6).

The parafermion algebra was first studied in (27) in the context of conformal
field theory. It was clarified in (7)) that the parafermion algebras are essentially the
Z-algebras introduced and studied earlier in (195|205 21) in the process of studying
the representation theory for the affine Kac-Moody Lie algebras. As it proved in
(7), the parafermion algebras generate certain generalized vertex operator alge-
bras. The partition functions for the parafermion conformal field theory have been
given in (13) and (12) in connection with the partition functions associated to the
integrable representations for the affine Kac-Moody Lie algebras. We refer the
reader to (L 125 [135 [155 245 265 127) for various aspects of parafermion conformal
field theory.

The parafermion vertex operator algebras which have roots in the parafermion
conformal field theory are realized as commutants of the Heisenberg vertex opera-
tor subalgebras in the vertex operator algebras associated to the integrable highest
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weight modules for the affine Kac-Moody Lie algebra (115 [14; [18). More pre-
cisely, let L(k,0) be the level k integrable highest weight module for affine Kac-
Moody algebra g associated to a finite dimensional simple Lie algebra g. Then
L(k,0) has a vertex operator subalgebra ME(k, 0) generated by the Cartan subalge-

bra b of g. The commutant K (g, k) of Mﬂ(k’ 0) in L(k,0) is called the parafermion

vertex operator algebra. Although the parafermion field theory has been studied
for more than two decades, the mathematical investigation of the parafermion ver-
tex operator algebras have been limited by a lack of understanding of the structural
theory of these algebras. The goals of this paper and (4 15 6) are to alleviate this
situation.

More importantly, it is widely believed that K (g,k) should give a new class of
rational, C>-cofinite vertex operator algebras although this can only been proved
in the case g = sl and k < 6 (5). Most well known vertex operator algebras such
as lattice vertex operator algebras (2} |3} [10), the affine vertex operator algebras
(7; 11} 23)) and the Virasoro vertex operator algebras (11} [25) can be understood
well using the underline lattices or Lie algebras. Unfortunately, the structures of
parafermion vertex operator algebras with weight one subspaces being zero are
much more complicated. It seems that a determination of a set of generators is the
first step in understanding parafermion vertex operator algebras and their repre-
sentation theory.

It is well known that L(k,0) is the irreducible quotient of the generalized
Verma module V (k,0) (see Sect. [2). So the structure of L(k,0) can be determined
by studying the maximal submodule of V (k,0) or the maximal ideal of V (k,0)
which is also a vertex operator algebra. The same idea can also be applied to
the study of parafermion vertex operator algebras. In fact, the Heisenberg vertex
operator algebra Mg (k,0) is also a subalgebra of V (k,0) and the parafermion ver-

tex operator algebra K(g,k) is the simple quotient of the commutant N(g,k) of
ME (k,0) in V(k,0). The main part of this paper is to determine a set of generators

for V(k,0)(0) which is the weight zero subspace of V (k,0) under the action of the
Cartan subalgebra h. The generators for N(g,k) and K(g,k) will be found easily
then. Also, the maximal ideal of N(g, k) is generated by one vector. This result is
similar to that for the maximal ideal of V (k,0).

It is worth pointing out that the structure theory for the parafermion vertex
operator algebra is similar to the structure theory for the finite dimensional Lie
algebras or Kac-Moody Lie algebras. The building block of the Kac-Moody Lie
algebras is the 3-dimensional simple Lie algebra s/, associated to any real root.
The generator results for the parafermion vertex operator algebras given in this
paper and (6)) show that the parafermion vertex operator algebras associated to the

affine Lie algebra Ail) are also the building block of general parafermion vertex
operator algebras. We hope this fact will be important in the future study of the
representation theory for the parafermion vertex operator algebra. So a complete
understanding of representation theory of K(g,k) in the case g = sl becomes
necessary.

The paper is organized as follows. In Sect. 2| we give the construction of the
vertex operator algebra V (k,0) associated to the affine Kac-Moody algebra g from
(I1). V(k,0) has a vertex operator subalgebra V (k,0)(0) which is the space of b-
invariants of V (k,0). A foundational result in this section is to determine a set of
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of generators for V(k,0)(0). In Sect. 3] we give a set of generators for the vertex
operator algebra N(g,k) which is the commutant of the Heisenberg vertex opera-

tor algebra ME(k, 0) in V (k,0). We also discuss the vertex operator subalgebra Py
generated by @wq, W, (which is defined in Sect. [3)) associated to any positive root

o and prove that Py is isomorphic to N(slp,kq), where kg = %k and 0 is the

highest root. In fact, N(g, k) is generated by 130, for positive roots ¢. In Sect. @ we
give a set of generators for the parafermion vertex operator algebra K (g, k) which
is the simple quotient of N(g,k). We prove that the maximal ideal of N(g,k) is
generated by the vector x_g(0)*!xg(—1)¥11, where x4 is the root vector as-

sociated to O (see Sect. . We also show that the image Py of Py in K (g,k) is
isomorphic to K(sl,, kq) and K(g, k) is generated by Py, for positive roots o. That
is, K(sl»,kq) are the building blocks of K(g,k).

We expect the reader to be familiar with the elementary theory of vertex oper-
ator algebras as found, for example, in (10) and (18).

We thank the referees for many excellent suggestions which improve and sim-
plify the proof of Theorem [21] greatly.

2 Vertex Operator Algebras V(k,0) and V (k,0)(0)

Let g be a finite dimensional simple Lie algebra with a Cartan subalgebra f. Let
A be the corresponding root system and Q the root lattice. Let (,) be an invariant
symmetric nondegenerate bilinear form on g such that (o, o) = 2 if o is a long
root, where we have identified h with h* via (,). As in (13), we denote the image
of o € h* in h by 1g. That is, a(h) = (ty,h) for any h € h. Fix simple roots

{a1, -+, 04} and denote the highest root by 6.
Let g denote the root space associated to the root @ € A. For a € A,
we fiX X1y € gig and hy = ﬁta € b such that [xg,x_¢] = hg, [ha,Xta] =

+2x4q. That is, g% = Cxg + Chg + Cx_q is isomorphic to sl; by sending xg to

<g (1)) X_g tO <(1) 8) and hg to <(1) (11> . Then (hg,hg) = 223:3 and

@%Lﬂy:%%ﬂnmaeA.

Let g = g®C[t,t~!] © CK be the corresponding affine Lie algebra. Let k > 1
be an integer and

V (k,0) = V5 (k,0) = Ind®

goC[t]aCK c

the induced g-module such that g® CJ] acts as 0 and K acts as k on 1 = 1.
We denote by a(n) the operator on V (k,0) corresponding to the action of a ®1".
Then

[a(m),b(n)] = [a,b](m~+n) 4+ m(a,b) Opninok
for a,b € g and m,n € Z.

Leta(z) = ¥,cza(n)z"~'. Then V (k,0) is a vertex operator algebra generated
by a(—1)1 for a € g such that ¥ (a(—1)1,z) = a(z) with the vacuum vector 1 and
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the Virasoro vector

l
(Outt = k+hv (Z« “Z

OtEA 7

—Dx_a(— 1)]1>

of central charge kk‘i‘;;vg (e.g. (17, 18] Sect. 6.2)), where 1" is the dual Coxeter
number of g and {#;|i = 1,...,[} is an orthonormal basis of §.

We will use the standard notation for the component operators of Y (u,z) for
u € V(k,0). That is, ¥ (u,z) = ¥cz tnz " ~". From the definition of vertex opera-
tors, we immediately see that (a(—1)1),, = a(n) for a € g. So in the rest of paper,
we will use both a(n) and (a(—1)1), for a € g and use u, only for general u
without further explanation.

For A € b*, set

V(k,0)(A) = {v € V(k,0)|h(0)v = A(h)v,Y h € h}.

Then we have

Since [h(0),Y (u,z)] = Y (h(0)u,z) for h € h and u € V(k,0), from the defini-
tion of affine vertex operator algebra, we see that V (k,0)(0) is a vertex operator
subalgebra of V (k,0) with the same Virasoro vector @, and each V (k,0)(1) is a
module for V (k,0)(0).

Our first theorem is on a set of generators for V (k,0)(0).

Theorem 21 The vertex operator algebra V (k,0)(0) is generated by vectors o(—1)1
and x_g(=2)xq(— 1)1 for 1 <i<l,o € A,.

Proof First note that V (k,0)(0) is spanned by the vectors

ay(—my)---as(—ms)xg, (—n1)xg, (—n2) - -xp, (—n )1,

where a; € h,j € A,m; > 0,n; >0 and Bi +Po+---+ B = 0. Let U be the
vertex operator subalgebra generated by ¢;(—1)1 and x_g(—2)x¢(—1)1 for 1 <
i<l,o0 € Ay. Clearly, o;(—1)1 and x_g(—2)xq(—1)1 € V(k,0)(0) for 1 <i <
I,a € A, Tt suffices to prove that V (k,0)(0) C U.

Since (h(—1)1), = h(n) for h € b, we see that A(n)U C U forh € hand n € Z.
So we only need to prove u = xg, (—n1)xg,(—n2) -+ xp,(—n, )1 € U with ; + B +

.-+ B = 0. We will prove it by induction on z.
Clearly, t > 2. If t = 2, it follows from Theorem 2.1 in (6) that

X_o(—m)xq(—n)L €U
for m,n > 0. Note that if m > 0, then
X_q(m)xgq(n)l = —hg(m+n)1 4+ mk(xg,x_q)Oninol € U.

We claim that x_ g (m)xq(n)U C U for all m,n € Z. Let u € U. From Proposi-
tion 4.5.7 of (18)), there exist nonnegative integers p, g such that

wamva(i=3 3 (") (1) aln =g+ D) D

i=0 j=0
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Since x_q(m—q—i+ j)xq(—1)1 € U, the claim follows.
From now on, we assume that ¢ > 2 and that

xpg, (—n1)xp, (—n2) -+ -xp, (—ny)L €U
with B + B, +---+ By =0for2 < v <t—1and n; > 0. We have to show that
xg, (—n1)xp,(—n2) - -xp (=, )1 €U

with B; + B, +--- + B = 0. We divide the proof into two cases.
Case 1. There exist 1 <i,j <t such that ;4 ; € A. Note that if
xg, (—n1)xp,(—n2) -+ -xg, (—n, )1 € U,

then
xg,, (=niy)xp, (—niy) - xg, (—n;, )L €U

by the induction assumption, where (ij,...,i) is any permutation of (1,...,z).
Without loss of generality, we may assume that §; + 3, € A.

Let k,n be positive integers such that —k+n = —ny and n > n; for i > 3. Let
w = xp, 1, (—k)xg,(—n3) - -xg,(—n )1 with By + B +---+ =0. Thenw € U
by the induction assumption and xg, (—n1)x_g, (n)w € U by the claim.

Let [x_g,,Xg, +g,] = Axp, for some nonzero A. Then

xp, (—n1)x_p, (m)w = Axg, (—n1)xg, (—n2)xp,(—n3)---xp,(—n,)1
g, (=11)x, 4, (=K x—p, 0, ) (1 = m3)xg, (—a) - -20p, (—e)
+ -+ xp, (_nl)xﬁlJrﬁz(_k)xﬁ} (=n3)--- [x,ﬁl 7xﬁ;](n —n)1.

Since n —n; > 0 for i > 3, we see that

X, (=m)xp, 4 g, (—k) bep, g, ] (n = n3)xp, (=) - xp, (=) 1
44 xp, (—n1)xg, g, (—k)xg, (—n3) - - [x_p, , xg, ] (n — 1y ) 1

lies in U by the induction assumption. As a result, xg, (—n1)xg, (—n2)xg, (—n3)
expg (—n)1 €U.

Case 2. Forany 1 <i,j<t, Bi+f; ¢ A. We claim that there exist 1 < i',j' <t such
that 8, + ﬁj/ = 0. Otherwise, fB; + B; # 0 for all i, j. This implies that (§;, B;) >0
for all 7, j, thus (B1,Y;_, B;) > 0. On the other hand, since ), B; = —fBi, we
have (B1,Y_, Bj) <0, a contradiction.

Without loss of generality, we may assume f3; + 3, =0. Then 83+ --+ 3 = 0.
By the induction assumption, xg, (—n3)---xg, (—n,)1 € U. It is immediate that

xp, (—n1)xp, (—n2)xg, (—n3) - xpg (—n )1 €U
from the claim. The proof is complete. O

Remark 22 Theorem 2.1 has been obtained in (6)) previously in the case g = si5.
The proof given here simplifies the proof of Theorem 2.1 in (6).
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Next we discuss some automorphisms of vertex operator algebras V (k,0) and
V (k,0)(0) for later purposes. It is well known that the automorphism group Aut (V (k,0))
is isomorphic to the automorphism group Auz(g). In fact, if ¢ € Aut(g), then &
lifts to an automorphism of V (k,0) in the following way:

o(x1(=m) - xs(=ns)1) = (ox1)(—m) - (0x5) (—n5)1

for x; € g and n; > 0. Let W(g) be the Weyl group of g. Then W(g) can naturally
be regarded as a subgroup of Aut(g) (16). It is easy to see that if o(h) = b, then
o (V(k,0)(0)) =V (k,0)(0) and the restriction of ¢ to V (k,0)(0) gives an automor-
phism of V(k,0)(0). In particular, any Weyl group element gives an automorphism
of V(k,0)(0). This fact will be used in later sections.

3 Vertex Operator Algebra N(g,k)

Let Vi (k,0) be the vertex operator subalgebra of V (k,0) generated by h(—1)1 for
h € b with the Virasoro element

of central charge /, where {hj,---h;} is an orthonormal basis of h as before. For
A €b*, let Ma(k,/”t) denote the irreducible highest weight module for b with a
highest weight vector v, such that 4(0)v, = A(h)v, for & € h. Then Va(k,O) is
identified with M (k,0).

Recall V(k,0)(A) from Sect. 2| Both V (k,0) and V (k,0)(4),A € Q are com-
pletely reducible VE(k7 0)-modules. That is,

Vi 0)(R) = My (kA DNy, 62

where
Ny, ={veV(k,0)|h(m)v=A(h)dnov for h € h,m >0}

is the space of highest weight vectors with highest weight A for E

Note that N(g,k) = Ny is the commutant (11, Theorem 5.1) of VE(/QO) in
V(k,0). The commutant N(g,k) is a vertex operator algebra with the Virasoro
vector @ = W, — Oy whose central charge is %‘vg —1

Recall from Sect. [2} the 3-dimensional subalgebra g* for @ € A,. Then the

restriction (,)qa of the bilinear form (,) to g% is equal to ég’g; (,), where (,)
is the standard nondegenerate symmetric invariant bilinear form on g% such that
(ha,he) =2. As aresult, V (k,0) is a module for g% = g* @ Clz,1~ ]] @ CK of level

ko = << >>k as we regard V (k,0) as a module for the subalgebra g of g. In other

words, V(k,0)isag g%-module of level 2k or 3k if & is a short root.
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Following (5), we let

1

Do = Sk +2)

(—khg(=2)1 — h(—1)*1 + 2kxo (—Dx_o(—11), (3.3)

W2 = kPhe(—3)1 + 3khg (—2)he(—1)1 + 2k (—1)*1
— 6khg(—1)xq (—1)x_g(—1)1
+3k%x0 (—2)x_g(— 1)1 = 3k%xq (— 1)x_g(—2)1 (3.4)

if & € A, is along root. If o is a short root, we also define g, W; as in (3.3) and
(3.4) by replacing k by k.

Let Py be the vertex operator subalgebra of N(g,k) generated by @, and W;.
Then P, is isomorphic to the W-algebra W (2,3,4,5) (1) by (6, Theorem 3.1) with
k replaced by kg, i.e., 130, is isomorphic to N(sly, ky)-

The first main theorem of this paper is about the generators of N(g,k).

Theorem 31 The vertex operator algebra N(g,k) is generated by dimg — [ vec-

tors @y and Wg for oo € A, That is, N(g,k) is generated by subalgebras ﬁa for
acA;.

Proof We first prove that V (k,0)(0) is generated by vectors ¢;(—1)1, @y and W,
fori=1,...,/and ot € A.. In fact, let U be the vertex operator subalgebra gener-
ated by 7(—1)1, @y and W3 for h € h and & € A,. Then x_g(—1)xg(—1)1 €U
and @, € U. Moreover, from the expression of W, we see that x_ ¢ (—1)xg (—2)1 —
X_g(=2)xq(—1)1 € U. Set Lygr(n) = (@aff)n+1; we have

[Lagr(m),a(n)] = —na(m+n)
form,n € Z,a € g. Thus,
Lagr(—1)x_g (= Dxg (=1 = x_g(—2)xa(— 1)1 +x_g(—1)xe(—2)1 € U.

Together with x_ g (—1)xg(—2)1 —x_g(—2)xg(—1)1 € U, we getx_g(—2)xq(—1)1 €
U, and so U is equal to V (k,0)(0) by Theorem 21]

Next we show that @y, W, € N(g,k) for a € A. Since (hq,hq) # 0, we have
decomposition h = Chg @ (Chg)*, where (Chg)™ is the orthogonal complement
of Chg with respect to (, ). From (6), we know that kg (1) @g = he(n)W; = 0 for
n>0.If u € (Chy)*t, we clearly have u(n)®y = u(n)W2 = 0 for n > 0. This
implies that @y, W3 € N(g,k).

Notice that Y (u,z1)Y (v,z2) =Y (v,22)Y (u,21) foru € ME(k, 0) and v € N(g,k).
Since V (k,0)(0) = Ma(k,O) ®N(g,k),h(—1)1 € Ma(k,O) for h € b, and wg, W €

N(g, k) for a € A, we conclude that N(g, k) is generated by @, W3 for a € A,
O

Remark 32 Using the Z-algebra introduced and studied in (19) and (20; 21)), we
can rewrite @ and W in terms of Z-operators Zy(m) and Z_4(n). It is not too
hard to see that Wy = aqgZg(—1)Z_o(—1)1 and Wy = bgZy(—2)Z_o(—1)1 +
caZ—u(—2)Zy(—1)1 for some constants daq,by,cq € C. One could determine
these constants explicitly using the definition of Z-operators.
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Remark 33 The vertex operator algebra N(g,k) and its quotient K(g,k) are of
moonshine type. That is, their weight zero subspaces are 1-dimensional and weight
one subspaces are zero.

Remark 34 We already know that each wy, is a Virasoro element and how to com-
pute the Lie brackets [V (0q,z1),Y (Wa,22)],[Y (W3,21),Y (W3,22)] for e € A;. Tt
is important to calculate the Lie brackets for vertex operators associated to vectors

in different f’; . This will be done in a sequel to this paper where the representation
theory will be investigated.

Following the discussion given at the end of Sect. [2] we see that any Weyl
group element gives an automorphism of N(g, k).

4 Parafermion Vertex Operator Algebras K(g,k)

It is well known that the vertex operator algebra V (k,0) has a unique maximal
ideal 7 generated by a weight k+ 1 vector xg (—1)¥"11 (17), where 6 is the high-
est root of g. The quotient vertex operator algebra L(k,0) =V (k,0)/ ¢ is a sim-
ple, rational vertex operator algebra associated to the affine Lie algebra g. Again,
the Heisenberg vertex operator algebra VE(]QO) generated by h(—1)1 for h € b
is a simple subalgebra of L(k,0) and L(k,0) is a completely reducible VE(k,O)-
module. We have a decomposition

L(k,0) = @AQQME(k,),) QK 4.1)
as modules for VE(k,()), where
Kj ={v e L(k,0)|h(m)v = A(h)O v for h € bh,m>0}.

Set K(g,k) = Ko. Then K(g,k) is the commutant of VE(k,O) in L(k,0) and is
called the parafermion vertex operator algebra associated to the irreducible high-
est weight module L(k,0) for g. As we mentioned in the Introduction, K (g, k) are

conjectured to be rational, C>-cofinite vertex operator algebras.
Asa Vg(k, 0)-module, ¢ is completely reducible. From (3.1)),

= OpeoMp (k, A) @ (7 NNy).

In particular, .% = 7 NN(g,k) is an ideal of N(g,k) and K(g,k) = N(g,k)/j.
Following the same proof as (5, Lemma 3.1), we know that .# is the unique max-
imal ideal of N(g,k). Thus K(g,k) is a simple vertex operator algebra.

We still use @y, Oy, O, W to denote their images in L(k,0) =V (k,0)/ 7.

Remark 41 In the case k = 1, it follows from the construction of L(1,0) (9; [10)
that @ = 0 and K(g,k) = C if g is of ADE type.

The following result is a direct consequence of Theorem [31]

Theorem 42 The simple vertex operator algebra K(g,k) is generated by (g, WO%
foro e AL
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Next, we study the ideal .# of N(g,k) in detail. The vector xo(—1)"'1 ¢
N(g, k). From (3, Theorem 3.2) we know that /g (1)x_g (0)*'xg(—1)**!1 =0 for
n>0.1tis clear that if h € b satisfies (hg,h) = 0, then h(n)x_g(0)*1xq(— 1)1 =
0 for n > 0. So we have proved the following

Lemma 43 x_g(0)Fxg(—1)F 11 € 7.
Furthermore, we have
Proposition 44 The maximal ideal . of N(g,k) is generated by x_g(0)*+ xg(—1)*11.

Proof The proof is similar to that of (6, Theorem 4.2 (1)). Recall g = Cxg +
Chg + Cx_g is a subalgebra of g isomorphic to si».V (k,0) is an g®-module where
a € g% acts as a(0). Each weight subspace of the vertex operator algebra V (k,0)
is a finite dimensional g®-module and V (k,0) is completely reducible as a module
for g%. Consider the g?-submodule X of V (k,0) generated by xg(—1)**!1. Since
x9(0)xg(—1)¥ 11 =0and hg(0)x (— 1)1 =2(k+1)xe (— 1)1, xg(— 1)1
is a highest weight vector with highest weight 2(k + 1) for g®. Then X is an irre-
ducible g%-module with
basis x_g(0)xg(—1)¥11,0 < i <2(k+ 1) from the representation theory of sl;.
This implies that the ideal ¢ of the vertex operator algebra V (k,0) can be gener-
ated by any nonzero vector in X. In particular, ¢ is generated by x_g(0)*1xq (—1)K11.
Then _¢# is spanned by u,x_g(0)*"xg(—1)¥"11 for u € V(k,0) and n € Z by (8|
Cor. 4.2) or (22}, Prop. 4.1).

Since vyuu € V(k,0)(A 4+ ) forv € V(k,0)(A),u € V(k,0)(u),A,u € O and
m € Z, we see that _# NV (k,0)(0) is spanned by vectors of the form u,x_g (0)*+1xg (— 1)1
with u € V(k,0)(0). Let u =v®w € V(k,0)(0) = Ma(k,O) ® N(g,k) with v €
Ma(k,O) and w € N(g,k). Then Y (u,z) = Y(v,z) ® Y(w,z) acts on Ma(k,O) ®
N(g,k). As a result, we have that .# is spanned by wyx_g(0)F1xg(—1)%*11 for
w € N(g,k) and n € Z. That is, the ideal .7 of the vertex operator algebra N (g,k)
is generated by x_g(0)**!xg(—1)¥11. The proof is complete. [

For o0 € A, we let Py be the vertex operator subalgebra of K(g,k) generated
by @ and W;. Then Py, is a quotient of Py. A natural question is whether or not
P, is a simple vertex operator algebra. For this purpose, we recall our discussion
earlier on the automorphisms of the vertex operator algebra V (k,0) and N(g,k).
That is, any Weyl group element gives an automorphism of V (k,0) and N(g, k).

Clearly, any automorphism & of V(k,0) induces an automorphism of L(k,0)
as ¢ maps the unique maximal ideal ¢ to ¢#.If 6 € W(g), then o preserves

the unique maximal ideal .# and o gives an automorphism of the parafermion
vertex operator algebra K(g,k), Now let @ € A, be a long root. Then there exists
o € W(g) such that 60 = o (16). As a result,

G(X,Q(O)]H—l)q)(—l)k-‘rlﬂ) — ax,a(O)kaa(—l)kH]l

for some constant a. This implies from Lemma [43]that x_¢ (0)**xo (—1)¥11 €
# . Using (6, Theorem 4.2) we obtain:
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Proposition 45 For any long root @ € A, the vertex operator subalgebra Py of
K(g,k) is a simple vertex operator algebra isomorphic to the parafermion vertex
operator algebra K (slp, k) associated to siy.

We next deal with short roots @ € A;. As we mentioned already V (k,0) is a

level ky-module for the affine algebra 5& We need a different method to prove
the following which is a generalization of Proposition [43]

Proposition 46 Let a € A. Then the vertex operator subalgebra Py of K(g,k) is
a simple vertex operator algebra isomorphic to the parafermion vertex operator
algebra K (sly, ke) associated to si,.

Proof As in the proof of Proposition 45| we only need to prove that
x_gq (0t lxy (—1)ketly 7.

Clearly, L(k,0) is an integrable module for g% as xq(—1) is locally nilpotent on
L(k,0). In particular, the vertex operator subalgebra U of L(k,0) generated by
g% is an integrable highest weight module. That is, U is isomorphic to L(ky,0)

associated to the affine algebra 65. As a result, we have xq(—1)k*!11 ¢ S 1t
follows then immediately that x_¢ (0)*¢+1x, (—1)%«*11 € 7 as desired. O

Remark 47 We expect from Proposition@]that the role of K (slp, k¢ ) played in the
theory of the parafermion vertex operator algebra is similar to the role of s, played
in the theory of Kac-Moody Lie algebras. So a study of structural and represen-
tation theory for K (sly, k) becomes extremely important for general parafermion
vertex operator algebras.
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