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A B S T R A C T   

In concrete tunnel linings, cracks usually appear and develop as an early sign of structural degradation prior to 
severe intolerable serviceability damage. The monitoring and assessment of crack spatial distribution can 
highlight long-term tunnel structural behavior and facilitate tunnel maintenance. This study describes a remote 
and automated system for conducting crack monitoring at a pixel-level scale using robot-mounted imaging 
technology. This system collects crack images remotely and stitches them together to create a panorama image of 
the tunnel surface. Employing transfer learning, this study fine-tunes and improves the state-of-the-art semantic 
segmentation model with a lightweight backbone, DeepLab V3plus, to detect cracks automatically. A novel 
smooth blending prediction method is implemented on the panorama to present long-distance tunnel crack 
distribution, alleviating misclassification problems encountered in high-resolution image inference. In addition, 
transfer learning, tailored loss functions, and regularization techniques have been developed based on the CERN 
tunnel crack database characteristics to maintain high performance and generalization of the proposed method. 

Field trials conducted in tunnels at CERN demonstrate the feasibility of the proposed crack monitoring system. 
Results show that the proposed system allows the identification of severe crack-damaged tunnel sections and 
specific crack patterns, which can be related to the structural behavior of the tunnel lining.   

1. Introduction 

CERN, the European Organization for Nuclear Research, is the 
largest particle physics laboratory in the world, with more than 83 km of 
underground infrastructure. The time-related structural degradation of 
CERN underground infrastructure, combined with complex geological 
conditions, has compromised the long-term serviceability of some tun
nel sections. As an integral part of the CERN tunnel asset management 
(TAM) program, crack monitoring is used to improve the understanding 
of long-term tunnel behavior and facilitate decisions on mitigation 
measures. However, crack monitoring in tunnels at CERN is difficult to 
perform due to the large scale of the tunnel infrastructure and the 
presence of radioactive areas. Remote and automated crack monitoring 
methods are, therefore essential for CERN tunnel structural assessments. 

It has been common practice to perform periodic visual crack in
spections by well-trained engineers during the shutdown of accelerators. 
However, manual visual inspections are inefficient, subjective, and 

labor-intensive (Huang et al., 2017). Recently, digital image-based crack 
detection methods have been developed for remote structural inspection 
(Jahanshahi & Masri, 2012; Jahanshahi & Masri, 2013). Traditional 
image-based tunnel crack detection techniques rely on the difference in 
pixel values between backgrounds and cracks (Yu et al., 2007; Huang, 
Sun et al., 2017; Lei et al., 2021). To improve the accuracy, machine 
learning techniques, including KNN (Zhang et al., 2014) or Support 
Vector Machine (Hadjidemetriou et al., 2018; Sari et al., 2019), were 
introduced as additional classifiers to distinguish crack pixels from un
removable noise pixels left even after thresholding. 

Advances in Convolution Neural Networks (CNN) offer a more robust 
and efficient technique for crack detection. A simple CNN model with 
several layers developed by Cha et al. (2017) outperforms a machine 
learning-based classifier in concrete crack detection. In the case of 
patch-level crack detection, the VGG16 was employed to detect dis
tressed pavement cracks (Gopalakrishnan et al., 2017). Googlenet was 
adopted for crack detection in tunnels which are more complex 
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environments with less illumination and curved surfaces (Gong et al., 
2018). Moreover, residual blocks, facilitating CNN modes to go deeper 
without gradient vanishing, improves the performance of crack detec
tion (Maeda et al., 2018; Ni et al., 2019). 

Semantic segmentation models are being developed to achieve pixel- 
to-pixel detection by removing fully connected layers within CNN 
models. Huang et al. (2018) introduced the Fully Convolutional 
Network (FCN) (Long et al., 2015) in pixel-level detections of cracks and 
water leakage in segmentally lined tunnels. In semantic segmentation 
models, CNN models play vital roles in prediction accuracy as they are 
embedded as backbone structures for feature extraction. Dung (2019) 
adopted FCN for crack segmentation and explored the contributions of 
variant pre-trained backbones. The U-net (Ronneberger et al., 2015) 
showed robust performance in variant scenarios such as cracks in tunnel 
lining (Dang et al., 2022), desiccated clay (Xu et al., 2022), or bridges 
(Zhang et al., 2021). Other benchmark models like SegNet (Badrinar
ayanan et al., 2015) and Feature Pyramid Network (FPN) (Lin et al., 
2017) were fine-tuned in crack segmentation of roads (Chen et al., 2020) 
or masonry structures (Dais et al., 2021). Mask R-CNN (He et al., 2017) 
was used for instance level crack detection and water detection in 
segmentally lined tunnels (Zhao et al., 2020) and s(Huang et al., 2022). 
The same approach was employed in the CERN tunnel crack detection 
(Attard et al., 2019); Attard (2020). 

Despite previous successes of crack segmentation in tunnel engi
neering, gaps remain in their practical applications in underground 
tunnel networks that extend over many kilometers. Analyzing a long 
tunnel panorama over hundreds of meters in this context involves image 
stitching and robust inference of deep networks on high-resolution im
ages. Therefore, an automated crack monitoring system is proposed as 

shown in Fig. 1. First, the telemanipulated data acquisition platform 
CERNbot is employed for remote image data collection. Collected im
ages are reorganized by image stitching to create a tunnel panorama for 
a large field of inspection view. The state-of-the-art semantic segmen
tation deep network, DeepLab V3 plus, is fine-tuned on the collected 
CERN crack database and improved with a lightweight backbone to 
achieve efficient automatic crack segmentation. Optimization methods, 
including a tailored loss function, transfer learning, and regularization 
techniques, are proposed for applicable issues of the customized data
base. Finally, a smooth blending method is proposed to achieve the 
prediction of the panorama for crack distribution and statistics. Field 
trials have been conducted in two typical sections of tunnels at CERN to 
test the feasibility of the proposed crack monitoring system. The pano
rama image provides a large field of view of tunnel surfaces. Monitoring 
results present a clear crack profile with specific crack patterns and 
identify the crack-damaged tunnel chainages, facilitating the under
standing of long-term tunnel deformation patterns. 

2. Automatic image data collection in the CERN tunnels 

2.1. CERN tunnel background 

Founded in 1954, CERN houses a complex system of underground 
structures. Accelerators and other auxiliary machinery for high-energy 
physics research are mainly housed in tunnels and caverns, with ac
cess via shafts. There are 83 km of underground structures at CERN 
where the main two components are a 7 km circular tunnel, the Super 
Proton Synchrotron (SPS), built in 1974 and a 27 km circular tunnel, the 
Large Hadron Collider (LHC), built in 1987. The aging and deterioration 

Fig. 1. Flow chart of the crack monitoring system.  

Fig. 2. Location of CERN.  
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of the CERN underground complex present challenges in terms of the 
future exploitation of the site infrastructure. 

With regards to geological conditions, CERN tunnels sit astride the 
France-Switzerland border, located on the Molassic plateau, as shown in 
Fig. 2. Due to the compression caused by tectonic thrust between the 
Alps and Jura ranges, the underground structures suffer from an 
imbalance of the ground stress. In-situ dilatometer tests at the ATLAS 
cavern of LHC, revealed anisotropic stress ratios of horizontal and ver
tical stresses varying from 1.29 to 2 (Fern et al., 2018). In addition, the 
very weak marl layer, one constituent of the widespread red molasse, 
swells, slakes and spalls upon contact with moisture, Fig. 3 illustrates the 
weathering behavior of the red molasse, extracted from the borehole C1 
taken near ATLAS, has already been weathered and disintegrated after 
18 months of air exposure. 

CERN has recorded several cases of lining defects including tunnel 
crown failure in 1990, as shown in Fig. 4. Previous research showed that 
a concrete lined tunnel was experiencing vertical tunnel elongation with 
time (Di Murro, 2019; Di Murro et al., 2019). The observed tunnel 
deformation mode was detected by using the novel distributed fibre 

optic sensors (DFOS), a remote monitoring method shown in Fig. 5. The 
development of compressive and tensile cracks spreading along tunnel 
crown and sidewalls respectively, as shown in Fig. 6, resulted in the the 
abovementioned tunnel lining mechanism of deformation. 

Tunnel inspections at CERN are challenging due to the ionizing ra
diation generated from the operations of the accelerators and their re
sidual radiation after operation. Inspection campaigns can only be 
carried out during annual technical stops or the long-term shutdown of 
accelerators (occurring every 3–4 years). Engineers need to take 
mandatory training in radiation protection, evacuation and wear 
specialized personal protection equipment (e.g., the radiation dosimeter 
and self-rescue mask) before entering tunnels. Considering tunnel safety 
& serviceability, a remote, automatic, and robust crack monitoring 
system is desired for routine tunnel inspection and assessment, as this 
enables the tunnels to be inspected throughout the year. 

2.2. Image data collection and tunnel panorama stitching 

To achieve remote tunnel inspection in CERN, a data collection tool 

Fig. 3. Integrity comparison of cores from borehole C1 revealed at ATLAS (a) Photo Oct. 2015; (b) Photo Mar. 2017 (Fern, Di Murro et al. 2018).  
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that enables telemanipulation underground with robust performance in 
harsh environments is essential. To provide intervention on beam fa
cilities without the requirement of physical personnel underground, the 
BE-CEM-MRO section of CERN has developed and designed a series of 
robots. In this scenario, the CERNbot is employed to capture image data 
for tunnel crack distribution monitoring. The CERNbot is a Remotely 
Operated Vehicle (ROV) that can connect to mobile control devices or 
PC through the underground coverage of internal telecommunication 
networks. It is a supervised telemanipulation system, consisting of 5 
layers as shown in Table 1, and enables real-time compliant control 
through a human-robot interface developed by (Di Castro et al., 2017; Di 
Castro, 2019; Lunghi et al., 2019). In the Graphical User Interface, op
erators can pick available robots with different configurations on-site to 
perform tasks (Lunghi et al., 2016). The CERNbot is also a modular 
robot, comprising modifiable and compatible subsystems (Di Castro, 
2019). Subsystems can work individually and merge for various me
chanical repair tasks like cutting, welding, or screwing by adopting 
different configurations, as shown in Fig. 7. For tunnel inspections, a 

steel framework and three Digital Single Lens Reflex cameras are 
mounted on the upper part of the CERNbot, shown in Fig. 8. The soft
ware development kit enables automatic image collection and storage 
during the inspection process. 

Training of deep networks for automated crack segmentation needs 
sufficient labeled image data. The crack database for deep model 
training consists of 517 RBG images collected within the LHC, TT10, and 
TT1 tunnels, with an average resolution of 1920x1080. 80 of them, 
captured by the CERNbot, are the subset of raw images which are later 
employed for panorama stitching. The other training data are collected 
during previous manual inspections. Fig. 9 illustrated the dataset 
preparation workflow in which raw images are cropped into around 
4000 image patches, with size of 512x512 and containing cracks only. 
Not like the like smooth blending, raw images were cropped without any 
overlaps. Following that, crack pixels are annotated by well-trained 
engineers manually into truth masks. The dataset for deep learning 
training, consisting of image patches and corresponding masks, is split 
with ratio of 4:1 into training and test datasets, then. The unique 

Fig. 4. Tunnels at CERN and their recorded defects.  

Fig. 5. Long-term tunnel monitoring at CERN by the distributed fiber optical sensors (Di Murro 2019).  
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characteristics of CERN tunnel crack image data are summarized in 
Fig. 10: a) images taken in insufficient or variant illumination condi
tions, b) crack split by beam facilities, c) crack with complex pattern or 
bifurcation, and d) non-defined marks with similar characteristics to 

that of cracks. 
The image stitching allows the alignment of hundreds of images in 

spatial order and offers a large field of view than separate images. The 
stitched panorama also enables engineers to better understand the 
spatial layouts of the cracks. This is important as it is challenging to link 
cracks taken from separate images with the exact tunnel locations. Not 
to mention that retrieving spatial correspondences of cracks from iso
lated frames it is also troublesome. These spatial layouts can offer a 
thorough understanding of long-term structural performances. The 
shooting scheme is proposed in Fig. 11 to facilitate the image stitching 
process. Separate images captured by the coordinated camera set in 
consecutive inspection spots are utilized for the creation of the pano
rama. The overlapping of images can ensure that there are no sections 
missed, and it offers common features among different frames. In the 
image stitching process, SURF detectors (Bay et al., 2008) are imple
mented in adjacent image pairs to extract key points invariant to change 
of viewpoint. Then, gradient orientations of key points are computed to 
describe their local appearances. Transformation matrixes among 

Fig. 6. Crack photos in TT10 tunnel of CERN.  

Table 1 
Layers of the telemanipulation system of CERNbot.  

Layers Function 

Hardware 
Abstraction layer 

Coding compiler for hardware 

Control layer Offering control strategies for robotic arms, traction 
platform, and conducting sensor fusion 

Supervision layer Responsible for robot localization, environmental 
reconstruction, energy optimization, and assisted grasping. 

Application layer Responsible for robot operations such as assisted 
navigation, object alignment, or sequencer of multiple 
operations. 

OS layer Human-robot interface  

Fig. 7. Different CERNbots at BE-CEM-MRO department in CERN (Di Castro 2019).  
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images are derived by matching these common features in the over
lapping areas. In addition, to improve stitching quality, the RANSAC 
algorithm(Fischler & Bolles, 1981) is also applied to refine the feature- 
matching process by removing outliers. Finally, consecutive images are 
transformed and merged into a panorama. 

3. Methodology in the image data processing 

3.1. The model architecture of tunnel crack segmentation based on Atrous 
convolution 

The benchmark semantic segmentation DeepLab V3plus model 
(Chen et al., 2018) is employed for pixel-level tunnel crack detection in 

Fig. 8. The customized CERNbot for tunnel lining inspection.  

Fig. 9. Deep learning dataset preparation.  
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this study. The DeepLab V3plus model incorporates capabilities of pre
vious CNN models, including the encoder-decoder conception of FCN 
and SegNet, the skip connection of Unet, the pyramid pooling structure 
of PSPNet (Zhao et al., 2017), and the Atrous convolution from previous 
versions of DeepLab models. Fig. 12 illustrates the architecture of the 

DeepLab V3plus Model. The backbone structure extracts coarse crack 
features from input RGB images and passes them to the encoder and 
decoder paths. In the decoder path, the low-level features, after 
upsampling, are fused together with the high-level features from skip 
connections for further convolution operations. This kind of operation is 

Fig. 10. Characteristics of CERN tunnel crack data.  

Fig. 11. Shooting scheme.  
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similar to the idea of multi-view image fusion (Kuhn et al., 2013), 
facilitating detaching sharp crack boundaries from complex under
ground backgrounds. Finally, fused feature maps are upsampled again to 
restore the final crack pixel detection and crack spatial layout 
information. 

In the DeepLab V3plus model, the Atrous Spatial Pyramid Pooling 
(ASPP) block is essential for extracting multi-scale image features. 
Feature maps from the backbone are processed in parallel by different 
operations in the ASPP block. A pooling layer and Atrous convolution 
layers with dilation rates of 0, 6, 12, and 18 produce five kinds of output 
features representing different scales of crack information. This 
pyramid-style structure enables the network to focus on different scales 
of instances on input images, thus preventing the network from failing to 
predict small instances or fine details of large instances. On top of that, 
compared to normal convolution kernels, kernels of the Atrous convo
lutions enable the network to enlarge the receptive field, providing 
contextual information from a larger area, as shown in Fig. 13. 

The backbone structure plays a vital role in the performance of se
mantic segmentation models, serving as feature extractors. Its convo
lution blocks can condense essential information on input images into 
feature maps storing different classification knowledge on each channel. 
The original DeepLab V3plus model is built upon Xception. Although 
these deep CNN backbones could achieve higher accuracy, the required 
training data and time would increase (Dais,Bal et al., 2021). Therefore, 
the DeepLab V3plus model is improved with a trimmed version of the 
MobileNet V2 backbone (Sandler et al., 2018). The main objectives for 
this improvement is two-fold. The first reason is the trade-off between 
the model complexity and computational demand. More specifically, 
deep learning networks get millions of parameters and weights to train 

Fig. 12. Schematic of DeepLab V3plus architecture.  

Fig. 13. Receptive field of Atrous filter.  

Fig. 14. Sketch of the trimmed MobileNet V2 backbone.  
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and update, thus requiring tremendous database scales (Xue et al., 
2022). The second objective is to on-device crack segmentation for 
further research of CERN TAM tasks. Combining knowledge distill and 
parameter pruning techniques, a lightweight semantic segmentation 
model might be deployed on mobile or edge devices like drones or the 
CERNbot. The proposed trimmed version of MobileNetV2 consists of 
only seven inverted residual convolution blocks. Fig. 14 depicts the 
dimensionality shrinkage of feature map size and expansion of their 
channels of the trimmed MobileNetV2 backbone. The depth wise sepa
rable convolution can considerably reduce trainable parameters by 
breaking down traditional convolutions into two separate procedures: 
depth wise convolution and pointwise convolution(Howard et al., 
2017). In addition, the inverted residual block structure shown in Fig. 15 
can also prevent deep networks from gradient or exploding phenomena 
vanishing by skip connections between input and output features. 

3.2. Training strategies for applicable issues 

After data collection and labeling, cropped patches are fed into the 
DeepLab V3plus model for fine tuning. Table 2 summarizes training 
configurations. However, some practical problems remain to be solved 
when applying deep networks on tunnel crack segmentation tasks at 
CERN. The first issue is the class imbalance as tunnel cracks represent 
only a minor part of the collected images. Deep networks tend to create 
bias towards the major class, the non-crack pixels, resulting in under
performed misclassification issues. To fix this, a compound loss function 
is proposed, comprising weighted dice loss (Sudre et al., 2017) and focal 

loss (Lin et al., 2017). Differing from the cross-entropy loss function 
utilized by (Dang,Wang et al., 2022), the weighted dice loss shown as eq. 
(1) is a region-based loss function, and the focus of deep network on 
cracked pixels can be regulated by increasing corresponding weights. 
Additionally, the focal loss shown in eq.(2) enables the model to focus on 
hard-to-learn classes, crack pixels, by limiting the contribution of non- 
crack pixels on the loss. Combining these two strategies, the com
pound loss function shown in eq.(3) is therefore proposed to optimize 
deep networks on the unbalanced crack dataset of the CERN tunnel. 

Lwdice = 1 − 2
∑2

C=1wc
∑

xpcxgcx + s
∑2

C=1wc
∑

x(pcx + gcx) + s
(1) 

Where Lwdice is the weighted dice loss; C ranges over classes; wc is 
class weights; pcx and gcx represents predicted tensors and the ground 
truths of positionx; s is the coefficient added to prevent undefined sit
uation dividing by 0. 

Lfocal = − (1 − pt)γlog(pt)

pt =
{

1 − p, otherwise
p, if y = 1 (2) 

Where p is the probability and the modulating factor γ is added to 
regulate the loss function keeping the balance between misclassified and 
well-classified pixels. 

Lcompound = Lfocal +Lwdice (3) 

The second issue is the underperformance of deep networks when 
training from scratch. Therefore, transfer learning is introduced here to 
accelerate the training and to reduce the required data size, noted its 
efficiency in CERN’s previous research (O’Brien et al., 2023). The 
fundamental point of transfer learning is to employ common knowledge 
from other datasets to reduce the requisite converge time and data. 
Although data resemblance is limited, primary knowledge like edge 
detectors, color detectors, shape detectors, etc., were transferred into 
the new models to reduce repetitive training. The initial training is 
conducted on the PASCAL VOC database first (Everingham et al., 2015), 
and pre-trained weights are then transferred to initialize the improved 
DeepLab V3plus model. Due to the different classes of these two data
sets, the last layer, the classifier, is removed and retrained during the 
transfer learning process. When image sizes between the crack database 
of CERN tunnels and the pre-trained database do not match, one extra 
convolution layer is added to decrease the input size or pad the input 
image to enlarge their sizes. 

The last one is the overfitting issue of deep learning models, which is 
quite common in civil engineering defect detection applications (Liu 
et al., 2020; Xue,Jia et al., 2022). Overfitting would result in the 
underperformance of deep networks on the test dataset, as trivial and 
misleading details in training set are learned as key features. Two reg
ularization methods are adopted to address this issue: data augmenta
tion and model complexity reduction. The data scale is enlarged by 
augmentation methods shown in Table 2. Additionally, the L2 normal
ization is implemented for the penalization of model complexity by 
adding extra losses in convolution layers with higher weights, as shown 
in Eq(4). 

Ltotal = Lcompound + η
∑L

l=1

∑n

i=1

⃒
⃒wl,i

⃒
⃒2 (4) 

in which Ltotal denotes the total loss; the η is the weight decay rates; 
the L and n represent the number of layers and nodes. 

3.3. The fundamental of crack analysis in stitched images 

The final step of the crack monitoring system is to scan the stitched 
panorama with deep networks for the large-scale tunnel crack distri
bution. However, this procedure could be very challenging due to the 

Fig. 15. Sketch of the inverted residual block.  

Table 2 
Training configurations.  

Training configuration Hyper-parameters 

Backbone type Xception and MobileNet V2 
Pretrained dataset PASCAL VOC 
Image Size [512,512] 
Batch size 4 
Learning rate From 5e to 4 decaying to 5e-7 by step decay strategy 
Optimizer Adam 
Epochs 140 epochs 
Output stride 16 
Momentum 0.9 
Atrous rate of ASPP [6,12,18] 
Data shuffle True 
Regularizations L2 Norm with weight decay rate = 2e-4 
Data Augmentation 

strategy 
Horizontal flip; Vertical flip; Gaussian blur; Random 
rotation (-10 to 10 degrees); Color space convert 

Framework Keras 
GPU NVIDIA-A100-SXM4-40 GB  
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high resolution of the panorama stitched from hundreds of images. 
Loading the stitched panorama into deep networks directly for crack 
detachment would end with a GPU crash and graph extrusion error. 
Therefore, it has been a common practice in segmentation tasks of 
remote satellite sensing communities (Paisitkriangkrai et al., 2015; Liu 
et al., 2018) to employ the resizing strategy or Patch-wise prediction 
methods to deal with the overly high-resolution image. 

The resizing strategy is to resize a high-resolution image into suitable 
size for segmentation. However, image details would sharply decrease 
when the resizing ratio is too large. This might be troublesome because 
the observed tunnel crack pixels occupy less than 1% of the customized 
crack database. Therefore, there is a high risk of losing crack pixels when 
predicting the stitched panorama. The workflow of the patch-wise pre
diction method is graphicly illustrated in Fig. 16. In this method, the 
high-resolution image is divided into small patches suitable for the input 
of deep networks. Then, each sub-patch is predicted parallelly by the 

deep network, and all sub-patches are stitched to produce the final crack 
map. The inherent drawbacks of this method are that cracks on each sub- 
patch are predicted separately and all pixels are only reviewed once. 
This failure to employ contextual information from surrounding patches 
can result in jagged prediction issues like crack discontinuity. 

To address this high-resolution related prediction issue, the smooth 
blending prediction method proposed by (Chevalier, 2017) is introduced 
here, noting its success in cell segmentation (Greenwald et al., 2022). In 
this method, a sliding window is employed to crop high-resolution im
ages into patches with overlaps in an order shown in Fig. 17. On the one 
hand, pixels in the panorama are reviewed in prediction windows four 
times, compared with the patch-wise prediction method. Increasing 
prediction possibilities can produce more robust results. On the other 
hand, the new order of sliding window can relocate crack pixels close to 
the fringes at the image center. This is important because the prediction 
accuracy between image borders and the center is different in semantic 
segmentation, due to variant contextual knowledge (Brackenbury, 
2022). This relocation allows cracked pixels to be predicted at different 
positions in an image patch and helps deep networks to employ more 
contextual knowledge for more precise inferences. In addition, each 
cropped patch would be predicted several times after being rotated and 
mirrored like dihedral group D_4. This multi-angle view facilitates deep 
networks to get a stable prediction. Finally, the prediction windows are 
merged togther by interpolating overlap areas with the simplified spline 
window function for smooth blending. Morphological operations, 
including opening and closing, are also adopted to improve the quality 
of the final crack map by a python script. The morphological opening 
removes isolated noise pixels misclassified by deep networks. On the 
contrary, connections between adjacent cracks are bridged by the 
morphological closing operation. 

Fig. 16. Workflow of the patch-wise prediction.  

Fig. 17. Sliding window path of the smooth blending method.  

Table 3 
Comparison of model performance on test sets.  

Model name mIoU mPA Trainable 
parameters 
(Million) 

DeepLab V3plus with Xception  83.92%  92.64% 41.2 
DeepLab V3plus improved with 

trimmed MobileNet V2 (Tailored 
loss)  

82.81%  92.20% 2.8 

DeepLab V3plus improved with 
trimmed MobileNet V2 (Cross- 
entropy loss)  

80.68%  87.1% 

U-net with ResNet 152  82.86%  88.71% 67.3 
FPN with Googlenet (Tailored loss)  82.83%  89.85% 25 
FPN with Googlenet (Cross-entropy 

loss)  
81.54%  88.44%  
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4. Case study of CERN tunnel cracks using the proposed system 

4.1. Performance of deep learning model 

Table 3 compares the performances and complexities of different 
models on the customized CERN datasets. The modified U-net with 
ResNet backbone for soil densification (Xu,Zhang et al., 2022) crack or 
tunnel crack segmentation (Dang,Wang et al., 2022) and the FPN 
improved with GoogleNet backbone for concrete crack segmentation (Ni 
et al., 2019) are introduced for comparison. In terms of performance, all 
deep networks achieve mIoU scores above 80%. The original DeepLab 
V3plus model outperforms the others with a mIoU score of 83.92% and 

an mPA score of 92.64%. In addition, the improved DeepLab V3plus 
model achieves an mPA score of 92.20%, higher than Unet and FPN. 
Regarding model complexity, the required training time and computa
tional demands increase with piled-up trainable parameters, as stated by 
Dais,Bal et al. (2021). The trimmed MobileNet V2 efficiently reduces 
trainable parameters of the DeepLab V3plus model into 5%, thus 
accelerating the training. On top of that, compared with Unet and FPN, 
the proposed DeepLab V3 plus model achieves a higher MPA with less 
model complexity. Moreover, to validate the performance improvement 
of the tailored loss functions, the FPN improved with GoogleNet back
bone and DeepLab V3plus improved with trimmed MobileNet V2 were 
trained again with the Cross-entropy loss function. Comparisons in 

Fig. 18. Pixel-level crack segmentation results.  

Fig. 19. Losses in the training and validation stage.  
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Table 3 show a 1–2% improvements in mIoU scores and more than 2% 
improvements in mPA, for both models. 

Fig. 18 enumerates some segmentation results on image patches with 
a size of 512 by 512, inferred by the proposed Deeplab V3plus. The 
prediction results consisted of the original images, segmentation results, 
and overlaps. The capability of the proposed crack segmentation model 
on harsh tunnel environments is demonstrated by detecting slender 
fissures, differentiating cracks from crack-similar marks, and segment
ing small branches of complex cracks with fair accuracy. 

Fig. 19 plots the losses descending of the improved and original 
DeepLab V3plus Models in the training and validation stages. Both losses 
drop sharply in the first 60 epochs and reach a plateau after 100. The 

overlap of loss curves of the training and validation phases in Fig. 19 
validates the effectiveness of regularization methods, including data 
augmentation and L2 normalization, in addressing overfitting. The 
maximum difference between the validation loss and the training loss is 
less than 0.022, indicating that the proposed DeepLab V3plus model can 
effectively detect tunnel cracks on both the training and unseen detec
tion images. 

Performances of a deep learning model on high resolution images 
could change with different applied prediction strategies. To corrobo
rate this, a raw image, covering both cracks and crack-like indentations, 
is sifted to test the performances of the patch-wise and the proposed 
smooth blending prediction method. The raw image in Fig. 20a) is a 
stitched photo taken from the TT1 tunnel with a resolution of 5120 by 
5120 pixels. The mIoU scores of the smooth blending and the patch-wise 
predictions are 81.76% and 66.22%, accordingly. It is worth to mention 
that these two mIoU scores are computed directly from the ground truth 
and the prediction mask in full sizes, instead of averaging the mIoU 
values of all sub image patches. The better performance of the smooth 
blending method could be related to its better employment of more 
contextual information from surrounding patches. To provide better 
understanding, comparisons of visual results are illustrated in Fig. 20. In 
patch-wise prediction, the deep network tends to misclassify longitudi
nal indentations on the sidewall as tunnel cracks due to their high 
resemblance. To the best of the authors’ knowledge, indentations on the 
tunnel wall are probably due to concrete defects subjected to poor 
concrete construction procedures, which should not be labeled as cracks. 
In our context, however, tunnel cracks should be concrete fractures 
triggered by considerable tunnel lining deformation. The misclassifica
tion is related to the small, cropped size: longitudinal indentations 
resemble horizontal cracks more on small image patches. Therefore, 
more contextual information from surrounding patches in the proposed 
sliding-blending method enables deep networks to avoid such 
misclassification. 

4.2. Crack distribution of CERN tunnel 

Inspections were implemented in two separate sections of the CERN 

Fig. 20. Comparison of patch-wise and smooth blending prediction method.  

Fig. 21. Stitched tunnel panorama of two typical tunnel sections at CERN.  
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tunnels: a section of approximately 80 m along the curved LHC tunnel 
and a section of around 45 m along the straight TT1 tunnel. During the 
inspections, cameras of the CERNbot, set at an approximate distance of 
1.5 m away from the tunnel wall, acquire tunnel images while moving at 
a speed of 0.2 m/s. Fig. 21 presents the stitched panorama with the 
corresponding image resolution attached for both tunnels. 

Segmentation and overlay results illustrate the crack distribution of 
these two experimental tunnel sections in Fig. 22, where cracks are 
positioned in precise areas with recognizable patterns. In this way, the 
proposed pixel-level crack monitoring system provides an accurate 
depiction of the condition of the tunnel and contributes to the 
comprehensive understanding of the long-term behavior of the tunnels. 
Cracks observed in the LHC tunnel are more dispersed with a 

circumferential oriental pattern. This kind of crack pattern indicates an 
uneven tunnel shearing deformation along the transversal direction 
described in Fig. 23 (a). In contrast, the straight TT1 tunnel section 
encompasses a few major longitudinal cracks spread along the sidewall. 
This kind of crack distribution reveals insights into the tunnel cross- 
section bending deformation mode of the inspected tunnel chainage as 
illustrated in the tunnel cross-section of Fig. 23 (b); the tunnel crown is 
experiencing compression while the sidewalls are in tension, resulting in 
continuous cracks along the longitudinal tunnel direction. Such tunnel 
deformation mode is also recorded at the straight TT10 tunnel using 
field monitoring tools, as described by (Di Murro, 2019). In addition, 
two circumferential cracks also appear in the 45 m TT1 tunnel section, 
located near the construction joints of the seconding lining, from which 

Fig. 22. Crack distribution of inspected tunnel chainages at CERN.  
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adjacent tunnel cross sections tend to deform unevenly. 

4.3. Crack density of CERN tunnel 

Crack density can statistically quantify structural conditions of tun
nels and facilitate asset management. Here, the global crack density 
(denoting the ratio of crack pixels to backgrounds) is employed to 
quantify the severity of crack defect. For instance, the global crack 
densities of the inspected two tunnel sections are 0.2184% of the 80 m 
LHC tunnel and 0.3471% of the 45 m TT1 tunnel. This result indicates 
that TT1 tunnel is probably developing a greater deformation in the long 
term, subject to surrounding soft rock or tunnel deterioration. In addi
tion, the sectional crack percentage denotes the ratio of crack pixels 
within the designated chainage to the counterpart of the whole inspec
ted tunnel section. This index is introduced to reflect the uneven crack 
distribution from chainages to chainages and identify the most severe 
crack-damaged chainages. The supplementary sectional summary, 
plotted in Fig. 24, illustrates that the worst part in the inspected areas 
appears at the 6th − 8th meter of the TT1 tunnel with a peak value of 
12.57%. Such higher crack density is probably attributed to the complex 
interaction between layered ground and inclined tunnel subject to time- 
varying water pressure at TT1 tunnel section, which deserves specific 
investigation in future studies. 

In addition, this sectional summary also shows a more evenly 

distributed crack pattern in the LHC tunnel than in the TT1 tunnel, as 
mentioned before. 

5. Conclusion 

This study proposes a remote and automated tunnel crack moni
toring system. The system consists of remote data acquisition, data 
processing for a long panorama, deep learning methods for crack seg
mentation, and high-resolution image prediction for crack density and 
distribution. Field trials have been conducted in two typical CERN 
tunnel sections. The major conclusions are summarized as follows:  

• The proposed tunnel crack monitoring system successfully carries 
out TAM tasks of CERN underground facilities and facilitates the 
understanding of long-term tunnel behavior. Results demonstrate 
that the panorama image enlarges the field of inspection view and 
renders a realistic tunnel surface condition. The crack density dis
tribution allows identification of crack-damaged tunnel sections. 
Crack pattern results reveal long-term deformation mechanisms of 
different tunnel sections at CERN: the transversal shearing mode is 
prevalent in LHC tunnel section, and the vertical elongation of the 
cross section is the dominant deformation mode in TT1 tunnel.  

• The crack monitoring results show that longitudinal cracks are 
dominant in the inspected TT1 tunnel, whereas sparse circumferen
tial cracks are more often encountered in the LHC tunnel. In addition, 
compared to LHC tunnel with a crack density of 0.22%, a much 
higher crack density of 0.35% appears in the inspected TT1 tunnel 
section.  

• A crack database of tunnels at CERN has been established during this 
study. Incorporating regularization methods, tailored loss function, 
and transfer learning, the DeepLab V3plus models show good per
formance in segmenting complex CERN tunnel cracks in harsh tunnel 
environments. Training results on the customized database show that 
the fine-tuned DeepLab V3plus outperforms extant deep networks, 
with mIoU of 83.92% and mPA of 92.64%, and the improved light
weight DeepLab V3plus model is efficient with satisfactory accuracy. 
In addition, the proposed smooth blending inference method can 
improve the performance of deep networks on high-resolution tunnel 
panorama. 

Fig. 23. The proposed deformation mechanism of LHC and TT1 tunnel.  

Fig. 24. Sectional crack percentages of two inspected chainages.  

A. Ouyang et al.                                                                                                                                                                                                                                 



Tunnelling and Underground Space Technology incorporating Trenchless Technology Research 140 (2023) 105310

15

CRediT authorship contribution statement 

Aohui Ouyang: Conceptualization, Methodology, Formal analysis, 
Software, Writing – original draft. Vanessa Di Murro: Investigation, 
Writing – review & editing. Martin Cull: Investigation, Writing – review 
& editing. Roddy Cunningham: Investigation, Writing – review & 
editing. John Andrew Osborne: Investigation, Resources, Supervision, 
Project administration. Zili Li: Conceptualization, Supervision, Project 
administration. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgement 

This research is supported by a grant from the European Organiza
tion for Nuclear Research (CERN), the Irish Centre for Applied Geo
science (iCRAG), and the Science Foundation Ireland (SFI) under Grant 
Number 13/RC/2092_P2. This funding is greatly acknowledged. The 
authors also appreciate the image data collected and shared by the BE- 
CEM-MRO section at CERN. 

References 

Attard, L., Debono, C.J., Valentino, G., Di Castro, M., Masi, A., Scibile, L., 2019. 
Automatic crack detection using mask R-CNN. 2019 11th International Symposium 
on Image and Signal Processing and Analysis (ISPA). 

Attard, L., 2020. A tunnel structural health monitoring solution using computer vision 
and data fusion. 

Badrinarayanan, V., Handa, A. and Cipolla, R., 2015. Segnet: A deep convolutional 
encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint 
arXiv:1505.07293. 

Bay, H., Ess, A., Tuytelaars, T., Van Gool, L., 2008. Speeded-up robust features (SURF). 
Comput. Vis. Image Underst. 110 (3), 346–359. 

Brackenbury, D., 2022. Automated Image-Based Inspection of Masonry Arch Bridges. 
University of Cambridge. 
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