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In concrete tunnel linings, cracks usually appear and develop as an early sign of structural degradation prior to
severe intolerable serviceability damage. The monitoring and assessment of crack spatial distribution can
highlight long-term tunnel structural behavior and facilitate tunnel maintenance. This study describes a remote
and automated system for conducting crack monitoring at a pixel-level scale using robot-mounted imaging
technology. This system collects crack images remotely and stitches them together to create a panorama image of
the tunnel surface. Employing transfer learning, this study fine-tunes and improves the state-of-the-art semantic
segmentation model with a lightweight backbone, DeepLab V3plus, to detect cracks automatically. A novel
smooth blending prediction method is implemented on the panorama to present long-distance tunnel crack
distribution, alleviating misclassification problems encountered in high-resolution image inference. In addition,
transfer learning, tailored loss functions, and regularization techniques have been developed based on the CERN
tunnel crack database characteristics to maintain high performance and generalization of the proposed method.

Field trials conducted in tunnels at CERN demonstrate the feasibility of the proposed crack monitoring system.
Results show that the proposed system allows the identification of severe crack-damaged tunnel sections and
specific crack patterns, which can be related to the structural behavior of the tunnel lining.

1. Introduction labor-intensive (Huang et al., 2017). Recently, digital image-based crack

detection methods have been developed for remote structural inspection

CERN, the European Organization for Nuclear Research, is the
largest particle physics laboratory in the world, with more than 83 km of
underground infrastructure. The time-related structural degradation of
CERN underground infrastructure, combined with complex geological
conditions, has compromised the long-term serviceability of some tun-
nel sections. As an integral part of the CERN tunnel asset management
(TAM) program, crack monitoring is used to improve the understanding
of long-term tunnel behavior and facilitate decisions on mitigation
measures. However, crack monitoring in tunnels at CERN is difficult to
perform due to the large scale of the tunnel infrastructure and the
presence of radioactive areas. Remote and automated crack monitoring
methods are, therefore essential for CERN tunnel structural assessments.

It has been common practice to perform periodic visual crack in-
spections by well-trained engineers during the shutdown of accelerators.
However, manual visual inspections are inefficient, subjective, and

* Corresponding author.

(Jahanshahi & Masri, 2012; Jahanshahi & Masri, 2013). Traditional
image-based tunnel crack detection techniques rely on the difference in
pixel values between backgrounds and cracks (Yu et al., 2007; Huang,
Sun et al., 2017; Lei et al., 2021). To improve the accuracy, machine
learning techniques, including KNN (Zhang et al., 2014) or Support
Vector Machine (Hadjidemetriou et al., 2018; Sari et al., 2019), were
introduced as additional classifiers to distinguish crack pixels from un-
removable noise pixels left even after thresholding.

Advances in Convolution Neural Networks (CNN) offer a more robust
and efficient technique for crack detection. A simple CNN model with
several layers developed by Cha et al. (2017) outperforms a machine
learning-based classifier in concrete crack detection. In the case of
patch-level crack detection, the VGG16 was employed to detect dis-
tressed pavement cracks (Gopalakrishnan et al., 2017). Googlenet was
adopted for crack detection in tunnels which are more complex
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Fig. 1. Flow chart of the crack monitoring system.

Molassic plateau

Fig. 2. Location of CERN.

environments with less illumination and curved surfaces (Gong et al.,
2018). Moreover, residual blocks, facilitating CNN modes to go deeper
without gradient vanishing, improves the performance of crack detec-
tion (Maeda et al., 2018; Ni et al., 2019).

Semantic segmentation models are being developed to achieve pixel-
to-pixel detection by removing fully connected layers within CNN
models. Huang et al. (2018) introduced the Fully Convolutional
Network (FCN) (Long et al., 2015) in pixel-level detections of cracks and
water leakage in segmentally lined tunnels. In semantic segmentation
models, CNN models play vital roles in prediction accuracy as they are
embedded as backbone structures for feature extraction. Dung (2019)
adopted FCN for crack segmentation and explored the contributions of
variant pre-trained backbones. The U-net (Ronneberger et al., 2015)
showed robust performance in variant scenarios such as cracks in tunnel
lining (Dang et al., 2022), desiccated clay (Xu et al., 2022), or bridges
(Zhang et al., 2021). Other benchmark models like SegNet (Badrinar-
ayanan et al., 2015) and Feature Pyramid Network (FPN) (Lin et al.,
2017) were fine-tuned in crack segmentation of roads (Chen et al., 2020)
or masonry structures (Dais et al., 2021). Mask R-CNN (He et al., 2017)
was used for instance level crack detection and water detection in
segmentally lined tunnels (Zhao et al., 2020) and s(Huang et al., 2022).
The same approach was employed in the CERN tunnel crack detection
(Attard et al., 2019); Attard (2020).

Despite previous successes of crack segmentation in tunnel engi-
neering, gaps remain in their practical applications in underground
tunnel networks that extend over many kilometers. Analyzing a long
tunnel panorama over hundreds of meters in this context involves image
stitching and robust inference of deep networks on high-resolution im-
ages. Therefore, an automated crack monitoring system is proposed as

shown in Fig. 1. First, the telemanipulated data acquisition platform
CERNbot is employed for remote image data collection. Collected im-
ages are reorganized by image stitching to create a tunnel panorama for
a large field of inspection view. The state-of-the-art semantic segmen-
tation deep network, DeepLab V3 plus, is fine-tuned on the collected
CERN crack database and improved with a lightweight backbone to
achieve efficient automatic crack segmentation. Optimization methods,
including a tailored loss function, transfer learning, and regularization
techniques, are proposed for applicable issues of the customized data-
base. Finally, a smooth blending method is proposed to achieve the
prediction of the panorama for crack distribution and statistics. Field
trials have been conducted in two typical sections of tunnels at CERN to
test the feasibility of the proposed crack monitoring system. The pano-
rama image provides a large field of view of tunnel surfaces. Monitoring
results present a clear crack profile with specific crack patterns and
identify the crack-damaged tunnel chainages, facilitating the under-
standing of long-term tunnel deformation patterns.

2. Automatic image data collection in the CERN tunnels
2.1. CERN tunnel background

Founded in 1954, CERN houses a complex system of underground
structures. Accelerators and other auxiliary machinery for high-energy
physics research are mainly housed in tunnels and caverns, with ac-
cess via shafts. There are 83 km of underground structures at CERN
where the main two components are a 7 km circular tunnel, the Super
Proton Synchrotron (SPS), built in 1974 and a 27 km circular tunnel, the
Large Hadron Collider (LHC), built in 1987. The aging and deterioration
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Fig. 3. Integrity comparison of cores from borehole C1 revealed at ATLAS (a) Photo Oct. 2015; (b) Photo Mar. 2017 (Fern, Di Murro et al. 2018).

of the CERN underground complex present challenges in terms of the
future exploitation of the site infrastructure.

With regards to geological conditions, CERN tunnels sit astride the
France-Switzerland border, located on the Molassic plateau, as shown in
Fig. 2. Due to the compression caused by tectonic thrust between the
Alps and Jura ranges, the underground structures suffer from an
imbalance of the ground stress. In-situ dilatometer tests at the ATLAS
cavern of LHC, revealed anisotropic stress ratios of horizontal and ver-
tical stresses varying from 1.29 to 2 (Fern et al., 2018). In addition, the
very weak marl layer, one constituent of the widespread red molasse,
swells, slakes and spalls upon contact with moisture, Fig. 3 illustrates the
weathering behavior of the red molasse, extracted from the borehole C1
taken near ATLAS, has already been weathered and disintegrated after
18 months of air exposure.

CERN has recorded several cases of lining defects including tunnel
crown failure in 1990, as shown in Fig. 4. Previous research showed that
a concrete lined tunnel was experiencing vertical tunnel elongation with
time (Di Murro, 2019; Di Murro et al., 2019). The observed tunnel
deformation mode was detected by using the novel distributed fibre

optic sensors (DFOS), a remote monitoring method shown in Fig. 5. The
development of compressive and tensile cracks spreading along tunnel
crown and sidewalls respectively, as shown in Fig. 6, resulted in the the
abovementioned tunnel lining mechanism of deformation.

Tunnel inspections at CERN are challenging due to the ionizing ra-
diation generated from the operations of the accelerators and their re-
sidual radiation after operation. Inspection campaigns can only be
carried out during annual technical stops or the long-term shutdown of
accelerators (occurring every 3-4 years). Engineers need to take
mandatory training in radiation protection, evacuation and wear
specialized personal protection equipment (e.g., the radiation dosimeter
and self-rescue mask) before entering tunnels. Considering tunnel safety
& serviceability, a remote, automatic, and robust crack monitoring
system is desired for routine tunnel inspection and assessment, as this
enables the tunnels to be inspected throughout the year.

2.2. Image data collection and tunnel panorama stitching

To achieve remote tunnel inspection in CERN, a data collection tool
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Fig. 5. Long-term tunnel monitoring at CERN by the distributed fiber optical sensors (Di Murro 2019).

that enables telemanipulation underground with robust performance in
harsh environments is essential. To provide intervention on beam fa-
cilities without the requirement of physical personnel underground, the
BE-CEM-MRO section of CERN has developed and designed a series of
robots. In this scenario, the CERNbot is employed to capture image data
for tunnel crack distribution monitoring. The CERNbot is a Remotely
Operated Vehicle (ROV) that can connect to mobile control devices or
PC through the underground coverage of internal telecommunication
networks. It is a supervised telemanipulation system, consisting of 5
layers as shown in Table 1, and enables real-time compliant control
through a human-robot interface developed by (Di Castro et al., 2017; Di
Castro, 2019; Lunghi et al., 2019). In the Graphical User Interface, op-
erators can pick available robots with different configurations on-site to
perform tasks (Lunghi et al., 2016). The CERNbot is also a modular
robot, comprising modifiable and compatible subsystems (Di Castro,
2019). Subsystems can work individually and merge for various me-
chanical repair tasks like cutting, welding, or screwing by adopting
different configurations, as shown in Fig. 7. For tunnel inspections, a

steel framework and three Digital Single Lens Reflex cameras are
mounted on the upper part of the CERNbot, shown in Fig. 8. The soft-
ware development kit enables automatic image collection and storage
during the inspection process.

Training of deep networks for automated crack segmentation needs
sufficient labeled image data. The crack database for deep model
training consists of 517 RBG images collected within the LHC, TT10, and
TT1 tunnels, with an average resolution of 1920x1080. 80 of them,
captured by the CERNbot, are the subset of raw images which are later
employed for panorama stitching. The other training data are collected
during previous manual inspections. Fig. 9 illustrated the dataset
preparation workflow in which raw images are cropped into around
4000 image patches, with size of 512x512 and containing cracks only.
Not like the like smooth blending, raw images were cropped without any
overlaps. Following that, crack pixels are annotated by well-trained
engineers manually into truth masks. The dataset for deep learning
training, consisting of image patches and corresponding masks, is split
with ratio of 4:1 into training and test datasets, then. The unique
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Sidewall

Fig. 6. Crack photos in TT10 tunnel of CERN.

Table 1

Layers of the telemanipulation system of CERNbot.
Layers Function
Hardware Coding compiler for hardware

Abstraction layer
Control layer Offering control strategies for robotic arms, traction
platform, and conducting sensor fusion
Responsible for robot localization, environmental

reconstruction, energy optimization, and assisted grasping.

Supervision layer

Application layer Responsible for robot operations such as assisted
navigation, object alignment, or sequencer of multiple
operations.

OS layer Human-robot interface

characteristics of CERN tunnel crack image data are summarized in
Fig. 10: a) images taken in insufficient or variant illumination condi-
tions, b) crack split by beam facilities, c) crack with complex pattern or
bifurcation, and d) non-defined marks with similar characteristics to

that of cracks.

The image stitching allows the alignment of hundreds of images in
spatial order and offers a large field of view than separate images. The
stitched panorama also enables engineers to better understand the
spatial layouts of the cracks. This is important as it is challenging to link
cracks taken from separate images with the exact tunnel locations. Not
to mention that retrieving spatial correspondences of cracks from iso-
lated frames it is also troublesome. These spatial layouts can offer a
thorough understanding of long-term structural performances. The
shooting scheme is proposed in Fig. 11 to facilitate the image stitching
process. Separate images captured by the coordinated camera set in
consecutive inspection spots are utilized for the creation of the pano-
rama. The overlapping of images can ensure that there are no sections
missed, and it offers common features among different frames. In the
image stitching process, SURF detectors (Bay et al., 2008) are imple-
mented in adjacent image pairs to extract key points invariant to change
of viewpoint. Then, gradient orientations of key points are computed to
describe their local appearances. Transformation matrixes among

Fig. 7. Different CERNbots at BE-CEM-MRO department in CERN (Di Castro 2019).
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Fig. 9. Deep learning dataset preparation.

images are derived by matching these common features in the over- 3. Methodology in the image data processing

lapping areas. In addition, to improve stitching quality, the RANSAC

algorithm(Fischler & Bolles, 1981) is also applied to refine the feature- 3.1. The model architecture of tunnel crack segmentation based on Atrous
matching process by removing outliers. Finally, consecutive images are convolution

transformed and merged into a panorama.
The benchmark semantic segmentation DeepLab V3plus model
(Chen et al., 2018) is employed for pixel-level tunnel crack detection in
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Figure.10 Characteristics of CERN tunnel crack data

Fig. 10. Characteristics of CERN tunnel crack data.
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Fig. 11. Shooting scheme.

this study. The DeepLab V3plus model incorporates capabilities of pre- DeepLab V3plus Model. The backbone structure extracts coarse crack
vious CNN models, including the encoder-decoder conception of FCN features from input RGB images and passes them to the encoder and
and SegNet, the skip connection of Unet, the pyramid pooling structure decoder paths. In the decoder path, the low-level features, after
of PSPNet (Zhao et al., 2017), and the Atrous convolution from previous upsampling, are fused together with the high-level features from skip
versions of DeepLab models. Fig. 12 illustrates the architecture of the connections for further convolution operations. This kind of operation is
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similar to the idea of multi-view image fusion (Kuhn et al., 2013),

facilitating detaching sharp crack boundaries from complex under-

ground backgrounds. Finally, fused feature maps are upsampled again to

N restore the final crack pixel detection and crack spatial layout

N\ information.

N In the DeepLab V3plus model, the Atrous Spatial Pyramid Pooling

' N (ASPP) block is essential for extracting multi-scale image features.

\\ Flltel A \ . ~ Feature maps from the backbone are processed in parallel by different

\

N operations in the ASPP block. A pooling layer and Atrous convolution

\ R layers with dilation rates of 0, 6, 12, and 18 produce five kinds of output

\ O O O features representing different scales of crack information. This

pyramid-style structure enables the network to focus on different scales

\ of instances on input images, thus preventing the network from failing to

\ O O" O predict small instances or fine details of large instances. On top of that,

\ N compared to normal convolution kernels, kernels of the Atrous convo-

\ 1 lutions enable the network to enlarge the receptive field, providing
*r a contextual information from a larger area, as shown in Fig. 13.

\ O O o\ The backbone structure plays a vital role in the performance of se-

mantic segmentation models, serving as feature extractors. Its convo-

lution blocks can condense essential information on input images into

feature maps storing different classification knowledge on each channel.

The original DeepLab V3plus model is built upon Xception. Although

Fe atm‘e map these deep CNN backbones could achieve higher accuracy, the required

training data and time would increase (Dais,Bal et al., 2021). Therefore,

Fig. 13. Receptive field of Atrous filter. the DeepLab V3plus model is improved with a trimmed version of the

MobileNet V2 backbone (Sandler et al., 2018). The main objectives for

this improvement is two-fold. The first reason is the trade-off between

the model complexity and computational demand. More specifically,

deep learning networks get millions of parameters and weights to train

conve

21 20 convd

conv3

convl conv2

Fig. 14. Sketch of the trimmed MobileNet V2 backbone.
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Table 2

Training configurations.

Training configuration Hyper-parameters

Backbone type Xception and MobileNet V2

Pretrained dataset PASCAL VOC

Image Size [512,512]

Batch size 4

Learning rate From 5e to 4 decaying to 5e-7 by step decay strategy

Optimizer Adam

Epochs 140 epochs

Output stride 16

Momentum 0.9

Atrous rate of ASPP [6,12,18]

Data shuffle True

Regularizations L2 Norm with weight decay rate = 2e-4

Data Augmentation Horizontal flip; Vertical flip; Gaussian blur; Random
strategy rotation (-10 to 10 degrees); Color space convert

Framework Keras

GPU NVIDIA-A100-SXM4-40 GB

and update, thus requiring tremendous database scales (Xue et al.,
2022). The second objective is to on-device crack segmentation for
further research of CERN TAM tasks. Combining knowledge distill and
parameter pruning techniques, a lightweight semantic segmentation
model might be deployed on mobile or edge devices like drones or the
CERNbot. The proposed trimmed version of MobileNetV2 consists of
only seven inverted residual convolution blocks. Fig. 14 depicts the
dimensionality shrinkage of feature map size and expansion of their
channels of the trimmed MobileNetV2 backbone. The depth wise sepa-
rable convolution can considerably reduce trainable parameters by
breaking down traditional convolutions into two separate procedures:
depth wise convolution and pointwise convolution(Howard et al.,
2017). In addition, the inverted residual block structure shown in Fig. 15
can also prevent deep networks from gradient or exploding phenomena
vanishing by skip connections between input and output features.

3.2. Training strategies for applicable issues

After data collection and labeling, cropped patches are fed into the
DeepLab V3plus model for fine tuning. Table 2 summarizes training
configurations. However, some practical problems remain to be solved
when applying deep networks on tunnel crack segmentation tasks at
CERN. The first issue is the class imbalance as tunnel cracks represent
only a minor part of the collected images. Deep networks tend to create
bias towards the major class, the non-crack pixels, resulting in under-
performed misclassification issues. To fix this, a compound loss function
is proposed, comprising weighted dice loss (Sudre et al., 2017) and focal

Tunnelling and Underground Space Technology incorporating Trenchless Technology Research 140 (2023) 105310

loss (Lin et al., 2017). Differing from the cross-entropy loss function
utilized by (Dang,Wang et al., 2022), the weighted dice loss shown as eq.
(1) is a region-based loss function, and the focus of deep network on
cracked pixels can be regulated by increasing corresponding weights.
Additionally, the focal loss shown in eq.(2) enables the model to focus on
hard-to-learn classes, crack pixels, by limiting the contribution of non-
crack pixels on the loss. Combining these two strategies, the com-
pound loss function shown in eq.(3) is therefore proposed to optimize
deep networks on the unbalanced crack dataset of the CERN tunnel.

ZZC:I We pr x8cx TS
2
ZC:IWL‘Z,:((PC): + gcx) +s

Where L, is the weighted dice loss; C ranges over classes; w, is
class weights; p., and g represents predicted tensors and the ground
truths of positionx; s is the coefficient added to prevent undefined sit-
uation dividing by 0.

Lygice =1 -2 (@)

Lppea = — (1= pt)'log(pt)
| 1 —p, otherwise
p={ O @

Where p is the probability and the modulating factor y is added to
regulate the loss function keeping the balance between misclassified and
well-classified pixels.

L(‘ampaund = Lfo(‘al + Lygice (3)

The second issue is the underperformance of deep networks when
training from scratch. Therefore, transfer learning is introduced here to
accelerate the training and to reduce the required data size, noted its
efficiency in CERN’s previous research (O’Brien et al., 2023). The
fundamental point of transfer learning is to employ common knowledge
from other datasets to reduce the requisite converge time and data.
Although data resemblance is limited, primary knowledge like edge
detectors, color detectors, shape detectors, etc., were transferred into
the new models to reduce repetitive training. The initial training is
conducted on the PASCAL VOC database first (Everingham et al., 2015),
and pre-trained weights are then transferred to initialize the improved
DeepLab V3plus model. Due to the different classes of these two data-
sets, the last layer, the classifier, is removed and retrained during the
transfer learning process. When image sizes between the crack database
of CERN tunnels and the pre-trained database do not match, one extra
convolution layer is added to decrease the input size or pad the input
image to enlarge their sizes.

The last one is the overfitting issue of deep learning models, which is
quite common in civil engineering defect detection applications (Liu
et al., 2020; Xue,Jia et al., 2022). Overfitting would result in the
underperformance of deep networks on the test dataset, as trivial and
misleading details in training set are learned as key features. Two reg-
ularization methods are adopted to address this issue: data augmenta-
tion and model complexity reduction. The data scale is enlarged by
augmentation methods shown in Table 2. Additionally, the L2 normal-
ization is implemented for the penalization of model complexity by
adding extra losses in convolution layers with higher weights, as shown
in Eq(4).

L n
L(olal = mepound +n Z Z|W“|2 (4)
=1 i=1

in which Lta denotes the total loss; the 7 is the weight decay rates;
the L and n represent the number of layers and nodes.

3.3. The fundamental of crack analysis in stitched images

The final step of the crack monitoring system is to scan the stitched
panorama with deep networks for the large-scale tunnel crack distri-
bution. However, this procedure could be very challenging due to the
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Table 3
Comparison of model performance on test sets.
Model name mloU mPA Trainable
parameters
(Million)
DeepLab V3plus with Xception 83.92%  92.64%  41.2
DeepLab V3plus improved with 82.81%  92.20% 2.8
trimmed MobileNet V2 (Tailored
loss)
DeepLab V3plus improved with 80.68%  87.1%
trimmed MobileNet V2 (Cross-
entropy loss)
U-net with ResNet 152 82.86%  88.71% 67.3
FPN with Googlenet (Tailored loss) 82.83%  89.85% 25
FPN with Googlenet (Cross-entropy 81.54%  88.44%

loss)

high resolution of the panorama stitched from hundreds of images.
Loading the stitched panorama into deep networks directly for crack
detachment would end with a GPU crash and graph extrusion error.
Therefore, it has been a common practice in segmentation tasks of
remote satellite sensing communities (Paisitkriangkrai et al., 2015; Liu
et al., 2018) to employ the resizing strategy or Patch-wise prediction
methods to deal with the overly high-resolution image.

The resizing strategy is to resize a high-resolution image into suitable
size for segmentation. However, image details would sharply decrease
when the resizing ratio is too large. This might be troublesome because
the observed tunnel crack pixels occupy less than 1% of the customized
crack database. Therefore, there is a high risk of losing crack pixels when
predicting the stitched panorama. The workflow of the patch-wise pre-
diction method is graphicly illustrated in Fig. 16. In this method, the
high-resolution image is divided into small patches suitable for the input
of deep networks. Then, each sub-patch is predicted parallelly by the

i 256 i 256

256

10
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Sliding window path of the smooth blending method.

deep network, and all sub-patches are stitched to produce the final crack
map. The inherent drawbacks of this method are that cracks on each sub-
patch are predicted separately and all pixels are only reviewed once.
This failure to employ contextual information from surrounding patches
can result in jagged prediction issues like crack discontinuity.

To address this high-resolution related prediction issue, the smooth
blending prediction method proposed by (Chevalier, 2017) is introduced
here, noting its success in cell segmentation (Greenwald et al., 2022). In
this method, a sliding window is employed to crop high-resolution im-
ages into patches with overlaps in an order shown in Fig. 17. On the one
hand, pixels in the panorama are reviewed in prediction windows four
times, compared with the patch-wise prediction method. Increasing
prediction possibilities can produce more robust results. On the other
hand, the new order of sliding window can relocate crack pixels close to
the fringes at the image center. This is important because the prediction
accuracy between image borders and the center is different in semantic
segmentation, due to variant contextual knowledge (Brackenbury,
2022). This relocation allows cracked pixels to be predicted at different
positions in an image patch and helps deep networks to employ more
contextual knowledge for more precise inferences. In addition, each
cropped patch would be predicted several times after being rotated and
mirrored like dihedral group D_4. This multi-angle view facilitates deep
networks to get a stable prediction. Finally, the prediction windows are
merged togther by interpolating overlap areas with the simplified spline
window function for smooth blending. Morphological operations,
including opening and closing, are also adopted to improve the quality
of the final crack map by a python script. The morphological opening
removes isolated noise pixels misclassified by deep networks. On the
contrary, connections between adjacent cracks are bridged by the
morphological closing operation.
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Fig. 18. Pixel-level crack segmentation results.
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Fig. 19. Losses in the training and validation stage.

4. Case study of CERN tunnel cracks using the proposed system
4.1. Performance of deep learning model

Table 3 compares the performances and complexities of different
models on the customized CERN datasets. The modified U-net with
ResNet backbone for soil densification (Xu,Zhang et al., 2022) crack or
tunnel crack segmentation (Dang,Wang et al., 2022) and the FPN
improved with GoogleNet backbone for concrete crack segmentation (Ni
et al., 2019) are introduced for comparison. In terms of performance, all
deep networks achieve mIoU scores above 80%. The original DeepLab
V3plus model outperforms the others with a mIoU score of 83.92% and
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an mPA score of 92.64%. In addition, the improved DeepLab V3plus
model achieves an mPA score of 92.20%, higher than Unet and FPN.
Regarding model complexity, the required training time and computa-
tional demands increase with piled-up trainable parameters, as stated by
Dais,Bal et al. (2021). The trimmed MobileNet V2 efficiently reduces
trainable parameters of the DeepLab V3plus model into 5%, thus
accelerating the training. On top of that, compared with Unet and FPN,
the proposed DeepLab V3 plus model achieves a higher MPA with less
model complexity. Moreover, to validate the performance improvement
of the tailored loss functions, the FPN improved with GoogleNet back-
bone and DeepLab V3plus improved with trimmed MobileNet V2 were
trained again with the Cross-entropy loss function. Comparisons in
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Fig. 20. Comparison of patch-wise and smooth blending prediction method.

Table 3 show a 1-2% improvements in mIoU scores and more than 2%
improvements in mPA, for both models.

Fig. 18 enumerates some segmentation results on image patches with
a size of 512 by 512, inferred by the proposed Deeplab V3plus. The
prediction results consisted of the original images, segmentation results,
and overlaps. The capability of the proposed crack segmentation model
on harsh tunnel environments is demonstrated by detecting slender
fissures, differentiating cracks from crack-similar marks, and segment-
ing small branches of complex cracks with fair accuracy.

Fig. 19 plots the losses descending of the improved and original
DeepLab V3plus Models in the training and validation stages. Both losses
drop sharply in the first 60 epochs and reach a plateau after 100. The
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overlap of loss curves of the training and validation phases in Fig. 19
validates the effectiveness of regularization methods, including data
augmentation and L2 normalization, in addressing overfitting. The
maximum difference between the validation loss and the training loss is
less than 0.022, indicating that the proposed DeepLab V3plus model can
effectively detect tunnel cracks on both the training and unseen detec-
tion images.

Performances of a deep learning model on high resolution images
could change with different applied prediction strategies. To corrobo-
rate this, a raw image, covering both cracks and crack-like indentations,
is sifted to test the performances of the patch-wise and the proposed
smooth blending prediction method. The raw image in Fig. 20a) is a
stitched photo taken from the TT1 tunnel with a resolution of 5120 by
5120 pixels. The mIoU scores of the smooth blending and the patch-wise
predictions are 81.76% and 66.22%, accordingly. It is worth to mention
that these two mIoU scores are computed directly from the ground truth
and the prediction mask in full sizes, instead of averaging the mIoU
values of all sub image patches. The better performance of the smooth
blending method could be related to its better employment of more
contextual information from surrounding patches. To provide better
understanding, comparisons of visual results are illustrated in Fig. 20. In
patch-wise prediction, the deep network tends to misclassify longitudi-
nal indentations on the sidewall as tunnel cracks due to their high
resemblance. To the best of the authors’ knowledge, indentations on the
tunnel wall are probably due to concrete defects subjected to poor
concrete construction procedures, which should not be labeled as cracks.
In our context, however, tunnel cracks should be concrete fractures
triggered by considerable tunnel lining deformation. The misclassifica-
tion is related to the small, cropped size: longitudinal indentations
resemble horizontal cracks more on small image patches. Therefore,
more contextual information from surrounding patches in the proposed
sliding-blending method enables deep networks to avoid such
misclassification.

4.2. Crack distribution of CERN tunnel

Inspections were implemented in two separate sections of the CERN

a) the 80-meter panorama of LHC tunnel with resolution of 3479 by 49152 pixels

b) 45-meter panorama of TT1 tunnel with resolution of 2048 by 26309 pixels

Fig. 21. Stitched tunnel panorama of two typical tunnel sections at CERN.
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a) Segmentation results of 80-meter LHC tunnel

¢) Segmentation results of 50-meter TT1 tunnel
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Fig. 22. Crack distribution of inspected tunnel chainages at CERN.

tunnels: a section of approximately 80 m along the curved LHC tunnel
and a section of around 45 m along the straight TT1 tunnel. During the
inspections, cameras of the CERNbot, set at an approximate distance of
1.5 m away from the tunnel wall, acquire tunnel images while moving at
a speed of 0.2 m/s. Fig. 21 presents the stitched panorama with the
corresponding image resolution attached for both tunnels.
Segmentation and overlay results illustrate the crack distribution of
these two experimental tunnel sections in Fig. 22, where cracks are
positioned in precise areas with recognizable patterns. In this way, the
proposed pixel-level crack monitoring system provides an accurate
depiction of the condition of the tunnel and contributes to the
comprehensive understanding of the long-term behavior of the tunnels.
Cracks observed in the LHC tunnel are more dispersed with a
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circumferential oriental pattern. This kind of crack pattern indicates an
uneven tunnel shearing deformation along the transversal direction
described in Fig. 23 (a). In contrast, the straight TT1 tunnel section
encompasses a few major longitudinal cracks spread along the sidewall.
This kind of crack distribution reveals insights into the tunnel cross-
section bending deformation mode of the inspected tunnel chainage as
illustrated in the tunnel cross-section of Fig. 23 (b); the tunnel crown is
experiencing compression while the sidewalls are in tension, resulting in
continuous cracks along the longitudinal tunnel direction. Such tunnel
deformation mode is also recorded at the straight TT10 tunnel using
field monitoring tools, as described by (Di Murro, 2019). In addition,
two circumferential cracks also appear in the 45 m TT1 tunnel section,
located near the construction joints of the seconding lining, from which
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Fig. 23. The proposed deformation mechanism of LHC and TT1 tunnel.

adjacent tunnel cross sections tend to deform unevenly.

4.3. Crack density of CERN tunnel

Crack density can statistically quantify structural conditions of tun-
nels and facilitate asset management. Here, the global crack density
(denoting the ratio of crack pixels to backgrounds) is employed to
quantify the severity of crack defect. For instance, the global crack
densities of the inspected two tunnel sections are 0.2184% of the 80 m
LHC tunnel and 0.3471% of the 45 m TT1 tunnel. This result indicates
that TT1 tunnel is probably developing a greater deformation in the long
term, subject to surrounding soft rock or tunnel deterioration. In addi-
tion, the sectional crack percentage denotes the ratio of crack pixels
within the designated chainage to the counterpart of the whole inspec-
ted tunnel section. This index is introduced to reflect the uneven crack
distribution from chainages to chainages and identify the most severe
crack-damaged chainages. The supplementary sectional summary,
plotted in Fig. 24, illustrates that the worst part in the inspected areas
appears at the 6th —8th meter of the TT1 tunnel with a peak value of
12.57%. Such higher crack density is probably attributed to the complex
interaction between layered ground and inclined tunnel subject to time-
varying water pressure at TT1 tunnel section, which deserves specific
investigation in future studies.

In addition, this sectional summary also shows a more evenly
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distributed crack pattern in the LHC tunnel than in the TT1 tunnel, as
mentioned before.

5. Conclusion

This study proposes a remote and automated tunnel crack moni-
toring system. The system consists of remote data acquisition, data
processing for a long panorama, deep learning methods for crack seg-
mentation, and high-resolution image prediction for crack density and
distribution. Field trials have been conducted in two typical CERN
tunnel sections. The major conclusions are summarized as follows:

e The proposed tunnel crack monitoring system successfully carries
out TAM tasks of CERN underground facilities and facilitates the
understanding of long-term tunnel behavior. Results demonstrate
that the panorama image enlarges the field of inspection view and
renders a realistic tunnel surface condition. The crack density dis-
tribution allows identification of crack-damaged tunnel sections.
Crack pattern results reveal long-term deformation mechanisms of
different tunnel sections at CERN: the transversal shearing mode is
prevalent in LHC tunnel section, and the vertical elongation of the
cross section is the dominant deformation mode in TT1 tunnel.

The crack monitoring results show that longitudinal cracks are
dominant in the inspected TT1 tunnel, whereas sparse circumferen-
tial cracks are more often encountered in the LHC tunnel. In addition,
compared to LHC tunnel with a crack density of 0.22%, a much
higher crack density of 0.35% appears in the inspected TT1 tunnel
section.

A crack database of tunnels at CERN has been established during this
study. Incorporating regularization methods, tailored loss function,
and transfer learning, the DeepLab V3plus models show good per-
formance in segmenting complex CERN tunnel cracks in harsh tunnel
environments. Training results on the customized database show that
the fine-tuned DeepLab V3plus outperforms extant deep networks,
with mIoU of 83.92% and mPA of 92.64%, and the improved light-
weight DeepLab V3plus model is efficient with satisfactory accuracy.
In addition, the proposed smooth blending inference method can
improve the performance of deep networks on high-resolution tunnel
panorama.
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