Some Results on One-Dimensional
Models with Broken and Deformed

Symmetries

A Dissertation Presented
by
Francis Norman Claridades Paraan

to
The Graduate School
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy
in

Physics

Stony Brook University

December 2012



Stony Brook University
The Graduate School

Francis Norman Claridades Paraan

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Vladimir E. Korepin — Dissertation Advisor
Professor, C. N. Yang Institute for Theoretical Physics and
Department of Physics and Astronomy

Dominik A. Schneble — Chairperson of Defense
Associate Professor, Department of Physics and Astronomy

Tzu-Chieh Wei — Committee Member
Assistant Professor, C. N. Yang Institute for Theoretical Physics
and Department of Physics and Astronomy

Alexander Kirillov, Jr. — Committee Member
Associate Professor, Department of Mathematics
Stony Brook University

This dissertation is accepted by the Graduate School.

Charles Taber
Interim Dean of the Graduate School

1



Abstract of the Dissertation

Some Results on One-Dimensional Models
with Broken and Deformed Symmetries

by

Francis Norman Claridades Paraan

Doctor of Philosophy
in
Physics
Stony Brook University
2012

We present analytic results for the ground state properties and
entanglement in the Lieb—Liniger model and ¢-deformed Affleck—
Kennedy-Lieb—Tasaki (AKLT) models. The translational invari-
ance of the Lieb—Liniger model is broken by an external harmonic
potential in one case and by coarse-grained measurements of par-
ticle number in another. Meanwhile, anisotropy is introduced into
the AKLT model by generalizing its SU(2) invariant hamiltonian

into one that is SU,(2) invariant.

The Lieb—Liniger model describes a one-dimensional gas of bosons
that mutually interact by a zero-range interaction term. Under lon-
gitudinal harmonic confinement, the exact spectrum of the hamil-
tonian is known only for free and impenetrable bosons. We use a
pseudopotential approach and perturbation theory to calculate the

ground state energy of this gas near the limit of infinite repulsion.
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We further study entanglement in the periodic homogeneous Lieb—
Liniger model. When the particle number in a spatial partition
of the ground state is measured, entanglement in the resulting
state arises only from interparticle interactions. We demonstrate
that entanglement in these projected states increases monotoni-

cally with the strength of interactions.

Finally, we discuss how anisotropy reduces entanglement in the
valence-bond-solid ground state of the ¢-deformed AKLT model.
We propose effective thermal models that describe block entangle-
ment in terms of boundary degrees of freedom. The anisotropy

parameter ¢ enters these models as an effective temperature.
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Chapter 1
Introduction

One-dimensional quantum models are important and interesting. Their re-
duced dimensionality can make them analytically tractable and in some cases
exactly solvable. This feature has led to many advances in mathematical
physics such as the development of integrable models, quantum groups, and
others as specialized fields. Additionally, one of the original motivating fac-
tors for the study of these models was the extraction of physical insight that
would be useful for the analysis of their higher-dimensional counterparts. This
perspective has expanded in recent decades because of scientific and techno-
logical advances. The focus is now on the understanding of actual and quasi
one-dimensional physical systems. This drive is pushed by current experimen-
tal methods that allow one to manufacture and manipulate low-dimensional
structures under controlled conditions. For example, the physical systems of
particular relevance to this thesis are: ultracold gases in optical lattices (re-
cent reviews are [1-3]), photonic valence-bond-solid states [4-6], and molecular
antiferromagnetic chains [7].

One-dimensional systems are inherently strongly interacting and have non-
trivial physical features. For example, in Chapters 2 and 3 we consider the
Lieb—Liniger model, which describes a boson gas with contact interactions.
In the strong repulsion limit of this system a dynamically-induced exclusion
principle leads to thermodynamic properties that are similar to that of a free-

fermion gas. Additionally, the ground state of the quantum spin chain pre-



sented in Chapter 4 can be pictured as a crystal made up of valence bonds.
The quantum state of a block of spins in this ground state may be represented
by a product of vector-valued matrices. A notable feature of this construction
is that the dimension of the Hilbert space of such a block does not depend
on the number of spins in the block (more than two spins). As we discuss
in more detail in the following chapters, the tractability of these models is
related to certain symmetries they possess. When some of these symmetries
are broken or deformed, the conventional approach to the problem may need
to be abandoned or generalized.

In Chapter 2 the translational invariance of the Lieb—Liniger model of in-
teracting bosons is broken by an external harmonic trapping potential. The
homogeneous model (no trapping potential) is integrable and solvable by the
Bethe ansatz. However, in the presence of the trap the many-body problem
has no known exact solution for general values of the interaction parameter.
The hamiltonian, however, is analytically diagonalizable in the limit of infinite
repulsion. In this limit of impenetrable bosons, the quantum mechanical eigen-
value problem can be mapped onto an equivalent non-interacting fermionic
problem. We can therefore analyze the ground state properties of the trapped
gas near the extreme limit of infinitely repulsive particles by a perturbative
pseudopotential approach.

Chapters 3 and 4 are devoted to the study of quantum correlations in the
pure ground states of two different one-dimensional models. These correlations
are quantified by a physical quantity called entanglement. From the perspec-
tive of quantum information, entanglement is a resource that may be used to
perform quantum computations. In this thesis the amount of entanglement in
these pure states is measured by the entanglement entropy and entanglement
spectrum.

In Chapter 3 the translational symmetry of the Lieb—Liniger ground state is
broken by a projective measurement. This measurement results in a projected
pure state with a fixed number of particles in a spatial region of the gas. As a
consequence of this procedure, entanglement in this projected state arises only
from interparticle interactions. Our strategy here is to use the many-particle

wavefunction (which is derived from the coordinate Bethe ansatz) for exact



numerical calculations of the entanglement entropy. Our results therefore show
how particle interactions affect entanglement in a direct manner.

In Chapter 4 we study entanglement in the ground state of an anisotropic
integer-spin model on a linear chain. This model is a g-deformed generalization
of the SU(2) invariant Affleck—Kennedy—-Lieb-Tasaki model of antiferromag-
nets. That is, the anisotropy introduced in this generalized model does not
completely break SU(2) symmetry, but continuously deforms it to that of the
SU,(2) quantum group. Through a unified approach involving the appropri-
ately generalized rules of angular momentum addition, we are able to quantify
entanglement in this model from the undeformed isotropic limit to the fully
deformed limit with no entanglement.

Each chapter in this thesis follows the same format. An introductory sec-
tion is followed by a discussion of results. This chapter introduction will pro-
vide a more detailed survey of historical material, definitions, and preliminary
calculations that are needed to properly frame the main result. A concluding
section summarizes these results and poses possible future problems. Some
details of additional calculations are provided in a section of derivations at the

end of each chapter.



Chapter 2

Strongly repulsive boson gas in

a harmonic trap

The contents of this chapter are based on the manuscript [I].

2.1 Lieb—Liniger model

The Lieb—Liniger (LL) gas [8, 9] is a model of interacting spinless bosons in
one-dimension. Pairwise interactions in this model have zero range and are
represented by Dirac-delta functions. The quantum mechanical hamiltonian
of this model is
N 52
H=— WHCZ(S(%—%), (2.1)

i=1 t 1<j

where c is the strength of the interaction. We have used h%/2mL? as the unit
of energy and L as the unit of length (m is the particle mass). Here we consider
repulsive interactions (¢ > 0) because we are interested in the properties of
the gas near the impenetrable Tonks-Girardeau (TG) limit ¢ — co. In terms

of quantum fields, the Lieb—Liniger model is equivalently expressed as

H= /1 0, VT (2)0, ¥ () + eVl (2) U (1)U (2) ¥ (x) da. (2.2)



The field operator W(x) obeys the canonical commutation relations

[U(z), ¥ (y)] = 6(z —y),
[W(z), U(y)] = [¥(z), Ti(y)] = 0. (2.3)

The corresponding equation of motion for the quantum hamiltonian (2.2) is

the nonlinear Schrédinger equation (NLSE):
0,V = [—0 + 2c¥T U] . (2.4)

The homogeneous Lieb—Liniger model has several features that make it a
good starting point for the study of one-dimensional systems. One of the most
important of its characteristics is its integrability. The quantum inverse scat-
tering method (QISM) [10] may be used to construct a hierarchy of operators
that commute with the quantum hamiltonian [11]. This method also allows
one to obtain the energy spectrum of the model from the solution of set of
algebraic equations known as the Bethe equations. Furthermore, a complete
set of energy eigenfunctions for the model is explicitly given by the coordinate
Bethe ansatz [8, 10, 12-15]. These wavefunctions and the corresponding Bethe
equations are discussed in Section 3.2.

Though being a decades-old model, there is still much interest in it. Recent
experimental developments in the physics of ultracold atoms has much to do
with this activity [3]. With current technology and techniques it is possible to
form and manipulate quasi one-dimensional boson gases with tunable interac-
tion parameters [16-23]. These developments have led to many experimental
breakthroughs. For example, the superfluid to Mott insulator quantum phase
transition has been realized [24, 25], the ground and low-lying excited states of
the Lieb—Liniger gas have been prepared and characterized at different interac-
tion strengths [17-19, 26], and collision experiments between one-dimensional
ultracold gases have been performed to probe their structural and transport
properties [27-29]. Surveys of experimental results on one-dimensional boson
systems are presented in the reviews [1-3].

The suitability of the LL model in describing the properties of these quasi



one-dimensional systems at low temperatures has been established. Given
a gas of spinless bosonic atoms with short-ranged pairwise interactions that
is confined transversally by tight harmonic potentials, the longitudinal s-
wave scattering amplitudes are reproduced by one-dimensional pseudopoten-
tials proportional to a Dirac delta function [30, 31]. With this result, the
strength of the effective delta interaction may be obtained from measureable
quantities such as the three-dimensional atomic scattering length asp and the
linear dimension of the transverse confining potential a,. For example, for
a three-dimensional gas with a spherically symmetric interaction potential
V = 46(r)0,(r+) (Huang potential [32]), the longitudinal scattering length a;p

in an effectively one-dimensional system under tight harmonic confinement is

[30]
2
ap = ——L (1 - OCL?’—D). (2.5)
asp ay
The constant C' here is numerically equal to 1.4603---, a, is the transverse

oscillator length a; = y/h/pw,, p = m/2 is the two-particle reduced mass,
and w, is the transverse oscillator frequency. The effective one-dimensional
interparticle potential is then

h2

co(x) = ~am i(z). (2.6)

Therefore, the interaction constant ¢ may be tuned by changing the three-
dimensional scattering length (e.g. via a Feshbach resonance [33, 34]) or by
modifying the width of the transverse confining potential. The resonant behav-
ior of c as a| ~ asp is a phenomenon known as confinement-induced resonance.
It is a general feature of ultracold gases with short-range interactions under

transverse harmonic confinement [31].

2.1.1 Trapped Lieb—Liniger gas

The homogeneous Lieb—Liniger model (2.1) is still quite an idealization be-
cause it describes a gas that is not confined longitudinally. Thus, much effort

has been devoted to studying the effects of longitudinal confinement of inter-



acting bosons [35-38]. For example, including an external harmonic potential
to the free Lieb—Liniger model of spinless bosons leads to the many-particle

Schrodinger eigenvalue equation

_ K2 0? mw?z? h?
EUP = —_—— Lo — — N §(zs — x) TP 2.7
Z 2m8x?+ 2 maZ (2 = 1) (2.7)

i= i<j

Here w is the angular frequency of the longitudinal trap and a is the effective
one-dimensional s-wave scattering length. The superscript ‘b’ refers to the
bosonic nature of the wavefunction, i.e. it is symmetric under interchanges of
particle coordinates z; <+ x;. Measuring energy in units of w and length in
units of the longitudinal oscillator length ¢ = \/W gives the dimensionless

eigenvalue equation

N

19> 1
b 2 b
i=1 1<J
where we have introduced the dimensionless interaction strength ¢ = —¢/a.

Currently, there is no exact analytical solution for the spectrum of this
model (2.8) for general values of the particle number N and interaction strength
c. The addition of a harmonic confining potential to the Lieb—Liniger model
breaks the translational invariance of the system and the total momentum of
the gas is no longer a conserved quantity. Furthermore, the two-particle scat-
tering phase becomes position-dependent due to the external potential, which
destroys the general integrability of the model. However, there are certain
limits where the harmonically confined boson gas remains solvable. For ex-
ample, the energy eigenfunctions and spectrum are known for the separable
two-particle case [39] and the Tonks-Girardeau (TG) limit of infinite repulsion
¢ — +oo [40, 41]. Additionally, the ground state and low-lying excitations of
this confined model have been studied analytically in the Thomas—Fermi limit
(N — oo with v/N/c — constant) [35-37, 42-44]. The Thomas Fermi ap-
proach is sketched in Section 2.6.2.

The properties of the Lieb—Liniger gas under the influence of different trap-

ping potentials has been investigated previously. The simplest case is that of



a flat-bottomed box where the many-body wavefunction is required to vanish
at the boundaries of the box [45-47]. In this case the solvability of the model
is preserved. Another example is that of a linear (wedge-shaped) confining
potential [48]. In the limit of impenetrable bosons, the stationary states of

this system involves a Slater determinant of single-particle Airy states.

2.1.2 Chapter outline

In this chapter, we develop a perturbative expansion for the ground state en-
ergy of the trapped boson gas about the known TG solution. An essential
ingredient of the following analysis is the fermion-boson mapping for one-
dimensional systems [49]. With this technique the wavefunctions and spec-
trum of the impenetrable boson gas are obtained from the wavefunction and
spectrum of free-fermionic models. We use a generalization of this mapping
in Section 2.2 that connects a strongly interacting boson gas and a weakly
interacting spin-polarized fermion gas [50, 51]. The main result of this chap-
ter is an analytic expression for the first-order (1/¢) correction to the ground
state energy of the trapped gas for any number of bosons N (Section 2.3). We
consider the case of two bosons and further discuss the large N behavior of our
formula in Section 2.4. We find that the Thomas—Fermi limit is approached
rapidly with increasing N. Finally, the details of some derivations of these

results are provided in Section 2.6.

2.2 Fermion-boson mapping

In one dimension a bosonic model with pairwise contact interactions of strength
¢ can be mapped into a fermionic model with interactions of strength ~ 1/c and
having the same energy spectrum [50]. Specifically, let us consider a fermionic
many-particle wavefunction ®' that is antisymmetric under interchanges of

particle coordinates z; <+ x; and satisfies the eigenvalue equation

10 1 ~
f_ § : 2 ‘7f f

1=



J¥b drR
Jof dr

(a) Bosonic (b) Fermionic

Figure 2.1: (a) Relative coordinate part of the ground state wavefunction of
two delta-interacting bosons [ " dR in a harmonic trap and (b) its fermionic
counterpart f ®f dR. The interaction constant is ¢ = 10 and v/2r = z; — x».

An appropriate pseudopotential operator VT allows us to make the following
correspondence between a bosonic wavefunction W and its fermionic counter-
part ®f

TP = ADN(zy,...,2y), A= Hsgn(:vj — 1), (2.10)

such that WP satisfies the eigenvalue equation (2.8) with the same eigenvalue

E. Such an operator has matrix elements in the coordinate representation

given by [38]
. 4 oo ot
fef by % : oy N
Vi) = c Z/rgglo{amj 8 oryj fty; (211)
1<)
where r;; = z; — x; and R;; = %(xj + x;) are relative and central coordi-
nates, and ¢'(zy,...,zy) and ¢f(x1,...,xy) are the coordinate space wave-

functions corresponding to the fermionic state kets |pf) and |¢f). These ma-
trix elements are also reproduced by an approximate pseudopotential f/af =
—(2/¢) > 0"(xi — x;) [52, 53] provided the coordinate basis wavefunctions
are continuous and vanish at the collisional nodes [38]. In this chapter we will
use the exact pseudopotential (2.11).

As an illustration of the fermion-boson mapping idea, we plot the relative

coordinate part (2.19) of the ground state wavefunction for the case of two



bosons in Figure 2.1a. The delta interaction results in a cusp in the bosonic
wavefunction WP at the collisional node r = (2, — 25)/v/2 = 0. Meanwhile,
multiplying the bosonic wavefunction by the unit antisymmetric function A
results in a fermionic wavefunction ®f that changes sign under particle inter-
change. At r = 0 this fermionic wavefunction is discontinuous, but its first
derivatives at 7 = 07 and r = 0~ are equal (Figure 2.1b). It is precisely
this discontinuity in the fermionic wavefunction that is reproduced by the
pseudopotential Vi (2.11). As the strength of the delta interaction increases
¢ — 0o, the discontinuity in ®' vanishes. The fermion-boson mapping (2.10)
therefore relates impenetrable boson wavefunctions to free-fermionic ones. It
is, however, also valid for arbitrary repulsion strengths c.
For an arbitrary number of bosons N, the bosonic eigenvalue equation (2.8)
is solved in the TG limit by the symmetrized Slater determinant [40, 41]
U, = i det ¢, (2,,) = AD] (2.12)
m n\<m TG>
where @, is the fermionic wavefunction, {z,,} are the particle coordinates and
{¥n} is a set of N single-particle harmonic oscillator eigenfunctions v, (z) =
o Y4(2rn)) V2 H, (2)e~**/2. The H,(x) appearing here are the usual Hermite
polynomials. For the ground state, the set {i,} consists of N orbitals with
the lowest distinct quantum numbers n. The corresponding energy of this TG

ground state (in units of Aw) is
Erg = $N?. (2.13)

For finite and large repulsion strengths we may use the quantity 1/c < 1 as
a perturbation parameter for the fermionic problem (2.9) about the Tonks—
Girardeau solution. Thus, ordinary first-order perturbation theory gives the

desired correction to the ground state energy

Eo = 5N? 4 (B |V Dhg) + O(1/). (2.14)

Our task in the following section is to perform an exact calculation for the

10



matrix element (®f|V®L,).

2.3 Perturbation result

In this section we give the leading 1/¢ correction 6E = (®k|VI|®L,) to the
ground state energy Ejy. The effective fermionic interaction operator V! is a

sum of two-body operators v that has the matrix elements

r—0

Vkimn = —é/lim{ 6’[%(:65):01(:52)} awm(agz}bn(xz)} }dR. (2.15)

c
Since ®f is a Slater determinant, we may calculate the perturbation J E using
the Slater-Condon rule 6E = Y _ (Vmnmn — Vmnnm) [54, 55]. Prior to calcu-
lating the derivatives appearing inside the integral (2.15), we must be careful
to write the coordinates z; = R + %r and o = R — %r in terms of the rela-
tive and central coordinates » and R. Since the single-particle wavefunctions

Y () are real, the symmetry of the integrand allows us to write and define

Umnmn = —Umnnm = ﬁmn where
1 O[Ym(a) ()] |
T = ——/hm{ Ym0 ¥ (22 } dR. (2.16)
c r—0 or

Thus, the leading correction becomes 6E =23 <n Umn- It is always negative
for 1/¢ > 0: reducing the magnitude of interparticle repulsion decreases the
energy of the ground state. After some manipulation (details are given in

Section 2.6.1), we obtain a finite series expression for the energy correction:

N—-1 n—1
RWER Lm—b) o
=\ T < 2 p gy o {m 1} (217)

m=0

Here, 3 F»[“}%,%; 2] is a hypergeometric function of argument z [56]. This the

main result of this chapter and is exact for all values of N.

11



2.4 Ground state energy correction

2.4.1 Two particles

The special case of N = 2 particles is separable in relative (v2r = z; — )
and central (\/§R = x7 + x9) coordinates. Therefore, the resulting eigenvalue
problem for the energy spectrum is exactly solvable [39, 57] and provides an
important test case for our approach. In these coordinates, the two-particle
eigenvalue equation (2.8) becomes

1 0 1., 10* 1

T e LR e BN

EUb =
20R? 2 2 Or? V2

L (218)

The eigenfunctions of this equation are U = fz/ (1)1, (R) and the correspond-
ing eigenvalue is £ = (E’ +n+ %) Here 1, is a single-particle harmonic
oscillator eigenfunction and the relative coordinate part of the wavefunction
is [58]
1 C 2

for(r) = N,{M[ SE 3% = s I M - LB 37 fe 2 (219)
The normalization factor is N and M|a, b; z| is the confluent hypergeometric
function [56].

Upon imposing vanishing boundary conditions on the two-body eigenfunc-
tion at infinity, we find that the ground state energy Fy = Ej + % of the

2
trapped two boson system satisfies the transcendental equation

2T [5(1+ Ey)] tan[3(1 — Eo)n] ¢
F[Eo)2] =~ (2.20)

As shown in Figure 2.2 the appropriate solution of this equation gives Fj as a
smooth function of ¢ with E; € [1,2].
Substituting N = 2 into our perturbation formula (2.17) for the ground

Ey=2— %\EJF O(1/c%). (2.21)

state energy leads to
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Figure 2.2: The first-order perturbation result (red dashed line) for the ground
state energy of two delta-interacting bosons in a harmonic trap is compared
to the exact solution (blue solid line). The ground state energy Erg in the
infinite repulsion limit is given by the horizontal dotted line.

This expression coincides with the leading terms of the 1/c¢ series expansion
of the exact solution (2.20) about the TG ground state energy Erg = 2. A
comparison of the result from perturbation theory and the exact two-particle
ground state energy is shown in Figure 2.2. We observe good agreement be-

tween the two results in the strongly interacting regime ¢ > 10.

2.4.2 Large number of particles

Before discussing the situation of more than two particles, we restore energy

units and rewrite the perturbed ground state energy as

1 2a(N
Ey(N) = §th2 [1 + M] +0(1/c). (2.22)

c
Here a(N) is a dimensionless function of N. For values of N up to 10° the
magnitude of the scaled first-order correction —cd E(N)/N? is plotted in Fig-
ure 2.3 as a function of N on a double logarithmic plot. Inspection of this
graph suggests a simple power law scaling for the first-order correction with

large N. In fact, the Thomas—Fermi approach leads to the conclusion that
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Figure 2.3: The scaled perturbation —cdE/N? (dots) grows as a power law
~ /N in the thermodynamic limit N — oo. The dashed line is a regression
fit c0E ~ —0.408N°/2 that is calculated from values N € [100, 1000].

Ey/N? depends only on VN /c as N — oo [37]. Thus, for large N > 1 we
must have a(N)/c ~ v/ N/c or

1 N

where «q is a constant number. Indeed, for as few as N = 15 particles the
factor al( N) is quite well approximated (within 1%) by the function agv/N with
ap ~ —0.408. In other words, the correction factor a(N) reaches its asymptotic
scaling behavior for systems with a small number of atoms N > O(10').

To obtain a thermodynamic limit with an extensive ground state energy
(scaling linearly with N), we observe that we must require the trapping fre-
quency w to vanish as 1/N in addition to sending the number of particles to
infinity. That is, imposing w ~ 1/N as N tends to infinity implies that the
ground state energy becomes proportional to the number of particles. This
scaling requirement means that the quantity ¢/ V/N approaches a constant in
the thermodynamic limit (¢ ~ /N as N — oo). This behavior is in contrast to
the thermodynamic limit of a Lieb—Liniger gas confined in a flat-bottomed box,

in which the linear dimension of the longitudinal trap is taken to scale propor-
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Figure 2.4: For large N the asymptotic formula cdE =~ —0.408N°/? (dashed
line) reproduces numerical calculations in the Thomas-Fermi approximation
(solid line) near the Tonks-Girardeau limit.

tionally with particle number [47]. Looking back at our asymptotic expression
a(N) =~ apV/N, we find that the quantity v/N/c approaches a constant value
as N — oo in our prescribed thermodynamic limit. This is precisely the con-
dition used by Ma and Yang [36, 37] to obtain the ground state energy of the
harmonically trapped interacting boson gas in the Thomas—Fermi formalism.

A comparison of our asymptotic perturbation formula (2.23) with the
Thomas—Fermi result is given in Figure 2.4 (Section 2.6.2). Our formula es-
sentially gives the leading order terms of the v N /c power series expansion
of the ground state energy of the trapped gas about the TG limit. We find
that our first-order 1/c result is reliable for v/N /¢ < 0.1. This means that for
a typical experimental setup with hundreds of atoms first-order perturbation
theory and the Thomas—Fermi result coincide only in the extreme repulsion
limit ¢ > 102

If we now define the chemical potential in the impenetrable Tonks—Girardeau
limit as prq = limy_eo,woso wN and the scaled interaction parameter as

v = limpy_00, w0 ¢/V N, we obtain the zero temperature chemical potential

0F 5y 50.408
— ~ 14+ -2 = 1———|. 2.24
iz ON MTG[ +2’y] MTG[ 2 } ( )
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The first term in this expression corresponds to the chemical potential of free
fermions in a one-dimensional harmonic trap while the second term gives the
reduction in the chemical potential due to the finite repulsion correction. It is

a measure of the departure of the system from the Tonks—Girardeau limit.

2.5 Concluding remarks

In this chapter we have calculated the first-order finite repulsion correction to
the ground state energy of harmonically trapped bosons having contact inter-
actions for any finite number of particles N. For N > O(10') we found that
this correction scales as a power law N°/2 for any given interaction strength. In
addition to this result, we describe a limiting procedure (w ~ 1/N as N — 00)
that enforces an extensive ground state energy. This extensivity condition is
necessary for the thermodynamics assumptions of the Thomas—Fermi approach
to hold. This procedure explains the importance of the parameter v/ N /cin the
Thomas—Fermi solution and why it is taken constant in the thermodynamic
limit N — oc.

Additionally, our contribution clarifies the smooth transition of the ground
state properties of a harmonically confined interacting boson system as the
particle number goes from finite N to infinity near the Tonks—Girardeau limit.
We have demonstrated that in this strongly interacting regime, to at least
leading order in 1/¢, the effects of finite particle number are negligible when
using the Thomas—Fermi approximation in experimental situations that have
at least ~10% atoms.

A natural extension of this work would involve higher order corrections to
the ground state energy and many-body wavefunction, as was done recently
for a wedge-shaped trapping potential [48]. If we take the set of all fermionic
Slater determinants as an expansion basis for ordinary perturbation theory
about the TG limit, we discover that the perturbing pseudopotential couples
the ground state to an infinite number of excited states. We therefore expect a
complicated analytical result for the second order energy correction resulting
in a numerical problem that may require a truncation of the corresponding

Hilbert space. However, on the basis of the agreement between our asymptotic
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results and the Thomas—Fermi calculation (Figure 2.4), we conjecture that
the second order correction scales as N3/c* > 0 in the thermodynamic limit.

Mathematically, this statement amounts to a power series expansion of Ey/N?

about VN /c = 07.

2.6 Derivations

2.6.1 Pair interactions

We calculate here the matrix element for the pair interaction

.. / lim{ Ol¥m(w)gn(2)] } dR, m<n,  (2.25)

c | =0 or

where r1 = R + %r and z9 = R — %7". The condition 0 < m < n is assumed

throughout the derivation below. With the abbreviation for the integrand

In(R) = lim 6[%@; Yn(2) : (2.26)
we observe that
0
Ly = limy = | (R + 57)¢n(R = 57)
_ % lim 4], (R + 1) (R = §r) = o (B + )0, (R — 7))
= S [ (BYu(B) — Y (RIVL(R)] = ~Lum. (2.27)

We can calculate the necessary derivatives by using the identity

U = —[\/_% L= VI 1], (2.28)

S

to obtain

N

[(\/_wm 1—vm wm+1) wm(\/ﬁwnfl —vn+ 1’(ﬂn+1)] .
(2.29)
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Each product of harmonic oscillator eigenfunctions may be written in the form

_R2
6R

m(R)Yn(R) = ——
Ym0 Vr2mtnmlnl
*RQ min{mﬂ’b}
_ € k m n
= Vmomrminl ; 2 k!< k)<k)Hm+n2k<R). (2.30)

. . 2 . .
We make the abbreviation C,,,,, = e % /y/m2m+mm/!n! for convenience and write

Hy(R)Hy(R)

m—1
\/mzﬁm—l'(ﬁn = \/Ecmnm Z Qkk' (mk_ 1) <Z) Hm+n—2kz—1 (231)
k=0

Cinn i m+1\ [/n
vm + 1¢m+lwn = W Z 2kk3' < L ) (k‘) Hm+n—2k+1 (232)
k=0

Vi1 = V20, Y 2°k! (’2) (” . 1) Hynoonr (2:33)
k=0

Cron ~— m\ (n+1
Vn 4+ 1t = N Z 2k L:! ( /{;) ( I )Hm+n2k+1. (2.34)
k=0

Combining these terms gives, after some manipulation,

\/E@bm—lwn - \/’r_“vbm,lvbn—l = \/Ecmn(m - n) Z 2kk' (7;) (Z) Hm+n—2k—17
. (2.35)

and

V10 ng1 — Vi + 19y 1, = % ; o L] (ml—; 1) (n Z 1)
y k
(m+1)(n+1)

= V2C (M — n)

- m n
X Z 2kk| <k}) <k’) Hm+n72k71-
k=0

(2.36)

Hm+n72k+l
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Thus,

= Cpon(m i 2k ( > (Z) Hoponoot, (2.37)

k=

0
“ m n m n

t =it 32 () (2) (7)) st
k,1=0

(2.38)

Evaluating the matrix element v,,,,, therefore requires the integration of a prod-
uct of Hermite polynomials and a Gaussian weighting factor. Using the formula
7.374.5 from Ref. [59] gives

oo 1
/ e_QRZHp(R)H (R) dR = ( )(p+3Q)/22(P+q 1)/2I‘ (%) , (239)

o0

where p+q = 2,4,.... Now, with 0 < k,l < m < n,

/ 6_2R2Hm+n—2k—l(R)Hm-‘rn—Zl—l(R)dR

> (_1)k+l2m+n—kz—l
= NG F(m+n—k—1-3). (2.40)

Making the necessary substitutions gives

=L ()R () (rtm ek iy

k,1=0
- 2 I —1 I —1 3 —m,—n
_mom? J2 D= )Tm=3) p[aomen ) (2.41)
2c 71'3 F(?’L + 1)F(m + 1) 5—Mm, 5—n

The energy correction (2.17) follows immediately from this result through
OB =23 . Umn.

2.6.2 Thomas—Fermi approach

In this section we present the Thomas—Fermi (TF) result for the ground state

energy of the harmonically confined Lieb-Liniger (LL) gas, following closely
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Figure 2.5: In the Thomas—Fermi approach, the external trapping potential
modifies the local chemical potential of a homogeneous Lieb-Liniger gas of
constant density.

the solution of Refs. [36, 37]. As the number of bosons tend to infinity N — oo
in the thermodynamic limit, the energy density e(x) and number density d(z)
of the gas are described by continuous functions of the position coordinate x.
In the TF approach, a small portion of the gas of width dz centered at the point
x is thermodynamically described by a homogeneous LL gas with a uniform
density d(z) and at a constant local chemical potential u(x) (Figure 2.5).

The ground state energy density e(z) of a homogeneous LL gas of length
dz and density d(x) = dN/dz is [8, 36, 60]

e(x) = BC(B), B =d()]e. (2.42)

where the function ((8) is equal to

() = - / g(K)k d: (2.43)

po3 -1

Here, g(k) is a quasimomentum distribution that solves the Lieb—Liniger inte-

gral equation

1 / /
g(k") dk
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subject to the normalization condition

o= %/_1 g(k) dk. (2.45)

The Lieb—Liniger equation (2.44) is the continuum analog of the Bethe equa-
tions (3.10) for the quasimomentum spectrum of the Lieb-Liniger ground state.
This gas of width dx is assumed to be a thermodynamic system so that the

fundamental equation holds:
d(e(x)dz) = —p(z)d(6z) + u(x)d(5N). (2.46)

The local equations of state are therefore
p(z) = cd(@)?C(B),  ulx) = AC(B) +ed@)C(B),  (2.47)

with ¢'(8) = /0B,

The Thomas—Fermi energy functional for the trapped gas is

Eld(z)] = / " @) + Ld(x)a? da (2.48)

Tmax

To obtain the equilibrium ground state energy, a variational calculation leads

to the conditions y = 322 + ug(z) or

1= 12* 4+ A((Bo) + cdo()C'(Bo), (2.49)

where the global chemical potential y is fixed by the constraint

N = do(z) dz. (2.50)
The previous relations are sufficient to determine the ground state density
function dy(x). The ground state energy of the harmonically trapped gas
Ey[do(x)] can then be calculated numerically from the definite integral (2.48).
This Thomas—Fermi result is graphed alongside our perturbative result in Fig-
ure 2.4.
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Chapter 3

Entanglement in pure state
projections of the Lieb—Liniger

gas

The contents of this chapter are based on the manuscript [II].

3.1 Entanglement

Entanglement refers to the inherently quantum correlations present in a quan-
tum system. These quantum correlations are distinct from correlations be-
tween classical random variables. For example, two spin-1/2 particles in a
singlet state (|1)) — |{1))/V2 are entangled. This state is a superposition
of orthogonal states where the particles have different spin projections. If the
particles are separated in space and the spin projection of one is measured, the
spin projection of the other particle is completely determined to be in the op-
posite direction. This kind of correlation between quantum observables is not
present in a system described by classical random variables. This is so because
joint classical probability distribution functions do not obey a superposition
principle, whereas quantum mechanical wavefunctions do.

Studies of quantum entanglement and its measures are motivated by the

idea that entanglement is a valuable resource for processing quantum informa-
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B

Figure 3.1: A coarse-grained measurement on region A determines the num-
ber of particles in A. The resulting pure state is spatially partitioned. The
bipartite entanglement in this state may be measured by the entanglement
entropy.

tion [61]. Additionally, there is much interest in the condensed matter com-
munity in the quantification of entanglement in many-body quantum systems
(62, 63]. In addition to being a measure of quantum correlations, this interest
also follows from the fact that certain signatures in the entanglement entropy
are robust indicators of quantum phase transitions [64-68] and topological
order [69, 70]. Furthermore, experimental protocols for the measurement of
entanglement entropy have already been proposed using available techniques
such as neutron scattering (for spin systems) and time-of-flight optical imaging
(for cold atom systems) [71].

In this chapter we will study the entanglement that can be extracted from
bipartite projections of the ground state of the homogeneous repulsive Lieb—
Liniger model on a ring [8, 9]. As discussed in the previous chapter, the
quasi one-dimensional gases modeled by the Lieb—Liniger interaction have been
studied in atomic waveguides with tight axial (transverse) confinement [16, 18,
19]. However, the ring-shaped traps needed to reproduce periodic boundary
conditions have only been recently developed [72, 73].

The main objective of our work here is to study the effects of the strength
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of interactions on the entanglement in pure state projections of the ground
state of this continuous many-body system. The specific type of projection we
consider here is a coarse-grained measurement of the number of particles in a
contiguous spatial partition (region A) of the ground state, which we respresent
by the state vector |x). That is, if IIj is a projector onto the state subspace
having k particles in partition A, then we are interested in the entanglement
present in the projected state |xap(k)) = Ilx|x). As depicted in Figure 3.1,
this measurement effectively fixes the number of particles in region A and
its complement, region B. Thus, this measurement destroys the translational
invariance of the ground state. Since the projected state |xap(k)) is a pure
state, entanglement in this system may be quantified by the von Neumann

entropy (62, 74-78|
Sa(k) = —tr[pa(k)log pa(k)]. (3.1)

Here pa(k) is the reduced density matrix

pa(k) = trp pap(k) = trp[xap(k))(xa(k)], (3.2)

which is obtained by tracing out the degrees of freedom (particle coordinates)
in region B from the full density matrix of the projected state pag(k). The
von Neumann entropy (3.1) vanishes when the bipartite pure state pap is
unentangled. That is, it is zero when the reduced density matrix p4 has only
one non-zero eigenvalue (the reduced state is pure). On the other hand, the
von Neumann entropy is maximum when p4p is maximally entangled. This is
the case when a rank D reduced density matrix p4 has all eigenvalues equal
to 1/D (the reduced state is maximally mixed). Hence, the von Neumann

entropy of a maximally entangled state is equal to log D.

3.1.1 Partitioning schemes

For a system made up of indistinguishable particles, the choice of partition-
ing scheme has important consequences on the physical interpretation of the
resulting entanglement entropy [79-81]. For example, in previous work the en-

tanglement entropy in other continuous integrable systems, like the Calogero—
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Sutherland (CS) model [82, 83] and the anyonic Lieb-Liniger (LL) model
[84, 85], has been studied under the framework of particle partitioning. In
this strategy, the reduced density matrix is obtained by integrating out one or
more particle coordinates from the many-body wavefunction [86-90]. The en-
tanglement entropy resulting from this type of partitioning may be interpreted
as a measure of the distribution of occupation numbers of (quasi)momentum
orbitals in the reduced state. For example, in the Calogero—Sutherland model
the entanglement entropy as a function of the coupling parameter § was phys-
ically interpreted in terms of the fractional exclusion statistics [91] displayed
by the model [92].} In the case of the anyonic Lieb-Liniger model, the entan-
glement entropy was obtained from the one-particle reduced density matrix

(periodic boundaries)

p(z — 12’ :/---/X*(:U,azg,...,xN)X*(x’,xQ,...,xN)dxg---de, (3.3)

where integrations are done over the circumference of the ring. The entangle-
ment entropy calculated from the eigenvalues of this matrix was interpreted as
a measure of the uncertainty in assigning a momentum state to a single particle
93, 94]. The momentum distribution obtained from this one-particle reduced
density matrix depends on the anyon statistics parameter, which reflects the
breaking of parity symmetry in the anyonic LL model.

However, because the projective measurements described in the previous
section divide the gas into spatially distinguished regions, we use a spatial
partitioning scheme in this chapter. This scheme has been used to study en-
tanglement in one-dimensional translationally invariant systems. For critical
(gapless) systems, the entanglement entropy obtained under spatial partition-
ing has the same scaling behavior with partition size ¢ — oo as the particle
number fluctuations within the partition [95-98]. The physical intuition be-
hind this observation involves the critical role played by the boundary separat-
ing A and B in the definitions of the entanglement entropy [63, 99, 100] and the

observation that particles enter and exit the partition through these bound-

IThe N-particle ground state of the CS model has N occupied quasimomentum vacancies
separated by 8 — 1 unoccupied vacancies.
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aries. This idea has since been developed as an argument for using number
fluctuations as an entanglement probe in continuous many-body systems like
the non-interacting spin-polarized fermion gas [101-103] and various quantum
spin models [104, 105]. For the continuous fermion gas, the entanglement en-
tropy may also be obtained [102] as the appropriate limit of the corresponding
lattice model results [106-112].

3.1.2 Projectively extractable entanglement

The projective measurements we consider here fix the particle number within
each spatial partition. The resulting entanglement therefore does not include
correlations that arise from the possible number distributions of particles be-
tween partitions (if there are k bosons in region A, there must be (N — k)
bosons in region B). That is, the projective measurements described here
allow us to effectively isolate the quantum correlations that are due solely
to interparticle interactions. We will show in this chapter that this measure
of entanglement increases monotonically with increasing repulsion strength in
the Lieb—Liniger gas.

Our objective is accomplished here by using the coordinate Bethe ansatz
(Section 3.2) to obtain exact results for small particle numbers N. Some
asymptotic results for large N are also calculated at the non-interacting boson
limit (¢ = 0) and Tonks—Girardeau limit (¢ — o0). In particular, we are in-
terested in measuring the entanglement in the Lieb—Liniger ground state after
coarse-grained measurements reveal the number of particles in either partition
A or B. Thus, the projected pure state is spatially partitioned (bipartite)
and one can quantify the resulting entanglement by the von Neumann entropy
(3.1). A similar procedure has been used to quantify the entanglement that is
extractable from stationary and non-stationary states of impenetrable boson
gases [113], supersinglet states, and several spin chains [114]. Entanglement in
the ensemble of projected states is measured in these examples by the projec-

tively extractable pure state entanglement £pp, which was introduced in these
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works. It is defined by
Epp = max {p(k)Sa(k)} = max {&}, (3.4)

where p(k) is the probability of projecting the ground state ket |y) into a
state ket |xap(k)) having the fraction k/N of particles in region A. The en-
tanglement measure above (3.4) gives the maximum weighted entanglement
& = p(k)Sa(k) over all possible projection outcomes and consequently cap-
tures the probabilistic nature of the preparatory projective measurements. It
is identical in spirit to the entanglement of particles Ep introduced in Ref. [79]
where the weighted sum over outcomes is used as an entanglement measure

rather than the maximum weighted entanglement:

Ep=Y p(k)Sa(k). (3.5)

This quantity was proposed to reflect the maximum entanglement that can
be extracted from a system of indistinguishable particles when local number
conservation rules (superselection rules [115, 116]) restrict the possible oper-
ations that can be done on the subsystems. Imposing such a superselection
rule is motivated experimentally. For a closed system of massive particles, any
local measurement in region A can not change the particle number in region

A without changing the particle number in region B.

3.1.3 Chapter outline

Our analysis begins in Section 3.2 with a brief introduction to the coordinate
Bethe ansatz that forms the basis of our exact computations. The probabil-
ity of obtaining each projection outcome is calculated in Section 3.3, while
the von Neumann entropy of the projected states are given in Section 3.4.
The corresponding weighted entanglement of these projections is discussed in
Section 3.5. On the basis of these results, we argue that the projectively ex-
tractable pure state entanglement Epp is equal to the weighted entanglement

Enya of the balanced case in which exactly half of the bosons are present in
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both partitions (the total number N is given to be even). Our main conclusion
is that the extractable entanglement Epp increases monotonically with inter-
action strength and saturates to its impenetrable boson value. We conclude

with a summary and some remarks in Section 3.6.

3.2 Coordinate Bethe ansatz

We briefly review here some of the properties of the Bethe ansatz solution for
the eigenfunctions of the Lieb-Liniger model (2.1). Written in dimensionless
form (length is measured in units of the ring circumference L and energy
in natural units A%/2mL?), the Schrodinger equation for N delta-interacting
bosons is

N g2

Hx(x) = l_zﬁ +2c Z 6(x; —xk)} X(x). (3.6)

j=1 d 1<k<j<N
The dimensionless interaction constant is taken to be non-negative ¢ > 0 so
that the gas does not collapse into a macroscopic bound state involving all
of the bosons. The stationary solutions of this hamiltonian are given by the

normalized coordinate Bethe ansatz

1]\/!

x(x) = % > (~1)PIPp(x)er, (3.7)
{P}

_ [1i; Apj — Apr —icsgn(x; — a1)

{N! Hn<m[()\m — An)? +62}}1/2-

Fp(x (3.8)

The quantity (—1)! is the signature of the permutation P and N is a normal-
ization factor. The quasimomentum vector Ap has N components Ap; that

form a permutation P of the solutions A; of the Bethe equations
N

. A — A\ +ic

1y J k

=T 3.9
‘ ng—Ak—ic (39)
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Figure 3.2: Ground state solution to the Bethe equations for six bosons as a
function of interaction strength c.

With periodic boundary conditions, these equations are commonly expressed

in the logarithmic form

N .

A=A

LAﬁz’Zlog;H—J’“
k=1

= 27n;, (3.10)
where {n;} is a set of integers or half odd integers that completely parametrize
the solutions {A;}. The set {\;} consists of N quasimomenta (or spectral
parameters). Such a set labels a given eigenstate of the hamiltonian (3.6). The
total momentum of this eigenstate is P = ) ;A and its energy eigenvalue is
E=5" i /\?. For example, the ground state of six interacting bosons is labeled
by the quasimomenta given in Figure 3.2. There is a smooth transition from
the Bose condensate spectrum at the non-interacting limit ¢ = 0 to the free-
fermionic spectrum at the Tonks—Girardeau limit ¢ — oo. For any positive
interaction strength ¢ > 0 an exclusion principle holds [117], which means
that the N quasimomenta labeling an eigenstate are distinct. As seen in
Figure 3.2, the spacing between adjacent quasimomenta in the ground state
increases monotonically with ¢ until it saturates to the free-fermionic value of
2.

The normalization factor NV in the ansatz (3.7) may be obtained, for exam-
ple, by the quantum inverse scattering method [118]. Explicitly, the absolute

square |N |2 is the determinant of the second derivatives of the Yang action
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[13]

L N N 1 N )\j—)\k ZC—{—[I,
— 2 ) )
3_§ZAj—2w;nJA]+2§;/O zlogl,c_'udu, (3.11)

=1

evaluated at the solutions of the Bethe equations (3.9):

%S
2 J—
N = det(—a)\a)\k)

2¢0ji; 2c
= det - . 12
6(3”2 M- N2+ (/\j—)\k)2+02> (3:12)

3.3 Projection probabilities

In this section we are interested in calculating the probability p(k) of pro-
jecting the ground state x into the pure state yap(k) that has & bosons in
partition A and N — k bosons in partition B. We choose the partitions to
be the same size so that the gas is divided into two contiguous regions of
equal length. For convenience let us define the vectors x4 = (z1,...,2)" and
xp = (Tj11,-..,2n)". Since the bosonic wavefunction x(x) is unchanged by

any permutation of coordinate indices, the desired projection probability is

s = () [ [ oo axaix, (3.13)

Due to the periodicity of the ground state wavefunction we may choose the
partitions to be A = {z[0 < z < 1} and B = {z|} < = < 1} without loss of
generality.

We first consider in Section 3.3.1 the probability of obtaining a projected
state with an equal number of bosons in each partition (balanced case with
k = N/2). It turns out that this balanced case is the most probable result
of the local projective measurements of particle number for all interaction
strengths ¢ (Section 3.3.2).
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Figure 3.3: The probability of finding an equal number of particles in each
half-ring A and B in the Lieb—Liniger ground state increases monotonically
with repulsion strength and decreases with particle number. Black tick marks
denote the free and impenetrable limit values.

3.3.1 Balanced projection

Figure 3.3 shows the probability of projection onto the balanced k& = N/2
bipartite states for two, four, and six bosons at arbitrary repulsion strengths.

For free bosons (¢ = 0) this probability is equal to

N!

PN2) = NI

(3.14)
The asymptotic Stirling approximation for N! shows that this probability van-
ishes as ~v/2/(7N) in the thermodynamic limit N — oo (Figure 3.4). This is
the expected result because each independent particle may be found in either
half-ring with equal probability.

As the interparticle repulsion is turned on, however, correlations arise be-
tween the positions of the bosons and the corresponding success probability
deviates from the free boson value. These quantum correlations give rise to
fluctuations in the number of particles in each partition that result in the prob-
ability p(N/2) increasing with repulsion strength c. In the limiting case ¢ — oo
of impenetrable bosons (TG limit) this probability reduces to the analogous

projection probability in a free spin-polarized fermion gas [49]. The charac-
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Figure 3.4: Balanced projection probabilities for the free boson (¢ = 0) and
impenetrable boson (¢ — o0) cases. Our numerical values (dots) are com-
pared to the exact result for free bosons (solid line) and the asymptotic result
Eq. (3.15) for impenetrable bosons (dashed line).

teristic function of this probability distribution of particle numbers in finite
regions of an infinite line [119, 120] and a ring [121] are known. We find that
a Gaussian approximation (details are given in Section 3.7) to the probability

distribution pT“ (k) asymptotically yields a balanced projection probability of

TG T
N/2) ~ N>1). 3.15
PN~ [y (V) (315)
Here g is Euler’s constant. As shown in Figure 3.4, this projection probability
decays to zero much slower (sublogarithmically) than the analogous probability

in the free boson case in the limit of large particle number N — oo.

3.3.2 Unbalanced projections

For general values of k, the projection probabilities in the free boson limit are

equal to
N

free o :
PR) = SNN —

(3.16)

which is centered and peaked at k = N/2. For an arbitrary value of the
interaction strength, the projection probability satisfies the property p(k) =

p(N — k) because the regions A and B are of the same size.
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Figure 3.5: With N = 4 bosons the balanced case k = 2 is the most probable
situation for all repulsion strengths. Black tick marks denote the free and
impenetrable limit values.

In the impenetrable boson limit, a direct calculation from Eq. (3.13) gives

the exact projection probabilities for small N. For two impenetrable bosons

we have
1 2
P =5+ (3.17)
1 1
p e(0) = pra(2) = 1 (N =2) (3.18)
while for four particles we have
3 14 32
TG
2) =2 Pl 3.19
PR =gt o g (3.19)
1 64
TG TG
1) = =—-—= 2
prM)=p7@) =53 (3.20)
1 7 16
TG TG
=p4)=—=-55Toz N =4). 3.21
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Finally, the corresponding probabilities for six particles are

G 5 403 5824 262144

P =16 % 30002 T 575 T 361500

PR =p) = (15_?1 i 12400037r2 - 61;1557f4 - 162515537?6’ (3:23)
P ="6) = 55~ et ~ 67601 * o7

(3.22)

(3.24)

For a large number of impenetrable bosons, the probability distribution for a
fixed large N becomes
PTG (k) ~ e (N (N> 1) (3.26)
Voro? ’
with 02 = 772 log[2N et (Section 3.7). Therefore, at the two extreme limits

of free and impenetrable bosons the most probable result of the projective

measurement is the balanced bipartite state x45(/N/2). Since there are no
critical values of ¢ € (0,00), we expect this trend to hold for arbitrary finite
repulsion strengths. Hence, we argue that the balanced projection is the most
probable outcome for all non-negative values of ¢. We confirm this statement
for N = 4 bosons and show in Figure 3.5 all possible projection probabilities

for arbitrary repulsion strengths.

3.4 Entanglement entropy

We now quantify the entanglement between the partitions A and B in the
projected state by calculating the von Neumann entropy Sa(k) of region A.
The full density matrix of the projected pure state is pap = |xap)(xap| and
the relevant reduced density matrix is ps = trg pap. In the coordinate basis
where |x) = T (zy) -+ - T(21)|0) with ¢T(x) a bosonic field creation operator
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and |0) the vacuum state ket, the projected state vector may be written as

IXaB(k \/ / / ) |x) dxpdxa. (3.27)

The full density matrix pap(k) = |xap(k)){(xap(k)| of this projected state is

therefore

N 1 Pl+
pap(k) = (k>ZW > (—pPrel

{PHCQ}

x////Fp(x)Fé(x’)ei()‘P'xAQ'XI)\X>(X’]dXBdeBdXAdX;l. (3.28)
AJateJB

The signum functions in the Bethe amplitudes Fp(x) evaluate trivially for each

case sgn(zp; — xar) = 1 so that it factorizes as®

N\ Fp(x
(k) 7;\(/_ ) = fPF’PA(XA)FPB(XB>7 (329)
with
1 H11H] k1 APj — Apr — ic
f'P = ./T[ 5 9 1/2° (330)
{Hn:l Hm:k+1 [O‘Pm - >‘7>n) +c } }
s — [Ti<;(Apa); — (Apa) —icsgn(za; — war) (3.31)
{k:! H1§n<m§k [()\pm — App)2 + 02] }1/2
oo [1i;(ApB); — (App)i —icsgn(zp; — vp) (3.32)
PB = g )
{<N - k)' Hk+1§n<m§N [(/\Pm - AP”)2 + 02]} /
We introduce here the permuted momentum vectors Aps = (Ap1, ..., App) T
and App = (Aprs1, ... Apn)

Thus, the integrals over region B may be evaluated independently so that

2The definitions of Fps and Fpp here are different from those used in manuscript [IT].
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tracing away the degrees of freedom in B gives the reduced density matrix

pa(k) = //GPQ XA,XA) UAPaxa—Agaxy) |XA><XA|dXAdXA, (3.33)
{P}{o}

where the function Gpg(x4, %) is defined to be

(_1)[P]+[Q]
Gpo(xa,X)) = O fpEpa(x4) f5F54(Xs)

X/FPB(XB)FéB(XB)ei(APB_/\QB)'xB dXB. (334)
B

The eigenvalues a; of the reduced density matrix p4 may be obtained by di-

agonalizing the associated homogeneous Fredholm integral equation

[ B x)060) s = o), (3.35)
A
which has the kernel

XA, XA Z G'])Q XA,X ) Apaxag=iXoa: X, (336)
{PHe}

The eigenvalue spectrum of the reduced density matrix is explicitly calculated
for the case of two impenetrable bosons in Section 3.7.2.

Since free bosons condense in the ground state, the kernel reduces to a
constant when there are no interactions and the only eigenvalue of the resulting
reduced density matrix is unity. Thus, the von Neumann entropy vanishes
when ¢ = 0 and the projected states for any k are separable states with no
entanglement.

For any non-zero contact repulsion between N bosons, however, there are
(]Z ) distinct ways of choosing the components of the vectors Aps and Aga.
Diagonalization of the reduced density matrix pa(k) reveals that it has at
most (]]X) non-zero eigenvalues (Section 3.7.3). Hence, the reduced density

matrix pa(k) is a rank (7)) matrix and we may formulate an upper bound for
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Figure 3.6: The von Neumann entropy between half-rings in the projected
balanced pure state increases monotonically with the strength of repulsion.
For the case of four bosons the balanced projection k = N/2 is more entan-
gled than the unbalanced cases for all ¢ (inset). Black tick marks denote the
corresponding values in the impenetrable boson limit.

the entanglement entropy extractable from the projected state as
N
Sup(k) = log (k) > Sa(k), (3.37)

assuming a flat entanglement spectrum. For the balanced projection k = N/2

this upper bound scales asymptotically according to
Sub(N/2) ~ Nlog2 — +log N, N — oc. (3.38)

The eigenvalue problem (3.35) can be solved analytically by linear alge-
bra methods for small values of N, but becomes increasingly cumbersome for
large N. This difficulty arises because the projected many-particle wavefunc-
tion is no longer an eigenfunction of the system hamiltonian. That is, the
projected state is excited and diagonalization of the reduced density matrix
requires the calculation of a large number of overlap matrix elements (Sec-

tion 3.7.3). A numerically exact evaluation of the von Neumann entropy is
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shown in Figure 3.6 for two, four, and six bosons. For the balanced cases
we find that more entanglement is present in the projected states as the re-
pulsion strength is increased, with significant entanglement produced above
the scale set by ¢ = 1. In the inset of Figure 3.6 we show that we can
extract more entanglement from the balanced projection than from any of
the unbalanced cases for N = 4 and any c¢. For arbitrary N, we can ex-
pect the same behavior to hold based on the calculated upper bound (3.37)
for the von Neumann entropy: Su(k # N/2) < Su(IN/2) or, equivalently,
rank ps(k # N/2) < rank ps(N/2). However, for the cases we have consid-
ered above the projected states xap are not maximally entangled, that is,
Sa < Suw. Nevertheless, because the rank of the reduced density matrix is
maximum when & = N/2 and the symmetry Sa(k) = Sa(N — k), we conjec-
ture that the balanced projections have more entanglement entropy than the
unbalanced ones: Sa(k # N/2) < Sa(N/2) for all c.

3.5 Extractable entanglement

So far we have argued that the projection probabilities and von Neumann
entropies are largest for the balanced projections k = N/2 at any given value of
the repulsion strength. Thus, according to the definition (3.4), the projectively
extractable pure state entanglement from the Lieb—Liniger ground state is

given by the weighted entanglement of the balanced fixed number projection:
Spp = p(N/Q)SA(N/Q) = gk-:N/Q, Ve 2 0. (339)

This statement is trivial for free bosons as we have already proven that the von
Neumann entropy vanishes in all possible projections for any even N. In the
opposite limit of impenetrable bosons this assertion is verified in Figure 3.7
where we give numerically exact results for all possible cases of up to six
bosons. Also apparent in this graph is a slower than linear increase in the
extractable entropy Epp with respect to the boson number N.

We further observe that although the probability of successful projection

becomes smaller with increasing boson number, the von Neumann entropy
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Figure 3.7: In the impenetrable boson limit the weighted entanglement &(k)
is a maximum for the balanced case k = N/2. This maximum £(N/2) gives
the extractable entanglement Epp. Connecting lines serve to guide the eye.

S 4 increases faster with NV so that the extractable entanglement Epp increases
with both repulsion strength and the number of bosons in the ring (Figure 3.8).
Furthermore, for the few boson cases we have analyzed here, this increase is
monotonic with respect to both N and c¢. Hence, more entanglement can be
extracted from these projections of the Lieb-Liniger gas in the TG limit of
impenetrable bosons and we may regard the quantity Epp as a probe of both
quantum correlations and interparticle interactions in the ensemble of fixed

number projections of the type we considered here.

3.6 Concluding remarks

We have used the projectively extractable pure state entanglement Epp to
quantify the entanglement in coarse-grained fixed number projections of the
Lieb—Liniger ground state. This entanglement measure quantifies the entan-
glement present in the set of all projection outcomes by giving the largest von

Neumann entropy weighted by the projection probability of a particular mea-
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Figure 3.8: The projectively extractable pure state entanglement monotoni-
cally increases with repulsion strength, smoothly transitioning from the free
and impenetrable boson limits (black ticks).

surement result. In our case, this maximum corresponds to the most probable
and most entangled projection having an equal number of particles in each
half of the ring. In our numerically exact few-particle results, we have seen
indications that the extractable entanglement increases monotonically with
the strength of repulsion and with particle number. We have also observed
that significant amounts of entanglement can be extracted by this projection
procedure only in the strongly repulsive regime ¢ > 1. This increase and sub-
sequent saturation of entanglement with interaction strength ¢ has also been
previously observed numerically in a few-particle Lieb—Liniger gas under the
framework of single-particle partioning of the ground state [94].

Since the impenetrable TG limit displays free-fermionic characteristics, our
work reveals a fundamental difference in the entanglement extractable from
one-dimensional bosonic and fermionic systems. When appropriate projective
measurements eliminate the uncertainty in partition occupancies, the entangle-
ment vanishes for free bosons, whereas it is non-zero for impenetrable bosons.
Based on an analytic upper bound for the von Neumann entropy (3.37), we see
that entanglement in a projected pure state having k out of N bosons in region

A depends on the number of ways of choosing k quasimomenta from a set of NV
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distinct ones. In other words, the extractable entanglement Epp is a measure
of quantum correlations due to an exclusion principle arising from interparti-
cle interactions (parametrized by ¢). As seen from Figures 3.6 and 3.8, more
entanglement is present in the system as the exclusion effect approaches its
maximum at the pseudofermionic TG limit. Thus, this work reveals the cru-
cial role of particle interactions on the entanglement in a spatially partitioned
many-body system of indistinguishable particles. We expect this feature to be
preserved at larger particle numbers N, which may be viewed as an essential
difference between a free-boson and a free-fermion gas from the perspective
of quantum information. In fact, a similar observation was made regarding
the entanglement of particles (3.5) in the ground state of two non-interacting
bosons and two non-interacting fermions in small lattices [80]. The fact that
the free boson system has zero entanglement while the free fermion system
has non-zero entanglement was mathematically attributed to the difference in
particle statistics. In our example of a boson gas, however, we attribute this
difference to a dynamically generated exclusion principle.

It is important to remark that the projected states we have described here
are not eigenstates of the original Lieb-Liniger hamiltonian (3.6) and will
therefore evolve non-trivially in time. The results we present here are therefore
only valid immediately after measurement while the spatial partitioning of
particles is meaningful; the number of particles in each partition will change
in time. However, one can also adopt the perspective of treating the projective
measurement as an operational part of the theoretical definition of extractable
entanglement. This point of view has been adopted in studies of systems
of indistinguishable particles where superselection rules [115, 116] fix certain
local observables like the number of massive particles [79, 80]. In this case,
projective measurements form part of the definition of the entanglement of
particles (3.5).
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3.7 Derivations

3.7.1 Projection probabilities for impenetrable bosons

We restore length units in this derivation.

We seek an asymptotic approximation to the characteristic function f(a) =
(e Jo ¥ @¥(@) 4\ for the probability distribution p(k) of finding k impenetrable
bosons in an arc ¢ of a ring of circumference L. In the thermodynamic limit
N — oo with finite particle density N/L, the characteristic function is equal

to the Fredholm determinant [10]
fla) = det(1 — (1 —e™)V), (3.40)

where the linear integral operator V acts on the interval [—q,q] with ¢ =
(N — 1)m/L and possesses the kernel

V(A p) = sin[2(\ — p){]. (3.41)

_
(A — )

Let us make a discrete approximation to the integral V[F(u)](A) by transform-
ing A\ > A\, = (2m — 1)w/L and p — p, = (2n — 1)w/L to obtain

/_z V(i ) F (1) dpa = irzj F [2% (j - %)] | (3.42)

Here, the elements I';; of the matrix I' are

sin[m (i — j)ﬁ/L].

) (3.43)

l
Ly = 0yy7 + (1= dy)

The characteristic function may therefore be approximated by the N x N
Toeplitz determinant when N > 1:

fla) = det(Ly — (1 —€)T). (3.44)

The matrix I' is identical to the single-particle correlation matrix of free
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fermions on an infinite one-dimensional lattice upon making the replacement
ml/L — kpa with kp the Fermi wavevector and a the lattice spacing [120].

For |a| < 7 the Fisher-Hartwig formulas [122, 123] may be used to obtain
the asymptotic N — oo result [120, 121]

G+ 0/ ()G - of )

fla) ~ 2N sin(re/L)] /™)

, (3.45)

where G(z) is the Barnes G-function defined functionally through G(1 + z) =
I'(2)G(z) and G(1) = 1, with I'(z) the usual gamma function. Using a small

a < 7 expansion [120] gives

iNt _log[QNe'YEHsin(Wé/L)] 9

log f(a) ~ 7o 52 e

¢B3) 4

3_
+ O« (2@406 ,

O<a<m (3.46)

where g is Euler’s constant. We extract the first two cumulants of the prob-
ability distribution p(k) from this expression and make a Gaussian approxi-
mation for the case of interest ¢ = L/2 about the central peak k = N/2 to
obtain

e~ (k—N/2)%/(20?)

p(k) ~ N E (3.47)

with variance 0% = 77 2log[2Ne 2. Physically, the variance o2 is the fluctu-

ation of particle number in the half-ring ¢ = L/2 about the mean value N/2.
The probability of finding exactly N/2 impenetrable bosons (or free fermions)

in a half-ring is therefore

™

MW%N%m%@Mmﬂy (N> 1). (3.48)

3.7.2 Entanglement entropy for impenetrable bosons

In this section, we present an explicit calculation for the entanglement en-

tropy in a balanced projection of a two-particle Lieb—Liniger gas in the Tonks—
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Girardeau limit. The normalized ground state wavefunction is

SN = ) [itnertdans) _ giGamthe)] (3.49)

x(x1,22) = \/5

with Ay = —7 and Ay = w. The probability p of finding one particle each in
region A and B is

1/2 1 1 9
p= 2/ / X (71, 22)x (21, T2) dwodry = S + —- (3.50)
0 1/2 2 0w

The eigenvalues of the reduced density matrix {a;} are therefore given by the

spectrum of the integral equation (3.36)

1/2
/ K(z,2")o(z") da’ = ag(x), (3.51)
0
with kernel

K(I7 I,) - Gll(xa x/)e—iﬂ(r—x/) + G12 (I’, x/>€—iﬂ'(ﬂf+wl)
+ Gy (,2))e™ ) - Gy (,2")e™ =) (3.52)

In this example the functions Gp o(z,2") reduce to constants

7T2

G =G = = 3.53

11(%,1’) 22(x7x> 4+7T2 g? ( )
. 2mi 291

Gra(w,2') = Gy(2,2") = 5 =~ (3.54)

We then rearrange terms in the sum for the integral kernel (3.52) to get

K(z,2)=2 [e7 ™ (me™ + 2ie™™) + ™ (e ™ — 2i™)].  (3.55)
m
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Defining the constants

2
c1 = / ™ ¢(2') da’, (3.56)
0

2
Cy = / e (") da’, (3.57)
0

+imx

and multiplying the integral equation (3.51) by e and then integrating over

region A gives the following matrix equation

1/2 2mif/(4+ 7))\ [ _.[a (3.58)
—2mi /(4 + 72) 1/2 ¢ &) '

The eigenvalues of the reduced density matrix are therefore

1 2T
S :
4 2 4472 (3.59)

and the von Neumann entropy is S4 = —(ayloga, + a_loga_).

3.7.3 Reduced density matrix

The state vector of the projected pure state having k£ bosons in region A is

|XAB<k)>_1/(];j)]%/%/Z(_1>M /A /B Fo(x)e™ % |x) dxpdxs. (3.60)

{P}

Let us decompose the sum over permutations {P} into three different sums.
First, we consider an ordered subset {C’} of these permutations. Each member
of {C'} has a signature +1, that is they are even permutations. Furthermore,
the first k& elements of each permutation is a distinct way (combination) of
choosing k items from N. Thus, {C'} has (],Z) elements. For example, given

the ordered set (1234), one way of choosing the six members of {C'} is
{C'} = {(1234),(1342), (1423), (2314), (4213), (3412) }. (3.61)

Now, let {Ca} be the set of k! permutations of the first k& elements of C’ and
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{Cp} be the set of (N — k)! permutations of the remaining elements. The full

sum over permutations {P} is thus equivalent to

=33 (3.62)

{Pr  {c'}{Ca}{Cs}

The reduced density matrix (3.33) can therefore be written as

=2 > / / Gerp (3, Xy )/ Pea 4 200X x4 (x| dxadx),

{C'HD'} {CaH{Da}

(3.63)
where the function Gerpr(x4, %) is
. (_1)[CA]+[DA} e
Gerp(x4,X)) = O ferFea(xa) [ Fpa(x4)
% Z (_1)[CB]+[DB} / FCB(XB)F5B<XB)ei()\CB_>\DB)'xB dxp. (3.64)
{Ce}H{Ds} B
Let us construct the following state vectors
IAG) = fer / D (— D) Fea(xa)eer™alx 4) dx 4, (3.65)
{Ca}

NE) = [ 3 (1) Fenoce e ) i, (3.66)

B

{CB}

and their corresponding dual vectors

>‘D’| = fD'/ Z DA Fpa(xa)e TADAxA (xa|dx4, (3.67)

{Da}

(Xp| = / > (=D)PelE s (xp)e P8 (x| dxp. (3.68)
{Dg}

These vectors have similarities with the Bethe state vectors, but it must be
emphasized that they do not form an orthonormal basis within their respective
Hilbert spaces. Still, the (]Z ) vectors in {|AZ,)} are linearly independent so that
the reduced density matrix has rank (]IX ) Writing the reduced density matrix
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in terms of these vectors leads to the compact expression

1
palk) = —= D NG ABIAG) (Ap | (3.69)
PUR) iy

We now express the reduced density matrix in terms of an orthonormal
basis for the vector space spanned by {|AZ)}. Let Acp = (A3|A5) and
Bpe = (AB|AE) be the elements of the hermitian overlap matrices A and
B, respectively. Further, let U,c be the elements of an arbitrary orthogonal

matrix U. Let us construct the desired orthonormal basis {|i)} by letting

i)=Y UielAd),  Ul=>_(AVny, (3.70)

{c} {D}

and choosing the matrix elements Vp; of V to satisfy

(jliy = > VpjApcUic = b1 (3.71)
{¢HD}

In matrix notation we have VT AUT = 1 or V = (UAT)~!. From these relations

we obtain the overlaps

(i) = Ugi', (3.72)
(Apli) = Vip = (UAT)jp. (3.73)

The reduced density matrix (3.69) becomes

path) = ST Y Ual Boe (VAo (3.74)
p(k) ij (1D}
1 N TRi-I\T
:miszM(UA BU™);;- (3.75)

In the {|i)} basis we may therefore write pa(k) = UBTAU™ /p(k). Thus, the
eigenvalue spectrum of the reduced density matrix p(k) is the same as that of
pa(k) = BTA/p(k). Furthermore, since tr p4(k) = tr pa(k) = 1, the projection
probability is simply p(k) = tr(BTA). This result implies that the extractable
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entanglement is completely determined by the overlap matrices A and B.
The preceding construction is a general result that is related to the Schmidt
decomposition of the bipartite pure state [124]. For example, consider a
pure state represented by a state vector |¥) in the partitioned Hilbert space
H = ) @ Hp. Its Schmidt decomposition is [¥) = Y a; [i) @ |i?), where
{|iY)} is an orthonormal basis in the Hilbert space ;. In practice, such in
our case above, the decomposition is conveniently expressed in terms of the
nonorthogonal bases {|u)} and {|uP)}. The partitioned state vector and full

density matrix are

- = Z 1) @ [15), (3.76)
W) (0] = ﬁ S 1) (4] @ [P, (3.77)

where (uU[vY) # 6,,. This is the situation encountered for spatially parti-
tioned models that are solvable by the Bethe ansatz having factorable Bethe
amplitudes F(x) = g(x4) X h(xpg), as in (3.29). Taking the partial trace over
the Hilbert space 73 gives the reduced density matrix

B
pa= W| Zm ) (4. (3.78)

As above, we construct the overlap matrix elements 4, = (u*|v*) and B
(vP|uP) to obtain

I/;LE

i B'A

pa = —tr(BTA)’ (3.79)
which has the same eigenvalue spectrum as p4. This formula is independent of
the specific hamiltonian governing the system under consideration. Its utility
depends on two important factors. First is the ease with which the pure
state can be decomposed into the partitioned form (3.76) and second is the

computational effort needed to evaluate the overlap matrix elements.
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Chapter 4

Entanglement in ¢-deformed

valence-bond-solid states

The contents of this chapter are based on the manuscripts [III] and [IV].

4.1 Affleck—Kennedy—Lieb—Tasaki model

The Affleck—Kennedy—Lieb—Tasaki (AKLT) model is a one-dimensional an-
tiferromagnetic model of interacting Heisenberg spins [125, 126]. The main
motivation for the construction and investigation of this model was the search
for a novel antiferromagnetic system possessing a unique ground state that
is protected by a Haldane gap [127, 128]. The gapped ground state of this
model is known exactly and referred to as a valence-bond-solid or VBS state.
In general, the existence and uniqueness of this VBS state is guaranteed by
construction when a specific condition between the valency and magnitude of
each spin is imposed. Hence, the AKLT model may be generalized to arbi-
trary connected graphs [129]. Currently, interest in VBS states also includes
physical applications, especially following the suggestion that these states may
function as platforms for measurement-based quantum computation [130, 131].
Indeed, single-qubit logic gates have already been constructed using photonic
VBS states [4-6] and it has been demonstrated that the two-dimensional AKLT

VBS state is a universal computational resource [132]. Also, there is further
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interest in AKLT models among condensed matter physicists because of their
connection to the fractional quantum hall effect (FQHE) through the similar-
ity between the Schwinger boson representation of the VBS ground state and
the Laughlin wavefunction (Jastrow forms) [133].

In its general formulation [129, 134], the AKLT model consists of a collec-
tion of spin operators S;. associated with a vertex k of a connected graph. The
spin magnitude s, = z;/2 is half the coordination number z; (number of edges
or valence bonds connecting vertex k). The antiferromagnetic interactions

between connected spins are then described by the hamiltonian

Sk+S;

Hagir = Z Iy = Z Z Cﬂu(k, l)a (4-1)
(kL) (k)

J=sp+s;—Mp+1

where My, is the number of valence bonds connecting the vertex pair (kl) and
C'; > 0 are parameters of the model. The 7, (k,[) are projection operators for
the state of the total spin J,; = S + S; onto the subspace with a fixed spin

magnitude J:
Sk+s;

H (Sk+S)*—j(G+1)

ms(k, 1) JI+1) =G +1)

(4.2)

j=lsk—sl
J#J

That is, the hamiltonian density hj per pair of connected spins (ki) is a
mapping onto the subspace spanned by the (s + s, — Mg+ 1), (s + 5 — My +
2),..., and (sg + s;)-multiplets formed by spins at sites k and [. The AKLT

hamiltonian is therefore manifestly SU(2) symmetric.

4.1.1 Valence-bond-solid state

For our purposes, we consider a translationally invariant (homogeneous) spin-
s AKLT chain with nearest-neighbor interactions so that s = s = M 41 =
z1/2 for all k [125, 126]. The VBS state |[VBS) is then constructed by requir-
ing hy ;41| VBS) = 0 for all neighboring pairs of interacting spins. Due to this
property, the VBS state is referred to as frustration-free. Since the the pro-
jector 7y (k, k + 1) has eigenvalues {0, 1} and C; > 0, the hamiltonian Haxpr
is positive semidefinite. It therefore follows that |[VBS) is the ground state of
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Figure 4.1: Schematic diagrams of spin-1 (top) and spin-2 (bottom) valence-
bond-solid states with periodic boundaries. The lines (valence bonds) denote
the antisymmetric singlet state of two auxiliary spin-1/2’s (solid dots). Cir-
cles denote projections onto the respective spin-1 and spin-2 subspaces and
represent physical spins.

the AKLT model. A pictorial representation of a homogeneous spin-1 VBS
state with periodic boundaries is given in Figure 4.1. It is the unique ground

state for the special case

L

L
1
HAKLT - Z 7T2(k‘, k + 1) = Z 6 [(Sk Sk+1)2 + SSk Sk+1 + 2}, (43)
k=1 k=1

with the spin Sy, identified with S;. For a homogeneous spin-s AKLT chain,
the VBS ground state depicted in Figure 4.1 generalizes to one with s valence

bonds connecting neighboring spins. The AKLT hamiltonian in this case is

L 2s

Hiqr=»_ Y Cmkk+1), C;>0. (4.4)

k=1 J=s+1

4.1.2 DMatrix product states

The translationally invariant VBS state is conveniently represented in the form
of a matrix product state [MPS) [135-138]. For a periodic chain of L identical

spins the matrix product state is written as

IMPS) = tr(g;- 8- ---81)- (4.5)
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where the g; are D x D matrices with elements that are state vectors and the

trace operation is done over the auxiliary matrix space. The elements of g;

5= Aap(m)lm);. (4.6)

The set {|m);} is a complete orthonormal basis for the Hilbert space of the

are

spin at site j and the coefficients A,z(m) are independent of the site index.
Due to translational invariance, we omit the site label j whenever possible.
We denote the matrix dual to g as g with elements (§)as = »_,, Ass(m)(m|.
Here, the coefficients are replaced by their complex conjugates and the kets
are replaced by the corresponding bras. In the MPS construction (4.5) the
matrix multiplication () involves tensor products of vector matrix elements,
that is,

(8 8j41)ar = Y Aas(m)Ag, (n) m); @ ). (4.7)

Bmn

The dual (g, &;,1)ay is defined analogously:

(& &)y = ) Alg (n) {ml; @ (1. (4.8)

Bmn

For products of g matrices denoting a block of sequential spins we introduce

an abbreviation
(8" 8j41 - - 8j)aar = |03, 5). (4.9)

These vectors span the Hilbert space of the block of spins from j to j' and we
refer to them as block state vectors.
For the spin-1 AKLT model, we denote the ground state vector as [VBS;).

Its matrix product form may be generated from the g; matrix

o =21
gﬂ"(m—m ), ) o

where {|—);,|0);,|+);} are eigenvectors of the spin-1 operator S% at site j
[136, 139]. In Section 4.2.2 we derive this matrix for the more general case of
a g-deformed AKLT model.
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The matrix product formulation allows for the calculation of important
quantities such as correlation functions and the reduced density matrix by
transfer matrix methods. A transfer matrix G is constructed from the MPS
matrix g through the definition G = g ® g. The (scalar) elements of the

transfer matrix are thus
(G)a'y,ﬁé = (g>aﬁ(g)'y6 = ZAZﬁ(m)A'yé(m) (4.11)

In terms of this transfer matrix, the norm of a translationally invariant MPS
is

(MPS|MPS) = tr G*. (4.12)

The expectation value of a local operator A; at site j is therefore

tI"(GAGL_l)

) =——cr (4.13)

where G4 = g ® Ag. In like fashion, two-point correlation functions are given

by
tr(GAG" GG ™)

tr G~
In the double scaling limit of » — oo and L — r — oo, the leading asymptotic

<AlBr> =

(4.14)

behavior of the correlation functions can be obtained from power methods by
considering the dominant eigenvalues of the transfer matrix and their corre-
sponding eigenvectors.

Additionally, the reduced density matrix can be written in terms of the

transfer matrix. The full density matrix of the MPS is

tr(g,. ... g ) tr[g ... &)
tr GF '

p= (4.15)

Taking the partial trace over the Hilbert spaces of the spins in region B (sites
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j=L0+1toj=L) yields

aa; 1,0 (G (B85 1,0
pg:ter:aa/Zﬁﬁ/ ey ’ . (4.16)

We find that p, acts in the subspace spanned by the block state vectors
{laa/;1,£)}. The dimension of this subspace is at most D?. This result high-
lights an important feature of matrix product states: the dimension of the
relevant Hilbert space spanned by the block state vectors does not increase
exponentially with block length. Furthermore, due to the frustration-free prop-
erty of the VBS] state, this subspace corresponds to the ground state space of
the block hamiltonian Hyjo = ij hi i1 [140, 141].
We construct an overlap matrix K(n) that is related to the n'" power of G
by
(K(1)) o g = (G"aparsr = (s 1,n| B35 1,m). (4.17)

This matrix contains all scalar products (overlaps) between block state vectors
and is identical to the overlap matrices defined in Section 3.7.3. For the AKLT
models described here, (aa/;1,n|B08";1,n) = (¢/a;1,n|6'B;1,n) and the ma-
trix K(n) is symmetric. We can therefore express the reduced density matrix

in terms of overlap matrices according to:

|O./O/;1,€> K(L_é) aa! /<55/71a€|
pr= Y ( trGL) 25 . (4.18)

aa’ BB’

The indices are now matched so that we can express p, as a product of matrices.
Suitable similarity transformations within the space spanned by {|aca/;1,/)}

gives the matrix
. KL-0K()
PE= 0K — OK (O]

which has the same spectrum as py,. Thus, for an MPS the reduced density

(4.19)

matrix p, has a small number of nonzero eigenvalues, rank p, < D? [142, 143].
That is, the dimensions of the D x D MPS matrix g gives an upper bound

Sup = 2log D for the entanglement entropy of a matrix product state.

o4



4.1.3 Chapter outline

In this chapter, we investigate the entanglement present in the ground state
of an SU,(2) generalization of the integer spin-s AKLT model (Section 4.2).
This ground state is a g-deformed VBS state and we denote its state vector
as ]VBSZ). The spatially partitioned reduced density matrix is calculated and
diagonalized in Section 4.3. The eigenvalues of this matrix are then used to
measure entanglement in the system through the entanglement entropies and
entanglement spectrum (Section 4.4). Concluding remarks are given in Sec-
tion 4.5. Finally, a similar analysis of the entanglement in another anisotropic

quantum spin chain is given in Section 4.7.

4.2 qg-deformed AKLT model

The g-deformed AKLT (AKLT,) model is an SU,(2) [144, 145] invariant gen-
eralization of the isotropic SU(2) model described in the previous section.
This continuous one parameter (q) generalization of the underlying symmetry
group introduces anisotropy into the model by a continuous deformation of
the usual SU(2) symmetry. For example, this g-deformation of SU(2) sym-
metry appears naturally in the anisotropic spin-1/2 XXZ Heisenberg model
[146]. Hence, this study aims to determine how entanglement in a VBS state
is affected by anisotropy. There have been previous studies of the effects
of anistropy on the entanglement in VBS states [147-149], but here we still
maintain the symmetry of the SU,(2) quantum group. This allows us to obtain
exact and compact results through the matrix product formalism and by use
of g-deformed Clebsch—Gordan coefficients and 65 symbols.

The anisotropic g-deformed generalization of the spin-1 AKLT chain was
first considered in Refs. [136, 150, 151]. The ground state of this model has
been constructed in the matrix product state formalism [136, 151] and in terms
of g-deformed Schwinger bosons [152]. It is separated from excited states by
a Haldane gap and the spin-spin correlation functions decay exponentially.
The higher integer spin-s generalization of the g-deformed AKLT model was

first proposed in Refs. [152, 153], where the spin-spin correlation functions

95



were obtained. Later, the geometric entanglement and higher order finite-size
correction terms for the entanglement entropy were calculated for the spin-s
AKLT, model [154].

In Section 4.2.1 we present the algebra for the SU,(2) quantum group
and discuss angular momentum addition for the g-deformed spin states. We
continue with the explicit matrix product construction of the ground state of
a spin-s AKLT, model (Section 4.2.2) and the corresponding reduced density

matrix.

4.2.1 Quantum algebra

Let us denote states of a spin-s at site j by |s,m);. Here m € {—s,—s+
1,...,s} is the magnetic quantum number denoting the z-component of the
spin. The spin quantum number s is unchanged by the action of the g-deformed
angular momentum operators Sf and S%. These operators satisfy the SU,(2)
quantum algebra

[S%,S7] = +S7, [SF,S;] = [28], (4.20)

VER JN
where the g-number [z] is defined as

qx/Q _ qfx/Q
[]

g2 — q-1/2"

(4.21)

This algebra has a unitary representation for positive real ¢ € R [155]. It

1 so that we consider further

is invariant under the transformation ¢ — ¢~
q € (0,1]. The usual SU(2) algebra is recovered at the isotropic point g = 1,
while full deformation occurs in the limit ¢ — 0F.

The actions of these angular momentum operators on the states |s, m); are

given by

Sﬂs,m)j: VIsFm]stm+1]]s,m+1);, (4.22)
Sils,m); = m|s,m);. (4.23)

The rules of angular momentum addition J5 = S7* + SZ* follow from the
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definition of the coproduct

JE =St ¢+ ¢ 5 @ St (4.24)
Jfot = Si & ]12 + ]11 ® S; (425)

A (2J + 1)-dimensional irreducible representation for J is therefore spanned
by the states

|J,m)zz [81 52 J] |s1,m1) & |s2, ma). (4.26)

pe— my Mo MM

The decomposition coefficients [n‘{] nffk WL” ] , e the g-deformed Clebsch-Gordan
(¢-CG) coeflicients and may be chosen to be real [155-157]. These coefficients
vanish if the triangle relation |s; — s3] < J < s1 + so and selection rule
my + me = m are not satisfied (angular momentum conservation). Through-
out this chapter, the summation indices m; (lower row of ¢-CG symbols) are
understood to run over all values compatible with the corresponding quantum
number s; (upper row of ¢-CG symbols). That is, in Eq. (4.26) we sum over
m; € {—s;,—s;+1,...,s;}. For example, the decompositions of the total spin
J = 0,1,2 basis states in terms of tensor products of two spin-1 states are
given in Table 4.1 (modulo a normalization factor). Some identities involving

the ¢-CG coefficients that we use in this chapter are collected in Section 4.6.1.

4.2.2 Model and ground state

The g-deformed spin-s AKLT; hamiltonian is given by [136, 153]

L L 2s
Ho=> hnr =3 Y CILGi+1), Cr>0,  (4.27)
i=1 i=1 J=s+1

where I1;(7,7+ 1) is a projector onto the subspace spanned by the g-deformed
total spin-.JJ multiplet formed by the spins at ¢ and ¢ + 1. This hamiltonian is
positive semi-definite like the undeformed AKLT hamiltonian (4.4). The site
L + 1 is identified with site 1 (periodic boundaries). In the basis of physical
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J=0 q"?|+=) — [00) + ¢~/*]—+)

q+0) = 0+)
J=1| b+ (@2 - q)00) - |-+)
gl0-) = -0)

[++)
[+0) + q|0+)
J=2| g '+=) + (¢"* + ¢ /*)]00) + g|—+)
|0—>| + q>|—0>

Table 4.1: Unnormalized g¢-deformed basis vectors arising from the coupling
of two spin-1’s.

spin states {|s,m;);} we have

L
EZ Z Z | J, M) (J, M),
i=1 J=s+1 M;=—J
L s S S J S S J
q * a

X [s,mi)is, mili @ |8, Mig1)iri (s, mz+1|z+1 (4.28)

where M; = m; + m;y1 (selection rule for longitudinal component of angu-

lar momentum) and we have set C; = 1 for all J. Here we have used the

decomposition

s s J
|J, M;) = Z [ M] ls,my); @ |8, Mig1)iv1- (4.29)
dq

mimiy [T i1
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In terms of the undeformed SU(2) spin operators S;, the AKLT, Hamiltonian

for the spin-1 case is

Hy=b {cS; Sin+iele—a ) (S5 =8 +(c—1)

+ 1[8-8+ 51 =)@+ 7= 2)5:55,,
1A+ g (S5 - 5]
c(L+)(q"* —q )"+ ¢ = 2)8587,, (57, — SF)
c(1—c) (" +q7? = 2)2(8:55,,)?
(c=3)[(c—1+3(1+¢)?)S;S,
+2(e = 5(1+¢)*) ((S5a)* + (S)))] . (4.30)

+ + +
[N TN [P [

with ¢ = 1+q+¢ ' and b = [c(c—1)]7! [150, 151]. When g = 1, we recover the
isotropic AKLT hamiltonian. In the limit ¢ — 07, the AKLT, Hamiltonian
is dominated by Ising-type interactions. In this case the g matrix has only
one non-zero element |0), which is on the diagonal. The resulting ground
state is therefore a product state @), [0); describing a magnet polarized in the
transverse direction. In this limit all spins are in the S = 0 state. Hence, any
block in the chain has zero entropy and we shall sometimes refer to the limit
g — 07 as the classical limit.

Let us denote the frustration-free ground state vector of the AKLT; model
by [VBS;). This ground state may be constructed by the matrix product

formalism (Section 4.1.2):

[VBS;) = tr(g:- 8 ---&1), (4.31)

where g, are (s + 1) x (s+ 1) matrices. The elements of g, and its dual g, are

given by the state vectors:

(8)ar = ) ; 8[/)2 522 |s,m);, (4.32)
(gi)abzz Tf’L Sl/)Q 822 (s,ml;. (4.33)
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b c d b
d c
f = Z F,[DBJC;NK] "
N
J J

Figure 4.2: The g-deformed F-matrix relates the linearly dependent bases that
result from the different orders in which three angular momenta are coupled.

As in the undeformed model, this ground state is annihilated by the local
hamiltonian density h; ;1. To prove this, we look at the overlap between the
two states |J, M;) (4.29) and

@ = [ 5/2 3/2] [ /2 s/2

mijr1 € b m; b a

bmim; 1 q

|8,Mi)i @ |8, Mis1)ivr. (4.34)

Since the states {|s,m;);} are orthonormal to each other, we obtain

(M (8 8o =Y [ s ] [ 52 8/2] [ 2 5/2]'

~ 'm m' M;| |m' ¢ b m b a
bm/m q

(4.35)
Applying an identity (4.100) derived in Section 4.6.2 gives

(J, Mi|(g; gi+1>ac =F, [55§§§ J%

[J s/2 s/2
} M, ¢ a

] . (4.36)

The elements F,[DBJC; NK] of the g-deformed F-matrix are defined dia-
grammatically in Figure 4.2 and calculated in Section 4.6.2. Due to the tri-
angle relation, the ¢-CG coefficient in the overlap (4.36) vanishes whenever
J > 5+ 35, s0 that h;;41|VBS;) = 0. Since h; ;41 is a sum of projectors (times
positive constants) it has nonnegative eigenvalues. Thus, [VBS}) is the ground
state of the AKLT; hamiltonian (4.27).
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4.3 Reduced density matrix

To calculate the reduced density matrix for the AKLT, model, we use the
matrix product formalism mentioned in Section 4.1.2. Let us construct the
transfer matrix G, which is defined in terms of g and g by (G)apcd = (8)ac(8)ba-

Explicitly, its elements are

(G)ab;cd:Z[S/ s/2 5/2] [5/ s/2 5/2] | (4.37)

—|m" ¢ a m' d b
q

Let us diagonalize this matrix through an approach based on the ¢-deformed F-
matrix (Section 4.6.2). As depicted in Figure 4.3, we use the ¢-CG coefficients
as an ansatz for the elements of the eigenvector e., for the eigenvalue equation

(G)abica€ea = Aeap. The resulting equation is

Im’ ¢ a c m d m  d b
cdm/ L

a m b

—3/2 J 5/2].

This expression may be summed by using the identity (4.100), which gives

(G)abedCed = Fy[5557;52] [3/2 J 5/2] = \jm [5/2 J 522] . (4.39)

a m b a m

We find that the elements of the eigenvectors of the transfer matrix G are
eab = (€jm)ab = [S(/l 2 7{1 822}(1. These eigenvectors are labeled by the quantum

numbers j € {0,1,...,s} and m € {—j,—j + 1,...,7}. They correspond to

the eigenvalues

>
<

3

I
e
—
Va)
N »
[N
=
N w
N w
—
I

i s s/2 s/2
(—1)[s + 1] {j o/ s/Q}q’ (4.40)

where the g-deformed 6j symbol { £ 5 £ , is defined in Eq. (4.102). The
eigenvalue A, is (25 + 1)-fold degenerate, which corresponds to the 2j + 1
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Figure 4.3: Diagonalization of the transfer matrix.

possible values of m. Thus, we can label the eigenvalue \;,, — A; for brevity.
The absolute value of \; decreases with increasing j so that the dominant
(nondegenerate) eigenvalue is Ag.

With the column transposition identities in Section 4.6.1 we are able to

contruct the vectors €;,, dual to the eigenvectors e;y,:

52 5/2 j] . (4.41)

—a b m
q

@yl = (12 (24D

These pairs of eigenvectors satisfy orthonormality €/, - €, = 0;j:0mm and
completeness ij(ejm)ab(éjm)cd = 04c0pq- Using the column transposition
identities(4.95), a suitable similarity transformation on G allows us to con-

struct the projection matrix

(Pj)ab;cd: i [S/Q 8/2 j] [8/2 5/2 j] : (442)

— |—a b m —c d m
m=—j q

This matrix projects a state vector onto the subspace spanned by the eigen-
vectors corresponding to the eigenvalue ;. The elements of the projection

matrix onto the dominant eigenspace (j = 0) simplifies to

2 2 2 2 __1\a+c+S ,—(a+c)/2
(PO)ab;cd - [8/ 8/ 0] [8/ S/ O] - ( 1) a 5ab6cd-
q

—a b Oq—c d 0 [s + 1]
(4.43)
We now use the general formula (4.19) for the reduced density matrix (up

to a similarity transformation) of a matrix product state to obtain

1 -
(pf)ab;cd = W Z(GL E)aa’;bb’(Ge>a’c;b’d’ (444)

a’'bt!
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Integer powers of the transfer matrix G may be written in terms of the pro-

jection matrices (4.42) as
G" =) MNP, (4.45)
J

Since the dominant eigenvalue of G is )y, large integer powers of G simplify
to G" — A\jPy as n — oo. Thus, in the limit of infinite chains L — oo the
reduced density matrix (4.44) simplifies to

(pf)ab;cd = [S T 1} m _ d m

(4.46)
We can further express the reduced density matrix as a sum of matrix outer
products by defining the (s + 1) x (s + 1) matrix

(_1)a+b+5q—(a+b)/2 i A_g i 8/2 8/2 j 5/2 8/2 *7
N |—a ¢ . q‘

J=0 m=—j

(Qjm),.

—a C m

(—1)a+s/2q—a/2 [3/2 5/2 j] 5 (4.47>
5] o

Making the necessary substitutions gives the compact form

s /\g J

Jj=0 m=—j

Let us express the reduced density matrix in the basis of the following

vectors:
(—1)~UHhghi2 1s/2 s/2 T
Vi )ab = , 4.49
(Vrat)os R7+1 [a —b M (4.49)
with corresponding dual
2 s/2 J
(VWar)as = (=1)" g7 \/[2J + 1] 5/2 s/ . (4.50)
a —-b M .
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This choice of basis allows us to use identity (4.100) and get

(=177 2" +1] A

s/2 s/2 J
X Oprm Z g @+t [
— a —-b M

[s/Z s/2 J] s
La -b M .

We find that the reduced density matrix can be decomposed into sectors la-
beled by the quantum number M € [—s, s]. Each sector is represented by an
(s+1—|M]|)x (s+1—|M]|) matrix.

The reduced density matrix can be diagonalized analytically for the follow-
ing special cases: The double scaling limit of long blocks ¢ — oo (Section 4.3.1),
the spin-1 case (Section 4.3.2), and the isotropic limit ¢ = 1 (Section 4.3.3).
For higher integer spin s > 1 and finite blocks we give a perturbation solution
about the double scaling limit (Section 4.3.4).

4.3.1 Double scaling limit

In the double scaling limit, we consider infinitely long blocks and take ¢ — co.
The reduced density matrix p,, (4.48) simplifies to a Kronecker product of

diagonal matrices po, = Qoo ® Qpo. Explicitly, we have:

_ 1\a+b+S ,,—(a+b)/2 s s s <
(p00>ab;cd:( 1) q [/2 /2 0] [/2 /2 0

. (4.52
[s + 1] —-a a Oq —b b O]qéacébd (452)

The eigenvalues of the reduced density matrix are therefore

q—(a—I—b)

(Poo)abied = mfsac%d- (4.53)

For example, in the case of a ¢-deformed spin-2 VBS state we have

-1

q -1

q

1
P Mgty

o = O

0
0 | ®
q

o = O

0
0. (4.54)
q
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The eigenvalues of this matrix are proportional to {¢%,¢,¢,1,1,1,¢7, ¢, ¢}
(the proportionality constant is 1/(1 + ¢ + ¢ 1)?).

4.3.2 Spin-1 case

For the spin-1 case, the reduced density matrix in the vy, basis (4.51) is block
diagonal in three sectors. The sector labeled by M = 0 is 2 x 2 dimensional,
while the sectors M = 41 are 1 x 1. An exact diagonalization is therefore

possible. A direct calculation gives the following eigenvalues of py:

DP+o =

g+qt+2(-A)"" L Lo 1= (—A)~2
22+ q+q) 4 24q+qt’
1—(=A)*

. 4.55
24q+qt (4.55)

P1+1 =

where A = 1 4+ ¢ + ¢~ *. The finite-size corrections decay exponentially as

expected for a gapped system. At ¢ = 1 we recover the eigenvalues

1+3(=3)"*¢ 1—(=3)¢
p+,0 = %; pl,il = p*,O - %7 (4'56)

that were obtained for the isotropic AKLT chain [158].

4.3.3 Isotropic case

When ¢ = 1 the vectors vy, (4.49) are eigenvectors of the reduced density

matrix. The exact (2J + 1)-fold degenerate eigenvalues are
1 - N A.f r S S S S
PIM = m 1+ Z(QJ + 1))‘_6 F []§§J§ 55} )
Jj=1

_1)I4s 8 ‘ MO (i s/2 s
:<s+11>2+(31+)1 ;(—1)9(2j+1))\—% {i Sg Sg}l. (4.57)
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For instance, taking s = 2 gives the exact eigenvalues

poo =3 (1+ 3(=2)7" + 5(10)4) ) (degeneracy 1), (4.58)
pv =g (1+ 3(—2)"" = 5(10)7), (degeneracy 3), (4.59)
Dons = % (1 — %(—2)4 + %(10)4) , (degeneracy 5). (4.60)

The formula (4.57) reproduces the previous results [140, 159] for undeformed
spin-s AKLT chains obtained from the Schwinger boson representation of the
VBS state. Our approach, however, emphasizes the role of the 65 symbols in
determining the finite-size corrections to the entanglement in isotropic VBS
states. Furthermore, this result solves a recursive formula [140, 159] for the

coefficients in the sums for the eigenvalues p,;.

4.3.4 Anisotropic case

The magnitude of the eigenvalues |\;| of the reduced density matrix decreases
with increasing j. Thus, the leading order finite-size correction to p, depends
on |A1/Xo] = [s]/[s + 2] < 1. We may therefore approximate the reduced

density matrix as

M
pe =~ Qoo ® Qoo + )\—é Z Qi ® Q- (4.61)

0 pm=-1

We have already determined that Qq is diagonal with nondegenerate eigen-
values (4.47). This means that first-order perturbation theory within each
sector of the preceding equation involves only the diagonal elements of Q,,.
From Eq. (4.47) we know that only Qjo has nonzero diagonal elements and

hence we obtain the approximate eigenvalues

b = Db~ ———— | 1+ [3] 2L 4.62
P =~ s A

g (ath) Nols/2 1 s/2| [s/2 1 s/2
s+ 1]?

The labels a and b are eigenvalue labels that run from —s/2 to s/2 with

integer steps. The second term in (4.62) involving the ¢-CG coefficients may
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Eigenvalues
Eigenvalues

Eigenvalues
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Figure 4.4: The eigenvalues of the reduced density matrix of a block of ¢
spins in a spin-2 VBS, state (solid and dashed blue lines) are compared to the
perturbation result (red dotted lines). Solid blue lines denote nondegenerate
eigenvalues while dashed blue lines denote doubly degenerate ones. The dom-
inant eigenvalue approaches unity as ¢ — 0. For ¢ = 1 four eigenvalues are
zero for all q.

be evaluated explicitly with the identity [155]

3/2 1 3/2 o qia/2 %(1—}—3/2) s _ —%(14‘5/2) s _
[a 0 a] ~ VElls 2] {q 5+a]—q k a}}'

(4.63)
These approximate eigenvalues are compared to exact numerical results for the
spin-2 case in Figure 4.4. We observe a rapid improvement in the accuracy
of the perturbation result with increasing block length ¢. Furthermore, these
numerical results reveal how ¢-deformation modifies the degeneracy of the
entanglement spectrum by breaking the multiplet structure present in the

isotropic case.
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4.4 Entanglement entropies and spectrum

Entanglement in the ground states of isotropic AKLT models has been stud-
ied in the literature [140, 141, 158-164]. In this section we give quantitative
measures of the entanglement in the VBSy ground state of the anisotropic
AKLT model. From the reduced density matrix p, of blocks of length ¢ ob-
tained in the previous section, we evaluate the the Rényi and von Neumann

entanglement entropies

log tr p§
Si(a) = ==L, (4.64)
Syn = — tr(pelog pe) = lirq Sr(a). (4.65)

As discussed in Section 3.1, these quantities are frequently used measures of
entanglement in pure states [62, 74-78]. Additionally, we use the full set of
eigenvalues of the reduced density matrix to obtain the entanglement spectrum
of the block [165]. This entanglement spectrum describes the mixed state of
the block that results from tracing over the environmental degrees of freedom.
That is, we write p, = e~ #Heft / tr e7BHet wwhere H.q is an effective Hamiltonian
and 1/0 an effective temperature. The eigenvalue spectrum of this effective
Hamiltonian constitutes the entanglement spectrum of the block. As we see
below, the entanglement spectrum allows one to interpret block entanglement

in terms of interacting boundary degrees of freedom.

4.4.1 Double scaling limit

In the double scaling limit of an infinite block ¢ — oo in an infinite chain (L —
¢) — oo, the reduced density matrix becomes diagonal. Thus, the block states
laB;1,0) (4.9) are orthogonal to each other. The eigenvalues of the reduced

density matrix are proportional to powers of the deformation parameter (4.53):

q"
[s + 1]

Pu = pe{-s,—s+1,...,s}. (4.66)
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Figure 4.5: The Rényi entropy Sgr(«) of a g-deformed spin-s VBS state vanishes
in the limit ¢ — 0". In the double scaling limit, long blocks are maximally
entangled Sg(a) = 2log(s+1) at the isotropic point ¢ = 1. The von Neumann
entropy is obtained in the limit « — 1 (bold line).

The degeneracy of the eigenvalue p,, is s +1 — |p|. We can therefore compute

the Rényi entropy exactly

g (a) _ log tr pa _ 2 log qa(s+1)/2 _ qfa(s+1)/2 1
A -« 11—« q/? — q=/? [s+ 1] )’

2 a(s+1)/2 _ ,—a(s+1)/2 r 1 @
I et el S e S B S
1 — qa —_ q «a q S —_ q S
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Taking the limit @ — 1 gives the von Neumann entropy

1 1
- q§ + q—§ q(s+1)/2 4 q—(5+1)/2
SiN = 210g([3 + 1]) + {—qé _ q_% — (S + 1)q(3+1)/2 — q*(3+1)/2 logq7
o {q(s+1)/2 _ qf(s+1)/2 }
- 0g 1 1
gz —q 2
1 1
qz +q 2 q(3+1)/2 + q*(8+1)/2
" {qi g (s 1) e — g vz [ o8¢ (4.68)

These entanglement entropies are graphed in Figure 4.5 as functions of the
parameter ¢ for different values of the spin s. We see that quantum correlations
in the system decrease monotonically as the degree of anisotropy in the model
increases. This effect persists even in the limit of long blocks. At the isotropic
point ¢ = 1, the entanglement entropy is a maximum for any spin s. It
simplifies to

Sr(a) = Syn = 2log(s + 1), qg=1 (4.69)

We thus recover previous results [140, 158, 159] for isotropic spin-s VBS states.
Meanwhile, in the opposite limit of full deformation ¢ — 0" the entanglement
entropy vanishes and there are no quantum correlations in the system.

Now, let us consider the case of very high spin at fixed 0 < ¢ < 1. Taking
the limit s — oo in (4.67) and (4.68) gives

9 g2 — g2y
Sr(a) = o log{ (q—a/Q — qa/Q) , (4.70)

1 q\2 4 g1/
SN = QIOg(w) + (W log q, S — OQ. (471)

We find that the entanglement entropy is bounded for any ¢-deformed AKLT
chain of arbitrary spin s. It diverges only at the isotropic point ¢ = 1. This
behavior is shown in Figure 4.5 for the high spin case s = 107.

Finally, let us calculate the entanglement spectrum of the block by writing

Poo = € PHett [ tr e=PHet  The tensor product form of p,, (4.53) yields the simple
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paramagnetic model

~BHea = —B(HY + HY) = Bh(S; + S5),  S?=3(3+1), (472
Bh = |logq| . (4.73)

Here h is the magnitude of an effective magnetic field along the z-axis, while
S; are spin-s/2 operators of the undeformed SU(2) algebra. We can thus iden-
tify |log ¢| as the ratio h/T.g between the magnitude of the magnetic field and
effective temperature T,q. We observe that the spectrum of H, e(;? consists of
s + 1 equidistant energy levels. Thus, in the limit s — oo the entanglement
spectrum of the block is equal to the energy spectrum of two harmonic oscil-
lators with frequency w (with an s-dependent energy shift). This frequency is
related to the deformation parameter through |logq| = w/Teg.

In this effective picture, the isotropic case ¢ = 1 corresponds to infinite
temperature or zero field strength. The reduced density matrix py, has (s+1)3
nonzero identical eigenvalues. Therefore, the block is maximally mixed. In
the opposite limit ¢ — 07 the effective model corresponds to zero temperature
or infinite field magnitude. Hence, the block is in a pure state with zero

entanglement.

4.4.2 Spin-1 case

The spin-1 case is important because we can obtain exact results for the en-
tanglement entropy at arbitrary anisotropy g and arbitrary block lengths £.
We can therefore analytically study the effect of finite block lengths on the
entanglement present in the system. Let us first consider the extreme case
of a block consisting of only one spin £ = 1. The eigenvalues of the reduced

density matrix become

2 2
=l-—=1-—, 4.74
P+, 1+q+qt A ( )
1 1
= = -, 4.75
P11 Ttqg+q¢ ' A ( )
p—o =0, = 1. (4.76)

71



{ =00
10g(4)
(=2
log(3)
r=1
z
%
L L L L 0
0.0 0.2 04 0.6 0.8 1.0

q

Figure 4.6: The double scaling limit is already approached by a block of two
spins in the VBS; state. For any value of the anisotropy parameter ¢, the
entanglement entropy is bounded by its value in the double scaling limit.

The single-site entanglement entropies are therefore
log((A —2)* +2%) — alog A
11—«

2
s =toga— (1-F ) loga -2, A=troret @

St = : (4.77)

These entropies are zero at the classical limit ¢ — 07 and increase mono-
tonically to the saturation value Sg! = S'! = log3 at the isotropic point
q = 1. That is, at the isotropic point the block is in a uniform mixture of the
three spin-1 S, states. For longer blocks, the entanglement entropy reaches
its value at the double scaling limit exponentially fast. It is reached when the
block length ¢ exceeds the characteristic length , = 1/log A. This behavior
is shown in Figure 4.6 where the von Neumann entropy of a block of length
¢ = 2 is nearly indistinguishable from the infinite block entropy for all values
of the anisotropy parameter q.

In addition to the effective paramagnetic model (4.72) discussed in the
previous section, an alternative model may be constructed for the spin-1 case

in the double scaling limit £ — co. We can define the effective temperature
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1/8 =1/ |log q| and effective Hamiltonian
Heg = 3 (070§ + olo}), (4.79)

where aj- are Pauli operators at site j. Thus, ps .o also describes a ther-
mal ensemble of two spin-1/2’s at the block boundaries with Heisenberg (XX)
interaction. The anisotropy parameter ¢ determines the effective boundary
temperature Tog = 1/ |log g|. For the isotropic AKLT model ¢ = 1 the effec-
tive boundary spins are in a maximally mixed state (Teg — 00), while in the
classical limit ¢ — 07 they are in a pure state (Teg = 0). This result for the ef-
fective Hamiltonian is consistent with the area law for gapped models [63, 166].
It is similar to the effective boundary spin chain proposed for two-dimensional
AKLT models [167, 168]. However, in the AKLT; chain the effective boundary

spin interaction is long-ranged and exists for arbitrarily long blocks.

4.4.3 Isotropic case

For arbitrary integer spins, the reduced density matrix is diagonalizable ana-
lytically at the isotropic limit. When ¢ = 1, the eigenvalues p;), are arranged
into (2J + 1)-multiplets (4.57). The leading finite-size correction to the eigen-
value pyy; is proportional to the exponential factor (A;/\g)! = (—1)%e~Y/¢.

Using the formula

s s/2 s/2| (s)?
{J' 5/2 3/2}1_(8—j)!(s—|—j+1)!’ (4.80)

gives the characteristic length of decay & = 1/ log((s +2)/ 3). This length
is equal to the correlation length of the spin-spin correlation functions in the
isotropic spin-s VBS state [153].

A simple result for the entanglement entropy of a block consisting of a

single spin ¢ = 1 can be obtained at the isotropic point. The eigenvalues of

73



the reduced density matrix may be written as
_ 1 (=) K2 +1 s
=1 _
P = * } Z s+1 1J
7=1
1
Making use of the identity (4.80) and
s s/2 s/2 Js/2 s/2( _ (—1)J+5’ (4.82)
0 s/2 s/2) (0 s/2 s/2], (s+1)2

L s s/2 s/2 Jos/2 s/2| by
ZQJH) {j s/2 3/2}1{J 5/2 5/2}1_23+1’ (4.83)

j=0

Nln N|®w

——
—_
—
N
Nln N|®w
e Mo
——
—_
—~
=
(070)
—_
N—

—~

Vo)

—

N—

ro
—N

S »

Nl N|®

Nl N|®»

gives the desired result

)
/=1 sJ

1- 4-84
Pim 2 1a q ( )

Thus, the single-site reduced density matrix has (2s + 1) nonzero identical
eigenvalues. This result proves that the block is a uniform mixture of the
(2s + 1) states of a single spin-s as expected. The entanglement entropy in
this case is S5 (o) = S5 = log(2s + 1).

For long blocks satisfying ¢ > &, the leading nonvanishing correction to
the entanglement entropy is proportional to (A;/\g)*. The approximate Rényi

entropy in this case is

3o

Sr(a) =~ 2log(s +1) — — ( i

s+ 2

5 )2 s(s+1)(s+2). (4.85)

Finite-size corrections to the von Neumann entropy can be obtained from this
result by taking the limit & — 1. We find that the entanglement entropy expo-
nentially approaches its double scaling limit value Sg°(«a) = SX, = 2log(s+1).

Let us construct an effective Hamiltonian for long blocks ¢ < ¢ < oo in the

isotropic case. Considering only the leading-order correction to the eigenvalues
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(4.57) gives

pJMz;{1 5 ( 7 > (2J(J—|—1)—s(s+2))}. (4.86)

(s+1)2 ] s(s+2)\s+2

Since the reduced density matrix is diagonal in the {v;,} basis, we can write

the effective Hamiltonian H.g as

3 —s\*
—BHog ~ log{l S <S+2> (2J(J+1) — s(s+2))},
12

~ _s(s+2)<s+2> I+ —sG+1) (487)

This expression is valid for 3s’(s + 2)™* < 1. If we define an undeformed
spin-S operator J = S; + S, as the sum of two spin-5 operators S; and S, on

the block boundaries, we obtain the Heisenberg model

¢

BHa =50 S8, 0= s () sy

We can identify Tog = 1/7(s, £) as an effective temperature that depends on
the length of the block. The double scaling limit ¢ — oo therefore corresponds
to a maximally mixed state (infinite temperature). In this interpretation,
we observe that the sign of the coupling strength changes with block length
(alternation between ferromagnetic and antiferromagnetic interactions). This
implies that the dominant eigenvalue of the reduced density matrix alternates

between the pgg singlet (even ¢) and p,y, multiplet (odd /).

4.4.4 Anisotropic case

In the general case of arbitrary ¢, the dominant characteristic length of finite-

size corrections generalizes to & = 1/log([s + 2]/[s]):

1 1 — g2t
= —log <—q> (4.89)
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Figure 4.7: The characteristic length &, of finite-size effects increases monoton-
ically with spin s and anisotropy ¢. Its maximum value occurs at the isotropic
point ¢ = 1.

As depicted in Figure 4.7, this characteristic length is a maximum at the
isotropic limit &max = 1/log((s+2)/s) for any value of the spin s. This means
that the condition ¢ > ¢, for the double scaling limit to apply is reached by
shorter blocks with increasing anisotropy and longer blocks by increasing spin.

As seen from the block decomposition of the reduced density matrix (4.51),
obtaining the eigenvalue spectrum of p, generally requires finding the roots of
polynomials of degree 1 to s 4+ 1. Thus, numerical methods are necessary to
calculate the entanglement entropy in higher integer spin VBS, states. We
present numerical results for the von Neumann entropy for the spin-5 case
in Figure 4.8. We compare these results with those obtained from the ap-
proximate eigenvalue spectrum (4.62) of the reduced density matrix. Good
agreement between the two results is obtained near the double scaling limit

(large ¢) and near the completely deformed limit (¢ — 07).

4.5 Concluding remarks

In this chapter we studied entanglement in the ground state of the anisotropic
AKLT; model. We contructed the VBS] ground state model in the matrix
product formulation. From this representation, we derived a compact formula

for the reduced density matrix in terms of the g-deformed Clebsch-Gordan co-
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Figure 4.8: A numerical evaluation of the von Neumann entropy (a) of a spin-
5 VBSS state for block lengths ¢ = 1,2,3,4, and ¢ — oo is compared to the
results of perturbation theory (b). The perturbation approximation is good
when the block length ¢ is much greater than the characteristic length &,.

efficients and g-deformed F-matrix elements. The eigenvalue spectrum of this
reduced density matrix was obtained analytically in some important param-
eter regimes that include the isotropic (¢ = 1) and double scaling (¢{ — o)
limits. For arbitrary deformations and block lengths, the reduced density ma-
trix is decomposed into (2s + 1) sectors so that its eigenvalues are grouped
into multiplets. This decomposition is such that the diagonalization of each
sector requires a numerical search for the roots of (at most) an (s + 1)-degree
polynomial. The leading finite-size correction to the eigenvalue spectrum of
the reduced density matrix is proven to decay exponentially with a charac-
teristic length &,. This result allowed us to obtain a first-order perturbative
approximation to the eigenvalues in the long block regime ¢ > &,. From this
approximation we discovered that ¢-deformation partially breaks the degener-
acy of eigenvalues within each multiplet of the isotropic result.

With these results we calculated the entanglement entropies on continuous
parameter spaces connecting the isotropic VBS state (¢ = 1) with product
states (¢ — 01) with zero entanglement. We demonstrated that the intro-
duction of anisotropy by ¢-deformation decreases the entanglement present in
the VBS; ground state. This decrease in entanglement with g-deformation is
observed even in the double scaling limit of infinitely long blocks.

Additionally, we constructed effective thermal models for the mixed state of
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the block from the entanglement spectrum of the system. In the double scaling
limit, we showed how the deformation parameter [log ¢| may be interpreted as
an external magnetic field acting on two spin-s/2’s at the boundaries of a long
block. At the isotropic point, the proposed effective picture consists of two
spin-s/2’s having a Heisenberg-type interaction. The coupling constant in this
case depends on the block length ¢ in such a way that a uniform mixture is
obtained as ¢ — ooc.

The analytic approach presented in this chapter may be applied to other
systems that may be represented as a matrix product state. These MPS
include other one-dimensional valence-bond-solid (VBS) states [125, 126, 129,
139, 169] and anisotropic spin chains [136, 151, 170]. We demonstrate this
generality in Section 4.7 where we study entanglement in a spin chain with
broken SU(2) symmetry. Furthermore, the formalism given here will be useful

in the analysis of entanglement in other states that may be approximated as
MPS [137].

4.6 Derivations

4.6.1 Identities for g-CG coefficients

The ¢g-CG coefficients enter the decomposition transformation

mp Ms M

0 |
[om) = 3 [‘” " ] o) © lma), (4.90)
q

mi,ma2

as well as the inverse transformation

my Mo M

. . ' o J
J1,m1) @ |2, ma) = Z [‘71 /2 ] |J, m), (4.91)
q

Jm

where the triangle relation }jl — jg‘ < J < j1 + jo is implied to hold. A set

of real ¢-CG coefficients may be evaluated numerically through the definition
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[155]:
] = 5m1+m2 mq%(j1+j27j)(j1+j2+j+1)+%(jlmlihml)A(jljzj)

my Mg M
q
1/2

x ([ +malln = ma]' o +ma)!gz — ma]![j +m]!j — m]![2] +1])
(_1)ann(j1+j2+j+l)/2

- ;([n]![ﬁ + g2 — J — n)!lj — mu — n)![j2 + ma — nl!
! ) (4.92)

X —
[ = J2 +mi+nfllj — j1 —ma + n!

[m jo J

The triangle function A(abc) appearing here is equal to

b—lla—b+c]![—a+b+ ]!
Alabe) = [a+b—c)lla—b+c]l[—a+ +c]. (4.93)
[a+b+c+1]
For integer arguments, the g-factorial is [n|! = [n][n — 1] - - - [1] with [0]! = 1.

Among the key properties of the ¢-CG coefficients that we use in this

chapter are the orthogonality relations

J1 J2 ]1/ 12/ = Opnym), Omgmy,,  (columns),
T K P L B A
g2 J jioJ2
Z [ 1 2 ] [ 1 2 T 077 Omm’ € j15a T (rows). (4.94)
— 1 Mg mMm . my Mz M| q

enforces the triangle relation: It is equal to unity when

The number €;,;,7
} J1 — jg} < J < j1 + j2 and zero otherwise. We also make much use of the
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following identities involving column transpositions [155, 156]:

; o J] , 2 1] [ J ’ '

Ji o J2 _ (_1)31—J+m2 —m2/2 [ 'Z+ ] J2 J1 , (4.95)
|m1 mg m] ‘ (251 +1] |m —ma My
o I | oa T (4.96)
mi; ms m —m2 —mip —m 7 '
L dq q

: g 4 2 1 ' J

Ji o J2 _ (_1)ij2*m1 m1/2 [ ‘_]—’_ ] 1 J2 . (497)
m1 mg m 27z 41} [=my mmy q

q

4.6.2 g-deformed F-matrix and 67 symbols

The elements of the ¢g-deformed F-matrix are shown diagrammatically in Fig-

ure 4.2. This diagram corresponds to the equation

D K J B C K
> [ | |ID.d) ®|B,b) ®|C,¢) =
mld ko . b ¢ .
N C J D B N
Y F,[DBJC;NK] , 1D, d) ® |B,b) ® |C,c).
. n ¢ J d b
N q q
(4.98)
Using the composition transformation (4.91)
D B A
D.dy@|Bb) =) | A, a) (4.99)
Aa a q

and applying the orthogonality relation (4.94) leads to the identity

D B A B C K D K J
E . |A,CL> ® |C> C> =
|4 boa b ¢ k d k j
ad q q q
A
A C J

|A,a) @ |C,c). (4.100)

q

a cC

Y F[DBJC; AK]

A

80



Repeating this procedure finally gives

D B Al [B ¢ K
Jj—c—=b b j—c| |b ¢ b+c]

q_
D K Jl [ A ¢ J
J—b—c b+c j| [J—c ¢ J

q - -q

8y Fy[DBIC; AK] =)

ij q

(4.101)

The g-deformed 65 symbol {S g . is related to the elements of the ¢-
deformed F-matrix by [155]

_ 1\A+B+C+D
{A b E} __ D F,[ABCD; EF]. (4.102)
q

D C F VI2E + 1][2F + 1]

For numerical calculations we use the sum

{A B E} = A(ABE)A(CDE)A(ACF)A(BDF)

D C F
(—=1)"[n + 1]!
X;{[n—A—B—E]![n—A—C’—F]!

1
“In-B-D—Flln—-D—_C—E|!
1
“"TA+B+C+D-n[A+ DI E+F —n
1
4.1
XB+C+E+F—M&’ (4.103)

where the sum is over all integers n so that the arguments of all g-factorials

[m]! are nonnegative m > 0.

4.7 Other matrix product states

In this section we apply the previous analysis to another anisotropic spin-
1 quantum chain proposed by Kliimper, Schadschneider, and Zittartz (KSZ
model) [170]. The KSZ hamiltonian has partially broken SU(2) symmetry. By
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Figure 4.9: The von Neumann entropy decreases away from the isotropic
AKLT points a = 2 for the KSZ, state. Finite-size corrections are smallest at
the isotropic point.

construction, it is invariant under lattice translations and reflections; spin ro-
tations about the longitudinal z-axis; and spin reflections about the transverse
plane S7 — —S7. It may be written as Hxgz = Z]‘ hjj+1, where h; ;i is the
KSZ hamiltonian density given by

hj,j+1 = Oé()AJz + Oél(Aij + BjAj) + OZQBJ2 + Oé3Aj
+ Oé4Bj(]_ + B]) + o [(85)2 + ( ;4_1)2} + ag. (4104)
Here we have a transverse interaction term A; = S757,, +S5757, |, longitudinal
interaction term B; = 5757, and constants ;. Requiring h; ;1 to have
nonnegative eigenvalues and annihilate an MPS ground state |KSZ,) leads
to a family of hamiltonians with restrictions on the constants «; [170]. The
correlation functions and low-lying excitations of this model have been studied

[170, 171], and here we present its entanglement properties.
We obtain the MPS form of |KSZ,) from the g matrix

(10} —al+)
g= (ﬁl—) _ol0) ) (4.105)

where a > 0 is an anisotropy parameter and ¢ = sgnas. The corresponding
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transfer matrix is

(4.106)

|
Q
_ O O Q2

The unique ground state is |KSZ,) = tr[g,-g,-...-g;] (periodic boundary
conditions). It reduces to the isotropic VBS state at « = 2 and o = 1.

The eigenvalues of p, for an infinite chain L — oo are

p2:p3:ﬂ1_(:2ﬂ‘ (4.107)

We observe that the entanglement spectrum is the same for o = +1.

In the double scaling limit the eigenvalues of p;_,., become equal to each
other pf?> = %. The block is maximally entangled with Sg = log4. The
entanglement spectrum therefore corresponds to a four-level system at infinite
temperature. For blocks of finite length, the von Neumann entropy is a maxi-
mum at the isotropic point a = 2. This property is depicted in Figure 4.9. For
a block of one spin (¢ = 1) one eigenvalue of p, vanishes and the entanglement
entropy is a maximum at the isotropic point, S5t = log3 at a = 2.

In the limit a — 0%, the |KSZ,) ground state approaches the transverse
ferromagnet @), [0);. This is a (classical) product state with no entanglement.
In the opposite limit a — oo the reduced density matrix represents a uniform
mixture of two degenerate Néel ordered states. In this limit the von Neumann
entropy approaches log 2.

As in the case of the ¢-deformed AKLT model, finite-size corrections to
the eigenvalues (4.107) decay exponentially with block length ¢. The char-
acteristic lengths of these corrections are { = 1/log|(1+a)/(1 —a)| and

§1 = 1/log(1 4+ a). These quantities are equal to the longitudinal (§) and
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transverse (£ ) correlation lengths of the spin-spin correlation functions [170]:

2

(S7S;) =— E [sgn(1 — a)] x e /4, (4.108)

(1—-a
(87S%) = —a(o + 1)[sgn(—0)]* x e™/5+ £>2. (4.109)

Anisotropy in the KSZ model also reduces entanglement in the |[KSZ,) state
for blocks of finite length. But unlike the |[VBS,) state, the boundary spins of
infinitely long blocks are maximally entangled at fixed anisotropy 0 < a < oo.
Thus, the effective boundary spins in the double scaling limit are at infinite

temperature.
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Chapter 5
Conclusions and outlook

In this thesis we calculated some exact and approximate physical quantities
in one-dimensional models with broken and deformed symmetries.

For a Lieb-Liniger gas in an external longitudinal harmonic potential, we
obtained the first-order correction to the ground state energy and chemical
potential near the limit of infinite repulsion ¢ — co. After applying a fermion-
boson mapping to transform the bosonic wavefunction into a fermionic one,
we obtained a hamiltonian with a pseudopotential term proportional to 1/c.
Thus, we were able to use ordinary perturbation theory to obtain the first-order
1/c correction to the ground state energy. Our main result (2.17) was obtained
for any number of bosons N. This correction was demonstrated to coincide
with the Thomas-Fermi result when v/N/c¢ < 1 for N > 10. Additionally,
we remarked that the ground state energy Fy/N? is a function of VN /c in
the Thomas—Fermi approach as a consequence of energy being an extensive
quantity at thermodynamic equilibrium. In principle, this perturbation-based
method can also be applied to other trapping potentials for the strongly re-
pulsive Lieb-Liniger gas. The practicality of such an approach depends on
two considerations. First is the solvability of the corresponding free-fermionic
model. Second is the ease of calculating the necessary matrix elements.

Next, we quantified the entanglement that can be extracted from the
ground state of the periodic Lieb-Liniger model after the particle number

in half the length of the gas is measured. This entanglement arises from quan-

85



tum correlations due to the interaction between particles. Among the possible
measurement results with & bosons in partition A and (N — k) in partition
B, the balanced state with N/2 in each partition is the most probable. This
balanced state also has more entanglement entropy than the other unbalanced
states. For a given number of bosons, entanglement in the system increases
with repulsion strength until it saturates at the impenetrable limit. In addi-
tion, we obtained a formula for the reduced density matrix of the projected
state in terms of overlap matrices of linearly independent block state vectors
(3.75). This expression leads to an upper bound for the von Neumann entropy
in the projected state, Syn < log (]IX) This analysis applies to other many-
body states that are represented by a class of Bethe ansitze with factorable
Bethe amplitudes.

Finally, we evaluated the entanglement entropy and entanglement spec-
trum in blocks of the VBS] ground state of the g-deformed spin-s Affleck—
Kennedy-Lieb—Tasaki model. We were able to obtain exact analytic results
in the double scaling limit, spin-1 case, and isotropic limit ¢ = 1. There
is no entanglement in the fully deformed classical limit ¢ — 0". The en-
tanglement entropy decreases monotonically as the anisotropy parameter ¢
decreases from 1 to 07, while it increases monotonically with block length
. Hence, the entanglement entropy in a spin-s VBS] state is a maximum
Svn = Sr(a) = 2log(s+1) at the isotropic and double scaling limit (¢ = 1 and
¢ — o00). These behaviors were interpreted in terms of effective models with
interacting spin-s/2’s at the boundaries of the block. The quantity 1/[logq| is
the rescaled temperature of the effective thermal model describing the block.
In this picture, the isotropic limit corresponds to infinite temperature and the
classical limit corresponds to zero temperature. To obtain these results, we
used a formula (4.19) for the reduced density matrix that we derived in terms
of the D? x D? transfer matrix of a matrix product state. This approach
can therefore be used to study entanglement in other translationally invariant

matrix product states.
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