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Abstract In this work, we present a f (G, T ) gravity-based
reconstruction of Barrow Holographic Dark Energy (BHDE).
This approach extends the conventional HDE model by
replacing the standard Bekenstein–Hawking entropy with
Barrow entropy, which encapsulates quantum gravitational
corrections to the geometry of black hole horizons. We
explore the cosmological dynamics of a spatially flat
Friedmann–Robertson–Walker background filled with a pres-
sureless dust fluid, considering both conserved and non-
conserved energy–momentum tensor models. To this end, we
employ the Hubble horizon as the infrared cutoff and adopt
a power-law ansatz for the scale factor. We then investigate
the evolution of key cosmological parameters, including the
equation-of-state parameter ωGT , the deceleration parameter
q, and the squared sound speed v2

s . Furthermore, we explore
the dynamical behavior in the ωGT -ω′

GT phase space. In the
case of conserved energy–momentum tensor, our findings
indicate that the BHDE model evolves from a quintessence-
like regime into the phantom domain. This transition sup-
ports the current accelerated expansion of the Universe and
offers an improvement over the original HDE model, which
does not adequately account for the observed phenomenol-
ogy. The corresponding ωGT -ω′

GT trajectory lies within the
freezing region of the phase space. On the other hand, within
the non-conserved framework, the BHDE model exhibits
phantom-like behavior in the early Universe, subsequently
evolving toward either a cosmological constant-like state or
a quintessence-like regime. Notably, unlike the conserved
scenario, the squared sound speed v2

s asymptotically attains
positive values in the far future, signifying a stable configu-
ration. Moreover, the trajectory in the ωGT -ω′

GT phase space
displays a thawing behavior. Finally, we evaluate the obser-
vational viability of our results and compare them with pre-
dictions from alternative reconstructed dark energy models.
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1 Introduction

The observed accelerated expansion of the present Universe
[1–6] remains one of the most profound challenges in modern
cosmology. Despite significant efforts, a definitive explana-
tion for the origin of this phenomenon has yet to be estab-
lished. Broadly, two main approaches have been proposed
to address this issue. The first involves modifications to the
geometric sector of the Einstein–Hilbert action, leading to a
variety of frameworks collectively known as Extended The-
ories of Gravity [7]. The second approach introduces addi-
tional degrees of freedom in the matter sector, giving rise
to dynamical dark energy (DE) models. Within this latter
category, a particularly promising candidate is the so-called
Holographic Dark Energy (HDE) scenario [8–27], which is
grounded in the application of the holographic principle at
cosmological scales. More recently, hybrid frameworks have
been developed by embedding HDE into various modified
gravity theories, including f (R) [28], f (T ) [29], f (R, T )

[30,31] and f (G) [32] gravity, among others (here, R, G
and T denote the Ricci scalar, the Gauss–Bonnet invariant
and the trace of the energy–momentum tensor, respectively).

In its original formulation, HDE relies on the use of
Bekenstein–Hawking entropy for the horizon degrees of free-
dom of the Universe, and adopts the Hubble horizon as
the infrared (IR) cutoff. However, as shown in [9–11], this
framework fails to reproduce the observed phenomenology
of the Universe, thereby necessitating appropriate modifi-
cations. Initial efforts to address this issue have explored
the adoption of alternative IR cutoffs or the introduction
of interactions between the dark sectors of the Universe
(see [21,33] for a review). Recently, motivated by statis-
tical considerations, various alternative models have been
proposed based on generalized entropy formalisms, includ-
ing Tsallis [34–39], Kaniadakis [40–43] and Barrow [44–
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53] entropies. It is important to note that, although these
models may exhibit certain mathematical similarities, their
underlying physical principles differ significantly. Specifi-
cally, they are inspired by nonextensive statistical mechanics
(Tsallis), relativistic statistical frameworks (Kaniadakis) and
quantum gravitational considerations (Barrow), respectively.
In particular, Barrow entropy arises from the idea that quan-
tum gravitational effects may deform the geometry of the
horizon at small scales, leading to a fractal-like structure in
spacetime [54]. This deviation from standard Bekenstein–
Hawking entropy offers a phenomenological window into
possible quantum corrections to gravitational dynamics.

While many extended HDE models based on entropy
deformations can be tuned to achieve empirical consistency
through specific choices of deformation parameters, their
lack of an underlying Lagrangian formulation raises ques-
tions about why they should be regarded as fundamentally
well-founded theories. A promising strategy to overcome
this limitation consists in employing reconstruction meth-
ods [25,55,56]. This approach involves comparing the rel-
ative energy densities of extended HDE models and modi-
fied gravity theories to obtain an effective Lagrangian capa-
ble of reproducing the entire cosmic evolution. For instance,
Tsallis HDE has been extensively studied within the frame-
works of f (R) [57], f (R, T ) [58], f (G, T ) [59], teleparallel
[60], Brans–Dicke [61] and tachyon field [62] gravity, yield-
ing a rich and diverse cosmological phenomenology. More
recently, analogous methodologies have been applied to the
study of black hole physics [63]. By contrast, comparatively
less attention has been devoted to the Barrow HDE (BHDE)
framework, with only a limited number of theoretical con-
texts explored thus far [64–70]. Nonetheless, this approach
holds potential for offering valuable insights into the for-
mulation of a consistent Lagrangian description of quantum
gravity effects, owing to the fundamental motivations behind
Barrow’s conjecture [54].

Motivated by these premises, in this paper we propose a
reconstruction of BHDE within the framework of f (G, T )

gravity [71], which has demonstrated strong potential in
addressing the challenges posed by General Relativity in
the context of quantum gravity [72–75]. This makes it
a particularly suitable setting in which to investigate the
effects induced by Barrow entropy. As a specific background,
we consider a spatially flat Friedmann–Robertson–Walker
(FRW) Universe filled with a pressureless dust fluid. The
cosmic evolution of this system is examined for both con-
served and non-conserved energy–momentum tensor mod-
els, with particular emphasis on the observational viability
of the resulting predictions. Furthermore, we compare our
findings with those of other reconstructed dark energy mod-
els, emphasizing the distinctive advantages of our framework
in reproducing key observational features of cosmic evolu-
tion.

The remainder of this work is organized as follows. To
establish the reconstruction paradigm connecting f (G, T )

gravity and BHDE, Sect. 2 presents the essential features of
both frameworks. The effective reconstruction procedure is
then carried out in Sect. 3. In Sect. 4, we analyze the cos-
mological dynamics of the extended HDE model by evaluat-
ing the equation-of-state (EoS) parameter ωGT , the deceler-
ation parameter q and the squared sound speed v2

s , as well as
by examining the evolutionary trajectories in the ωGT -ω′

GT
phase space. In Sect. 5, we derive observational constraints
on the model parameters using a dataset of 57 Hubble param-
eter measurements. Final remarks and future perspectives are
presented in Sect. 6. Additional mathematical details are pro-
vided in the Appendix A. Throughout this work, we adopt
natural units.

2 Basics of f (G, T ) gravity and barrow holographic
dark energy

Let us begin by reviewing f (G, T ) gravity. To this end, we
shall refer to the analysis presented in [59] for notation. The
fundamental feature of f (G, T ) gravity lies in the incor-
poration of curvature-matter coupling within the framework
of modified Gauss–Bonnet theory, consistent with insights
derived from string theory [71]. In this context, the gravita-
tional Lagrangian is formulated by introducing an appro-
priate function f (G, T ) into the Einstein–Hilbert action,
thereby yielding

S =
∫

d4x (−g)
1
2

(
R + f (G, T )

2κ2 + Lm

)
, (1)

where g and κ are the determinant of the metric tensor and
the coupling constant, respectively, while Lm is the matter
Lagrangian. To streamline the notation, we henceforth set
κ = 1, and denote f (G, T ) simply by f, whenever no ambi-
guity arises.

The variation of the action (1) with respect to the metric
tensor yields the corresponding field equations

Rαβ − R

2
gαβ = Tαβ + gαβ

2
f − (

Tαβ + �αβ

)
fT

+ (
4Rχβ R

χ
α − 2RRαβ + 4RαχβηR

χη − 2Rχηγ
α Rβχηγ

)
fG

+ (
4Rαβ − 2Rgαβ

)
� fG + 2R∇α∇β fG − 4Rχ

β ∇α∇χ fG

−4Rχ
α ∇β∇χ fG + 4gαβ R

χη∇χ∇η fG − 4Rαχβη∇χ∇η fG ,

(2)

whereTαβ is the energy–momentum tensor,�αβ=gσξ

(
δTσξ

δgαβ

)
,

∇η represents the covariant derivative and � = ∇η∇η is the
D’Alembert operator. Furthermore, we have denoted by fG
and fT the partial derivatives of f with respect to G and T,

respectively.
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By taking the covariant divergence of the field equations,
we derive the associated conservation equation

∇αTαβ = fT
1 − fT

[(
�αβ + Tαβ

)∇α log fT − gαβ

2
∇αT

+∇α�αβ

]
. (3)

For a spatially flat Friedmann–Robertson–Walker (FRW)
Universe with a perfect fluid matter configuration, the field
equations take the form

3H2 = ρ + ρGT ≡ ρe f f , (4a)

−
(

2Ḣ + 3H2
)

= p + pGT ≡ pef f , (4b)

where H = ȧ/a is the Hubble parameter, a is the time-
dependent scale factor and we have defined the f (G, T )

gravity-induced corrections as

ρGT = f

2
+ (ρ + p) fT − G

2
fG + 12H3Ġ fGG

+ 12H3Ṫ fGT , (5)

pGT = − f

2
+ G

2
fG − 8H

(
Ḣ + H2

) (
Ġ f GG + Ṫ fGT

)

−4H2
(
Ġ2 fGGG + 2ĠṪ fGGT + T̈ 2 fGT T

+G̈ fGG + T̈ fGT
)
, (6)

with

G = 24H2
(
H2 + Ḣ

)
, (7)

T = ρ − 3p. (8)

As per the usual convention, an overdot represents differen-
tiation with respect to the cosmic time t. It is straightforward
to verify that Eqs. (4) are consistent with the standard cos-
mological dynamics in the limiting case where our extended
theory of gravity reduces to general relativity.

In the above setting, the conservation equation (3) for per-
fect fluid configuration can be expressed as

ρ̇ + 3H(ρ + p) = − 1

1 − fT

[(
ṗ + Ṫ

2

)
fT + (ρ + p) ḟT

]
.

(9)

Once the functional form of f (G, T ) is specified, this equa-
tion serves as a key element in the subsequent reconstruc-
tion framework. Following [59], we consider the two specific
forms given below:

f (G, T ) = f1(G) + f2(T ) (Model I), (10)

which potentially involves minimal coupling between curva-
ture and matter contents of the Universe, ensuring that the
interaction remains purely gravitational in nature. The cho-
sen form of the generic function is not only manageable but
also offers a clearer explanation of the present cosmic accel-
eration [76,77].

On the other hand, we shall consider

f (G, T ) = F(G) + ηT, (Model II), (11)

which simplifies to standard f (G) gravity in the limit as the
arbitrary constant η → 0. Note that the Model I typically cor-
responds to a configuration in which the energy–momentum
tensor is conserved, provided a suitable choice of the func-
tion f2(T ) that ensures the vanishing of the covariant diver-
gence, ∇μTμν = 0. This constraint is nontrivial and imposes
specific functional dependencies between the gravitational
Lagrangian and the trace T of the energy–momentum ten-
sor. By contrast, Model II encompasses scenarios where the
non-minimal matter-geometry coupling gives rise to a non-
conserved energy–momentum tensor. In such cases, the extra
force arising from the non-conservation term may lead to sig-
nificant phenomenological consequences [71].

2.1 Barrow holographic dark energy

The Holographic Dark Energy (HDE) paradigm is theoreti-
cally grounded in the holographic principle [78–80], which
emerges from considerations in quantum gravity. This prin-
ciple asserts that the physical description of a spatial region
– along with all physical quantities defined within it – is
not determined by its volume, but rather by the degrees of
freedom encoded on its lower-dimensional boundary. When
applied to cosmology, this principle implies that the number
of degrees of freedom – and consequently the entropy – of
the Universe scales with the area of its horizon rather than
its volume. That is, S ∼ A = 4πL2, where L denotes a
characteristic cosmological length scale.

In accordance with this prescription, the energy content
of the Universe, including that of dark energy (DE), should
be described using quantities defined solely on its boundary.
Consequently, the construction of the DE density ρDE relies
on two fundamental quantities: the reduced Planck mass Mp

(assumed to be unity under our units convention), which nat-
urally emerges as the fundamental mass scale in quantum
gravity, and the cosmological length scale L , which serves as
the infrared (IR) cutoff and encodes the size of the observable
Universe [21]. Based on these considerations, and invoking
the holographic bound, the total energy within a region of size
L must not exceed the limit prescribed by the Bekenstein–
Hawking relation, implying the inequality ρDE L4 ≤ S. Sat-
urating this bound yields the standard expression for holo-
graphic dark energy

ρDE = CL−2, (12)

where the model-dependent parameter C has dimensions
[L]−2 and must be constrained observationally [11].

Recently, significant attention has been devoted to gener-
alizations of the HDE framework arising from modifications
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to the underlying entropy-area relation. In particular, Bar-
row [54] proposed that quantum fluctuations may deform the
black hole geometry in such a way that the entropy associ-
ated with the horizon receives a power-law correction, which
encodes information about the intricate, potentially fractal
nature of spacetime at the quantum level. This leads to a
generalized entropy formula of the form

S� ∼ A1+ �
2 , (13)

where � ∈ [0, 1] is the so-called Barrow exponent, which
quantifies the degree of quantum-gravitational deformation.
The case � = 1 represents the maximal deviation from the
standard entropy-area relation, which is recovered in the limit
� = 0. Moreover, in the regime of small �, the Barrow
entropy can be expanded as S� ∝ A

(
1 + �

2 log A
)+O(�2).

Interestingly, entropy expressions involving logarithmic cor-
rections are a common outcome across a wide range of
quantum gravity theories, including string theory [81], loop
quantum gravity [82], the AdS/CFT correspondence [83]
and frameworks based on generalized uncertainty principles
[84]. Additionally, the logarithmic structure emerges natu-
rally from computations of entanglement entropy in four-
dimensional spacetime within the ultraviolet (UV) limit [85].
This suggests that such correction terms may represent a uni-
versal signature of quantum gravitational effects. Therefore,
although in the subsequent analysis the entropy deformation
is interpreted within the framework of Barrow’s formula-
tion as originating from quantum fluctuations on the horizon
surface, the underlying mechanisms and resulting conclu-
sions are expected to exhibit broad applicability across a wide
range of quantum gravity theories.

Although the Barrow model was initially proposed in the
context of black hole theory, it has been widely applied to the
geometry of the Universe’s horizon, motivated by the deep
connection between gravity and thermodynamics [44–53].
When the Barrow entropy is used in place of the usual area
law, the bound (12) becomes [44]

ρ�L4 ≤ S� 
⇒ ρ� = CL�−2, (14)

where C must now carry dimensions of [L]−2−� to ensure
dimensional consistency. In what follows, we shall refer to
the HDE model constructed using Barrow entropy as Barrow
Holographic Dark Energy (BHDE).

A central feature of the HDE framework is the choice of
the IR cutoff scale L , which plays a crucial role in shaping
the resulting cosmological dynamics. In its original formu-
lation [11], the Hubble horizon L = H−1 was adopted as
the IR cutoff. Although this choice is conceptually simple
and geometrically well-motivated, it has been shown to be
phenomenologically inconsistent with current observations,
as it fails to yield a sufficiently negative equation of state
to account for the Universe’s accelerated expansion [12]. To

address this shortcoming, various alternative definitions of L
have been proposed. A prominent example is the future event
horizon [11], which successfully produces acceleration but
introduces non-locality and a degree of circular reasoning in
its formulation. Another widely discussed approach is based
on the Ricci scalar curvature, leading to Ricci HDE models
[86], which are more local in nature and can achieve obser-
vational consistency under suitable conditions.

Despite the known shortcomings of adopting L = H−1

in the standard HDE scenario, we retain this choice in the
present analysis. We demonstrate that, within the BHDE
framework, it becomes viable for suitable values of the model
parameters. Indeed, the deformation introduced by Barrow
entropy enriches the underlying phenomenology, allowing
our model to successfully account for late-time cosmic accel-
eration. This constitutes a significant improvement over the
conventional HDE formulation constrained by the standard
area-law entropy.

Hence, by setting L equal to the Hubble radius in Eq. (14),
we find

ρ� = CH2−�, (15)

which provides the key input for the reconstruction procedure
carried out below.

3 Reconstruction models of BHDE in f (G, T ) gravity

In what follows, we reconstruct the Barrow Holographic
Dark Energy (BHDE) model within the framework of
f (G, T ) gravity, employing the energy density given in
Eq. (15) and assuming a perfect fluid configuration with dust
matter (p = 0). The analysis is carried out separately for the
two models introduced in Eqs. (10) and (11), respectively.

3.1 Model I

For the function f (G, T ) in Eq. (10), the corresponding field
equations are provided in Eq. (4) with p = 0 and [59]

ρGT = f1(G) + f2(T )

2
+ ρ f2T (T )

−G

2
f1G(G) + 12H3Ġ f1GG(G), (16)

pGT = − f1(G) + f2(T )

2
+ G

2
f1G(G)

−4H
[
2
(
Ḣ + H2

)
Ġ + HG̈

]
f1GG(G)

−4H2Ġ2 f1GGG(G). (17)

In turn, Eq. (9) turns out to be

ρ̇ + 3Hρ = − 1

1 − f2T (T )

[
Ṫ

2
f2T (T ) + T ḟ2T (T )

]
. (18)
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In order for the Lagrangian (10) to be consistent with the
conservation of the energy–momentum tensor, the right-hand
side of the above expression must be taken equal to zero, i.e.
[59]

ρ̇ + 3Hρ = 0, (19)

along with the further constraint

f2T (T ) + 2T f2T T (T ) = 0 
⇒ f2(T ) = η1T
1/2 + η2,

(20)

where ηi (i = 1, 2) are integration constants.
At this stage, in order to proceed with the analytical eval-

uation, we follow [87–91] and adopt a power-law ansatz for
the scale factor, expressed in the form

a(t) = a0 (τ − t)m , m > 0, (21)

where τ > t denotes a finite future time (see below more
details) and we set a0 = 1.1 Some comments are in order
here: first, although alternative forms of the scale factor have
been considered in the literature (e.g., [92,93]), many of
these ultimately exhibit behavior that can be characterized, at
least asymptotically or effectively, by power-law dynamics.
Notably, the form (21) encompasses a broad range of cos-
mological phenomena, enabling the description of various
evolutionary phases of the Universe depending on the value
of the parameter m. Specifically, it corresponds to an accel-
erated expansion for m > 1, while indicating a decelerated
era for 0 < m < 1. In particular, the case m = 2

3 repre-
sents a dust-dominated Universe, and m = 1

2 corresponds to
a radiation-dominated phase.

Using Eq. (21), we derive explicit expressions for the Hub-
ble parameter, the total energy density and the Gauss–Bonnet
invariant as [59]

H = − m

τ − t
, ρ = ρ0 (τ − t)−3m ,G = 24m3 (m − 1)

(τ − t)4 . (22)

These relations clearly illustrate the central physical role
played by the parameter τ : it represents a finite-time future
singularity. Specifically, while the scale factor a(t) itself van-
ishes as t → τ−, the Hubble parameter, its time derivative,
the total energy density and higher-order curvature invariants
(such as the Gauss–Bonnet scalar) all diverge. This behav-
ior is characteristic of a Type III finite-time singularity [94].
The inclusion of this singularity time is not arbitrary; rather,
it reflects a well-motivated physical scenario within non-
standard cosmologies, particularly in theories with phantom-
like behavior or exotic matter-geometry couplings. It sets a
natural time scale governing the evolution and signals the
breakdown of the classical description near t → τ, where

1 The subscript 0 indicates the present value of the quantities to which
it refers.

quantum gravity effects or ultraviolet (UV) completions may
become relevant.

Now, the reconstruction paradigm is based on the identi-
fication of the BHDE and f (G, T ) energy densities, given
by Eqs. (15) and (16), respectively. From the former, and by
making use of Eq. (22), we are led to the following expres-
sions [59]

ρGT = C

(
− m

τ − t

)2−�

, pGT = m (2 − 3m)

(τ − t)2 . (23)

By further implementing the constraint (20) on f2(T ) in
Eq. (16), the differential equation in f1(G) resulting from
the reconstruction scheme is given by

12H3Ġ f1GG(G) − G

2
f1G(G) + f1(G)

2
+ η1T

1/2

+η2

2
= CH2−� = C

(
− m

τ − t

)2−�

, (24)

where we have used Eq. (8).
Using the ansatz (21), upon performing algebraic manip-

ulations, we obtain the following expression for f1(G):

f1(G) = c1G + c2G
1−m

4

+ 1

12 (m + 3)

⎧⎪⎨
⎪⎩54− (2+�)

4 Cm

⎡
⎣− m

6
[
m3 (m − 1)

] 1
4

⎤
⎦

−(2+�)

×
[

4 (3 + m)

(1 + m − �) (2 + �)

]
G

2−�
4

+ 24

(
2

3

) m
8

η1ρ
1
2

0 (m − 1)
[
m3 (m − 1)

]− 3m
8

×
[

2−m
(

8

3m − 8

)
− 76− m

4

(
8

5m − 2

)]
G

3m
8

−12η2 (m − 1)

(
m − 5

m − 1

)⎫⎪⎬
⎪⎭ , (25)

where ci (i = 1, 2) are integration constants. From this
relation, we infer that within our gravitational framework,
the Barrow parameter is constrained to take integer values.
According to the Barrow model, this condition would imply
choosing either � = 0 (corresponding to the Bekenstein–
Hawking area law) or � = 1. Although recent extensions
of the Barrow model accommodating negative values of �

have been investigated [53], in this work we adhere strictly
to the original formulation and focus on the case � = 1. This
choice allows us to maximize the cosmological impact of the
extended entropy under investigation (for the choice of the
remaining parameters and constants, we refer the reader to
[59]).

As a final step, the reconstructed f (G, T ) model is
obtained by replacing Eqs. (20) and (25) in Eq. (10). The
resulting expression is given in Eq. (A1) in the Appendix. The

behavior of f (G, T ) as a function of the redshift z = 1 − a

a
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Fig. 1 The evolution of f (G, T ) in Model I for the parameter choice
c1 = 0.25, c2 = −1.5, ρ0 = 0.015, η1 = 1.5, η2 = −3.2 and � = 1
(solid lines). The corresponding curves for � = 0 are depicted with
dashed lines. Different colors (online) represent distinct values of m, as
indicated in the legend

is plotted in Fig. 1 for different values of m > 1, in order
to ensure consistency with a DE-dominated description of
the Universe’s expansion. We observe that the curves grad-
ually decrease with decreasing redshift and approach zero
at the present epoch z = 0, indicating a physically realistic
model. Furthermore, it can be noted that higher values of the
parameter m correspond to higher values of f (G, T ), with
the deviation from the standard � = 0 curves (dashed lines)
becoming increasingly pronounced at higher redshift. This

behavior is consistent with the expectation that the most sig-
nificant effects of this quantum gravity model would manifest
during the early stages of the Universe’s evolution.

3.2 Model II

The specific form of f (G, T ) given in Eq. (11) corresponds
to a non-conserved energy–momentum tensor scenario. In
fact, in this case, the coupling between curvature and matter
(through the trace T ) induces a non-trivial interaction. As a
result, the field equations reduce to the form (4), with the
corresponding energy density and pressure given by

ρGT = 3ηT + F(G)

2
− G

2
FG(G) + 12H3ĠFGG(G), (26)

pGT = −ηT + F(G)

2
+ G

2
FG(G)

−4H
[
2
(
Ḣ + H2

)
Ġ + HG̈

]
FGG(G)

−4H2Ġ2FGGG(G), (27)

while the continuity equation (9) becomes [59]

ρ̇ + 3Hρ =
[
− η

2 (1 − η)

]
Ṫ 
⇒ ρ = ρ0 (τ − t)

6m(1−η)
η−2 .

(28)

Following the same recipe as above, let us equate Eqs. (15)
and (26). By further using Eqs. (21) and (28), after some
algebra we get

G2FGG(G) + (m − 1)G

4
FG(G)

− (m − 1)

4
F(G)

−
[

G

24m3 (m − 1)

] 3m(η−1)
2(η−2) 3ηρ0 (m − 1)

4

+
[
C (m − 1)

2

][
− 1

24m3

(
G

m − 1

) 1
4
]2−�

= 0, (29)

whose solution is provided by

F(G) = c1G + c2G
1−m

4 +
{

− mC

[
− 1

12

(
m

m − 1

) 1
4
]−(2+�) { [

mη2 (21m − 17) + η
(
−45m2 + 53m − 8

)

+ 21− 5
4 (2+�)3− 3

4 (2+�)
(

12m2 − 19m + 4
) ] + 2η2864− 2+�

4

}
G

2−�
4

+36 (m − 1) 6−m(η−1)
2(η−2) [� − (m + 1)]

[
1

m3 (m − 1)

] 3m(η−1)
2(η−2)

48−m(η−1)
η−2 η (η − 2)2 ρ0

(
2 + �

2

)
G

3m(η−1)
2(η−2)

}

× 1

3 (2 + �) [� − (m + 1)] [4 + 3m (η − 1) − 2η] [2 − η + mη (7η − 8)]
. (30)

The reconstructed BHDE f (G, T ) model is obtained by
adding the term ηT to the above expression. The resulting
function, which is presented in Eq. (2) of the Appendix, is
plotted against the redshift parameter in Fig. 2 for various
values of m. The observed behavior, where the reconstructed
f (G, T ) takes decreasing negative values with increasing
redshift z, approaching zero as z → 0, is physically mean-
ingful within the framework of modified gravitational the-
ories. Specifically, the fact that f (G, T ) is negative and
its magnitude increases in the early Universe suggests an
effective gravitational modification that acts analogously to
a fluid with negative pressure or energy density. Such behav-
ior could imply an effective repulsive gravitational interac-
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Fig. 2 The evolution of f (G, T ) in Model II for the parameter choice
c1 = 0.25, c2 = −1.5, ρ0 = 0.015, η = −3 and � = 1 (solid lines).
The corresponding curves for � = 0 are depicted with dashed lines.
Different colors (online) represent distinct values of m, as indicated in
the legend

tion, potentially driving accelerated expansion phases (e.g.,
inflationary scenarios) in the early Universe. As the Universe
evolves toward the present epoch (z → 0), these gravita-
tional modifications diminish, thereby recovering standard
general relativity at late times, consistent with current obser-
vational constraints. Conversely, in scenarios where f (G, T )

is positive and grows with increasing redshift, as observed
for Model I, gravitational modifications would manifest as
enhanced gravitational attraction at early cosmic times. This
latter framework could influence cosmic structure formation
in a distinct manner, potentially giving rise to unique obser-
vational signatures in matter clustering and galaxy formation
processes.

From this perspective, a more comprehensive analysis
would require examining the evolution of small density per-
turbations and the subsequent formation of large-scale struc-
tures in the early Universe. Indeed, the growth rate of these
structures from initial density fluctuations constitutes one
of the most rigorous observational probes for distinguishing
among competing cosmological models [95]. Specifically, it
would be particularly valuable to explore whether, by suitably
fine-tuning the model’s free parameters, our extended gravi-
tational framework can effectively contribute to resolving the
well-known σ8 tension between the amplitude of matter den-
sity fluctuations inferred from early-Universe observations
and the comparatively lower values derived from late-time
cosmological measurements [96]. A detailed investigation
into this issue goes beyond the scope of the present work and
will be addressed in a forthcoming study.

Fig. 3 The evolution of ωGT in Model I. Different colors (online)
represent distinct values of m, as indicated in the legend

4 Cosmological evolution of reconstructed BHDE
f (G, T ) models

We now explore the cosmic evolution of the above recon-
structed BHDE f (G, T ) models. Specifically, we analyti-
cally compute the EoS parameter, the deceleration parameter
and the squared sound speed, and investigate the evolution
trajectories of ωGT − ω′

GT phase plane.

4.1 Model I

The equation-of-state (EoS) parameter is defined as the ratio

ωGT = pGT

ρGT
, (31)

which, within our f (G, T ) gravity-based reconstruction of
the BHDE, coincides with ωGT = pGT /ρ�. By resorting to
Eqs. (16), (27), (20) and (25), we obtain the explicit expres-
sion of ωGT as presented in Eq. (3) of the Appendix.

The dynamics of ωGT is plotted in Fig. 3 for different
values of m. We can see that, in the present model, BHDE
evolves from a quintessence-like phase (−1 < ωGT <

−1/3) at late time to cosmological constant (ωGT = −1) and
phantom regime (ωGT < −1) at present. The ability of the
dark energy component to exhibit a phantom-like equation
of state at the current epoch represents a compelling feature
of our model, as it offers a potential pathway for addressing
the longstanding H0 tension between early- and late-time
cosmological observations [97]. Specifically, phantom dark
energy has been shown to enhance the rate of late-time cos-
mic acceleration,
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thereby increasing the value of H0 inferred from Cosmic
Microwave Background (CMB) data and alleviating the dis-
crepancy with local determinations of the Hubble constant
[96,98].

Furthermore, largely negative values of the EoS param-
eter in the far future indicate that the Universe might end
up with a big-rip or remain in the same current accelerat-
ing status. By comparison with [59], we notice that such a
behavior differs from the one exhibited in f (G, T ) gravity-
based reconstruction of Tsallis HDE, which is found to lie
always in the phantom domain. On the other hand, a simi-
lar evolution is obtained within the framework of BHDE in
Brans-Dicke Cosmology with a linear interaction [50] and
in Bianchi type-I BHDE in symmetric teleparallel gravity
[64]. Quantitatively speaking, we observe that our model
predicts ωGT 0 ∈ [−1.43,−1.34] for the considered values
of m, which overlaps with ωDE0 ∈ [−1.95,−1.03] sug-
gested by multiple independent experimental probes (TT, TE,
EE+lowE+lensing) [99].

To further enrich the cosmographic analysis, we now pro-
ceed to compute the deceleration parameter

q = − ä

aH2 = −1 − Ḣ

H2 . (32)

This relation shows that positive values of q correspond to a
decelerated expansion of the Universe (ä < 0), while neg-
ative values indicate an accelerated phase (ä > 0). For the
present model, the deceleration parameter is given by the
expression in Eq. (4).

The evolution of the deceleration parameter q is shown
in Fig. 4, demonstrating that the present model successfully
captures the current accelerated expansion of the Universe.
Notably, this represents a key advantage of the BHDE sce-
nario with the original choice of the Hubble radius as the
IR cutoff, in contrast to the standard HDE model, which
fails to account for the observed late-time acceleration. In
particular, we find q0 ∈ [−1.64,−1.51] at the present
epoch, a result that shows closer agreement with the estimate
q0 = −1.08 ± 0.29 derived from supernovae observations
[101], compared to the �CDM prediction of q0 ≈ −0.55
[99]. It should also be noted that the present model does not
appear to reproduce the decelerated expansion phase (q > 0)
of the early Universe. However, this limitation is expected to
be naturally addressed by extending the present HDE model
to include the radiation component in the Universe’s energy
budget. Indeed, incorporating radiation in BHDE description
is essential for accurately capturing the early-time dynamics
and ensuring a cosmic evolution that remains consistent with
observations across all redshifts [44,100].

Let us now turn our attention to the squared sound speed,
a key quantity in the analysis of cosmological models, as it
determines how perturbations propagate within the cosmic
fluid. Specifically, it describes the response of pressure to

Fig. 4 The evolution of q in Model I. Different colors (online) repre-
sent distinct values of m, as indicated in the legend

changes in energy density, thereby influencing the dynamics
of structure formation and the overall stability of the model.
In this context, the sign of v2

s becomes particularly relevant.
A positive squared sound speed (v2

s > 0) ensures that pres-
sure perturbations propagate as real sound waves, implying
that small fluctuations remain under control and do not grow
uncontrollably. This behavior is characteristic of a classically
stable configuration. Conversely, a negative value of v2

s leads
to imaginary sound speeds, which result in exponentially
growing perturbations and potential instabilities [102,103].

To assess this aspect within our framework, we consider
the evolution of the squared speed of sound, defined as

v2
s = ṗGT

ρ̇GT
. (33)

By substituting Eqs. (16), (27), and (19) into Eq. (33), and
using the definition (10) of f (G, T ), we obtain the expres-
sion given in Eq. (5). The evolution of v2

s is shown in Fig. 5
for different values of m, indicating that v2

s < 0 throughout
the considered redshift range.

Although this result indicates the presence of classical
instabilities, it is important to consider the broader context
in which the model operates. First, it should be noted that
the occurrence of negative v2

s over a given redshift range
may reflect a transient feature of the model rather than a
fundamental pathology. If the background evolution remains
well-behaved and the perturbations do not generate signifi-
cant effects, such a feature can be tolerated within acceptable
theoretical margins [102,103]. Most importantly, the anal-
ysis of v2

s should be complemented by a full perturbative
treatment that includes both scalar and metric perturbations,
in order to accurately assess the severity of the instability.
In fact, in some cases, additional dynamical mechanisms –
such as modifications to the effective sound speed, entropy
perturbations or non-adiabatic effects – may act to stabilize
the evolution at the perturbative level, even when v2

s < 0
arises within the adiabatic approximation. Lastly, we note
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Fig. 5 The evolution of v2
s in Model I. Different colors (online) repre-

sent distinct values of m, as indicated in the legend

that a similar feature also arises in other dark energy recon-
struction models based on extended entropies – for instance,
in the case of Tsallis holographic dark energy [59], where
the squared sound speed remains negative over a compara-
ble redshift range. This indicates that classical instabilities
may be a common aspect of related theoretical frameworks,
further motivating a deeper investigation into their underly-
ing dynamics and possible stabilizing mechanisms.

Let us finally analyze the trajectories in the ωGT − ω′
GT

plane, where the prime denotes the derivative with respect to
log a, i.e.

ω′
GT ≡ dωGT

d log a
= −dω

dz
(1 + z) . (34)

This phase-space representation provides a powerful diag-
nostic tool for understanding the dynamical behavior of dark
energy models through the evolution of their effective equa-
tion of state. Originally introduced in [104] in the context of
quintessence, the ωGT −ω′

GT plane enables the classification
of models based on whether they exhibit thawing behavior
(ωGT < 0, ω′

GT > 0) or freezing behavior (ωGT < 0,

ω′
GT < 0). This framework has since been extended to a

broad class of dynamical dark energy models, including those
with non-canonical kinetic terms and entropic corrections
[105–108].

The cosmic trajectories in the ωGT -ω′
GT plane for the

specific values of m considered above are displayed in the
parametric plot of Fig. 6. The figure reveals that the present
model evolves within the freezing region. This behavior is
particularly relevant, as the freezing regime is typically asso-
ciated with a more sustained and stronger acceleration of
the Universe’s expansion compared to the thawing region.
Moreover, this outcome aligns well with previous analyses
in related frameworks, such as the Tsallis holographic dark
energy model [59] and the Bianchi type-I BHDE scenario in
symmetric teleparallel gravity [64].

Fig. 6 The evolution of the ωGT − ω′
GT trajectories in Model I. Dif-

ferent colors (online) represent distinct values of m, as indicated in the
legend

Fig. 7 The evolution of ωGT in Model II. Different colors (online)
represent distinct values of m, as indicated in the legend

4.2 Model II

We now investigate the cosmic evolution of the reconstructed
BHDE f (G, T )model based on Eq. (11). Following the same
procedure as in the previous case, we use Eq. (31) along
with the definitions (26) and (27) to derive the equation-of-
state parameter, whose expression is given in Eq. (6) of the
Appendix.

The evolution of ωGT is shown in Fig. 7 for differ-
ent values of m. Unlike Model I, the reconstructed BHDE
model lies in the phantom regime during the early Universe,
evolving either toward a cosmological constant-like behav-
ior for m = 1.35, or toward a quintessence-like regime for
m = 1.45 as the redshift z decreases. For these values of
m, the present-day equation-of-state parameter lies within
the range ωGT0 ∈ [−1.86,−1.05], which remains in good
agreement with current observational data [99].
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Fig. 8 The evolution of q in Model II. Different colors (online) repre-
sent distinct values of m, as indicated in the legend

In turn, the corresponding expression for the deceleration
parameter is presented in Eq. (7), with its evolution depicted
in Fig. 8. As in Model I, we find that q < 0, indicating
an accelerating phase of cosmic expansion. However, for
the considered values of the model parameters, the present-
day deceleration parameter is found to obey q0 � −1.81,

which appears to deviate from current observational esti-
mates [99,101]. This deviation may indicate limitations in the
parameter selection or foundational assumptions of Model II,
suggesting that further refinement or alternative formulations
may be necessary to achieve better phenomenological con-
sistency. In this context, Model I demonstrates greater com-
patibility with current observational constraints.

The stability analysis of Model II is presented in Fig. 9,
based on the analytic expression of v2

s provided in Eq. (8).
Interestingly, the results indicate that the reconstructed
BHDE model evolves from an unstable configuration (v2

s <

0) in the early Universe to a stable state (v2
s > 0) in the far

future.
Let us finally turn our attention to the cosmic trajectories

in the ωGT -ω′
GT phase space for the specific values of the

parameter m considered in this analysis. These trajectories
are depicted in Fig. 10, which indicates that the present model
evolves within the thawing region. In this regard, we remark
that thawing models are typically associated with scalar field
dynamics in which the equation-of-state parameter departs
from the cosmological constant value ω = −1 at late times,
eventually entering the phantom regime. This is in line with
the dynamics displayed in Fig. 7. Such evolution lends further
support to the phantom dark energy scenario, which has been
proposed as a viable explanation for the observed late-time
acceleration of the Universe.

Fig. 9 The evolution of v2
s in Model II. Different colors (online) rep-

resent distinct values of m, as indicated in the legend

Fig. 10 The evolution of ωGT −ω′
GT trajectories in Model II. Different

colors (online) represent distinct values of m, as indicated in the legend

5 Observational constraints

As discussed above, Model I is favored over Model II based
on its better agreement with observational data, particularly
in terms of the present-day value of the deceleration parame-
ter. To further assess the observational viability of this frame-
work and place constraints on the parameters �,m, and H0,

we analyze the evolution of the Hubble parameter H(z), as
obtained from Eqs. (4) and (5), by fixing the values of η1,

η2 and ρ0 as specified in Sect. 3.The resulting theoretical
prediction is then compared with a dataset comprising 57
measurements of the Hubble parameter in the redshift range
0.07 ≤ z ≤ 2.36.
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These data points are drawn from a variety of sources, includ-
ing 31 determinations based on the Differential Age (DA)
method and 26 obtained via Baryon Acoustic Oscillations
(BAO) and other independent observational techniques [64].

As in [64], we use the statistical R2-test to determine the
best-fit values of the model parameters:

R2 = 1 −
∑57

i=1 [(Hi )ob − (Hi )th]2

∑57
i=1 [(Hi )ob − (Hi )mean]2

, (35)

where (Hi )ob and (Hi )th denote the observed and theoretical
values of the Hubble parameter, respectively. The quantity R2

represents the coefficient of determination and quantifies the
fraction of the variance in the observational data explained
by the model; values close to 1 indicate a good fit.

By minimizing the sum of squared residuals in the numer-
ator of Eq. (35), we obtain the best-fit parameters m = 1.8,

which aligns with the onset of the cosmic acceleration era (as
discussed below Eq. (21)). In turn, within our reconstructed
scenario, this value corresponds to � ∼ O(10−1). Although
the best-fit value of the entropic exponent is not an integer – as
formally required by the present theoretical formulation (see
below Eq. (25)) – this result remains fully compatible with
the physical expectations of the model. Indeed, the restriction
to integer values arises from the need to preserve consistency
within the analytic structure imposed by the specific power-
law ansatz (21), rather than from any fundamental limitation
of the underlying theory. Moreover, the estimated value lies
well within the original Barrow range [0, 1], consistent with
the scale of quantum-gravitational corrections, and may be
interpreted as an effective parameter capturing the dominant
physical effects within this framework.

Interestingly, our estimate is consistent with the result
� = 0.094+0.093

−0.101, obtained in [109] from a phenomenolog-
ical analysis of holographic dark energy based on observa-
tional data from the SNIa Pantheon sample and direct Hubble
parameter measurements via the cosmic chronometers (CC)
method. However, it turns out to be less stringent than the
bounds 0.005 ≤ � ≤ 0.008 [49] and � � 1.4×10−4 [110],
which were derived from baryogenesis and Big Bang Nucle-
osynthesis constraints, respectively. It is important to empha-
size, nonetheless, that these tighter constraints arise from
studies of deformed cosmological models, rather than from
direct applications of the holographic dark energy frame-
work.

From the comparison with observational data presented
in Fig. 11, we can also extract a present-day value of the
Hubble parameter of H0 = 65.1 km s−1 Mpc−1. This value
is more closely aligned with the estimate reported by the
Planck Collaboration, H0 = (67.27 ± 0.60) km s−1 Mpc−1

[99], derived from early-Universe Cosmic Microwave Back-
ground measurements, than with the higher local determina-
tion H0 = (73.04 ± 1.04) km s−1 Mpc−1, obtained from

Fig. 11 Best fit curve of Hubble’s parameter H versus redshift z. Dots
represent observed values, while the blue curve is the theoretical fit

distance-ladder measurements based on Cepheids and Type
Ia supernovae [111].

6 Conclusions and outlook

We have developed a reconstruction of Barrow Holographic
Dark Energy (BHDE) within the framework of f (G, T )grav-
ity, using the Hubble horizon as IR cutoff. This study is moti-
vated by the fact that BHDE offers a nontrivial approach to
explore quantum gravity effects on the cosmological evolu-
tion of the Universe, despite the absence of a corresponding
Lagrangian formulation. In this regard, f (G, T ) gravity pro-
vides an ideal setting for implementing the reconstruction
of BHDE, as it has proven to be a versatile framework for
addressing several fundamental issues inherent in General
Relativity, particularly those connected to the possible quan-
tum nature of gravity [72–75].

As the background geometry for our analysis, we consid-
ered a spatially flat Friedmann–Robertson–Walker (FRW)
spacetime, with a dust fluid configuration, under both con-
served and non-conserved energy–momentum tensor scenar-
ios. To trace the evolutionary dynamics of the Universe in this
context, we adopted a power-law ansatz for the scale factor
and investigated the behavior of key cosmological param-
eters, including the equation-of-state (EoS) parameter, the
deceleration parameter and the squared sound speed. Addi-
tionally, we analyzed the trajectories in the ωGT -ω′

GT phase
plane. For the conserved case (Model I), we found that the
BHDE model exhibits a transition from the quintessence
regime (−1 < ωGT < −1/3) to the phantom regime
(ωGT < −1) as it approaches the present epoch. More-
over, the model consistently supports a late-time accelerated
expansion phase. This behavior represents a notable advan-
tage of the present model over the standard Holographic Dark
Energy framework, which is unable to account for the cur-
rent phase of cosmic acceleration. In addition, the ωGT -ω′

GT
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Table 1 Theoretical and observational values of some cosmological parameters in the current epoch

Model I Model II Experimental constraint

ωGT0 [−1.43,−1.34] [−1.86,−1.05] [−1.95,−1.03] [99]

q0 [−1.64,−1.51] [−10.95,−1.81] [−1.37,−0.79] [101]

ωGT − ω′
GT Freezing Thawing –

H0 65.1 km s−1 Mpc−1 – (67.27 ± 0.60) km s−1 Mpc−1 [99]

trajectories fall within the freezing region, further supporting
the viability and dynamical consistency of the BHDE model
within the f (G, T ) gravity framework.

On the other hand, in the non-conserved case (Model II),
the BHDE model exhibits phantom-like behavior in the early
Universe, subsequently evolving toward either a cosmolog-
ical constant-like state or a quintessence-like regime at late
times. Furthermore, the ωGT − ω′

GT trajectory indicates a
thawing behavior.

Finally, we have examined the phenomenological consis-
tency of the obtained results, showing that Model I is favored
over Model II by observational data, particularly with respect
to the present value of the deceleration parameter. Accord-
ingly, we have employed Model I to constrain the free param-
eters of the framework by analyzing the evolution of H(z).
This was achieved by fitting observational data comprising
57 measurements of the Hubble parameter over the redshift
range 0.07 ≤ z ≤ 2.36, using the statistical R2-test as the
fitting criterion. The best-fit analysis yielded m = 1.85 and
� ∼ O(10−1). From the corresponding best-fit curve, we
also inferred a Hubble constant of H0 = 65.1 km s−1 Mpc−1

within the framework of the present model.
Several aspects remain to be explored. First, since our

model incorporates quantum gravitational corrections into
cosmology through Barrow entropy, it is essential to examine
the results in relation to the predictions of more fundamen-
tal candidate theories of quantum gravity. Furthermore, in
line with the approaches discussed in [112,113], it would be
worthwhile to investigate the thermodynamic implications
of our model and to assess its thermal stability.Table 1 This
analysis is crucial for determining whether the reconstructed
BHDE within f (G, T )gravity can serve as a viable candidate
for explaining the still unknown nature of dark energy. As an
additional perspective, it would also be of interest to extend
the present framework to alternative holographic dark energy
models based on generalized entropies, in order to explore
whether they exhibit common features or distinct behaviors
within modified gravity scenarios.

From an observational standpoint, a natural extension of
this work involves exploring the influence of our modified
gravity model on the evolution of matter perturbations. In this
context, a key objective of our forthcoming work is to investi-
gate whether the present framework can offer insights into the

long-standing σ8 tension-namely, the discrepancy between
the amplitude of matter density fluctuations inferred from
early-Universe observations and the lower values suggested
by late-time cosmological data [96]. Given the modifications
introduced by our extended gravitational model to the Hubble
expansion history, it is reasonable to anticipate notable effects
on the evolution of matter inhomogeneities. This expecta-
tion is supported by analogous findings in various alternative
gravity theories with extended entropies [114–116]. Addi-
tionally, observational constraints from large-scale structure
data – such as galaxy clustering and weak gravitational lens-
ing surveys – can be employed to quantitatively assess poten-
tial deviations from the predictions of the standard cosmo-
logical model. These probes provide complementary infor-
mation on the growth of cosmic structures and can play a
crucial role in testing the viability of extended gravity.

Finally, an intriguing direction involves exploring possi-
ble connections between holographic dark energy models
formulated within extended gravity frameworks and dark
energy phenomena emerging from exotic sectors of particle
physics. In particular, the role of neutrinos has garnered sig-
nificant attention [117–120], especially in scenarios where
their masses vary dynamically due to interactions with a
scalar field driving cosmic acceleration. These models, com-
monly referred to as mass-varying neutrino scenarios, posit
that the mechanism responsible for neutrino mass generation
is deeply intertwined with the dark energy sector. This cou-
pling can lead to nontrivial modifications of the background
cosmological evolution, potentially offering novel solutions
to outstanding problems such as the coincidence problem or
late-time deviations from �CDM. Establishing a theoreti-
cal correspondence between such particle physics-inspired
mechanisms and holographic dark energy within the con-
text of modified gravity could pave the way for a unified
phenomenological framework. This approach may not only
deepen our understanding of dark energy but also provide
testable predictions for future observational surveys. Ongo-
ing work is directed toward developing these ideas further,
and the results will be presented in forthcoming studies.
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Appendix A

This appendix provides mathematical details and explicit
derivations related to the reconstruction of BHDE within the
framework of f (G, T ) gravity.

Reconstructing f (G, T ) gravity

In this section, we aim to reconstruct the functional form
of the gravitational action within the framework of f (G, T )

gravity. For Model I, described by Eq. (10), the full expres-
sion for f (G, T ) can be obtained by combining the con-
straints from Eqs. (20) and (25), resulting in

f (G, T ) = c1G + c2G
1−m
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On the other hand, for Model II presented in Eq. (11), the
reconstructed BHDE f (G, T ) is obtained by adding the term
ηT to Eq. (30), yielding

f (G, T ) = c1G + c2G
1−m
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Cosmological parameters

In the following section, we present an analysis of several rel-
evant cosmological parameters, which provide further insight
into the dynamical behavior and observational viability of the
model.

Model I

Using the definition (31) alongside Eqs. (16), (27), (20)
and (25), we get the following expression of the EoS param-
eter for Model I:
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ωGT = − 1
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The corresponding deceleration parameter, derived from
the definition (32), reads

q = 1
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In order to analyze the stability of the model under small
perturbations, we now focus on the evolution of the squared
sound speed v2

s . By substituting Eqs. (16), (27), and (19) into
Eq. (33), and making use of the definition (10) of f (G, T ),

we obtain
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Model II

Let us now extend the above analysis to Model II, as defined
in Eq. (11). For the equation-of-state parameter, we obtain
the following expression:

ωGT = − 1
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In turn, the deceleration parameter reads

q = 1
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Concerning the squared sound speed v2
s , we finally acquire
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