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Abstract

The main topic of this thesis is the study of de Finetti methods and their applications in

quantum information theory. The primary motivation of a de Finetti representation theorem

is to represent, or approximate, a mathematical object symmetric under permutation of its

components, into a probabilistic ensemble of elementary independent and identically distributed

(i.i.d.) constituents. Approximations are given by finite version of those results, while exact

representations are provided by infinite de Finetti representation theorems. One of their most

common applications in quantum information theory, is the approximation of the set Sep(A : B)

of separable states. To that purpose, the notion of n-extendibility plays a central role. A

quantum state ρAB is said to be n-extendible if there exists a multipartite extension ρABn
1

that

is symmetric with respect to A, i.e., invariant under permutation of the B-systems. While

every separable state is also n-extendible, there exist n-extendible states that are not separable.

Thus, for a fixed n, the set n-Ext(A : B) of n-extendible states provides an outer approximation

to the set of separable states. Moreover, this approximation is computationally efficient, since

it leads to semidefinite programs (SDPs). If we are looking for a better approximation, we can

increase n, and, if we take the limit n→ ∞ we get an exact representation. In other words, a

quantum state that is n-extendible for any n must be separable. In several applications, we

are interested in quantum states that are not only separable, but also subject to additional
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linear constraints. This observation has been the primary motivation of our research, and our

findings include

1. The development of general mathematical techniques that can be used to obtain concrete

constrained de Finetti representation theorems for the desired application.

2. The application of those methods to the problem of approximate quantum error correction.

In particular, we use our framework to develop asymptotically converging SDP hierarchies

that can be used to study the average and worst error cases, as given by the quantum

channel fidelity and a channel distance based on the diamond norm, respectively.

De Finetti reductions are another class of techniques that are used to take advantage of

permutation symmetries. For example, a quantum de Finetti reduction provides an upper

bound to a symmetric quantum state in the form of an integral superposition of product states,

weighted by a factor which is polynomial in terms of the number of copies and exponential in

terms of the local dimensionality. Our research results in this direction include

1. A new de Finetti reduction in presence of an additional system carrying side information,

that can handle various types of linear constraints.

2. The development of entropic techniques that can be used to generate de Finetti represen-

tation theorems from a starting de Finetti reduction. In particular, we use those methods

to obtain a new proof for finite quantum de Finetti theorems.
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Chapter 1

Introduction

The approximation of the set Sep(A : B) of separable states is a common but computationally

hard problem, which arises in many application in quantum information theory (see, e.g.,

[6]). A quantum state ρAB on AB := A ⊗ B is said to be separable, if it can be written as

ρAB =
∑︁

i∈I piσ
i
A ⊗ τ iB, for a probability distribution {pi}i∈I , and quantum states {σiA}i∈I ,

and {τ iB}i∈I . The elements in Sep(A : B) describe unentangled states. Thus, being able to

characterize Sep(A : B) is extremely important in order to understand entanglement, which is

one of the main features of quantum mechanics. Operationally speaking, the characterization

of Sep(A : B) is connected to the formulation of separability tests. A popular approach for

the approximation of Sep(A : B) is via the notion of n-extendibility, where n > 0 is a natural

number. The state ρAB is said to be n-extendible if there exists a quantum state ρABn
1

on

ABn
1 := A⊗B⊗n satisfying the following two conditions

1. TrBn
2
(ρABn

1
) = ρAB,

2. (IA ⊗ UπBn) (ρABn
1
) = ρABn

1
for every π ∈ Sn,

with B1 := B, and Sn denoting the set of permutations acting on n elements (or letters).

23
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Condition 1. implies that ρAB is the local state on the system AB (i.e., ρABn
1

is an extension

of ρAB), while condition 2. requires ρABn
1

to be invariant under permutation of the B-systems

(i.e., ρABn
1

is symmetric with respect to A).

While every separable state is also n-extendible, there exist n-extendible states that are not

separable [24], [52]. Thus, for a fixed n, the set n-Ext(A : B) of n-extendible states provides an

outer approximation to the set of separable states. In other words, for any given n, Sep(A : B)

is a proper subset of n-Ext(A : B)

Sep(A : B) ⊊ n-Ext(A : B). (1.1)

Finite quantum de Finetti theorems quantify the distance between n-Ext(A : B) and Sep(A : B).

Moreover, one obtains convergence in the limit n→ ∞ [75]. More precisely (see [21, Theorem

II.7]), if ρAB ∈ n-Ext(A : B), there exists a probability distribution {pi}i∈I and states ρiA, ρ
i
B,

such that ⃦⃦⃦⃦
⃦ρAB −

∑︂
i∈I

piρ
i
A ⊗ ρiB

⃦⃦⃦⃦
⃦
1

≤
2d2B
n
, (1.2)

where dB denotes the dimension of the Hilbert space B.

This result can be generalized for k ∈ {1, . . . , n− 1} to [21, 57]⃦⃦⃦⃦
⃦ρABk

1
−
∑︂
i∈I

piρ
i
A ⊗

(︁
ρiB
)︁⊗k ⃦⃦⃦⃦⃦

1

≤
2kd2B
n

, (1.3)

which is optimal on k and n for a fixed dimension dB and up to a constant factor1 (see [21,

Theorem II.10]). In other words, if a multipartite state on ABn
1 is symmetric with respect to A,

then the reduced state on the first k systems ABk
1 is close to a separable mixture of independent

1Moreover, in [21, Lemma III.9] the authors prove that the error term must be at least dB
2n

(︂
1− 1

d2
B

)︂
. In

particular, this shows that we cannot obtain a dimension-independent bound for quantum de Finetti theorems,

and the dimensional dependence on dB in (1.2) and (1.3) cannot be exponentially improved.
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and identical states for k sufficiently smaller than n. Notice that, in the asymptotic limit n→ ∞

and holding k constant, the above inequalities reduce to equalities and the approximations

become exact. For our setting, however, we are interested more generally in characterizing

bipartite states that are separable, but subject to linear constraints on the quantum states

ρiA, ρ
i
B as well2.

1.1 De Finetti Theorems with Linear Constraints

In particular, we are interested in the study of constrained bilinear optimization problems of

the form

Q := max Tr

[︄
GAB

(︄∑︂
i∈I

piρ
i
A ⊗ ρiB

)︄]︄
(1.4)

s.t. pi ≥ 0 ∀i ∈ I,
∑︂
i∈I

pi = 1 (1.5)

ρiA ⪰ 0, ρiB ⪰ 0 ∀i ∈ I (1.6)

Tr
(︁
ρiA
)︁
= Tr

(︁
ρiB
)︁
= 1 ∀i ∈ I (1.7)

ΛA→CA

(︁
ρiA
)︁
= XCA

, ΓB→CB

(︁
ρiB
)︁
= YCB

∀i ∈ I, (1.8)

where GAB is a fixed operator, ΛA→CA
, and ΓB→CB

are linear maps (also known as super-

operators), and XCA
, YCB

are the operators defining the linear constraints in combination with

the linear maps. As we see, the optimization is over a subset of Sep(A : B), determined by the

linear constraints

ΛA→CA

(︁
ρiA
)︁
= XCA

, ΓB→CB

(︁
ρiB
)︁
= YCB

∀i ∈ I. (1.9)

2As we will show in Section 4.2, standard de Finetti theorems are not sufficient for our purposes, and new

de Finetti representation theorems are indeed needed to capture the additional linear constraints.
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Clearly, we are interested in the general case where the linear constraints (1.9) are not trivial,

determining a proper subset of Sep(A : B). In order to outer approximate this subset, a

new de Finetti theorem with linear constraints is needed. Thus, we prove the following finite

constrained representation result.

Theorem 1.1.1. Let ρABn
1

be a quantum state, ΛA→CA
,ΓB→CB

super-operators, and XCA
, YCB

operators such that

UπBn
1
(ρABn

1
) = ρABn

1
∀π ∈ Sn symmetric with respect to A (1.10)

ΛA→CA
(ρABn

1
) = XCA

⊗ ρBn
1

linear constraint on A (1.11)

ΓBn→CB
(ρBn

1
) = ρBn−1

1
⊗ YCB

linear constraint on B. (1.12)

Then, we have that⃦⃦⃦⃦
⃦ρAB −

∑︂
i∈I

piσ
i
A ⊗ ωiB

⃦⃦⃦⃦
⃦
1

≤ min
{︁
f(A,B), f(B|·)

}︁√︃(2 ln 2) log (dA)

n
(1.13)

with {pi}i∈I a probability distribution, ρAB = TrBn
2

(︁
ρABn

1

)︁
, log(·) := log2(·), and quantum

states σiA, ω
i
B such that for every i ∈ I:

ΛA→CA

(︁
σiA
)︁
= XCA

and ΓB→CB

(︁
ωiB
)︁
= YCB

. (1.14)

The quantity f(A,B) is known as minimal distortion for the bipartite system AB, and can be

bound as f(A,B) ≤ 18
√
dAdB [17, Lemma 14]. The quantity f(B|·) will then be referred as

minimal distortion with side information for system B, and can be bound as f(B|·) ≤ 2dB [53,

Lemma 8].

We also generalize the above result to k ∈ {1, . . . , n− 1} copies, obtaining the following

bound ⃦⃦⃦⃦
⃦ρABk

1
−
∑︂
i∈I

piσ
i
A ⊗

(︁
ωiB
)︁⊗k ⃦⃦⃦⃦⃦

1

≤ kf(B|·)
√︃
(2 ln 2)

log dA + (k − 1) log dB
n− k + 1

. (1.15)
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Comparing the bound of (1.15) with (1.3), we see that the room for improvement is fairly

limited, i.e., we may be able to improve the square root and the logarithm dependence, but the

overall bound cannot be made exponentially better. Using Theorem 1.1.1 we can generate an

asymptotically converging hierarchy of semidefinite programs that can be used to approximate

Q (1.4). This is formalized by the following theorem.

Theorem 1.1.2. For the SDPs

SDPn := max Tr
[︁
GABρAB1

]︁
(1.16)

s.t. ρABn
1
⪰ 0,Tr(ρABn

1
) = 1 (1.17)

ρABn
1
= UπBn

1

(︁
ρABn

1

)︁
∀π ∈ Sn (1.18)

ΛA→CA

(︁
ρABn

1

)︁
= XCA

⊗ ρBn
1

(1.19)

ΓBn→CB

(︁
ρBn

1

)︁
= ρBn−1

1
⊗ YCB

, (1.20)

we have for d := max{dA, dB} that

0 ≤ SDPn −Q ≤ poly(d)√
n

implying Q = lim
n→∞

SDPn. (1.21)

It is important to realize that the results of Theorem 1.1.1 and Theorem 1.1.2 contain several

degrees of freedom we can choose. Namely, the various underlying Hilbert spaces A,CA, B,CB ,

the operator GAB appearing in the objective function, the two linear maps ΛA→CA
and

ΓBn→CB
, and the operators XCA

and YCB
defining the linear constraints in combination with

the linear maps. Thus, the outlined framework can be used to generate the specific de Finetti

representation theorem, and associated asymptotically converging SDP hierarchy, needed for

the desired application. One application of particular interest is found in the research area of

approximate quantum error correction.
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1.2 Approximate Quantum Error Correction

Given a noisy classical channel NX→Y , a central quantity of interest in error correction is

the maximum success probability p(N,M) for transmitting a uniform M -dimensional message

under the noise model NX→Y . This is a bilinear maximization problem, which is in general

NP-hard to approximate up to a sufficiently small constant factor [8]. Nevertheless, there

exists an efficiently computable linear programming relaxation lp(N,M) (sometimes called

meta-converse [45, 71]) giving quantifiable upper bounds on p(N,M) [8]. Thus, the gap between

lp(N,M) and p(N,M) is well-understood.

The analogue quantum problem is to determine the quantum channel fidelity F (N ,M),

which is defined as follows.

Definition 1.2.1. Let NA→B be a quantum channel and M ∈ N. The quantum channel fidelity

for message dimension M is defined as

F (N ,M) := max F
(︂
ΦBR,

(︁ (︁
DB→B ◦ NA→B ◦ EA→A

)︁
⊗ IR

)︁
(ΦAR)

)︂
(1.22)

s.t. DB→B, EA→A quantum channels, (1.23)

where F (ρ, σ) :=
⃦⃦√

ρ
√
σ
⃦⃦2
1

denotes the fidelity, ΦAR denotes the maximally entangled state on

AR, and we have M = dA = dB = dR.

The optimization is performed over sets of quantum channels (i.e., trace preserving com-

pletely positive linear maps between two spaces of quantum states), which is not practical to

handle or visualize. Thus, we show that F (N ,M) can be rewritten in a more convenient form,

as the following optimization over Choi states

F (N ,M) = max dAdB · Tr

[︄(︁
JN
AB

⊗ ΦAB
)︁(︄∑︂

i∈I
piE

i
AA

⊗Di
BB

)︄]︄
(1.24)



Chapter 1. Introduction 29

s.t. pi ≥ 0 ∀i ∈ I,
∑︂
i∈I

pi = 1 (1.25)

Ei
AA

⪰ 0, Di
BB

⪰ 0 (1.26)

EiA =
1A
dA
, Di

B =
1B
dB

∀i ∈ I, (1.27)

where JN
BA

:= (NA→B ⊗ IA)(ΦAA) denotes the Choi state of the quantum channel NA→B.

As in the classical case, this is a bilinear optimization problem, only now with operator-

valued variables. In order to approximate F (N ,M), an efficiently computable semidefinite

programming relaxation SDP(N ,M) was given in [65]. However, contrary to the classical

case, the gap between SDP(N ,M) and F (N ,M) is not understood. On the other hand,

the tools we have developed and outlined in the previous section, can be used to generate a

converging hierarchy of efficiently computable semidefinite programming relaxations, allowing

us to quantify the gap between these new relaxations and F (N ,M). In fact, we can fix the

degrees of freedom available in Theorem 1.1.1 to generate the desired constrained de Finetti

representation theorem. By doing so, we have automatically an associated asymptotically

converging SDP hierarchy (Theorem 1.1.2), which reads

SDPn(N ,M) := max dAdB · Tr
[︂(︂
JN
AB1

⊗ ΦAB1

)︂
ρAAB1B1

]︂
(1.28)

s.t. ρAA(BB)n1
⪰ 0, Tr

[︂
ρAA(BB)n1

]︂
= 1 (1.29)

ρAA(BB)n1
= Uπ

(BB)n1

(︂
ρAA(BB)n1

)︂
∀π ∈ Sn (1.30)

ρA(BB)n1
=

1A
dA

⊗ ρ(BB)n1
(1.31)

ρAA(BB)n−1
1 Bn

= ρAA(BB)n−1
1

⊗ 1Bn

dB
. (1.32)

Recalling that the original optimization was over quantum channels, the presented results can

be interpreted as a way to approximate permutationally invariant bipartite3 quantum channels
3It is important to stress that, in the application of approximate quantum error correction, we have three
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by a mixture of product channels, i.e., as de Finetti theorems for bipartite quantum channels.

Moreover, we can also state the representation theorem directly in terms of the quantum

channels, obtaining an upper bound for the diamond norm distance.

We also study the setting in which we allow for classical forward communication assistance.

Thus, we modify Definition 1.2.1 to include the classical channel that can be used to send

classical information from one party (say Alice) to the other (say Bob). The corresponding

LOCC(1)-assisted (quantum) channel fidelity FLOCC(1)(N ,M) is defined as follows.

Definition 1.2.2. Let NA→B be a quantum channel and M ∈ N. The LOCC(1)-assisted

channel fidelity for message dimension M is defined as

FLOCC(1)(N ,M) := max F
(︂
ΦBR,

∑︂
i∈I

(︁ (︁
Di
B→B

◦ NA→B ◦ E i
A→A

)︁
⊗ IR

)︁
(ΦAR)

)︂
(1.33)

s.t.
∑︂
i∈I

E i
A→A

quantum channel with E i
A→A

cp for i ∈ I (1.34)

Di
B→B

quantum channel ∀i ∈ I, (1.35)

where ΦAR denotes the maximally entangled state on AR, cp is the abbreviation for completely

positive, and we have M = dA = dB = dR.

We then follow the same approach used for the quantum channel fidelity, to rewrite

FLOCC(1)(N ,M) as a bilinear optimization program, and to generate the appropriate con-

strained de Finetti representation theorem (using Theorem 1.1.1) with associated asymptotically

converging hierarchy (using Theorem 1.1.2). Moreover, we show several bounds for the two

types of quantum channels: the fixed noise model NA→B , and the coding schemes given by the various encoder

and decoder pairs (EA→A,DB→B). Each coding scheme then determines a bipartite quantum channel with

input system A⊗B and output system A⊗B.
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fidelity measures, e.g.,

FLOCC(1)(N ,M) ≥ F (N ,M) ≥
(︂
FLOCC(1)(N ,M)

)︂2
. (1.36)

We analyse our results by performing numerical experiments for the low levels of our

hierarchies. The experiments have been done in MATLAB using the QETLAB library [55],

CVX [40], MOSEK [1], and SDPT3 [78]. In addition, all the code has been made avilable at

the following link: https://github.com/FrancescoBorderi/Quantum-SDPs. While our analysis

is limited to the low levels of the SDP hierarchies, due to the size of the optimization programs,

we have been able to use to following rank loop condition to certify that a certain level of the

hierarchy already gives the optimal value.

Lemma 1.2.3. [68],[51] Let ρABn
1
= UπBn

1

(︁
ρABn

1

)︁
for all π ∈ Sn and fixed 0 ≤ k ≤ n such that

ρ
TBn

k+1

ABn
1

⪰ 0. Then, ρAB1 is separable if

rank(ρABn
1
) ≤ max

{︂
rank

(︂
ρABk

1

)︂
, rank

(︂
ρBn

k+1

)︂}︂
. (1.37)

For most cases the hierarchies of SDPs collapse to the first or second level, without the

need to explore the higher levels, which are computationally much more expensive.

The presented fidelity measures, i.e., F (N ,M) and FLOCC(1)(N ,M), correspond to the

average error case. On the other hand, we can study the worst case error by considering the

following channel distance based on the diamond norm.

Definition 1.2.4. Let NA→B be a quantum channel and M ∈ N, with M = dA = dB. The

channel distance is defined as

∆(N ,M) := min
1

2

⃦⃦
DB→B ◦ NA→B ◦ EA→A − IA→B

⃦⃦
♢ (1.38)

s.t. DB→B, EA→A quantum channels. (1.39)
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With some additional manipulation, we show how to write the above optimization program

in terms of the Choi states of the quantum channels, in a form suitable for our framework.

Finally, we generate an asymptotically converging hierarchy of semidefinite programs, generating

lower bounds for ∆(N ,M).

1.3 De Finetti Reductions with Linear Constraints

In several applications, instead of representation results as given by de Finetti theorems,

one may need to establish a generalized order relation between the symmetric mathematical

object and the probabilistic ensemble of elementary i.i.d. constituents. De Finetti reductions,

previously known as "post-selection techniques" [22] or methods based on "universal states" [46],

provide the desired inequality. For example, a quantum de Finetti reduction provides an upper

bound to a symmetric quantum state in the form of an integral superposition of product states,

weighted by a factor which is polynomial in terms of the number of copies and exponential in

terms of the local dimensionality

ρHn ⪯ (n+ 1)d
2
H−1

∫︂
σ⊗nH dσH, (1.40)

where ρHn is a permutation invariant quantum state, and dσH is an appropriate measure over

the set of quantum states on H. The generality of expression (1.40) is also its main drawback.

On one hand, unlike finite de Finetti representation theorems, (1.40) provides an exact bound,

without any parameter controlling the approximation error. On the other hand, all permutation

invariant quantum states are upper bounded by the same mixture of tensor product states.

Any other information encoded in the permutation invariant state ρHn is lost. There exist

in the literature several quantum de Finetti reductions that are able to handle specific linear

constraints on the permutation invariant state (e.g., [33] and [64]). Those theorems restrict the
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support of the measure in order to capture the specific linear constrain on the initial state or

introduce a fidelity weight in the integral superposition.

For cryptographic applications and error correction, it is often useful to study the case

where a new system, carrying external side information, adds a non-symmetric contribution to

the symmetric object.

We prove the following new de Finetti reduction in presence of quantum side information.

Proposition 1.3.1. Let Q,A and B be Hilbert spaces and ρQAnBn a state symmetric with

respect to Q. Moreover, let ρAn = σ⊗nA for a fixed state σA. Then, there exist a probability

measure dσAB on the set of extensions σAB of σA and a state ωQ such that

ρQAnBn ⪯ (n+ 1)3d
2 · ωQ ⊗

∫︂
σ⊗nAB dσAB, (1.41)

with d := dAd
2
B.

Our result can be seen as an extension of the constrained de Finetti reduction presented in

[33, Corollary 3.2]. Moreover, we show that our de Finetti reduction can handle, in addition to

the marginal constraint ρAn = σ⊗nA on the symmetric part, a general linear constraint on the

quantum side information. This is the content of the following corollary.

Corollary 1.3.2. Under the same assumptions of Proposition 1.3.1 with additionally ΓQ→F a

linear map and XF an operator on a Hilbert space F , the state ωQ can be chosen such that

ΓQ→F (ρQAn) = XF ⊗ σ⊗nA =⇒ ΓQ→F (ωQ) = XF . (1.42)

Note that the marginal constraint ρAn = σ⊗nA is a special type of linear constraint, but we

do not know if it is possible to extend this to general linear constraints.

So far, no clear or systematic connection between de Finetti reductions and de Finetti

representation theorems has been proven in the literature. In this thesis we show how to derive
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de Finetti representation theorems from de Finetti reductions. First, we prove the following

lemma, showing that de Finetti reductions can be interpreted as relative entropy inequalities.

Lemma 1.3.3. Let Q and G be Hilbert spaces, and ρQGn a state symmetric with respect to Q.

Consider a de Finetti reduction of the form

ρQGn ⪯ poly(n) · σQ ⊗
∫︂
σ⊗nG dσG, (1.43)

where dσG is an appropriate measure over the set of quantum states on G. Then, there exists a

discrete random variable X, pX a probability mass function, and σxG quantum states for every

x ∈ image(X), such that

D
(︂
ρQGn

⃦⃦⃦
σQ ⊗

∑︂
x

pX(x) [σ
x
G]

⊗n
)︂
≤ log poly(n). (1.44)

This finding will be the basis to go from de Finetti reductions to representation theorems.

Second, we use a technique based on chain rules for relative entropy to obtain a new proof for

the classical de Finetti theorem. Third, we can leverage the obtained result to the quantum

setting, giving the following theorem.

Theorem 1.3.4. Let k ∈ {1, . . . , n− 1}, X be a discrete random variable, G1 · · ·Gn Hilbert

spaces with G1
∼= . . . ∼= Gn, ρGn and σxG quantum states for every x ∈ image(X), pX a

probability mass function, and assume ρGn to be symmetric. Whenever we have

D
(︂
ρGn

⃦⃦⃦∑︂
x

pX(x)[σ
x
G]

⊗n
)︂
≤ log poly(n), (1.45)

then there exists a probability mass function qX such that

⃦⃦⃦
ρGk −

∑︂
x

qX(x)[σ
x
G]

⊗k
⃦⃦⃦
1
≤ O

⎛⎝√︄k · d2kG
n

· log n

⎞⎠ . (1.46)
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Notice that the bound on the approximation error grows exponentially fast with k, which

we know that is not optimal, as previously discussed. Whether it is possible to improve that

k-dependence and maintain the proposed proof technique is still an open question. On the

other hand, we already know that the dependence in n is suboptimal.

Finally, we use de Finetti reductions to derive a new de Finetti theorem for quantum

channels. In comparison to our results from [13] and [14], which are given for bipartite

quantum channels, we show that is possible to drop one constraint and still achieve asymptotic

convergence. While we are not able to prove the theoretical minimality of our constraints, the

simplification of the existing conditions is definitely a fundamental step in the right direction.

Moreover, our new results provide insights on the "power" of the constraints and their effect

on the convergence speed.

1.4 Thesis Organization

This thesis is organized as follows.

• In Chapter 2 we present some background material.

• In Chapter 3 we develop new de Finetti theorems with linear constraints and we use

them to generate SDP hierarchies for constrained bilinear optimization programs.

• In Chapter 4 we focus on certain optimization problems arising in the context of approxi-

mate quantum error correction and we adapt the results of Chapter 3 to the desired setting.

Proof of concept numerics are implemented to test the low levels of our hierarchies.

• In Chapter 5 we prove a new constrained de Finetti reduction with side information, and

we establish a connection between de Finetti reductions and de Finetti representation
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theorems. We use our methods to simplify the SDP hierarchy for quantum channels.

• In Chapter 6 we present some open problems.



Chapter 2

Preliminaries

This chapter provides a concise presentation of the mathematical framework needed to un-

derstand the subsequent chapters. While it is mainly based on Watrous’s book [87], many

other textbooks provide a good introduction to the subject. For an excellent introduction to

quantum information theory I recommend the textbook by Nielsen and Chuang [69] and the

one by Wilde [89]. For a review of the methods of convex optimization used in this thesis,

semidefinite programming in particular, the reader is referred to the textbook by Boyd and

Vandenberghe [15].

2.1 Finite Dimensional Hilbert Spaces

In quantum mechanics, Hilbert spaces represent one of the most fundamental mathematical

objects. A complex Hilbert space H is a vector space with two defining characteristics

1. H is equipped with an inner product ⟨·, ·⟩ : H×H → C,

2. H is complete for the distance induced by the inner product ⟨·, ·⟩.

37
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In quantum mechanics, unlike several other areas of mathematics, the inner product ⟨·, ·⟩ is

conventionally chosen to be antilinear in the first argument, not in the second one1. Notice that

⟨·, ·⟩ (H×H) ⊆ C, clearly showing the presence of the complex field (C,+, ·) in the algebraic

structure of the vector space. In this thesis we will implicitly assume all the Hilbert spaces to

be complex vector spaces2.

Using the standard Dirac’s bra-ket notation, we will call kets the elements of H, i.e., the

vectors. A generic element of H, i.e., a ket, will be then denoted by |ψ⟩ ∈ H. Given the Hilbert

space H, we will denote with H∗ its topological dual space3, i.e., the space of all continuous

linear functionals from H to C.

Given a ket |ψ⟩ ∈ H, we can use the inner product ⟨·, ·⟩ to create a correspondence between

the Hilbert space H and its topological dual H∗

H ∋ |ψ⟩ → f|ψ⟩ ∈ H∗, (2.1)

where

f|ψ⟩ : H → C, |ϕ⟩ → ⟨|ψ⟩, |ϕ⟩⟩. (2.2)

Riesz representation theorem [27, Theorem 3.7.7] guarantees that (2.2) is a linear bijection,

thus realizing an isomorphism between H and its topological dual H∗. To denote that two
1A function f : V → W between two complex vector spaces V,W is said to be antilinear if it is additive, i.e.,

f(x+ y) = f(x) + f(y) for every x, y ∈ V , and conjugate homogeneous, i.e., f(αx) = αf(x) for every x ∈ V and

α ∈ C.
2It is interesting to notice the need for complex numbers in quantum mechanics. For example, in [74] the

authors propose a new Bell-type experiment in which the input-output correlations cannot be approximated by

a version of quantum mechanics based on real Hilbert spaces.
3The topological dual space H∗ is a subset of the algebraic dual space, where the linear functionals are not

required to be continuous. In this thesis we will work with finite dimensional Hilbert spaces, and the two

notions coincide.
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spaces are isomorphic we will use the symbol ∼=. Then, Riesz representation theorem proves

that

H ∼= H∗. (2.3)

It is immediate to show that two finite-dimensional vector spaces are isomorphic if and only

if they have the same dimension. Thus, given a ket |ψ⟩ ∈ H, we can find a unique element

f|ψ⟩ ∈ H∗ as defined above, and vice versa. Following Dirac’s bra-ket notation, we will call

the linear functional f|ψ⟩ ∈ H∗ the bra associated with the ket |ψ⟩, and it will be denoted by

⟨ψ| ∈ H∗. Finally, the simplifying notation ⟨ψ|ϕ⟩ is used in place of ⟨ψ|(|ϕ⟩) = ⟨|ψ⟩, |ϕ⟩⟩, i.e.,

⟨ψ|ϕ⟩ := ⟨|ψ⟩, |ϕ⟩⟩. (2.4)

Here and henceforth we use the symbol := as equal by definition.

The completeness property required in 2. guarantees the convergence of all the Cauchy

sequences4 of points in H within the space H itself. As we see, the concept of completeness,

which involves Cauchy sequences, requires a metric structure. Given a Hilbert space H, a norm

is automatically induced by the inner product as

∥ · ∥ : H → R : |ψ⟩ →
√︁
⟨ψ|ψ⟩. (2.5)

Thus, every Hilbert space is also a Banach space, i.e., a complete normed vector space.

The metric structure is then automatically induced by the norm by defining a metric/distance

on H as

d (·, ·) : H×H → R : (|ψ⟩, |ϕ⟩) → ∥|ψ⟩ − |ϕ⟩∥. (2.6)

4A Cauchy sequence is a sequence of points such that, for every ϵ > 0, the distance between any two elements

of the sequence becomes smaller than ϵ after a certain index (which can depend on ϵ).
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Completeness is an important requirement for the infinite dimensional case. However

in this thesis we are interested in finite dimensional Hilbert spaces. Given a d-dimensional

Hilbert space H, where d > 0 is a natural number, the natural isomorphism between H and

Cd automatically guarantees the completeness of the mathematical structure. More precisely,

fixed an orthonormal basis (|i⟩)i=1,...,d for H, we can decompose any ket |ψ⟩ ∈ H as

|ψ⟩ =
d∑︂
i=1

⟨i|ψ⟩|i⟩. (2.7)

The linear correspondence H → Cd : |ψ⟩ → (⟨1|ψ⟩, ⟨2|ψ⟩, . . . , ⟨d|ψ⟩) realizes the desired

isomorphism between H and Cd. Moreover, with respect to the canonical basis5 of Cd, the

vector (⟨1|ψ⟩, ⟨2|ψ⟩, . . . , ⟨d|ψ⟩) ∈ Cd can be written as the column⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨1|ψ⟩

⟨2|ψ⟩
...

⟨d|ψ⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.8)

which is often identified with the starting ket |ψ⟩. Similarly, a bra can be identified, once a

basis is fixed, as a row of d complex numbers.

In this thesis we will implicitly assume all the Hilbert spaces to be finite-dimensional, so we

will not have to deal with completeness-related concerns. Given a (finite-dimensional) Hilbert

space H, we will denote with dH its dimension.

Given two Hilbert spaces H and H′, their tensor product H⊗H′ is the Hilbert space generated

by the linear span6 of the basis (|i⟩ ⊗ |j′⟩) i=1,...,dH
j=1,...,dH′

, where (|i⟩)i=1,...,dH is an orthonormal basis

5The canonical basis of Cd is formed by the following collection of d elements with d entries:

((1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)).
6Given a basis, its linear span is defined as the vector space formed by all the linear combinations obtained

with the elements of the basis.
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for H, and (|j′⟩)j=1,...,dH′ is an orthonormal basis for H′. The scalars used for the linear span

belong to the field associated with the two algebraic structures, i.e., (C,+, ·) in this case. It

is immediate to see from the definition that the dimension of H ⊗H′ is the product of the

individual dimensions, i.e.,

dH⊗H′ = dH · dH′ . (2.9)

In order to simplify the notation, we can also omit the ⊗ symbol, i.e., we define HH′ := H⊗H′.

In case of n copies of the same Hilbert space H we will use the notation Hn
1 or also Hn to

indicate H1 ⊗ · · · ⊗ Hn, where Hi indicates the ith copy of H, for i = 1, . . . , n. Moreover, the

notation Hn
1 can be generalized to select a contiguous collection of Hilbert spaces appearing

in the tensor product H1 ⊗ · · · ⊗ Hn. More precisely, for every i, j = 1, . . . , n with i < j, the

expression Hj
i stands for Hi ⊗ · · · ⊗ Hj . It is useful to extend the new notation also when

i ≥ j. In particular, when i = j, we set Hi
i := Hi. On the other had, if i > j we consider the

expression Hj
i to be the empty set ∅.

2.1.1 Operators

Given two Hilbert spaces H and H′, we can consider the vector space L (H,H′) formed by

all the linear maps, i.e., operators, between H and H′. When H = H′, we will write L (H) in

place of L (H,H) to denote all the operators from H onto itself, i.e., the endomorphisms of H.

As we saw with kets, once we have fixed a basis for H, we can identify any |ψ⟩ ∈ H with the

corresponding column (2.8). In a similar way, once we have fixed a basis for H and H′, we

can identify any operator T ∈ L (H,H′) with a dH′ × dH complex matrix7. More precisely, if

(|i⟩)i=1,...,dH is an orthonormal basis for H, and (|j′⟩)j=1,...,dH′ is an orthonormal basis for H′,
7For this reason, one often finds the term matrix used in place of operator. However, notice that this

correspondence requires choosing the bases for the two Hilbert spaces.
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⟨j′|T |i⟩ will be the coefficient in the jth row and ith column of the matrix representation for the

operator T , for every i = 1, . . . , dH and j = 1, . . . , dH′ . This is because T can be decomposed

with respect to the two orthonormal bases as

T =
∑︂

i=1,...,dH
j=1,...,dH′

⟨j′|T |i⟩|j′⟩⟨i|. (2.10)

Notice that, if T ∈ L (H,H′), we set T (|ψ⟩) := T |ψ⟩ for every |ψ⟩ ∈ H. Given an operator

T ∈ L (H,H′) we can consider its adjoint operator T † ∈ L (H′,H), defined by the relation

⟨|ϕ⟩, T |ψ⟩⟩ = ⟨T †|ϕ⟩, |ψ⟩⟩, (2.11)

which must hold for every |ψ⟩ ∈ H and |ϕ⟩ ∈ H′. Using Riesz representation theorem [27,

Theorem 3.7.7], it is immediate to show that T † is unique. If T ∈ L (H) and T = T †, then T

is said to be self-adjoint or Hermitian. The set of Hermitian operators acting on the Hilbert

space H will be denoted by Herm(H). Given a T ∈ L (H,H′), it is important to realize that

the notion of adjoint operator T † is basis-free. On the other hand, the transpose TT is a

basis-dependent concept. If (|i⟩)i=1,...,dH is an orthonormal basis for H, and (|j′⟩)j=1,...,dH′ is

an orthonormal basis for H′, the transpose TT of T ∈ L (H,H′) with respect to those two bases

is defined by the relation

TT :=
∑︂

i=1,...,dH
j=1,...,dH′

⟨j′|T |i⟩|i⟩⟨j′|. (2.12)

Given an operator T ∈ L (H,H′), we define its kernel as the vector space formed by all the

elements of H that are mapped by T to the null vector of H′. In order to simplify the notation,

we will use the symbol 0 to denote the null vector of a given vector space. The specific context

will clearly identify whether 0 is a scalar or a null vector, and, in the second case, the specific
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vector space it belongs to. With this convention we can write

ker(T ) := {|ψ⟩ ∈ H : T |ψ⟩ = 0}. (2.13)

The support of T is the vector space obtained by considering all the vectors in H that are

orthogonal to every element in ker(T ), i.e.,

supp(T ) := {|ψ⟩ ∈ H : ∀|ϕ⟩ ∈ ker(T ) we have ⟨ψ|ϕ⟩ = 0}. (2.14)

Finally, the image of T is the vector space formed by all the images of the elements of H,

obtained via the application of T , i.e.,

image(T ) := {T |ψ⟩ : |ψ⟩ ∈ H}. (2.15)

Notice that the notion of image for operators is exactly the same as the one used for ordinary

functions. Thus, using the same name does not lead to any inconsistency. The rank of T is

defined to be the dimension of image(T ), i.e.,

rank(T ) := dimage(T ). (2.16)

Notice that, while ker(T ) and supp(T ) are subspaces of H, image(T ) is a subspace of H′.

Moreover, it is immediate to see that [76]

dH = dker(T ) + dsupp(T ), (2.17)

and,

dH = dker(T ) + dimage(T ), (2.18)

implying rank(T ) = dimage(T ) = dsupp(T ).

An operator P ∈ L (H) acting as the identity on all the elements belonging to its image, is

said to be a projector on image(P ). More precisely, given a subspace A of H, a projector into

A is the unique operator P ∈ L (H) satisfying
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1. image(P ) = A,

2. P |ψ⟩ = |ψ⟩ for all |ψ⟩ ∈ A.

We can use the notation PA to make explicit the space we project onto. It is also immediate

to see that image(P ) = supp(P ). For this reason, it is common to say that P projects onto

supp(P ). If A = H, we obtain the identity operator on H, i.e., the unique operator mapping

every element to itself. We will use the symbol 1 to denote the identity operator on H, i.e.,

1 := PH. The specific context will clearly identify whether 1 is a scalar or the identity operator,

and, in the second case, the specific Hibert space it acts on.

The identity operator allows us to introduce the concept of the inverse operator. Given an

operator T ∈ L (H), we say that is invertible if there exists an operator T−1 ∈ L (H) such that

T−1T = 1. If T is invertible, T−1 is said to be its inverse. Moreover, when T−1 exists, it must

be unique and must also satisfy TT−1 = 1. Recalling that the identity operator is a special

kind of projector, the relation T−1T = 1 can be written as T−1T = PH = P supp(1). This

expression is useful to generalize the notion of invertibility for generic operators in L (H,H′).

In particular, given a T ∈ L (H,H′), we define its generalized inverse T−1 ∈ L (H′,H) as the

unique operator satisfying

T−1T = P supp(T ). (2.19)

Relation (2.19) shows that the generalized inversion is an inversion on the support of the

operator. When the operator is invertible, its generalized inverse clearly coincides with the

ordinary inverse. Thus, using the same symbol for both the inverse and the generalized inverse

does not lead to any inconsistency.

The concept of inverse operator allows us to define the important class of unitary operators.

An operator U ∈ L (H) is said to be unitary if
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1. U is invertible,

2. the inverse of U coincides with its adjoint operator, i.e., U−1 = U †.

The set of unitary operators acting on the Hilbert space H will be denoted by U (H). It is

immediate to see that U preserves the induced norm8 (2.5), i.e., ∥U |ψ⟩∥ = ∥|ψ⟩∥ for every

|ψ⟩ ∈ H. Using the polarization identity [Theorem 4.3.7][27] this fact implies that unitary

operators preserve the inner product as well.

Given an operator T ∈ L (H), one can compute its trace Tr(T ), which is a complex basis-

independent number capturing several important properties of the endomorphism. Formally,

the trace of an operator in L (H) can be defined as the linear functional Tr : L (H) → C

satisfying

1. Tr(AB) = Tr(BA) for every A ∈ L (H,H′) and B ∈ L (H′,H),

2. Tr(1) = dH.

Property 1. states that the trace is invariant under cyclic permutations. Thus, it is also

invariant under unitary conjugation. If T ∈ L (H) and U ∈ U (H), we can use the unitary

operator U to unitary conjugate T via the expression U †TU . Thus, being invariant under

conjugation means that for any T ∈ L (H) and U ∈ U (H) the relation Tr(U †TU) = Tr(T )

holds.

We have already pointed out that L (H,H′) is a vector space. The trace allows us to define

an inner product on such space. In particular, the Hilbert-Schmidt inner product is defined as

⟨·, ·⟩ : L
(︁
H,H′)︁× L

(︁
H,H′)︁→ C, (A,B) → Tr(A†B). (2.20)

8This means that unitary operators are isometries. On the other hand, there exist isometries that are not

unitary. From the definition, we immediately see that only surjective isometries correspond to unitary operators.
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Thus, L (H,H′) is a Hilbert space as well. As described by relation (2.5), we can use the inner

product to induce a norm. The Hilbert-Schmidt norm is then defined as

∥ · ∥ : L
(︁
H,H′)︁→ R : T →

√︂
Tr(T †T ). (2.21)

Recall that we also use the symbols ⟨·, ·⟩ and ∥ · ∥ to indicate the inner product and norm on

H. The specific context will clearly identify the meaning of those symbols.

Notice that (2.21) can be written as ∥T∥ =

[︃
Tr

(︃[︂√
T †T

]︂2)︃]︃ 1
2

=
[︂
Tr
(︂
|T |2

)︂]︂ 1
2 , where we

set |T | :=
√
T †T . The generalization of this expression leads to the notion of Schatten norms.

For any p ∈ [1,∞) we define the Schatten p-norm as

∥ · ∥p : L
(︁
H,H′)︁→ R : T → [Tr(|T |p)]

1
p . (2.22)

Notice that the Hilbert-Schmidt norm (2.21) coincides with the Schatten 2-norm. The Schatten

1-norm

∥ · ∥1 : L
(︁
H,H′)︁→ R : T → Tr(|T |) (2.23)

is also known as the trace norm. One can extend the notion of Schatten norm for p = ∞ by

considering the limit p→ ∞ in (2.22). By doing so, one obtains the definition of the operator

norm, also known as infinity norm, i.e.,

∥ · ∥∞ : L
(︁
H,H′)︁→ R : T → sup

|ψ⟩∈H
∥|ψ⟩∥=1

∥T |ψ⟩∥. (2.24)

Schatten norms are sub-multiplicative, meaning that, for every A,B ∈ L (H)

∥AB∥p ≤ ∥A∥p∥B∥p, (2.25)

for any p ∈ [1,∞].
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Recall that T ∈ Herm(H) means T = T †. Positive semidefinite operators constitute a

special proper subset of the set of Hermitian operators. The set P(H) ⊂ Herm(H) of positive

semidefinite operators acting on the Hilbert space H, is formally defined as

P(H) := {T ∈ Herm(H) : ⟨ψ|T |ψ⟩ ≥ 0 for all |ψ⟩ ∈ H}. (2.26)

If T ∈ P(H), we will write T ⪰ 0. It is immediate to show that ⪰ defines a partial order on

Herm(H). In particular, if A,B ∈ Herm(H), we say that A ⪰ B (or B ⪯ A) if and only if

A−B ⪰ 0. This partial order relation is known as the Loewner (partial) order.

2.1.2 Super-Operators

Given an Hilbert space H, we said that its elements are called kets. Moreover, we have denoted

by L (H) the set of operators from H onto itself. If H′ is another Hilbert space, we can

consider linear maps mapping operators in L (H) to operators in L (H′). Those linear maps are

called super-operators9 and form the vector space L (L (H) ,L (H′)). Given a super-operator

E ∈ L (L (H) ,L (H′)) we can consider its adjoint super-operator E† ∈ L (L (H′) ,L (H)), defined

by the relation

⟨B, E(A)⟩ = ⟨E†(B), A⟩, (2.27)

which must hold for every A ∈ L (H) and B ∈ L (H′). Using Riesz representation theorem [27,

Theorem 3.7.7], it is immediate to show that E† is unique. We will use the symbol ◦ to

concatenate super-operators. With I ∈ L (L (H) ,L (H)) we will denote the identity super-

operator on L (H).

9Notice that super-operators are operators as well. The super- prefix is used to stress the fact that they act

on operators.
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A super-operator mapping Hermitian operators to Hermitian operators is said to be

Hermitian-preserving. In other words, a super-operator E ∈ L (L (H) ,L (H′)) is said to be

Hermitian-preserving if

E(T ) ∈ Herm(H′), (2.28)

for every Hermitian operator T ∈ Herm(H).

Super-operators mapping positive semidefinite operators to positive semidefinite operators

are said to be positive. However, the concept of positive operator is not robust enough for our

purposes. Thus, we need to introduce the notion of completely positive super-operators. A

super-operator E ∈ L (L (H) ,L (H′)) is said to be completely positive (cp) if, for any Hilbert

space H′′, the super-operator E ⊗I ∈ L (L (H)⊗ L (H′′) ,L (H′)⊗ L (H′′)) is positive. In other

words, if

(E ⊗ I)(T ) ⪰ 0, (2.29)

for every T ∈ P(H⊗H′′). A super-operator E ∈ L (L (H) ,L (H′)) is said to be trace preserving

(tp) if

Tr(E(T )) = Tr(T ), (2.30)

for every T ∈ L (H). As we will see, trace preserving completely positive (tpcp) maps play a

fundamental role in quantum information theory. A super-operator E ∈ L (L (H) ,L (H′)) is

said to be unital if it maps the identity operator onto the identity operator, i.e., if

E(1) = 1. (2.31)

It is immediate to show the following relation

E is a tpcp map =⇒ E† is a cp and unital map. (2.32)
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The partial trace is a very common and useful super-operator. Given two Hilbert spaces H

and H′, the partial trace TrH′(·) is the tpcp map defined via

TrH′ : L (H)⊗ L
(︁
H′)︁→ L (H) : T → (I ⊗ Tr)(T ). (2.33)

2.2 Quantum Mechanics in Finite Dimensional Hilbert Spaces

In this section we want to outline how the mathematical concepts that we introduced in the

previous section can be specialized and applied to describe the essential ingredients of quantum

mechanics. As a remainder, our focus is on the finite-dimensional setting of the theory.

2.2.1 Quantum Systems and Quantum States

In the previous section, we stated that, in quantum mechanics, Hilbert spaces represent one of

the most fundamental mathematical objects. The reason is that we model an isolated quantum

system (or in short system) with a Hilbert space H. The quantum state of the system (or

in short state) is described by a unit-trace positive semidefinite operator ρ acting on H, also

known as density operator. We will denote with S(H) the set of quantum states on H, i.e.,

S(H) := {ρ ∈ P(H) : Tr(ρ) = 1}. (2.34)

If rank(ρ) = 1 the state ρ is pure, otherwise ρ is said to be mixed. The state 1
dH

is known as

the maximally mixed state on H.

If ρ ∈ S(H) is pure, it can be written as ρ = |ψ⟩⟨ψ|, where |ψ⟩ is an appropriate ket in H

with unit norm, i.e., ∥|ψ⟩∥ = 1. In such a case, |ψ⟩ is also called a quantum state. Notice that

the expression |ψ⟩⟨ψ| defines a rank-one projector on the ket |ψ⟩.
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2.2.2 Quantum Modelling of Classical Systems

Given a sample space Ω and a discrete random variable Z : Ω → Z, where Z is a finite set

with cardinality |Z| := dZ , we can encode a probability mass function pZ : Z → [0, 1] in a

density operator ρ. The classical system will be modelled by a dZ-dimensional Hilbert space Z,

also known as classical register, and pZ will be encoded in the quantum state ρZ ∈ S(Z)

ρZ :=

dZ∑︂
i=1

pZ(i)|i⟩⟨i|, (2.35)

where (|i⟩)i=1,...,dZ is an orthonormal basis for the Hilbert space Z. Notice that we used the

same letter, i.e., Z, to denote both the random variable and the Hilbert space. This is a

common identification, since the two mathematical objects represent the same concept, but it

two different mathematical frameworks.

2.2.3 Bipartite Systems

Many interesting properties of quantum mechanics, which make it substantially different

from classical physics, arise when considering multiple systems, i.e., multipartite systems. For

example, bipartite systems of the form H⊗H′. The quantum state of a multipartite system

is said to be a multipartite state. For example, the quantum state of a bipartite system is

said to be a bipartite state. The set Sep(H : H′) of separable states is an important subset of

S(H⊗H′). A quantum state ρ ∈ S(H⊗H′) is said to be separable, i.e., ρ ∈ Sep(H : H′), if it

can be written as

ρ =
∑︂
i∈I

piσ
i ⊗ τ i, (2.36)

where I is a finite set, and for every i ∈ I, we have σi ∈ S(H), τ i ∈ S(H′), pi ≥ 0, and∑︁
i∈I pi = 1. In other words, a separable state is a quantum state that is in the convex hull
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of tensor product states, i.e., states of the form σi ⊗ τ i. Notice that the collection {pi}i∈I

appearing in (2.36), that we will call a probability distribution, is naturally associated with a

probability mass function, i.e., p : I → [0, 1], i→ pi.

Given a quantum state ρ ∈ S(H⊗H′), we use the partial trace to obtain a local description

of the quantum states of the two individual systems. Those states are called marginal states. In

particular, ρH := TrH′(ρ) will denote the marginal of ρ on H, and ρH′ := TrH(ρ) the marginal

of ρ on H′.

Given a quantum state ρ ∈ S(H) and a bipartite pure state |ψ⟩ ∈ H⊗H′, |ψ⟩ is said to be

purification of ρ, if ρ = TrH′(|ψ⟩⟨ψ|). Using the Schmidt decomposition [69, Theorem 2.7], it

is always possible to find such a |ψ⟩ if H ∼= H′. We can generalize this concept by looking for a

quantum state ρ̃ ∈ S(H⊗H′), not necessarily pure, such that ρ = TrH′(ρ̃). In such a case, we

will say that ρ̃ is an extension of ρ.

We can also consider classical-quantum states, which are bipartite separable states that

have a classical and a quantum part. More precisely, a state ρ ∈ S(Z ⊗ H) is said to be a

classical-quantum state if it can be written in the form

ρ =

dZ∑︂
i=1

pi|i⟩⟨i| ⊗ τ i, (2.37)

for a probability distribution {pi}i=1,...,dZ , an orthonormal basis (|i⟩)i=1,...,dZ for the Hilbert

space Z, and τ i ∈ S(H) for i = 1, . . . , dZ . We refer to Z as the classical part, cf., (2.35), of

the bipartite classical-quantum system S(Z ⊗H). We will use the same denomination, i.e.,

classical-quantum state, to denote also states of the form
∑︁dZ

i=1 piτ
i ⊗ |i⟩⟨i|.

Not every state in S(H⊗H′) is a separable state. In other words, Sep(H : H′) is a proper

subset of S(H⊗H′), i.e.,

Sep(H : H′) ⊊ S(H⊗H′). (2.38)
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States that are not separable are called entangled states. For example, the maximally entangled

state Φ := |Φ⟩⟨Φ| on the bipartite system H⊗H′, where H ∼= H′, is a pure and not separable

state, and is defined via

|Φ⟩ := 1√
dH

dH∑︂
i=1

|i⟩ ⊗ |i⟩, (2.39)

where (|i⟩)i=1,...,dH is an orthonormal basis for the two Hilbert spaces. Notice that, since

H ∼= H′, we can think of H′ as a copy of the Hilbert space H. In fact, one often uses the same

letter to label the two systems.

2.2.4 Quantum Channels and the Choi-Jamiołkowski Isomorphism

The evolution of a quantum system is described by the application of a tpcp map on its

associated quantum state. Trace preserving completely positive maps are also called quantum

channels (or in short channels). The partial trace (2.33) is an example of a quantum channel.

Given a quantum channel N : S(A) → S(B), with A and B two Hilbert spaces10, we can think

of N as a state JN ∈ S(B ⊗ A
′
), where A′ is a copy of A (thus, in what follows we use the

same label A for both). This correspondence, known as channel-state duality, is realized by the

Choi-Jamiołkowski isomorphism. The state JN is known as the Choi state, and is given by the

expression11

JN := (N ⊗ I) (Φ) , (2.40)

where I is the identity channel on A, and Φ is the maximally entangled state on A⊗A.
10Here we are using the label A instead of A, which may seem more logical, to obtain formulas consistent

with the notation we will use in the subsequent chapters of this thesis.
11Notice that this definition makes sense also for general linear maps. However, in most cases, we use the

Choi-Jamiołkowski isomorphism when N is a quantum channel, i.e., a tpcp map. In such a case, the operator

JN satisfies additional properties that will be discussed in this subsection.
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Remark 2.2.1. In order to simplify the notation, we will use subscripts to keep track of the

systems the operators, e.g., quantum states, and super-operators, e.g., quantum channels, act

on. For example, if |ψ⟩ ∈ A ⊗ B, and ρ ∈ S(A ⊗ B), we will write |ψ⟩AB, and ρAB. If

N : S(A) → S(B) is a quantum channel, we will write NA→B. If A = B, we set NA := NA→A.

For example, with this new notation, the defining expression (2.40) becomes

JN
BA

=
(︁
NA→B ⊗ IA

)︁ (︁
ΦAA

)︁
(2.41)

=
(︁
NA→B ⊗ IA

)︁⎛⎝ 1

dA

dA∑︂
i,j=1

|i⟩⟨j|A ⊗ |i⟩⟨j|A

⎞⎠ (2.42)

=
1

dA

dA∑︂
i,j=1

NA→B

(︁
|i⟩⟨j|A

)︁
⊗ |i⟩⟨j|A, (2.43)

where (|i⟩)i=1,...,dA
is an orthonormal basis for the two Hilbert spaces. Notice that, for brevity,

we can also suppress identity channels and make their presence implicit by the subscripts. For

example, we can write NA→B

(︁
ΦAA

)︁
in place of

(︁
NA→B ⊗ IA

)︁ (︁
ΦAA

)︁
.

The usage of subscripts is also convenient because it allows us to make implicit any isometry

needed to rearrange the underlying Hilbert spaces, e.g., in expressions such as WABQBA, where

WAB is an operator acting on A⊗B, and QBA is an operator acting on B⊗A. In other words,

the expression WABQBA must be interpreted as WABFA↔BQBA, where FA↔B : B⊗A→ A⊗B

is the swap operator (or flip operator) exchanging A with B, i.e.,(︁
FA↔B

)︁ (︁
WB ⊗WA

)︁
:=WA ⊗WB, (2.44)

for every operator WA and WB acting on A and B, respectively. Given the simplicity of

(2.44), one often uses the same symbol, i.e., FA↔B, for both FA↔B and its inverse operator

F−1
A↔B

: B ⊗A→ A⊗B.

If NA→B is a quantum channel, it is simple to verify that complete positivity (2.29) and

trace preservation (2.30) are translated in the following properties for its Choi state
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1. JN
BA

⪰ 0,

2. TrB

(︂
JN
BA

)︂
=

1A
dA

.

Tracing out A instead of B leads to TrA

(︂
JN
BA

)︂
=

NA→B(1A)
dA

. Thus, if NA→B is unital (2.31),

we find

TrA
(︁
JN
BA

)︁
=

1B
dA
. (2.45)

The inverse of the Choi-Jamiołkowski isomorphism maps Choi states back to quantum

channels. Given a quantum state WBA with WA =
1A
dA

, its Choi channel NW
A→B

is given by the

following tpcp map

NW
A→B

: ρA → dA · TrA
[︁
WBA

(︁
1B ⊗ ρT

A

)︁]︁
, (2.46)

where the transpose is taken with respect to the orthonormal basis of the maximally entangled

state in (2.41).

Since the Choi state JN
BA

acts on B ⊗ A, we can multiply JN
BA

by, for example, tensor

product operators of the form σB ⊗ τA. The following lemma is useful to simplify expressions

of the form Tr
[︂
JN
BA

(︁
σB ⊗ τA

)︁]︂
.

Lemma 2.2.2. Let NA→B be a quantum channel, JN
BA

its Choi state, σB ∈ L (B), and

τA ∈ L
(︁
A
)︁
, then

Tr
[︁
JN
BA

(︁
σB ⊗ τA

)︁]︁
=

1

dA
Tr
[︁
σBNA→B

(︁
τT
A

)︁]︁
, (2.47)

where the transpose is taken with respect to the orthonormal basis of the maximally entangled

state in (2.41).
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Proof.

Tr
[︁
JN
BA

(︁
σB ⊗ τA

)︁]︁
= Tr

⎡⎣⎛⎝ 1

dA

dA∑︂
i,j=1

NA→B

(︁
|i⟩⟨j|A

)︁
⊗ |i⟩⟨j|A

⎞⎠(︁σB ⊗ τA
)︁⎤⎦ (2.48)

=
1

dA
Tr

⎡⎣ dA∑︂
i,j=1

⟨j|τA|i⟩NA→B

(︁
|i⟩⟨j|A

)︁
σB

⎤⎦ (2.49)

=
1

dA
Tr

⎡⎣NA→B

⎛⎝ dA∑︂
i,j=1

⟨j|τA|i⟩|i⟩⟨j|A

⎞⎠σB

⎤⎦ (2.50)

=
1

dA
Tr

⎡⎣NA→B

⎛⎝ dA∑︂
i,j=1

⟨i|τT
A
|j⟩|i⟩⟨j|A

⎞⎠σB

⎤⎦ (2.51)

=
1

dA
Tr
[︁
NA→B

(︁
τT
A

)︁
σB
]︁

(2.52)

=
1

dA
Tr
[︁
σBNA→B

(︁
τT
A

)︁]︁
. (2.53)

2.2.5 Quantum Measurements

Quantum measurements (or in short measurements) are a special case of quantum channels

that can be written in the form

MA→Z : L(A) → L(Z), ρA →
dZ∑︂
i=1

⟨M i
A, ρA⟩|i⟩⟨i|Z (2.54)

with an orthonormal basis (|i⟩)i=1,...,dZ for the Hilbert space Z, and satisfy the following two

properties

1. M i
A ⪰ 0 for every i ∈ {1, . . . , dZ},

2.
∑︁dZ

i=1M
i
A = 1A.

Notice that the expression
∑︁dZ

i=1⟨M i
A, ρA⟩|i⟩⟨i|Z =

∑︁dZ
i=1Tr

[︁
M i
AρA

]︁
|i⟩⟨i|Z represents the state

of a classical system (2.35), described by the probability distribution {⟨M i
A, ρA⟩}i=1,...,dZ . The
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type of quantum measurements that we have described is called a positive operator-valued

measure (POVM), and the operators {M i
A}i=1,...,dZ are known as POVM elements.

There exists a special kind of measurement that uniquely determine the state of a quantum

system by the measurement statistics they generate. Those measurements are known as

information-complete measurements.

Definition 2.2.3. A quantum measurement MA→Z : L(A) → L(Z) is said to be information-

ally complete if its POVM elements {M i
A}i=1,...,dZ span the entire Hilbert space L(A).

In other words, MA→Z : L(A) → L(Z) is an information-complete measurement if it is

an injective map. In such a case, two different quantum states lead to two different classical

outcomes probabilities. Informationally complete quantum measurements will play a special

role in the proof techniques used in this thesis.

2.2.6 Symmetric States

We use the notation Sn to denote the set of permutations acting on n elements (or letters).

Its cardinality is |Sn| = n!. With the permutation composition operation ◦ : Sn → Sn, the

algebraic structure (Sn, ◦) forms a group, the symmetric group of n elements. Clearly the

group (Sn, ◦) is not abelian, i.e., the composition permutation is a non-commutative operation.

Given a permutation π ∈ Sn and a Hilbert space Hn, we indicate with UπHn ∈ L(Hn) the

permutation operator associated with π. In other words, UπHn is the operator re-arranging

the tensor products of kets according to the rule specified by π. A multipartite ket, e.g., a

multipartite pure state, |ψ⟩Hn ∈ Hn is said to be permutation invariant, or symmetric, if

UπHn |ψ⟩Hn = |ψ⟩Hn , (2.55)
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for every π ∈ Sn. Given a multipartite Hilbert space Hn, we indicate with

Symn(H) := {|ψ⟩Hn ∈ Hn : UπHn |ψ⟩Hn = |ψ⟩Hn , ∀π ∈ Sn}, (2.56)

the symmetric subspace of Hn. For a review of many quantum information applications of the

symmetric subspace see [43].

Given a multipartite Hilbert space Hn and a permutation operator UπHn , where π ∈ Sn, we

can build the associated permutation channel as

UπHn(·) := UπHn(·)Uπ
−1

Hn , (2.57)

where π−1 indicates the inverse of the permutation π with respect to the composition operation

◦. It is now easy to extend the concept of permutation invariance also to operators on Hn,

e.g., mixed states. In fact, a multipartite operator ρHn ∈ L(Hn) is said to be permutationally

invariant, or symmetric, if

UπHn(ρHn) = ρHn , (2.58)

for every π ∈ Sn.

Finally, given the Hilbert spaces Q and H, a multipartite operator ρQHn ∈ L(Q⊗Hn), is

said to be symmetric with respect to Q, if it is invariant under permutation of the H-systems

keeping Q fixed, i.e., if

(IQ ⊗ UπHn) (ρQHn) = ρQHn , (2.59)

for every π ∈ Sn. A bipartite state ρQH ∈ S(Q⊗H) is said to be n-extendible if there exists a

multipartite extension ρQHn ∈ S(Q⊗Hn), i.e., TrHn
2
(ρQHn) = ρQH, that is symmetric with

respect to Q. The notion of n-extendibility will be extremely important for this thesis.
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2.2.7 Diamond Norm

In order to quantify the distance between quantum states, we can use the metric induced by

one of the Schatten p-norms (2.22), (2.24). Those norms can be used also to define norms for

quantum channels. For example, given a quantum channel NA→B , the trace norm ∥ · ∥1 is used

to define the diamond norm

∥NA→B∥♢ := sup
X∈A⊗A
∥X∥1≤1

∥(NA→B ⊗ IA)(XAA)∥1, (2.60)

which is a popular norm used to quantify the distance between quantum channels via its

induced metric.

The following lemma relates the trace norm of Choi states to the diamond norm of their

isomorphically associated quantum channels.

Lemma 2.2.4. [82, Lemma 7] Let NA→B be a quantum channel, JN
BA

its Choi state, then

∥JN
BA

∥1 ≤ ∥NA→B∥♢ ≤ dA∥J
N
BA

∥1. (2.61)

Notice that, even if we have stated the above lemma for quantum channels, it holds even if

NA→B is a generic Hermitian-preserving super-operator (2.28).

2.3 Semidefinite Programming

In this section we introduce the essential concepts from semidefinite programming that are

needed for this thesis.

There are three ingredients that are used to specify a semidefinite program (SDP)

1. A Hermitian-preserving super-operator ΦA→B : L(A) → L(B),

2. a "primal" Hermitian operator PA ∈ Herm(A),
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3. a "dual" Hermitian operator DB ∈ Herm(B).

Thus, a semidefinite program can be seen as the triple (ΦA→B, PA, DB). Notice that, in

practice, semidefinite programs are stated in a simplified, less formal way. However, it is always

possible to reformulate any semidefinite program in the form (ΦA→B, PA, DB) to fit within the

above framework.

One then defines the primal problem as

α := sup ⟨PA, XA⟩ (2.62)

s.t. ΦA→B(XA) = DB, (2.63)

XA ⪰ 0. (2.64)

Every primal problem has an associated dual problem, defined as

β := inf ⟨DB, YB⟩ (2.65)

s.t. Φ†
B→A(YB) ⪰ PA, (2.66)

YB ∈ Herm(B). (2.67)

Operators satisfying the constraints of an optimization program are said to be feasible operators.

Thus, an operator XA ∈ L(A) satisfying ΦA→B(XA) = DB, and XA ⪰ 0, is said to be primal

feasible. The set formed by all the primal feasible operators is the primal feasible set A

A := {XA ∈ L(A) : ΦA→B(XA) = DB, XA ⪰ 0}. (2.68)

As we see, the primal optimum value α is the supremum of the primal objective function

XA → ⟨PA, XA⟩ over the primal feasible set A. If there are no primal feasible operators, i.e., if

A is the empty set ∅, then we define α := −∞.
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Similarly, an operator YB ∈ L(B) satisfying Φ†
B→A(YB) ⪰ PA, and YB ∈ Herm(B), is said

to be dual feasible. The set formed by all the dual feasible operators is the dual feasible set B

B := {YB ∈ L(B) : Φ†
B→A(YB) ⪰ PA, YB ∈ Herm(B)}. (2.69)

The dual optimum value β is the infimum of the dual objective function YB → ⟨DB, YB⟩ over

the dual feasible set B. If there are no dual feasible operators, i.e., if B is the empty set ∅,

then we define β := +∞.

Duality relations establish connections between the primal optimum value α and the dual

optimum value β. The first duality relation, which always hold, states that the primal optimum

value is always less than or equal to the dual optimum value.

Theorem 2.3.1. (Weak Duality) If (ΦA→B, PA, DB) is a SDP, then

α ≤ β. (2.70)

The equality condition α = β, which does not necessarily always hold, is known as strong

duality. Strong duality is not a rare condition in common practical applications of semidefinite

programming. Nevertheless, the following theorem provides a set of sufficient conditions for

strong duality

Theorem 2.3.2. (Slater’s theorem) If (ΦA→B, PA, DB) is a SDP, then α = β if one of the

following conditions holds

1. α is finite and there exists a dual feasible operator YB ∈ B such that Φ†
B→A(YB) ≻ PA,

2. β is finite and there exists a primal feasible operator XA ∈ A such that XA ≻ 0.

If 1. holds, then there exists a primal feasible operator XA ∈ A achieving the primal optimum

value, i.e., ⟨PA, XA⟩ = α. If 2. holds, then there exists a dual feasible operator YB ∈ B

achieving the dual optimum value, i.e., ⟨DB, YB⟩ = β.



Chapter 3

De Finetti Theorems with Linear

Constraints

The primary motivation of de Finetti theorems is to represent, or approximate, mathematical

objects symmetric under permutations of their components into a probabilistic ensemble of

elementary independent and identically distributed (i.i.d.) constituents. In the classical case,

the mathematical objects are probability mass functions, and the related theorems are known

as finite classical de Finetti theorems [28]. In the quantum case, the mathematical objects are

quantum states, and the related theorems are known as finite quantum de Finetti theorems [59].

Infinite version of those theorems are known in the literature, and they give exact alternative

representations for the desired mathematical object [19]. The infinite de Finetti representation

theorems can be found as limits of the finite versions, which are typically stated in the form

of upper bounds to the approximation error. In this work, we consider finite versions of de

Finetti theorems, while their generalization to the infinite case is easily obtained by taking the

asymptotic limit.

61
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3.1 Classical De Finetti theorem

De Finetti [26] first proved the classical version of the theorem in the asymptotic limit n→ ∞.

The classical de Finetti theorem is based on the notion of exchangeability for random variables

(or their joint probability distribution).

Definition 3.1.1. A collection of n discrete random variables X1, . . . , Xn is said to be sym-

metric, or finitely exchangeable, if the joint probability mass function pX1,...,Xn is invariant

under permutation of its arguments, i.e., if

pX1,...,Xn(xπ(1), . . . , xπ(n)) = pX1,...,Xn(x1, . . . , xn), (3.1)

for every π ∈ Sn, and xi ∈ image(X) for i = 1, . . . , n, where image(X) := image(X1).

If the collection X1, . . . , Xn can be seen as arising from an infinite sequence of symmetric

random variable, it is said to be exchangeable (or infinitely exchangeable). More formally, the

joint probability mass function pX1,...,Xn must satisfy the following two conditions

1. it must be invariant under permutation of its arguments,

2. it can be seen as the marginal probability mass function of a symmetric probability mass

function of arbitrarily many random variables.

Condition 2. means that there exists a probability mass function pX1,...,Xn,Xn+1,...,Xn+m that is

symmetric, and such that

pX1,...,Xn(x1, . . . , xn) =
∑︂

xn+1,...,xn+m

pX1,...,Xn,Xn+1,...,Xn+m(x1, . . . , xn, xn+1, . . . , xn+m), (3.2)

for every m > 0, and the sum is over [image(X)]×m.

I.i.d. implies exchangeability, as shown by the following lemma.
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Lemma 3.1.2. If X1, . . . , Xn is a collection of n i.i.d. discrete random variables, then

X1, . . . , Xn is finitely exchangeable.

Proof.

pX1,...,Xn(xπ(1), . . . , xπ(n)) =
n∏︂
i=1

pXi(xπ(i)) (3.3)

=
n∏︂
i=1

pXi(xi) (3.4)

= pX1,...,Xn(x1, . . . , xn). (3.5)

Example 3.1.3. (Coin Tossing) Consider a classical experiment where a coin, not necessarily

fair, is tossed repeatedly n times, and let Xi denote the outcome of the ith toss, for i = 1, . . . , n.

Clearly, the collection X1, . . . , Xn is i.i.d., so it is finitely exchangeable.

We have proved that exchangeability is implied by i.i.d. The opposite is not true. In other

words, exchangeability is weaker than the concept of i.i.d. This can be shown with the following

example which makes use of an urn model.

Example 3.1.4. (Pólya’s Urn Scheme [35, Chapter V]) Consider an urn containing NB > 0

black and NR > 0 red balls. A balls is drawn at random and is replaced. Moreover, n+ > 0

extra balls of the color drawn are also added to the urn. Another ball is drawn, and the process

continues as described above for a total of n drafts. Let Xi denote the outcome of the ith draft.

The probability of drawing nB black and then nR red balls, where nB + nR = n, is given by

NB(NB + n+) · · · (NB + (nB − 1) · n+)NR(NR + n+) · · · (NR + (nR − 1) · n+)
(NB +NR)(NB +NR + n+) · · · (NB +NR + (n− 1) · n+)

. (3.6)

The key point is that the above is also the probability of any sequence with nB black and nR red

balls, independently on the order in which they have been drawn. In fact, the probability of any
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such sequence will clearly have the same denominator as in (3.6), and the factors appearing

in the numerators will also be the same ones as in (3.6), but arranged in a different order.

Thus, the collection X1, . . . , Xn is finitely exchangeable. On the other hand, it is self-evident

that X1, . . . , Xn are not i.i.d. random variables, since the composition of the urn changes after

every draft. For example, Pr(X2 = red|X1 = black) = NR
NB+NR+n+

̸= NR
NB+NR

= Pr(X2 = red),

since n+ > 0.

We have seen that exchangeability and i.i.d. are different concepts. In particular, i.i.d.

random variables are exchangeable but exchangeable random variables do not need to be

i.i.d. However, the classical de Finetti theorem [26] shows that, in some sense, a notion of

independence is applicable also in the context of exchangeability.

Theorem 3.1.5. A collection X1, . . . , Xn of discrete random variables is exchangeable if and

only if there exists a parameter θ and a measure P on it, such that the joint probability mass

function pX1,...,Xn(x1, . . . , xn) can be written as

pX1,...,Xn(x1, . . . , xn) =

∫︂ n∏︂
i=1

p(xi|θ)P (dθ). (3.7)

The classical de Finetti theorem states that a collection X1, . . . , Xn of discrete random

variables is exchangeable if and only its joint probability mass function can be represented

as an "integral mixture" of likelihoods that are conditionally independent with respect to

a parameter θ, having P as prior. In other words, if the observations of an experiment are

exchangeable, they can be seen as a random sample from some model, which is determined by

a parameter θ, and there must exist a prior probability distribution over θ.
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3.2 Quantum De Finetti theorem

Similar to the previous section, a quantum state ρHn ∈ S(Hn) is said to be exchangeable (or

infinitely exchangeable) if it satisfies the following two conditions ρHn ∈ S(Hn)

1. it must be symmetric (2.58),

2. it can be seen as the marginal density operator of a symmetric quantum state acting on

arbitrarily many quantum systems.

Condition 2. means that ρHn admits a symmetric extension ρHn+m ∈ S(Hn+m) for every

m > 0. The following is the quantum version [19, Section III] of the classical de Finetti theorem

(3.1.5).

Theorem 3.2.1. A quantum state ρHn ∈ S(Hn) is exchangeable if and only if it can be written

in the form

ρHn =

∫︂
S(H)

P (ρ)ρ⊗ndρ, (3.8)

where P is a unique probability density function over S(H) and dρ is a measure on that set.

In analogy with its classical version, we see that the quantum de Finetti theorem states

that a quantum state ρHn ∈ S(Hn) is exchangeable if and only if it can be represented as an

"integral mixture" of separable i.i.d. states.

3.3 Approximating Separable States with PPT States

While the quantum de Finetti Theorem 3.2.1 is an interesting result, it is not in the form we

need for practical applications. In particular, approximating the set Sep(A : B) of separable
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states is a ubiquitous but computationally hard problem in quantum information theory (see,

e.g., [6, Section 9.1] for hardness results with respect to approximations). The set Sep(A : B)

has been formally defined in Subsection 2.2.3. In particular, we said that ρAB ∈ Sep(A : B)

if it can be written as ρAB =
∑︁

i∈I piσ
i
A ⊗ τ iB, for a probability distribution {pi}i∈I , and

quantum states {σiA}i∈I , and {τ iB}i∈I . Since elements in Sep(A : B) describe unentangled

states, being able to characterize Sep(A : B) is extremely important in order to understand

entanglement, which is one of the main features of quantum mechanics. Operationally speaking,

the characterization of Sep(A : B) is connected to the formulation of separability tests. I.e.,

criteria that can be used to check whether a given quantum state ρAB is separable or not. One

of the most famous separability tests is based on the following result by Horodecki [50].

Theorem 3.3.1. (Horodecki criterion) A quantum state ρAB ∈ S(A ⊗ B) is separable, i.e.,

ρAB ∈ Sep(A : B), if and only if

(ΦA→C ⊗ IB)(ρAB) ⪰ 0, (3.9)

for every Hilbert space C, and positive super-operator ΦA→C : L(A) → L(C).

Notice that in the above theorem we can choose C = A. The Horodecki criterion can

be directly used to test separability. If we find a positive super-operator ΦA→A such that

(ΦA→A ⊗ IB)(ρAB) ̸⪰ 0, then we conclude that ρAB is not separable. Vice versa, it is clear

that we cannot try all the possible positive super-operators to prove that ρAB is separable.

Thus, in practice, one restricts the analysis to well-known positive super-operators that are

easy to compute. The most common positive super-operator used to test separability in the
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context of the Horodecki criterion is the transpose map1

Transpose : X → XT, (3.10)

where the transpose is taken with respect to an orthonormal basis of the Hilbert space. Moreover,

we define

(·)TA := (TransposeA ⊗ IB)(·), (3.11)

(·)TB := (IA ⊗ TransposeB)(·), (3.12)

which are known as partial transposes. Given the importance of partial transposition to test

separability, the following definition is natural.

Definition 3.3.2. A quantum state ρAB ∈ S(A⊗B) is said to be a positive partial transpose

(PPT) state if

ρTA
AB ⪰ 0. (3.13)

We will denote with PPT(A : B) the set of PPT states2, i.e.,

PPT(A : B) := {ρAB ∈ S(A⊗B) : ρTA
AB ⪰ 0}. (3.14)

The following corollary is a direct consequence of the Horodecki criterion.

Corollary 3.3.3. Let ρAB ∈ S(A⊗B) be a quantum state, then

ρAB ∈ Sep(A : B) =⇒ ρAB ∈ PPT(A : B). (3.15)
1The transpose map is clearly a positive super-operator since the spectrum of an operator is invariant under

transposition. In other words, X and XT share the same eigenvalues.
2Notice that this definition is independent on the choice of the system to be transposed. In fact, ρTA

AB and(︂
ρTA
AB

)︂T
= ρTB

AB share the same spectrum. Thus, ρTA
AB ⪰ 0 if and only if ρTB

AB ⪰ 0.
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The above corollary shows that Sep(A : B) is a subset of PPT(A : B), i.e., every separable

state is also PPT. On the other hand, one can prove that there exist PPT states that are

not separable, i.e., entangled PPT states3. In other words, Sep(A : B) is a proper subset of

PPT(A : B)

Sep(A : B) ⊊ PPT(A : B). (3.16)

While entangled PPT states in general do exist, their entanglement is highly constrained

by the PPT condition. In some sense, they are the "most classical" of the entangled states,

and they exhibit similar properties to separable states. For example, PPT states cannot be

"too entangled", in the sense that their overlap, as measured by the inner product, with the

maximally entangled state is small ([87, Proposition 6.42]).

3.4 Approximating Separable States with n-extendible States

Another approach for the approximation of Sep(A : B) is via the notion of n-extendibility

introduced in Subsection 2.2.6. Recall that a quantum state ρAB ∈ S(A ⊗ B) is said to be

n-extendible if there exists a multipartite extension ρABn
1
∈ S(A⊗Bn) that is symmetric with

respect to A. In other words, if there exists a quantum state ρABn
1
∈ S(A⊗Bn) satisfying the

following two conditions

1. TrBn
2
(ρABn

1
) = ρAB,

2. (IA ⊗ UπBn) (ρABn
1
) = ρABn

1
for every π ∈ Sn,

with B1 := B. In such a case, we will say that ρAB is an element of the set of n-extendible
3It is interesting to note that entangled PPT states do not exist for 2× 2, 2× 3, and 3× 2 bipartite systems.

For those low-dimensional quantum systems, every PPT state is also separable [50, Theorem 3].
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states, which will be denoted by n-Ext(A : B). It is easy to show that, given a natural number

n > 0, every separable state is n-extendible. This is formalized by the following proposition.

Proposition 3.4.1. Let ρAB ∈ S(A⊗B) be a quantum state, then

ρAB ∈ Sep(A : B) =⇒ ρAB ∈ n-Ext(A : B), (3.17)

for every natural n > 0.

Proof. If ρAB is separable, it can be written as ρAB =
∑︁

i∈I piσ
i
A ⊗ τ iB, for a probability

distribution {pi}i∈I , and quantum states {σiA}i∈I , and {τ iB}i∈I . Let’s consider the following

state

ρABn
1
:=
∑︂
i∈I

piσ
i
A ⊗ (τ iB)

⊗n. (3.18)

The state ρABn
1

is clearly an extension of ρAB, in fact

TrBn
2
(ρABn

1
) =

∑︂
i∈I

piσ
i
A ⊗ TrBn

2

[︁
(τ iB)

⊗n]︁ (3.19)

=
∑︂
i∈I

piσ
i
A ⊗ τ iB ⊗ Tr(τ iB)

n−1 (3.20)

=
∑︂
i∈I

piσ
i
A ⊗ τ iB (3.21)

= ρAB, (3.22)

where we used the normalization condition Tr(τ iB) = 1 for every i ∈ I. Moreover, it is clear

that ρABn
1

is symmetric with respect to A. This is because (τ iB)
⊗n is formed by n copies of the

same quantum state. Permuting those density operators will not change the overall quantum

state ρABn
1
.

The above proposition shows that, given a n > 0, Sep(A : B) is a subset of n-Ext(A : B),

i.e., every separable state is also n-extendible. On the other hand, one can prove that there
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exist n-extendible states that are not separable [24], [52]. In other words, for any given n > 0,

Sep(A : B) is a proper subset of n-Ext(A : B)

Sep(A : B) ⊊ n-Ext(A : B). (3.23)

Comparing (3.23) with (3.16), we see that both PPT(A : B) and n-Ext(A : B) provide outer

approximations to the set Sep(A : B) of separable states. The great advantage in considering

n-extendibility is that, while there exist n-extendible states that are not separable, a quantum

state that is n-extendible for any n must be separable. This statement is formalized by the

following theorem.

Theorem 3.4.2. [30, Theorem 1] Let ρAB ∈ S(A⊗B) be a quantum state, then

ρAB ∈ Sep(A : B) ⇐⇒ ρAB ∈ n-Ext(A : B), (3.24)

for every natural n > 0.

Notice that the direction =⇒ in Theorem 3.4.2 is proven by Proposition 3.4.1.

On the other hand, the proof of the opposite direction ⇐= is not trivial. Theorem 3.4.2

naturally leads to a test for separability based on n-extendibility. However, we find ourselves

in the same practical problem we encountered with the Horodecki criterion in the previous

section. To prove that a quantum state ρAB is separable, we have to show its n-extendibility

for every n > 0. In practice, this is impossible. On the other hand, we can stop at a certain n

and quantify the "error" we commit by working with n-extendible states in place of separable

states. Crucially, n-extendibility has a semidefinite representation and this then immediately

gives efficient semidefinite approximations of the set Sep(A : B) for any fixed n. Finite finite

quantum de Finetti theorems quantify, with upper bounds, the distance of n-extendible states to

separable states [21], with convergence in the limit n→ ∞ [75]. More precisely, [21, Theorem
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II.7] gives that for states ρAB n-extendible to ρABn
1
, there exists a probability distribution

{pi}i∈I and states ρiA, ρ
i
B on A and B, respectively, such that

⃦⃦⃦⃦
⃦ρAB −

∑︂
i∈I

piρ
i
A ⊗ ρiB

⃦⃦⃦⃦
⃦
1

≤
2d2B
n
. (3.25)

As pointed out, in the limit n → ∞ the distance between separable states and n-extendible

states shrinks to zero. In other words, separable states and ∞-extendible states are the same

thing. Moreover, inequality (3.25) can be generalized to [21, 57]

⃦⃦⃦⃦
⃦ρABk

1
−
∑︂
i∈I

piρ
i
A ⊗

(︁
ρiB
)︁⊗k ⃦⃦⃦⃦⃦

1

≤
2kd2B
n

, (3.26)

for k ∈ {1, · · · , n− 1}, which represents the state-of-the-art bound. Inequalities of the form

(3.26) will be referred as generalized finite quantum de Finetti theorems. Those results state

that if a multipartite state on ABn
1 is symmetric with respect to A, then the reduced state

on the first k systems ABk
1 is close to a separable mixture of independent and identical states

for k sufficiently smaller than n. Notice that the dependence of the approximation error on

k is linear, meaning that it does not slows down the convergence "too much". Again, in

the asymptotic limit n → ∞ and holding k constant, the inequality reduces to an equality

and the approximation becomes exact. The special case k = 1 exactly recovers (3.25), which

characterizes Sep(A : B). For our setting, however, we are interested more generally in

characterizing bipartite states that are separable, but subject to linear constraints on the

ρiA, ρ
i
B as well.
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3.5 Constrained Bilinear Optimization

As pointed out at the end of the previous section, we are interested in the study of constrained

bilinear optimization problems of the form

Q = max Tr
[︁
H(D ⊗ E)

]︁
(3.27)

s.t. D ∈ PD = ΠA→D (S(A) ∩ AffA) (3.28)

E ∈ PE = ΠB→E (S(B) ∩ AffB) , (3.29)

where H ∈ L(HD ⊗ HE) is a fixed operator, and PD and PE are positive semidefinite

representable sets such that

• ΠA→D : L(HA) → L(HD) and ΠB→E : L(HB) → L(HE) are super-operators,

• AffA and AffB are affine subspaces of L(HA) and L(HB), respectively.

As we see, the optimization is performed over the set of operators of the form D⊗E, where D

and E must represent proper quantum states, subject to additional linear constraints implicitely

specified by the affine subspaces AffA and AffB . In this thesis we will use the generic expression

"linear constraints" to include affine constraints as well.

Our main motivation to study problems of the form (3.27) comes from quantum information

theory, or more specifically from the problem of approximate quantum error correction. We

present this application and its motivation in detail in Chapter 4, but continue here with the

general mathematical setting.

To discuss our approach, we first rewrite (3.27) by defining GAB := (Π†
D→A ⊗Π†

E→B)(H).

This leads to the form

Q = max Tr
[︁
GAB(ρA ⊗ ρB)

]︁
(3.30)
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s.t. ρA ⪰ 0, ρB ⪰ 0 (3.31)

Tr(ρA) = Tr(ρB) = 1 (3.32)

ΛA→CA
(ρA) = XCA

, ΓB→CB
(ρB) = YCB

, (3.33)

where GAB ∈ L(HA ⊗ HB) is a fixed operator, ΛA→CA
: L(HA) → L(HCA

), and ΓB→CB
:

L(HB) → L(HCB
) are super-operators, and XCA

∈ L(HCA
) and YCB

∈ L(HCB
) are the

operators defining AffA and AffB as the affine subspaces associated with the kernels of the

linear maps ΛA→CA
and ΓB→CB

, respectively.

Now, by the linearity of the objective function we can equivalently optimise over the convex

hull of feasible points

Q = max Tr

[︄
GAB

(︄∑︂
i∈I

piρ
i
A ⊗ ρiB

)︄]︄
(3.34)

s.t. pi ≥ 0 ∀i ∈ I,
∑︂
i∈I

pi = 1 (3.35)

ρiA ⪰ 0, ρiB ⪰ 0 ∀i ∈ I (3.36)

Tr
(︁
ρiA
)︁
= Tr

(︁
ρiB
)︁
= 1 ∀i ∈ I (3.37)

ΛA→CA

(︁
ρiA
)︁
= XCA

, ΓB→CB

(︁
ρiB
)︁
= YCB

∀i ∈ I. (3.38)

In fact, making the constraints of the optimization programs implicit, on one hand it is

clear that

Q = maxTr
[︁
GAB(ρA ⊗ ρB)

]︁
≤ maxTr

[︄
GAB

(︄∑︂
i∈I

piρ
i
A ⊗ ρiB

)︄]︄
. (3.39)

On the other hand, for every quantum state ρiA and ρiB, we have

Tr

[︄
GAB

(︄∑︂
i∈I

piρ
i
A ⊗ ρiB

)︄]︄
=
∑︂
i∈I

piTr
[︁
GAB

(︁
ρiA ⊗ ρiB

)︁]︁
(3.40)
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≤
∑︂
i∈I

pimaxTr
[︁
GAB(ρ

i
A ⊗ ρiB)

]︁
(3.41)

=
∑︂
i∈I

piQ (3.42)

= Q. (3.43)

Taking the maximum, we find

maxTr

[︄
GAB

(︄∑︂
i∈I

piρ
i
A ⊗ ρiB

)︄]︄
≤ Q. (3.44)

Thus, combining (3.39) with (3.44),

Q ≤ maxTr

[︄
GAB

(︄∑︂
i∈I

piρ
i
A ⊗ ρiB

)︄]︄
≤ Q (3.45)

=⇒ maxTr

[︄
GAB

(︄∑︂
i∈I

piρ
i
A ⊗ ρiB

)︄]︄
= Q, (3.46)

which proves the equivalence of the two optimization programs (3.30) and (3.34).

As we see, the transformed program (3.34) requires an optimization over a subset of

Sep(A : B), specified by the additional linear constraints imposed via the linear maps ΛA→CA
,

ΓB→CB
, and the operators XCA

and YCB
.

3.6 Quantum De Finetti theorems with Linear Constraints

In the following, we start by providing a brief sketch of the main ideas behind the proof. For

simplicity we restrict to k = 1, which is the relevant case for (3.34). Namely, we start with a

multipartite state ρABn
1

symmetric with respect to A, and the goal is to identify constraints

such that ρAB := ρAB1 is approximated by a mixture of states of the form

ρiA ⊗ ρiB, (3.47)
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with ΛA→CA

(︁
ρiA
)︁
= XCA

, (3.48)

and ΓB→CB

(︁
ρiB
)︁
= YCB

. (3.49)

3.6.1 Proof methods

The standard approach for proving de Finetti theorems [21] proceeds by measuring the B

systems with the uniform measurement on the symmetric subspace given by
{︁
|ψ⟩⟨ψ|⊗nB

}︁
ψ
. In

this case, the candidate mixture of product states is given by the expression

∫︂
p (ψ) d|ψ⟩ρA|ψ ⊗ |ψ⟩⟨ψ|B , (3.50)

where the integral is computed with respect to the Haar measure [87, Definition 7.18], p(ψ)d|ψ⟩

denotes the probability of outcome ψ, and ρA|ψ is the quantum the state on A conditioned on

obtaining outcome ψ in the measurement. However, by doing so, the states |ψ⟩⟨ψ|B appearing

in the integral (3.50), will not satisfy, in general, the desired condition ΓB→CB
(|ψ⟩⟨ψ|B) =

YCB
. More precisely, the measurement

{︁
|ψ⟩⟨ψ|⊗nB

}︁
ψ

does not guarantee that the set {|ψ⟩B :

ΓB→CB
(|ψ⟩⟨ψ|B) ̸= YCB

} has zero measure.

In principle, one could try to modify the measurement so that we only get |ψ⟩⟨ψ|B satisfying

the desired constraint. However, this approach seems difficult. Instead, we use an alternative

approach, where the candidate mixture of product states is chosen differently [58, 17]. Namely,

starting from ρABn
1
, a well-chosen measurement on the systems Bn

2 with measurement outcomes

zn2 leads to the candidate mixture of product states

E
zn2

{︂
ρA|zn2 ⊗ ρB|zn2

}︂
. (3.51)

The advantage of this candidate state is that, by enforcing the right constraints on the global

state ρABn
1
, we can ensure that ΛA→CA

(ρA|zn2 ) = XCA
and ΓB→CB

(ρB|zn2 ) = YCB
. Note that, in
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order for this strategy to work properly, we need the chosen measurement to be informationally

complete (2.2.3), i.e., allowing to estimate the expectation value of arbitrary operators [2], and

have a small distortion in the sense that the loss in distinguishability resulting from applying

the measurement is small. This concept will be made more precise in the next subsection.

3.6.2 Information-theoretic tools

The starting point for our proof technique is the use of the chain rule of the conditional mutual

information, first used in this context in [16] and further exploited in [17]. More precisely, we

will use the quantum relative entropy defined as

D(ρ∥σ) :=

⎧⎪⎪⎨⎪⎪⎩
Tr(ρ log ρ)− Tr(ρ log σ) if supp(ρ) ⊆ supp(σ)

∞ otherwise
, (3.52)

where ρ and σ are quantum states and the logarithm is taken with respect to the basis two,

i.e., log(·) := log2(·). The following theorem [87, Theorem 5.38] relates the quantum relative

entropy D(ρ∥σ) to the trace distance ∥ρ− σ∥1.

Theorem 3.6.1. (Quantum Pinsker’s inequality) Let ρ, σ ∈ S(H), then

D(ρ∥σ) ≥ 1

2 ln 2
∥ρ− σ∥21 . (3.53)

Via the quantum relative entropy we define the quantum mutual information as

I (A : B)ρ := D(ρAB∥ρA ⊗ ρB). (3.54)

If B := Z is a classical system, we have the following upper bound (see, e.g., [69, Chapter 11])

I (A : Z) ≤ log dA. (3.55)
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In other words, one can bound the quantum mutual information of a classical-quantum state

(2.37) with the quantum entropy of the maximally mixed state on the quantum system.

The following lemma, which can be found in [17], says that if some classical systems Zn1

are symmetric with respect to A, then conditioning on Zm1 for some value of m breaks the

correlations between A and Zm+1. Before stating the lemma, we introduce notation that will

be used throughout the section. For a state ρAZ with a classical Z-system, we write

ρA|z :=
TrZ

[︂
ρAZ (1A ⊗ |z⟩⟨z|)

]︂
Tr
[︂
ρAZ (1A ⊗ |z⟩⟨z|)

]︂ , (3.56)

to denote the quantum state on A if we have obtained z as the outcome of the Z-system

measurement. Notice that the term Tr
[︂
ρAZ (1A ⊗ |z⟩⟨z|)

]︂
at the denominator is just a nor-

malization factor whose purpose is to guarantee that ρA|z is a properly defined quantum state

Tr(ρA|z) = TrA(ρA|z) =
TrAZ

[︂
ρAZ (1A ⊗ |z⟩⟨z|)

]︂
Tr
[︂
ρAZ (1A ⊗ |z⟩⟨z|)

]︂ =
Tr
[︂
ρAZ (1A ⊗ |z⟩⟨z|)

]︂
Tr
[︂
ρAZ (1A ⊗ |z⟩⟨z|)

]︂ = 1. (3.57)

We simply write E
zm1

{·} for the expectation over the choices of zm1 and the probability

distribution will be clear from the context.

Lemma 3.6.2. [17] Let ρAZn
1

be a classical-quantum state with the Zn1 -systems classical and

UπZn(ρAZn
1
) = ρAZn

1
for all π ∈ Sn. Then, there exists 0 ≤ m < n such that

E
zm1

{︂
D(ρAZm+1|zm1 ∥ρA|zm1 ⊗ ρZm+1|zm1 )

}︂
≤ log dA

n
(3.58)

as well as

E
zm1

{︂
∥ρAZm+1|zm1 − ρA|zm1 ⊗ ρZm+1|zm1 ∥21

}︂
≤ (2 ln 2) log dA

n
, (3.59)

where ln(·) denotes the natural logarithm.
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Proof. Since the Zn1 -systems are classical, we can use the upper bound (3.55) to obtain the

following inequality that is independent on the dimension of the classical systems and on their

number n, i.e.,

I (A : Zn1 )ρ ≤ log dA. (3.60)

The quantum mutual information satisfies the following chain rule (see, e.g., [69, Chapter 11])

I (A : Zn1 )ρ =
n−1∑︂
m=0

I(A : Zm+1|Zm1 )ρ, (3.61)

where we used the quantum conditional mutual information

I(A : Zm+1|Zm1 )ρ := I(A : Zm+1
1 )ρ − I(A : Zm1 )ρ. (3.62)

Since
∑︁n−1

m=0 I(A : Zm+1|Zm1 )ρ ≤ log dA, and the sum is formed by n terms, it is not possible

to have I(A : Zm+1|Zm1 )ρ >
log dA
n for each m = 0, . . . , n − 1. As a result, there exists an

m ∈ {0, . . . , n− 1} such that I(A : Zm+1|Zm1 )ρ ≤ log dA
n , which implies

E
zm1

{︂
I(A : Zm+1)ρAZm+1|zm1

}︂
≤ log dA

n
, (3.63)

where we used

I(A : Zm+1|Zm1 )ρ = E
zm1

{︂
I(A : Zm+1)ρAZm+1|zm1

}︂
, (3.64)

which holds since the conditioning systems are classical [33].

The second statement then follows directly from Pinsker’s inequality, i.e., Theorem (3.6.1).

The next lemma can be seen as a generalization of the law of total probability for classical-

quantum states.
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Lemma 3.6.3. Let ρAZ be a classical-quantum state with the Z-system classical. Then,

E
z

{︁
ρA|z

}︁
= ρA. (3.65)

Proof. Since ρAZ is a classical-quantum state, it can be written in the form (Subsection 2.2.3)

ρAZ =
∑︂
z

pzτ
z
A ⊗ |z⟩⟨z|, (3.66)

for a probability distribution {pz}z, quantum states {τ zA}z and an orthonormal basis (|z⟩)z for

the Hilbert space Z. On one hand, it is clear that

ρA =
∑︂
z

pzτ
z
A. (3.67)

On the other, we have

E
z

{︁
ρA|z

}︁
= E

z

⎧⎨⎩TrZ

[︂
ρAZ (1A ⊗ |z⟩⟨z|)

]︂
Tr
[︂
ρAZ (1A ⊗ |z⟩⟨z|)

]︂
⎫⎬⎭ (3.68)

= E
z

⎧⎨⎩TrZ

[︂
pzτ

z
A ⊗ |z⟩⟨z|

]︂
Tr
[︂
pzτ zA ⊗ |z⟩⟨z|

]︂
⎫⎬⎭ (3.69)

= E
z

{︃
pzτ

z
A

pz

}︃
(3.70)

= E
z
{τ zA} (3.71)

=
∑︂
z

pzτ
z
A. (3.72)

Thus, E
z

{︁
ρA|z

}︁
= ρA.

To prove the de Finetti theorem, we will crucially make use of so-called informationally

complete measurements (2.2.3) for which the loss in distinguishability, or distortion, can be

bounded.
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Lemma 3.6.4. [17, Lemma 14] There exists a informationally complete product measurement

MA ⊗MB with finitely many outcomes such that, for any Hermitian and traceless operator

ξAB on A⊗B, we have

∥(MA ⊗MB)(ξAB)∥1 ≥
1

18
√
dAdB

∥ξAB∥1. (3.73)

The above lemma follows from the methods in [63], and we stated the version for bipartite

quantum systems. More generally, we define the minimal distortion for the bipartite system

A⊗B as

f(A,B) := inf
MA,MB

max
ξ†AB=ξAB

ξA=0, ξB=0

∥ξAB∥1
∥(MA ⊗MB)(ξAB)∥1

, (3.74)

where the infimum is over all product measurements on A⊗B. In this notation, Lemma 3.6.4

shows that

f(A,B) ≤ 18
√︁
dAdB. (3.75)

Note that in the definition of f(A,B) we restricted the maximization to operators satisfying

ξA = 0 and ξB = 0 because this is sufficient for our purposes. Notice that operators satisfying

ξA = 0 and ξB = 0, are also traceless. Thus, it is possible to use them in Lemma 3.6.4.

A drawback of Lemma 3.6.4 is that the distortion depends on the dimension dA. This is not

surprising since, in that lemma, we are measuring both systems. On the other hand, in certain

applications we may want to measure B only. In such a case, it is interesting to investigate

whether one can remove the A-system dimensional dependence. First, we define the minimal

distortion with side information for a system B as

f(B|·) := inf
MB

sup
ξ†AB=ξAB

ξA=0, ξB=0

∥ξAB∥1
∥(IA ⊗MB)(ξAB)∥1

, (3.76)
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where the infimum is over all measurements on B and the supremum is over all finite-dimensional

systems A. In [14, Lemma D.1] we give an elementary proof that

f(B|·) ≤ d2B(dB + 1) (3.77)

using state two-designs and properties of weighted non-commutative Lp-spaces. With methods

from operator space theory [18, Equation 66] gave the stronger bound

f(B|·) ≤
√︂
18d3B. (3.78)

Finally, the following optimal bound has been shown in [53, Lemma 8]

f(B|·) ≤ 2dB, (3.79)

which is linear in the dimension of the system being measured.

3.6.3 Main Theorem

Combining the tools from the previous subsection we find the following de Finetti theorem

with linear constraints.

Theorem 3.6.5. Let ρABn
1

be a quantum state, ΛA→CA
,ΓB→CB

super-operators, and XCA
, YCB

operators such that

UπBn
1
(ρABn

1
) = ρABn

1
∀π ∈ Sn symmetric with respect to A (3.80)

ΛA→CA
(ρABn

1
) = XCA

⊗ ρBn
1

linear constraint on A (3.81)

ΓBn→CB
(ρBn

1
) = ρBn−1

1
⊗ YCB

linear constraint on B. (3.82)

Then, we have that⃦⃦⃦⃦
⃦ρAB −

∑︂
i∈I

piσ
i
A ⊗ ωiB

⃦⃦⃦⃦
⃦
1

≤ min
{︁
f(A,B), f(B|·)

}︁√︃(2 ln 2) log (dA)

n
(3.83)
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with {pi}i∈I a probability distribution, ρAB := TrBn
2

(︁
ρABn

1

)︁
, and quantum states σiA, ω

i
B such

that for every i ∈ I:

ΛA→CA

(︁
σiA
)︁
= XCA

and ΓB→CB

(︁
ωiB
)︁
= YCB

. (3.84)

As stated in Section 3.6.2, we can, e.g., take f(A,B) ≤ 18
√
dAdB or f(B|·) ≤ 2dB.

Proof. Let MB be a measurement of the B system and call the outcome system Z. Consider

the state ρAZn
1

obtained by measuring all the B systems with the same quantum measurement

MB. This is a classical-quantum state symmetric with respect to A and so we can apply

Lemma 3.6.2. We find that there exists an m ∈ {0, . . . , n− 1} such that

E
zm1

{︂
∥ρAZm+1|zm1 − ρA|zm1 ⊗ ρZm+1|zm1 ∥21

}︂
≤ (2 ln 2) log dA

n
. (3.85)

For any collection zm1 of measurement outcomes, we can rewrite the quantum states ρAZm+1|zm1

and ρZm+1|zm1 appearing in (3.85) as

ρAZm+1|zm1 = (IA ⊗MB)(ρABm+1|zm1 ), (3.86)

and

ρZm+1|zm1 = MB(ρBm+1|zm1 ). (3.87)

Now, we choose the measurement MB achieving f(B|·) in (3.76), and we get that ∥ξAB∥21 ≤

f(B|·)2∥(IA ⊗MB)(ξAB)∥21, where we set ξAB := ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 . Notice that

ξAB, being a difference of two Hermitian operators, is Hermitian, and it satisfies

ξA = ρA|zm1 − ρA|zm1 = 0, (3.88)

and

ξB = ρBm+1|zm1 − ρBm+1|zm1 = 0. (3.89)
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As a result, we have

E
zm1

{︂
∥ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 ∥21

}︂
≤ f(B|·)2 (2 ln 2) log dA

n
. (3.90)

Now, using the convexity of the square function, we get

E
zm1

{︂
∥ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 ∥1

}︂
≤
√︃

E
zm1

{︂
∥ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 ∥21

}︂
(3.91)

≤ f(B|·)
√︃

(2 ln 2) log dA
n

. (3.92)

To arrive to the above inequality, we measured only the B systems. On the other hand, we can

also choose measurements MA and MB achieving f(A,B) in (3.74). In this case,

∥ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 ∥21 (3.93)

≤ f(A,B)2∥(MA ⊗MB)(ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 )∥21 (3.94)

≤ f(A,B)2∥(MA ⊗ IB)[(IA ⊗MB)(ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 )]∥21 (3.95)

≤ f(A,B)2∥(IA ⊗MB)(ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 )∥21 (3.96)

= f(A,B)2∥ρAZm+1|zm1 − ρA|zm1 ⊗ ρZm+1|zm1 ∥21, (3.97)

where we used the fact that the trace norm cannot increase when applying the quantum channel

MA [87, Theorem 3.39]. As a result, we get

E
zm1

{︂
∥ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 ∥21

}︂
≤ f(A,B)2

(2 ln 2) log dA
n

. (3.98)

Again, using the convexity of the square function, we get

E
zm1

{︂
∥ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 ∥1

}︂
≤ f(A,B)

√︃
(2 ln 2) log dA

n
. (3.99)

Thus, we can bound the expectation E
zm1

{︂
∥ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 ∥1

}︂
in two different

ways. The best upper bound will be given by the minimum of the two ones, i.e.,

E
zm1

{︂
∥ρABm+1|zm1 − ρA|zm1 ⊗ ρBm+1|zm1 ∥1

}︂
≤ min

{︁
f(A,B), f(B|·)

}︁√︃(2 ln 2) log dA
n

. (3.100)
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Then, using the convexity of the norm (which is true for every norm due to the triangle

inequality), and Lemma 3.6.3

E
zm1

{︂
ρABm+1|zm1

}︂
= ρABm+1 , (3.101)

we obtain⃦⃦⃦⃦
ρABm+1 − E

zm1

{︂
ρA|zm1 ⊗ ρBm+1|zm1

}︂⃦⃦⃦⃦
1

≤ min
{︁
f(A,B), f(B|·)

}︁√︃(2 ln 2) log dA
n

. (3.102)

The state E
zm1

{︂
ρA|zm1 ⊗ ρBm+1|zm1

}︂
corresponds to our candidate mixture of product states.

It now remains to show that all the states in the mixture satisfy the linear constraints.

Indeed we have for any collection of measurement outcomes zm1 , writing M z
B for the POVM

elements of the measurement MB,

ΛA→CA
(ρA|zm1 ) =

TrBm
1

[︂
(1A ⊗M z1

B ⊗ · · · ⊗M zm
B )ΛA→CA

(ρABm
1
)
]︂

Tr
[︂
(1A ⊗M z1

B ⊗ · · · ⊗M zm
B )ρABm

1

]︂ (3.103)

=
TrBm

1

[︂
(1A ⊗M z1

B ⊗ · · · ⊗M zm
B )(XCA

⊗ ρBm
1
)
]︂

Tr
[︂
(1A ⊗M z1

B ⊗ · · · ⊗M zm
B )ρABm

1

]︂ (3.104)

= XCA
, (3.105)

and similarly

ΓB→CB
(ρBm+1|zm1 ) =

TrBm
1

[︂
(M z1

B ⊗ · · · ⊗M zm
B ⊗ 1CB

)ΓBm+1→CB
(ρBm+1

1
)
]︂

Tr
[︂
(M z1

B ⊗ · · · ⊗M zm
B ⊗ 1Bm+1)ρBm+1

1

]︂ (3.106)

=
TrBm

1

[︂
(M z1

B ⊗ · · · ⊗M zm
B ⊗ 1Bm+1)(ρB1···Bm ⊗ YCB

)
]︂

Tr
[︂
(M z1

B ⊗ · · · ⊗M z1
B ⊗ 1Bm+1)ρBm+1

1

]︂ (3.107)

= YCB
. (3.108)
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Theorem 3.6.5 allows us to approximate the set of separable states subject to linear

constraints on A and B, with a proper subset of n-Ext(A : B), formed by n-extendible states

satisfying two appropriate linear conditions. Comparing the bound of Theorem 3.6.5 with (3.25),

we see that the room for improvement is fairly limited, i.e., we may be able to improve the

square root and the logarithm dependence, but the overall bound cannot be made exponentially

better.

In the next subsection we will generalize such result, by keeping a generic number 0 < k < n

of B-systems, instead of k = 1 (which will correspond to the setting of Theorem 3.6.5).

3.6.4 Generalizing the Main Theorem to k Copies

As pointed out at the end of the previous subsection, Theorem 3.6.5 can be extended to a

generalized finite quantum de Finetti theorem for any reduced state ρABk
1

with 0 < k < n.

Theorem 3.6.6. For the same setting as in Theorem 3.6.5, we have for 0 < k < n that⃦⃦⃦⃦
⃦ρABk

1
−
∑︂
i∈I

piσ
i
A ⊗

(︁
ωiB
)︁⊗k ⃦⃦⃦⃦⃦

1

≤ kf(B|·)
√︃

(2 ln 2)
log dA + (k − 1) log dB

n− k + 1
. (3.109)

Proof. Note that the for the state ρABk−1
1 Bn

k
, the systems Bn

k are symmetric with respect to

ABk−1
1 . As such, we can apply the same argument used in the proof of Lemma 3.6.2 and

Theorem 3.6.5, but this time starting from the following chain rule

I
(︂
ABk−1

1 : Znk

)︂
ρ
=

n−1∑︂
m=k−1

I(ABk−1
1 : Zm+1|Zmk )ρ. (3.110)

Notice that the sum in the chain rule contains (n− 1)− (k − 1) + 1 = n− k + 1 terms. Thus,

we find that there exists a m ∈ {k, . . . , n} such that

E
zmk+1

{︂
∥ρABk

1 |zmk+1
− ρABk−1

1 |zmk+1
⊗ ρBk|zmk+1

∥1
}︂
≤ f(B|·)

⌜⃓⃓⎷(2 ln 2) log
(︂
dAd

k−1
B

)︂
n− k + 1

. (3.111)
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Summing the n− k + 1 inequalities labelled by m, we find

1

n− k + 1

n∑︂
m=k

E
zmk+1

{︂
∥ρABk

1 |zmk+1
− ρABk−1

1 |zmk+1
⊗ ρBk|zmk+1

∥1
}︂

(3.112)

≤ f(B|·)

⌜⃓⃓⎷(2 ln 2) log
(︂
dAd

k−1
B

)︂
n− k + 1

. (3.113)

By symmetry of the B-systems, for any i ∈ {1, . . . , k}, we also have

1

n− k + 1

n∑︂
m=k

E
zmk+1

{︂
∥ρABi

1|zmk+1
− ρABi−1

1 |zmk+1
⊗ ρBi|zmk+1

∥1
}︂

(3.114)

≤ f(B|·)

√︄
(2 ln 2) log

(︁
dAd

i−1
B

)︁
n− k + 1

. (3.115)

Now, using the triangle inequality k − 1 times, we get for any m ∈ {k, . . . , n} and collection

zmk+1 of measurement outcomes, that

⃦⃦⃦
ρABk

1 |zmk+1
− ρA|zmk+1

⊗ ρB1|zmk+1
⊗ · · · ⊗ ρBk|zmk+1

⃦⃦⃦
1

(3.116)

≤
k∑︂
i=1

⃦⃦⃦
ρABi

1|zmk+1
⊗ ρBi+1|zmk+1

⊗ · · · ⊗ ρBk|zmk+1
(3.117)

− ρABi−1
1 |zmk+1

⊗ ρBi|zmk+1
⊗ ρBi+1|zmk+1

⊗ · · · ⊗ ρBk|zmk+1

⃦⃦⃦
1

(3.118)

=

k∑︂
i=1

⃦⃦⃦
ρABi

1|zmk+1
− ρABi−1

1 |zmk+1
⊗ ρBi|zmk+1

⃦⃦⃦
1

⃦⃦⃦
ρBi+1|zmk+1

⊗ · · · ⊗ ρBk|zmk+1

⃦⃦⃦
1

(3.119)

=

k∑︂
i=1

⃦⃦⃦
ρABi

1|zmk+1
− ρABi−1

1 |zmk+1
⊗ ρBi|zmk+1

⃦⃦⃦
1
, (3.120)

where we used

⃦⃦⃦
ρBi+1|zmk+1

⊗ · · · ⊗ ρBk|zmk+1

⃦⃦⃦
1
= Tr(ρBi+1|zmk+1

⊗ · · · ⊗ ρBk|zmk+1
) = 1. (3.121)

Taking the average over m and zmk+1 and using (3.115), we get

1

n− k + 1

n∑︂
m=k

E
zmk+1

{︂⃦⃦⃦
ρABk

1 |zmk+1
− ρA|zmk+1

⊗ ρB1|zmk+1
⊗ · · · ⊗ ρBk|zmk+1

⃦⃦⃦
1

}︂
(3.122)
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≤
k∑︂
i=1

f(B|·)

√︄
(2 ln 2) log

(︁
dAd

i−1
B

)︁
n− k + 1

(3.123)

≤
k∑︂
i=1

f(B|·)

⌜⃓⃓⎷(2 ln 2) log
(︂
dAd

k−1
B

)︂
n− k + 1

(3.124)

= kf(B|·)

⌜⃓⃓⎷(2 ln 2) log
(︂
dAd

k−1
B

)︂
n− k + 1

. (3.125)

As a result, there is an m such that the previous inequality holds. Then, as before, we use the

convexity of the norm to put the expectation inside, getting the existence of an m such that⃦⃦⃦⃦
⃦ρABk

1
− E
zmk+1

{︂
ρA|zmk+1

⊗ ρB1|zmk+1
⊗ · · · ⊗ ρBk|zmk+1

}︂⃦⃦⃦⃦⃦
1

(3.126)

≤ kf(B|·)
√︃

(2 ln 2)
log dA + (k − 1) log dB

n− k + 1
. (3.127)

To conclude, it suffices to observe that, by symmetry, ρBi|zmk+1
= ρB1|zmk+1

for all i ∈ {1, . . . , k}

and the linear constraints are satisfied by the same calculation as in the proof of Theorem 3.6.5.

The same comment we made on the dimensional dependence for the bound provided by

Theorem 3.6.5 does apply to its generalization as given by Theorem 3.6.6. I.e., the error term

cannot be exponentially improved.

3.7 Application to Constrained Bilinear Optimization

As stated in Section 3.5, the constrained bilinear optimization problem we are interested in,

takes the form

Q = max Tr
[︁
GAB(ρA ⊗ ρB)

]︁
(3.128)

s.t. ρA ⪰ 0, ρB ⪰ 0 (3.129)
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Tr(ρA) = Tr(ρB) = 1 (3.130)

ΛA→CA
(ρA) = XCA

, ΓB→CB
(ρB) = YCB

. (3.131)

Lower bounds on the optimal value can, e.g., be derived by means of seesaw methods [60]

(see [88] for an example in quantum information theory). Those methods often converge in

practice and sometimes even provably reach a local maxima. What was missing, however, is a

general method to give an approximation guarantee to the global maximum.

The de Finetti theorem with linear constraints (Theorem 3.6.5) gives an SDP hierarchy of

outer bounds, that exactly provides such a criterion.

Theorem 3.7.1. For the SDPs

SDPn := max Tr
[︁
GABρAB1

]︁
(3.132)

s.t. ρABn
1
⪰ 0,Tr(ρABn

1
) = 1 (3.133)

ρABn
1
= UπBn

1

(︁
ρABn

1

)︁
∀π ∈ Sn (3.134)

ΛA→CA

(︁
ρABn

1

)︁
= XCA

⊗ ρBn
1

(3.135)

ΓBn→CB

(︁
ρBn

1

)︁
= ρBn−1

1
⊗ YCB

(3.136)

and Q defined as above, we have for d := max{dA, dB} that

0 ≤ SDPn −Q ≤ poly(d)√
n

implying Q = lim
n→∞

SDPn. (3.137)

Proof. We have by construction 0 ≤ SDPn −Q and the remaining inequality arises from

Tr [GABρAB1 ] = Tr [GAB(ρA ⊗ ρB)] + Tr [GAB (ρAB1 − ρA ⊗ ρB)] (3.138)

≤ Tr [GAB(ρA ⊗ ρB)] + ∥GAB∥∞ · ∥ρAB1 − ρA ⊗ ρB∥1 (3.139)

≤ Tr [GAB(ρA ⊗ ρB)] +
poly(d)√

n
, (3.140)
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where we used the linearity of the objective function as described in Section 3.5, the (∞, 1)

Hölder’s inequality [87, Inequality 1.174]

Tr [GAB (ρAB1 − ρA ⊗ ρB)] ≤ ∥GAB∥∞ · ∥ρAB1 − ρA ⊗ ρB∥1, (3.141)

and the de Finetti argument as in Theorem 3.6.5.

The bounds from Theorem 3.6.5 give worst case convergence guarantees that are "fairly

slow", as to ensure that the approximation error is small we need at least the level n = poly(d).

However, note that constrained bilinear optimization contains as a special case the best

separable state problem and so we cannot expect much better bounds on the convergence

speed in general. We refer to [44] and the references therein for a detailed discussion about the

computational complexity of the best separable state problem.

We can add positive partial transpose (PPT) constraints

ρTA
ABn

1
⪰ 0, ρ

TB1
ABn

1
⪰ 0, ρ

T
B2
1

ABn
1
⪰ 0, . . . , ρ

T
Bn−1
1

ABn
1

⪰ 0 (3.142)

to SDPn and we denote the resulting relaxations by SDPn,PPT. It is important to point out

that any separable state is also a PPT state (Corollary 3.3.3), and hence we still have a valid

relaxation to the problem (3.30). It is an interesting question to study if these constraints can

lead to a faster convergence speed, cf. the discussions in [68, 32]. Based on the PPT constraints,

we can give a sufficient condition when already

SDPn,PPT = Q for some finite n. (3.143)

The condition — known as rank loop condition— is based on [68], which in turn builds on [51].

Lemma 3.7.2. [68],[51] Let ρABn
1
= UπBn

1

(︁
ρABn

1

)︁
for all π ∈ Sn and fixed 0 ≤ k ≤ n such

that ρ
TBn

k+1

ABn
1

⪰ 0. Then, ρAB1 is separable if

rank(ρABn
1
) ≤ max

{︂
rank

(︂
ρABk

1

)︂
, rank

(︂
ρBn

k+1

)︂}︂
. (3.144)
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Proof. The proof is based on [51], where they prove the following implication

ρAB ∈ PPT(A : B) and rank(ρAB) ≤ rank(ρA) =⇒ ρAB ∈ SEP(A : B). (3.145)

Applying the above result to the quantum state ρABn
1

with respect to the bipartite system

ABk
1 ⊗Bn

k+1, we find

ρABn
1
∈ PPT(ABk

1 : Bn
k+1) and rank(ρABn

1
) ≤ rank(ρABk

1
) =⇒ ρABn

1
∈ SEP(ABk

1 : Bn
k+1)

(3.146)

and,

ρABn
1
∈ PPT(ABk

1 : Bn
k+1) and rank(ρABn

1
) ≤ rank(ρBn

k+1
) =⇒ ρABn

1
∈ SEP(ABk

1 : Bn
k+1).

(3.147)

Thus, ρABn
1
∈ SEP(ABk

1 : Bn
k+1) if

rank(ρABn
1
) ≤ max

{︂
rank

(︂
ρABk

1

)︂
, rank

(︂
ρBn

k+1

)︂}︂
. (3.148)

Finally, since ρABn
1

is symmetric with respect to A, we have

ρABn
1
∈ SEP(ABk

1 : Bn
k+1) =⇒ ρAB1 ∈ SEP(A : B1). (3.149)

Note that instead of extending the B-systems we could equally well extend the A-systems

to get another, possibly non-equivalent, hierarchy.

In the next chapter we will use the methods developed in this chapter to study the problem

of approximate quantum error correction. Moreover, our methods can be readily applied to the

quantum marginal problem4 and to an entire class of problems expressed via rank-constrained

SDPs, as subsequently studied in [91, 90].
4In the quantum marginal problem the question of interest is whether a given collection of quantum states

can be seen as the marginals of a, not necessarily unique, global quantum state.



Chapter 4

Approximate Quantum Error

Correction

In this chapter we apply the results of the previous one to the problem of approximate quantum

error correction. First we introduce the problem and its relevance and applications in quantum

information theory. We will then use a specialized version of Theorem 3.7.1 to obtain convergent

hierarchies to the desired problem. Corresponding numerical tests can be found in Section 4.4.

Given a noisy classical channel NX→Y , a central quantity of interest in error correction is

the maximum success probability p(N,M) for transmitting a uniform M -dimensional message

under the noise model NX→Y . This is a bilinear maximization problem, which is in general

NP-hard1 to approximate up to a sufficiently small constant factor [8]. Nevertheless, there are

1We can think of NP-hard problems as the class of problems that are at least as hard as NP-complete

problems, the latter being the hardest problems in the NP class. The halting problem is a classic example of a

NP-hard decision problem. Notice that the halting problem is not NP-complete, since it is not decidable in a

finite number of steps. Given a quantum state ρAB , it is NP-hard to decide whether ρAB ∈ Sep(A : B) [41,

Theorem 6.7]. Finally, the class of NP-hard problems is not limited to decision problems, such as the halting

91
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efficient methods for constructing feasible coding schemes approximating p(N,M) from below

as well as an efficiently computable linear programming relaxation lp(N,M) (sometimes called

meta-converse [45, 71]) giving upper bounds on p(N,M).2 In fact, it was shown in [8] that

p(N,M) and lp(N,M) cannot be very far from each other

p(N,M) ≤ lp(N,M) ≤ 1

1− 1
e

· p(N,M). (4.1)

Furthermore, the meta-converse has many appealing analytic properties, such as, e.g., the

ability to evaluate it efficiently in the limit of many independent repetitions N×n
X→Y , leading to

very precise asymptotic bounds, i.e., considering the limit n→ ∞, on the capacity3 of noisy

classical channels [8].

The analogue quantum problem is to determine the quantum channel fidelity F (N ,M), a

quantity that will be formally defined later (Definition 4.1.1), for transmitting one part of a

maximally entangled state of dimension M over a noisy quantum channel NA→B. As in the

classical case, this is a bilinear optimization problem, only now with matrix-valued variables. In

order to approximate F (N ,M), an efficiently computable semidefinite programming relaxation

SDP(N ,M) was given in [65].4 However, contrary to the classical case the gap between

problem, but it also includes other kind of problems, e.g., optimization problems (see [5]).
2Operationally, lp(N,M) corresponds to the non-signalling assisted maximum success probability discussed

in [67]. In other words, the two parties of the protocol are allowed to share additional resources that are not

useful for communication by themselves, e.g., shared randomness. Such kind of resources, which do not allow

the two parties to send information to each other, are known in the literature as non-signalling boxes.
3The capacity of a channel is defined as the maximum rate at which a sender can send information to a

receiver through the channel [25].
4Operationally, SDP(N ,M) corresponds to the PPT-preserving, non-signalling assisted maximum fidelity.

PPT-preserving channels map bipartite PPT states into bipartite PPT states, and include all unassisted and

forward-classical-assisted communication. However, not all entanglement-assisted communication protocols can

be represented with PPT-preserving channels [65].
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SDP(N ,M) and F (N ,M) is not understood. On the other hand, the tools introduced in

the previous chapter will exactly be used to generate a converging hierarchy of efficiently

computable semidefinite programming relaxations, allowing us to quantify the gap between

these new relaxations and F (N ,M).

Moreover, the relaxation SDP(N ,M) is lacking most of the analytic properties of its

classical analogue lp(N,M). In fact, in quantum communication theory so-called non-additivity

problems5 caused by quantum correlations make it notoriously hard to compute asymptotic

limits in the first place [29]. Hence, we propose to use methods from optimization theory to

directly study the maximum fidelity F (N ,M) in order to quantify the ability of a quantum

channel to transmit quantum information. The goal is then to identify a quantum version

of the meta-converse for approximating F (N ,M), having similar properties as the classical

meta-converse lp(N,M) for approximating p(N,M). This approach can also be justified by

the fact that most of the quantum devices that will be available in the near future are likely to

be noisy and small in size. As such, efficient algorithms approximating F (N ,M) for reasonable

error models N and dimension M are more relevant in such settings than computing the

asymptotic limit of the rate achievable for multiple copies of a given noise model.

Numerical lower bound methods for F (N ,M) are available through iterative seesaw meth-

ods6 that lead to efficiently computable semidefinite programs [73, 72, 37, 36, 61, 77, 54]. These

algorithms often converge in practice and sometimes even provably reach a local maximum.

What was previously missing, however, is a general method to give an approximation guarantee

5For example, while the classical channel capacity is additive over independent channel repetitions, this is

not true for the quantum channel capacity and related quantities (see [42]).
6An iterative seesaw method tackles a joint optimization by alternating the optimization over a subset of

variables, with the others kept fixed. In this case, a constrained bilinear optimization would lead to a sequence

of SDP optimizations.
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to the global maximum. Here, the techniques as developed in Section 3.7 exactly lead to a

converging hierarchy of efficiently computable semidefinite programming relaxations on the

maximum fidelity F (N ,M). As such, this can be seen as a tool for benchmarking existing

quantum error correction codes and to understand in what direction to look for improved

codes.

We note that references [80, 83, 84, 56] gave refined relaxations on the size of a maximally

entangled state that can be sent over a noisy quantum channel for fixed fidelity 1− ε. These

approaches are complementary7 to our work and contrary to our findings they do not lead to a

converging hierarchy of efficiently computable bounds.

4.1 Setting

The mathematical setting of approximate quantum error correction we study is as follows.

First, we define the main quantity of interest, i.e., the quantum channel fidelity (or in short

channel fidelity).

Definition 4.1.1. Let NA→B be a quantum channel and M ∈ N. The channel fidelity for

message dimension M is defined as

F (N ,M) := max F
(︂
ΦBR,

(︁ (︁
DB→B ◦ NA→B ◦ EA→A

)︁
⊗ IR

)︁
(ΦAR)

)︂
(4.2)

s.t. DB→B, EA→A quantum channels, (4.3)

where F (ρ, σ) :=
⃦⃦√

ρ
√
σ
⃦⃦2
1

denotes the fidelity, ΦAR denotes the maximally entangled state on

AR, and we have M = dA = dB = dR.

7Notice that in this thesis we fix the size M of the message, while the fidelity measure of the protocol is not

fixed. Thus, we are interested in obtaining bounds on the fidelity of the protocol, not on the message size.
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Operationally, one creates a reference copy R of the input system A (hence dA = dR) and

sends the maximally entangled state on AR through the quantum channel

(︁
DB→B ◦ NA→B ◦ EA→A

)︁
⊗ IR. (4.4)

Then, the channel fidelity F (N ,M) is defined as the maximum fidelity between the output

of this protocol and the maximally entangled state on BR (for consistency, we then need

dA = dB). In information-theoretic language, the channel fidelity corresponds to an average

error criterion for preserving uniformly distributed information. Alternatively, we might also

aim for a worst error criterion. To do so, we need to move away from the quantum channel

fidelity and use another metric (the diamond norm (2.60)). This approach, and the related

analysis, will be discussed in Section 4.5.

We will use the following well-known result, which allows us to simplify the fidelity when

one of the two quantum states is pure.

Lemma 4.1.2. Let ρ, σ ∈ S(H), if ρ is a pure quantum state, then

F (ρ, σ) = Tr(ρσ). (4.5)

Proof. If ρ ∈ S(H) is pure, it can be written as ρ = |ψ⟩⟨ψ|, where |ψ⟩ is an appropriate ket in

H with unit norm. Then,

F (ρ, σ) =
⃦⃦√

ρ
√
σ
⃦⃦2
1
=
(︁
Tr
⃓⃓√
ρ
√
σ
⃓⃓)︁2 (4.6)

=

(︃
Tr
√︂√

ρσ
√
ρ

)︃2

=
(︂
Tr
√︁
|ψ⟩⟨ψ|σ|ψ⟩⟨ψ|

)︂2
(4.7)

= ⟨ψ|σ|ψ⟩
(︂
Tr
√︁
|ψ⟩⟨ψ|

)︂2
= ⟨ψ|σ|ψ⟩ (4.8)

= Tr(⟨ψ|σ|ψ⟩) = Tr(|ψ⟩⟨ψ|σ) (4.9)

= Tr(ρσ). (4.10)
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By the Choi-Jamiołkowski isomorphism (2.41) the channel fidelity is conveniently rewritten

as a bilinear optimization.

Lemma 4.1.3. Let NA→B be a quantum channel and M ∈ N. Then, the channel fidelity can

be written as

F (N ,M) = max dAdB · Tr
[︁(︁
JN
AB

⊗ ΦAB
)︁ (︁
EAA ⊗DBB

)︁]︁
(4.11)

s.t. EAA ⪰ 0, DBB ⪰ 0 (4.12)

EA =
1A
dA
, DB =

1B
dB
, (4.13)

where JN
BA

:= (NA→B ⊗ IA)(ΦAA) denotes the Choi state of NA→B (see 2.41).

The advantage of this notation is that all A-systems, i.e., A and A, are with the sender

(termed Alice) and all B-systems, i.e., B and B, are with the receiver (termed Bob), which is

consistent with the conventions used in [65].

Proof. By using the adjoint map in Hilbert-Schmidt inner product (2.27) and multiple times

the Choi-Jamiołkowski isomorphism as given in (2.41), and noting that the pure state ΦBR

allows us to use the simplified expression for the fidelity when one of the two arguments is pure

(Lemma 4.1.2), we can write the objective function from Definition 4.1.1 as

F
(︂
ΦBR,

(︁ (︁
DB→B ◦ NA→B ◦ EA→A

)︁
⊗ IR

)︁
(ΦAR)

)︂
(4.14)

= Tr
[︁
ΦBR

(︁ (︁
DB→B ◦ NA→B ◦ EA→A

)︁
⊗ IR

)︁
(ΦAR)

]︁
(4.15)

= Tr
[︂
JD†
BR

(︁
NA→B ⊗ IR

)︁ (︁
JE
AR

)︁]︂
. (4.16)

Taking advantage of dA = dB = dR, we relabel the systems and we proceed as follows

F
(︂
ΦBR,

(︁ (︁
DB→B ◦ NA→B ◦ EA→A

)︁
⊗ IR

)︁
(ΦAR)

)︂
(4.17)
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= Tr
[︂
JD†
BR

(︁
NA→B ⊗ IR

)︁ (︁
JE
AR

)︁]︂
(4.18)

= Tr
[︂
JD†

BB

(︁
NA→B ⊗ IA→B

)︁ (︁
JE
AA

)︁]︂
(4.19)

= dAdA · Tr
[︂(︁
JN
AB

⊗ ΦAB
)︁ (︂(︁

JE
AA

)︁T ⊗ JD†

BB

)︂]︂
(4.20)

= dAdB · Tr
[︃(︁
JN
AB

⊗ ΦAB
)︁(︃(︁

JE
AA

)︁T ⊗ dA
dB

· JD†

BB

)︃]︃
, (4.21)

where the transpose is taken with respect to the orthonormal basis of the maximally entangled

state, and the dimensional factors come from Lemma 2.2.2. Due to the basic proprieties of

the Choi-Jamiołkowski isomorphism discussed in Subsection 2.2.4, it is immediate to see that

(JE
AA

)T can be identified with the EAA of Lemma 4.1.3. In addition, we have dA
dB

· JD†

BB
⪰ 0,

and tracing out the B system as well as using dA = dB, we get

dA
dB

· JD†
B =

dA
dB

· D†
(︃
1B
dB

)︃
(4.22)

=
dA
dB

· 1

dB
· 1B (4.23)

=
1B
dB
. (4.24)

Thus, we can identify dA
dB

· JD†

BB
with the DBB of Lemma 4.1.3.

The following simple dimension bounds hold for the channel fidelity.

Lemma 4.1.4. Let NA→B be a quantum channel and M ∈ N. Then, we have

0 ≤ F (N ,M) ≤ min

{︄
1,

(︃
dA
M

)︃2

,
dB
M

}︄
. (4.25)

Proof. The lower bound is trivial and the upper bounds follow directly from the more general

statements about the optimal fidelity under additional classical communication assistance as

given in Lemma 4.3.4.
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By the linearity of the objective function, we can repeat the same approach followed in

Section 3.5, and rewrite the channel fidelity as

F (N ,M) = max dAdB · Tr

[︄(︁
JN
AB

⊗ ΦAB
)︁(︄∑︂

i∈I
piE

i
AA

⊗Di
BB

)︄]︄
(4.26)

s.t. pi ≥ 0 ∀i ∈ I,
∑︂
i∈I

pi = 1 (4.27)

Ei
AA

⪰ 0, Di
BB

⪰ 0 (4.28)

EiA =
1A
dA
, Di

B =
1B
dB

∀i ∈ I. (4.29)

4.2 De Finetti theorems for quantum channels

Recall from Subsection 2.2.4 that a quantum channel is just a trace preserving completely

positive (tpcp) map between two spaces of quantum states. Here, we establish a sufficient

criterion under which permutation invariance of a quantum channel implies that it can be well

approximated by a mixture of product quantum channels.

Theorem 4.2.1. Let ρAA(BB)n1
be a quantum state with

ρAA(BB)n1
= Uπ

(BB)n1
(ρAA(BB)n1

) ∀π ∈ Sn (4.30)

ρA(BB)n1
=

1A
dA

⊗ ρ(BB)n1
(4.31)

ρ(BB)n−1
1 Bn

= ρ(BB)n−1
1

⊗ 1Bn

dB
. (4.32)

Then, we have for 0 < k < n that⃦⃦⃦⃦
⃦ρAA(BB)k1

−
∑︂
i∈I

piσ
i
AA

⊗
(︁
ωi
BB

)︁⊗k ⃦⃦⃦⃦⃦
1

(4.33)

≤ kf(BB|·)

√︄
(2 ln 2)

log
(︁
dAdA

)︁
+ (k − 1) log

(︁
dBdB

)︁
n− k + 1

(4.34)
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with {pi}i∈I a probability distribution, and σi
AA
, ωi

BB
⪰ 0 such that σiA = 1A

dA
and ωiB = 1B

dB
for

i ∈ I.

Proof. The proof is a straightforward application of Theorem 3.6.6. In particular, referring to

the notation of Theorem 3.6.6, we need to make the following choices for the systems A := AA,

B := BB, CA := A, CB := B, for the operators XCA
:= 1A

dA
, YCB

:= 1B
dB

, and for the linear

maps ΛAA→A := TrA, and ΓBB→B := TrB.

We emphasize that, according to the representation we obtain in this theorem, ρAA(BB)k1
is

close to a mixture of products of Choi states of completely positive and trace-preserving maps.

We note that applying standard de Finetti theorems for quantum states would only show that

ρAA(BB)k1
is close to a mixture of products states, or in other words Choi states of completely

positive maps that are in general not even trace-non-increasing. This is not sufficient for our

applications, and having the constraints (4.31) and (4.32) are needed in our proofs to achieve

this stronger statement. We discuss this in more detail by means of the following examples.

Example 4.2.2. For A, B trivial and k = 1 Theorem 4.2.1 says that ρAB is close to the

product state 1AB
dAdB

, as this is the only valid state satisfying the linear constraints. However,

having only the permutation invariance condition (4.30) without the other two conditions (4.32)

and (4.31), this conclusion does not hold. In fact, choose ρABn
1

to be maximally classically

correlated between all the n+ 1 systems A,B1, . . . , Bn

ρABn
1
=

1

d

∑︂
i

|i⟩⟨i|⊗n+1, (4.35)

where d := dA = dB. Clearly, the systems Bn
1 are symmetric with respect to A, i.e., (IA ⊗

UπBn
1
)(ρABn

1
) = ρABn

1
for every π ∈ Sn. Thus, the permutation invariance condition (4.30) is

satisfied. On the other hand, it is clear that the other two conditions (4.31) and (4.32) are not
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satisfied. For example, ρABn
1
̸= 1A

dA
⊗ ρBn

1
. Finally, we also notice that the conclusion of the

theorem does not hold, since ρAB1 is not close to the state 1AB1
dAdB

.

Example 4.2.3. We now want to show that imposing the constraint ρAB1 =
1AB1
dAdB

is not

enough either. Let A,A,B,B all be of dimension d ≥ 2. Then, define for any n ≥ 1

ρAA(BB)n1
=

1

d2

∑︂
i,j

|j⟩⟨j|A ⊗ |i⟩⟨i|A ⊗ |i⟩⟨i|⊗nB ⊗ |i⟩⟨i|⊗n
B
. (4.36)

Then, the state is invariant under permutations of the BB systems and

ρAB1 =
1

d2

∑︂
i,j

|j⟩⟨j|A ⊗ |i⟩⟨i|B1 (4.37)

=
1

d2

∑︂
j

|j⟩⟨j|A ⊗
∑︂
i

|i⟩⟨i|B1 (4.38)

=
1

d2
1A ⊗ 1B1 (4.39)

=
1AB1

d2
. (4.40)

However, the reduced state ρAAB1B1
is not close to states of the form

∑︂
ℓ

pℓσ
ℓ
AA

⊗ ωℓ
B1B1

with σℓA =
1A
d
, ωℓB1

=
1B1

d
, (4.41)

i.e., convex combinations of tensor products of Choi states. To see this, consider the projector

ΠAB1
:=
∑︁

i 1A ⊗ |i⟩⟨i|A ⊗ |i⟩⟨i|B1 ⊗ 1B1
. Then, we get

Tr(ΠAB1
ρAAB1B1

) = Tr(ρAAB1B1
) = 1, (4.42)

but

Tr

(︄
ΠAB1

∑︂
ℓ

pℓσ
ℓ
AA

⊗ ωℓ
B1B1

)︄
=
∑︂
ℓ

pℓTr(ΠAB1
σℓ
A
⊗ ωℓB1

) (4.43)

=
∑︂
ℓ

pℓTr

(︃
ΠAB1

σℓ
A
⊗ 1B1

d

)︃
(4.44)
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=
∑︂
ℓ

pℓTr(σ
ℓ
A
)
1

d
=
∑︂
ℓ

pℓ
1

d
=

1

d
. (4.45)

Finally, using the relation between the trace distance and projectors (see [69, Section 9.2])⃦⃦⃦⃦
⃦ρAAB1B1

−
∑︂
ℓ

pℓσ
ℓ
AA

⊗ ωℓ
B1B1

⃦⃦⃦⃦
⃦
1

(4.46)

= 2 max
PAAB1B1

Tr

[︄
PAAB1B1

(︄
ρAAB1B1

−
∑︂
ℓ

pℓσ
ℓ
AA

⊗ ωℓ
B1B1

)︄]︄
(4.47)

≥ Tr

[︄
ΠAB1

(︄
ρAAB1B1

−
∑︂
ℓ

pℓσ
ℓ
AA

⊗ ωℓ
B1B1

)︄]︄
(4.48)

= 1− 1

d
, (4.49)

where the maximization is taken over all projectors PAAB1B1
.

By the Choi-Jamiołkowski isomorphism and relating the trace norm of Choi states to the

diamond norm of the quantum channels (Lemma 2.2.4), we can alternatively state the bounds

from Theorem 4.2.1 directly in terms of the quantum channels.

Corollary 4.2.4. Let NABn
1 →AB

n
1

be a quantum channel such that

Uπ
B

n
1

(︂
NABn

1 →AB
n
1
(·)
)︂
= NABn

1 →AB
n
1

(︂
UπBn

1
(·)
)︂

∀π ∈ Sn (4.50)

TrBn

[︂
NABn

1 →AB
n
1
(·)
]︂
= TrBn

[︃
NABn

1 →AB
n
1

(︃
TrBn [·]⊗

1Bn

dB

)︃]︃
(4.51)

TrA

[︂
NABn

1 →AB
n
1
(·)
]︂
= TrA

[︃
NABn

1 →AB
n
1

(︃
1A
dA

⊗ TrA [·]
)︃]︃

. (4.52)

Then, we have for 0 < k < n with

N
ABk

1→AB
k
1
(XABk

1
) := TrBn

k+1

[︄
NABn

1 →AB
n
1

(︄
XABk

1
⊗

1Bn
k+1

dn−kB

)︄]︄
(4.53)

that ⃦⃦⃦⃦
⃦NABk

1→AB
k
1
−
∑︂
i∈I

piE iA→A
⊗
(︁
Di
B→B

)︁⊗k ⃦⃦⃦⃦⃦
♢

(4.54)
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≤ dAd
k
B · kf(BB|·)

√︄
(2 ln 2)

log
(︁
dAdA

)︁
+ (k − 1) log

(︁
dBdB

)︁
n− k + 1

(4.55)

with {pi}i∈I a probability distribution and Di
B→B

, E i
A→A

quantum channels for i ∈ I.

In (4.53) we chose a specific extension of XABk
1

to define N
ABk

1→AB
k
1
(XABk

1
), namely

XABk
1
⊗

1Bn
k+1

dn−k
B

. This is still well-defined as the conditions (4.50) and (4.51) we require of

NABn
1 →AB

n
1

actually say that the choice of extension does not matter. That is, we have for

any XABn
1

that

TrBn
k+1

[︂
NABn

1 →AB
n
1
(XABn

1
)
]︂
= Tr

B
n−1
k+1

[︃
TrBn

[︃
NABn

1 →AB
n
1

(︃
XABn−1

1
⊗ 1Bn

dB

)︃]︃]︃
(4.56)

= TrBn
k+1

[︄
NABn

1 →AB
n
1

(︄
XABk

1
⊗

1Bn
k+1

dn−kB

)︄]︄
(4.57)

= N
ABk

1→AB
k
1

(︂
XABk

1

)︂
, (4.58)

where we used (4.51) for the first equality as well as (4.50) and (4.51) multiple times for the

second equality. Thus, we can in fact choose

XABn
1
:= XABk

1
⊗

1Bn
k+1

dn−kB

. (4.59)

In the following we state several comments about de Finetti theorems for quantum channels:

• In contrast to the bound for Choi states (Theorem 4.2.1), the diamond norm bound in

Corollary 4.2.4 does not have a polynomial dependence in dB and k. We leave it as an

open question to give a de Finetti theorem for quantum channels in terms of the diamond

norm distance with a dimension dependence polynomial in dB and k. (For our purposes

we only need the k = 1 bound, in terms of the Choi states.)

• In the case k = 1, the conditions of the above theorem can be seen as approximations

for the convex hull of product quantum channels, just as extendible states provide an
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approximation for the set of separable states.8 We note that in SDP hierarchies for

the quantum separability problem the permutation invariance can be replaced by the

stronger Bose symmetric condition [68]. That is, the state in question is supported on

the symmetric subspace. The reason is that every separable state can without loss of

generality be decomposed in a convex combination of pure product states. However, in

our setting, we cannot assume that we have a mixture of a product of pure channels9,

and so we keep the more general notion of permutation invariance.

• In the following, we never directly make use of Corollary 4.2.4 but rather state it for

connecting to the previous literature. In particular, when choosing AA trivial as a special

case we find a finite version of the asymptotic de Finetti theorem for quantum channels

from [39, 38].10 We emphasize that our derived conditions then become a finite version

of the notion of exchangeable sequences of quantum channels of [39] defined as a sequence

of channels {NBn
1 →B

n
1
} satisfying for all n that

Uπ
B

n
1

(︂
NBn

1 →B
n
1
(·)
)︂
= NBn

1 →B
n
1

(︂
UπBn

1
(·)
)︂

∀π ∈ Sn (4.60)

N
Bn−1

1 →B
n−1
1

(︂
TrBn [·]

)︂
= TrBn

[︂
NBn

1 →B
n
1
(·)
]︂
. (4.61)

They show that under these conditions, for any k, the channel N
Bk

1→B
k
1

is in the convex

hull of tensor power channels. In Corollary 4.2.4, we start with a channel11 NBn
1 →B

n
1

and quantify the closeness of such N
Bk

1→B
k
1

to convex combinations of tensor product

8The class of channels we consider here is more restricted than general separable channels, which usually

refers to a mixture of product completely positive and not necessarily trace-preserving maps [87].
9A pure channel is a quantum channel having associated a pure Choi state.

10We also refer to [70] for previous related work and [23] for a classical version. Moreover, following [56],

conditions related to our (4.50) – (4.52) give rise to extendible channels in the resource theory of unextendibility.
11This is equivalent to being given a finite sequence N

Bk
1→B

k
1

for k ∈ {1, . . . , n} satisfying the exchangeability

condition, as the reduced channels are then completely determined by NBn
1 →B

n
1

(see [87])
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channels
∑︁

i pi

(︂
Di
B→B

)︂⊗k
.

Channels that are written as mixtures of product channels, i.e., channels of the form

EA→A ⊗DB→B where EA→A and DB→B are quantum channels, correspond to communication

protocols in which the two parties have access to shared randomness but no communication [87,

Section 6.1]. There is a natural relaxation to this set of channels, often called LOCC(1)

channels [20], corresponding to channels that can be implemented with additional classical

communication from A to B. Mathematically, a LOCC(1) channel is a tpcp map that can be

written in the form

∑︂
i∈I

E i
A→A

⊗Di
B→B

, (4.62)

where Di
B→B

are channels, and E i
A→A

are completely positive but not necessarily trace-

preserving maps, summing to a channel. I.e.,
∑︁

i∈I E iA→A
is a quantum channel. Channels of

the form (4.62) are also known as one-way right LOCC channels, where Alice is the sender and

is assumed to be on the left, while Bob, who is the receiver, is assumed to be on the right. We

discuss this variation of approximate quantum error correction in Section 4.3.

4.2.1 Hierarchy of outer bounds

Following the de Finetti theorem for quantum channels as given in Theorem 4.2.1 for k = 1,

the n-th level of the SDP hierarchy for the quantum channel fidelity becomes

SDPn(N ,M) := max dAdB · Tr
[︂(︂
JN
AB1

⊗ ΦAB1

)︂
ρAAB1B1

]︂
(4.63)

s.t. ρAA(BB)n1
⪰ 0, Tr

[︂
ρAA(BB)n1

]︂
= 1 (4.64)

ρAA(BB)n1
= Uπ

(BB)n1

(︂
ρAA(BB)n1

)︂
∀π ∈ Sn (4.65)

ρA(BB)n1
=

1A
dA

⊗ ρ(BB)n1
(4.66)
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ρAA(BB)n−1
1 Bn

= ρAA(BB)n−1
1

⊗ 1Bn

dB
. (4.67)

Here, we identified B1 := B and hence the n-th level of the hierarchy then corresponds to

taking n− 1 extensions. Note that instead of stating the last condition for the final block Bn

we could have equivalently stated it for any block Bj with j = 1, . . . , n (by the permutation

invariance). Iteratively, the condition then also holds on all pairs of blocks of size two, and so

on. Moreover, we slightly strengthened the last condition by including the A-systems compared

to the minimal condition needed for Theorem 4.2.1, i.e.,

ρ(BB)n−1
1 Bn

= ρ(BB)n−1
1

⊗ 1Bn

dB
. (4.68)

We then immediately have asymptotic convergence.

Theorem 4.2.5. Let NA→B be a quantum channel and n,M ∈ N. Then, we have

0 ≤ SDPn(N ,M)− F (N ,M) ≤ poly(d)√
n

(4.69)

implying

F (N ,M) = lim
n→∞

SDPn(N ,M), (4.70)

where d := max{dA, dA, dB, dB}.

Proof. By construction 0 ≤ SDPn(N ,M)−F (N ,M), and the remaining inequality arises from

dAdB · Tr
[︁(︁
JN
AB

⊗ ΦAB
)︁
ρAABB

]︁
(4.71)

= dAdB · Tr
[︁(︁
JN
AB

⊗ ΦAB
)︁ (︁
EAA ⊗DBB

)︁]︁
(4.72)

+ dAdB · Tr
[︁(︁
JN
AB

⊗ ΦAB
)︁ (︁
ρAABB − EAA ⊗DBB

)︁]︁
(4.73)

≤ dAdB · Tr
[︁(︁
JN
AB

⊗ ΦAB
)︁ (︁
EAA ⊗DBB

)︁]︁
(4.74)
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+ dAdB · ∥JN
AB

⊗ ΦAB∥∞ · ∥ρAABB − EAA ⊗DBB∥1 (4.75)

≤ dAdB · Tr
[︁(︁
JN
AB

⊗ ΦAB
)︁ (︁
EAA ⊗DBB

)︁]︁
+

poly(d)√
n

, (4.76)

where we used the linearity of the objective function as described in Section 3.5, the (∞, 1)

Hölder’s inequality and Theorem 4.2.1 with k = 1.

We note that the worst case convergence guarantee is "fairly slow", as to ensure that the

approximation error becomes small, we need at least the level n = poly(d). As already pointed

out in Section 3.7, this slow convergence in the worst case is as expected from the quantum

separability problem. However, in practice the convergence speed may be much better. We

will numerically analyse in detail this aspect in Section 4.4.

Remark 4.2.6. Instead of extending the B-systems we could alternatively extend the A-systems,

which leads to the non-equivalent asymptotically converging hierarchy

SDPn(N ,M) := max dAdB · Tr
[︂(︂
JN
A1B

⊗ ΦA1B

)︂
ρA1A1BB

]︂
(4.77)

s.t. ρ(AA)n1BB
⪰ 0, Tr

[︂
ρ(AA)n1BB

]︂
= 1 (4.78)

ρ(AA)n1BB
= Uπ

(AA)n1

(︂
ρ(AA)n1BB

)︂
∀π ∈ Sn (4.79)

ρ(AA)n1B
= ρ(AA)n1

⊗ 1B
dB

(4.80)

ρ(AA)n−1
1 AnBB

=
1An

dA
⊗ ρ(AA)n−1

1 BB. (4.81)

For the first level we have

SDP1(N ,M) = SDP1(N ,M), (4.82)

by inspection. However, for the higher levels it depends on the input-output dimensions dA, dB

which hierarchy is potentially more powerful, i.e., faster to converge.
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The relaxations SDPn(N ,M) behave naturally with respect to the first two bounds of

Lemma 4.1.4.

Lemma 4.2.7. Let NA→B be a quantum channel and n,M ≥ 1. Then, we have

0 ≤ SDPn(N ,M) ≤ min

{︄
1,

(︃
dA
M

)︃2
}︄
. (4.83)

Proof. The lower bound is trivial. By the monotonicity in n (Theorem 4.2.5), it is enough to

restrict to n = 1 for the upper bounds. Alternatively, the upper bound of one can directly

be deduced operationally from [65, Theorem 3], where SDP1(N ,M) was identified as the

non-signalling assisted channel fidelity. We use that for any bipartite quantum state ρXY we

have12 [79, Lemma A.2]

dX · 1X ⊗ ρY ⪰ ρXY . (4.84)

For the first upper bound we find dB
dB

· ρAA ⊗ 1B1B1
⪰ ρAAB1B1

, which gives for the objective

function

SDP1(N ,M) ≤ dAdB · Tr
[︃(︂
JN
AB1

⊗ ΦAB1

)︂(︃dB
dB

· ρAA ⊗ 1B1B1

)︃]︃
(4.85)

= dAdB · Tr
[︃(︃

1A
dA

⊗
1A
dA

)︃
ρAA

]︃
(4.86)

= Tr
(︁
ρAA

)︁
= 1. (4.87)

For the second upper bound we find similarly as for the first upper bound dA
dA

· 1AA ⊗ ρB1B1
⪰

ρAAB1B1
, which then leads to the claim by the same argument as for the second upper bound

in Lemma 4.1.4.
12It is interesting to note that, while dX · 1X ⊗ ρY ⪰ ρXY is always valid, removing dX leads to the so-called

reduction criterion. The reduction criterion, which does not always hold, is connected to the separability

problem for low-dimensional quantum systems [49].
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We can again add all the PPT constraints and denote the resulting relaxations by

SDPn,PPT(N ,M). In the following we study more closely these levels SDPn,PPT(N ,M),

which are our tightest outer bound relaxations on the channel fidelity.

4.2.2 Low level relaxations

For n = 1, we find the first-level relaxation

SDP1,PPT(N ,M) = max dAdB · Tr
[︁(︁
JN
AB

⊗ ΦAB
)︁
ρAABB

]︁
(4.88)

s.t. ρAABB ⪰ 0, Tr
(︁
ρAABB

)︁
= 1 (4.89)

ρABB =
1A
dA

⊗ ρBB (4.90)

ρAAB = ρAA ⊗ 1B
dB

(4.91)

ρ
TBB

AABB
⪰ 0, (4.92)

which is the SDP outer bound13 found in [65, Section IV], up to their a priori stronger condition

ρAB =
1AB
dAdB

instead of our Tr
(︁
ρAABB

)︁
= 1. (4.93)

However, as implicitly shown in [65, Theorem 3] these two conditions actually become equivalent

because of the structure of the objective function. Operationally SDP1(N ,M) corresponds to

the non-signalling assisted channel fidelity, whereas SDP1,PPT(N ,M) adds the PPT-preserving

constraint — as discussed in [65, Corollary 4]. Moreover, in the objective function the symme-

try14

∫︂ (︁
UA ⊗ UB

)︁
(·)
(︁
UA ⊗ UB

)︁†
dU (4.94)

13In the introduction we referred to this semidefinite programming relation with the notation SDP(N ,M).
14Here, UA denotes the complex conjugate of UA with respect to some standard basis. The super-operator

(4.94) is commonly known as the isotropic twirling channel (see [87, Example 7.25]).
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can be used to achieve a dimension reduction15 of M2 leading to [65, Theorem 3]

SDP1,PPT(N ,M) = max dAdB · Tr
[︁
JN
AB
YAB

]︁
(4.95)

s.t. ρA ⊗ 1B
dB

⪰ YAB ⪰ 0, Tr(ρA) = 1 (4.96)

M2 · YB =
1B
dB

(4.97)

ρA ⊗ 1B
dB

⪰M · Y TB

AB
⪰ −ρA ⊗ 1B

dB
. (4.98)

The level n = 2 reads as

SDP2,PPT(N ,M) = max dAdB · Tr
[︂(︂
JN
AB1

⊗ ΦAB1

)︂
ρAAB1B1

]︂
(4.99)

s.t. ρAAB1B2B1B2
⪰ 0, Tr

(︂
ρAAB1B2B1B2

)︂
= 1 (4.100)

Uπ
B1B2B1B2

(︂
ρAAB1B2B1B2

)︂
= ρAAB1B2B1B2

∀π ∈ S2 (4.101)

ρAB1B2B1B2
=

1A
dA

⊗ ρB1B2B1B2
(4.102)

ρAAB1B2B1
= ρAAB1B1

⊗ 1B2

dB
(4.103)

ρ
TAA

AAB1B2B1B2
⪰ 0, ρ

TB2B2

AAB1B2B1B2
⪰ 0. (4.104)

Numerical evaluations of (4.95) and (4.99) can be found in Section 4.4.

4.3 Classically-assisted approximate quantum error correction

4.3.1 Setting

It is often useful to add classical forward communication assistance to the problem of quantum

error correction. The corresponding assisted channel fidelity is defined as follows.

15The use of the isotropic twirling channel allows us to remove the quantum systems A and B. Since

M = dA = dB , the achieved dimension reduction is of M2.
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Definition 4.3.1. Let NA→B be a quantum channel and M ∈ N. The LOCC(1)-assisted

channel fidelity for message dimension M is defined as

FLOCC(1)(N ,M) := max F
(︂
ΦBR,

∑︂
i∈I

(︁ (︁
Di
B→B

◦ NA→B ◦ E i
A→A

)︁
⊗ IR

)︁
(ΦAR)

)︂
(4.105)

s.t.
∑︂
i∈I

E i
A→A

quantum channel with E i
A→A

cp for i ∈ I (4.106)

Di
B→B

quantum channel ∀i ∈ I, (4.107)

where ΦAR denotes the maximally entangled state on AR, cp is the abbreviation for completely

positive, and we have M = dA = dB = dR.

By the Choi-Jamiołkowski isomorphism this can again be rewritten as a bilinear optimiza-

tion.

Lemma 4.3.2. Let NA→B be a quantum channel and M ∈ N. Then, the LOCC(1)-assisted

channel fidelity can be written as

FLOCC(1)(N ,M) = max dAdB · Tr

[︄(︁
JN
AB

⊗ ΦAB
)︁(︄∑︂

i∈I
Ei
AA

⊗Di
BB

)︄]︄
(4.108)

s.t. Ei
AA

⪰ 0, Di
BB

⪰ 0 ∀i ∈ I (4.109)∑︂
i∈I

EiA =
1A
dA

(4.110)

Di
B =

1B
dB

∀i ∈ I. (4.111)

The proof follows the same steps as in Lemma 4.1.3 about plain quantum error correction,

and is based on the manipulation of the objective function

F
(︂
ΦBR,

∑︂
i∈I

(︁ (︁
Di
B→B

◦ NA→B ◦ E i
A→A

)︁
⊗ IR

)︁
(ΦAR)

)︂
(4.112)

by using the Choi-Jamiołkowski isomorphism. As we show in the following lemma, we have

that FLOCC(1)(N ,M) is closely connected to the channel fidelity F (N ,M).
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Lemma 4.3.3. Let N be a quantum channel and M ∈ N. Then, we have

FLOCC(1)(N ,M) ≥ F (N ,M) ≥
(︂
FLOCC(1)(N ,M)

)︂2
. (4.113)

Asymptotically this corresponds to the well-known statement that forward classical com-

munication assistance does not increase the capacity [9].

Proof. The first inequality is trivial because the addition of a forward classical communication

channel cannot decrease the channel fidelity.

The fact that
(︁
FLOCC(1)(N ,M)

)︁2 gives a lower bound on F (N ,M) can be seen from [62,

Proposition 4.5]. Consider an arbitrary coding scheme for the quantum channel N assisted

with a forward classical communication channel and call FLOCC(1) the channel fidelity obtained

using that scheme. We then want to show that it is always possible to find a coding scheme

for the quantum channel N alone allowing us to achieve a channel fidelity F ≥ F2
LOCC(1). Say

we are able to send, through the forward classical communication channel, a symbol in the

set {1, . . . , S} with S ∈ N. An arbitrary coding scheme for the assisted quantum channel

can be modelled by a collection of instruments {Es
A→A

}s∈{1,...,S}, i.e., trace-nonincreasing cp

maps summing up to a channel, and channels {Ds
B→B

}s∈{1,...,S}. It is then easy to show that

there must exist a symbol s̃ such that the fidelity of the map Ds̃ ◦ N ◦ E s̃

es̃
is lower bounded

by FLOCC(1), where the factor es̃ is chosen such that the completely positive map E s̃

es̃
becomes

trace preserving with respect to the maximally mixed state 1A
dA

, as done in [62, Proposition

5.1]. Using the polar decomposition it is possible to find an isometric encoder16 V s̃ such that

16An isometric channel V : L (H) → L (H′) is a quantum channel that can be expressed as V(·) = V (·)V †,

where V : H → H′ is an isometry, i.e., a norm-preserving operator. In practice, an isometric channel is a

generalization of a unitary channel, where the dimensions of the two Hilbert spaces do not need to be equal.

More precisely, we only need dH ≤ dH′ .
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the channel fidelity F obtained using the coding scheme with encoder V s̃ and decoder Ds̃ is

lower bounded by the squared fidelity of the map Ds̃ ◦N ◦ E s̃

es̃
. This implies F ≥ F2

LOCC(1).

We have the dimension bounds for the LOCC(1)-assisted setting. Notice that the following

result readily implies Lemma 4.1.4.

Lemma 4.3.4. Let NA→B be a quantum channel and M ∈ N. Then, we have

0 ≤ FLOCC(1)(N ,M) ≤ min

{︄
1,

(︃
dA
M

)︃2

,
dB
M

}︄
. (4.114)

Proof. The lower bound is trivial. For the upper bounds, we use that for any quantum state

ρXY we have [79, Lemma A.2]

dX · 1X ⊗ ρY ⪰ ρXY . (4.115)

Now, for the first upper bound note that dB
dB

· 1BB = dB · 1B ⊗Di
B ⪰ Di

BB
for all i ∈ I, and

hence we get for the objective function (with dA = dB =M)

FLOCC(1)(N ,M) ≤ dAdB · Tr

[︄(︁
JN
AB

⊗ ΦAB
)︁1/2(︄∑︂

i∈I
Ei
AA

⊗ 1BB

)︄(︁
JN
AB

⊗ ΦAB
)︁1/2]︄

(4.116)

= dAdB · Tr

[︄(︃
1A
dA

⊗ 1A
dA

)︃∑︂
i∈I

Ei
AA

]︄
(4.117)

= Tr

[︄∑︂
i∈I

Ei
AA

]︄
(4.118)

= 1. (4.119)

For the second upper bound, note that from Ei
AA

⪰ 0, Di
BB

⪰ 0 we get

FLOCC(1)(N ,M) ≤ max dAdB · Tr

⎡⎣(︁JN
AB

⊗ ΦAB
)︁⎛⎝∑︂

i∈I
Ei
AA

⊗
∑︂
j∈I

Dj

BB

⎞⎠⎤⎦ . (4.120)



Chapter 4. Approximate Quantum Error Correction 113

Now, we employ that dA ·EiA ⊗ 1A ⪰ Ei
AA

giving dA
dA

· 1AA ⪰
∑︁

i∈I E
i
AA

, which in turn leads to

FLOCC(1)(N ,M) ≤
d2
A
dB

dA
· Tr

⎡⎣(︁JN
AB

⊗ ΦAB
)︁⎛⎝1AA ⊗

∑︂
j∈I

Dj

BB

⎞⎠⎤⎦ (4.121)

=
d2
A
dB

dA
· Tr

⎡⎣(︃JN
B ⊗

1B
dB

)︃∑︂
j∈I

Dj

BB

⎤⎦ (4.122)

=
d2
A
dB

d2AdB
· Tr

⎡⎣JN
B

∑︂
j∈I

Dj
B

⎤⎦ (4.123)

=
d2
A
dB

d2AdB
· Tr

[︃
JN
B dA

1B
dB

]︃
(4.124)

=
d2
A

dAdB
. (4.125)

For the third upper bound, note that 1BB ⪰ Di
BB

and thus

FLOCC(1)(N ,M) ≤ dAdB · Tr

[︄(︁
JN
AB

⊗ ΦAB
)︁(︄∑︂

i∈I
Ei
AA

⊗ 1BB

)︄]︄
(4.126)

= dAdB · Tr

[︄(︃
1A
dA

⊗ 1A
dA

)︃∑︂
i∈I

Ei
AA

]︄
(4.127)

=
dB
dA

· Tr

[︄∑︂
i∈I

Ei
AA

]︄
(4.128)

=
dB
dA
. (4.129)

4.3.2 Hierarchy of outer bounds

Following what we did in Theorem 4.2.1, we get the following approximation for the set of

LOCC(1) channels, stated in terms of the corresponding Choi states.

Proposition 4.3.5. Let ρAA(BB)n1
be a quantum state with

ρAA(BB)n1
= Uπ

(BB)n1
(ρAA(BB)n1

) ∀π ∈ Sn (4.130)
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ρA =
1A
dA

(4.131)

ρ(BB)n−1
1 Bn

= ρ(BB)n−1
1

⊗ 1Bn

dB
. (4.132)

Then, we have for 0 < k < n that
⃦⃦⃦⃦
ρAA(BB)k1

−
∑︁

i∈I σ
i
AA

⊗
(︂
ωi
BB

)︂⊗k ⃦⃦⃦⃦
1

is upper bounded

by the same term as in Theorem 4.2.1, where ωi
BB

⪰ 0 with ωiB = 1B
dB

and σi
AA

⪰ 0 with∑︁
i∈I σ

i
A = 1A

dA
.

Comparing the above proposition with Theorem 4.2.1, we see that the condition ρA = 1A
dA

replaces the previous ρA(BB)n1
= 1A

dA
⊗ ρ(BB)n1

. This is because the constraint we have now to

reproduce on the states is
∑︁

i∈I σ
i
A = 1A

dA
, while before we had σiA = 1A

dA
for every i ∈ I.

The n-th level of the SDP hierarchy then becomes

SDPLOCC(1)
n (N ,M) := max dAdB · Tr

[︂(︂
JN
AB1

⊗ ΦAB1

)︂
ρAAB1B1

]︂
(4.133)

s.t. ρAA(BB)n1
⪰ 0 (4.134)

Uπ
(BB)n1

(︂
ρAA(BB)n1

)︂
= ρAA(BB)n1

∀π ∈ Sn (4.135)

ρABn
1
=

1ABn
1

dAdnB
(4.136)

ρ
AA(BB)

n−1

1
Bn

= ρ
AA(BB)

n−1

1

⊗ 1Bn

dB
. (4.137)

By inspection, the only difference between SDPn(N ,M) and SDP
LOCC(1)
n (N ,M) is the weak-

ened second to last condition. The asymptotic convergence follows immediately from Proposi-

tion 4.3.5.

Theorem 4.3.6. Let N be a quantum channel and n,M ∈ N. Then, we have

SDP
LOCC(1)
n+1 (N ,M) ≤ SDPLOCC(1)

n (N ,M) (4.138)

and,

FLOCC(1)(N ,M) = lim
n→∞

SDPLOCC(1)
n (N ,M). (4.139)
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Note that for SDP
LOCC(1)
n (N ,M) we slightly strengthened the last two conditions by

including some more A- and B-systems in the conditions compared to the minimal conditions

ρA =
1A
dA

and ρ
(BB)

n−1

1
Bn

= ρ
(BB)

n−1

1

⊗ 1Bn

dB
(4.140)

needed for Proposition 4.3.5. By an iterative argument the last condition implies in particular

that

ρAABn
1B1

= ρAAB1B1
⊗

1Bn
2

dnB
, (4.141)

which together with the other three conditions in SDP
LOCC(1)
n (N ,M) then corresponds to the

notion of extendible channels from [56, Definition 5] (also see [31] for similar conditions). We

note, however, that when relaxing the conditions to n-extendible channels our proofs for the

asymptotic convergence of the resulting outer bounds do not apply.

The SDP relaxations again behave naturally in the sense that they are upper bounded by

one.

Lemma 4.3.7. Let N be a quantum channel and n,M ∈ N. Then, we have

0 ≤ SDPLOCC(1)
n (N ,M) ≤ 1. (4.142)

Proof. The lower bound is trivial. For the upper bound, by the monotonicity in n (Theo-

rem 4.3.6) it is enough to restrict to n = 1. As in the proof of Lemma 4.3.4, we make use of

dB
dB

· ρAA ⊗ 1B1B1
⪰ ρAAB1B1

. This again gives

SDP
LOCC(1)
1 (N ,M) ≤ dAdB · Tr

[︃(︁
JN
AB

⊗ ΦAB
)︁ dB
dB

· ρAA ⊗ 1B1B1

]︃
(4.143)

= 1. (4.144)
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As before, we can again add PPT constraints and we denote the resulting relaxations by

SDP
LOCC(1)
n,PPT (N ,M). In the following we study more closely these levels SDP

LOCC(1)
n,PPT (N ,M),

which are our tightest outer bound relaxations on the LOCC(1)-assisted channel fidelity. We

find

SDP
LOCC(1)
1,PPT (N ,M) = max dAdB · Tr

[︁(︁
JN
AB

⊗ ΦAB
)︁
ρAABB

]︁
(4.145)

s.t. ρAABB ⪰ 0 (4.146)

ρAB =
1AB
dAdB

(4.147)

ρAAB = ρAA ⊗ 1B
dB

(4.148)

ρ
TBB

AABB
⪰ 0 (4.149)

This is exactly the SDP outer bound found in [65, Section IV], which simplifies to

SDP
LOCC(1)
1,PPT (N ,M) = max dAdB · Tr

[︁
JN
AB
XAB

]︁
(4.150)

s.t. ρA ⊗ 1B
dB

⪰ XAB ⪰ 0, Tr[ρA] = 1 (4.151)

ρA ⊗ 1B
dB

⪰M ·XTB

AB
⪰ −ρA ⊗ 1B

dB
. (4.152)

By inspection, this corresponds to SDP1,PPT(N ,M) but with one missing constraint, namely

M2XB = 1B
dB

. For n = 2 we get

SDP
LOCC(1)
2,PPT (N ,M) = max dAdB · Tr

[︂(︂
JN
AB1

⊗ ΦAB1

)︂
ρAAB1B1

]︂
(4.153)

s.t. ρAAB1B2B1B2
⪰ 0 (4.154)

Uπ
B1B2B1B2

(︂
ρAAB1B2B1B2

)︂
= ρAAB1B2B1B2

∀π ∈ S2 (4.155)

ρAB1B2 =
1AB1B2

dAd2B
(4.156)

ρAAB1B2B1
= ρAAB1B1

⊗ 1B2

dB
(4.157)
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ρ
TAA

AAB1B2B1B2
⪰ 0, ρ

TB2B2

AAB1B2B1B2
⪰ 0, (4.158)

and we recover the exact same conditions as for the notion of extendible channels [56, Definition

5].

4.4 Numerical examples

4.4.1 Methods

In the following we present the proof of concept numerics we implemented to test the low levels

of our hierarchy for the application of approximate quantum error correction. Moreover, given

the size of the programs, our focus is limited to qubit and qutrit channels. In order to explore

more complex quantum channels, or to increase the number of channel repetitions, one needs to

simplify further the optimization programs, by taking advantage of the potential symmetries of

the particular noise model. We do that for the qubit depolarizing channel in Subsection 4.4.4.

The experiments have been done in MATLAB using the QETLAB library [55], CVX [40],

MOSEK [1], and SDPT3 [78].17

Remark 4.4.1. In Remark 2.2.1 we introduced subscripts to keep track of the systems the

operators act on. Moreover, the usage of subscripts has allowed us to make implicit any isometry

needed to rearrange the underlying Hilbert spaces. For example, the expression WABQBA must be

interpreted as WABFA↔BQBA, where FA↔B : B⊗A→ A⊗B is the swap operator exchanging

A with B. This is a standard convention, which has been used through this thesis. However,

one needs to be careful when implementing the optimization programs for numerical purposes.

In fact, while expressions such as WABQBA make perfectly sense according to our conventions,

17All the code is available at https://github.com/FrancescoBorderi/Quantum-SDPs.
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numerical solvers cannot understand the implicit arrangement of the underlying Hilbert spaces.

Thus, we need to implement explicitly the isometries needed to obtain the correct order. To do

that, we used the PermuteSystems function available from the QETLAB library.

As discussed in Lemma 3.7.2, the authors of [68] gave a rank loop condition to certify that

a certain level of the hierarchy already gives the optimal value. We restate the condition here

in the exact form needed for approximate quantum error correction.

Lemma 4.4.2. Let ρAA(BB)n1
= Uπ

(BB)n1

(︂
ρAA(BB)n1

)︂
for all π ∈ Sn and fixed 0 ≤ k ≤ n such

that ρ
T(BB)n

k+1

AA(BB)n1
⪰ 0. If we have

rank
(︂
ρAA(BB)n1

)︂
≤ max

{︂
rank

(︂
ρAA(BB)k1

)︂
, rank

(︂
ρ(BB)nk+1

)︂}︂
, (4.159)

then ρAABB is separable with respect to the bipartite system AA⊗BB, i.e., ρAABB ∈ Sep(AA :

BB).

Using Lemma 4.4.2 it is in principle possible to, e.g., certify the optimality of the first

level using the second level of our hierarchy. Moreover, if the criterion is fulfilled it can also

allow us to extract the actual encoder and decoder of the optimal quantum error correction

code. However, in order to facilitate the search for solutions having rank loops we need to

look for low rank solutions ρAA(BB)n1
. It is not possible to directly write a rank condition into

our semidefinite programs because rank constraints are not convex, as shown in the following

remark.

Remark 4.4.3. It is easy to show, with an explicit example, that rank constraints are not

convex. In other words, it is not true that for every t ∈ [0, 1] and operators X,Y on H,

we have the inequality rank(tX + (1 − t)Y ) ≤ trank(X) + (1 − t)rank(Y ). For example,

consider a two-dimensional Hilbert space H spanned by the orthonormal basis (|0⟩, |1⟩), and
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choose t := 1
2 , X := |0⟩⟨0| and Y := |1⟩⟨1|, implying rank(X) = rank(Y ) = 1. Thus,

rank(tX + (1− t)Y ) = rank
(︁
1
2 [|0⟩⟨0|+ |1⟩⟨1|]

)︁
= 2. On the other hand, we have trank(X) +

(1− t)rank(Y ) = 1
2 · 1 + 1

2 · 1 = 1. Since 2 ̸≤ 1, the rank is not a convex functional.

In addition, SDP solvers typically give high rank solutions since they tend to look for

solutions at the interior of the convex set. For our optimization programs, we noticed that

SDPT3 compared to MOSEK gives results having in general lower rank. Nevertheless, a

possible strategy is to find a solution ρAA(BB)n1
and then employ a heuristic to minimize the

rank while keeping the hierarchy constraints. The heuristic we found the most effective for

our purposes was the log-det method described in [34]. The idea is to minimize the first-order

Taylor series expansion of

log det
(︂
ρAA(BB)n1

+ δ · 1AA(BB)n1

)︂
, (4.160)

which is used as a smooth surrogate18 for rank
(︁
ρAA(BB)n1

)︁
and δ > 0 is a small regularization

constant introduced to ensure the invertibility of the operators involved in the various iterations.

The procedure is iterative, meaning that we start from ρ0 = 1AA(BB)n1
, then compute ρ1

minimizing the log-det objective function, and so on. In particular, the choice ρ0 = 1AA(BB)n1

connects the method to the trace heuristic [34], which is known to be an effective heuristic for

rank reduction. More precisely, the log-det method can be seen as a sequence of weighted trace

minimization problems. The (arbitrary) choice ρ0 = 1AA(BB)n1
implies that ρ1 is the outcome

of the trace heuristic, which is an ordinary trace minimization. Thus, the further iterations of
18A surrogate is a function used to approximate another function. A surrogate function should be easy

to evaluate. In this way, one can evaluate many times the surrogate to find the best approximation to the

optimum value of the original objective function. The function log det(·) is a popular surrogate for the rank,

because its global minimization leads to non-invertible operators, and hence to rank minimization (recall that a

non-invertible operator cannot have full rank).
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the log-det method can be seen as an improvement of the result given by the trace heuristic.

We stop after a certain number i of iterations and then we find a solution ρi having, hopefully,

lower rank than the original rank
(︁
ρAA(BB)n1

)︁
.

4.4.2 Qubit Channels

We computed SDP relaxations in the plain coding setting for the most common qubit chan-

nels: depolarizing, amplitude damping, bit flip, phase flip, bit-phase flip, Werner-Holevo and

generalized Werner-Holevo channel. We found the upper bounds

SDP1,PPT(N2, 2) = SDP2,PPT(N2, 2) (4.161)

= SDP3,PPT(N2, 2) (4.162)

= SDP1(N2, 2) (4.163)

= SDP2(N2, 2) (4.164)

= SDP3(N2, 2), (4.165)

where the subscript in N2 refers to the two-dimensional input and output of the channel. These

identities also remain true for random qubit channels19 and one might then conjecture that for

qubit channels indeed already SDP1(N2, 2) captures F (N , 2).

For the qubit depolarizing channel the trivial coding scheme is known to be optimal20 and

19To sample random channels we used the RandomSuperoperator function available from the QETLAB library.

The rationale behind the usage of random channels in the numerics, is to move away from the highly symmetric

settings provided by the most popular quantum channels (which may be the cause of the observed identities).
20In particular, for less than 5 repetitions of the depolarizing channel, the trivial coding scheme turns out to

be the optimal error correction strategy [73]. With trivial coding scheme we mean to do no error correction at

all. This result implies that, for the depolarizing channel, error correction becomes interesting in presence of at

least 5 channel repetitions. Thus, we will study this setting in Subsection 4.4.4.
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we retrieve this result using the rank loop condition of the second level based on the log-det

method.

Similarly, for the qubit bit flip channel with parameter p = 0.1 we find a rank-one state

solution of the second level using again the log-det method, implying that the rank loop

condition holds. In this case the solution is not just the state associated with the trivial

coding scheme via the Choi isomorphism but the resulting encoder/decoder pair with optimal

fidelity 0.9 is given by the unitary channels with Kraus operators21 UE = −|1⟩⟨0|+ |0⟩⟨1| and

UD = |0⟩⟨0| − |1⟩⟨1|, respectively. Note that the trivial coding scheme is largely suboptimal for

a qubit bit flip channel with p = 0.1, as the corresponding fidelity is 0.1.

4.4.3 Qutrit Channels

We computed SDP relaxations in the plain coding setting for the following qutrit channels:

depolarizing, Werner-Holevo and generalized Werner-Holevo channel. We found the upper

bounds

SDP1,PPT(N3, 2) = SDP2,PPT(N3, 2) (4.166)

and this identity also remains true for random qutrit channels. Removing the PPT conditions,

however, we found qutrit channels N3 such that

SDP2(N3, 2) < SDP1(N3, 2). (4.167)

21A quantum channel N : S(A) → S(B), can be represented by the finite sum N (·) =
∑︁

k Ek(·)E†
k, for Ek

linear maps between A and B satisfying the property
∑︁

k E
†
kEk = 1. Those linear maps are known as the Kraus

operators of the channel.
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Figure 4.1: Comparison of the SDP upper bounds n = 1, 2 on the channel fidelity of the 3-dimensional

depolarizing channel for LOCC(1)-assisted coding (see Section 4.3). We see an improvement for the

second level for p ∈ (0, 0.8).

4.4.4 Depolarizing channel

The depolarizing channel for p ∈ [0, 4/3] is given as

Depd : ρA → p · Tr(ρA)
1B
dB

+ (1− p) · ρB, (4.168)

where d := dA = dB denotes the dimension of the input and output. Notice that even though

often the channel is only studied for p ∈ [0, 1] where we can interpret p as a depolarizing

probability, the above expression also represents a channel for p ∈ (1, 4/3] (as, e.g., discussed

in [73, Chapter 3]).
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Figure 4.2: Comparison of the SDP upper bound n = 1 on the channel fidelity for five repetitions of

the qubit depolarizing channel in the plain coding setting, with the trivial coding scheme and the 5

qubit code from [10]. Notice the intersection of the 5 qubit code and the trivial scheme in the region

p ∈ (0.1, 0.2) and the singular behaviour of the first level in the region p ∈ (0.6, 0.7). In addition, for

p ∈ [1, 4/3] the behaviour of the first level seems to match exactly with the lower bound obtained with

an iterative seesaw algorithm reported in Figure 3.7 of [73, Chapter 3].

We find that

SDP1,PPT(Dep2, 2) = SDP2,PPT(Dep2, 2) (4.169)

= SDP1,PPT(Dep3, 2) (4.170)

= SDP2,PPT(Dep3, 2). (4.171)

However, in Section 4.4.3 we found that in general removing the PPT conditions allows us to

see a difference for the first two levels. This behaviour is not shown by the qutrit depolarizing
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Figure 4.3: Comparison of the SDP upper bound n = 1 on the channel fidelity for 5, 10, 15, 20, 25

repetitions of the 2-dimensional depolarizing channel in the plain coding setting. Notice that the

singular behaviour of the first level in the region p ∈ (0.6, 0.7) is even more accentuated with the

increase of the number of repetitions.

channel, probably due to its highly symmetrical structure. We computed the upper bound for

LOCC(1) coding and found for p ∈ (0, 0.8) that

SDP
LOCC(1)
2,PPT (Dep2, 2) = SDP

LOCC(1)
1,PPT (Dep2, 2) (4.172)

while,

SDP
LOCC(1)
2,PPT (Dep3, 2) < SDP

LOCC(1)
1,PPT (Dep3, 2). (4.173)

We compared, for the plain coding setting, the n = 1 level for five repetitions of the qubit

depolarizing channel with the fidelity of the trivial coding scheme, as well as the 5 qubit code
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Figure 4.4: Comparison of the SDP upper bound n = 1 on the channel fidelity of the qubit amplitude

damping channel for 1, 2, 3 and 4 repetitions in the plain coding setting, as well as the trivial encoder

and decoder and the 4 qubit code from [66].

from [10]. In particular, following [84] we exploited the symmetries of the qubit depolarizing

channel to get the linear program

SDP1,PPT

(︂
Dep⊗N2 , 2

)︂
= max

N∑︂
i=0

(︃
N

i

)︃(︃
1− 3p

4

)︃i(︃3p

4

)︃N−i
mi (4.174)

s.t. 0 ≤ mi ≤ 1 i ∈ {0, . . . , N} (4.175)

− 1

2
≤

N∑︂
i=0

xi,kmi ≤
1

2
k ∈ {0, . . . , N} (4.176)

N∑︂
i=0

(︃
N

i

)︃
3N−imi = 22N−2. (4.177)

where xi,k := 1
dN

∑︁min{i,k}
r=max{0,i+k−N}

(︁
k
r

)︁(︁
N−k
i−r
)︁
(−1)i−r(d− 1)k−r(d+ 1)N−k+r−i for every i, k ∈
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{0, . . . , N}. Notice that the number of variables grows linearly with N . The results are reported

in Figure 4.2. Comparing these with Figure 3.7 in [73, Chapter 3], it seems that the first level

of the hierarchy matches their lower bounds in the region p ∈ [1, 4/3]. Notice the intersection

of the five qubit code and the trivial coding scheme in the region p ∈ (0.1, 0.2) and the singular

behaviour in the region p ∈ (0.6, 0.7). We have also examined five, ten, fifteen, twenty and

twenty five repetitions of the qubit depolarizing channel, again using the above linear program.

The results are shown in Figure 4.3. Notice that the singular behaviour noted in Figure 4.2 is

now even more accentuated when increasing the number of repetitions.

4.4.5 Amplitude damping channel

The qubit amplitude damping channel with damping probability γ ∈ [0, 1] is given as

Ampγ : ρA → E0
BρBE

0
B
†
+ E1

BρBE
1
B
† (4.178)

where

E0
B := |0⟩⟨0|+

√︁
1− γ|1⟩⟨1|, (4.179)

E1
B :=

√
γ|0⟩⟨1|. (4.180)

We compared the results given by one, two, three, and four repetitions of the channel for the

level n = 1. The bounds are shown in Figure 4.4, compared with the fidelity of the trivial

coding scheme, and the 4 qubit code from [66]. Notice the overlap between the first level of the

hierarchy and the trivial coding scheme for the one-shot setting, i.e., with a single repetition of

the channel. Comparing these results with Figure 3.12 in [73, Chapter 3] we see that there is

gap between their lower bounds (that significantly improves on the trivial coding scheme) and

our upper bounds.
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4.5 Worst case error criterion

4.5.1 Setting

So far we have used the channel fidelity from Definition 4.1.1 as the measure to study ap-

proximate quantum error correction, which corresponds to the average error case. In this

section, we consider the diamond norm (2.60) to study the worst case error22 and we find a

program for which the hierarchy can be used to generate, in this case, lower bounds23. We

prove the sequence of semidefinite relaxations do in fact converge to the exact value of the

original optimization program.

Definition 4.5.1. Let NA→B be a quantum channel and M ∈ N, with M = dA = dB. The

channel distance is defined as

∆(N ,M) := min
1

2

⃦⃦
DB→B ◦ NA→B ◦ EA→A − IA→B

⃦⃦
♢ (4.181)

s.t. DB→B, EA→A quantum channels. (4.182)

The following lemma writes the channel distance as given in Definition 4.5.1 in terms of

the Choi states of the encoder EA→A and decoder DB→B, respectively.

Lemma 4.5.2. Let NA→B be a quantum channel and M ∈ N. Then, we have that

∆(N ,M) = min λ (4.183)

s.t. EAA ⪰ 0, EA =
1A
dA

(4.184)

22The diamond norm is used to measure the worst case error because of its direct connection with the

worst case probability of failing to distinguish the outputs of two quantum channels, given any common input

state [11]. See also [87, Theorem 3.52].
23In this setting our hierarchy generates lower bounds because we are looking at outer approximations for a

minimization problem.
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DBB ⪰ 0, DB =
1B
dB

(4.185)

ZAB ⪰ 0,
λ

dA
· 1A ⪰ ZA (4.186)

ZAB +ΦAB ⪰ dAdB · TrAB
[︁(︁
1A ⊗ JN

AB
⊗ 1B)(EAA ⊗DBB

)︁]︁
, (4.187)

where JN
AB

denotes the Choi state of NA→B (see 2.41).

Proof. Following [86], the channel distance ∆(N ,M) can be written as

∆(N ,M) = min ∥ZA∥∞ (4.188)

s.t. DB→B, EA→A quantum channels (4.189)

ZAB ⪰ 0, ZAB ⪰ dA · JD◦N◦E−I
AB

. (4.190)

We simplify

JD◦N◦E−I
AB

= JD◦N◦E
AB

− JI
AB

(4.191)

= JD◦N◦E
AB

− ΦAB, (4.192)

write for the infinity norm ∥ZA∥∞ = min {λ ∈ R : λ · 1A ⪰ ZA} [81], and relabel ZAB
dA

as ZAB,

leading to

∆(N ,M) = min λ (4.193)

s.t. DB→B, EA→A quantum channels (4.194)

ZAB ⪰ 0,
λ

dA
· 1A ⪰ ZA (4.195)

ZAB +ΦAB ⪰ JD◦N◦E
AB

. (4.196)

Following [65] and in particular [85, Equation 7], we have the Choi state

JD◦N◦E
AB

= dAdB · TrAB
[︁(︁
1A ⊗ JN

AB
⊗ 1B

)︁ (︁
JE
AA

⊗ JD
BB

)︁]︁
(4.197)

and writing JE
AA

= EAA as well as JD
BB

= DBB concludes the proof.
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4.5.2 Hierarchy of lower bounds

Similarly as in Section 4.2.1, we define a hierarchy of semidefinite programs labelled by an

index n. Our framework directly applies as the structure of the optimization problem derived

in Lemma 4.5.2 involves the tensor product EAA ⊗DBB. The n-th level of the SDP hierarchy

then generates the lower bounds SDP∆
n (N ,M) for the distance ∆(N ,M) as

SDP∆
n (N ,M) := min λ (4.198)

s.t. ρAA(BB)n1
⪰ 0, Tr

[︂
ρAA(BB)n1

]︂
= 1 (4.199)

ρAA(BB)n1
= Uπ

(BB)n1

(︂
ρAA(BB)n1

)︂
∀π ∈ Sn (4.200)

ρA(BB)n1
=

1A
dA

⊗ ρ(BB)n1
(4.201)

ρAA(BB)n−1
1 Bn

= ρAA(BB)n−1
1

⊗ 1Bn

dB
(4.202)

ZAB ⪰ 0,
λ

dA
· 1A ⪰ ZA (4.203)

ZAB +ΦAB ⪰ dAdB · TrAB
[︁(︁
1A ⊗ JN

AB
⊗ 1B

)︁
ρAABB

]︁
. (4.204)

We can also add PPT constraints and denote the resulting relaxations by SDP∆
n,PPT(N ,M).

The following theorem states the convergence of the hierarchy.

Theorem 4.5.3. Let N be a quantum channel and n,M ∈ N. Then, we have

0 ≤ ∆(N ,M)− SDP∆
n (N ,M) ≤ poly(d)√

n
(4.205)

implying

∆(N ,M) = lim
n→∞

SDP∆
n (N ,M), (4.206)

where d := max{dA, dA, dB, dB}.
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Proof. The bound 0 ≤ ∆(N ,M)− SDP∆
n (N ,M) holds by construction and thus we consider

the upper bound. First, note that again applying (4.193) we can write

SDP∆
n (N ,M) = min

1

2

⃦⃦
W(N )A→B − IAB

⃦⃦
♢ (4.207)

s.t. ρAA(BB)n1
⪰ 0, Tr

[︂
ρAA(BB)n1

]︂
= 1 (4.208)

ρAA(BB)n1
= Uπ

(BB)n1

(︂
ρAA(BB)n1

)︂
∀π ∈ Sn (4.209)

ρA(BB)n1
=

1A
dA

⊗ ρ(BB)n1
(4.210)

ρAA(BB)n−1
1 Bn

= ρAA(BB)n−1
1

⊗ 1Bn

dB
, (4.211)

with the quantum channel W(N )A→B defined via its Choi state

J
W(N )

AB
:= dAdB · TrAB

[︁(︁
1A ⊗ JN

AB
⊗ 1B

)︁
ρAABB

]︁
. (4.212)

Second, using the de Finetti Theorem 3.6.5 we get that for every feasible Choi state ρAA(BB)
n
1

in SDP∆
n (N ,M), there exists a feasible Choi state EAA⊗DBB in ∆(N ,M) from Lemma 4.5.2,

such that

⃦⃦
EAA ⊗DBB − ρAABB

⃦⃦
1
≤ poly(d)√

n
. (4.213)

Third, employing the triangle inequality for the diamond norm we have

⃦⃦
DB→B ◦ NA→B ◦ EA→A − IA→B

⃦⃦
♢ −

⃦⃦
W(N )A→B − IA→B

⃦⃦
♢ (4.214)

≤
⃓⃓⃓⃦⃦
DB→B ◦ NA→B ◦ EA→A − IA→B

⃦⃦
♢ −

⃦⃦
W(N )A→B − IA→B

⃦⃦
♢

⃓⃓⃓
(4.215)

≤
⃦⃦
DB→B ◦ NA→B ◦ EA→A −W(N )A→B

⃦⃦
♢ . (4.216)

Forth, relating the trace norm distance of Choi states to the diamond norm distance of quantum

channels (Lemma 2.2.4), we have

⃦⃦
DB→B ◦ NA→B ◦ EA→A −W(N )A→B

⃦⃦
♢ ≤ dA ·

⃦⃦⃦
JD◦N◦E
AB

− J
W(N )

AB

⃦⃦⃦
1

(4.217)
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and thanks to the monotonicity under partial trace [87, Theorem 3.39], the sub-multiplicativity

of the partial trace (2.25), and the (∞, 1) Hölder’s inequality, this bounds (4.216) as

⃦⃦
DB→B ◦ NA→B ◦ EA→A −W(N )A→B

⃦⃦
♢ (4.218)

≤ dAdAdB ·
⃦⃦
TrAB

[︁(︁
1A ⊗ JN

AB
⊗ 1B

)︁ (︁
EAA ⊗DBB − ρAABB

)︁]︁⃦⃦
1

(4.219)

≤ dAdAdB ·
⃦⃦(︁

1A ⊗ JN
AB

⊗ 1B
)︁
(EAA ⊗DBB − ρAABB)

⃦⃦
1

(4.220)

≤ dAdAdB ·
⃦⃦
1A ⊗ JN

AB
⊗ 1B

⃦⃦
∞

⃦⃦
EAA ⊗DBB − ρAABB

⃦⃦
1

(4.221)

≤ poly(d)√
n

, (4.222)

with d := max{dA, dA, dB, dB}.

Finally, optimising in (4.216) over all feasible Choi states ρAA(BB)
n
1

and then optimising

over all feasible Choi states EAA ⊗DBB, we get the claimed upper bound

∆(N ,M)− SDP∆
n (N ,M) ≤ poly(d)√

n
. (4.223)

Numerically, we have found that for the qubit depolarizing channel the first level of our

hierarchy already gives the exact optimal value

∆(Dep2, 2) = SDP∆
1,PPT(Dep2, 2), (4.224)

which coincides with 1− F (Dep2, 2). That is, for the qubit depolarizing channel the average

and worst case error criteria become the same.



132 4.5. Worst case error criterion



Chapter 5

De Finetti Reductions with Linear

Constraints

The previous chapters of this thesis investigated de Finetti theorems. Those results allow

to represent, or approximate, mathematical objects symmetric under permutations of their

components into a probabilistic ensemble of elementary independent and identically distributed

(i.i.d.) constituents. In particular, we have shown how to develop a family of such representation

theorems in presence of additional linear constraints. In several applications, instead of

representation results as given by de Finetti theorems, one may need to establish a generalized

order relation between the symmetric mathematical object and the probabilistic ensemble

of elementary i.i.d. constituents. De Finetti reductions, previously known as "post-selection

techniques" [22] or methods based on "universal states" [46], provide the desired inequality. For

example, a quantum de Finetti reduction provides an upper bound to a symmetric quantum

state in the form of an integral superposition of product states, weighted by a factor which is

133
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polynomial in terms of the number of copies and exponential in terms of the local dimensionality

ρHn ⪯ (n+ 1)d
2
H−1

∫︂
σ⊗nH dσH, (5.1)

where ρHn is a permutation invariant quantum state, and dσH is an appropriate measure over

the set of quantum states on H. The generality of expression (5.1) is also its main drawback.

On one hand, unlike finite de Finetti representation theorems, (5.1) provides an exact bound,

without any parameter controlling the approximation error. On the other hand, all permutation

invariant quantum states are upper bounded by the same mixture of tensor product states.

Any other information encoded in the permutation invariant state ρHn is lost. A way to obtain

a state-dependent upper-bound is via a so-called "flexible" de Finetti reduction [64]. In a

flexible de Finetti reduction, each tensor product state appearing in the integral superposition

is weighted by its fidelity with the symmetric state, although an affine adjustment to the local

dimensionality is required

ρHn ⪯ (n+ 1)3d
2
H−1

∫︂
F (ρHn , σ⊗nH )σ⊗nH dσH, (5.2)

where ρHn is a permutation invariant quantum state, F (ρ, σ) :=
⃦⃦√

ρ
√
σ
⃦⃦2
1

denotes the fidelity1,

and dσH is an appropriate measure over the set of quantum states on H. As we see from (5.2),

only the tensor product states σ⊗nH that are close (in fidelity) to ρHn should bring a relevant

contribution to the integral superposition. This effectively allows us to obtain a state-dependent

expression upper-bounding the permutation invariant state ρHn . Flexible de Finetti reductions

can be applied to the study of the optimal winning strategy for certain types of multi-player

games [4]. Those flexible versions of de Finetti reductions can be seen as a complementary

approach to our work, but our techniques are different, and we do not use the fidelity.
1In order to avoid confusion, it is important to keep in mind that some authors use the name fidelity for the

square root of this quantity. In other words, they define the fidelity as
√︁

F (ρ, σ) =
⃦⃦√

ρ
√
σ
⃦⃦
1
. This is the case

of [64].
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On the other hand, one can study both de Finetti representation theorems and de Finetti

reductions in the presence of additional constraints on the symmetric state (see Chapter 3,

[33], [18], and [64]). For cryptographic applications and error correction (see Chapter 4), it is

often useful to study the case where a new system, carrying external side information, adds a

non-symmetric contribution to the symmetric object. So far, no clear or systematic connection

between de Finetti reductions and de Finetti representation theorems has been proven in the

literature. Thus, in this chapter we have three main interests

1. How to extend de Finetti reductions to include the case with side information,

2. how to incorporate various types of constraints in the de Finetti reduction,

3. how to derive de Finetti representation theorems from de Finetti reductions.

The content of this chapter is largely based on our research notes [12] .

5.1 Classical Relative Entropy and Chain Rules

The starting point for our proof techniques is the use of various forms of chain rules for the

classical relative entropy. The classical relative entropy, also known as the Kullback-Leibler

divergence, is the classical version of (3.52), and is defined as2

DKL(pX∥qX) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁

x∈image(X)
pX(x)>0

pX(x) log
(︂
pX(x)
qX(x)

)︂
if supp(pX) ⊆ supp(qX)

∞ otherwise

, (5.3)

2The support of a probability mass function is formed by the set of points where the function is greater than

zero. Thus, supp(pX) ⊆ supp(qX) implies that for every x ∈ image(X) such that pX(x) > 0, then qX(x) > 0 as

well.
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where X is a discrete random variable, pX and sX are two probability mass functions, and

the logarithm is taken with respect to the basis two, i.e., log(·) := log2(·). For simplicity, we

will typically write DKL(pX∥qX) =
∑︁

x pX(x) log
(︂
pX(x)
qX(x)

)︂
in place of the complete notation of

(5.3).

In Section 3.6.2 we have presented Quantum Pinsker’s inequality (Theorem 3.6.1), which

relates the quantum relative entropy to the trace distance. The following is the classical version

of Pinsker’s inequality, which can be seen as a special case of Theorem 3.6.1.

Theorem 5.1.1. (Classical Pinsker’s inequality) Let X a discrete random variable and pX , qX

probability mass functions, then

DKL(pX∥qX) ≥
1

2 ln 2
∥pX − qX∥21 , (5.4)

where ∥pX − qX∥ :=
∑︁

x∈image(X) ∥pX(x)− qX(x)∥.

The following lemma provides a well-known chain rule for the Kullback–Leibler diver-

gence [25, Theorem 2.5.3].

Lemma 5.1.2. Let X,Y discrete random variables, pXY , qXY probability mass functions, then

DKL(pXY ∥qXY ) = DKL(pX∥qX) +E
X

{︁
DKL(pY |X∥qY |X)

}︁
, (5.5)

where the expectation is computed with respect to pX .

Proof. The proof is obtained by a direct computation

DKL(pXY ∥qXY ) =
∑︂
x,y

pXY (x, y) log

(︃
pXY (x, y)

qXY (x, y)

)︃
(5.6)

=
∑︂
x,y

pX(x)p(y|x) log
(︃
pX(x)p(y|x)
qX(x)q(y|x)

)︃
(5.7)

=
∑︂
x,y

pX(x)p(y|x) log
(︃
pX(x)

qX(x)

)︃
+
∑︂
x,y

pX(x)p(y|x) log
(︃
p(y|x)
q(y|x)

)︃
(5.8)
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=
∑︂
x

pX(x)

[︄∑︂
y

p(y|x)

]︄
log

(︃
pX(x)

qX(x)

)︃
(5.9)

+
∑︂
x

pX(x)

[︄∑︂
y

p(y|x) log
(︃
p(y|x)
q(y|x)

)︃]︄
(5.10)

=
∑︂
x

pX(x) log

(︃
pX(x)

qX(x)

)︃
+
∑︂
x

pX(x)DKL(pY |X=x∥qY |X=x) (5.11)

= DKL(pX∥qX) +E
X

{︁
DKL(pY |X∥qY |X)

}︁
. (5.12)

The above lemma can be easily generalized for conditional distributions. For example, if

we add an additional discrete random variable C with respect to which we do the conditioning,

we find the following chain rule

DKL(pXY |C∥qXY |C) = DKL(pX|C∥qX|C) + E
X|C

{︁
DKL(pY |X,C∥qY |X,C)

}︁
, (5.13)

where now the expectation is computed with respect to pX|C := pXC
pC

.

It is possible to transform convex combinations of Kullback–Leibler divergences into a

quantum relative entropy. This result is the content of the following lemma.

Lemma 5.1.3. Let Q,Y discrete random variables, rQ and pqY , s
q
Y probability mass functions

for every q ∈ image(Q), then∑︂
q

rQ(q)DKL(p
q
Y ∥s

q
Y ) (5.14)

= D

(︄∑︂
q

rQ(q)|q⟩⟨q| ⊗
∑︂
y

pqY (y)|y⟩⟨y|

⃦⃦⃦⃦
⃦∑︂

q

rQ(q)|q⟩⟨q| ⊗
∑︂
y

sqY (y)|y⟩⟨y|

)︄
, (5.15)

where the quantum states form an orthonormal basis for the associated Hilbert spaces.

Proof. The proof is obtained by direct computation of the quantum relative entropy

D

(︄∑︂
q

rQ(q)|q⟩⟨q| ⊗
∑︂
y

pqY (y)|y⟩⟨y|

⃦⃦⃦⃦
⃦∑︂

q

rQ(q)|q⟩⟨q| ⊗
∑︂
y

sqY (y)|y⟩⟨y|

)︄
(5.16)
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= Tr

⎡⎣∑︂
q

rQ(q)|q⟩⟨q| ⊗
∑︂
y

pqY (y)|y⟩⟨y| log

⎛⎝∑︂
q′

rQ(q
′)|q′⟩⟨q′| ⊗

∑︂
y′

pq
′

Y (y
′)|y′⟩⟨y′|

⎞⎠⎤⎦ (5.17)

− Tr

⎡⎣∑︂
q

rQ(q)|q⟩⟨q| ⊗
∑︂
y

pqY (y)|y⟩⟨y| log

⎛⎝∑︂
q′

rQ(q
′)|q′⟩⟨q′| ⊗

∑︂
y′

sq
′

Y (y
′)|y′⟩⟨y′|

⎞⎠⎤⎦ (5.18)

= Tr

⎡⎣∑︂
q

rQ(q)|q⟩⟨q| ⊗
∑︂
y

pqY (y)|y⟩⟨y|
∑︂
q′

∑︂
y′

log

(︄
rQ(q

′)pq
′

Y (y
′)

rQ(q′)s
q′

Y (y
′)

)︄
|q′⟩⟨q′| ⊗ |y′⟩⟨y′|

⎤⎦ (5.19)

= Tr

[︄∑︂
q

∑︂
y

rQ(q)p
q
Y (y) log

(︃
pqY (y)

sqY (y)

)︃
|q⟩⟨q| ⊗ |y⟩⟨y|

]︄
(5.20)

=
∑︂
q

rQ(q)
∑︂
y

pqY (y) log

(︃
pqY (y)

sqY (y)

)︃
(5.21)

=
∑︂
q

rQ(q)DKL(p
q
Y ∥s

q
Y ). (5.22)

The following lemma is the classical version of the above result.

Lemma 5.1.4. Let Q,Y discrete random variables, rQ and pqY , s
q
Y probability mass functions

for every q ∈ image(Q), then

∑︂
q

rQ(q)DKL(p
q
Y ∥s

q
Y ) = DKL(p̃QY ∥s̃QY ), (5.23)

where p̃QY and s̃QY are probability mass functions defined by p̃QY := rQ(q)p
q
Y (y) and s̃QY :=

rQ(q)s
q
Y (y) for every q ∈ image(Q) and y ∈ image(Y ).

Proof. The proof is obtained by a simple manipulation

∑︂
q

rQ(q)DKL(p
q
Y ∥s

q
Y ) =

∑︂
q

rQ(q)
∑︂
y

pqY (y) log

(︃
pqY (y)

sqY (y)

)︃
(5.24)

=
∑︂
q,y

rQ(q)p
q
Y (y) log

(︃
rQ(q)p

q
Y (y)

rQ(q)s
q
Y (y)

)︃
(5.25)
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=
∑︂
q,y

p̃QY log

(︃
p̃QY
s̃QY

)︃
(5.26)

= DKL(p̃QY ∥s̃QY ). (5.27)

5.2 Constrained de Finetti Reductions with Side Information

De Finetti reductions are useful inequalities that are commonly used to simplify the com-

putation of certain bounds for the action of functionals on permutation invariant states. In

this thesis we are mainly interested in quantum de Finetti reductions, which are stated for

permutation invariant quantum states. However, de Finetti reductions do exist also in the

classical setting. For example, in [3] the authors prove various classical de Finetti reductions for

permutation invariant conditional probability distributions. Their approach is based, mainly,

on combinatorial arguments and can be generalized to handle additional types of symmetries

(e.g., the CHSH-type symmetry defined in [3, Definition 5]). In [48], the authors prove a

classical de Finetti reduction for permutation invariant probability distributions by using the

method of types in the context of composite hypothesis testing and its connection to Rényi

information measures. The method of types is also used in [7]. Moreover, the authors introduce

new proof techniques and derive classical flexible versions of de Finetti reductions.

As pointed out, there exist in the literature several quantum de Finetti reductions that are

able to handle specific linear constraints on the permutation invariant state (e.g., [33] and [64]).

Those theorems restrict the support of the measure in order to capture the specific linear

constrain on the initial state or introduce a fidelity weight in the integral superposition. In

this section, we introduce a new ingredient: the quantum side information. We prove a new de
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Finetti reduction in presence of quantum side information. Moreover, we show that our result

can handle, at the same time, two different types of constraints, a marginal constraint on the

symmetric part, and a general linear constraint on the quantum side information. Our result

can be seen as an extension of the constrained de Finetti reduction presented in [33, Corollary

3.2].

Proposition 5.2.1. Let Q,A and B be Hilbert spaces and ρQAnBn a state symmetric with

respect to Q. Moreover, let ρAn = σ⊗nA for a fixed state σA. Then, there exist a probability

measure dσAB on the set of extensions σAB of σA and a state ωQ such that

ρQAnBn ⪯ (n+ 1)3d
2 · ωQ ⊗

∫︂
σ⊗nAB dσAB, (5.28)

with d := dAd
2
B.

Notice that in general we have ωQ ̸= ρQ, but as pointed out at the beginning of this section,

Proposition 5.2.1 can be extended to handle linear constraints on the system carrying the

quantum side information Q.

Corollary 5.2.2. Under the same assumptions of Proposition 5.2.1 with additionally ΓQ→F a

linear map and XF an operator on a Hilbert space F , the state ωQ can be chosen such that

ΓQ→F (ρQAn) = XF ⊗ σ⊗nA =⇒ ΓQ→F (ωQ) = XF . (5.29)

Note that the marginal constraint ρAn = σ⊗nA is a special type of linear constraint, but we

do not know if it is possible to extend this to general linear constraints. Moreover, with the

introduction of the quantum side information Q, the above results fit the framework of our

approximate quantum error correction example, which has been studied in Chapter 4. The

proofs of Proposition 5.2.1 and Corollary 5.2.2 are based on the extended Schur-Weyl duality

framework laid out in [33, Appendix C] and are given in Section 5.5.
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5.3 From de Finetti Reductions to de Finetti Theorems

5.3.1 From de Finetti Reductions to Relative Entropy Inequalities

Noteworthy, de Finetti reductions directly allow to bound the relative entropy distance3 of

symmetric quantum states to convex combinations of tensor product states.

Lemma 5.3.1. Let Q and G be Hilbert spaces, and ρQGn a state symmetric with respect to Q.

Consider a de Finetti reduction of the form

ρQGn ⪯ poly(n) · σQ ⊗
∫︂
σ⊗nG dσG, (5.30)

where dσG is an appropriate measure over the set of quantum states on G. Then, there exists a

discrete random variable X, pX a probability mass function, and σxG quantum states for every

x ∈ image(X), such that

D
(︂
ρQGn

⃦⃦⃦
σQ ⊗

∑︂
x

pX(x) [σ
x
G]

⊗n
)︂
≤ log poly(n). (5.31)

This finding will be the basis to go from de Finetti reductions to representation theorems.

Proof. Thanks to Carathéodory’s theorem4 (see [87, Theorem 1.9]), we can find a discrete

random variable X, pX a probability mass function, σxG quantum states for every x ∈ image(X),

such that ∫︂
σ⊗nG dσG =

∑︂
x

pX(x) [σ
x
G]

⊗n . (5.32)

3Here the word "distance" must be read as "statistical distance". The term statistical distance is a general

expression used to denote a functional quantifying the similarity between two statistical objects. A statistical

distance does not need to be a proper distance, in the metric sense. For example, the relative entropy is not

even symmetric, thus it is not a metric.
4Carathéodory’s theorem states that any point belonging to the convex hull of a set P , subset of a D-

dimensional real vector space, can be represented as a convex combination of at most D + 1 points in P . For

complex vector spaces, one can identify C with R2.
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The following sequence of monotonic operations concludes the proof

ρQGn ⪯ poly(n) · σQ ⊗
∫︂
σ⊗nG dσG (5.33)

ρQGn ⪯ poly(n) · σQ ⊗
∑︂
x

pX(x) [σ
x
G]

⊗n (5.34)

log(ρQGn)− log
(︂
σQ ⊗

∑︂
x

pX(x) [σ
x
G]

⊗n
)︂
⪯ log poly(n) · 1⊗nG (5.35)

ρ
1/2
QGn

(︂
log(ρQGn)− log

(︂
σQ ⊗

∑︂
x

pX(x) [σ
x
G]

⊗n
)︂)︂
ρ
1/2
QGn ⪯ log poly(n) · ρQGn (5.36)

Tr
[︂
ρQGn

(︂
log(ρQGn)− log

(︂
σQ ⊗

∑︂
x

pX(x) [σ
x
G]

⊗n
)︂)︂]︂

≤ log poly(n) (5.37)

D
(︂
ρQGn

⃦⃦⃦
σQ ⊗

∑︂
x

pX(x) [σ
x
G]

⊗n
)︂
≤ log poly(n), (5.38)

where we employed the operator monotonicity of the logarithm as well as of positive maps.

Applying the de Finetti reduction from Proposition 5.2.1, Lemma 5.3.1 immediately leads

to the following bound.

Corollary 5.3.2. Under the same assumptions of Proposition 5.2.1, there exist a discrete

random variable X, pX a probability mass function, a state ωQ on Q, and σxAB extensions of

σA for every x ∈ image(X), such that

D
(︂
ρQAnBn

⃦⃦⃦
ωQ ⊗

∑︂
x

pX(x)[σ
x
AB]

⊗n
)︂
≤ 3d2 · log(n+ 1), (5.39)

with d := dAd
2
B.

Notice that the right-hand side in Corollary 5.3.2 is not small for any non-trivial dimension.

In other words, if d ≠ 0, the right-hand side diverges when taking the asymptotic limit n→ ∞.

However, in the next subsections we show how this corollary can be employed to derive de

Finetti representation theorems.
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5.3.2 Classical case

The following gives a proof for the classical de Finetti theorem based on entropy inequalities.

The basic idea is to condition iteratively on pairs of random variables by using the chain rule for

the Kullback–Leibler divergence (Lemma 5.1.2). This is reminiscent of the information-theoretic

proof strategy from [18], based on the chain rule of the conditional mutual information, which

was also employed in our papers [13] and [14], and in Section 3.6.

Proposition 5.3.3. Let k ∈ {1, . . . , n−1}, X and G1 · · ·Gn discrete random variables, rG1···Gn ,

pX and
∏︁n
i=1 s

x
Gi

probability mass functions for every x ∈ image(X), and assume rG1,...,Gn to

be symmetric. Whenever we have

DKL

(︂
rG1···Gn

⃦⃦⃦∑︂
x

pX(x)
n∏︂
i=1

sxGi

)︂
≤ log poly(n), (5.40)

then there exists a probability mass function qX such that

⃦⃦⃦
rG1···Gk

−
∑︂
x

qX(x)
k∏︂
i=1

sxGi

⃦⃦⃦
1
≤ O

(︄√︃
k

n
· log n

)︄
. (5.41)

Note that, in general, qX ̸= pX , and the bound O
(︃√︂

k
n · log n

)︃
is known to be suboptimal

in n (see, e.g., [48, Lemma 1]). Nevertheless, our strategy provides a novel proof technique that

can be used to systematically generate classical de Finetti theorems from classical de Finetti

reductions.

Proof. In what follows we assume, for simplicity, k = 2 and n even. The generalization

to an arbitrary k ∈ {1, . . . , n − 1} is obtained by grouping variables in groups of k in the

subsequent proof. Moreover, we prove a slightly more general statement, where we do not

assume the probability mass function rG1···Gn to be permutation invariant. More precisely,

without assuming permutation invariance, we show that there exist a m ∈ {0, . . . , n/2 − 1}
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and a probability mass function qX such that

⃦⃦⃦
rG2m+1G2m+2 −

∑︂
x

qX(x)s
x
G2m+1

sxG2m+2

⃦⃦⃦
1
≤
√︁
2 ln(2) ·

√︃
2 log poly(n)

n
. (5.42)

If we then assume, as in the statement of Proposition 5.3.3, rG1,...,Gn to be symmetric, the

existential quantification can be replaced, by symmetry, with a universal quantification.

We abbreviate sxG1···Gh
:=
∏︁h
i=1 s

x
Gi

for h = 1, . . . , n, and using the chain rule for the

Kullback–Leibler divergence (Lemma 5.1.2), we obtain

DKL

(︂
rG1···Gn

⃦⃦⃦∑︂
x

pX(x)s
x
G1···Gn

)︂
= DKL

(︂
rG1G2

⃦⃦⃦∑︂
x

pX(x)s
x
G1
sxG2

)︂
(5.43)

+ E
G1G2

{︄
DKL

(︂
rG3G4|G1G2

⃦⃦⃦∑︁
x pX(x)s

x
G1···G4∑︁

x pX(x)s
x
G1G2

)︂}︄
+ . . .

(5.44)

with the sum formed of n/2 terms and the expectation value taken with respect to rG1G2 , and

rG3G4|G1G2
:=

rG1G2G3G4
rG1G2

. Defining p(x|g1g2) :=
pX(x)sxG1G2

(g1g2)∑︁
x pX(x)sxG1G2

(g1g2)
for every x ∈ image(X),

g1 ∈ image(G1) and g2 ∈ image(G2), we simplify the above sum as

DKL

(︂
rG1···Gn

⃦⃦⃦∑︂
x

pX(x)s
x
G1···Gn

)︂
= DKL

(︂
rG1G2

⃦⃦⃦∑︂
x

pX(x)s
x
G1
sxG2

)︂
(5.45)

+ E
G1G2

{︄
DKL

(︂
rG3G4|G1G2

⃦⃦⃦∑︂
x

p(x|G1G2)s
x
G3
sxG4

)︂}︄
+ . . .

(5.46)

with similar definitions and simplifications for the other addends. Because each term in the

sum is non-negative and their sum is, by assumption, smaller than or equal to log poly(n),

there must be at least a term in the sum smaller than or equal to log poly(n)
n/2 . In other words,

there exists a m ∈ {0, . . . , n/2− 1} such that

E
G1···G2m

{︄
DKL

(︂
rG2m+1G2m+2|G1···G2m

⃦⃦⃦∑︂
x

p(x|G1 · · ·G2m)s
x
G2m+1

sxG2m+2

)︂}︄
(5.47)
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≤ log poly(n)

n/2
(5.48)

and thanks to the joint convexity of Kullback–Leibler divergence [87, Corollary 5.12] we obtain

DKL

(︂
E

G1···G2m

{︁
rG2m+1G2m+2|G1···G2m

}︁ ⃦⃦⃦∑︂
x

E
G1...G2m

{p(x|G1 · · ·G2m)} sxG2m+1
sxG2m+2

)︂
(5.49)

≤ log poly(n)

n/2
. (5.50)

Defining qX(x) := E
G1···G2m

{p(x|G1 · · ·G2m)} for every x ∈ image(X), and using the law of

total probability E
G1···G2m

{︁
rG2m+1G2m+2|G1···G2m

}︁
= rG2m+1G2m+2 , we find

DKL

(︂
rG2m+1G2m+2

⃦⃦⃦∑︂
x

qX(x)s
x
G2m+1

sxG2m+2

)︂
≤ log poly(n)

n/2
. (5.51)

classical Pinsker’s inequality (Theorem 5.1.1) then concludes the proof.

5.3.3 Quantum case

Using informationally complete measurements (Definition 2.2.3), we can leverage the previous

classical result to the quantum setting, thus obtaining a new proof for finite quantum de Finetti

theorems employing de Finetti reductions.

Theorem 5.3.4. Let k ∈ {1, . . . , n− 1}, X be a discrete random variable, G1 · · ·Gn Hilbert

spaces with G1
∼= . . . ∼= Gn, ρGn and σxG quantum states for every x ∈ image(X), pX a

probability mass function, and assume ρGn to be symmetric. Whenever we have

D
(︂
ρGn

⃦⃦⃦∑︂
x

pX(x)[σ
x
G]

⊗n
)︂
≤ log poly(n), (5.52)

then there exists a probability mass function qX such that

⃦⃦⃦
ρGk −

∑︂
x

qX(x)[σ
x
G]

⊗k
⃦⃦⃦
1
≤ O

⎛⎝√︄k · dkG
n

· log n

⎞⎠ . (5.53)
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Notice that the bound on the approximation error grows exponentially fast with k. Whether

it is possible to improve that k-dependence and maintain the proposed proof technique is still

an open question. On the other hand, we already know that the dependence in n is suboptimal.

This is not surprising following our comment on Proposition 5.3.3, which is used to prove

Theorem 5.3.4.

Proof. In what follows we assume, for simplicity, k = 2. The generalization to an arbitrary

k ∈ {1, . . . , n−1} is obtained using Proposition 5.3.3 in its full generality. We start by measuring

ρGn and [σxG]
⊗n with the same product measurement, i.e., we choose µG1···Gn := ⊗n

i=1µGi .

Thanks to the monotonicity of the quantum relative entropy under positive maps, we have

DKL

(︂
µG1···Gn(ρGn)

⃦⃦⃦∑︂
x

pX(x)µG1···Gn([σ
x
G]

⊗n)
)︂
≤ D

(︂
ρGn

⃦⃦⃦∑︂
x

pX(x)[σ
x
G]

⊗n
)︂

(5.54)

≤ log poly(n) (5.55)

and using Proposition 5.3.3 for the post-measurement probability distributions we find

⃦⃦⃦
(µG1 ⊗ µG2)(ρG1G2 −

∑︂
x

qX(x)σ
x
G1

⊗ σxG2
)
⃦⃦⃦
1
≤
√︁
2 ln(2) ·

√︃
log poly(n)

n
(5.56)

for some probability mass function qX . Moreover, [17, Lemma 14] shows that we can choose

the product measurement µG1 ⊗ µG2 such that

⃦⃦⃦
ρG1G2 −

∑︂
x

qX(x)σ
x
G1

⊗ σxG2

⃦⃦⃦
1
≤ 18dG ·

⃦⃦⃦
(µG1 ⊗ µG2)(ρG1G2 −

∑︂
x

qX(x)σ
x
G1

⊗ σxG2
)
⃦⃦⃦
1
.

(5.57)

This concludes the proof.
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5.4 De Finetti theorems for quantum channels: simplifying the

constraints

In this section we use de Finetti reductions to derive a new de Finetti theorem for quantum

channels. In comparison to our results from Section 4.2, which were given for bipartite quantum

channels, here we look at generic single-input/single-ouput quantum channels as in [39], and we

show that is possible to drop one constraint and still achieve asymptotic convergence. While

we are not able to prove the theoretical minimality of our constraints, the simplification of the

existing conditions is definitely a fundamental step in the right direction. Moreover, our new

results provide insights on the "power" of the constraints and their effect on the convergence

speed.

For the purposes of this section we do not need side information, which would instead be

required for bipartite quantum channels. If we remove the system Q carrying the quantum side

information, Proposition 5.2.1 reduces to the quantum de Finetti reduction of [33, Corollary

3.2] with a slightly worse dimensional dependence in the scalar prefactor. Thus, in what follows

we will directly use their quantum de Finetti reduction.

Corollary 5.4.1. [33, Corollary 3.2] Let B and B be Hilbert spaces and ρBnB
n a state

invariant under permutation of the BB-systems. Moreover, let ρBn = σ⊗nB for a fixed state σB.

Then, there exists a probability measure dσBB on the set of extensions σBB of σB such that

ρBnB
n ⪯ (n+ 1)d

2−1

∫︂
σ⊗n
BB

dσBB, (5.58)

with d := dBd
2
B
.

Applied to the above de Finetti reduction, Lemma 5.3.1 gives the following relative entropy
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bound

D

(︄
ρBnB

n

⃦⃦⃦⃦
⃦∑︂

x

pX(x)[σ
x
BB

]⊗n

)︄
≤ (d2 − 1) · log(n+ 1), (5.59)

where X is a discrete random variable, pX a probability mass function, and σx
BB

extensions of

σB for every x ∈ image(X).

Using Theorem 5.3.4 with k = 2, we then conclude the validity of the following de Finetti

representation theorem⃦⃦⃦
ρ(BB)21

−
∑︂
x

qX(x)[σ
x
BB

]⊗2
⃦⃦⃦
1
≤ 18 ·

√
2 · dBB ·

√︁
2 ln(2) ·

√︃
(d2 − 1) · log(n+ 1)

n
, (5.60)

where qX is an appropriate probability mass function. We formalize this result in the following

theorem, which is stated for an arbitrary k ∈ {1, . . . , n− 1}.

Theorem 5.4.2. Let k ∈ {1, . . . , n− 1}, B and B Hilbert spaces, and ρ(BB)n1
a state invariant

under permutation of the BB-systems. Moreover, let ρBn = σ⊗nB for a fixed state σB. Then,

there exist a discrete random variable X, a probability mass function qX , and σx
BB

extensions

of σB for every x ∈ image(X), such that

⃦⃦⃦
ρ(BB)k1

−
∑︂
x

qX(x)[σ
x
BB

]⊗k
⃦⃦⃦
1
≤ 18 ·

√
k · dk/2

BB
·
√︁
2 ln(2) ·

√︄
(dBd2B − 1) · log(n+ 1)

n
. (5.61)

If we set σB = 1B
dB

, we obtain the following corollary, valid for quantum channels and

expressed via the Choi states (as in Theorem 4.2.1).

Corollary 5.4.3. Let k ∈ {1, . . . , n−1}, B and B Hilbert spaces, and ρ(BB)n1
a state invariant

under permutation of the BB-systems. Moreover, let ρBn =
1⊗n
B
dnB

. Then, there exist a discrete

random variable X, a probability mass function qX , and σx
BB

quantum states satisfying σxB = 1B
dB

for every x ∈ image(X), such that

⃦⃦⃦
ρ(BB)k1

−
∑︂
x

qX(x)[σ
x
BB

]⊗k
⃦⃦⃦
1
≤ 18 ·

√
k · dk/2

BB
·
√︁
2 ln(2) ·

√︄
(dBd2B − 1) · log(n+ 1)

n
. (5.62)
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We can compare the above corollary with the de Finetti theorems for quantum channels

from Section 4.2. In particular, consider a quantum state ρ(BB)n1
satisfying the following two

conditions

1. ρ(BB)n1
= Uπ

(BB)n1
(ρ(BB)n1

) ∀π ∈ Sn

2. ρ(BB)n−1
1 Bn

= ρ(BB)n−1
1

⊗ 1Bn
dB

then Theorem 4.2.1 guarantees the bound

⃦⃦⃦
ρ(BB)k1

−
∑︂
x

pX(x)[σ
x
BB

]⊗k
⃦⃦⃦
1
≤ k · 2dBB ·

√︁
2 ln(2) ·

√︄
(k − 1) log

(︁
dBB

)︁
n− k + 1

, (5.63)

with k ∈ {1, . . . , n − 1}, for an appropriate probability mass function pX . In comparison,

Corollary 5.4.3 replaces the marginal constraint ρ(BB)n−1
1 Bn

= ρ(BB)n−1
1

⊗ 1Bn
dB

with a much

simpler one, i.e., ρBn =
1⊗n
B
dnB

. However, this simplification comes at a price. In fact in Corollary

5.4.3 we find a new factor exponential in k, i.e., dk/2
BB

. We wonder if this prefactor is just an

artefact of our derivation or if it is really necessary. In the latter case, we would be able to

characterize the power of the non-trivial constraint ρ(BB)n−1
1 Bn

= ρ(BB)n−1
1

⊗ 1Bn
dB

, with respect

to the more basic ρBn =
1⊗n
B
dnB

. We leave it as an open question.

5.5 Proof of Proposition 5.2.1

First, we prove the following lemma, which is a version of Proposition 5.2.1 for pure states.

Second, we generalize the statement to mixed states by employing Lemma 5.5.2 on symmetric

purifications of permutation invariant states.

Lemma 5.5.1. Let Q,A and B be Hilbert spaces, and let ρQAnBn a pure quantum state

symmetric with respect to Q. Moreover, assume ρQAnBn satisfies the marginal constraint
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ρAn = σ⊗nA , for a given quantum state σA on A. Then, there exist a probability measure dϕ on

the set of purifications |ϕ⟩⟨ϕ|AB of σA and a quantum state ωQ on Q, such that

ρQAnBn ⪯ (n+ 1)3d
2 · ωQ ⊗

∫︂
|ϕ⟩⟨ϕ|⊗nAB dϕ, (5.64)

with d := max{dA, dB}.

Proof. The idea behind the proof is based on [33, Lemma 3.1]. In particular, we assume

without loss of generality that d = dA = dB, and that σA is invertible on A. In fact, it is

always possible to embed the smaller space into a larger system of dimension d and replace σA

by σA + ϵ 1A, for ϵ > 0. The claim is then obtained by taking the limit ϵ→ 0. We define the

non-normalized maximally entangled state (cf. (2.39))

|θ⟩AB :=
∑︂
i

|di⟩A ⊗ |ei⟩B, (5.65)

where {|di⟩A}i and {|ei⟩B}i are orthonormal bases of A and B, respectively. Let now

TAnBn :=

∫︂
(1An ⊗ U⊗n

B )|θ⟩⟨θ|⊗nAB(1An ⊗ U⊗n
B )†dU, (5.66)

where dU is the Haar measure on the group of unitaries on B. As (σ1/2A ⊗UB)|θ⟩⟨θ|(σ1/2A ⊗ U †
B)

is a purification of σA for any unitary UB [69, Subsection 9.2.2], we can write

τAnBn := (σ⊗nA ⊗ 1Bn)1/2TAnBn(σ⊗nA ⊗ 1Bn)1/2 (5.67)

=

∫︂ [︂
(σ

1/2
A ⊗ UB)|θ⟩⟨θ|AB(σ1/2A ⊗ U †

B)
]︂⊗n

dU (5.68)

=

∫︂
|ϕ⟩⟨ϕ|⊗nAB dϕ (5.69)

for some measure dϕ on the set of purifications |ϕ⟩⟨ϕ|AB of σA.

We proceed by analysing the structure of TAnBn . For this purpose, we employ the well-known
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Schur-Weyl duality5, which equips the product space (A⊗B)⊗n with the structure

A⊗n ∼=
⨁︂
λ

UA,λ ⊗ VA,λ (5.70)

and

B⊗n ∼=
⨁︂
λ

UB,λ ⊗ VB,λ (5.71)

where λ indexes the Young diagrams. We then define the operator (cf. [33, Lemma 3.1])

SAnBn := (κAn ⊗ 1Bn)−1/2TAnBn(κAn ⊗ 1Bn)−1/2 (5.72)

with κAn :=
∑︁

λ

dVλ
dUλ

· 1UA,λ
⊗ 1VA,λ

, featuring TAnBn and by properties of Schur-Weyl duality

we have [33, Lemma C.1]

SAnBn = 1Symn(A⊗B). (5.73)

Consider now the operator

RQAnBn(ω) :=
(︂
ω
−1/2
Q ⊗ κ

−1/2
An

(︁
σ⊗nA

)︁−1/2 ⊗ 1Bn

)︂
ρQAnBn

(︂
ω
−1/2
Q ⊗

(︁
σ⊗nA

)︁−1/2
κ
−1/2
An ⊗ 1Bn

)︂
(5.74)

parametrized by an arbitrary state ωQ on Q, where ω−1
Q denotes the generalized inverse of ωQ

(see (2.19)). Since ρQAnBn is pure and symmetric with respect to Q, its support is contained

in Q⊗ Symn(A⊗B) and we have

supp(ρQAnBn) ⊆ Q⊗ Symn(A⊗B) =⇒ supp(RQAnBn(ω)) ⊆ Q⊗ Symn(A⊗B). (5.75)

5Schur-Weyl duality asserts that one can isomorphically decompose the n-fold tensor product space
(︁
Cd

)︁⊗n

into a direct sum of tensor products Uλ ⊗ Vλ of irreducible representations of the unitary group and the

symmetric group, for the various Young diagrams λ of size n with at most d rows. I.e.,
(︁
Cd

)︁⊗n ∼=
⨁︁

λ Uλ ⊗ Vλ.
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Using this fact, we find [81]

RQAnBn(ω) ⪯ ∥RQAnBn(ω)∥∞ · 1Q ⊗ 1Symn(A⊗B) (5.76)

= ∥RQAnBn(ω)∥∞ · 1Q ⊗ SAnBn , (5.77)

which is rewritten as

ρQAnBn ⪯ ∥RQAnBn(ω)∥∞ · ωQ ⊗ (σ⊗nA ⊗ 1Bn)1/2TAnBn(σ⊗nA ⊗ 1Bn)1/2 (5.78)

= ∥RQAnBn(ω)∥∞ · ωQ ⊗ τAnBn . (5.79)

We now make an appropriate choice for the state ωQ such that we have ∥RQAnBn(ω)∥∞ ≤

(n+ 1)3d
2 , and hence together with the above what we set out to prove.

For that, we choose ωQ as the reduced state of

ωQAnBn :=
1

Tr (WQAnBn)
·WQAnBn , (5.80)

with

WQAnBn :=
(︂
1Q ⊗ κ

−1/2
An (σ⊗nA )−1/2 ⊗ 1nB

)︂
ρQAnBn

(︂
1Q ⊗ (σ⊗nA )−1/2κ

−1/2
An ⊗ 1nB

)︂
(5.81)

Because of the structure of the operator WQAnBn , its support is a subset of Q⊗ Symn(A⊗B)

and we bound the denominator as

Tr (WQAnBn) = Tr
[︂
κ
−1/2
An (σ⊗nA )−1/2ρAn(σ⊗nA )−1/2κ

−1/2
An

]︂
(5.82)

= Tr
[︂
κ
−1/2
An (σ⊗nA )−1/2σ⊗nA (σ⊗nA )−1/2κ

−1/2
An

]︂
(5.83)

= Tr
(︁
κ−1
An

)︁
(5.84)

=
∑︂
λ

d2Uλ
(5.85)

≤ (n+ 1)2d ·
∑︂
λ

1 (5.86)
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≤ (n+ 1)3d, (5.87)

where we used [47, Lemma 10] to bound dUλ
≤ (n+ 1)d as well as

∑︁
λ 1 ≤ (n+ 1)d. We then

obtain the desired bound for ∥RQAnBn∥∞ as

∥RQAnBn(ω)∥∞ =
⃦⃦⃦
(ω

−1/2
Q ⊗ 1AnBn)WQAnBn(ω

−1/2
Q ⊗ 1AnBn)

⃦⃦⃦
∞

(5.88)

= Tr (WQAnBn) ·
⃦⃦⃦
(ω

−1/2
Q ⊗ 1AnBn)ωQAnBn(ω

−1/2
Q ⊗ 1AnBn)

⃦⃦⃦
∞

(5.89)

≤ (n+ 1)3d · dSymn(A⊗B) (5.90)

≤ (n+ 1)d
2+3d−1 (5.91)

≤ (n+ 1)3d
2
, (5.92)

where the first inequality in

⃦⃦⃦(︂
ω
−1/2
Q ⊗ 1AnBn

)︂
ωQAnBn

(︂
ω
−1/2
Q ⊗ 1AnBn

)︂⃦⃦⃦
∞

≤ dSymn(A⊗B) (5.93)

≤ (n+ 1)d
2−1 (5.94)

is the application of [79, Proposition 4.3] to the state ωQAnBn , and the second one is a standard

upper bound on the dimension of the symmetric subspace [87, Corollary 7.3]. This finishes the

proof.

It is well known that permutation invariant states can be purified by symmetric (pure)

states [21, Lemma II.5]. The following lemma shows that this is still true in the presence of an

additional quantum system, i.e., with side information. This result and its proof can be seen

as a generalization of the methods presented in [21].

Lemma 5.5.2. Let C,H be Hilbert spaces, and ρCHn a state symmetric with respect to C.

Then, there exists a pure state |ψρ⟩ ∈ C ⊗RC ⊗ Symn(H ⊗RH) with RC ∼= C and RH ∼= H,
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such that

TrRCR
n
H
(|ψρ⟩⟨ψρ|) = ρCHn . (5.95)

Proof. Let {|j⟩C}j=1,...,dC ,{|j̃⟩RC
}j=1,...,dC , {|i⟩H}i=1,...,dH ,{|ĩ⟩RH

}i=1,...,dH , orthonormal bases

for C,RC , H and RH respectively. We show that the following choice for |ψρ⟩ satisfies the

requirements of the lemma

|ψρ⟩ :=
(︁√
ρCHn ⊗ 1RCR

n
H

)︁
·

⎡⎣⎛⎝∑︂
j

|j⟩C |j̃⟩RC

⎞⎠⊗

(︄∑︂
i

|i⟩H |ĩ⟩RH

)︄⊗n
⎤⎦ . (5.96)

Since ρCHn is symmetric with respect to C, the same will hold for √ρCHn . In fact, let UπHn an

arbitrary permutation operator on Hn, then[︂
(1C ⊗ UπHn)

√
ρCHn(1C ⊗ (UπHn)†)

]︂2
= (1C ⊗ UπHn)

√
ρCHn

√
ρCHn(1C ⊗ (UπHn)†) (5.97)

= ρCHn , (5.98)

which implies (1C ⊗ UπHn)
√
ρCHn(1C ⊗ (UπHn)†) =

√
ρCHn .

Now, to show that |ψρ⟩ ∈ C ⊗ RC ⊗ Symn(H ⊗ RH), let UπHn ⊗ UπRn
H

be an arbitrary

permutation on (H ⊗RH)
⊗n. We have

(1C ⊗ 1RC
⊗ UπHn ⊗ UπRn

H
)|ψρ⟩ (5.99)

=
(︂
(1C ⊗ UπHn)

√
ρCHn ⊗ 1RC

⊗ UπRn
H

)︂
·

⎡⎣⎛⎝∑︂
j

|j⟩C |j̃⟩RC

⎞⎠⊗

(︄∑︂
i

|i⟩H |ĩ⟩RH

)︄⊗n
⎤⎦ (5.100)

=
(︂
(1C ⊗ UπHn)

√
ρCHn ⊗ 1RC

⊗ UπRn
H

)︂
(5.101)

·

⎡⎣⎛⎝∑︂
j

|j⟩C |j̃⟩RC

⎞⎠⊗ ((UπHn)† ⊗ (UπRn
H
)†)

(︄∑︂
i

|i⟩H |ĩ⟩RH

)︄⊗n
⎤⎦ (5.102)

=
(︂
(1C ⊗ UπHn)

√
ρCHn(1C ⊗ (UπHn)†)⊗ 1RCR

n
H

)︂
(5.103)

·

⎡⎣⎛⎝∑︂
j

|j⟩C |j̃⟩RC

⎞⎠⊗

(︄∑︂
i

|i⟩H |ĩ⟩RH

)︄⊗n
⎤⎦ (5.104)
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=
(︁√
ρCHn ⊗ 1RCR

n
H

)︁
·

⎡⎣⎛⎝∑︂
j

|j⟩C |j̃⟩RC

⎞⎠⊗

(︄∑︂
i

|i⟩H |ĩ⟩RH

)︄⊗n
⎤⎦ (5.105)

= |ψρ⟩, (5.106)

where we used that
(︁∑︁

i |i⟩H |ĩ⟩RH

)︁⊗n ∈ Symn(H ⊗RH). Finally, we compute the partial trace

TrRCR
n
H
(|ψρ⟩⟨ψρ|) (5.107)

= TrRn
H

⎡⎣(︁√ρCHn ⊗ 1Rn
H

)︁⎡⎣1C ⊗

⎛⎝∑︂
i,i′

|i⟩H⟨i′|H ⊗ |ĩ⟩RH
⟨ĩ′|RH

⎞⎠⊗n⎤⎦(︁√ρCHn ⊗ 1Rn
H

)︁⎤⎦
(5.108)

=
√
ρCHn (1C ⊗ 1Hn)

√
ρCHn (5.109)

= ρCHn . (5.110)

With the above lemmas, we can now prove Proposition 5.2.1 and Corollary 5.2.2. The

proofs are done through straightforward extensions of the purification technique [33, Corollary

3.2].

Proof of Proposition 5.2.1. : Using Lemma 5.5.2 we see that ρQAnBn has a symmetric purifica-

tion ρQRQAnBnRn
AB

with purifying system RQ⊗R⊗n
AB , where the local dimensions are dRQ

= dQ

and dRAB
= dAdB. Lemma 5.5.1 with Q replaced by Q ⊗ RQ and B replaced by B ⊗ RAB,

applied to ρQRQAnBnRn
AB

, yields

ρQRQAnBnRn
AB

⪯ (n+ 1)3d
2
ωQRQ

⊗
∫︂

|ϕ⟩⟨ϕ|⊗nABRAB
dϕ , (5.111)
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where dϕ is a measure on the purifications |ϕ⟩⟨ϕ|ABRAB
of σA, and the dimensional factor is

d = max{dA, d(B⊗RAB)} = dAd
2
B. Taking the partial trace over RQ ⊗R⊗n

AB on both sides gives

ρQAnBn ⪯ (n+ 1)3d
2
ωQ ⊗

∫︂ (︂
TrRAB

[︁
|ϕ⟩⟨ϕ|ABRAB

]︁)︂⊗n
dϕ . (5.112)

The claim follows because the measure dϕ on the pure states |ϕ⟩⟨ϕ|ABRAB
can be replaced by

the induced measure dσAB on the marginal states σAB = TrRAB
[|ϕ⟩⟨ϕ|ABRAB

]. This concludes

the proof.

Proof of Corollary 5.2.2. : Keeping in mind the proof of Proposition 5.2.1, we now show by

direct evaluation that ΓQ→F (ρQAn) = XF ⊗ σ⊗nA implies ΓQ→F (ωQ) = XF . In particular, from

the proof of Lemma 5.5.1, we have the structure

ωQRQ
= TrAnBnRn

AB

[︄
WQ1QRQAnBnRn

AB

Tr
[︁
WQRQAnBnRn

AB

]︁]︄ , (5.113)

featuring the operator

WQRQAnBnRn
AB

(5.114)

= (1QRQ
⊗ κ

−1/2
An (σ⊗nA )−1/2 ⊗ 1BnRn

AB
)ρQRQAnBnRn

AB
(1QRQ

⊗ (σ⊗nA )−1/2κ
−1/2
An ⊗ 1BnRn

AB
).

(5.115)

Hence, we have

ΓQ→F (ωQ) = TrRQ
[ΓQ→F (ωQRQ

)] (5.116)

= TrRQ

[︄
ΓQ→F

(︄
TrAnBnRn

AB

[︄
WQRQAnBnRn

AB

Tr
[︁
WQRQAnBnRn

AB

]︁]︄)︄]︄ (5.117)

= ΓQ→F

(︃
TrAnBn

[︃
WQAnBn

Tr[WQAnBn ]

]︃)︃
(5.118)

= TrAnBn

[︃
ΓQ→F (WQAnBn)

Tr[WQAnBn ]

]︃
(5.119)

= TrAn

[︄
ΓQ→F (WQAn)

Tr
[︁
κ−1
An

]︁ ]︄
(5.120)
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=
XF · Tr

[︂
κ
−1/2
An (σ⊗nA )−1/2σ⊗nA (σ⊗nA )−1/2κ

−1/2
An

]︂
Tr
[︁
κ−1
An

]︁ (5.121)

= XF . (5.122)

This concludes the proof.
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Chapter 6

Discussion

Our work establishes many new results involving de Finetti methods, i.e., de Finetti represen-

tation theorems and de Finetti reductions, and their application in quantum information. In

particular, we have developed a class of finite constrained de Finetti representation theorems

that can be used to generate asymptotically converging hierarchies of semidefinite programs.

This is done by fixing the several degrees of freedom, e.g., the underlying Hilbert spaces,

operators and linear maps, that parametrize the various representations. For a suitable choice

of those parameters, we have generated multiple SDP hierarchies and used them to approximate

constrained bilinear optimization programs arising in the context of approximate quantum error

correction. We performed numerical simulations to explore the low levels of our hierarchies,

analyzing the actual convergence speed of the generated approximations. With the rank loop

condition, we have been able to certify the optimality of the low levels for many low-dimensional

channels. We have derived a new constrained de Finetti reduction with side information, and

we have established a connection between de Finetti reductions and de Finetti representation

theorems. In particular, we have shown how to derive de Finetti representation theorems from

159
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de Finetti reductions, and we used our novel technique to obtain a new de Finetti representation

theorem for quantum channels with simplified constraints.

6.1 Open Problems

We believe that this line of work leaves some interesting open problems, for future work, as

follows.

1. Comparing the bound of our finite constrained de Finetti representation theorem (Theorem

3.6.6) with inequality (3.26), we see that the room for improvement is fairly limited.

However, it would be interesting to see if one can improve the square root and the logarithm

dependence. Moreover, finding the actual minimal conditions that still guarantee the

asymptotic convergence of the SDP hierarchies is still an open question.

2. Given the generality of our framework, one can adapt our techniques to approximate other

quantities of interest, generating the desired asymptotically converging SDP hierarchy by

fixing the various degrees of freedom in our theorems.

3. On the numerical side, one can explore more complex quantum channels or increase

the number of channel repetitions. For our low-dimensional examples, we certified the

optimality of the low levels of our hierarchy using the rank loop condition. It would be

interesting to see if this behaviour is also observed for higher-dimensional cases and to

explore the role of the PPT conditions in the collapse. In order to study more complex

settings, one needs to simplify further the optimization programs by taking advantage of

the potential symmetries of the particular noise model, as we did for the qubit depolarizing

channel in Subsection 4.4.4.
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4. Our techniques to generate a de Finetti representation theorem from a starting de Finetti

reduction lead to the bound of Theorem 5.3.4, which is suboptimal in n, and grows

exponentially fast with k. Moreover, our approach does not seem to be directly applicable

in the presence of quantum side information. It is an interesting open question whether it

is possible to adapt our methods to improve the dimensional dependence and to handle

side information.
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