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Abstract

The main topic of this thesis is the study of de Finetti methods and their applications in
quantum information theory. The primary motivation of a de Finetti representation theorem
is to represent, or approximate, a mathematical object symmetric under permutation of its
components, into a probabilistic ensemble of elementary independent and identically distributed
(i.i.d.) constituents. Approximations are given by finite version of those results, while exact
representations are provided by infinite de Finetti representation theorems. One of their most
common applications in quantum information theory, is the approximation of the set Sep(A : B)
of separable states. To that purpose, the notion of n-extendibility plays a central role. A
quantum state p4p is said to be n-extendible if there exists a multipartite extension p ABY that
is symmetric with respect to A, i.e., invariant under permutation of the B-systems. While
every separable state is also n-extendible, there exist n-extendible states that are not separable.
Thus, for a fixed n, the set n-Ext(A : B) of n-extendible states provides an outer approximation
to the set of separable states. Moreover, this approximation is computationally efficient, since
it leads to semidefinite programs (SDPs). If we are looking for a better approximation, we can
increase n, and, if we take the limit n — oo we get an exact representation. In other words, a
quantum state that is n-extendible for any n must be separable. In several applications, we

are interested in quantum states that are not only separable, but also subject to additional

15
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linear constraints. This observation has been the primary motivation of our research, and our

findings include

1. The development of general mathematical techniques that can be used to obtain concrete

constrained de Finetti representation theorems for the desired application.

2. The application of those methods to the problem of approximate quantum error correction.
In particular, we use our framework to develop asymptotically converging SDP hierarchies
that can be used to study the average and worst error cases, as given by the quantum

channel fidelity and a channel distance based on the diamond norm, respectively.

De Finetti reductions are another class of techniques that are used to take advantage of
permutation symmetries. For example, a quantum de Finetti reduction provides an upper
bound to a symmetric quantum state in the form of an integral superposition of product states,
weighted by a factor which is polynomial in terms of the number of copies and exponential in

terms of the local dimensionality. Our research results in this direction include

1. A new de Finetti reduction in presence of an additional system carrying side information,

that can handle various types of linear constraints.

2. The development of entropic techniques that can be used to generate de Finetti represen-
tation theorems from a starting de Finetti reduction. In particular, we use those methods

to obtain a new proof for finite quantum de Finetti theorems.
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Chapter 1

Introduction

The approximation of the set Sep(A : B) of separable states is a common but computationally
hard problem, which arises in many application in quantum information theory (see, e.g.,
[6]). A quantum state pap on AB := A ® B is said to be separable, if it can be written as
PAB = D icr picty ® i, for a probability distribution {p;}ics, and quantum states {o% }ier,
and {75};e;. The elements in Sep(A : B) describe unentangled states. Thus, being able to
characterize Sep(A : B) is extremely important in order to understand entanglement, which is
one of the main features of quantum mechanics. Operationally speaking, the characterization
of Sep(A : B) is connected to the formulation of separability tests. A popular approach for
the approximation of Sep(A : B) is via the notion of n-extendibility, where n > 0 is a natural
number. The state pap is said to be n-extendible if there exists a quantum state pABp On

AB} := A ® B®™ satisfying the following two conditions
L. Trpp(pasyp) = pas,
2. (Za®@UE) (pAB;I) = papy for every m € G,

with By := B, and &,, denoting the set of permutations acting on n elements (or letters).

23
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Condition 1. implies that p4p is the local state on the system AB (i.e., pAByp is an extension
of pap), while condition 2. requires p ABy to be invariant under permutation of the B-systems
(i-e., papp is symmetric with respect to A).

While every separable state is also n-extendible, there exist n-extendible states that are not
separable |24], [52]. Thus, for a fixed n, the set n-Ext(A : B) of n-extendible states provides an
outer approximation to the set of separable states. In other words, for any given n, Sep(A : B)

is a proper subset of n-Ext(A : B)
Sep(A: B) C n-Ext(A: B). (1.1)

Finite quantum de Finetti theorems quantify the distance between n-Ext(A : B) and Sep(A : B).
Moreover, one obtains convergence in the limit n — oo [75]. More precisely (see [21, Theorem
I1.7]), if pap € n-Ext(A : B), there exists a probability distribution {p; }ics and states p, p's,

such that

2d3,

<=7, (1.2)

pAB — Y Diph @ py
el

1

where dp denotes the dimension of the Hilbert space B.

This result can be generalized for k € {1,...,n — 1} to [21, 57]

2kd?
<=5 (1.3)

n

papr — > pira @ (pls) "
el

1

which is optimal on k and n for a fixed dimension dg and up to a constant factor! (see [21,
Theorem I1.10]). In other words, if a multipartite state on AB} is symmetric with respect to A,

then the reduced state on the first k£ systems AB{‘/’ is close to a separable mixture of independent

!Moreover, in [21, Lemma II1.9] the authors prove that the error term must be at least ‘;—ﬁ (1 — 1%2) In
B
particular, this shows that we cannot obtain a dimension-independent bound for quantum de Finetti theorems,

and the dimensional dependence on dp in (1.2) and (1.3) cannot be exponentially improved.
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and identical states for k sufficiently smaller than n. Notice that, in the asymptotic limit n — oo
and holding k constant, the above inequalities reduce to equalities and the approximations
become exact. For our setting, however, we are interested more generally in characterizing
bipartite states that are separable, but subject to linear constraints on the quantum states

ply, py as well?.

1.1 De Finetti Theorems with Linear Constraints

In particular, we are interested in the study of constrained bilinear optimization problems of

the form

Q :=max Tr|Gap (Zpipfg ® pﬁ;) (1.4)
i€l
st pi>=0 Viel, Y p=1 (1.5)
i€l
Py =0, p>=0 Viel (1.6)
Tr(pYy) =Tr (pl5) =1 Viel (1.7)
Aassoq (Pa) = Xeun Toocy (P8) = Yo, Viel, (1.8)

where G4p is a fixed operator, Ay_,c,, and I'g_,c, are linear maps (also known as super-
operators), and X¢,, Yo, are the operators defining the linear constraints in combination with
the linear maps. As we see, the optimization is over a subset of Sep(A : B), determined by the

linear constraints

Aasey (P4) = Xeu, Tooey (Pg) =Ye, Viel (1.9)

2As we will show in Section 4.2, standard de Finetti theorems are not sufficient for our purposes, and new

de Finetti representation theorems are indeed needed to capture the additional linear constraints.
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Clearly, we are interested in the general case where the linear constraints (1.9) are not trivial,
determining a proper subset of Sep(A : B). In order to outer approximate this subset, a
new de Finetti theorem with linear constraints is needed. Thus, we prove the following finite

constrained representation result.

Theorem 1.1.1. Let papp be a quantum state, Aa—c,, I'p—cp super-operators, and Xc,, Yoy

operators such that

Upr(paBy) = papp Y € &, symmetric with respect to A (1.10)
Aase,(pasy) = Xoy, @ pap linear constraint on A (1.11)
I'p,-cp(pBr) = ppr-1 © Yo, linear constraint on B. (1.12)

Then, we have that

< min{f(A,B),f(B\.)}\/(zlnz)lmg(dA)

(1.13)
L n

PAB — g pioYy R wh
el

with {p;}icr a probability distribution, pap = Trpyp (pAB;L), log(-) := logsy(-), and quantum

states Uf4, wiB such that for everyi € I:
Aasoy (o) = Xo,  and Tpoe, (Wh) = Yoy (1.14)

The quantity f(A, B) is known as minimal distortion for the bipartite system AB, and can be
bound as f(A, B) < 18y/dadp [17, Lemma 14]. The quantity f(B|-) will then be referred as
minimal distortion with side information for system B, and can be bound as f(B|-) < 2dp [53,

Lemma 8J.

We also generalize the above result to k € {1,...,n — 1} copies, obtaining the following

bound

)®k logds + (k—1)logdp

n—k+1

< kf(B|-)\/(21n2) (1.15)

1

paph — ) Pioa ® (wh
icl
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Comparing the bound of (1.15) with (1.3), we see that the room for improvement is fairly
limited, i.e., we may be able to improve the square root and the logarithm dependence, but the
overall bound cannot be made exponentially better. Using Theorem 1.1.1 we can generate an
asymptotically converging hierarchy of semidefinite programs that can be used to approximate

@ (1.4). This is formalized by the following theorem.

Theorem 1.1.2. For the SDPs

SDP,, := max Tr[Gappas, | (1.16)
sit. papy = 0, Tr(papy) =1 (1.17)

paBy =Upgn (papyp) Vm € 6, (1.18)

Aasse, (pasr) = X, ® ppr (1.19)

L, —cp (PBp) = ppn-1 ® Yoy, (1.20)

we have for d := max{da,dp} that

I
0<SDP, — Q< P D ing Q= lim SDP,. (1.21)
\/ﬁ n—o00

It is important to realize that the results of Theorem 1.1.1 and Theorem 1.1.2 contain several
degrees of freedom we can choose. Namely, the various underlying Hilbert spaces A,C4, B, Cp,
the operator G ap appearing in the objective function, the two linear maps Ajsc, and
I'p,—cp, and the operators X¢, and Y¢,, defining the linear constraints in combination with
the linear maps. Thus, the outlined framework can be used to generate the specific de Finetti
representation theorem, and associated asymptotically converging SDP hierarchy, needed for
the desired application. One application of particular interest is found in the research area of

approximate quantum error correction.
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1.2 Approximate Quantum Error Correction

Given a noisy classical channel Nx_,y, a central quantity of interest in error correction is
the mazimum success probability p(N, M) for transmitting a uniform M-dimensional message
under the noise model Nx_,y. This is a bilinear maximization problem, which is in general
NP-hard to approximate up to a sufficiently small constant factor [8]. Nevertheless, there
exists an efficiently computable linear programming relaxation lp(V, M) (sometimes called
meta-converse |45, 71|) giving quantifiable upper bounds on p(N, M) [8|. Thus, the gap between
Ip(N, M) and p(N, M) is well-understood.

The analogue quantum problem is to determine the quantum channel fidelity F(N, M),

which is defined as follows.

Definition 1.2.1. Let N4 _, 5 be a quantum channel and M € N. The quantum channel fidelity

for message dimension M is defined as

F(N, M) := max F(‘I’Em ((PppoNa,po&sa) ®IR)(‘1>AR)> (1.22)

st. Dg_ 5,47 quantum channels, (1.23)

where F(p, o) := Hﬁﬁ“f denotes the fidelity, ® o denotes the maximally entangled state on

AR, and we have M = dy = di = dpg.

The optimization is performed over sets of quantum channels (i.e., trace preserving com-
pletely positive linear maps between two spaces of quantum states), which is not practical to
handle or visualize. Thus, we show that F(N, M) can be rewritten in a more convenient form,

as the following optimization over Choi states

F(N,M)=max dzdp-Tr

(A, @ ©,45) (Z piEl 5 ® DiBB>] (1.24)

i€l
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st pi=0Viel, Y pi=1 (1.25)
el
B\ =0, Diz>0 (1.26)
, 1 , 1
By =2 Dpi=Lvier, (1.27)
da dp

where Jg% = (N4, 5 ® I1) (P 4) denotes the Choi state of the quantum channel Ny 5.
As in the classical case, this is a bilinear optimization problem, only now with operator-
valued variables. In order to approximate F(N, M), an efficiently computable semidefinite
programming relaxation SDP(N, M) was given in [65]. However, contrary to the classical
case, the gap between SDP(N, M) and F(N, M) is not understood. On the other hand,
the tools we have developed and outlined in the previous section, can be used to generate a
converging hierarchy of efficiently computable semidefinite programming relaxations, allowing
us to quantify the gap between these new relaxations and F(N, M). In fact, we can fix the
degrees of freedom available in Theorem 1.1.1 to generate the desired constrained de Finetti
representation theorem. By doing so, we have automatically an associated asymptotically

converging SDP hierarchy (Theorem 1.1.2), which reads

SDP, (N, M) := max dzdp-Tr [(J%Bl ® (I)AE) pAZBlﬁl} (1.28)
st paammy = 0 T |pasmy | =1 (1.29)

PaABBY = Ulpn) (PAZ(BE);L) vm e 6, (1.30)

PABB)Y = Cllj @ P(BB)y (1.31)

PAA(BB)" B, = PAABB) 1+ © 1(53”' (1.32)

Recalling that the original optimization was over quantum channels, the presented results can

be interpreted as a way to approximate permutationally invariant bipartite® quantum channels

3Tt is important to stress that, in the application of approximate quantum error correction, we have three
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by a mixture of product channels, i.e., as de Finetti theorems for bipartite quantum channels.
Moreover, we can also state the representation theorem directly in terms of the quantum
channels, obtaining an upper bound for the diamond norm distance.

We also study the setting in which we allow for classical forward communication assistance.
Thus, we modify Definition 1.2.1 to include the classical channel that can be used to send

classical information from one party (say Alice) to the other (say Bob). The corresponding

LOCC(1)-assisted (quantum) channel fidelity F*OCCM)(N| M) is defined as follows.

Definition 1.2.2. Let N4, 5 be a quantum channel and M € N. The LOCC(1)-assisted

channel fidelity for message dimension M is defined as

FLOCCW (A7 M) := max F<¢)§R’ > (D goNa,poEy 5) ®IR)((I)AR)) (1.33)
icl

s.t. ZEA%Z quantum channel with SZHZ ep fori el (1.34)
el

D;—@ quantum channel Vi € I, (1.35)

where ® 4p denotes the maximally entangled state on AR, cp is the abbreviation for completely

positive, and we have M = dy = dz = dpg.

We then follow the same approach used for the quantum channel fidelity, to rewrite
FLOCC(l)(./\/ , M) as a bilinear optimization program, and to generate the appropriate con-
strained de Finetti representation theorem (using Theorem 1.1.1) with associated asymptotically

converging hierarchy (using Theorem 1.1.2). Moreover, we show several bounds for the two

types of quantum channels: the fixed noise model N5 _, 5, and the coding schemes given by the various encoder
and decoder pairs (£4_,7,Pg_,5)- Bach coding scheme then determines a bipartite quantum channel with

input system A ® B and output system A ® B.
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fidelity measures, e.g.,
2
FEOCCO) (N M) > F(N, M) > (FLOCC(U(N : M)) . (1.36)

We analyse our results by performing numerical experiments for the low levels of our
hierarchies. The experiments have been done in MATLAB using the QETLAB library [55],
CVX [40], MOSEK [1], and SDPT3 [78]. In addition, all the code has been made avilable at
the following link: https://github.com/FrancescoBorderi/Quantum-SDPs. While our analysis
is limited to the low levels of the SDP hierarchies, due to the size of the optimization programs,
we have been able to use to following rank loop condition to certify that a certain level of the

hierarchy already gives the optimal value.

Lemma 1.2.3. [68],[51] Let papyp = Ug? (pAB{L) forallm € &, and fixred 0 < k < n such that

Tyn
pABELH > 0. Then, pap, is separable if

rank(papp) < max {rank (pAB{C) , rank (F’B}JH)} . (1.37)

For most cases the hierarchies of SDPs collapse to the first or second level, without the
need to explore the higher levels, which are computationally much more expensive.

The presented fidelity measures, i.e., F(N, M) and FFOCCM (N M), correspond to the
average error case. On the other hand, we can study the worst case error by considering the

following channel distance based on the diamond norm.

Definition 1.2.4. Let N5 ., 5 be a quantum channel and M € N, with M = dy = dg. The

channel distance is defined as

1
AW, M) :=min o [Dy goNg 5o€s 3 - Ty 5, (1.38)

s.t. Dg_ 5, €47 quantum channels. (1.39)
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With some additional manipulation, we show how to write the above optimization program
in terms of the Choi states of the quantum channels, in a form suitable for our framework.

Finally, we generate an asymptotically converging hierarchy of semidefinite programs, generating

lower bounds for AN, M).

1.3 De Finetti Reductions with Linear Constraints

In several applications, instead of representation results as given by de Finetti theorems,
one may need to establish a generalized order relation between the symmetric mathematical
object and the probabilistic ensemble of elementary i.i.d. constituents. De Finetti reductions,
previously known as "post-selection techniques" [22] or methods based on "universal states" [46],
provide the desired inequality. For example, a quantum de Finetti reduction provides an upper
bound to a symmetric quantum state in the form of an integral superposition of product states,
weighted by a factor which is polynomial in terms of the number of copies and exponential in

terms of the local dimensionality

pun = (n+ 1)%_1 /U%" doy, (1.40)

where pyn is a permutation invariant quantum state, and doy is an appropriate measure over
the set of quantum states on H. The generality of expression (1.40) is also its main drawback.
On one hand, unlike finite de Finetti representation theorems, (1.40) provides an exact bound,
without any parameter controlling the approximation error. On the other hand, all permutation
invariant quantum states are upper bounded by the same mixture of tensor product states.
Any other information encoded in the permutation invariant state pyn is lost. There exist
in the literature several quantum de Finetti reductions that are able to handle specific linear

constraints on the permutation invariant state (e.g., [33| and [64]). Those theorems restrict the
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support of the measure in order to capture the specific linear constrain on the initial state or
introduce a fidelity weight in the integral superposition.

For cryptographic applications and error correction, it is often useful to study the case
where a new system, carrying external side information, adds a non-symmetric contribution to
the symmetric object.

We prove the following new de Finetti reduction in presence of quantum side information.

Proposition 1.3.1. Let Q, A and B be Hilbert spaces and pganpn a state symmetric with
respect to Q). Moreover, let pagn = 0%” for a fized state 4. Then, there exist a probability

measure doap on the set of extensions oap of o4 and a state wg such that
2
PQA"B™ = (n+1)3d UJQ@/O'%% dO'AB, (141)
with d := dAdQB.

Our result can be seen as an extension of the constrained de Finetti reduction presented in
[33, Corollary 3.2]. Moreover, we show that our de Finetti reduction can handle, in addition to
®

the marginal constraint psn = 0" on the symmetric part, a general linear constraint on the

quantum side information. This is the content of the following corollary.

Corollary 1.3.2. Under the same assumptions of Proposition 1.3.1 with additionally 'g_r a

linear map and Xp an operator on a Hilbert space F', the state wg can be chosen such that

FQ_,F<pQAn) =Xr® U%n = FQ%F(WQ) = Xp. (1.42)

Note that the marginal constraint pn = afm is a special type of linear constraint, but we

do not know if it is possible to extend this to general linear constraints.
So far, no clear or systematic connection between de Finetti reductions and de Finetti

representation theorems has been proven in the literature. In this thesis we show how to derive
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de Finetti representation theorems from de Finetti reductions. First, we prove the following

lemma, showing that de Finetti reductions can be interpreted as relative entropy inequalities.

Lemma 1.3.3. Let Q and G be Hilbert spaces, and poar a state symmetric with respect to Q.

Consider a de Finetti reduction of the form

pocr = poly(n)-og ® /agndag, (1.43)

where dog is an appropriate measure over the set of quantum states on G. Then, there exists a
discrete random variable X, px a probability mass function, and of, quantum states for every

x € image(X), such that

D(paan||oq @ Y px(@) [08]°" ) < logpoly(n). (1.44)

This finding will be the basis to go from de Finetti reductions to representation theorems.
Second, we use a technique based on chain rules for relative entropy to obtain a new proof for
the classical de Finetti theorem. Third, we can leverage the obtained result to the quantum

setting, giving the following theorem.

Theorem 1.3.4. Let k € {1,...,n— 1}, X be a discrete random variable, G1 --- Gy, Hilbert

spaces with G = ... = Gy, pgr and o quantum states for every x € image(X), px a

probability mass function, and assume pan to be symmetric. Whenever we have

D(pGn

pr(x) [aé]‘@") < log poly(n), (1.45)

then there exists a probability mass function qx such that

Hpck - qu(x)[08]®’“H <0 k- dg logn | . (1.46)

1 n
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Notice that the bound on the approximation error grows exponentially fast with k, which
we know that is not optimal, as previously discussed. Whether it is possible to improve that
k-dependence and maintain the proposed proof technique is still an open question. On the
other hand, we already know that the dependence in n is suboptimal.

Finally, we use de Finetti reductions to derive a new de Finetti theorem for quantum
channels. In comparison to our results from [13| and [14], which are given for bipartite
quantum channels, we show that is possible to drop one constraint and still achieve asymptotic
convergence. While we are not able to prove the theoretical minimality of our constraints, the
simplification of the existing conditions is definitely a fundamental step in the right direction.
Moreover, our new results provide insights on the "power" of the constraints and their effect

on the convergence speed.

1.4 Thesis Organization

This thesis is organized as follows.

In Chapter 2 we present some background material.

e In Chapter 3 we develop new de Finetti theorems with linear constraints and we use

them to generate SDP hierarchies for constrained bilinear optimization programs.

e In Chapter 4 we focus on certain optimization problems arising in the context of approxi-
mate quantum error correction and we adapt the results of Chapter 3 to the desired setting.

Proof of concept numerics are implemented to test the low levels of our hierarchies.

e In Chapter 5 we prove a new constrained de Finetti reduction with side information, and

we establish a connection between de Finetti reductions and de Finetti representation
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1.4. Thesis Organization

theorems. We use our methods to simplify the SDP hierarchy for quantum channels.

e In Chapter 6 we present some open problems.



Chapter 2

Preliminaries

This chapter provides a concise presentation of the mathematical framework needed to un-
derstand the subsequent chapters. While it is mainly based on Watrous’s book [87], many
other textbooks provide a good introduction to the subject. For an excellent introduction to
quantum information theory I recommend the textbook by Nielsen and Chuang [69] and the
one by Wilde [89]. For a review of the methods of convex optimization used in this thesis,
semidefinite programming in particular, the reader is referred to the textbook by Boyd and

Vandenberghe [15].

2.1 Finite Dimensional Hilbert Spaces

In quantum mechanics, Hilbert spaces represent one of the most fundamental mathematical

objects. A complex Hilbert space H is a vector space with two defining characteristics

1. H is equipped with an inner product (-,-) : H x H — C,

2. H is complete for the distance induced by the inner product (-, -).

37
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In quantum mechanics, unlike several other areas of mathematics, the inner product (,-) is
conventionally chosen to be antilinear in the first argument, not in the second one!. Notice that
-,y (H x H) C C, clearly showing the presence of the complex field (C, +,-) in the algebraic
structure of the vector space. In this thesis we will implicitly assume all the Hilbert spaces to
be complex vector spaces?.

Using the standard Dirac’s bra-ket notation, we will call kets the elements of H, i.e., the
vectors. A generic element of H, i.e., a ket, will be then denoted by |¢)) € H. Given the Hilbert
space H, we will denote with H* its topological dual space?, i.e., the space of all continuous
linear functionals from H to C.

Given a ket |1)) € H, we can use the inner product (-, -) to create a correspondence between

the Hilbert space H and its topological dual H*
H o) = flyy € H, (2.1)
where

figy : = C, @) = (|9), |9))- (2.2)

Riesz representation theorem [27, Theorem 3.7.7| guarantees that (2.2) is a linear bijection,

thus realizing an isomorphism between H and its topological dual H*. To denote that two

LA function f: V — W between two complex vector spaces V, W is said to be antilinear if it is additive, i.e.,
flx+y) = f(x)+ f(y) for every xz,y € V, and conjugate homogeneous, i.e., f(azx) = af(z) for every x € V and

aeC.

2Tt is interesting to notice the need for complex numbers in quantum mechanics. For example, in [74] the
authors propose a new Bell-type experiment in which the input-output correlations cannot be approximated by

a version of quantum mechanics based on real Hilbert spaces.

3The topological dual space H* is a subset of the algebraic dual space, where the linear functionals are not
required to be continuous. In this thesis we will work with finite dimensional Hilbert spaces, and the two

notions coincide.
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spaces are isomorphic we will use the symbol 2. Then, Riesz representation theorem proves

that
H = H*. (2.3)

It is immediate to show that two finite-dimensional vector spaces are isomorphic if and only
if they have the same dimension. Thus, given a ket |¢)) € H, we can find a unique element
fipy € H* as defined above, and vice versa. Following Dirac’s bra-ket notation, we will call
the linear functional fi,) € H* the bra associated with the ket [1)), and it will be denoted by

(3| € H*. Finally, the simplifying notation (1|¢) is used in place of (¥|(|¢)) = (|¢), |9)), i.e.,

(¥1) = ([¥), |¢))- (2.4)

Here and henceforth we use the symbol := as equal by definition.

The completeness property required in 2. guarantees the convergence of all the Cauchy
sequences? of points in A within the space H itself. As we see, the concept of completeness,
which involves Cauchy sequences, requires a metric structure. Given a Hilbert space H, a norm

is automatically induced by the inner product as

[0l H = R ) = V(@) (2.5)

Thus, every Hilbert space is also a Banach space, i.e., a complete normed vector space.
The metric structure is then automatically induced by the norm by defining a metric/distance

on H as

d(): HxH=R:([9),]0) = [l[¥) —[o)]]. (2.6)

4A Cauchy sequence is a sequence of points such that, for every ¢ > 0, the distance between any two elements

of the sequence becomes smaller than e after a certain index (which can depend on ).
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Completeness is an important requirement for the infinite dimensional case. However
in this thesis we are interested in finite dimensional Hilbert spaces. Given a d-dimensional
Hilbert space H, where d > 0 is a natural number, the natural isomorphism between H and
C¢ automatically guarantees the completeness of the mathematical structure. More precisely,

fixed an orthonormal basis (|7));=1,... 4 for H, we can decompose any ket 1)) € H as

d

W) =Y (ilv)la). (2.7)

=1

The linear correspondence H — C¢ : [1) — ((1|¢), (2]4), ..., (d|))) realizes the desired
isomorphism between H and C%. Moreover, with respect to the canonical basis® of C?, the

vector ((1|¥), (2|),. .., (d]1))) € C? can be written as the column

(1)
2ly)

(dy)
which is often identified with the starting ket |¢)). Similarly, a bra can be identified, once a
basis is fixed, as a row of d complex numbers.

In this thesis we will implicitly assume all the Hilbert spaces to be finite-dimensional, so we
will not have to deal with completeness-related concerns. Given a (finite-dimensional) Hilbert
space H, we will denote with dy its dimension.

Given two Hilbert spaces H and H', their tensor product H®H' is the Hilbert space generated

by the linear span® of the basis (|i) ® |")); is an orthonormal basis

i=1,...,dy, » Where (|2))i=1,.. dy,
j=1

yeeesdayr

®The canonical basis of C? is formed by the following collection of d elements with d entries:

((1,0,...,0),(0,1,...,0),...,(0,0,...,1)).

5Given a basis, its linear span is defined as the vector space formed by all the linear combinations obtained

with the elements of the basis.
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for H, and (]j’))jzlw‘,dw is an orthonormal basis for H’. The scalars used for the linear span
belong to the field associated with the two algebraic structures, i.e., (C,+,-) in this case. It
is immediate to see from the definition that the dimension of H ® H’ is the product of the

individual dimensions, i.e.,

d’;.[®7_[/ =dy - dq.[/. (29)

In order to simplify the notation, we can also omit the ® symbol, i.e., we define HH' := HRH'.

In case of n copies of the same Hilbert space H we will use the notation H7} or also H™ to
indicate H1 ® - - - ® Hp, where H; indicates the ith copy of H, for i = 1,...,n. Moreover, the
notation H} can be generalized to select a contiguous collection of Hilbert spaces appearing
in the tensor product H; ® - - - ® Hy. More precisely, for every i, = 1,...,n with ¢ < j, the
expression ’Hi stands for H; ® --- ® H;. It is useful to extend the new notation also when
1 > j. In particular, when ¢ = j, we set ’H; := H;. On the other had, if i > j we consider the

expression Hf to be the empty set @.

2.1.1 Operators

Given two Hilbert spaces H and H', we can consider the vector space L (H,H') formed by
all the linear maps, i.e., operators, between H and H'. When H = H’, we will write £ (H) in
place of L (H,H) to denote all the operators from H onto itself, i.e., the endomorphisms of H.
As we saw with kets, once we have fixed a basis for H, we can identify any [¢) € H with the
corresponding column (2.8). In a similar way, once we have fixed a basis for % and H', we
can identify any operator T € £ (H,H') with a dy x dg; complex matrix”. More precisely, if

(12))i=1,....a,, is an orthonormal basis for #, and (|j'))j=1,....d,, is an orthonormal basis for #’,

"For this reason, one often finds the term matrix used in place of operator. However, notice that this

correspondence requires choosing the bases for the two Hilbert spaces.
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(4'|T|i) will be the coefficient in the jth row and ith column of the matrix representation for the
operator T', for every i = 1,...,dy and j = 1,...,dys. This is because T can be decomposed
with respect to the two orthonormal bases as

T= > {ITN (2.10)

i=1,....dx
J=1,...,dgy

Notice that, if T € L (H,H'), we set T'(|¢)) := T'|¢) for every |¢) € H. Given an operator

T € L(H,H') we can consider its adjoint operator TT € L (H',H), defined by the relation

{[0), T1)) = (T7|9), [v)), (2.11)

which must hold for every [¢)) € H and |¢) € H'. Using Riesz representation theorem [27,
Theorem 3.7.7], it is immediate to show that T is unique. If T € £ (H) and T = T, then T
is said to be self-adjoint or Hermitian. The set of Hermitian operators acting on the Hilbert
space ‘H will be denoted by Herm(H). Given a T € L (H,H'), it is important to realize that
the notion of adjoint operator 77 is basis-free. On the other hand, the transpose TT is a

basis-dependent concept. If (|i));=1,. 4, 1S an orthonormal basis for H, and (|;’)) =1,....dyy 1S

7d’H Jj=
an orthonormal basis for H’, the transpose TT of T € £ (H,H') with respect to those two bases
is defined by the relation

7= S TG (2.12)

i=1,....dw
J=1,....dgy

Given an operator T € L (H,H'), we define its kernel as the vector space formed by all the
elements of H that are mapped by T to the null vector of #'. In order to simplify the notation,
we will use the symbol 0 to denote the null vector of a given vector space. The specific context

will clearly identify whether 0 is a scalar or a null vector, and, in the second case, the specific
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vector space it belongs to. With this convention we can write
ker(T') := {|v) € H : T|¢) = 0}. (2.13)

The support of T is the vector space obtained by considering all the vectors in H that are

orthogonal to every element in ker(7), i.e.,
supp(T) = {|¢) € H :V|¢) € ker(T') we have (¢|¢) = 0}. (2.14)

Finally, the image of T is the vector space formed by all the images of the elements of H,

obtained via the application of T, i.e.,
image(T) := {T|¢) : |¢) € H}. (2.15)

Notice that the notion of image for operators is exactly the same as the one used for ordinary
functions. Thus, using the same name does not lead to any inconsistency. The rank of T' is

defined to be the dimension of image(T), i.e.,

rank(7T) := dimage(T)- (2.16)

Notice that, while ker(T") and supp(T') are subspaces of H, image(T) is a subspace of H'.

Moreover, it is immediate to see that [76]

dw = dyer(1) + dsupp(T)> (2.17)
and,

dy = dyer(1) + dimage(T): (2.18)

implying rank(T") = dimage(T) = dsupp(T)'
An operator P € L (H) acting as the identity on all the elements belonging to its image, is
said to be a projector on image(P). More precisely, given a subspace A of H, a projector into

A is the unique operator P € L (H) satisfying
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1. image(P) = A,
2. Ply) = |¢) for all |¢) € A.

We can use the notation P4 to make explicit the space we project onto. It is also immediate
to see that image(P) = supp(P). For this reason, it is common to say that P projects onto
supp(P). If A =H, we obtain the identity operator on #, i.e., the unique operator mapping
every element to itself. We will use the symbol 1 to denote the identity operator on H, i.e.,
1 := P™. The specific context will clearly identify whether 1 is a scalar or the identity operator,
and, in the second case, the specific Hibert space it acts on.

The identity operator allows us to introduce the concept of the inverse operator. Given an
operator T € L (H), we say that is invertible if there exists an operator T~! € £ (#) such that
T—'T = 1. If T is invertible, 77! is said to be its inverse. Moreover, when 7! exists, it must
be unique and must also satisfy 77! = 1. Recalling that the identity operator is a special
kind of projector, the relation 77T = 1 can be written as 71T = PH* = psupp(l) This
expression is useful to generalize the notion of invertibility for generic operators in £ (H,H’).
In particular, given a T' € L (H,H'), we define its generalized inverse T~1 € L (H', H) as the

unique operator satisfying
T = psuep(), (2.19)

Relation (2.19) shows that the generalized inversion is an inversion on the support of the
operator. When the operator is invertible, its generalized inverse clearly coincides with the
ordinary inverse. Thus, using the same symbol for both the inverse and the generalized inverse
does not lead to any inconsistency.

The concept of inverse operator allows us to define the important class of unitary operators.

An operator U € L (H) is said to be unitary if
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1. U is invertible,

2. the inverse of U coincides with its adjoint operator, i.e., U1 = UT.

The set of unitary operators acting on the Hilbert space H will be denoted by U (H). It is
immediate to see that U preserves the induced norm® (2.5), i.e., ||[U])|| = |||v)| for every
|) € H. Using the polarization identity |[Theorem 4.3.7][27| this fact implies that unitary
operators preserve the inner product as well.

Given an operator T € L (H), one can compute its trace Tr(7"), which is a complex basis-
independent number capturing several important properties of the endomorphism. Formally,
the trace of an operator in L (H) can be defined as the linear functional Tr : £ (H) — C

satisfying

1. Tr(AB) = Tr(BA) for every A€ L(H,H') and B € L(H', H),

Property 1. states that the trace is invariant under cyclic permutations. Thus, it is also
invariant under unitary conjugation. If 7' € £ (H) and U € U (H), we can use the unitary
operator U to unitary conjugate T via the expression UTTU. Thus, being invariant under
conjugation means that for any T € £ (H) and U € U (H) the relation Tr(UTTU) = Tr(T)
holds.

We have already pointed out that £ (H,H') is a vector space. The trace allows us to define

an inner product on such space. In particular, the Hilbert-Schmidt inner product is defined as

() L(H,H) x L (H,H) = C,(A,B) = Tr(A'B). (2.20)

8This means that unitary operators are isometries. On the other hand, there exist isometries that are not

unitary. From the definition, we immediately see that only surjective isometries correspond to unitary operators.
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Thus, £ (H,H') is a Hilbert space as well. As described by relation (2.5), we can use the inner

product to induce a norm. The Hilbert-Schmidt norm is then defined as

| l:L(H,H) = R:T — \/Te(T1T). (2.21)

Recall that we also use the symbols (-,-) and || - || to indicate the inner product and norm on

H. The specific context will clearly identify the meaning of those symbols.

1

1
2\ 12 1
Notice that (2.21) can be written as ||T|| = [Tr([\/TTT} )] = {Tr(\T|2>} ? where we
set |T| := VTTT. The generalization of this expression leads to the notion of Schatten norms.

For any p € [1,00) we define the Schatten p-norm as
- llp: £ (HH) = R T — [Te(|T]P)] . (2.22)

Notice that the Hilbert-Schmidt norm (2.21) coincides with the Schatten 2-norm. The Schatten

1-norm
- 11: L (’H,’H') —R:T — Tr(|T)) (2.23)

is also known as the trace norm. One can extend the notion of Schatten norm for p = co by
considering the limit p — oo in (2.22). By doing so, one obtains the definition of the operator

norm, also known as infinity norm, i.e.,

| lloo: £L(H,H) = R:T — sup |[T[Y)]. (2.24)
H‘Iﬁﬁq—{l

Schatten norms are sub-multiplicative, meaning that, for every A, B € L (H)
IABll, < [[AllpllBllp, (2.25)

for any p € [1, o00].
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Recall that T € Herm(#) means T = TT. Positive semidefinite operators constitute a
special proper subset of the set of Hermitian operators. The set P(H) C Herm(H) of positive

semidefinite operators acting on the Hilbert space H, is formally defined as
P(H) :={T € Herm(H) : (¢|T|¢) > 0 for all [¢p) € H}. (2.26)

If T € P(H), we will write T > 0. It is immediate to show that > defines a partial order on
Herm(H). In particular, if A, B € Herm(H), we say that A = B (or B = A) if and only if

A — B > 0. This partial order relation is known as the Loewner (partial) order.

2.1.2 Super-Operators

Given an Hilbert space H, we said that its elements are called kets. Moreover, we have denoted
by L (H) the set of operators from H onto itself. If H' is another Hilbert space, we can
consider linear maps mapping operators in £ (H) to operators in £ (H'). Those linear maps are
called super-operators® and form the vector space £ (£ (H), L (H')). Given a super-operator
EcL(L(H),L(H)) we can consider its adjoint super-operator ET € L (L (H'), L (H)), defined

by the relation
(B,E(A)) = (£7(B), A), (2.27)

which must hold for every A € £(H) and B € L (H'). Using Riesz representation theorem [27,
Theorem 3.7.7], it is immediate to show that £ is unique. We will use the symbol o to
concatenate super-operators. With Z € L(L(H), L (H)) we will denote the identity super-

operator on L (H).

9Notice that super-operators are operators as well. The super- prefix is used to stress the fact that they act

on operators.
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A super-operator mapping Hermitian operators to Hermitian operators is said to be
Hermitian-preserving. In other words, a super-operator £ € L (L (H),L (H')) is said to be

Hermitian-preserving if
E(T) € Herm(H'), (2.28)

for every Hermitian operator 7' € Herm(#).

Super-operators mapping positive semidefinite operators to positive semidefinite operators
are said to be positive. However, the concept of positive operator is not robust enough for our
purposes. Thus, we need to introduce the notion of completely positive super-operators. A
super-operator € € L (L (H), L (H')) is said to be completely positive (cp) if, for any Hilbert
space H", the super-operator EQZ € L(L(H) @ L(H"),L(H') @ L (H")) is positive. In other

words, if
(ERI)T) =0, (2.29)

for every T € P(H®H"). A super-operator £ € L (L (H), L (H')) is said to be trace preserving

(tp) if
Tr(E(T)) = Tr(T), (2.30)

for every T € L (H). As we will see, trace preserving completely positive (tpcp) maps play a
fundamental role in quantum information theory. A super-operator £ € L (L (H),L (H')) is

said to be unital if it maps the identity operator onto the identity operator, i.e., if
E(l)=1. (2.31)
It is immediate to show the following relation

Eisatpep map = &' is a cp and unital map. (2.32)
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The partial trace is a very common and useful super-operator. Given two Hilbert spaces H

and H', the partial trace Tryy(+) is the tpcp map defined via

Tray : L(H) @ L(H) = LH): T — (Z@ Tr)(T). (2.33)

2.2 Quantum Mechanics in Finite Dimensional Hilbert Spaces

In this section we want to outline how the mathematical concepts that we introduced in the
previous section can be specialized and applied to describe the essential ingredients of quantum

mechanics. As a remainder, our focus is on the finite-dimensional setting of the theory.

2.2.1 Quantum Systems and Quantum States

In the previous section, we stated that, in quantum mechanics, Hilbert spaces represent one of
the most fundamental mathematical objects. The reason is that we model an isolated quantum
system (or in short system) with a Hilbert space H. The quantum state of the system (or
in short state) is described by a unit-trace positive semidefinite operator p acting on H, also

known as density operator. We will denote with S(H) the set of quantum states on H, i.e.,
S(H) :={peP(H): Tr(p) = 1}. (2.34)

If rank(p) = 1 the state p is pure, otherwise p is said to be mized. The state i is known as
the mazimally mized state on H.

If p € S(H) is pure, it can be written as p = [1) (1|, where |¢)) is an appropriate ket in H
with unit norm, i.e., |[[¢)|| = 1. In such a case, |¢) is also called a quantum state. Notice that

the expression |¢)(1)| defines a rank-one projector on the ket |¢).
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2.2.2 Quantum Modelling of Classical Systems

Given a sample space €2 and a discrete random variable Z : Q — Z, where Z is a finite set
with cardinality |Z| := dz, we can encode a probability mass function pz : Z — [0,1] in a
density operator p. The classical system will be modelled by a dz-dimensional Hilbert space Z,

also known as classical register, and pz will be encoded in the quantum state py € S(Z)

dz
pz =Y pz(D)i)il, (2.35)
=1

where (]2))i=1,.. 4, is an orthonormal basis for the Hilbert space Z. Notice that we used the
same letter, i.e., Z, to denote both the random variable and the Hilbert space. This is a
common identification, since the two mathematical objects represent the same concept, but it

two different mathematical frameworks.

2.2.3 Bipartite Systems

Many interesting properties of quantum mechanics, which make it substantially different
from classical physics, arise when considering multiple systems, i.e., multipartite systems. For
example, bipartite systems of the form H ® H'. The quantum state of a multipartite system
is said to be a multipartite state. For example, the quantum state of a bipartite system is
said to be a bipartite state. The set Sep(H : H') of separable states is an important subset of
S(H®H'). A quantum state p € S(H ® H’) is said to be separable, i.e., p € Sep(H : H'), if it
can be written as

p=> po @, (2.36)

i€l

where [ is a finite set, and for every i € I, we have o' € S(H), 7 € S(H'), p; > 0, and

> icrPi = 1. In other words, a separable state is a quantum state that is in the convex hull
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of tensor product states, i.e., states of the form o ® 7¢. Notice that the collection {p;}ics
appearing in (2.36), that we will call a probability distribution, is naturally associated with a
probability mass function, i.e., p: I — [0,1],7 — p;.

Given a quantum state p € S(H®H’), we use the partial trace to obtain a local description
of the quantum states of the two individual systems. Those states are called marginal states. In
particular, py := Tryy(p) will denote the marginal of p on H, and pyr := Try(p) the marginal
of pon H'.

Given a quantum state p € S(H) and a bipartite pure state [¢)) € H @ H’, |) is said to be
purification of p, if p = Tryy(|¢)(¢]). Using the Schmidt decomposition [69, Theorem 2.7], it
is always possible to find such a |¢) if H = H'. We can generalize this concept by looking for a
quantum state p € S(H ® H'), not necessarily pure, such that p = Try/(p). In such a case, we
will say that p is an extension of p.

We can also consider classical-quantum states, which are bipartite separable states that
have a classical and a quantum part. More precisely, a state p € S(Z ® H) is said to be a

classical-quantum state if it can be written in the form
dz
p=> pili)i| @7, (2.37)
i=1

for a probability distribution {p;}i=1,.4,, an orthonormal basis (|i));=1,. a, for the Hilbert
space Z, and 70 € S(H) for i = 1,...,dz. We refer to Z as the classical part, cf., (2.35), of
the bipartite classical-quantum system S(Z ® H). We will use the same denomination, i.e.,
classical-quantum state, to denote also states of the form Zgjl Tt @ |i)(i].

Not every state in S(H ® H') is a separable state. In other words, Sep(H : H') is a proper

subset of S(H @ H'), i.e.,

Sep(H:H')CS(HoH). (2.38)
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States that are not separable are called entangled states. For example, the mazimally entangled
state ® := |®)(P| on the bipartite system H ® H’', where H = H’, is a pure and not separable

state, and is defined via

1 &
|®) = N ; 1) @ |i), (2.39)

where (|i))i=1,..4,, is an orthonormal basis for the two Hilbert spaces. Notice that, since
H = H', we can think of H’ as a copy of the Hilbert space H. In fact, one often uses the same

letter to label the two systems.

2.2.4 Quantum Channels and the Choi-Jamioltkowski Isomorphism

The evolution of a quantum system is described by the application of a tpcp map on its
associated quantum state. Trace preserving completely positive maps are also called quantum
channels (or in short channels). The partial trace (2.33) is an example of a quantum channel.
Given a quantum channel N : S(4) — S(B), with A and B two Hilbert spaces'®, we can think
of N as a state JV € S(B® Z’), where 4 is a copy of A (thus, in what follows we use the
same label A for both). This correspondence, known as channel-state duality, is realized by the
Choi-Jamiotkowski isomorphism. The state JV is known as the Choi state, and is given by the

expression!!

JN = (NRI) (@), (2.40)

where Z is the identity channel on A, and ® is the maximally entangled state on A ® A.

Here we are using the label A instead of A, which may seem more logical, to obtain formulas consistent

with the notation we will use in the subsequent chapters of this thesis.
"'Notice that this definition makes sense also for general linear maps. However, in most cases, we use the

Choi-Jamioltkowski isomorphism when N is a quantum channel, i.e., a tpcp map. In such a case, the operator

JN satisfies additional properties that will be discussed in this subsection.
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Remark 2.2.1. In order to simplify the notation, we will use subscripts to keep track of the
systems the operators, e.g., quantum states, and super-operators, e.g., quantum channels, act
on. For example, if ) € A® B, and p € S(A® B), we will write [{)55, and pzg. If
N : S8(A) — 8(B) is a quantum channel, we will write N5 _, p. If A= B, we set N := N5 3.

For example, with this new notation, the defining expression (2.40) becomes

Tix = Wasp © Ix) (P17) (2:41)
dx
— (N p ® ) dlA S 10l ® bl (2.42)
ij=1
1 &
= 2 N (1)4) © )Gl (2.43)
Q=1

where (|i))i=1,... 4, s an orthonormal basis for the two Hilbert spaces. Notice that, for brevity,
we can also suppress identity channels and make their presence implicit by the subscripts. For
example, we can write N_, p (P57) in place of (N5, 5 ® T7) (P57)-

The usage of subscripts is also convenient because it allows us to make implicit any isometry
needed to rearrange the underlying Hilbert spaces, e.g., in expressions such as W5Q g7, where
W= is an operator acting on A® B, and Q 57 s an operator acting on B® A. In other words,
the expression Wz 5Q gz must be interpreted as W4 pF5 , pQ g7, where Fz,_ 5 : BRA - A®B

is the swap operator (or flip operator) exchanging A with B, i.e.,
(Fanp) (W ® W) =W @ Wh, (2.44)

for every operator W and Wpg acting on A and B, respectively. Given the simplicity of
(2.44), one often uses the same symbol, i.c., Fz _ g, for both F3 _  and its inverse operator

_1 . e e
FZ(—)B'B®A—>A®B'

If N4, p is a quantum channel, it is simple to verify that complete positivity (2.29) and

trace preservation (2.30) are translated in the following properties for its Choi state
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2. Trp (J]jg\%) =

Ql —
N

Tracing out A instead of B leads to Tr¢ (Jg%) = NZ%%(IZ). Thus, if N5 _, 5 is unital (2.31),

we find

1
Trg (J35) = é. (2.45)

The inverse of the Choi-Jamiotkowski isomorphism maps Choi states back to quantum

channels. Given a quantum state W7 with W = Cll—; its Choi channel J\/’ZW_> p is given by the

following tpcp map
NG g pa— dg Ty [Wpz (15 ® p3)] (2.46)

where the transpose is taken with respect to the orthonormal basis of the maximally entangled
state in (2.41).

Since the Choi state Jgfz acts on B ® A, we can multiply Jgfz by, for example, tensor
product operators of the form op ® 75. The following lemma is useful to simplify expressions

of the form Tr [Jg% (JB ® Tz)} )

Lemma 2.2.2. Let N5 5 be a quantum channel, ng its Choi state, op € L(B), and

7 €L (Z), then

e[ (on @ 7)) = e lonN L ()], (2.47

where the transpose is taken with respect to the orthonormal basis of the maximally entangled

state in (2.41).
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Proof.
di
1 A
Te[ T3z (op ® 7)) = Tr . > Nap (100l) @ 1017 | (o8 @ ) (2.48)
ij=1
| [
= ng > GilraliNg g (1) (ils) o8 (2.49)
_i,j:l
L s
:ETI" Nasp | D Glmald)lidls | os (2.50)
i i,j=1
L s
= 50 Mo | 2 il Gl | o (2.51)
i ij=1
1
= T[N 5 (73) o] (2.52)
A
= diﬁ[UBNLB ()] (2.53)
A

2.2.5 Quantum Measurements

Quantum measurements (or in short measurements) are a special case of quantum channels

that can be written in the form

dz

Mz L(A) = L(Z), pa = > (M}, pa)li)(ilz (2.54)
=1

with an orthonormal basis (|i));=1,. 4, for the Hilbert space Z, and satisfy the following two

properties
1. MY =0 for every i € {1,...,dz},
2. 342 MY, =14.

Notice that the expression Z?:ZMMA, pa)li)(ilz = Zfﬁl Tr [MYpa] |i)(i| 7 represents the state

of a classical system (2.35), described by the probability distribution {(MY, pa)}i=1...4,- The
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type of quantum measurements that we have described is called a positive operator-valued
measure (POVM), and the operators {M%};—1 4, are known as POVM elements.

There exists a special kind of measurement that uniquely determine the state of a quantum
system by the measurement statistics they generate. Those measurements are known as

information-complete measurements.

Definition 2.2.3. A quantum measurement M a_,z : L(A) — L(Z) is said to be information-

ally complete if its POVM elements {M"}i=1.. 4, span the entire Hilbert space L(A).

In other words, Ma_,z : L(A) — L(Z) is an information-complete measurement if it is
an injective map. In such a case, two different quantum states lead to two different classical
outcomes probabilities. Informationally complete quantum measurements will play a special

role in the proof techniques used in this thesis.

2.2.6 Symmetric States

We use the notation &,, to denote the set of permutations acting on n elements (or letters).
Its cardinality is |&,,| = n!. With the permutation composition operation o : &,, — &,,, the
algebraic structure (&, o) forms a group, the symmetric group of n elements. Clearly the
group (&, 0) is not abelian, i.e., the composition permutation is a non-commutative operation.

Given a permutation 7 € &,, and a Hilbert space H", we indicate with UJ;,, € L(H") the
permutation operator associated with 7. In other words, Uj. is the operator re-arranging
the tensor products of kets according to the rule specified by 7. A multipartite ket, e.g., a

multipartite pure state, |[¢))yn» € H™ is said to be permutation invariant, or symmetric, if

Ufpn [0)3n = [00)3n, (2.55)
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for every m € &,,. Given a multipartite Hilbert space H", we indicate with
Sym"™(H) := {[Y)un € H" : Ugpn|th)pn = [¢0)3n, V7 € G4}, (2.56)

the symmetric subspace of H™. For a review of many quantum information applications of the
symmetric subspace see [43].
Given a multipartite Hilbert space H" and a permutation operator Uj,., where m € &,,, we

can build the associated permutation channel as
™ ™ w1
Z/{Hn(') = UHn(')UHn 5 (2.57)

where 71 indicates the inverse of the permutation 7 with respect to the composition operation
o. It is now easy to extend the concept of permutation invariance also to operators on H",
e.g., mixed states. In fact, a multipartite operator py» € L(H") is said to be permutationally

mvariant, or symmetric, if

Upn (prn) = prn, (2.58)

for every m € &,,.
Finally, given the Hilbert spaces @ and #H, a multipartite operator pgoy» € L(Q ® H"), is
said to be symmetric with respect to Q, if it is invariant under permutation of the H-systems

keeping @) fixed, i.e., if

(Zo @ Ufpn) (pour) = pour, (2.59)

for every m € &,,. A bipartite state pgoy € S(Q ® H) is said to be n-extendible if there exists a
multipartite extension pgy» € S(Q ® H"), i.e., Tryp (poun) = powu, that is symmetric with

respect to ). The notion of n-extendibility will be extremely important for this thesis.
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2.2.7 Diamond Norm

In order to quantify the distance between quantum states, we can use the metric induced by
one of the Schatten p-norms (2.22), (2.24). Those norms can be used also to define norms for
quantum channels. For example, given a quantum channel N5 _, 5, the trace norm || - ||; is used

to define the diamond norm

Nz gllo = sup  [[(Ng_ 5 @ Ix)(Xg7)lh, (2.60)
XeAgA
XM<1

which is a popular norm used to quantify the distance between quantum channels via its
induced metric.
The following lemma relates the trace norm of Choi states to the diamond norm of their

isomorphically associated quantum channels.

Lemma 2.2.4. [82, Lemma 7] Let N3_, 5 be a quantum channel, J]/;% its Chot state, then

175511 < N gllo < dll T

. (2.61)

Notice that, even if we have stated the above lemma for quantum channels, it holds even if

N5 _, p is a generic Hermitian-preserving super-operator (2.28).

2.3 Semidefinite Programming

In this section we introduce the essential concepts from semidefinite programming that are
needed for this thesis.

There are three ingredients that are used to specify a semidefinite program (SDP)
1. A Hermitian-preserving super-operator ®4_,p : L(A) — L(B),

2. a "primal" Hermitian operator P4 € Herm(A),
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3. a "dual" Hermitian operator Dp € Herm(B).

Thus, a semidefinite program can be seen as the triple (P45, P4, Dp). Notice that, in
practice, semidefinite programs are stated in a simplified, less formal way. However, it is always
possible to reformulate any semidefinite program in the form (® 4,5, P4, D) to fit within the
above framework.

One then defines the primal problem as

a:=sup (Pa,Xa) (2.62)
s.t. CI)A—>B(XA) = Dp, (2.63)
X4 = 0. (2.64)

Every primal problem has an associated dual problem, defined as

6 := inf <l)B7 YB> (265)
st. @b (Yg) > Pa, (2.66)
Yp € Herm(B). (2.67)

Operators satisfying the constraints of an optimization program are said to be feasible operators.
Thus, an operator X4 € L(A) satisfying ® 4, 5(X4) = Dp, and X4 = 0, is said to be primal

feasible. The set formed by all the primal feasible operators is the primal feasible set A

A= {XAE,C(A) :(I)A%B(XA):DB7XAEO}- (2.68)

As we see, the primal optimum value « is the supremum of the primal objective function
X4 — (Pa, X4) over the primal feasible set A. If there are no primal feasible operators, i.e., if

A is the empty set @, then we define a := —c0.



60 2.3. Semidefinite Programming

Similarly, an operator Yp € L(B) satisfying @L%A(YB) = Py, and Yp € Herm(B), is said

to be dual feasible. The set formed by all the dual feasible operators is the dual feasible set B
B:={Yp € L(B):d,_ (V)= Pa,Yp € Herm(B)}. (2.69)

The dual optimum value (3 is the infimum of the dual objective function Yp — (Dp,Yp) over
the dual feasible set B. If there are no dual feasible operators, i.e., if B is the empty set @,
then we define 8 := +oc.

Duality relations establish connections between the primal optimum value o and the dual
optimum value 8. The first duality relation, which always hold, states that the primal optimum

value is always less than or equal to the dual optimum value.
Theorem 2.3.1. (Weak Duality) If (P4 p, Pa, D) is a SDP, then
a<p. (2.70)

The equality condition v = 3, which does not necessarily always hold, is known as strong
duality. Strong duality is not a rare condition in common practical applications of semidefinite
programming. Nevertheless, the following theorem provides a set of sufficient conditions for

strong duality

Theorem 2.3.2. (Slater’s theorem) If (P4, p, Pa,Dg) is a SDP, then a = (3 if one of the

following conditions holds

1. « is finite and there exists a dual feasible operator Y € B such that @J]rg_)A(YB) = Py,

2. B is finite and there exists a primal feasible operator X o € A such that X4 = 0.

If 1. holds, then there exists a primal feasible operator X4 € A achieving the primal optimum
value, i.e., (Pa,X4) = a. If 2. holds, then there exists a dual feasible operator Yp € B

achieving the dual optimum value, i.e., (Dp,Yn) = B.



Chapter 3

De Finett:i Theorems with Linear

Constraints

The primary motivation of de Finetti theorems is to represent, or approximate, mathematical
objects symmetric under permutations of their components into a probabilistic ensemble of
elementary independent and identically distributed (i.i.d.) constituents. In the classical case,
the mathematical objects are probability mass functions, and the related theorems are known
as finite classical de Finetti theorems [28]. In the quantum case, the mathematical objects are
quantum states, and the related theorems are known as finite quantum de Finetti theorems [59].
Infinite version of those theorems are known in the literature, and they give exact alternative
representations for the desired mathematical object [19]. The infinite de Finetti representation
theorems can be found as limits of the finite versions, which are typically stated in the form
of upper bounds to the approximation error. In this work, we consider finite versions of de
Finetti theorems, while their generalization to the infinite case is easily obtained by taking the

asymptotic limit.

61
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3.1 Classical De Finetti theorem

De Finetti [26] first proved the classical version of the theorem in the asymptotic limit n — oco.
The classical de Finetti theorem is based on the notion of exchangeability for random variables

(or their joint probability distribution).

Definition 3.1.1. A collection of n discrete random variables X1, ..., X, is said to be sym-
metric, or finitely exchangeable, if the joint probability mass function px, . x, s invariant

under permutation of its arguments, i.e., if

DXy, X (Tr(1)s -+ 3 Tr(n)) = DXy, X (T15- -5 Tn), (3.1)
for every w € &, and x; € image(X) fori=1,...,n, where image(X) := image(X).

If the collection X7,..., X, can be seen as arising from an infinite sequence of symmetric
random variable, it is said to be exchangeable (or infinitely exzchangeable). More formally, the

joint probability mass function px, .. x, must satisfy the following two conditions
1. it must be invariant under permutation of its arguments,

2. it can be seen as the marginal probability mass function of a symmetric probability mass

function of arbitrarily many random variables.

Condition 2. means that there exists a probability mass function px, .. x, X, 1,..Xnsm that is
symmetric, and such that
PXi,...Xn (.21?1, cee 7$n) = Z PX1, Xn Xnt 1, Xntm (.1‘1, sy Tpy T4l - - >$n+m)> (32)
Tn41,---3Tn+m
for every m > 0, and the sum is over [image(X)]*™.

Li.d. implies exchangeability, as shown by the following lemma.
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Lemma 3.1.2. If X1,...,X,, is a collection of n i.i.d. discrete random wvariables, then

X1,..., X, is finitely exchangeable.

Proof.
DXt X (Tr(1)s -+ T(n)) = HPXZ- (@r(i)) (3-3)
=1
=[x () (3.4)
i=1

:pX1,...,Xn(x17"’7$n)' (35)

Example 3.1.3. (Coin Tossing) Consider a classical experiment where a coin, not necessarily
fair, is tossed repeatedly n times, and let X; denote the outcome of the ith toss, fori=1,...,n.

Clearly, the collection X1, ..., Xy s i.1.d., so it is finitely exchangeable.

We have proved that exchangeability is implied by i.i.d. The opposite is not true. In other
words, exchangeability is weaker than the concept of i.i.d. This can be shown with the following

example which makes use of an urn model.

Example 3.1.4. (Polya’s Urn Scheme |35, Chapter V|) Consider an urn containing Ng > 0
black and N > 0 red balls. A balls is drawn at random and is replaced. Moreover, ny > 0
extra balls of the color drawn are also added to the urn. Another ball is drawn, and the process
continues as described above for a total of n drafts. Let X; denote the outcome of the ith draft.
The probability of drawing np black and then ng red balls, where ng +ng = n, is given by

Np(Np+n4)---(Np+ (np—1) -ny)Nr(Ng+n4)---(Ng+ (nr — 1) - ny)
(Ng+ Nr)(Ng+ Nrp+n4)---(Ng+ Nr+(n—1)-ny) '

(3.6)

The key point is that the above is also the probability of any sequence with npg black and ng red

balls, independently on the order in which they have been drawn. In fact, the probability of any
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such sequence will clearly have the same denominator as in (3.6), and the factors appearing
in the numerators will also be the same ones as in (3.6), but arranged in a different order.

Thus, the collection X1,...,X, is finitely exchangeable. On the other hand, it is self-evident

that X1, ..., X, are not i.i.d. random variables, since the composition of the urn changes after
every draft. For example, Pr(Xy = red|X; = black) = NB+%I;+H+ # NB]\-[FRNR = Pr(Xy = red),

since ny > 0.

We have seen that exchangeability and i.i.d. are different concepts. In particular, i.i.d.
random variables are exchangeable but exchangeable random variables do not need to be
i.i.d. However, the classical de Finetti theorem [26] shows that, in some sense, a notion of

independence is applicable also in the context of exchangeability.

Theorem 3.1.5. A collection X1,..., X, of discrete random variables is exchangeable if and
only if there exists a parameter 8 and a measure P on it, such that the joint probability mass

function px, .. x,(x1,...,2,) can be written as
DXy X (T1, 0 ) :/Hp(xiw)P(dH). (3.7)
=1

The classical de Finetti theorem states that a collection X7q,...,X,, of discrete random
variables is exchangeable if and only its joint probability mass function can be represented
as an "integral mixture" of likelihoods that are conditionally independent with respect to
a parameter 6, having P as prior. In other words, if the observations of an experiment are
exchangeable, they can be seen as a random sample from some model, which is determined by

a parameter #, and there must exist a prior probability distribution over 6.
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3.2 Quantum De Finetti theorem

Similar to the previous section, a quantum state py» € S(H"™) is said to be exchangeable (or

infinitely exchangeable) if it satisfies the following two conditions pyn € S(H")

1. it must be symmetric (2.58),

2. it can be seen as the marginal density operator of a symmetric quantum state acting on

arbitrarily many quantum systems.

Condition 2. means that py» admits a symmetric extension pynim € S(H"™™) for every
m > 0. The following is the quantum version [19, Section III] of the classical de Finetti theorem

(3.1.5).

Theorem 3.2.1. A quantum state pyn € S(H™) is exchangeable if and only if it can be written

in the form
P = / P(p)p®"dp, (3.8)
S(H)
where P is a unique probability density function over S(H) and dp is a measure on that set.

In analogy with its classical version, we see that the quantum de Finetti theorem states
that a quantum state py» € S(H™) is exchangeable if and only if it can be represented as an

"integral mixture" of separable i.i.d. states.

3.3 Approximating Separable States with PPT States

While the quantum de Finetti Theorem 3.2.1 is an interesting result, it is not in the form we

need for practical applications. In particular, approximating the set Sep(A : B) of separable
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states is a ubiquitous but computationally hard problem in quantum information theory (see,
e.g., [6, Section 9.1] for hardness results with respect to approximations). The set Sep(A : B)
has been formally defined in Subsection 2.2.3. In particular, we said that pap € Sep(A : B)
if it can be written as pap = Zielpiafél ® 74, for a probability distribution {p;}ics, and
quantum states {0 }ies, and {75};es. Since elements in Sep(A : B) describe unentangled
states, being able to characterize Sep(A : B) is extremely important in order to understand
entanglement, which is one of the main features of quantum mechanics. Operationally speaking,
the characterization of Sep(A : B) is connected to the formulation of separability tests. 1.e.,
criteria that can be used to check whether a given quantum state pap is separable or not. One

of the most famous separability tests is based on the following result by Horodecki [50].

Theorem 3.3.1. (Horodecki criterion) A quantum state pap € S(A ® B) is separable, i.e.,

paB € Sep(A : B), if and only if

(Pasc ®Ip)(pan) = 0, (3.9)

for every Hilbert space C, and positive super-operator ® 4,c : L(A) — L(C).

Notice that in the above theorem we can choose C = A. The Horodecki criterion can
be directly used to test separability. If we find a positive super-operator ® 4, 4 such that
(Pasa ®Ip)(pap) # 0, then we conclude that p4p is not separable. Vice versa, it is clear
that we cannot try all the possible positive super-operators to prove that pap is separable.
Thus, in practice, one restricts the analysis to well-known positive super-operators that are

easy to compute. The most common positive super-operator used to test separability in the
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context of the Horodecki criterion is the transpose map®
Transpose : X — X T, (3.10)

where the transpose is taken with respect to an orthonormal basis of the Hilbert space. Moreover,

we define

()T4 := (Transpose , ® Zg)(-), (3.11)

()18 := (T4 ® Transposeg)(-), (3.12)

which are known as partial transposes. Given the importance of partial transposition to test

separability, the following definition is natural.

Definition 3.3.2. A quantum state pap € S(A ® B) is said to be a positive partial transpose

(PPT) state if
P}é = 0. (3.13)
We will denote with PPT(A : B) the set of PPT states?, i.e.,
PPT(A: B) := {pap € S(A® B) : py% = 0}. (3.14)
The following corollary is a direct consequence of the Horodecki criterion.
Corollary 3.3.3. Let pap € S(A® B) be a quantum state, then

paB € Sep(A: B) = pap € PPT(A: B). (3.15)

!The transpose map is clearly a positive super-operator since the spectrum of an operator is invariant under

transposition. In other words, X and X" share the same eigenvalues.

2Notice that this definition is independent on the choice of the system to be transposed. In fact, ng and

T
(ng) = pi5 share the same spectrum. Thus, p44 = 0 if and only if p35 = 0.
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The above corollary shows that Sep(A : B) is a subset of PPT(A : B), i.e., every separable
state is also PPT. On the other hand, one can prove that there exist PPT states that are

not separable, i.e., entangled PPT states®. In other words, Sep(A : B) is a proper subset of

PPT(A : B)
Sep(A: B) C PPT(A: B). (3.16)

While entangled PPT states in general do exist, their entanglement is highly constrained
by the PPT condition. In some sense, they are the "most classical" of the entangled states,
and they exhibit similar properties to separable states. For example, PPT states cannot be
"too entangled", in the sense that their overlap, as measured by the inner product, with the

maximally entangled state is small (|87, Proposition 6.42|).

3.4 Approximating Separable States with n-extendible States

Another approach for the approximation of Sep(A : B) is via the notion of n-extendibility
introduced in Subsection 2.2.6. Recall that a quantum state pap € S(A ® B) is said to be
n-extendible if there exists a multipartite extension papp € S (A ® B"™) that is symmetric with
respect to A. In other words, if there exists a quantum state papy € S(A ® B™) satisfying the

following two conditions
L. Trpyp(paByp) = pas,
2. (Za®@URn) (pasp) = papy for every m € &y,

with By := B. In such a case, we will say that pap is an element of the set of n-extendible

31t is interesting to note that entangled PPT states do not exist for 2 x 2, 2 x 3, and 3 x 2 bipartite systems.

For those low-dimensional quantum systems, every PPT state is also separable [50, Theorem 3].
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states, which will be denoted by n-Ext(A : B). It is easy to show that, given a natural number

n > 0, every separable state is n-extendible. This is formalized by the following proposition.

Proposition 3.4.1. Let pap € S(A® B) be a quantum state, then
paB € Sep(A: B) = pap € n-Ext(A: B), (3.17)
for every natural n > 0.

Proof. 1If psp is separable, it can be written as pap = > ,; Pz’Ui; ® TfB, for a probability
distribution {p;}ics, and quantum states {o% }icr, and {75}ics. Let’s consider the following
state
pABp = Zpiail ® (15)%". (3.18)
el

The state papp is clearly an extension of pap, in fact

Trpp(pasy) = Y pio'y @ Trap [(1h)"] (3.19)
icl

= Zpiai‘ ®Th ® Tr(rh) ! (3.20)
icl

=> pich®Th (3.21)
icl

= PAB, (322)

where we used the normalization condition Tr(7%) = 1 for every i € I. Moreover, it is clear
that papp is symmetric with respect to A. This is because (ng)@m is formed by n copies of the
same quantum state. Permuting those density operators will not change the overall quantum

state papyp. O

The above proposition shows that, given a n > 0, Sep(A4 : B) is a subset of n-Ext(A : B),

i.e., every separable state is also n-extendible. On the other hand, one can prove that there
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exist n-extendible states that are not separable [24], [52]. In other words, for any given n > 0,

Sep(A : B) is a proper subset of n-Ext(A : B)
Sep(A : B) C n-Ext(A: B). (3.23)

Comparing (3.23) with (3.16), we see that both PPT(A : B) and n-Ext(A : B) provide outer
approximations to the set Sep(A : B) of separable states. The great advantage in considering
n-extendibility is that, while there exist n-extendible states that are not separable, a quantum
state that is n-extendible for any n must be separable. This statement is formalized by the

following theorem.

Theorem 3.4.2. [30, Theorem 1] Let pap € S(A® B) be a quantum state, then
paB € Sep(A : B) <= pap € n-Ext(A: B), (3.24)
for every natural n > 0.

Notice that the direction = in Theorem 3.4.2 is proven by Proposition 3.4.1.

On the other hand, the proof of the opposite direction <= is not trivial. Theorem 3.4.2
naturally leads to a test for separability based on n-extendibility. However, we find ourselves
in the same practical problem we encountered with the Horodecki criterion in the previous
section. To prove that a quantum state psp is separable, we have to show its n-extendibility
for every n > 0. In practice, this is impossible. On the other hand, we can stop at a certain n
and quantify the "error" we commit by working with n-extendible states in place of separable
states. Crucially, n-extendibility has a semidefinite representation and this then immediately
gives efficient semidefinite approximations of the set Sep(A : B) for any fixed n. Finite finite
quantum de Finetti theorems quantify, with upper bounds, the distance of n-extendible states to

separable states [21], with convergence in the limit n — oo [75]. More precisely, [21, Theorem
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I1.7] gives that for states p4p n-extendible to pABy, there exists a probability distribution

{pi}ier and states py, pls on A and B, respectively, such that

pap — Y pips @ pig|| < (3.25)

el

As pointed out, in the limit n — oo the distance between separable states and n-extendible
states shrinks to zero. In other words, separable states and oco-extendible states are the same

thing. Moreover, inequality (3.25) can be generalized to [21, 57|

2kd%
n

Paps — Y PPy @ (i) | < : (3.26)

i€l

1

for k € {1,--- ,n — 1}, which represents the state-of-the-art bound. Inequalities of the form
(3.26) will be referred as generalized finite quantum de Finetti theorems. Those results state
that if a multipartite state on ABT is symmetric with respect to A, then the reduced state
on the first k systems ABf is close to a separable mixture of independent and identical states
for k sufficiently smaller than n. Notice that the dependence of the approximation error on
k is linear, meaning that it does not slows down the convergence "too much". Again, in
the asymptotic limit n — oo and holding k£ constant, the inequality reduces to an equality
and the approximation becomes exact. The special case k = 1 exactly recovers (3.25), which
characterizes Sep(A : B). For our setting, however, we are interested more generally in
characterizing bipartite states that are separable, but subject to linear constraints on the

pf4, piB as well.
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3.5 Constrained Bilinear Optimization

As pointed out at the end of the previous section, we are interested in the study of constrained

bilinear optimization problems of the form

Q =max Tr[H(D® E)] (3.27)
sit. DePp=T4,p(S(A)NAff,) (3.28)
E € Pp =1lpr (S(B) N Affg), (3.29)

where H € L(Hp ® Hg) is a fixed operator, and Pp and Pg are positive semidefinite

representable sets such that
o Iy .p:L(Ha)— L(Hp) and lIp_p : L(Hp) — L(HE) are super-operators,
o Aff4 and Affp are affine subspaces of £L(H4) and L(Hp), respectively.

As we see, the optimization is performed over the set of operators of the form D ® E, where D
and E must represent proper quantum states, subject to additional linear constraints implicitely
specified by the affine subspaces Aff 4 and Affg. In this thesis we will use the generic expression
"linear constraints" to include affine constraints as well.

Our main motivation to study problems of the form (3.27) comes from quantum information
theory, or more specifically from the problem of approximate quantum error correction. We
present this application and its motivation in detail in Chapter 4, but continue here with the
general mathematical setting.

To discuss our approach, we first rewrite (3.27) by defining G zp := (HE_M ® HEﬁB)(H).

This leads to the form

Q=max Tr[Gap(pa® ps)] (3.30)
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st. pa=0, pp=0 (3.31)
Tr(pa) = Tr(pp) = 1 (3.32)
Aase, (pa) = Xe,, T'bsegp (pB) = Yo, (3.33)

where Gap € L(Ha @ Hp) is a fixed operator, Ag_,c, : L(Ha) = L(Hc,), and T'p_ycp -
L(Hp) — L(Hcy) are super-operators, and X¢o, € L(Hc,) and Yo, € L(Hcoy) are the
operators defining Aff4 and Affg as the affine subspaces associated with the kernels of the
linear maps Ag—,c, and I'p_,cp, respectively.

Now, by the linearity of the objective function we can equivalently optimise over the convex

hull of feasible points

Q =max Tr|Gap <ZP¢PE4 ® P%) (3.34)
el
st. pi>0 Viel, Y pi=1 (3.35)
el
Pu=0, py=0 Viel (3.36)
Tr(ph) = Tr (pp) =1 Viel (3.37)
Aasse, (P4) = Xew, Toey (PB) =Yo, Viel (3.38)

In fact, making the constraints of the optimization programs implicit, on one hand it is

clear that
Q= maxTr[GAB(pA ® pB)] <maxTr |Gap <Zpipf4 ® p%) (3.39)
el
On the other hand, for every quantum state pf4 and pfg, we have
Tr |Gap (Z piply ® PE) = prﬁ (Gag (P4 ® p)] (3.40)
icl icl
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<Y pimax Tr[Gag(ply ® )] (3.41)
iel

-3 piQ (3.42)
iel

=Q. (3.43)

Taking the maximum, we find

max Tr |Gap (szpg ® p"B> <Q. (3.44)
el
Thus, combining (3.39) with (3.44),
Q <maxTr |Gap (Z piply ® p’j_r;) <Q (3.45)
el
— maxTr |Gap (meix ®pi3) =Q, (3.46)
el

which proves the equivalence of the two optimization programs (3.30) and (3.34).
As we see, the transformed program (3.34) requires an optimization over a subset of
Sep(A : B), specified by the additional linear constraints imposed via the linear maps Aa_,c,,

I'p_cy, and the operators X¢, and Y¢,.

3.6 Quantum De Finetti theorems with Linear Constraints

In the following, we start by providing a brief sketch of the main ideas behind the proof. For
simplicity we restrict to k = 1, which is the relevant case for (3.34). Namely, we start with a
multipartite state papp symmetric with respect to A, and the goal is to identify constraints

such that pap := pap, is approximated by a mixture of states of the form

Pla @ g, (3.47)
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with Auso, (P4) = X, (3.48)

and I'p_cy, (p) = Yoy (3.49)

3.6.1 Proof methods

The standard approach for proving de Finetti theorems [21] proceeds by measuring the B
systems with the uniform measurement on the symmetric subspace given by {\1/1) (@b@”} " In

this case, the candidate mixture of product states is given by the expression

/ p () i) par @ [9) (65 (3.50)

where the integral is computed with respect to the Haar measure [87, Definition 7.18|, p(¢)d|v)
denotes the probability of outcome t, and pyj, is the quantum the state on A conditioned on
obtaining outcome 1 in the measurement. However, by doing so, the states |¢) (1|5 appearing
in the integral (3.50), will not satisfy, in general, the desired condition I'p_.cy, (|¢)(¥|B) =
Yc,. More precisely, the measurement {|¢> (¢|§"} " does not guarantee that the set {|¢)p :
I'pocoy ([0)(W|B) # Yo} has zero measure.

In principle, one could try to modify the measurement so that we only get |¢) (¢| g satisfying
the desired constraint. However, this approach seems difficult. Instead, we use an alternative
approach, where the candidate mixture of product states is chosen differently |58, 17]. Namely,
starting from papy, a well-chosen measurement on the systems By with measurement outcomes

z3 leads to the candidate mixture of product states

E {PA|zg ® PB|zg} - (3.51)

23
The advantage of this candidate state is that, by enforcing the right constraints on the global

state papp, we can ensure that Aa ¢, (pA|zg) = Xc, and I'p_,cp (PB|zg) = Y¢,. Note that, in
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order for this strategy to work properly, we need the chosen measurement to be informationally
complete (2.2.3), i.e., allowing to estimate the expectation value of arbitrary operators [2], and
have a small distortion in the sense that the loss in distinguishability resulting from applying

the measurement is small. This concept will be made more precise in the next subsection.

3.6.2 Information-theoretic tools

The starting point for our proof technique is the use of the chain rule of the conditional mutual
information, first used in this context in [16] and further exploited in [17]. More precisely, we

will use the quantum relative entropy defined as

Tr(plog p) — Tr(plogo) if supp(p) C supp(o)
D(pllo) = ; (3.52)

00 otherwise

where p and o are quantum states and the logarithm is taken with respect to the basis two,
i.e., log(:) := logy(-). The following theorem [87, Theorem 5.38| relates the quantum relative

entropy D(p||o) to the trace distance |[p — o||1.

Theorem 3.6.1. (Quantum Pinsker’s inequality) Let p,o € S(H), then
1 2
D(pllo) = 57— llp—ally - (3.53)

~— 2In2

Via the quantum relative entropy we define the quantum mutual information as
I(A:B), = D(pasllps ® pp). (3.54)
If B:= Z is a classical system, we have the following upper bound (see, e.g., [69, Chapter 11])

I(A:Z) <logda. (3.55)
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In other words, one can bound the quantum mutual information of a classical-quantum state
(2.37) with the quantum entropy of the maximally mixed state on the quantum system.

The following lemma, which can be found in [17], says that if some classical systems Z7'
are symmetric with respect to A, then conditioning on Z7"* for some value of m breaks the
correlations between A and Z,, 1. Before stating the lemma, we introduce notation that will
be used throughout the section. For a state paz with a classical Z-system, we write

Trz|paz (14 @) (2])

Te[paz (La®2)(2]) |

PA|lz = (356)

to denote the quantum state on A if we have obtained z as the outcome of the Z-system
measurement. Notice that the term Tr [,0 az (1a® \z)(z\)} at the denominator is just a nor-

malization factor whose purpose is to guarantee that p,|, is a properly defined quantum state

Traz[paz (1a®12)(=) | Te[paz (L@ 206D ]

Te[paz (1a @ 2)(2]) T [paz (14 ®12)(2)) |

Tr(paj.) = Tra(pag:) = =1. (3.57)

We simply write E {-} for the expectation over the choices of 2z]* and the probability
21

distribution will be clear from the context.

Lemma 3.6.2. [17] Let pazp be a classical-quantum state with the Z7'-systems classical and

UG (pazy) = pazp for all m € &,. Then, there exists 0 < m < n such that

logda
;Jn {D(pAZerﬂz{" ||:0A\z{” ® pZm+1|z{")} < n (358)
1
as well as
(2In2)log da
zEn {HPAzmH|z;n — PAlp @ sz+1|z;n\|%} < Y (3.59)
1

where In(-) denotes the natural logarithm.
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Proof. Since the Z7-systems are classical, we can use the upper bound (3.55) to obtain the
following inequality that is independent on the dimension of the classical systems and on their

number n, i.e.,
I(A:Z7), <logda. (3.60)

The quantum mutual information satisfies the following chain rule (see, e.g., [69, Chapter 11])

n—1

I(A:Z7), =Y I(A: Zpa| 21", (3.61)
m=0

where we used the quantum conditional mutual information
I(A: Zypia| 2, = 1(A: ZY), — I(A: ZT),. (3.62)

Since E"m_:lo I(A: Zy1|Z7"), < logda, and the sum is formed by n terms, it is not possible
to have I(A : Zy1|Z7"), > % for each m = 0,...,n — 1. As a result, there exists an

m € {0,...,n — 1} such that I(A : Zy,41|Z]"), < 894 which implies

n )

logda
E {I(A : ZmH)pAzmHIz{n} < : (3.63)

m
27 n

where we used

I(A: Zyir|Z7), = B, {I(A Tt

1

(3.64)

PAZyy 1|27 } ’

which holds since the conditioning systems are classical [33].
The second statement then follows directly from Pinsker’s inequality, i.e., Theorem (3.6.1).

O]

The next lemma can be seen as a generalization of the law of total probability for classical-

quantum states.
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Lemma 3.6.3. Let pay be a classical-quantum state with the Z-system classical. Then,
E{pas:} =pa (3.65)
Proof. Since payz is a classical-quantum state, it can be written in the form (Subsection 2.2.3)
paz =Y pmi®|2)(2, (3.66)
z

for a probability distribution {p.}., quantum states {773 }. and an orthonormal basis (|z)). for

the Hilbert space Z. On one hand, it is clear that

On the other, we have

Bl B Trz|paz (14 ®|2)(2]) .
T oz tas D] |
. {Trz P73 ® ) 569)
| Tl e ]
B {P;fo} (3.70)
~E{r}) (371)

= szTj. (3.72)
Thus, E {pa:} = pa. O

To prove the de Finetti theorem, we will crucially make use of so-called informationally
complete measurements (2.2.3) for which the loss in distinguishability, or distortion, can be

bounded.
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Lemma 3.6.4. [17, Lemma 14| There exists a informationally complete product measurement
My @ Mp with finitely many outcomes such that, for any Hermitian and traceless operator

Eap on A® B, we have

[((Ma @ Mp)(aB) (3.73)

1
> .
Hl = 18\/MH§ABH1

The above lemma follows from the methods in [63], and we stated the version for bipartite

quantum systems. More generally, we define the minimal distortion for the bipartite system

A® B as
f(A,B):= inf  max €451 7 (3.74)
MasMs ¢l —eyp [[(Ma @ Mp)(€an)lh
514:0763:0

where the infimum is over all product measurements on A ® B. In this notation, Lemma 3.6.4

shows that

F(A, B) < 18V/dadp. (3.75)

Note that in the definition of f(A, B) we restricted the maximization to operators satisfying
&4 =0 and &£ = 0 because this is sufficient for our purposes. Notice that operators satisfying
&4 =0and £ = 0, are also traceless. Thus, it is possible to use them in Lemma 3.6.4.

A drawback of Lemma, 3.6.4 is that the distortion depends on the dimension d4. This is not
surprising since, in that lemma, we are measuring both systems. On the other hand, in certain
applications we may want to measure B only. In such a case, it is interesting to investigate
whether one can remove the A-system dimensional dependence. First, we define the minimal

distortion with side information for a system B as

N €481
TED =30 0 e Mp) @l (378

£4=0,6p=0
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where the infimum is over all measurements on B and the supremum is over all finite-dimensional

systems A. In [14, Lemma D.1] we give an elementary proof that
f(B|-) < db(dp +1) (3.77)

using state two-designs and properties of weighted non-commutative Lj-spaces. With methods

from operator space theory [18, Equation 66| gave the stronger bound
7Bl < /183, (3.78)

Finally, the following optimal bound has been shown in [53, Lemma 8|
f(B|) < 2dp, (3.79)

which is linear in the dimension of the system being measured.

3.6.3 Main Theorem

Combining the tools from the previous subsection we find the following de Finetti theorem

with linear constraints.

Theorem 3.6.5. Let papp be a quantum state, Aasc,, ooy super-operators, and Xc,, Yo,

operators such that

Ugr(paBy) = papp Y € &, symmetric with respect to A (3.80)
Aasco,(pasp) = Xe, @ pay linear constraint on A (3.81)
U, cop(pBp) = ppr—1 ® You linear constraint on B. (3.82)

Then, we have that

< min{f(A,B),f(B\.)}\/MIOg(df‘l)

(3.83)
L n

pAB — Y pioy ® wh
icl
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with {p;}icr a probability distribution, pap := Trpp (pAB?), and quantum states Uil?wiB such

that for every i € I:
Aascn (ffix) =Xc, and I'p,cop (wiB) =Ycy. (3.84)
As stated in Section 3.6.2, we can, e.g., take f(A, B) < 18v/dadp or f(B]-) < 2dp.

Proof. Let M p be a measurement of the B system and call the outcome system Z. Consider
the state pazp obtained by measuring all the B systems with the same quantum measurement
Mp. This is a classical-quantum state symmetric with respect to A and so we can apply

Lemma 3.6.2. We find that there exists an m € {0,...,n — 1} such that

Z]%n {HPAZm+1|z1 — paApm ® sz+1|z;ﬂH%} < (21112)nlogdA- (3.85)
For any collection 2" of measurement outcomes, we can rewrite the quantum states paz,, | am
and pz, ., |.m appearing in (3.85) as
PAZpir |z = (Za @ MB)(PAB,, 41 |21); (3.86)
and
PZirz = MB(PB, 41 |2)- (3.87)

Now, we choose the measurement M pg achieving f(B]-) in (3.76), and we get that ||£ag||F <

F(BI)?[(Za ®@ MB)(Eag)|7, where we set £ap = pag,, 1|z — PAjzm @ PB,,.,|-m- Notice that

&4, being a difference of two Hermitian operators, is Hermitian, and it satisfies
§a = PAlzm — PAR = 0, (388)
and

§B = PBpys|ep ~ PBpialzp = 0. (3.89)
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As a result, we have

(2In2)logda
z::I’E" {HIOABm+1|z{” = PAlp ® me+1|Z{n”%} < f(B‘)2#

1

(3.90)

Now, using the convexity of the square function, we get

Z];,]L {||pABm+1|z{” — PA|lz ® PBm+1\z{”||1} < \/Z],% {||pABm+1|z{" — PAlz ® me+1|z{”H%} (3.91)
1 1

(3.92)

| log d
< f(B)) (211221(”5"‘_

To arrive to the above inequality, we measured only the B systems. On the other hand, we can

also choose measurements M 4 and Mp achieving f(A, B) in (3.74). In this case,

1PAB iz — PAI ® PBy |2 17 (3.93)
< f(A, B (MA@ MB)(pap, 1)z — Par @ pp e |17 (3.94)
< f(A, B)*[[(Ma ©Ip)[(Za ® MB)(pAB,.1 |2 — Pazp @ PBo )]l (3.95)
< f(AB?I(Za ® MB)(paBpislep = PAlp @ PByan ) IT (3.96)
= F(A BY1pAzpsr o — Pl @ Pz 1T, (3.97)

where we used the fact that the trace norm cannot increase when applying the quantum channel

My [87, Theorem 3.39]. As a result, we get

2In2)logda
z];” {HPABm+1\z;“ —PAp ® me+1\zi”H%} < f(A, B)Q(ZL' (3.98)
1
Again, using the convexity of the square function, we get
(2In2)logd
B {1pa,ssp — Py © Pt | < FA BB (3.99)

1

Thus, we can bound the expectation E {HPABmHIZI“ — PAm ® PB |2 ”1} in two different
2"

ways. The best upper bound will be given by the minimum of the two ones,; i.e.,

. 2In2)logda
B {loam, g — paep @ pitepln } < min {74, B 7(B1) 1y | BR800 (3500)
21

n
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Then, using the convexity of the norm (which is true for every norm due to the triangle

inequality), and Lemma 3.6.3

]:j’n {pABm+1|zI”} = PABnt1> (3]‘01)
21
we obtain
. 2In2)logda
PABpmi1 — ];:L {pA|z{n ® me_H\z'lﬂ} ' < min {f(A7B>7 f<B|)} (31 (3102)
27 1

The state E { PAzm @ PB4 z{”} corresponds to our candidate mixture of product states.
27"
It now remains to show that all the states in the mixture satisfy the linear constraints.
Indeed we have for any collection of measurement outcomes 27", writing M3 for the POVM

elements of the measurement Mpg,

Tegp [(1a © Mj @+ @ Mg )Aasc,(pany)]

Mt (paen) = . . (3.103)
Tr[(lA OMI®- ®MB’")PAB{“]
Trpm [(1A Mg @ © Mg")(Xc, ® pBT)}
) (3.104)
Tr[(lA BMI® - ® M]ZB’")/JAB{"}
e (3.105)
and similarly
r ( ) Trpy [(Mgl ® - @My ®105)UB, 41505 (f’Bi’”‘“)} (3.106)
B +1]2] Tr [(Mgl R ® Mgm (=) 1Bm+1)pB§n+1]
- Trpp [(MEI © - @MpE" ©15,,.1)(PB1By © YCB)} (3.107)
Tr [(Mgl R ® Mgl & 1Bm+1)pB§n+1]
v (3.108)



Chapter 3. De Finetti Theorems with Linear Constraints 85

Theorem 3.6.5 allows us to approximate the set of separable states subject to linear
constraints on A and B, with a proper subset of n-Ext(A : B), formed by n-extendible states
satisfying two appropriate linear conditions. Comparing the bound of Theorem 3.6.5 with (3.25),
we see that the room for improvement is fairly limited, i.e., we may be able to improve the
square root and the logarithm dependence, but the overall bound cannot be made exponentially
better.

In the next subsection we will generalize such result, by keeping a generic number 0 < k < n

of B-systems, instead of k = 1 (which will correspond to the setting of Theorem 3.6.5).

3.6.4 Generalizing the Main Theorem to k£ Copies

As pointed out at the end of the previous subsection, Theorem 3.6.5 can be extended to a

generalized finite quantum de Finetti theorem for any reduced state p 4 BE with 0 < k < n.

Theorem 3.6.6. For the same setting as in Theorem 3.6.5, we have for 0 < k < n that

)®k; logda + (k—1)logdp

i — (3.109)

< k:f(B\-)\/ (21n2)

1

PaBk — Zpiaix ® (W
icl

Proof. Note that the for the state p , zk-15,, the systems B;! are symmetric with respect to
1 k

ABf_l. As such, we can apply the same argument used in the proof of Lemma 3.6.2 and

Theorem 3.6.5, but this time starting from the following chain rule

n—1
I(AB?*;ZQL;: N IABE: Zd |2, (3.110)
m=k—1

Notice that the sum in the chain rule contains (n — 1) — (k — 1) + 1 =n — k 4+ 1 terms. Thus,

we find that there exists a m € {k,...,n} such that

k—
(21n2)log (dAdB 1)
n—Fk+1

E {Ipastiep, — Papt—ap, @ p5ep, i} < F(BI) (3.111)

k+1
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Summing the n — k 4 1 inequalities labelled by m, we find

n

1
n—k+1 > B {HPAB'fIZZLH ~Paptp, © ka|z,T+1||1} (3.112)

z
m=Fk k+1

(21n2) log (dAd’fB—l)

< f(B| 3.113
<HBIN (3.113)
By symmetry of the B-systems, for any i € {1,...,k}, we also have
1 n
k1l > E {HPABW;”H ~PaBi T, © PBi|z,gn+1H1} (3.114)
m=k k1
(21n2) log(dadis™)
< f(B] . 3.115
< f( |>\/ S (3.115)
Now, using the triangle inequality k — 1 times, we get for any m € {k,...,n} and collection
2zt 1 of measurement outcomes, that
HPAB{“\ZQEA = Pap, ®PBia, @ @B ||| (3.116)
k
= Z H'OABWZL ©PBiyln, © @ PB, (3.117)
i=1
- pABiil‘leh»l ® pBi|ZZ7‘+1 ® pB,-+1|z£”_‘_1 ® ... ® ka‘Zg:_l 1 (3118)
= Z HPABW,TH ~PaBi e, @ PBI ||, HpBiH\Z}TH @@ ppp || (3.119)
i=1
k
=3 HPABﬂz,TH T PaB g, OB ||, (3.120)
i=1
where we used
HPBM\ZQLH B D Py, ||, = Tr(pp o, @ @ ppylp,,) = 1. (3.121)

Taking the average over m and z;", ;| and using (3.115), we get

1 n
PR DO

Zm
m=k Ft1

1} (3.122)

{HPAB{C\ZITH — PAlz X PBi|27 R ® PByl2p
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k i—
<y f(B|'>\/ (22 ol (3123)
=1

: n—k+1
k (2In2)log(dadyy !
<3 1Bl — k(HB ) (3.124)
=1
21n2) log(dad};
= kf(B|") 21n2) Og( i ) (3.125)

n—k+1
As a result, there is an m such that the previous inequality holds. Then, as before, we use the

convexity of the norm to put the expectation inside, getting the existence of an m such that

PaBy — ZL]’:il {pAIZ,’J;l QP ® - @ PB,C|Z,'J;1} (3.126)
1
logds + (k—1)logdp
<kf(B])4/(2In2 . 12
< k(] 2oy ) (3.127
To conclude, it suffices to observe that, by symmetry, pp,| o = PBi, for alli e {1,...,k}

and the linear constraints are satisfied by the same calculation as in the proof of Theorem 3.6.5.

O]

The same comment we made on the dimensional dependence for the bound provided by
Theorem 3.6.5 does apply to its generalization as given by Theorem 3.6.6. I.e., the error term

cannot be exponentially improved.

3.7 Application to Constrained Bilinear Optimization

As stated in Section 3.5, the constrained bilinear optimization problem we are interested in,

takes the form

Q =max Tr[Gap(pa ® pp)] (3.128)

st. pa=0, pp=0 (3.129)
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Tr(pa) = Tr(pp) =1 (3.130)

Aasscy (pa) = Xeus Teseps (pB) = You- (3.131)

Lower bounds on the optimal value can, e.g., be derived by means of seesaw methods [60]
(see [88] for an example in quantum information theory). Those methods often converge in
practice and sometimes even provably reach a local maxima. What was missing, however, is a
general method to give an approximation guarantee to the global maximum.

The de Finetti theorem with linear constraints (Theorem 3.6.5) gives an SDP hierarchy of

outer bounds, that exactly provides such a criterion.

Theorem 3.7.1. For the SDPs

SDP,, := max Tr[Gappas, (3.132)
s.t. papy = 0,Tr(papp) =1 (3.133)

papy =URn (papy) ¥V € 6, (3.134)

Aasey (paBr) = Xc, ® par (3.135)

', —cp (pB?) = Pgp-t ® Yo, (3.136)

and Q defined as above, we have for d := max{ds,dp} that

1
0<SDP, —Q < M implying Q = 1i_>m SDP,,. (3.137)
n—oo

NG

Proof. We have by construction 0 < SDP,, — @ and the remaining inequality arises from

Tr[Gappap,] = Tr[Ga(pa ® pB)] + Tr [Gap (paB, — pa ® pB)] (3.138)
< Tr[Gap(pa ® pp)] + |Gaslle - [[paB, — pa ® pslI (3.139)
poly(d)

< Tr[Gap(pa ® pp)] + (3.140)

T
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where we used the linearity of the objective function as described in Section 3.5, the (oo, 1)

Holder’s inequality 87, Inequality 1.174]

Tr[Gag (paB, — pa @ pB)] < |GaBlloo - llpaB, — pa @ pBl1, (3.141)

and the de Finetti argument as in Theorem 3.6.5. O

The bounds from Theorem 3.6.5 give worst case convergence guarantees that are "fairly
slow" as to ensure that the approximation error is small we need at least the level n = poly(d).
However, note that constrained bilinear optimization contains as a special case the best
separable state problem and so we cannot expect much better bounds on the convergence
speed in general. We refer to [44] and the references therein for a detailed discussion about the
computational complexity of the best separable state problem.

We can add positive partial transpose (PPT) constraints

T T TB2 Tanl
Pty =0, P =0, pape =0,y pagy =0 (3.142)

to SDP,, and we denote the resulting relaxations by SDP,, ppr. It is important to point out
that any separable state is also a PPT state (Corollary 3.3.3), and hence we still have a valid
relaxation to the problem (3.30). It is an interesting question to study if these constraints can
lead to a faster convergence speed, cf. the discussions in [68, 32|. Based on the PPT constraints,

we can give a sufficient condition when already
SDP,, ppT = Q for some finite n. (3.143)
The condition — known as rank loop condition—is based on [68], which in turn builds on [51].

Lemma 3.7.2. [68],[51] Let papy = Z/{g? (pAB?) for all m € &, and fixred 0 < k < n such

Tyn
that pA};k{fl = 0. Then, pap, is separable if

rank(pAB{z) < max {rank (pAB{C) , rank ('OB?H)} . (3.144)
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Proof. The proof is based on [51], where they prove the following implication
paB € PPT(A: B) and rank(pap) < rank(ps) = pap € SEP(A: B). (3.145)

Applying the above result to the quantum state papp with respect to the bipartite system

ABY ® By}, we find

pPABp € PPT(ABY : By 1) and rank(papy) < rank(pAB{C) = papy € SEP(ABY : By, 1)
(3.146)

and,

pABp € PPT(AB} : Byy1) and rank(papy) < rank(ppp, ) = papp € SEP(ABY : By, q).

(3.147)
Thus, papp € SEP(ABY : Bi,,) if
rank(pAB{z) < max {rank (pAB{“) , rank (pB;?H)} . (3.148)
Finally, since papp is symmetric with respect to A, we have
papr € SEP(ABJ : BY,,) = pap, € SEP(4: By). (3.149)
O

Note that instead of extending the B-systems we could equally well extend the A-systems
to get another, possibly non-equivalent, hierarchy.

In the next chapter we will use the methods developed in this chapter to study the problem
of approximate quantum error correction. Moreover, our methods can be readily applied to the
quantum marginal problem? and to an entire class of problems expressed via rank-constrained

SDPs, as subsequently studied in [91, 90].

4In the quantum marginal problem the question of interest is whether a given collection of quantum states

can be seen as the marginals of a, not necessarily unique, global quantum state.



Chapter 4

Approximate Quantum Error

Correction

In this chapter we apply the results of the previous one to the problem of approximate quantum
error correction. First we introduce the problem and its relevance and applications in quantum
information theory. We will then use a specialized version of Theorem 3.7.1 to obtain convergent
hierarchies to the desired problem. Corresponding numerical tests can be found in Section 4.4.

Given a noisy classical channel Nx_,y, a central quantity of interest in error correction is
the maximum success probability p(N, M) for transmitting a uniform M-dimensional message
under the noise model Nx_,y. This is a bilinear maximization problem, which is in general

NP-hard! to approximate up to a sufficiently small constant factor [8]. Nevertheless, there are

"We can think of NP-hard problems as the class of problems that are at least as hard as NP-complete
problems, the latter being the hardest problems in the NP class. The halting problem is a classic example of a
NP-hard decision problem. Notice that the halting problem is not NP-complete, since it is not decidable in a
finite number of steps. Given a quantum state pag, it is NP-hard to decide whether pap € Sep(A : B) [41,

Theorem 6.7]. Finally, the class of NP-hard problems is not limited to decision problems, such as the halting

91
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efficient methods for constructing feasible coding schemes approximating p(N, M) from below
as well as an efficiently computable linear programming relaxation Ip(N, M) (sometimes called
meta-converse [45, T1]) giving upper bounds on p(N, M).2 In fact, it was shown in [8] that

p(N, M) and Ip(N, M) cannot be very far from each other

1
1—

p(N, M) <Ip(N,M) < -p(N, M). (4.1)

@ [=

Furthermore, the meta-converse has many appealing analytic properties, such as, e.g., the
ability to evaluate it efficiently in the limit of many independent repetitions N¢",,-, leading to
very precise asymptotic bounds, i.e., considering the limit n — oo, on the capacity® of noisy
classical channels [8].

The analogue quantum problem is to determine the quantum channel fidelity F(N, M), a
quantity that will be formally defined later (Definition 4.1.1), for transmitting one part of a
maximally entangled state of dimension M over a noisy quantum channel N4, 5. As in the
classical case, this is a bilinear optimization problem, only now with matrix-valued variables. In

order to approximate F (N, M), an efficiently computable semidefinite programming relaxation

SDP(N, M) was given in [65].* However, contrary to the classical case the gap between

problem, but it also includes other kind of problems, e.g., optimization problems (see [5]).

2Operationally, Ip(IN, M) corresponds to the non-signalling assisted mazximum success probability discussed
in [67]. In other words, the two parties of the protocol are allowed to share additional resources that are not
useful for communication by themselves, e.g., shared randomness. Such kind of resources, which do not allow

the two parties to send information to each other, are known in the literature as non-signalling bozes.

3The capacity of a channel is defined as the maximum rate at which a sender can send information to a

receiver through the channel [25].
4Operationally, SDP(N, M) corresponds to the PPT-preserving, non-signalling assisted mazimum fidelity.

PPT-preserving channels map bipartite PPT states into bipartite PPT states, and include all unassisted and
forward-classical-assisted communication. However, not all entanglement-assisted communication protocols can

be represented with PPT-preserving channels [65].
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SDP(N, M) and F(N, M) is not understood. On the other hand, the tools introduced in
the previous chapter will exactly be used to generate a converging hierarchy of efficiently
computable semidefinite programming relaxations, allowing us to quantify the gap between
these new relaxations and F(N, M).

Moreover, the relaxation SDP(N, M) is lacking most of the analytic properties of its
classical analogue Ip(N, M). In fact, in quantum communication theory so-called non-additivity
problems® caused by quantum correlations make it notoriously hard to compute asymptotic
limits in the first place [29]. Hence, we propose to use methods from optimization theory to
directly study the maximum fidelity F'(AN, M) in order to quantify the ability of a quantum
channel to transmit quantum information. The goal is then to identify a quantum version
of the meta-converse for approximating F'(N, M), having similar properties as the classical
meta-converse Ip(N, M) for approximating p(N, M). This approach can also be justified by
the fact that most of the quantum devices that will be available in the near future are likely to
be noisy and small in size. As such, efficient algorithms approximating F(N', M) for reasonable
error models A and dimension M are more relevant in such settings than computing the
asymptotic limit of the rate achievable for multiple copies of a given noise model.

Numerical lower bound methods for F(N, M) are available through iterative seesaw meth-
ods® that lead to efficiently computable semidefinite programs [73, 72, 37, 36, 61, 77, 54]. These
algorithms often converge in practice and sometimes even provably reach a local mazimum.

What was previously missing, however, is a general method to give an approximation guarantee

5For example, while the classical channel capacity is additive over independent channel repetitions, this is

not true for the quantum channel capacity and related quantities (see [42]).
S An iterative seesaw method tackles a joint optimization by alternating the optimization over a subset of

variables, with the others kept fixed. In this case, a constrained bilinear optimization would lead to a sequence

of SDP optimizations.
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to the global maximum. Here, the techniques as developed in Section 3.7 exactly lead to a
converging hierarchy of efficiently computable semidefinite programming relaxations on the
maximum fidelity F(N, M). As such, this can be seen as a tool for benchmarking existing
quantum error correction codes and to understand in what direction to look for improved
codes.

We note that references [80, 83, 84, 56| gave refined relaxations on the size of a maximally
entangled state that can be sent over a noisy quantum channel for fixed fidelity 1 — . These
approaches are complementary” to our work and contrary to our findings they do not lead to a

converging hierarchy of efficiently computable bounds.

4.1 Setting

The mathematical setting of approximate quantum error correction we study is as follows.
First, we define the main quantity of interest, i.e., the quantum channel fidelity (or in short

channel fidelity).

Definition 4.1.1. Let N, 5 be a quantum channel and M € N. The channel fidelity for

message dimension M is defined as

FN, M) i=max  F(gp, ((Pp 50N, 50E4,7) ©Tr)(@an)) (4.2)

st. Dp_ 5,47 quantum channels, (4.3)

where F(p,0) = H\/ﬁ\/EHf denotes the fidelity, ® ar denotes the mazximally entangled state on

AR, and we have M = dy = dz = dg.

"Notice that in this thesis we fix the size M of the message, while the fidelity measure of the protocol is not

fixed. Thus, we are interested in obtaining bounds on the fidelity of the protocol, not on the message size.
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Operationally, one creates a reference copy R of the input system A (hence dg4 = dr) and

sends the maximally entangled state on AR through the quantum channel

(DB—)E ONALBO gAHZ) ® Ig. (4'4)

Then, the channel fidelity F (N, M) is defined as the maximum fidelity between the output
of this protocol and the maximally entangled state on BR (for consistency, we then need
dy = dg). In information-theoretic language, the channel fidelity corresponds to an average
error criterion for preserving uniformly distributed information. Alternatively, we might also
aim for a worst error criterion. To do so, we need to move away from the quantum channel
fidelity and use another metric (the diamond norm (2.60)). This approach, and the related
analysis, will be discussed in Section 4.5.

We will use the following well-known result, which allows us to simplify the fidelity when

one of the two quantum states is pure.

Lemma 4.1.2. Let p,o € S(H), if p is a pure quantum state, then
F(p,0) = Tr(po). (45)

Proof. 1f p € S(H) is pure, it can be written as p = |1)) (1|, where |¢) is an appropriate ket in

‘H with unit norm. Then,

F(p.0) = [lVoval = (Trvaval])* (4.6)
S G I N ()
= Wlol) (VIR 1) = (o) (4.8)
= (o)) = (1) (W]o) (4.9)

= Tr(po). (4.10)
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O

By the Choi-Jamiotkowski isomorphism (2.41) the channel fidelity is conveniently rewritten

as a bilinear optimization.

Lemma 4.1.3. Let N5, 5 be a quantum channel and M € N. Then, the channel fidelity can

be written as

F(N,M) =max dgdp Tr[(J2, ®®,5) (E,5© Dgp)] (4.11)
1a Ip
Ex=--, Dp=—- 4.1
a=qy P (4.13)

where Jgfz = (N4 g @ Ix)(Pz7) denotes the Choi state of Ng_, 5 (see 2.41).

The advantage of this notation is that all A-systems, i.e., A and A, are with the sender
(termed Alice) and all B-systems, i.e., B and B, are with the receiver (termed Bob), which is

consistent with the conventions used in [65].

Proof. By using the adjoint map in Hilbert-Schmidt inner product (2.27) and multiple times
the Choi-Jamiotkowski isomorphism as given in (2.41), and noting that the pure state &5,
allows us to use the simplified expression for the fidelity when one of the two arguments is pure

(Lemma 4.1.2), we can write the objective function from Definition 4.1.1 as

F((I)ER’ ((PpopoNaLpoEaa) ®IR)(‘I’AR)) (4.14)
= Tr [®5((Pp 5o N5 °E€aa) @ Tr)(Par)] (4.15)
= Tr [JBr (N5 © Tr) (J55)] - (4.16)

Taking advantage of d4 = d = dg, we relabel the systems and we proceed as follows

F(®gr, (Ppop o Na,p 0 Easz) ©Tr) (Par)) (4.17)
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—Tr [JBr (Wi, © Tr) (J5,) | (4.18)
=T [J25 (Vs © T4 p) (U5,)] (4.19)
= dadg Tr [(B; 0 0,5) ((155) " © I55)] (4.20)
— dydp - Tr [(J ®,5) (( L) ® ;l"‘ gD )] , (4.21)

where the transpose is taken with respect to the orthonormal basis of the maximally entangled
state, and the dimensional factors come from Lemma 2.2.2. Due to the basic proprieties of
the Choi-Jamiotkowski isomorphism discussed in Subsection 2.2.4, it is immediate to see that
(me)T can be identified with the E ,+ of Lemma 4.1.3. In addition, we have z—g . ‘]B?TE =0,

and tracing out the B system as well as using d4 = dg, we get

da dA 1=
bt A pf (2B 4.22
dp 5 dp <dB> (4.22)
d 1
=A. .~ .1p (4.23)
dp dg
1B
= —. 4.24
2 (1.2
Thus, we can identify dA JDi with the D gz of Lemma 4.1.3. O
The following simple dimension bounds hold for the channel fidelity.
Lemma 4.1.4. Let N5 _, 5 be a quantum channel and M € N. Then, we have
0<F(N,M)<min{1 dx)" dp (4.25)
min = — 5. .
— b —_ ) M ) M

Proof. The lower bound is trivial and the upper bounds follow directly from the more general
statements about the optimal fidelity under additional classical communication assistance as

given in Lemma 4.3.4. O
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By the linearity of the objective function, we can repeat the same approach followed in

Section 3.5, and rewrite the channel fidelity as

F(N,M)=max dxdp-Tr [(JﬁfB ®®,5) (Z piB5 ® DiBB>] (4.26)
i€l
st. pi>0Viel, Y pi=1 (4.27)
iel
E'=0, Doz>0 (4.28)
1 o1
Ei=-"2 Di=Zviel (4.29)
da dp

4.2 De Finetti theorems for quantum channels

Recall from Subsection 2.2.4 that a quantum channel is just a trace preserving completely
positive (tpcp) map between two spaces of quantum states. Here, we establish a sufficient
criterion under which permutation invariance of a quantum channel implies that it can be well

approximated by a mixture of product quantum channels.

Theorem 4.2.1. Let P AA(BB)" be a quantum state with

PAABB)T = u(TrBE)Tf(pAZ(BE)?) vm € 6, (4.30)
1a
PaBBY = g, © P(BBY (4.31)
1p,
PBB; B, = BB @ (4.32)

Then, we have for 0 < k < n that

i s ®k
PAAEBE — D Pi0z @ (W) (4.33)
il 1
_ log(dadz) + (k—1)log(dpds
< k:f(BB|-)\/(21n2) (dadz) i — (d5d5) (4.34)
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—w f§05uchthataA—dA ande_dB for

with {p; }ier a probability distribution, and o WhE

1el.

Proof. The proof is a straightforward application of Theorem 3.6.6. In particular, referring to

the notation of Theorem 3.6.6, we need to make the following choices for the systems A := AA,

B

B := BB, C4 := A, Cp := B, for the operators Xc, = cng’ Yo cngv and for the linear

maps A 5, 4 = Trg, and I'gp_, 5 := Trg. O

We emphasize that, according to the representation we obtain in this theorem, p AA(BB) is
close to a mixture of products of Choi states of completely positive and trace-preserving maps.
We note that applying standard de Finetti theorems for quantum states would only show that
P AA(BB) is close to a mixture of products states, or in other words Choi states of completely
positive maps that are in general not even trace-non-increasing. This is not sufficient for our
applications, and having the constraints (4.31) and (4.32) are needed in our proofs to achieve

this stronger statement. We discuss this in more detail by means of the following examples.

Example 4.2.2. For A, B trivial and k = 1 Theorem 4.2.1 says that pap 1is close to the

product state dlAdB , as this is the only valid state satisfying the linear constraints. Howewver,
AQB

having only the permutation invariance condition (4.30) without the other two conditions (4.32)
and (4.31), this conclusion does not hold. In fact, choose papy to be mazimally classically

correlated between all the n + 1 systems A, By, ..., By

1 N on
pPABy = gz i) i =+, (4.35)

where d := dy = dp. Clearly, the systems B} are symmetric with respect to A, i.e., (Za ®
Ug?)(pAB?) = papy for every m € &,,. Thus, the permutation invariance condition (4.30) is

satisfied. On the other hand, it is clear that the other two conditions (4.31) and (4.32) are not
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satisfied. For example, papp # Cll—*: ® ppp. Finally, we also notice that the conclusion of the

theorem does not hold, since pap, s not close to the state ;de;.

Example 4.2.3. We now want to show that imposing the constraint pap, = ;:75; s not

enough either. Let A, A, B, B all be of dimension d > 2. Then, define for any n > 1

1

paawBy = g5 2Nl @ )iz ® [i)lE" © li)il5" (4.36)
]

Then, the state is invariant under permutations of the BB systems and

1 o N
pan = =5 1N ila ® )il (437)
1,
1 N N
= & 2l ulae Y liils, (1.39)
J 7
1
= pla®ls (4.39)
1a
- dfl : (4.40)

However, the reduced state p 4z 5, is not close to states of the form

1 1
L 12 : ¢ A ¢ _ 1B
% POz Owp g with oy = TWB = (4.41)

i.e., convex combinations of tensor products of Choi states. To see this, consider the projector

g, =214 @ [0)(ilz ® |i)(ilp, ® 15,. Then, we get

Tr(HZBl PAZBIE) = TF(PAZ&E) =1, (4.42)

but

Tr <HA31 praiﬁ ® wiﬁBl) = ZpgTr(HzBl a% ® w%l) (4.43)
¢

L
1
- / B
= % pe'Ir <HABl‘7A ® d1> (4.44)
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1 1 1
_ 4 _ _
= é pgTr(aA)g = % P = (4.45)
Finally, using the relation between the trace distance and projectors (see [69, Section 9.2])

l 12

14

1

PyipB, (pAA3131 ZPN B1B1>] (4.47)

=2 max Tr

Py4B,B,
l l
> Tr | 1lzp, (pAAB1B1 =D oz ® %3131)] (4.48)
¢
1
—1-- 4.49
T (4.49)

where the mazimization is taken over all projectors Pyzp 5, -

By the Choi-Jamiotkowski isomorphism and relating the trace norm of Choi states to the
diamond norm of the quantum channels (Lemma 2.2.4), we can alternatively state the bounds

from Theorem 4.2.1 directly in terms of the quantum channels.

Corollary 4.2.4. Let NAB?%ZE’{ be a quantum channel such that

Uz (Napyam()) = Nagpamr (U () ¥r € &, (4.50)
1
TI‘EH [NABf%ZET()] = TI‘ETL [NAB?HAB? <TI‘BnH ® dB; ):| (451)
1
Tryz {NAB%ZE?(')] =Trz [NAB%AB? <dj ® Tra H)} : (4.52)

Then, we have for 0 < k < n with

]_B’VL
NAB{“—@ET (Xapy) = "Trgy | [NAB{LHAB? (XAB{v ® dnkfkl)] (4.53)
B
that
Rk
H ABY A B sz AT © BHE) (4.54)
i€l 0
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< dadb, -k f(BB|.)\/ (21n2)08 (dadz) :Ek];fi log (d5dg) (4.55)

with {p; }ier a probability distribution and DB—>§’554—>Z quantum channels for i € I.

In (4.53) we chose a specific extension of X ,p. to define N e 55" (X 4pr), namely
1 1

1gn
;’“fkl. This is still well-defined as the conditions (4.50) and (4.51) we require of
B

X apr ® —5L
N ABrAB! actually say that the choice of extension does not matter. That is, we have for
1

any XAB{L that

1p,
TI“EZH NAB?—)ZE? (XAB{L)} = Tr=n-1 |:T1"Bn |:NAB?—>AB? (XAB’{Ll & CZB>:|:| (4.56)

Bk+1

1pn

=Ty, [NAB%ABQL <XAB§ ® % ) (4.57)
B

- NAB{@ZE’; (XAB{“) ’ (4.58)

where we used (4.51) for the first equality as well as (4.50) and (4.51) multiple times for the

second equality. Thus, we can in fact choose

1pn
=L (4.59)
dp

Xa By = X ABF &
In the following we state several comments about de Finetti theorems for quantum channels:

e In contrast to the bound for Choi states (Theorem 4.2.1), the diamond norm bound in
Corollary 4.2.4 does not have a polynomial dependence in dp and k. We leave it as an
open question to give a de Finetti theorem for quantum channels in terms of the diamond
norm distance with a dimension dependence polynomial in dp and k. (For our purposes

we only need the £ = 1 bound, in terms of the Choi states.)

e In the case k = 1, the conditions of the above theorem can be seen as approximations

for the convex hull of product quantum channels, just as extendible states provide an
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approximation for the set of separable states.® We note that in SDP hierarchies for
the quantum separability problem the permutation invariance can be replaced by the
stronger Bose symmetric condition [68]. That is, the state in question is supported on
the symmetric subspace. The reason is that every separable state can without loss of
generality be decomposed in a convex combination of pure product states. However, in
our setting, we cannot assume that we have a mixture of a product of pure channels?,

and so we keep the more general notion of permutation invariance.

e In the following, we never directly make use of Corollary 4.2.4 but rather state it for
connecting to the previous literature. In particular, when choosing AA trivial as a special
case we find a finite version of the asymptotic de Finetti theorem for quantum channels
from [39, 38].19 We emphasize that our derived conditions then become a finite version
of the notion of exchangeable sequences of quantum channels of [39] defined as a sequence

of channels {N, " 5"} satisfying for all n that

Use (N 30()) = Nigy 7 (UBg () v € 8, (4.60)

Ngnsygnt <Tan H) —Trg [NB%EQL(-)}. (4.61)

They show that under these conditions, for any k, the channel A/ B,k 1810 the convex
1 1

hull of tensor power channels. In Corollary 4.2.4, we start with a channel'' A/ n By

and quantify the closeness of such N pr_ gt O convex combinations of tensor product
1 1

8The class of channels we consider here is more restricted than general separable channels, which usually

refers to a mixture of product completely positive and not necessarily trace-preserving maps [87].
9A pure channel is a quantum channel having associated a pure Choi state.
1OWe also refer to [70] for previous related work and [23] for a classical version. Moreover, following [56],

conditions related to our (4.50) — (4.52) give rise to extendible channels in the resource theory of unextendibility.

"This is equivalent to being given a finite sequence N pr_ gk for k € {1,...,n} satisfying the exchangeability
1 1

condition, as the reduced channels are then completely determined by A By BT (see [87])
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. ®k
channels ), p; (D;%—@) .

Channels that are written as mixtures of product channels, i.e., channels of the form
E47®Dp_5 where £, 7 and Dp_ 5 are quantum channels, correspond to communication
protocols in which the two parties have access to shared randomness but no communication [87,
Section 6.1]. There is a natural relaxation to this set of channels, often called LOCC(1)
channels [20], corresponding to channels that can be implemented with additional classical
communication from A to B. Mathematically, a LOCC(1) channel is a tpcp map that can be

written in the form

i i
> 1 .a2%Dp 5 (4.62)
i€l
where Dg_@ are channels, and 8;_)2 are completely positive but not necessarily trace-

preserving maps, summing to a channel. Le., is a quantum channel. Channels of

el 52_@
the form (4.62) are also known as one-way right LOCC' channels, where Alice is the sender and

is assumed to be on the left, while Bob, who is the receiver, is assumed to be on the right. We

discuss this variation of approximate quantum error correction in Section 4.3.

4.2.1 Hierarchy of outer bounds

Following the de Finetti theorem for quantum channels as given in Theorem 4.2.1 for k =1,

the n-th level of the SDP hierarchy for the quantum channel fidelity becomes

SDP, (N, M) i= max  dydp - Tr | (J4, ©@,43,) paipm| (4.63)
st paampy =0 Tr [pAZ(BE)’f} =1 (4.64)
PaABBYy = Ulpn) <PAZ(B§);»> v € Gy, (4.65)

1a

PABBY = g, @ P(BB)y (4.66)
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1p,
PAABE); B, = PAAGBE ' ®

(4.67)
Here, we identified B; := B and hence the n-th level of the hierarchy then corresponds to
taking n — 1 extensions. Note that instead of stating the last condition for the final block B,
we could have equivalently stated it for any block B; with j = 1,...,n (by the permutation
invariance). Iteratively, the condition then also holds on all pairs of blocks of size two, and so

on. Moreover, we slightly strengthened the last condition by including the A-systems compared

to the minimal condition needed for Theorem 4.2.1, i.e.,

1p,
PBB) B, = P @ (4.68)

We then immediately have asymptotic convergence.

Theorem 4.2.5. Let Ny, 5 be a quantum channel and n, M € N. Then, we have

poly(d)

0 < SDP, (N, M) — F(N, M) < NG

(4.69)
implying
FWN,M) = 1i_>rn SDP, (N, M), (4.70)

where d := max{da,dz,dp, dz}.

Proof. By construction 0 < SDP, (N, M) — F(N, M), and the remaining inequality arises from

ddp - Tr [(4; © ®45) paaps) (4.71)
= dadp - Tr [(J, © ®45) (B © D) (4.72)
+ dgp - Tr (4 © @45) (Paaps — Eax @ Dpp)] (4.73)
< dgdp - Tr [(‘]%’B ©®,p) (Esz® Dyp)] (4.74)
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+ dxdp - 17 © @ 45l - | pazs5 — Eax ® Dyglh (4.75)

poly(d)

< dzdp - Tr [(J%/B ®®,5) (B 2 ® Dpp)] + T

(4.76)

where we used the linearity of the objective function as described in Section 3.5, the (0o, 1)

Holder’s inequality and Theorem 4.2.1 with k£ = 1. O

We note that the worst case convergence guarantee is "fairly slow", as to ensure that the
approximation error becomes small, we need at least the level n = poly(d). As already pointed
out in Section 3.7, this slow convergence in the worst case is as expected from the quantum
separability problem. However, in practice the convergence speed may be much better. We

will numerically analyse in detail this aspect in Section 4.4.

Remark 4.2.6. Instead of extending the B-systems we could alternatively extend the A-systems,

which leads to the non-equivalent asymptotically converging hierarchy

SDP,, (N, M) := max dxdp-Tr [( AlB) pAlAlBB} (4.77)
st poampen = 0 T [Py sp] =1 (4.78)

P(Ad)y; BB = Ul (P(AZ);LBE) vm e Gy (4.79)

PaayrB = PaAyr ® Clig (4.80)

P(AA)" 1A, BB = 15: ® P(aA)y-1BE- (4.81)

For the first level we have
SDPy (N, M) = SDPy (N, M), (4.82)

by inspection. However, for the higher levels it depends on the input-output dimensions dz,dp

which hierarchy is potentially more powerful, i.e., faster to converge.
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The relaxations SDP,, (N, M) behave naturally with respect to the first two bounds of

Lemma 4.1.4.

Lemma 4.2.7. Let NZ—>B be a quantum channel and n, M > 1. Then, we have

d\ 2
0 < SDP, (N, M) < min {1, (ﬁ) } : (4.83)
Proof. The lower bound is trivial. By the monotonicity in n (Theorem 4.2.5), it is enough to
restrict to n = 1 for the upper bounds. Alternatively, the upper bound of one can directly
be deduced operationally from [65, Theorem 3|, where SDP;(N, M) was identified as the

non-signalling assisted channel fidelity. We use that for any bipartite quantum state pxy we

have!? [79, Lemma A.2]

dx -1x ® py = pxy. (4.84)

For the first upper bound we find % "Paa®lp B, = Padp,B,> Which gives for the objective

function
SDPy(N, M) < dsdp - Tr [ (. @@, By w1, (4.85)
1V, M) s azdp AB; ABy) \ gy PAA® "BiB :
14 lA) :|
=dgdg-Tr || —& =+ i 4.86
A%B [( Ay dy PAA (4.86)
=Tr(puz) =1 (4.87)
For the second upper bound we find similarly as for the first upper bound Z—f 1, 2®ppB, =

PAAB,B,» Which then leads to the claim by the same argument as for the second upper bound

in Lemma 4.1.4. O

121t is interesting to note that, while dx - 1x ® py > pxy is always valid, removing dx leads to the so-called
reduction criterion. The reduction criterion, which does not always hold, is connected to the separability

problem for low-dimensional quantum systems [49].
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We can again add all the PPT constraints and denote the resulting relaxations by
SDP, ppT(N,M). In the following we study more closely these levels SDP,, ppr (N, M),
which are our tightest outer bound relaxations on the channel fidelity.

4.2.2 Low level relaxations

For n = 1, we find the first-level relaxation

SDP1ppr(N, M) = max  dgdp - Tt [(JA ® ®,45) puiss) (4.88)
st. puags =0, Tr(paapg) =1 (4.89)

pans = P (4.90)

PAAB = PaA ® Clé (4.91)

P 0, (4.92)

which is the SDP outer bound!3 found in [65, Section IV], up to their a priori stronger condition

1
paB = - Aj instead of our Tr (p,455) = 1. (4.93)

AdB
However, as implicitly shown in [65, Theorem 3| these two conditions actually become equivalent
because of the structure of the objective function. Operationally SDP (A, M) corresponds to
the non-signalling assisted channel fidelity, whereas SDPy pp1 (N, M) adds the PPT-preserving
constraint — as discussed in |65, Corollary 4|. Moreover, in the objective function the symme-

tryl4

/ TaoUs) () TaeUs) dU (4.94)

131n the introduction we referred to this semidefinite programming relation with the notation SDP(N/, M).

“Here, U 4 denotes the complex conjugate of Ua with respect to some standard basis. The super-operator

(4.94) is commonly known as the isotropic twirling channel (see [87, Example 7.25]).



Chapter 4. Approximate Quantum Error Correction 109

can be used to achieve a dimension reduction'® of M? leading to [65, Theorem 3|
SDP1ppr(N, M) = max  dgdp - Tr [JA, Yo,] (4.95)
st pr® :li =Yg = 0, Tr(py) = 1 (4.96)
M?.Yg = clTB (4.97)

B
p;@iliiM-YATg - —pg® Clé. (4.98)
The level n = 2 reads as

SDP ppr(N, M) = max  dydp - Tr [ (J4, ©@,45,) painp | (4.99)
st Paap s = 0 T (paasmmn) =1 (4.100)
Up 5,5, B» (PAZBlBQEEQ) = PAAB, BB, B, VT € 62 (4.101)
PABiBsBiBy — Cllj ® PB, BB B> (4.102)
PAAB BBy = PAAB B, © Zif (4.103)
P T = O pi%ﬁ%ﬁ@ = 0. (4.104)

Numerical evaluations of (4.95) and (4.99) can be found in Section 4.4.

4.3 Classically-assisted approximate quantum error correction

4.3.1 Setting

It is often useful to add classical forward communication assistance to the problem of quantum

error correction. The corresponding assisted channel fidelity is defined as follows.

5The use of the isotropic twirling channel allows us to remove the quantum systems A and B. Since

M = da = dp, the achieved dimension reduction is of M 2,
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Definition 4.3.1. Let N4, 5 be a quantum channel and M € N. The LOCC(1)-assisted

channel fidelity for message dimension M is defined as

FLOCC(l)(N, M) := max F(‘pgRa Z ( (ng_>§ °/NA,B° gjél—)Z) ® IR) ((I)AR)) (4.105)
el

s.t. Zé’;_}z quantum channel with 52_}2 cp fori el (4.106)
el

D, & quantum channel Vi € I, (4.107)
where ® 4p denotes the maximally entangled state on AR, cp is the abbreviation for completely
positive, and we have M = dy = dz = dpg.

By the Choi-Jamiotkowski isomorphism this can again be rewritten as a bilinear optimiza-

tion.

Lemma 4.3.2. Let N3, 5 be a quantum channel and M € N. Then, the LOCC(1)-assisted

channel fidelity can be written as

FROCC(A M) = max  dydp - Tr [(JANB ® ¢ ,5) (Z E'\® Dj’BB>] (4.108)
i€l
st. Bl =0,Di-=0 Yiel (4.109)
1
S B, = di (4.110)
i€l A
1
Diy =2 viel (4.111)
dp

The proof follows the same steps as in Lemma 4.1.3 about plain quantum error correction,
and is based on the manipulation of the objective function

F(@50 35 (P 50N 0 €l z) © Tn) (Pan)) (1112

i€l

by using the Choi-Jamiotkowski isomorphism. As we show in the following lemma, we have

that FLOCC(A, M) is closely connected to the channel fidelity F(N, M).
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Lemma 4.3.3. Let N be a quantum channel and M € N. Then, we have
2
FLOCCO(N, M) = F(N, M) = (FXOCO, M) (4.113)

Asymptotically this corresponds to the well-known statement that forward classical com-

munication assistance does not increase the capacity [9].

Proof. The first inequality is trivial because the addition of a forward classical communication
channel cannot decrease the channel fidelity.

The fact that (FLOCCM (N, M))2 gives a lower bound on F(N, M) can be seen from [62,
Proposition 4.5|. Consider an arbitrary coding scheme for the quantum channel N assisted
with a forward classical communication channel and call F1,0cc(1) the channel fidelity obtained
using that scheme. We then want to show that it is always possible to find a coding scheme
for the quantum channel N alone allowing us to achieve a channel fidelity F > ]-"Eocc(l). Say
we are able to send, through the forward classical communication channel, a symbol in the
set {1,...,5} with S € N. An arbitrary coding scheme for the assisted quantum channel
can be modelled by a collection of instruments {& Z%Z} se{l,..,S}, 1-€., trace-nonincreasing cp
maps summing up to a channel, and channels {Dg_@} sef1,..,s}- It is then easy to show that
there must exist a symbol 3 such that the fidelity of the map D® o N o % is lower bounded
by Frocc(1), where the factor e’ is chosen such that the completely positive map % becomes

1a

trace preserving with respect to the maximally mixed state 7, as done in [62, Proposition

5.1]. Using the polar decomposition it is possible to find an isometric encoder'® V¥ such that

18 An isometric channel V : L(H) — £ (H') is a quantum channel that can be expressed as V(-) = V(-)VT,
where V : H — H’ is an isometry, i.e., a norm-preserving operator. In practice, an isometric channel is a
generalization of a unitary channel, where the dimensions of the two Hilbert spaces do not need to be equal.

More precisely, we only need dy < dyy/.
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the channel fidelity F obtained using the coding scheme with encoder V* and decoder D? is

lower bounded by the squared fidelity of the map D% o A o % This implies F > fﬁocc(l). O

We have the dimension bounds for the LOCC(1)-assisted setting. Notice that the following

result readily implies Lemma 4.1.4.

Lemma 4.3.4. Let N5, 5 be a quantum channel and M € N. Then, we have

d— 2
0 < FEOCC(AF, M) < min {1, (z\?) : ?\5} . (4.114)

Proof. The lower bound is trivial. For the upper bounds, we use that for any quantum state

pxy we have [79, Lemma A.2]

dx - 1x ® py = pxy. (4.115)

Now, for the first upper bound note that % Apg=dg-15® ng > DfBE for all ¢ € I, and

hence we get for the objective function (with d4 = dz = M)

FLOCC(N, M) < dgdy - Tr | (JA, @ @ ) (Z Eg®1 BB) (A, @@ )" 2]

L el
(4.116)
— d-d—=- Tr _ 172@17’4 ZEif (4.117)

AYB dX da : AA :
L el
=Tr | ) E'y (4.118)
el
=1. (4.119)
For the second upper bound, note that from Ei@ > 0, DjBE > 0 we get
LOCC(1 N i j

FLOCCO(N, M) < max dgdp - Tr | (J5, @ ®,5) | Y Eg0> Di_||. (4120

il jel
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; P .. dy
Now, we employ that d4 - EY% ® 15 = quz giving ﬁ 1

FLOCC

(N, M) <

d%d B
da

d%d B
da

2 dp
&% dg

d%d B
&% dg
2
d%

" dadg

- Tr

-Tr

- Tr

(A, 0 ,5)

1i
N o °B
<JB ? dB>

5 Y Dh

e

[ 1

JY dAB}
dp

1AA ® Z DBB
jel

> D

jel

For the third upper bound, note that 155 = DZ — and thus

FLOCC

= dde -Tr

_dp

— - Tr

da

(N, M) < dyqdp - Tr

a.

>y

il

4.3.2 Hierarchy of outer bounds

(J%/B ® P ,5) (Z E\2® 133)]
il

(e3)

DBy

el

AT T D el Eiﬁ, which in turn leads to

(4.121)

(4.122)

(4.123)

(4.124)

(4.125)

(4.126)

(4.127)

(4.128)

(4.129)

Following what we did in Theorem 4.2.1, we get the following approximation for the set of

LOCC(1) channels, stated in terms of the corresponding Choi states.

Proposition 4.3.5. Let P AA(BB)? be a quantum state with

PAA(BB

By = Ulppy; (Paaws)y) Y7 € Gn

(4.130)
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1
pA ﬁ (4.131)
LB,
P(BB); B, = PBE © (4.132)

is upper bounded
1

by the same term as in Theorem 4.2.1, where w 5= 0 with ""B = leg and 034 = 0 with

. . Rk
Then, we have for 0 < k < n that PAA(BB)E Y icr 022@) (ijE)

i 1a
§:ieIUA,—'dA'

Comparing the above proposition with Theorem 4.2.1, we see that the condition ps = leﬁ
replaces the previous p A(BB)r = clTA ® p(pB)- This is because the constraint we have now to

reproduce on the states is ) ;. ; O'A = d—, while before we had O'A = ﬁ for every i € I.

The n-th level of the SDP hierarchy then becomes

SDPEOCCO (N, M) = max dydg - Tr (4, © ®,45.) pyas,5, | (4.133)
st paaBy =0 (4.134)
sy ) = Paismy VT E Gn (4.135)
1AB"
paBy = - d;é (4.136)
15,
PAA(BB): B, ~ Paa(sB) " © 4, (4.137)

LOCC(1

By inspection, the only difference between SDP,, (N, M) and SDP,, (N M) is the weak-

ened second to last condition. The asymptotic convergence follows immediately from Proposi-

tion 4.3.5.
Theorem 4.3.6. Let N be a quantum channel and n, M € N. Then, we have

SDPLOCCM (w7, M) < SDPEOCCO (A, M) (4.138)
and,

FROCC(N M) = lim SDPLOCCO(Af M), (4.139)

n—o0
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LOCC

Note that for SDP, (1)(N , M) we slightly strengthened the last two conditions by

including some more A- and B-systems in the conditions compared to the minimal conditions

1a Ip
== d e = e n 4.14
pa dA an p(BB)1 1B” p(BB)l e dB ( O)

needed for Proposition 4.3.5. By an iterative argument the last condition implies in particular

that

1pn
PAABIB, = PAABB, © ng’ (4.141)

which together with the other three conditions in SDP;{OCC

(1)(N, M) then corresponds to the
notion of extendible channels from [56, Definition 5| (also see [31] for similar conditions). We
note, however, that when relaxing the conditions to n-extendible channels our proofs for the
asymptotic convergence of the resulting outer bounds do not apply.

The SDP relaxations again behave naturally in the sense that they are upper bounded by

one.

Lemma 4.3.7. Let N be a quantum channel and n, M € N. Then, we have
0 < SDPLOCCW (A7 M) < 1. (4.142)

Proof. The lower bound is trivial. For the upper bound, by the monotonicity in n (Theo-
rem 4.3.6) it is enough to restrict to n = 1. As in the proof of Lemma 4.3.4, we make use of

d= . . .
ﬁ Paa®@lp B, = Padp,B,- Lhis again gives

di
SDP{ O W, M) < dgdi - T | (), © @45) 2 paa @ 1,5, (4.143)

=1. (4.144)
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As before, we can again add PPT constraints and we denote the resulting relaxations by

SDPTI;%%(TXU(N ,M). In the following we study more closely these levels SDPE%%%(U(N , M),

which are our tightest outer bound relaxations on the LOCC(1)-assisted channel fidelity. We

find
LOCC
SDPl,PPT(l)(N’ M) = max  dzdp - Tr [(J%[B ® P 45) PAALE) (4.145)
lap
= 4.147
PAB didp ( )
1B
PaAp = PaA® 4o (4.148)
T —
Paaps =V (4.149)

This is exactly the SDP outer bound found in [65, Section IV], which simplifies to

SDPy S0 (W, M) = max  ddp - Tr [JA X (4.150)
1p
lp T lp
px® o m M XGh e —pre P (4.152)

By inspection, this corresponds to SDP ppr (N, M) but with one missing constraint, namely

M?*Xp = clTZ' For n = 2 we get

LOCC(1
SDPSOSCM (W, M) = max  dydp - Tr [(J%Bl @D ,5)p AZBIEJ (4.153)
s.t. pAZB1B2§1§2 i 0 (4154)

ug132§1§2 <p1423132§1§2) = PAAB,B>B1 B> vr € 62 (4'155)

1
B

1B
PAAB BB, — PAABE, © d—; (4.157)
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pTan g BB g (4.158)
AABlBQBlBQ - AABlB2BlB2 - ’

and we recover the exact same conditions as for the notion of extendible channels [56, Definition

5).

4.4 Numerical examples

4.4.1 Methods

In the following we present the proof of concept numerics we implemented to test the low levels
of our hierarchy for the application of approximate quantum error correction. Moreover, given
the size of the programs, our focus is limited to qubit and qutrit channels. In order to explore
more complex quantum channels, or to increase the number of channel repetitions, one needs to
simplify further the optimization programs, by taking advantage of the potential symmetries of
the particular noise model. We do that for the qubit depolarizing channel in Subsection 4.4.4.

The experiments have been done in MATLAB using the QETLAB library [55], CVX [40],

MOSEK [1], and SDPT3 [78].17

Remark 4.4.1. In Remark 2.2.1 we introduced subscripts to keep track of the systems the
operators act on. Moreover, the usage of subscripts has allowed us to make implicit any isometry
needed to rearrange the underlying Hilbert spaces. For example, the expression W4 5Q g7 must be
interpreted as W4 pFz , pQpz, where Fz 5 B ® A — A® B is the swap operator exchanging
A with B. This is a standard convention, which has been used through this thesis. However,
one needs to be careful when implementing the optimization programs for numerical purposes.

In fact, while expressions such as W45Q gz make perfectly sense according to our conventions,

17 All the code is available at https://github.com/FrancescoBorderi/Quantum-SDPs.
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numerical solvers cannot understand the implicit arrangement of the underlying Hilbert spaces.
Thus, we need to implement explicitly the isometries needed to obtain the correct order. To do

that, we used the PermuteSystems function available from the QETLAB library.

As discussed in Lemma 3.7.2, the authors of [68] gave a rank loop condition to certify that
a certain level of the hierarchy already gives the optimal value. We restate the condition here

in the exact form needed for approximate quantum error correction.

Lemma 4.4.2. Let PAA(BB) = Z/I(”BE)? (pAZ(BE)’f) for all m € &, and fired 0 < k <n such

T —
(BB,

that P AA(BE)r = 0. If we have

rank (pAZ(BE)?> < max {rank (pAZ(BE)’f> , rank (p(BE)” )} , (4.159)

k+1

then p ;555 1S separable with respect to the bipartite system AA® BB, i.e., p ;55 € Sep(AA :

BB).

Using Lemma 4.4.2 it is in principle possible to, e.g., certify the optimality of the first
level using the second level of our hierarchy. Moreover, if the criterion is fulfilled it can also
allow us to extract the actual encoder and decoder of the optimal quantum error correction
code. However, in order to facilitate the search for solutions having rank loops we need to
look for low rank solutions p AA(BB)» It is not possible to directly write a rank condition into
our semidefinite programs because rank constraints are not convex, as shown in the following

remark.

Remark 4.4.3. It is easy to show, with an explicit example, that rank constraints are not
conver. In other words, it is not true that for every t € [0,1] and operators X,Y on H,
we have the inequality rank(tX + (1 — t)Y) < trank(X) + (1 — t)rank(Y). For example,

consider a two-dimensional Hilbert space H spanned by the orthonormal basis (]0),|1)), and
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choose t := 1, X := |0)(0| and YV :=

1)(1|, implying rank(X) = rank(Y) = 1. Thus,
rank(tX + (1 — )Y) = rank (3 [|0)(0] + [1)(1]]) = 2. On the other hand, we have trank(X) +

(1 —t)rank(Y) =3 -1+43-1=1. Since 2 £ 1, the rank is not a convez functional.

N[

In addition, SDP solvers typically give high rank solutions since they tend to look for
solutions at the interior of the convex set. For our optimization programs, we noticed that
SDPT3 compared to MOSEK gives results having in general lower rank. Nevertheless, a
possible strategy is to find a solution p AA(BB)? and then employ a heuristic to minimize the
rank while keeping the hierarchy constraints. The heuristic we found the most effective for
our purposes was the log-det method described in [34]. The idea is to minimize the first-order

Taylor series expansion of

which is used as a smooth surrogate!® for rank (p AA( BE)?) and § > 0 is a small regularization
constant introduced to ensure the invertibility of the operators involved in the various iterations.
The procedure is iterative, meaning that we start from pg = 1 AA(BB)? then compute p;
minimizing the log-det objective function, and so on. In particular, the choice pg =1 AA(BB)?
connects the method to the trace heuristic [34], which is known to be an effective heuristic for
rank reduction. More precisely, the log-det method can be seen as a sequence of weighted trace
minimization problems. The (arbitrary) choice pg = 1 AA(BB)T implies that p; is the outcome

of the trace heuristic, which is an ordinary trace minimization. Thus, the further iterations of

18 A surrogate is a function used to approximate another function. A surrogate function should be easy
to evaluate. In this way, one can evaluate many times the surrogate to find the best approximation to the
optimum value of the original objective function. The function logdet(-) is a popular surrogate for the rank,
because its global minimization leads to non-invertible operators, and hence to rank minimization (recall that a

non-invertible operator cannot have full rank).
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the log-det method can be seen as an improvement of the result given by the trace heuristic.
We stop after a certain number ¢ of iterations and then we find a solution p; having, hopefully,

lower rank than the original rank (p AZ( BE);‘)'

4.4.2 Qubit Channels

We computed SDP relaxations in the plain coding setting for the most common qubit chan-
nels: depolarizing, amplitude damping, bit flip, phase flip, bit-phase flip, Werner-Holevo and

generalized Werner-Holevo channel. We found the upper bounds

SDP; ppr(Na,2) = SDPs ppr(Na, 2) (4.161)
= SDP3 ppr (N2, 2) (4.162)
= SDP; (N2, 2) (4.163)
= SDP3 (N2, 2) (4.164)
= SDP3(N2, 2), (4.165)

where the subscript in N3 refers to the two-dimensional input and output of the channel. These
identities also remain true for random qubit channels'® and one might then conjecture that for

qubit channels indeed already SDP;(N2,2) captures F'(NV,2).

For the qubit depolarizing channel the trivial coding scheme is known to be optimal?® and

19T sample random channels we used the RandomSuperoperator function available from the QETLAB library.
The rationale behind the usage of random channels in the numerics, is to move away from the highly symmetric

settings provided by the most popular quantum channels (which may be the cause of the observed identities).
20Tn particular, for less than 5 repetitions of the depolarizing channel, the trivial coding scheme turns out to

be the optimal error correction strategy [73]. With ¢rivial coding scheme we mean to do no error correction at
all. This result implies that, for the depolarizing channel, error correction becomes interesting in presence of at

least 5 channel repetitions. Thus, we will study this setting in Subsection 4.4.4.
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we retrieve this result using the rank loop condition of the second level based on the log-det

method.

Similarly, for the qubit bit flip channel with parameter p = 0.1 we find a rank-one state
solution of the second level using again the log-det method, implying that the rank loop
condition holds. In this case the solution is not just the state associated with the trivial
coding scheme via the Choi isomorphism but the resulting encoder/decoder pair with optimal
fidelity 0.9 is given by the unitary channels with Kraus operators®! Ug = —|1)(0| + |0)(1| and
Up = |0)(0] — |1)(1], respectively. Note that the trivial coding scheme is largely suboptimal for

a qubit bit flip channel with p = 0.1, as the corresponding fidelity is 0.1.

4.4.3 Qutrit Channels

We computed SDP relaxations in the plain coding setting for the following qutrit channels:
depolarizing, Werner-Holevo and generalized Werner-Holevo channel. We found the upper

bounds

SDP1,ppr(N3,2) = SDP2 ppr (N3, 2) (4.166)

and this identity also remains true for random qutrit channels. Removing the PPT conditions,

however, we found qutrit channels N3 such that

SDP3(Nj3,2) < SDP;(N3,2). (4.167)

A quantum channel N : S(A) — S(B), can be represented by the finite sum N (-) = 3", Ex(-)E}, for Ey,
linear maps between A and B satisfying the property >, E}; Ei = 1. Those linear maps are known as the Kraus

operators of the channel.
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Figure 4.1: Comparison of the SDP upper bounds n = 1,2 on the channel fidelity of the 3-dimensional
depolarizing channel for LOCC(1)-assisted coding (see Section 4.3). We see an improvement for the

second level for p € (0,0.8).

4.4.4 Depolarizing channel

The depolarizing channel for p € [0,4/3] is given as

1z

o+ (L=p) s, (4.168)
B

Depy: px — p-Tr(pz)

where d := d; = dp denotes the dimension of the input and output. Notice that even though
often the channel is only studied for p € [0,1] where we can interpret p as a depolarizing
probability, the above expression also represents a channel for p € (1,4/3] (as, e.g., discussed

in |73, Chapter 3|).
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Figure 4.2: Comparison of the SDP upper bound n = 1 on the channel fidelity for five repetitions of
the qubit depolarizing channel in the plain coding setting, with the trivial coding scheme and the 5
qubit code from [10]. Notice the intersection of the 5 qubit code and the trivial scheme in the region
p € (0.1,0.2) and the singular behaviour of the first level in the region p € (0.6,0.7). In addition, for
p € [1,4/3] the behaviour of the first level seems to match exactly with the lower bound obtained with

an iterative seesaw algorithm reported in Figure 3.7 of [73, Chapter 3].

We find that
SDPLPPT(Depg, 2) = SDPZPPT(D(E])Q, 2) (4.169)
= SDP; ppr(Deps, 2) (4.170)
== SDPQ,ppT(Depg, 2) (4171)

However, in Section 4.4.3 we found that in general removing the PPT conditions allows us to

see a difference for the first two levels. This behaviour is not shown by the qutrit depolarizing
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Figure 4.3: Comparison of the SDP upper bound n = 1 on the channel fidelity for 5, 10, 15, 20, 25
repetitions of the 2-dimensional depolarizing channel in the plain coding setting. Notice that the
singular behaviour of the first level in the region p € (0.6,0.7) is even more accentuated with the

increase of the number of repetitions.

channel, probably due to its highly symmetrical structure. We computed the upper bound for

LOCC(1) coding and found for p € (0,0.8) that

(01616 (01616,
SDPLoor " (Deps, 2) = SDPYOLTY (Deps, 2) (4.172)
while,
SDP,oor (Deps, 2) < SDPY 201" (Deps, 2). (4.173)

We compared, for the plain coding setting, the n = 1 level for five repetitions of the qubit

depolarizing channel with the fidelity of the trivial coding scheme, as well as the 5 qubit code
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Figure 4.4: Comparison of the SDP upper bound n = 1 on the channel fidelity of the qubit amplitude

damping channel for 1, 2, 3 and 4 repetitions in the plain coding setting, as well as the trivial encoder

and decoder and the 4 qubit code from [66].

from [10]. In particular, following [84] we exploited the symmetries of the qubit depolarizing

channel to get the linear program

Y /N 3p\' (3p\ V"
SDP; ppr (Depgw’z) —max Y <Z) <1 - f) (f) mg (4.174)
=0
st. 0<m;<1 ie{0,...,N} (4.175)
1 g 1
2§§xi”“mi§2 ke{0,...,N} (4.176)
N
N .
( ,>3N2mi = 22N=2, (4.177)
=0 L
where i = g S0 vy () (5D (C1)77(d = DF7(d + )N for every ik €
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{0,..., N}. Notice that the number of variables grows linearly with N. The results are reported
in Figure 4.2. Comparing these with Figure 3.7 in [73, Chapter 3|, it seems that the first level
of the hierarchy matches their lower bounds in the region p € [1,4/3]. Notice the intersection
of the five qubit code and the trivial coding scheme in the region p € (0.1,0.2) and the singular
behaviour in the region p € (0.6,0.7). We have also examined five, ten, fifteen, twenty and
twenty five repetitions of the qubit depolarizing channel, again using the above linear program.
The results are shown in Figure 4.3. Notice that the singular behaviour noted in Figure 4.2 is

now even more accentuated when increasing the number of repetitions.

4.4.5 Amplitude damping channel

The qubit amplitude damping channel with damping probability v € [0, 1] is given as
Amp, : pg — E%pBE]OgT + E]l3pBE]13T (4.178)
where

EY = 10)(0] + /1T —y|1)(1], (4.179)

EL = /7[0)(1]. (4.180)

We compared the results given by one, two, three, and four repetitions of the channel for the
level n = 1. The bounds are shown in Figure 4.4, compared with the fidelity of the trivial
coding scheme, and the 4 qubit code from [66]. Notice the overlap between the first level of the
hierarchy and the trivial coding scheme for the one-shot setting, i.e., with a single repetition of
the channel. Comparing these results with Figure 3.12 in |73, Chapter 3| we see that there is
gap between their lower bounds (that significantly improves on the trivial coding scheme) and

our upper bounds.
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4.5 Worst case error criterion

4.5.1 Setting

So far we have used the channel fidelity from Definition 4.1.1 as the measure to study ap-
proximate quantum error correction, which corresponds to the average error case. In this
section, we consider the diamond norm (2.60) to study the worst case error?? and we find a
program for which the hierarchy can be used to generate, in this case, lower bounds?3. We
prove the sequence of semidefinite relaxations do in fact converge to the exact value of the

original optimization program.

Definition 4.5.1. Let N5 5 be a quantum channel and M € N, with M = dy = dg. The

channel distance is defined as

1
AW, M) :=min = [Dy 5oNG gy a—Ta 5, (4.181)
s.t. Dp_ 5. E 4,7 quantum channels. (4.182)

The following lemma writes the channel distance as given in Definition 4.5.1 in terms of

the Choi states of the encoder £, .+ and decoder Dy _, 5, respectively.

Lemma 4.5.2. Let N5 _, 5 be a quantum channel and M € N. Then, we have that

AN, M) = min A (4.183)

1
st. Eyq =0, BEg = i (4.184)

22The diamond norm is used to measure the worst case error because of its direct connection with the
worst case probability of failing to distinguish the outputs of two quantum channels, given any common input

state [11]. See also [87, Theorem 3.52].

23In this setting our hierarchy generates lower bounds because we are looking at outer approximations for a

minimization problem.



128 4.5. Worst case error criterion

1B
A
Z,5 =0, a'lAEZA

Zyg+ g = dydp - Trag [(1a® Y 0 15)(E,g @ Dyg)]

where J%B denotes the Choi state of N5_, 5 (see 2.41).
Proof. Following [86], the channel distance A(N, M) can be written as
AW, M) =min [[Za|
s.t. Dp_ 5,47 quantum channels
Zy5 =0, Zyg = da- JNET
We simplify
DoNoE—TL _ 7DoNoE T
JAE =Ju5 —JuB

_ DoNoE 7
- ‘]AE 2

write for the infinity norm [|Z4|, =min{A € R: A-14 = Z4} [81], and relabel %

leading to
AN, M) = min A

s.t. Dg_ 5, €47 quantum channels

A

Zap =0 57

1o = Za
DoNo&
Zapt P Iy

Following [65] and in particular [85, Equation 7|, we have the Choi state

TN = dydp - Trap [(1a @ 1), @ 15) (J5 © Tog)]

and writing Jfﬁ = E 7 as well as JEE = Dp7 concludes the proof.

(4.185)
(4.186)

(4.187)

(4.188)
(4.189)

(4.190)

(4.191)

(4.192)

B —
as Z 45,

(4.193)
(4.194)

(4.195)

(4.196)

(4.197)
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4.5.2 Hierarchy of lower bounds

Similarly as in Section 4.2.1, we define a hierarchy of semidefinite programs labelled by an
index n. Our framework directly applies as the structure of the optimization problem derived
in Lemma 4.5.2 involves the tensor product £ 7 ® Dgp. The n-th level of the SDP hierarchy

then generates the lower bounds SDP4 (N, M) for the distance A(N, M) as

SDP4L (N, M) := min X (4.198)
paawBy = Ugy (Paxwmy) V7 € (4.200)
14
PABB)y = da © P(BB)y (4.201)
1p,
PAA(BE); By — PAAGBE; T © (4.202)
A
Z 5 =0, a.lAiZA (4.203)
Zy5+ 5 = dadp - Trag (14 ® 4, @ 15) paaps] - (4204)

We can also add PPT constraints and denote the resulting relaxations by SDPﬁPPT (N, M).

The following theorem states the convergence of the hierarchy.

Theorem 4.5.3. Let N be a quantum channel and n, M € N. Then, we have

poly(d)
NG

0 < AN, M) —SDP2(WN, M) < (4.205)

implying
AN, M) = lim SDP5(N, M), (4.206)

n—oo

where d := max{da,dz,dp,dg}.
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Proof. The bound 0 < A(N, M) — SDP2 (N, M) holds by construction and thus we consider

the upper bound. First, note that again applying (4.193) we can write

SDP%(N, M) = min % IWN) 45 — Zazll, (4.207)
st p ey = 0, Tr [pAZ(BE)’f} =1 (4.208)
PAA(BB) = L{(”BE)? (pAZ(BE)?) Ve G, (4.209)
PABB) = 22 ® P(BB)r (4.210)
PAABB) B, = PAABB) ' © 1;:7 (4.211)
with the quantum channel W(N) , 5 defined via its Choi state
T = dydp - Trgy [(14 © J5 @ 15) paapp) - (4.212)

Second, using the de Finetti Theorem 3.6.5 we get that for every feasible Choi state p AA(BB)"
in SDP4 (N, M), there exists a feasible Choi state E 5 ® D g5 in A(N, M) from Lemma 4.5.2,

such that

lyv(d
HEAZ®DB§ - PAZBEH1 < po\;ﬁ( >' (4.213)

Third, employing the triangle inequality for the diamond norm we have

HDB—>§ oNzpo&aa— IA—>§H<} - HW(N)A—>§ o IA%EHO (4.214)
S ‘HDBHE oNZ poaa— IAH?H(} - HW(N)AHE - IA—)EHO’ (4.215)
< HDB—>§ ONZ—>B ° SA—>Z - W(N)A—>§H<> : (4'216)

Forth, relating the trace norm distance of Choi states to the diamond norm distance of quantum

channels (Lemma 2.2.4), we have

JV)

. H1 (4.217)

HIDBHE ONZHB OCA LA~ W(N)AHEHQ Sda- HJE%NOS o
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and thanks to the monotonicity under partial trace [87, Theorem 3.39], the sub-multiplicativity

of the partial trace (2.25), and the (oo, 1) Holder’s inequality, this bounds (4.216) as

1Dp 5o Nap 0 Eana — WN) a5l (4.218)
< dadgdp - | Trzp [(14 ® 4 © 15) (Baz © Dyg — paass) |, (4.219)
< dadgdp - ||(1a ® J5, © 15) (Baz © Dyg — paass)ll, (4.220)
< dadgdp - |14 ® 55 @ 15] | Exz © Dyg — pazpss (4.221)
< po\%d)’ (4.222)

with d := max{d4,dz, dp,dz}.
Finally, optimising in (4.216) over all feasible Choi states p AA(BB)! and then optimising

over all feasible Choi states £,z ® Dgp, we get the claimed upper bound

poly(d)
T

AN, M) — SDPL(N, M) < (4.223)
]

Numerically, we have found that for the qubit depolarizing channel the first level of our

hierarchy already gives the exact optimal value
A(Deps,2) = SDP{ppr(Deps, 2), (4.224)

which coincides with 1 — F'(Deps,2). That is, for the qubit depolarizing channel the average

and worst case error criteria become the same.
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Chapter 5

De Finett:i Reductions with Linear

Constraints

The previous chapters of this thesis investigated de Finetti theorems. Those results allow
to represent, or approximate, mathematical objects symmetric under permutations of their
components into a probabilistic ensemble of elementary independent and identically distributed
(i.i.d.) constituents. In particular, we have shown how to develop a family of such representation
theorems in presence of additional linear constraints. In several applications, instead of
representation results as given by de Finetti theorems, one may need to establish a generalized
order relation between the symmetric mathematical object and the probabilistic ensemble
of elementary i.i.d. constituents. De Finetti reductions, previously known as "post-selection
techniques" [22] or methods based on "universal states" [46], provide the desired inequality. For
example, a quantum de Finetti reduction provides an upper bound to a symmetric quantum

state in the form of an integral superposition of product states, weighted by a factor which is

133
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polynomial in terms of the number of copies and exponential in terms of the local dimensionality

pun = (n+ 1)d3%_1 /a%" doyy, (5.1)

where pyn is a permutation invariant quantum state, and doy is an appropriate measure over
the set of quantum states on H. The generality of expression (5.1) is also its main drawback.
On one hand, unlike finite de Finetti representation theorems, (5.1) provides an exact bound,
without any parameter controlling the approximation error. On the other hand, all permutation
invariant quantum states are upper bounded by the same mixture of tensor product states.
Any other information encoded in the permutation invariant state pyn is lost. A way to obtain
a state-dependent upper-bound is via a so-called "flexible" de Finetti reduction [64]. In a
flexible de Finetti reduction, each tensor product state appearing in the integral superposition
is weighted by its fidelity with the symmetric state, although an affine adjustment to the local

dimensionality is required
prn = (n+ 1)1 /F(PHMU%")U%TL doyy, (5.2)

where pyn is a permutation invariant quantum state, F'(p, o) := H\/ﬁ\/g Hf denotes the fidelity?,
and doy is an appropriate measure over the set of quantum states on H. As we see from (5.2),
only the tensor product states J%" that are close (in fidelity) to pyn should bring a relevant
contribution to the integral superposition. This effectively allows us to obtain a state-dependent
expression upper-bounding the permutation invariant state pyn. Flexible de Finetti reductions
can be applied to the study of the optimal winning strategy for certain types of multi-player
games [4]. Those flexible versions of de Finetti reductions can be seen as a complementary

approach to our work, but our techniques are different, and we do not use the fidelity.

'In order to avoid confusion, it is important to keep in mind that some authors use the name fidelity for the
square root of this quantity. In other words, they define the fidelity as \/F(p,0) = Hﬁﬁ”l This is the case

of [64].
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On the other hand, one can study both de Finetti representation theorems and de Finetti
reductions in the presence of additional constraints on the symmetric state (see Chapter 3,
[33], [18], and [64]). For cryptographic applications and error correction (see Chapter 4), it is
often useful to study the case where a new system, carrying external side information, adds a
non-symmetric contribution to the symmetric object. So far, no clear or systematic connection
between de Finetti reductions and de Finetti representation theorems has been proven in the

literature. Thus, in this chapter we have three main interests
1. How to extend de Finetti reductions to include the case with side information,
2. how to incorporate various types of constraints in the de Finetti reduction,
3. how to derive de Finetti representation theorems from de Finetti reductions.

The content of this chapter is largely based on our research notes [12] .

5.1 Classical Relative Entropy and Chain Rules

The starting point for our proof techniques is the use of various forms of chain rules for the
classical relative entropy. The classical relative entropy, also known as the Kullback-Leibler

divergence, is the classical version of (3.52), and is defined as?

erimage(X) bx (.T) log (Zﬁg;;) if Supp(pX) - SUPp(QX)

DKL(pXHQX> = px (2)>0 , (53)

00 otherwise

2The support of a probability mass function is formed by the set of points where the function is greater than
zero. Thus, supp(px) C supp(gx) implies that for every x € image(X) such that px(z) > 0, then gx(z) > 0 as

well.
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where X is a discrete random variable, px and sx are two probability mass functions, and

the logarithm is taken with respect to the basis two, i.e., log(-) := logs(+). For simplicity, we

will typically write Dir(px|lax) = >, px(z)log <Z§g;> in place of the complete notation of

(5.3).
In Section 3.6.2 we have presented Quantum Pinsker’s inequality (Theorem 3.6.1), which
relates the quantum relative entropy to the trace distance. The following is the classical version

of Pinsker’s inequality, which can be seen as a special case of Theorem 3.6.1.

Theorem 5.1.1. (Classical Pinsker’s inequality) Let X a discrete random variable and px, qx

probability mass functions, then

Dk r(pxllax) > Ipx — qx|I7, (5.4)

= 2In2
where [|px — ax|| := s cimage(x) IPx () — ax (@)

The following lemma provides a well-known chain rule for the Kullback—Leibler diver-

gence |25, Theorem 2.5.3].

Lemma 5.1.2. Let X,Y discrete random variables, pxy,qxy probability mass functions, then
Dxr(pxvllaxy) = Drr(px|lax) + E {Drr(pyxllav|x)} (5.5)

where the expectation is computed with respect to px.

Proof. The proof is obtained by a direct computation

Drr(pxyllaxy) = %pXY(m,y) log (%) (5.6)
x ()p(ylz)
a pr plule) log <q (x)Q(ylx)> &1)

- S (22) S (89) s
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= T z)| lo px(2)
=Y nt [gpm >] oz (245 (5.9)
- lzpymg(Ey:x;)] 5.10)

.T
—pr 10g< @ >+ZPX ) Dk L(Py|x=2l0v|x=z) (5.11)
= Drrpxllax) +E {Drr(pyixllavix)} - (5.12)
O]

The above lemma can be easily generalized for conditional distributions. For example, if
we add an additional discrete random variable C' with respect to which we do the conditioning,

we find the following chain rule

Drr(pxyicllaxyic) = Drr(pxicllaxic) + X]%C {Drrlpyixcllavixc)} (5.13)

where now the expectation is computed with respect to py|c := Lxe
It is possible to transform convex combinations of Kullback—Leibler divergences into a

quantum relative entropy. This result is the content of the following lemma.

Lemma 5.1.3. Let Q,Y discrete random variables, rg and pg,, qu probability mass functions

for every q € image(Q), then

> rala)Drr(pfsy,) (5.14)

=D<Z 9)la) Q|®ZPY o) wl[>_rala)le) Q|®ZSY ) yl) (5.15)
q

q

where the quantum states form an orthonormal basis for the associated Hilbert spaces.

Proof. The proof is obtained by direct computation of the quantum relative entropy

(Z 9)lg){ |®Zpy o) l||>ro \@ZSY )y} yr> (5.16)

q q
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=T {ZTQ )la) Q|®ZPY )y} (yllog (ZT@ ) q|®2py ’)] (5.17)
—Tr [ZTQ )|a) Q|®Zpy ) ylog(ZrQ ') q[®ZsY ’)] (5.18)

=Tr | Y ro(a)la)dl ®ZPY )y)( ylzzbg( /) quy,D ') (¢ y’)(y'] (5.19)
q Sy
[ q
=Tr Z ZTQ(q)pqy(y) log (i%;) |a){al @ |y) <y!] (5.20)
_ 5 (y)
_ZTQ Zpy <8§1/(y)> (521)
=> roq)Drr®|s]). (5.22)

q

O]

The following lemma is the classical version of the above result.

Lemma 5.1.4. Let Q,Y discrete random variables, rq and p{., sy probability mass functions

for every q € image(Q), then

ZTQ(Q)DKL(Z?;]/HS%) = Dk L(Poy 13qy); (5.23)
q

where pgy and 5qy are probability mass functions defined by poy = rq(q)py (y) and 3qy =

rQ(q)sy (y) for every q € image(Q) and y € image(Y).

Proof. The proof is obtained by a simple manipulation

> _re(@Drrflls) = Z?’Q Zpy 10g<py(y;> (5.24)

(y)
@) ) (5.25)
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~ PQy
= doy 1og< < ) (5.26)
q,Y

5Qvy

= Dkr(Pgy [3qv)- (5.27)

5.2 Constrained de Finetti Reductions with Side Information

De Finetti reductions are useful inequalities that are commonly used to simplify the com-
putation of certain bounds for the action of functionals on permutation invariant states. In
this thesis we are mainly interested in quantum de Finetti reductions, which are stated for
permutation invariant quantum states. However, de Finetti reductions do exist also in the
classical setting. For example, in [3] the authors prove various classical de Finetti reductions for
permutation invariant conditional probability distributions. Their approach is based, mainly,
on combinatorial arguments and can be generalized to handle additional types of symmetries
(e.g., the CHSH-type symmetry defined in [3, Definition 5]). In [48], the authors prove a
classical de Finetti reduction for permutation invariant probability distributions by using the
method of types in the context of composite hypothesis testing and its connection to Rényi
information measures. The method of types is also used in [7]. Moreover, the authors introduce
new proof techniques and derive classical flexible versions of de Finetti reductions.

As pointed out, there exist in the literature several quantum de Finetti reductions that are
able to handle specific linear constraints on the permutation invariant state (e.g., [33] and [64]).
Those theorems restrict the support of the measure in order to capture the specific linear
constrain on the initial state or introduce a fidelity weight in the integral superposition. In

this section, we introduce a new ingredient: the quantum side information. We prove a new de
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Finetti reduction in presence of quantum side information. Moreover, we show that our result
can handle, at the same time, two different types of constraints, a marginal constraint on the
symmetric part, and a general linear constraint on the quantum side information. Our result
can be seen as an extension of the constrained de Finetti reduction presented in |33, Corollary

3.9).

Proposition 5.2.1. Let Q, A and B be Hilbert spaces and pganpr a state symmetric with
respect to Q). Moreover, let pan = Ui’” for a fixed state 4. Then, there exist a probability

measure doap on the set of extensions cap of 04 and a state wg such that
pQanpn = (n+ 1)3d2 cwo ® /Ugg doag, (5.28)
with d := dAd2B.

Notice that in general we have wg # pg, but as pointed out at the beginning of this section,
Proposition 5.2.1 can be extended to handle linear constraints on the system carrying the

quantum side information Q).

Corollary 5.2.2. Under the same assumptions of Proposition 5.2.1 with additionally 'g_r a

linear map and Xp an operator on a Hilbert space F', the state wg can be chosen such that

FQ_>F<pQAn) =Xr® U%n - FQAF(WQ) =Xp. (5.29)

Note that the marginal constraint pan = 0%” is a special type of linear constraint, but we

do not know if it is possible to extend this to general linear constraints. Moreover, with the
introduction of the quantum side information (), the above results fit the framework of our
approximate quantum error correction example, which has been studied in Chapter 4. The
proofs of Proposition 5.2.1 and Corollary 5.2.2 are based on the extended Schur-Weyl duality

framework laid out in [33, Appendix C] and are given in Section 5.5.



Chapter 5. De Finetti Reductions with Linear Constraints 141

5.3 From de Finetti Reductions to de Finetti Theorems

5.3.1 From de Finetti Reductions to Relative Entropy Inequalities
Noteworthy, de Finetti reductions directly allow to bound the relative entropy distance® of
symmetric quantum states to convex combinations of tensor product states.

Lemma 5.3.1. Let Q and G be Hilbert spaces, and poan a state symmetric with respect to Q.

Consider a de Finetti reduction of the form

PQGn < pOly(n) c0Q Q@ /U%ndO'G, (530)

where dog is an appropriate measure over the set of quantum states on G. Then, there exists a
discrete random variable X, px a probability mass function, and of, quantum states for every

x € image(X), such that

D(paon||oq @ Y- px(@) [#6]°" ) < logpoly(n). (5.31)

This finding will be the basis to go from de Finetti reductions to representation theorems.

Proof. Thanks to Carathéodory’s theorem® (see [87, Theorem 1.9]), we can find a discrete
random variable X, px a probability mass function, o, quantum states for every « € image(X),

such that

/ o8 dog = Y px(a) (o8] (5.32)

3Here the word "distance" must be read as "statistical distance". The term statistical distance is a general
expression used to denote a functional quantifying the similarity between two statistical objects. A statistical
distance does not need to be a proper distance, in the metric sense. For example, the relative entropy is not

even symmetric, thus it is not a metric.

4Carathéodory’s theorem states that any point belonging to the convex hull of a set P, subset of a D-
dimensional real vector space, can be represented as a convex combination of at most D + 1 points in P. For

complex vector spaces, one can identify C with R
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The following sequence of monotonic operations concludes the proof

pocn = poly(n)-og ® /Ug" dog (5.33)
pacn 2 poly(n) -oq ® Y px(z) [0g]"" (5.34)
log(pgan) — log (UQ ® pr (x) [U@]@)”) < log poly(n) - 1&" (5.35)

PIQ/(Q;W <10g(PQG") — log <UQ ® ZPX(I‘) [0&]®" ))pgén =< logpoly(n) - pogn (5.36)
Tr [pQGn (log(pQGn) — log (O’Q ® pr(:x) [O’é]®n>>} < logpoly(n) (5.37)

0q® Y px(@)[0E]"" ) < logpoly(n), (5.38)
T
where we employed the operator monotonicity of the logarithm as well as of positive maps. [

Applying the de Finetti reduction from Proposition 5.2.1, Lemma 5.3.1 immediately leads

to the following bound.

Corollary 5.3.2. Under the same assumptions of Proposition 5.2.1, there exist a discrete
random variable X, px a probability mass function, a state wg on @, and 0% 5 extensions of

oA for every x € image(X), such that

D(pganpn |wa @ Y px(@)ohs]®") < 3% log(n + 1), (5.39)

with d = dd.

Notice that the right-hand side in Corollary 5.3.2 is not small for any non-trivial dimension.
In other words, if d # 0, the right-hand side diverges when taking the asymptotic limit n — oco.
However, in the next subsections we show how this corollary can be employed to derive de

Finetti representation theorems.
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5.3.2 Classical case

The following gives a proof for the classical de Finetti theorem based on entropy inequalities.
The basic idea is to condition iteratively on pairs of random variables by using the chain rule for
the Kullback—Leibler divergence (Lemma 5.1.2). This is reminiscent of the information-theoretic
proof strategy from [18|, based on the chain rule of the conditional mutual information, which

was also employed in our papers [13] and [14], and in Section 3.6.

Proposition 5.3.3. Letk € {1,...,n—1}, X and Gy - - - G,, discrete random variables, rq,...q,,
px and [, 8¢, probability mass functions for every x € image(X), and assume rq,,. G, to

be symmetric. Whenever we have

n

pr(a:) Hsa> < log poly(n), (5.40)
T =1

DKL (TGl...Gn

then there exists a probability mass function qx such that

HTGl...Gk - zz:qX(x) lﬁ[lsaHl <0 (W) : (5.41)

1=

Note that, in general, gx # px, and the bound O <\ /% - log n> is known to be suboptimal

in n (see, e.g., [48, Lemma 1]). Nevertheless, our strategy provides a novel proof technique that
can be used to systematically generate classical de Finetti theorems from classical de Finetti

reductions.

Proof. In what follows we assume, for simplicity, k¥ = 2 and n even. The generalization
to an arbitrary k € {1,...,n — 1} is obtained by grouping variables in groups of k in the
subsequent proof. Moreover, we prove a slightly more general statement, where we do not
assume the probability mass function rg,..q, to be permutation invariant. More precisely,

without assuming permutation invariance, we show that there exist a m € {0,...,n/2 — 1}
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and a probability mass function ¢gx such that

2log poly(n)
S V2m() [ TR (5.42)

If we then assume, as in the statement of Proposition 5.3.3, rg,,.. g, to be symmetric, the

X T
HTG2m+1G2m+2 - E qX (x)SG2m+1SG2m+2
x

existential quantification can be replaced, by symmetry, with a universal quantification.
We abbreviate sxGl,_Gh = H?:l SG, for h = 1,...,n, and using the chain rule for the

Kullback-Leibler divergence (Lemma 5.1.2), we obtain

DKL(TGl-nG’n pr(x)sgélmcn> = DKL(TGIGQ pr(a:)sélsa) (5.43)

Zmpx(x)sfél...@)} L

+ E DKL(TG G4|G1 G
Gle{ 3GalG1 G2 Zmpx(x)SxGng

(5.44)
with the sum formed of n/2 terms and the expectation value taken with respect to r¢,q,, and

TG1GoGaG . pX(x)'szY G (9192) .
TGaGa|GrGa = W. Defining p(x|g1g2) = Zsz(w)slngQ(ng) for every x € image(X),

g1 € image(G1) and gy € image(G2), we simplify the above sum as

DKL<7'GI...G,L pr(m)sglman) — DKL<7'G1(;2 pr(x)s’élséJ (5.45)
X x

Zp(xalcgsggsa)} +...

(5.46)

with similar definitions and simplifications for the other addends. Because each term in the
sum is non-negative and their sum is, by assumption, smaller than or equal to logpoly(n),
oly(n)

there must be at least a term in the sum smaller than or equal to %. In other words,

there exists a m € {0,...,n/2 — 1} such that

LE {DKL ("G 1Gam a1 G| D PG - Gom) sy, 580 } (5.47)
x
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< log poly(n)

<= (5.48)

and thanks to the joint convexity of Kullback—Leibler divergence [87, Corollary 5.12| we obtain

Dkt (leEsz {TG2m+1G2m+2|G1"'G2m} H Zm: G1.F1G2m {p(I|G1 cee sz)} Sé2m+1 Sév?erQ) (5.49)

 logpoly(n)

< 2 (5.50)
Defining ¢x(x) = Gl.EG% {p(z|Gy---Gap)} for every z € image(X), and using the law of
total probability Gl~%gm {TG2m+1G2m+2|G1"'G2m} = TGamas1Gamses We find

log poly(n)
DL (MG | 30 45 (@) 58 5Enss ) < I (5.51)
x
classical Pinsker’s inequality (Theorem 5.1.1) then concludes the proof. Ul

5.3.3 Quantum case

Using informationally complete measurements (Definition 2.2.3), we can leverage the previous
classical result to the quantum setting, thus obtaining a new proof for finite quantum de Finetti

theorems employing de Finetti reductions.

Theorem 5.3.4. Let k € {1,...,n— 1}, X be a discrete random variable, Gy - - - Gy, Hilbert

spaces with Gi = ... = Gy, pgr and of quantum states for every x € image(X), px a

probability mass function, and assume pgn to be symmetric. Whenever we have

D <pGn

ZpX(a:) [aé]®”> < log poly(n), (5.52)

then there exists a probability mass function qx such that

k- dk
Hka — qu(x)[aé]@)kH <0 G logn | . (5.53)

1 n
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Notice that the bound on the approximation error grows exponentially fast with k. Whether
it is possible to improve that k-dependence and maintain the proposed proof technique is still
an open question. On the other hand, we already know that the dependence in n is suboptimal.
This is not surprising following our comment on Proposition 5.3.3, which is used to prove

Theorem 5.3.4.

Proof. In what follows we assume, for simplicity, K = 2. The generalization to an arbitrary
k€ {1,...,n—1} is obtained using Proposition 5.3.3 in its full generality. We start by measuring
pGgn and [ag]@m with the same product measurement, i.e., we choose pug,..q, = Qi 1a,;-

Thanks to the monotonicity of the quantum relative entropy under positive maps, we have

Dir (Mclmcn(ﬂcn) ‘pr(fﬂ)ucl--cn([aé]@”)) < D(PG" ZPX(OE)[U?;]@)”) (5.54)

< logpoly(n) (5.55)

and using Proposition 5.3.3 for the post-measurement probability distributions we find

’1 < /I -/ 2ePoly(n) (5.56)

n

e, @ ne) (perc: = Y ax(@)os, @ oE,)
€T

for some probability mass function ¢x. Moreover, [17, Lemma 14| shows that we can choose

the product measurement pg, ® pg, such that

‘1'

| S 18dg - H(MG1 ® 1es)(penas — Y ax (x)og, ® 0&,)

x

HpGlGQ - Z qx(x)agl ® Uéz
x

(5.57)

This concludes the proof. O
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5.4 De Finetti theorems for quantum channels: simplifying the

constraints

In this section we use de Finetti reductions to derive a new de Finetti theorem for quantum
channels. In comparison to our results from Section 4.2, which were given for bipartite quantum
channels, here we look at generic single-input/single-ouput quantum channels as in [39], and we
show that is possible to drop one constraint and still achieve asymptotic convergence. While
we are not able to prove the theoretical minimality of our constraints, the simplification of the
existing conditions is definitely a fundamental step in the right direction. Moreover, our new
results provide insights on the "power" of the constraints and their effect on the convergence
speed.

For the purposes of this section we do not need side information, which would instead be
required for bipartite quantum channels. If we remove the system @ carrying the quantum side
information, Proposition 5.2.1 reduces to the quantum de Finetti reduction of [33, Corollary
3.2] with a slightly worse dimensional dependence in the scalar prefactor. Thus, in what follows

we will directly use their quantum de Finetti reduction.

Corollary 5.4.1. [33, Corollary 3.2] Let B and B be Hilbert spaces and ppng" @ state
invariant under permutation of the BB-systems. Moreover, let pgn = Ugn for a fized state op.

Then, there exists a probability measure do gz on the set of extensions opp of op such that
2_
ppngr < (n+1)T 71 /JggdaBB, (5.58)
with d == d Bd%.

Applied to the above de Finetti reduction, Lemma 5.3.1 gives the following relative entropy
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D <anB”

where X is a discrete random variable, px a probability mass function, and U%E extensions of

bound

_ ®"> < (d®>—1)-log(n+1), (5.59)

op for every = € image(X).
Using Theorem 5.3.4 with & = 2, we then conclude the validity of the following de Finetti

representation theorem

—1)-log(n+1
HpBBQ—ZqX o552 <18 V2 dpp - /20 \/ 8t D (560

where ¢x is an appropriate probability mass function. We formalize this result in the following

theorem, which is stated for an arbitrary k € {1,...,n —1}.

Theorem 5.4.2. Letk € {1,...,n—1}, B and B Hilbert spaces, and P(BB) @ state invariant
under permutation of the BB-systems. Moreover, let pgn = JB for a fized state op. Then,
there exist a discrete random variable X, a probability mass function qx, and o*— extensions

BB

of op for every x € image(X), such that

-log(n+1)

2
(dBdE - 1)
n

. (5.61)

HP(BB)]“_Z‘]X 55 ®k” <18-Vk-dy2-/2In(2) - \/

If we set op = ﬁ, we obtain the following corollary, valid for quantum channels and

expressed via the Choi states (as in Theorem 4.2.1).

Corollary 5.4.3. Letk € {1,...,n—1}, B and B Hilbert spaces, and P(BB)r O state invariant

XXn

under permutation of the BB-systems. Moreover, let pgn = 111%. Then, there exist a discrete
B

random variable X , a probability mass function qx, and J%E quantum states satisfying o = é—’;

for every x € image(X), such that

log(n +1)

leezy: - qu ot |, < 18- VE-dif2 - \/2m(2) \/ . (5.62)
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We can compare the above corollary with the de Finetti theorems for quantum channels
from Section 4.2. In particular, consider a quantum state P(BB)r satisfying the following two

conditions
2 = L5,
- P(BB)"'B, = PBB) ®

then Theorem 4.2.1 guarantees the bound

lecomy - > rx(e) oagl®|, < k255 W\/ —Dloslyg) s

n—k‘—l—l

with £ € {1,...,n — 1}, for an appropriate probability mass function px. In comparison,

Corollary 5.4.3 replaces the marginal constraint PBB) B, = P(BB @ % with a much

n
simpler one, i.e., ppn = ld,, However, this simplification comes at a price. In fact in Corollary

5.4.3 we find a new factor exponential in k, i.e., dk/ 2

We wonder if this prefactor is just an
artefact of our derivation or if it is really necessary. In the latter case, we would be able to

characterize the power of the non-trivial constraint P(BB)* B, = P(BB)»

. 18" . .
to the more basic ppn = —-. We leave it as an open question.
B

5.5 Proof of Proposition 5.2.1

First, we prove the following lemma, which is a version of Proposition 5.2.1 for pure states.
Second, we generalize the statement to mixed states by employing Lemma 5.5.2 on symmetric

purifications of permutation invariant states.

Lemma 5.5.1. Let Q, A and B be Hilbert spaces, and let pganpr a pure quantum state

symmetric with respect to Q. Moreover, assume pganpr satisfies the marginal constraint
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PAn = U%”, for a given quantum state o4 on A. Then, there exist a probability measure d¢p on

the set of purifications |¢)(p|ap of o4 and a quantum state wg on Q, such that

ponmn = (n+ ) g @ [ 10)(6155 do, (5.64)
with d :== max{d4,dp}.

Proof. The idea behind the proof is based on [33, Lemma 3.1]. In particular, we assume
without loss of generality that d = d4 = dp, and that o4 is invertible on A. In fact, it is
always possible to embed the smaller space into a larger system of dimension d and replace o 4
by 04 + €14, for € > 0. The claim is then obtained by taking the limit ¢ — 0. We define the

non-normalized maximally entangled state (cf. (2.39))
|0) A = Z |di)a ® |ei) B, (5.65)
where {|d;)a}; and {|e;) 5}i are orthonormal bases of A and B, respectively. Let now
T = / (Lan @ UE™)|0) (027 (1an © UE™) U, (5.66)

where dU is the Haar measure on the group of unitaries on B. As (0114/2 ® UB)]6’><9|(0X2 ® UJTB)

is a purification of o4 for any unitary Ug [69, Subsection 9.2.2], we can write

Tanpn = (05" @ 150) Y2 Tanpn (05" @ 150)1/2 (5.67)
— [ [0 s vsoelantoy? o Uh)] " av (5.68)
~ [1e1eizn a0 (5.69)

for some measure d¢ on the set of purifications |¢)(p|ap of oa.

We proceed by analysing the structure of T'an gn. For this purpose, we employ the well-known
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Schur-Weyl duality®, which equips the product space (A ® B)®" with the structure

A" = (R UL @ Van (5.70)
A
and
B&" ~ @ Upx® Vi (5.71)
A

where A indexes the Young diagrams. We then define the operator (cf. [33, Lemma 3.1|)
SAan = (K/An ® 1B7z)_1/2TAan (K,An ® 1Bn)_1/2 (572)

. d . . .
with Kan 1=, % 1y, , ® 1y, ,, featuring Tynpn and by properties of Schur-Weyl duality

we have [33, Lemma C.1]

Sanpr = lgymn (A0 B)- (5.73)
Consider now the operator

Roanpn(w) = (wélp ® kg (crf”)_l/2 ® 1Bn) PQA" BN (wél/Z ® (U%")_l/2 Kt ® 1B">

(5.74)

parametrized by an arbitrary state wg on @, where wél denotes the generalized inverse of wq
(see (2.19)). Since pganpn is pure and symmetric with respect to @, its support is contained

in Q@ ® Sym"(A ® B) and we have

supp(pgarpr) C Q @ Sym" (A ® B) = supp(Rganp»(w)) € Q ® Sym"(A® B).  (5.75)

5 Schur-Weyl duality asserts that one can isomorphically decompose the n-fold tensor product space ((Cd)®n

into a direct sum of tensor products Uy ® Vi of irreducible representations of the unitary group and the

symmetric group, for the various Young diagrams A of size n with at most d rows. Le., (Cd)®n =@, Ur® Va.
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Using this fact, we find [81]

Rganpr(w) = ||[RQarpr (W)l - 1@ ® Lsymm (A B) (5.76)
= [[RQanpr (W)l - 1@ ® Sanpn, (5.77)

which is rewritten as
= [|R@anpn (W) oo - wq ® Tanpn. (5.79)

We now make an appropriate choice for the state wg such that we have [|[Rgarpn (w)|loo <

(n+ 1)3d2, and hence together with the above what we set out to prove.

For that, we choose wg as the reduced state of

1

WQA"B” = Tr (WQAan

7 Woanpn, (5.80)
with

Woarsn = (1o @ k(0" 2 @15) poansn (1o @ (05 22 @ 1%)  (5.81)

Because of the structure of the operator Wganpgn, its support is a subset of Q ® Sym"(A ® B)

and we bound the denominator as

Tr (Woars) = T w3 *(05") ™ 20n (057) /2030 " (5.82)
=Tr [/@;‘}/2( o&") e (05" 1/2@,3/2} (5.83)
= Tr (rn) (5.84)
- Z (5.85)

A
<101 (5.86)
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< (n+1)*, (5.87)
where we used [47, Lemma 10] to bound dy, < (n+ 1)¢ as well as >°, 1 < (n + 1)¢. We then
obtain the desired bound for ||Rganpr||« as

—1/2 —1/2

=Tr (WQAan) . H(wgzl/2 X 1A"B”)WQA"B” (w&l/Z ® ]_Aan) ‘OO (589)
< (n+ 1% dsymn(aep) (5.90)
< (n+1)FH3d1 (5.91)
< (n+1)7°, (5.92)
where the first inequality in
H (ng/Q ® 1Aan) WoAn B (%1/2 ® 1,4an) Hoo < dsymn (425) (5.93)
< (n+ 1)1 (5.94)

is the application of |79, Proposition 4.3] to the state wgan g, and the second one is a standard
upper bound on the dimension of the symmetric subspace [87, Corollary 7.3]. This finishes the

proof. O

It is well known that permutation invariant states can be purified by symmetric (pure)
states |21, Lemma IL.5]. The following lemma shows that this is still true in the presence of an
additional quantum system, i.e., with side information. This result and its proof can be seen

as a generalization of the methods presented in [21].

Lemma 5.5.2. Let C, H be Hilbert spaces, and pcpn a state symmetric with respect to C.

Then, there exists a pure state |1,) € C ® Rc @ Sym"(H ® Ry) with Rc = C and Ry = H,
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such that
Trrery (1Y) (Wpl) = pcmn. (5.95)

Proof. Let {|j>C}j:1 ----- dcv{’j>Rc}j:17---7dc’ {|i>H}i:1,..-,dH’{ﬁ)RH}izl ----- dgr>s orthonormal bases
for C, Rc, H and Ry respectively. We show that the following choice for |1,) satisfies the

requirements of the lemma

Xn
) == (Vpcrn @ 1rern,) - Z N elire | ® <Z |i>H|5>RH) : (5.96)

Since popgn is symmetric with respect to C, the same will hold for \/pcg». In fact, let Uf,. an

arbitrary permutation operator on H", then

(16 ® U )y/ci (e ® (U1 = (1o © Uf)acim e (e ® (UF.)1)  (5.97)

which implies (1¢ ® UR.)/poms (1 @ (UE)T) = /pomn.
Now, to show that [¢,) € C ® Rc ® Sym"(H ® Rp), let Ufjn ® Uk, be an arbitrary

permutation on (H ® Ry)®™. We have

(1e® Lre & Ul ® Uy liéy) (5.99)
Xn
( lo @ Ufpn)y/porn @ 1re © UR”) D elire | ® (Z \i>H|5>RH> (5.100)
J 7
XN
( ielire | @ (Uf)' @ (UF,)f <Z i) i) r ) (5.102)
((10 ® Ufyn)y/pomm (e ® (Ufn)h) @ 1RcR}}) (5.103)

Xn
> Il (Zr ali)r ) (5.104)

(1c ® Ufn)/peiie ® 1, @ Ul ) (5.101)
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®n
= (vporn © 1rery,) - Z i)elire | © (Z |i>H’:Z>RH> (5.105)
= ¥p), (5.106)

where we used that (3, |1>H|E>RH)®R € Sym"(H ® Ry ). Finally, we compute the partial trace

Trrery (1Vp)(¥)l) (5.107)
Xn

=Trgy | (Vpcar @ 1gn) [1o® Z )i (|1 © )Ry (@ | Ry (Vpcrn @ 1gn)

(5.108)

pcrn (1o ® 1gn) \/pcan (5.109)

= pcHn- (5.110)
L]

With the above lemmas, we can now prove Proposition 5.2.1 and Corollary 5.2.2. The
proofs are done through straightforward extensions of the purification technique |33, Corollary

3.9).

Proof of Proposition 5.2.1. : Using Lemma 5.5.2 we see that pganpn has a symmetric purifica-
tion pQrgAnBr Ry, With purifying system R ® Rf%, where the local dimensions are dg, = dg
and dr,, = dadp. Lemma 5.5.1 with @) replaced by ) ® Rg and B replaced by B ® Rap,

applied to pgr,anpnry ,, yields

PQRQA"B"RY < (n+ 1) wQRQ /Iqb ¢|ABRAB , (5.111)
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where d¢ is a measure on the purifications |¢)(¢|apr,, of 04, and the dimensional factor is

d = max{dy, d(B®RAB)} = dAdQB. Taking the partial trace over Rg ® R%% on both sides gives

poanpn = (n+1°Fwg @ / (TYRAB [I¢><¢\ABRAB]>®nd¢ : (5.112)

The claim follows because the measure d¢ on the pure states |¢)(¢|apr,, can be replaced by
the induced measure dosp on the marginal states cap = Trr, 5 [|#)(¢|aBR, ). This concludes

the proof. 0

Proof of Corollary 5.2.2. : Keeping in mind the proof of Proposition 5.2.1, we now show by
direct evaluation that I'g_r(pgar) = Xr ® a%" implies I'g_, p(wg) = Xp. In particular, from

the proof of Lemma 5.5.1, we have the structure

Wa,QroanBrRY,
:T n Bn RN AB , 5113
WQRg TAnBnRY TT[WQRQAHB“RQB] ( )
featuring the operator
WQRroAnBrRY, (5.114)
—1/2, _@ny— _ -1/2
— (1QRQ ® F‘JAn/ (U% ) 1/2 Q 1BnR2B)pQRQAanR1ZB(1QRQ & (O’%n) 1/2/§An/ X 1B”RZB)
(5.115)
Hence, we have
Loor(wg) = Trry[Lo-r(wqr,)] (5.116)
WQRQA"B”R"
=Trr, |Tgor (TrAanRgB Tr[WQR Aan;f ] (5.117)
Q AB
ierl)
=T TI‘An n |: 5.118
et < B Te[Woanpn] (5.118)
B TI'[WQAan} ( )
r Woan
= Trn M (5.120)
1
Tt [ 4]
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Xp-Tr H;‘i/Q(U%n)71/205%%(0%71)*1/2%271/2}
Tr[r40]

= Xp. (5.122)

(5.121)

This concludes the proof.
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Chapter 6

Discussion

Our work establishes many new results involving de Finetti methods, i.e., de Finetti represen-
tation theorems and de Finetti reductions, and their application in quantum information. In
particular, we have developed a class of finite constrained de Finetti representation theorems
that can be used to generate asymptotically converging hierarchies of semidefinite programs.
This is done by fixing the several degrees of freedom, e.g., the underlying Hilbert spaces,
operators and linear maps, that parametrize the various representations. For a suitable choice
of those parameters, we have generated multiple SDP hierarchies and used them to approximate
constrained bilinear optimization programs arising in the context of approximate quantum error
correction. We performed numerical simulations to explore the low levels of our hierarchies,
analyzing the actual convergence speed of the generated approximations. With the rank loop
condition, we have been able to certify the optimality of the low levels for many low-dimensional
channels. We have derived a new constrained de Finetti reduction with side information, and
we have established a connection between de Finetti reductions and de Finetti representation

theorems. In particular, we have shown how to derive de Finetti representation theorems from

159
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de Finetti reductions, and we used our novel technique to obtain a new de Finetti representation

theorem for quantum channels with simplified constraints.

6.1 Open Problems

We believe that this line of work leaves some interesting open problems, for future work, as

follows.

1. Comparing the bound of our finite constrained de Finetti representation theorem (Theorem

3.6.6) with inequality (3.26), we see that the room for improvement is fairly limited.
However, it would be interesting to see if one can improve the square root and the logarithm
dependence. Moreover, finding the actual minimal conditions that still guarantee the

asymptotic convergence of the SDP hierarchies is still an open question.

. Given the generality of our framework, one can adapt our techniques to approximate other

quantities of interest, generating the desired asymptotically converging SDP hierarchy by

fixing the various degrees of freedom in our theorems.

. On the numerical side, one can explore more complex quantum channels or increase

the number of channel repetitions. For our low-dimensional examples, we certified the
optimality of the low levels of our hierarchy using the rank loop condition. It would be
interesting to see if this behaviour is also observed for higher-dimensional cases and to
explore the role of the PPT conditions in the collapse. In order to study more complex
settings, one needs to simplify further the optimization programs by taking advantage of
the potential symmetries of the particular noise model, as we did for the qubit depolarizing

channel in Subsection 4.4.4.
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4. Our techniques to generate a de Finetti representation theorem from a starting de Finetti
reduction lead to the bound of Theorem 5.3.4, which is suboptimal in n, and grows
exponentially fast with k. Moreover, our approach does not seem to be directly applicable
in the presence of quantum side information. It is an interesting open question whether it
is possible to adapt our methods to improve the dimensional dependence and to handle

side information.
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