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Abstract: Artificial intelligence (AI) technology leads to new insights into the manipulation of
quantum systems in the Noisy Intermediate-Scale Quantum (NISQ) era. Classical agent-based
artificial intelligence algorithms provide a framework for the design or control of quantum systems.
Traditional reinforcement learning methods are designed for the Markov Decision Process (MDP) and,
hence, have difficulty in dealing with partially observable or quantum observable decision processes.
Due to the difficulty of building or inferring a model of a specified quantum system, a model-
free-based control approach is more practical and feasible than its counterpart of a model-based
approach. In this work, we apply a model-free deep recurrent Q-network (DRQN) reinforcement
learning method for qubit-based quantum circuit architecture design problems. This paper is the
first attempt to solve the quantum circuit design problem from the recurrent reinforcement learning
algorithm, while using discrete policy. Simulation results suggest that our long short-term memory
(LSTM)-based DRQN method is able to learn quantum circuits for entangled Bell–Greenberger–
Horne–Zeilinger (Bell–GHZ) states. However, since we also observe unstable learning curves in
experiments, suggesting that the DRQN could be a promising method for AI-based quantum circuit
design application, more investigation on the stability issue would be required.

Keywords: quantum circuits; reinforcement learning; Q-learning; LSTM

1. Introduction

Recent advances in artificial intelligence (AI) and Noisy Intermediate-Scale Quantum
(NISQ) technology produce new perspectives in quantum artificial intelligence [1,2]. The
control of quantum system by a classical agent has been studied in various settings [3–5].
Reinforcement learning (RL) [6–12] was successfully applied to control problems [11,13] of
classical systems and fully observable Markov Decision Process (MDP) environments [14].
However, the control and learning of Partially Observable Markov Decision Process
(POMDP) [15–19] is more difficult due to indirect access to the state information. Both
planning [20] and learning [21] of POMDP are proposed. For a POMDP system, the un-
derlying state transition is classical Markovian and is different from quantum dynamics.
The quantum counterpart of POMDP, Quantum Observable Markov Decision Process
(QOMDP) [22–24], was theoretically studied. Implementation of a QOMDP planning
method for quantum circuits [2,25–33] is studied in a previous work [34]. Comparing
to state tomography-based methods, which require an exponentially large number of
measurement shots with respect to the circuit width, QOMDP-based approaches have
favorable sample complexity from quantum circuits. However, an exact QOMDP planning
method requires exponentially expensive classical computing. It is desirable to explore
approximation methods to reduce the cost of computational resources.
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Applying deep artificial neural networks for function approximations in reinforcement
learning is known as deep reinforcement learning (DRL) [6]. DRL can be applied to quan-
tum control [35–46]. Deep Q-network (DQN) [7,11] learning is a reinforcement learning
method using deep artificial neural networks for the Q value function approximation. The
traditional DQN method uses deep neural networks for the state-action Q-function for fully
observable MDP. The deep recurrent Q-network (DRQN) method is proposed to encode
the history sequence to tackle POMDP problems [47–50].

In this work, we implement a deep recurrent Q-learning agent for model-free reinforce-
ment learning [47–50] to design quantum circuits. The DRQN is based on long short-term
memory (LSTM) [51–53] networks that encode the action-observation history time-series
for partially observable environments [49,50]. The fidelity achieved by the DRQN learn-
ing agent is improved over learning episodes, showing the effectiveness of the proposed
algorithm. However, we also observe unstable learning curves in experiments. These
observations suggest that the DRQN could be a promising method for AI-based quantum
circuit design application, but more investigation on the stability issue would be required.

Many previous works for quantum control using different approaches can be found
in the literature [35–46]. Borah et al. and Baum et al. [35,42] use a policy gradient.
Niu et al. [37] use an on-policy method. He et al. [38] use a DQN. Bukov et al. [39]
use a Q-table. Mackeprang et al. [40] use a DQN and double DQN. Zhang et al. [41] provide
comparative study of Q-table, DQL, and policy gradient methods. August and Hernández-
Lobato [46] use LSTM for the policy gradient. All these works [35,37–42,46] are controlled
at the Hamiltonian level instead of at the circuit architecture level [34,43–45]. Kuo et al.
and Pirhooshyaran and Terlaky [43,44] use a policy gradient. Ostaszewski et al. [45] use
a double DQN. We note that Sivak et al.’s model-free paper [36] has several similarities
and differences compared to our work. Sivak et al. applied an actor–critic policy gradient
method to a quantum optical system with a continuous action space. Our work applied
deep recurrent Q-learning to a qubit system with discrete action set. Both Sivak et al.’s
method and our method are model-free and use LSTM. Sivak et al. use LSTM for the
policy network and the value network over a continuous action space. We use LSTM for a
history-dependent Q-function over a discretize action space, which is more practical for
field application.

This work is organized as follows. Section 2 introduces the LSTM-based DRQN
reinforcement learning method for quantum circuit architecture. Section 3 presents the
simulation results. Section 4 provides some discussion. Section 5 is the conclusion.

2. Methods

2.1. MDP, POMDP, and QOMDP

A POMDP problem instance is described by a set of states S, a set of actions A, a
set of observations Ω, a state transition probability P, an observation probability O, a
reward function R, and a discount rate γ ∈ [0, 1]. At each time step t, the agent in state
st ∈ S takes an action at ∈ A and moves to a new state st+1 ∼ P(s′|st, at). The agent also
receives an observation ot ∼ O(o|st), ot ∈ Ω and a reward rt = R(st, at, st+1) ∈ R. The
action-observation history time series is ht = {a1, o1, a2, o2, . . . at, ot}. The goal is to find a
policy π(a|h) to optimize the expected future reward Eπ

[

∑
T
i=t γi−tri

]

. In contrast to the
situation of MDP, a POMDP agent does not have access to the time series {st}.

A QOMDP problem instance is described by a Hilbert space S , a set of action
super-operators A, a set of observations Ω, a set of reward operators R, a discount rate
γ ∈ [0, 1], and an initial quantum state |s0〉. The set of actions consists of super-operators
A = {Aa1

, . . . , Aa|A|}, where each super-operator Aa = {Aa
o1 , . . . , Aa

o|O|} has |O| Kraus ma-
trices. At each time step t, the agent takes an action at, which introduces a change of the
state of current quantum system



Quantum Rep. 2022, 4 382

|st〉 7−→
Aat

ot
|st〉

√

〈st|Aat†
ot

Aat
ot
|st〉

The agent also receives an observation ot ∼ Pr(o||st〉, at) = 〈st|Aat†
o Aat

o |st〉, ot ∈ Ω

and a reward rt = 〈st|Rat |st〉 ∈ R, where Rat ∈ R. Similar to POMDP and MDP, the goal is
to find a policy to optimize the expected future reward.

2.2. LSTM-Based Deep Recurrent Q-Network

LSTM is a type recurrent neural network which can be used to model sequential data. The
hidden state ht and output ct are computed by the recurrence (ht, ct) = LSTM(ht−1, ct−1, xt−1)
for time-dependent input signal xt. Traditional Q-learning for observable MDP uses a state-
action Q-function Q(st, at) to represent the value of an action at at a known state st. To
deal with partially observable environments in which st is unknown, a history-dependent
Q-function Q(at,ht−1) is used instead of the state-action Q-function. By treating the action-
observation pair as input xt = (at, ot), LSTM enables the encoding of the history-dependent
Q-function Q(at,ht−1). A feed-forward neural network (FNN) is concatenated with the
LSTM output to represent the Q-function. The FNN is a simple linear transformation, and
its output gives the Q-value Q(:,ht−1) = Wct−1 + b, where W ∈ R

|A|×|h| is a trainable
weight matrix, and b ∈ R

|h| is a bias vector. |h| denotes the size of the LSTM hidden states.
The LSTM–FNN structure is shown in Figure 1a. The update of the Q function is via the
optimization of loss function

L = (Q(at,ht−1)− (rt−1 + γmax
A

Q(A,ht)))
2

which can be computed by back-propagation through time. The implementation is per-
formed by using the package PyTorch [54]. The hyperparameters can be found in Table 1.
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Figure 1. The setting of the proposed learning algorithm. (a) A LSTM cell and a feed-forward neural 
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Figure 1. The setting of the proposed learning algorithm. (a) A LSTM cell and a feed-forward
neural network (FNN) are used for history Q-function approximation. (b) The RL environment–
agent diagram.

Table 1. List of hyperparameters.

Hyperparameter Value

Target state fidelity threshold 0.99
Maximum steps per episode 100

Number of episodes 30,000
Reply buffer size 1,000,000

Epsilon start 1.0
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Table 1. Cont.

Hyperparameter Value

Epsilon end 0.01
Epsilon decay rate 0.9997

LSTM sequence length 3
LSTM hidden states size 30
FNN hidden states size 30
FNN activation function linear

Minibatch size 32
Learning rate 0.001

Soft update rate tau 0.001
Discount rate 0.95

2.3. RL Method

The proposed method is depicted in Figure 1b. The RL environment is the quantum
circuit to be designed. The classical agent receives 0–1 observation from measurement
result of the ancillary qubit. The action–observation pair is used to update the DRQN,
and then the decision for the next action is made by the agent to control the circuit. The
reward is the fidelity with respect to the target state rt = 〈st|starget〉〈starget|st〉. The pol-
icy is epsilon-greedy. Experience reply is used to stabilize the calculation. Using the
convention that the Hilbert space is ancilla ⊗ system, and the operator in Figure 1b is
U(at) = Uent(H ⊗ Uaction), where H is the single qubit Hadamard gate acting on the ancil-
lary qubit. The action unitary Uaction is chosen from the action set {CNOTi,j : i, j ∈ system} ∪
{Rd,i(θ) : i ∈ system, θ ∈ {±π

9 }, d ∈ {X, Y, Z}}. Here, CNOTi,j denotes the control-not
gate, for which the i-th qubit is the control qubit and the j-th qubit is the target qubit.
Rd,i(θ) denotes single qubit rotation of i-th qubit around d-axis. The system–ancilla en-
tangler Uent = ∏

i∈system
CNOTi,ancilla computes the system parity function and outputs the

result to an ancilla qubit. The setup is similar to that of [34], but the classical agent in this
work is an RL agent instead of a planning agent.

3. Results

Numerical simulations are conducted to test the applicability of the proposed method.
The simulation code is based on the packages Numpy [55], Matplotlib [56], PyTorch [54],
and Qiskit [57]. We test the state generation task for the 2-qubit Bell state and 3-qubit
Greenberger–Horne–Zeilinger (GHZ) state [58]. The target state is considered reached
when the fidelity is larger than a threshold value 0.99. The maximum number of steps for
each episode is set to be 100. The PyTorch hyperparameters are listed in Table 1.

Figure 2 is the learning curves for the 2-qubit Bell state. The received reward and
number of steps to reach the target state are plotted with respect to the number of learning
episodes. Each curve is the moving average of 2000 episodes and 10 independent runs. The
error bar denotes the one standard deviation over 10 independent runs. For 30,000 episodes,
we observe that the average reward is increased from <0.3 to >0.4. The maximum of the
one-sigma error bar is close to 0.65. The average number of steps to reach the goal is
decreased from >95 to <90. The minimum of the one-sigma error bar is close to 60.

Figure 3 shows the learning curves for 3-qubit GHZ state. For 30,000 episodes, we
observe that the reward is increased from <0.15 to >0.3. The maximum of one-sigma error
bar can be larger than 0.45. The average number of steps to the goal is larger than 99
throughout the learning episodes.
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Figure 2. Learning curves for 2-qubit Bell state generation. Each data point is the moving average
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(b) number of steps to reach the goal is plotted against number of episodes.
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of 2000 episodes, and the average value (solid line) with one standard deviation error bar (cyan
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Figure 4 is the city diagram for the density matrix generated by the RL agent. The
result is the highest fidelity result over 10 independent training runs and 100 test steps
for each training obtained by the policy of the last (30,000th) training episode. The fidelity
of the obtained density matrix is 0.9698 for the Bell state, and the fidelity of the obtained
density matrix is 0.6710 for the GHZ state.
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Figure 4. City diagrams for density matrices produced by the learning agent. The best result (highest
fidelity) over 10 random seeds and 100 test steps of the policy obtained in the last episode is reported.
(a) The 2-qubit Bell state experiment. The fidelity is 0.9698. (b) The 3-qubit GHZ state experiment.
The fidelity is 0.6710.

4. Discussion

From the experimental data in Figures 2 and 3, we observe that the fidelity of the
2-qubit Bell state and 3-qubit GHZ state are improved by the proposed learning algorithm.
However, since these values are mostly way below the stopping criteria 0.99, the number
of steps is not improved significantly. The best output state has high fidelity with respect
to the target for the 2-qubit case, while the 3-qubit case provides moderate fidelity. These
results demonstrate that the learning algorithm is effective, but the performance within our
experiments is not satisfactory. More learning episodes and fine-tuning of hyperparameters
could potentially improve the performance. The fidelity achieved in the 2-qubit Bell
experiments is generally better than that of the 3-qubit GHZ experiments. This is reasonable,
since the possible action space for the 2-qubit system is smaller, and the required action
sequence to produce a 2-qubit Bell state is shorter than that of a 3-qubit GHZ state.
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The city diagram in Figure 4 allows us to visualize the states produced by the agent.
The Bell–GHZ target state is 1√

2
(|00+|11〉) for two qubits and 1√

2
(|000+|111〉) for three

qubits. The ideal city diagram has peaks at four corners of the real part. For the 2-qubit
case, the experimental data resemble the ideal case, and, hence, the fidelity is higher. On
the other hand, the 3-qubit city diagram has many sub-peaks, which implies low fidelity.

To further understand the reasons behind the limitation of our method, the test fidelity
distribution histogram for 10 independent runs is plotted in Figure 5. It is observed that all
samples lie in the region Fidelity > 0.4 for both the 2-qubit and 3-qubit cases. However,
the 2-qubit result has the highest fidelity sample in the interval Fidelity ∈ [0.9, 1.0) , while
the 3-qubit result has the highest fidelity sample in the interval Fidelity ∈ [0.6, 0.7) . The
2-qubit result not only has better best-case performance but also has distribution maximum
at Fidelity ∈ [0.6, 0.7) . This is better than the peak location of the 3-qbuit result, which
is Fidelity ∈ [0.4, 0.5) . The problem is that a learning method that is successful for small
problem instances would not necessarily scale to larger problem instances. We are encoun-
tering an scalability issue that arises commonly in the application of machine learning
methodologies to optimization problems [59]. To the best of our knowledge, this is still an
unresolved issue in the community, so further investigation in this direction is desirable.

Quantum Rep. 2022, 4, FOR PEER REVIEW  7 
 

To further understand the reasons behind the limitation of our method, the test fidel-
ity distribution histogram for 10 independent runs is plotted in Figure 5. It is observed 
that all samples lie in the region ݕݐ݈݅݁݀݅ܨ > 0.4 for both the 2-qubit and 3-qubit cases. 
However, the 2-qubit result has the highest fidelity sample in the interval ݕݐ݈݅݁݀݅ܨ ∈[0.9,1.0), while the 3-qubit result has the highest fidelity sample in the interval ݕݐ݈݅݁݀݅ܨ ∈[0.6,0.7). The 2-qubit result not only has better best-case performance but also has distri-
bution maximum at ݕݐ݈݅݁݀݅ܨ ∈ [0.6,0.7). This is better than the peak location of the 3-qbuit 
result, which is ݕݐ݈݅݁݀݅ܨ ∈ [0.4,0.5). The problem is that a learning method that is success-
ful for small problem instances would not necessarily scale to larger problem instances. 
We are encountering an scalability issue that arises commonly in the application of ma-
chine learning methodologies to optimization problems [59]. To the best of our 
knowledge, this is still an unresolved issue in the community, so further investigation in 
this direction is desirable.  

  
(a) (b) 

Figure 5. Histograms of maximum fidelity over 100 test steps for 10 independent samples. (a) The 
2-qubit Bell state experiment. (b) The 3-qubit GHZ state experiment. 

5. Conclusions 
In this work, we propose and implement a deep recurrent Q-network algorithm for 

quantum circuit design. Experimental results show that the agent is able to learn to pro-
duce a better quantum circuit for entangled states’ preparation. However, the learned fi-
delity is not satisfactory. Future research and development are required to improve the 
quality of the state-generation task. In particular, scalability to larger problem instances 
should be tackled. It would also be desirable to explore other applications, for example, 
the energy minimization task [26,34,60–62]. 
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5. Conclusions

In this work, we propose and implement a deep recurrent Q-network algorithm for
quantum circuit design. Experimental results show that the agent is able to learn to produce
a better quantum circuit for entangled states’ preparation. However, the learned fidelity is
not satisfactory. Future research and development are required to improve the quality of
the state-generation task. In particular, scalability to larger problem instances should be
tackled. It would also be desirable to explore other applications, for example, the energy
minimization task [26,34,60–62].
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