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Abstract

This paper is about the positive part U;' of the quantum group Uy (ﬁz). The algebra U;' has a presen-
tation with two generators A, B that satisfy the cubic g-Serre relations. Recently we introduced a type
of element in U(;r , said to be alternating. Each alternating element commutes with exactly one of A,
B, gBA — g 'AB, gAB — g~ BA; this gives four types of alternating elements. There are infinitely
many alternating elements of each type, and these mutually commute. In the present paper we use the al-
ternating elements to obtain a central extension L{;r of Uq+ . We define Z/Iq+ by generators and relations.
These generators, said to be alternating, are in bijection with the alternating elements of U;‘ . We display
a surjective algebra homomorphism Z/[;' — U;' that sends each alternating generator of U;‘ to the cor-
responding alternating element in U;‘ . We adjust this homomorphism to obtain an algebra isomorphism
L{;r — Uq+ ® Flz1,z2,...] where [ is the ground field and {z, }Zil are mutually commuting indetermi-
nates. We show that the alternating generators form a PBW basis for L{q+ . We discuss how Z/I;' is related to
the work of Baseilhac, Koizumi, Shigechi concerning the g-Onsager algebra and integrable lattice models.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The g-Onsager algebra O, is often used to investigate integrable lattice models [1,2,4-8,10].
In [6] Baseilhac and Koizumi introduced a current algebra A, for O, in order to solve boundary
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integrable systems with hidden symmetries. In [10, Definition 3.1] Baseilhac and Shigechi gave
a presentation of A, by generators and relations. The presentation is a bit complicated, and the
precise relationship between A, and O, is presently unknown. However see [5, Conjectures 1, 2]
and [20, Conjectures 4.5, 4.6]. Hoping to shed light on the above relationship, in the present paper
we consider a limiting case in which the technical details are less complicated. Following [21,
Section 1] we replace O, by the positive part U, ; of the quantum group U, (sl;). We introduce an
algebra L{q"' that is related to U, ;‘ in roughly the same way that A, is related to O,. We describe
in detail how L{;‘ is related to U, q“‘ . We will summarize our results after a few comments.

We now give some background information about U q+ . The algebra U ; has a presentation
with two generators A, B that satisfy the cubic g-Serre relations; see Definition 2.1 below. In
[21] we introduced a type of element in U;r , said to be alternating. As we showed in [21,
Lemma 5.11], each alternating element commutes with exactly one of A, B, gBA — q*IAB,
gAB — ¢~ ' BA. This gives four types of alternating elements, denoted

W_ihiens  (Witidien,  {Gitihien,  {Gisi1lien.

By [21, Lemma 5.11] the alternating elements of each type mutually commute.

The alternating elements arise naturally in the following way. Start with the free algebra V on
two generators x, y. The standard (linear) basis for V consists of the words in x, y. In [14,15]
M. Rosso introduced an algebra structure on V, called a g-shuffle algebra. For u, v € {x, y} their
g-shuffle product is u * v = uv 4+ ¢ vu, where (u, v) =2 (resp. (u, v) = —2) if u = v (resp.
u # v). Rosso gave an injective algebra homomorphism g from U ;r into the g-shuffle algebra V,
that sends A — x and B +— y. By [21, Definition 5.2] the map f sends

Wo — x, W_1+— xyx, W_y = xyxyx,
Wiy, W2 = yxy, W3 = yxyxy,
G yx, Gy yxyx, G3 = yxyxyx,

Gi>xy,  Gar>xyxy, Gz xyxyxy,

In [21] we used f] to obtain many relations involving the alternating elements; see Lemmas 2.3,
2.4 below. These relations resemble the defining relations for A, found in [10, Definition 3.1].
We will say more about Lemmas 2.3, 2.4 shortly. In [21, Section 10] we used the alternating
elements to obtain some PBW bases for U ;‘ . For instance, in [21, Theorem 10.1] we showed that
the elements in order

W_idken,  {Gisiheens  {Wisilken
give a PBW basis for U ; , said to be alternating [21, Definition 10.3].
We now summarize the main results of the present paper. We define an algebra Z/{;r by gener-
ators
Woidkens WeriheeNs  (GirthieNs  {Gkttdken )

and the relations in Lemmas 2.3, 2.4. The generators (1) are called alternating. By construction
there exists a surjective algebra homomorphism L{;’ —-U ; that sends

W_i = Wy, Wit1 = Wiy, Gr — Gy, G > Gy

for k € N. As we will see, this map is not injective. Denote the ground field by [F and let {z,}°
denote mutually commuting indeterminates. Let [F[zy, z2, ...] denote the algebra consisting of
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the polynomials in z1, z2, ... that have all coefficients in . For notational convenience define
zo = 1. We display an algebra isomorphism ¢ :Z/l;‘ — U; ® F[z1, z2, .. .] that sends

n n
Won> > Wiy ® 2 Watt = ) Wap1k @,
k=0 k=0
n n
gn’_)Zank(nga Gn > Zank(g)Zk
k=0 k=0

for n € N. In particular ¢ sends

Wor> Wo®1, Wi W QI1.

We use ¢ to obtain the following results. Let Z denote the center of Z/l;‘ . We show that Z is
generated by {Z,}° |, where

n—1

n
Z,\l/ = nggn—kqn_zk —q ZW—kWn—kqn_l_zk-
k=0 k=0

We show that for n > 1, ¢ sends ZY > 1 ® z)/ where 2/ = > }_ zkzZn—kq"~2*. We show that
{Z,/}>2 | are algebraically independent. Let (W, Y1) denote the subalgebra of L{q'" generated by
Wo, Wi. We show that the algebra (Wy, W) is isomorphic to U, q“‘ . We show that the multiplica-
tion map

(W(),W1)®Z—>U;
wRz— wz

is an algebra isomorphism. We show that the alternating generators in order

W_ikeN, {Gk+1}keN, {Gr+1)keN, Wit 1}keN

give a PBW basis for Z/{;r . Motivated by the above results, near the end of the paper we give some
conjectures concerning A, and O,.

The paper is organized as follows. In Section 2 we give some background information about
Uq+ . In Section 3 we introduce the algebra L[;r and describe its basic properties. In Section 4
we obtain some results about the polynomial algebra F[zy, z2,...] that will be used in later
sections. In Section 5 we show that the map ¢ is an algebra isomorphism. In Section 6 we
describe the center of Z/[(;L and also the subalgebra of Z/[(;L generated by Wy, Wj. In Section 7
we describe several ideals of Z/{;r , and in Section 8 we describe some symmetries of L{j . In
Section 9 we describe a grading of U, that gets used in Section 10 to establish a PBW basis for
Z/{;‘ . In Section 11 we give some conjectures concerning A, and O,. Appendix A contains some
technical details.

2. The algebra U
We now begin our formal argument. Recall the natural numbers N = {0, 1, 2, ...} and integers

Z ={0,+£1,+£2,...}. Let F denote a field. We will be discussing vector spaces, tensor products,
and algebras. Each vector space and tensor product discussed is over IF. Each algebra discussed
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is associative, over I, and has a multiplicative identity. A subalgebra has the same multiplicative
identity as the parent algebra.
Fix a nonzero g € [F that is not a root of unity. Recall the notation

n__ ,—n
), =L -2+ neZ.
q9—9
For elements X, Y in any algebra, define their commutator and g-commutator by
[X,Y]=XY —YX, [X,Y]l,=qXY —q 'YX
Note that

[X.[X.[X.Y]),~1]1= XY — [38], XY X + [3], XY X* = Y X°.

Definition 2.1. (See [13, Corollary 3.2.6].) Define the algebra U, ;r by generators A, B and rela-
tions

[A,[A,[A, Blgl,~11=0, [B,[B,[B, Algl,~11=0. 2)

We call U ; the positive part of U, (;[2). The relations (2) are called the g-Serre relations.

We will be discussing automorphisms and antiautomorphisms. For an algebra A, an automor-
phism of A is an algebra isomorphism A — A. The opposite algebra A°PP consists of the vector
space A and multiplication map A x A — A, (a, b) — ba. An antiautomorphism of A is an
algebra isomorphism A — A°PP,

Lemma 2.2. There exists an automorphism o of U ; that swaps A, B. There exists an antiauto-
morphism S of U;r that fixes each of A, B.

We mention a grading for the algebra U q'" . The g-Serre relations are homogeneous in both
A and B. Therefore the algebra U ; has an (N x N)-grading for which A and B are homoge-
neous, with degrees (1, 0) and (0, 1) respectively. The trivial homogeneous component of U ;
has degree (0, 0) and is equal to F' 1.

The alternating elements of U ; were introduced in [21]. There are four types, denoted

(W_ihieNs  (Witihens  {GrtihieN,  {Gisilien- 3)

As we will review in Lemma 2.9, the above elements are obtained from A, B using a recursive
procedure with initial conditions Wy = A and W| = B.

In [21] we displayed many relations satisfied by the alternating elements of U, ,;r . In the next
three lemmas we list some of these relations.

Lemma 2.3. (See [21, Proposition 5.7].) For k € N the following holds in U [;r :
[Wo. Wer1] = [Wor. Wil = (1 — ") (Grp1 — Gig1). )

[Wo, Gri1ly = [Grr1, Woly = (g — g~ HW_i_1, (5)
[Gis1, Wily = W1, Gislg = (g — ¢~ ) Wipa. (6)
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Lemma 2.4. (See [21, Proposition 5.9].) For k, £ € N the following relations hold in U;':

[W_r, W_¢]=0, [Wit1, Wep1=0, (N
[W_k, We1]+ [Wig1, Woe] =0, (8)
[W_i, Ger1] + [Grg1, W] =0, 9
(Wi, Ges1]+ [Gra1, W_g] =0, (10)
[Wit1, Geg1]+ [Gig1, Wegr11=0, (11)
[Witt. Gea1] + [Grg1, Wern1=0, (12)
[Git1.Ges11=0,  [Gig1.Ges1]1=0, (13)
[Gk+1, Ges1] + [Grgr, Gega1 = 0. (14)

Lemma 2.5. (See [21, Proposition 5.10].) For k, £ € N the following relations hold in U; :

[W_k,Gelg =[W_¢, Gilys (Gk, Wet1lg =[G, Witily, (15)
[Gk. W_¢lg =[Ge, W_ilg. [Wet1, Gilg = [Wigr. Gelg. (16)
[Gk, Gi1] =[G Grg1] = g[W—g, Wi lg — g[W—k, Weg11q. (17)
[Gk. Ges1] — [Ge. Grg1] = q[Wegr, Wiy — q[Wis1, W—ely, (18)
[Grt1, Ger1lg — [Gegt, Grrilg = qIW—y, Wika] — q[W—k, Wesal, (19)
[Git1. Gesilg — [Gest, Gigrlyg = q[West, Wog—11— g[ Wi, Weg—11. (20)

Note 2.6. By [3, Propositions 3.1, 3.2] the relations in Lemma 2.5 are implied by the relations in
Lemmas 2.3, 2.4. For this reason we will give Lemma 2.5 less emphasis than Lemmas 2.3, 2.4.

Note 2.7. The relations in Lemmas 2.3, 2.4 resemble the defining relations for A, found in [10,
Definition 3.1].

Consider the four sequences in (3). By (7), (13) the elements of each sequence mutually
commute. According to [21, Lemma 5.11],

(i) an alternating element commutes with A if and only if it is among {W_; };cN;
(ii) an alternating element commutes with B if and only if it is among {Wi41}reNs

(iii) an alternating element commutes with [B, A], if and only if it is among {Gy1}keN:
(iv) an alternating element commutes with [A, B], if and only if it is among {Gk+] HeeN-

For notational convenience define Gy = 1 and Go =1.

Lemma 2.8. (See [21, Proposition 8.1].) For n > 1 the following hold in U; N

n n—1
D GiGukg" =g ) W Warg" ', @1)
k=0 k=0

n n—1
Z GiGrig® " =g Z Wk W_g" 172, (22)

k=0 k=0
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n n—1

GrGnig" =g ) WakWogg™+'™", (23)
0 k=0
n n—1

GrGnkg™ " =q ) W Wygg™t' ™" (24)
0 k=0

k

k

Lemma 2.9. (See [21, Proposition 8.2].) Using the equations below, the alternating elements in
U q+ are recursively obtained from A, B in the following order:

Wo, Wi, Gi, Gi, W_i, Wi, Ga, Gy W, Ws,
We have Wy = A and W1 = B. Forn > 1,

S Wk Warkg" T = ST GiGukg" T WaWo — WoW,

G 9
" q"+q" (1+g72)(1—g2)
(25)
~ WoW,, — W, W
Gy =Gy + 0 (26)
l—gq
gWoGn —q~ G, Wy
= ——— 27)
q9—49
G, Wi —q 'W,G
W1 = 222 q_;’_l . (28)

Lemma 2.10. (See [21, Proposition 5.3].) The maps o, S from Lemma 2.2 act on the alternating
elements as follows. For k € N,

(i) the map o sends
Wi > Wi, Wit1 > Weg, Gy +— G, Gy — Gi;
(1) the map S sends

W_i = W_g, Wit1 = Wi, Gi > Gy, Gi + Gi.

Lemma 2.11. (See [21, Section 5].) The alternating elements of U(;r are homogeneous, with
degrees shown below:

Alternating element Degree
W_g (k+1,k)
Wit1 (k,k+1)
Gy (k, k)

G (k, k)

3. The algebra U}

Motivated by Lemmas 2.3, 2.4 and [10, Definition 3.1], we now introduce the algebra Z/l(;r .
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Definition 3.1. We define the algebra L{;‘ by generators

V_iheeN,  Witridiens  (Girilkens  {Gk+1hien

and relations

Wo, Wil = Wi Wil = (1 = ¢~ (Grs1 — Git1).
Wo, Grs1lg = [Gra1, Wolg = (¢ — g~ Wit
[Git1, Wily = IW1, Girily = (@ — ¢~ )Y Wi,
W_k, W—e]1 =0, Wi+1, Wet11 =0,
V—i, Weg1] + Wi1, W—e1 =0,

Wk, Geg1] + [Gry1, W] =0,

W_t, Ge1]+ [Grs1, W] =0,

[Wit1, Gea1] + [Grr1, Wer11 =0,

Wit Ger] + Gt Wes11=0,
[Gk+1,Ge+11=0, [Gr+1, Ges11=0,

[Gi+1, Ge1] + [Gir1, Ger11=0.

(29)

(30)
€2y
(32)
(33)
(34)
(35)
(36)
(37
(38)
(39)
(40)

The generators (29) are called alternating. For notational convenience define Go = 1 and Go=1.

Lemma 3.2. For k, £ € N the following relations hold in L{;‘:

WV, Gelg = [W—¢, Gilg» (G, Wet1ly =1Ge, Wity

(G, W—ely = [Ge, Wiy, Wett, Gilg = Wit1, Gl

(G, Ge11 = [Ges G ] = @IV, Wit 11g — qDV—k, Wiy,

[0k, Ges11 = [Ge, Gir1] = gDWes1, Woirlg — Wik, Wiy,

[Gt1, Ges1lg — [Ges1, Grrtly = gDWV—e, Wigal — DWWk, Wil
[Gkt1, Gerilg — [Gests Ger1lg = qDWer1, Wek—11 — gWier1, W11

Proof. By Note 2.6. O

The algebras U and U, are related as follows.

Lemma 3.3. There exists an algebra homomorphism y : U, — U,f that sends

W_y—= W_,, Wn—i—l = Whit, Gy = Gy, g~n = Gn

for n € N. Moreover y is surjective.
Proof. By Definition 3.1. O

The kernel of y is described in Section 7.

(41)
(42)
(43)
(44)
(45)
(46)
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Definition 3.4. Let {z,};°, denote mutually commuting indeterminates. Let F[z1, z2, ...] de-
note the algebra consisting of the polynomials in z1, z2, . .. that have all coefficients in . For
notational convenience define zo = 1.

Lemma 3.5. There exists an algebra homomorphism n :Z/{; — F[z1, 22, ...] that sends

W_p =0, Wn—i—l — 0, Gn > Zn, g~n = Zn (47)

for n € N. Moreover 1 is surjective.
Proof. Use Definition 3.1. O

The kernel of 1 is described in Section 7.
We have indicated how L{;’ is related to U, ; and F[zy, z2, . ..]. Next we consider how L{; is

related to U; ®F[z1,22,...].

Lemma 3.6. There exists an algebra homomorphism ¢ :Z/{; - U ; ®Flz1, 22, ...] that sends

n n
W_, = Z Wi—n ® 2k, Wait1 = Z W1k ® 2k,
k=0 k=0
n n
gn'_)Zank(@Zk, Gy — Zank ® Zk
k=0 k=0

for n € N. In particular ¢ sends

Wor Wo® 1, Wi W ®1. (48)
Proof. Use Lemmas 2.3, 2.4 and Definition 3.1. O

In Section 5 we show that ¢ is an isomorphism.

Next we consider how y is related to ¢. There exists an algebra homomorphism 6 :
F[z1,z2,...] = F that sends z, > O for n > 1. The map 6 is surjective. Consequently the vec-
tor space F[z1, 22, ...] is the direct sum of F1 and the kernel of 6. This kernel is the ideal of
F(z1, 22, ...] generated by {z,}52,,.

Lemma 3.7. The following diagram commutes:

U —— Uf®Flz. ...

yl lid@e id = identity map
ur —— UreF
7 x>x®l1 9

Proof. Chase each alternating generator of L{q“' around the diagram, using Lemmas 3.3, 3.6 and
the definition of 6. O

Next we consider how 7 is related to ¢. Since U(;r is generated by A, B and the g-Serre
relations are homogeneous, there exists an algebra homomorphism ¢ : U, ;r — F that sends A —
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0 and B +— 0. The map ¢ is surjective, so U, ;‘ is the direct sum of 1 and the kernel of . The
following are the same: (i) the kernel of ¥; (ii) the two-sided ideal of U, (;“ generated by A, B; (iii)
the sum of the nontrivial homogeneous components of U (;r . By Lemma 2.11 the map 9 sends

W_i =0, Wit1 0, Git+1+— 0, Giy1 0 49)
for k € N.
Lemma 3.8. The following diagram commutes:
u; LN Uf ®Flz1,22,...]

| [

Flz1,22,...] —— F®Flz1,22,...]
x—1Qx

Proof. Chase each alternating generator of Z/{q+ around the diagram, using Lemmas 3.5, 3.6 and
“49). O

Next we describe some symmetries of Z/{; .

Lemma 3.9. There exists an automorphism o of L{;‘ that sends

W_i = Wi, W1 = Wy, Gr — Gi, Gr = Gi

for k € N. There exists an antiautomorphism S of L{;r that sends

W_i=> Wy, Wit = Wi, G > Gi, Gk > Gk
fork e N.

Proof. Use Definition 3.1. O

Next we introduce a grading for L[; .

Lemma 3.10. The algebra U; has an (N x N)-grading for which the alternating generators are
homogeneous, with degrees shown below:

Alternating generator Degree
W_k (k+1,k)
Wit1 (k,k+1)
Gi (k.k)

Gk (k, k)

Proof. The defining relations for Z/{;‘ are homogeneous with respect to the above degree assign-
ment. [
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4. The polynomial algebra F[z1, 22, ...]

Recall the algebra F[zy, z2, . ..] from Definition 3.4. In this section we obtain some results
about [F[z1, z2, .. .] that will be used in later sections.

Definition 4.1. For n € N define
n
o =) uzn-kg" (50)
k=0

Note that zj = 1.

Example 4.2. We have

2 =@ +qg Ha,
& =(q@*+q9 D+,
F=@+q Hn+@+9 Hazn.

Lemma 4.3. For n > 1 the element z,) is a homogeneous polynomial of total degree n in

21,22, - - -, Zn, Where we view each zi as having degree k. For this polynomial the coefficient
n

of znis q" +q7".
Proof. By (50). O

For n > 1, we now seek to express Zp as a olynomial in Zv, Zv, ey Zv. Towards this oal,
- p poly 12422 n g
we first express 7, as a polynomial in Z;l/ and 21,32y «++3Zn—1-

Lemma 4.4. Forn > 1,

_Zy = S0 zkznkg" 51)
n = qn+q" ’

Proof. Solve (50) forz,. O

For n > 1, we use Lemma 4.4 and induction on n to express z, as a polynomial in

2N ST AY
Example 4.5. We have
\
Z
1= 717,
q+q

_(g+q D) - @))?
2T UTa G +q Y
@ t+a PP+ gD — (g +q D2 + &)
B (@+aH%q*+97 (> +q73) '

23
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Lemma 4.6. For n > 1 the element z, is a homogeneous polynomial of total degree n in
2.2y ..., 2, where we view each z;| as having degree k. For this polynomial the coefficient of
5 is (q" +q™ 7N

Proof. By (51) and inductiononn. O
Corollary 4.7. The elements {ZX};.,O:1 are algebraically independent and generate ¥[z1, 22, .. .].

Proof. The first assertion follows from Lemma 4.3 and since {z,};2, are algebraically

independent. The second assertion follows from Lemma 4.6 and since {z,};,-, generate
Flz1,22,...]. O

Corollary 4.8. There exists an automorphism of the algebra F(zy, z2, ...] that sends z, + z,/
forn>1.

Proof. This is a reformulation of Corollary 4.7. O
5. The map ¢ is an isomorphism

Recall the map ¢ from Lemma 3.6. In this section we show that ¢ is an isomorphism.
The following definition is motivated by (21).

Definition 5.1. For n > 1 define

n n—1
ZY =3 GGukq" " =g Y WiWuig" (52)
k=0 k=0

For notational convenience define Z(Y =1.

For any algebra A, an element in A is central whenever it commutes with every element of

A.
Lemma 5.2. For n € N the element Z,/ is central in L{;‘ .
The proof of Lemma 5.2 is slightly technical, and contained in the Appendix.

Note 5.3.The central elements (52) resemble the central elements for A, given in [5,
Lemma 2.1].

Lemma 5.4. For n € N the map ¢ sends Z,) = 1 ®z,).

Proof. Expand ¢(Z,/) using Lemma 3.6 and Definition 5.1. Evaluate the result using (21) and
50). O

Definition 5.5. Let Z denote the subalgebra of Z/{(;r generated by {Z,}°° .
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For an algebra A, its central elements form a subalgebra called the center of A. By Lemma 5.2
the subalgebra Z is contained in the center of Z/l;‘ . In Section 6 we show that Z is equal to the

center of U,
Next we introduce some elements {Z,},cN in Z, that are related to {Z,'},cn in the same way
that {z,},eN are related to {z,)},eN- The elements {Z,},cn are defined recursively.

Definition 5.6. Define Zyp =1 and forn > 1,

Z) = 32 ZeZnkg"

Z,= i (53)
Lemma 5.7. Forn € N,
n
z) = Z Zi Zn—iq" k. (54)
k=0

Proof. Solve (53) for Z). O

Lemma 5.8. The subalgebra Z from Definition 5.5 is generated by {Z,}7° .
Proof. By Definition 5.5 and Lemma 5.7. O

Lemma 5.9. The map ¢ sends Z, — 1 ® z,, forn € N.

Proof. We use induction on n. The result holds for n =0, since Zg =1 and zg = 1. Next assume
n > 1. Using Lemma 5.4 and (51), (53) along with induction,

O(ZY) = Y021 9(Ze(Zn—i)g"

(P(Zn) =

"t
1@z =31 1@z ®zy_)g" %
- qn + qfn
e 2 = Yho) zkznkg" >
q"+q™"
=1®z,. O

We have a comment.
Lemma 5.10. The map ¢ sends Z onto F @ F[z1, 22, ...].
Proof. By Lemmas 5.8,5.9. O
Next we show that the algebra L{C;|r is generated by Wy, Wi, Z.

Lemma 5.11. Using the equations below, the alternating generators of Z/lq+ are recursively ob-
tained from Wy, Wi, Zlv, sz, ... in the following order:
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Wo, Wi, G, Gi, W_i, Wa, G, G, W_a, Wi,

Forn>1,
o 4 F g IO WoiWaokg ™ 2 = 0 GiGig”
n ql’l +q—n
WaWo — WoW,, 55)
A+g (1 —qg7%’
. WoW, — W,
Gr=Gy + 0 (56)
1—gq 2
WoGn —q G
anzq 0G q_lgn 0’ (57)
q—q
Wi —q~'w
Wn+1=qgn ;_Z_l ]gn‘ (58)

Proof. Equation (56) is from (30). To obtain (55), add ¢" times (56) to (52), and solve the
resulting equation for G,. Equations (57), (58) are from (31), (32). O

Corollary 5.12. The algebra Z/l;‘ is generated by Wy, Wi, Z.
Proof. By Lemma 5.11 and since {Z,/}*° | generate Z. O

Note 5.13. Lemma 5.11 and Corollary 5.12 resemble the results for A, given in [5, Proposi-
tion 3.1] and [5, Corollary 3.1].

Lemma 5.14. In L{;‘ we have

Vo, o, Vo, Wilgl,-11=0, (59)
V1, VL W, Walgly-11=0. (60)

Proof. Consider (59). Setting n = 1 in (55), (57) we obtain

G — Z) + gWoW, [W1, Wol
q+q! (1+¢ (1 -g7%
z) Vo, Wil
= —~ 61
q+q~" 9> —q7? ©0
and
W ’
Wi = %. (62)

The elements Wy, W_; commute by (33), and Z}’ is central by Lemma 5.2. By these comments
and (61), (62) we obtain
0=[Wo, W-1]
Wo, W, G141
q—q"
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Wo, [Wo, G114
qg—q7!
Vo, Vo, Vo, Wily-11lq
(@—q7D4g*—q7
Vo, [Wo, Vo, Wilgly-1]
(-9 @g*—q7
which implies (59). The equation (60) is similarly obtained. O

3

Note 5.15. Lemma 5.14 resembles a result for A, given in [5, Line (3.7)].

Lemma 5.16. There exists an algebra homomorphism ¢ : U; ®F(z1,22,...1—> Z/l; that sends

Wo® 1+~ W, Wi®l— W, 1®z, > Zy, n>1.
Proof. By Lemma 5.14 and since {Z,}22 | are central in Llj .o
Theorem 5.17. The maps ¢, ¢ are inverses. Moreover they are bijections.

Proof. By Lemma 5.8 and Corollary 5.12, the algebra Z/l;‘ is generated by Wo, Wi, {Z,};2 ;.
Each of these generators is fixed by the composition ¢ o ¢, in view of (48) and Lemmas 5.9, 5.16.
Therefore ¢ o ¢ is the identity map on Z/lq"r . By Definition 2.1 and the construction, the algebra
U;‘ ® Flz1,z2,...] is generated by Wy ® 1, W1 ® 1, {1 ® z, ;’l":l. Each of these generators is
fixed by ¢ o ¢, in view of (48) and Lemmas 5.9, 5.16. Therefore ¢ o ¢ is the identity map on
U q"' ® F[z1, z2, . ..]. By these comments the maps ¢, ¢ are inverses, and hence bijections. O

6. Two subalgebras of L4}

In this section we describe two subalgebras of Z/l; : the center of Z/{(;r and the subalgebra
generated by Wy, W.
To obtain the center of L{; we will use the following fact.

Lemma 6.1. (See [22].) The center of Uq"‘ isF1.
Recall the subalgebra Z of Z/qur described in Definition 5.5 and Lemma 5.8.

Proposition 6.2. The following (1)—(iv) hold:

(i) Z is the center of U ;

(ii) there exists an algebra isomorphism F[z1, 22, ...] = Z that sends z, — Z, for n € N;
(iii) the above isomorphism sends z,! + Z, forn € N;
(iv) the inverse isomorphism is the restriction of 1 to Z.
Proof. (i) By Lemma 6.1 and the construction, the center of U[;r ® Flz1,22,...] is equal to

F ®F[z1, 22, ...]. Applying ¢ = ¢!
Z.

and Lemma 5.10, we find that the center of Z/{q+ is equal to
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(>i1), (iv) Since {Zn}fjo=1 mutually commute, there exists an algebra homomorphism f :
Flz1,z2,...] — Z/lq'" that sends z,, + Z, for n > 1. The map f has image Z by Lemma 5.8.
By Lemma 3.8 and Lemma 5.9, the map n sends Z,, — z,, for n > 1. So the restriction of n to Z
is the inverse of . These maps are invertible and hence isomorphisms.

(iii) Compare (50), (54) and use (ii) above. O

Corollary 6.3. The elements {Z,}7° | are algebraically independent. Moreover the elements

{Z,\l/}floz1 are algebraically independent.

Proof. The first assertion follows from Proposition 6.2(ii). The second assertion follows from
Corollary 4.7 and Proposition 6.2(iii). O

Let (Wp, W) denote the subalgebra of U(j generated by Wy, Wi.
Proposition 6.4. The following (i), (ii) hold:

(i) there exists an algebra isomorphism U ;‘ — W, Wh) that sends Wy — Wy and W1 — Wy;
(ii) the inverse isomorphism is the restriction of y to (Wp, W1).

Proof. By Definition 2.1 and Lemma 5.14, there exists an algebra homomorphism b : U (;r — Z/[(j
that sends Wy — Wy and W1 — W. By Lemma 3.3 the map y sends Wy — Wy and W) — W1.
So the restriction of y to (Wyh, Wi) is the inverse of b. These maps are invertible and hence
isomorphisms. 0O

Next we describe how the subalgebras Z and (Wy, W) are related.

Proposition 6.5. The multiplication map

(Wo,Wl)®Z—>Z/1q+
wRZH— wz

is an algebra isomorphism.

Proof. Let m denote the above multiplication map. The map m is an algebra homomorphism
since Z is central in U;’ . Let yrest denote the restriction of y to (Wy, Wi). The map preg :
Wo, Wi) = U, q+ is an algebra isomorphism by Proposition 6.4(ii). Let 1 denote the restriction
of n to Z. The map st : £ — F[z1, 22, .. .] is an algebra isomorphism by Proposition 6.2(iv).
By these comments and Theorem 5.17, the composition

Wo. Wh) ® 2 o Uf ®Fl[z1,22,...] Y us (63)

is an algebra isomorphism. The composition (63) is equal to m, since it agrees with m on the
generators Wo @ L, W1 ® 1, {1 ® Z, }i":l. It follows that m is an algebra isomorphism. O

7. The kernels of y and 7

Recall the maps y and 5 from Section 3. In this section we describe their kernels. We begin
with y.
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Proposition 7.1. The following are the same:

(1) the kernel of y;

(ii) the 2-sided ideal ofl/{;r generated by {Z,}7° |;
(iii) the 2-sided ideal on/qu“ generated by {Z,/}°° .
Proof. (i), (ii) In the diagram of Lemma 3.7, the two horizontal maps are bijections. So the
kernel of y is the g-preimage of the kernel of id ® 6. The kernel of id ® 9 is obtained using the
description of 8 above Lemma 3.7.

(>iii) Use (53), (54) and (ii) above. O

Proposition 7.2. The vector space L{;' is the direct sum of the following:

(i) the kernel of y;
(ii) the subalgebra (Wy, Wh).

Proof. By Proposition 6.4(ii) and linear algebra. O
We turn our attention to 7.

Proposition 7.3. The following are the same:

(i) the kernel of n;
(ii) the 2-sided ideal of Z/{qu generated by Wy, W;.

Proof. In the diagram of Lemma 3.8, the two horizontal maps are bijections. So the kernel of

is the p-preimage of the kernel of ¥ ® id. The kernel of ¢ ® id is obtained using the description
of ¢ above Lemma 3.8. O

Proposition 7.4. The vector space I/{;‘ is the direct sum of the following:

(i) the center Z of Z/l;' ;
(i) the kernel of n.

Proof. By Proposition 6.2(iv) and linear algebra. O
8. The automorphism o and antiautomorphism S

In Lemma 2.2 we gave an automorphism o of U [;r and an antiautomorphism S of U; .In
Lemma 3.9 we gave the analogous maps for Z/lc;Ir . In this section we describe how the maps in
Lemmas 2.2 and 3.9 are related.
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Lemma 8.1. The following diagram commutes:

U;_ LA U;@]F[Zl,ZQ,...]

| [

U;’ —_— U;_®]F[Zl,22,--~]
@

Proof. Each map in the diagram is an algebra homomorphism. To check that the diagram com-
mutes, it suffices to chase each alternating generator of L{; around the diagram. This chasing is
routinely accomplished using Lemma 3.6 for the horizontal maps and Lemmas 2.10, 3.9 for the
vertical maps. O

Lemma 8.2. The following diagram commutes:

U; —*, U;_®]F[21,ZZ,---]

sl lS®id

U;’ —_— U;®]F[Zl,zz,---]
@

Proof. Each horizontal (resp. vertical) map in the diagram is an algebra homomorphism (resp.
antiautomorphism). To check that the diagram commutes, it suffices to chase each alternating
generator of Z/l; around the diagram. This chasing is routinely accomplished using Lemma 3.6
for the horizontal maps and Lemmas 2.10, 3.9 for the vertical maps. O

Proposition 8.3. Referring to the algebra U,

(i) the automorphism o fixes everything in Z;
(ii) the antiautomorphism S fixes everything in Z.

Proof. (i) By Lemma 5.8, it suffices to check that o (Z,) = Z, for n > 1. This checking is
routinely accomplished by chasing Z,, around the diagram in Lemma 8.1, using the fact that ¢
sends Z, — 1 ® z, by Lemma 5.9, and ¢ ® id sends 1 ® z,, — 1 ® z,, by construction.

(i) By Lemma 5.8 and since Z is commutative, it suffices to check that S(Z,)) = Z,, forn > 1.
This checking is routinely accomplished by chasing Z,, around the diagram in Lemma 8.2, using
the fact that ¢ sends Z,, — 1 ® z; and S ® id sends 1 ® z, — 1 ® z,, by construction. O

Corollary 8.4. Referring to the algebra U; , for n > 1 the element Z,/ is equal to each of the
following:

n n—1
D GG kg =g Y WaW, g, (64)
k=0 k=0
n n—1
D GkGn kg™ =g Y W Worg" T, (65)
k=0 k=0
n—1

n
Y GkGukd" =g Y Wak W™, (66)
k=0 k=0
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n n—1
D GG kg™ =g > Wi Waag® (67)
k=0 k=0

Proof. By Definition 5.1 the element Z, is equal to the element (64). By Proposition 8.3 the
element Z, is fixed by o and S. By Lemma 3.9 the map o sends the elements

(64) <> (66), (65) <> (67)
and S sends the elements
(64) < (65), (66) < (67).

The result follows. O
It is illuminating to compare Lemma 2.8 with Corollary 8.4.

9. The grading for 14}

In Lemma 3.10 we introduced an (N x N)-grading for L{;‘ . In this section we compute the
dimension of each homogeneous component, and express the answer using a generating function.
Throughout this section let A, i denote commuting indeterminates.

We start with some comments about the (N x N)-grading for U ; . This grading was men-
tioned below Lemma 2.2 and described further in Lemma 2.11.

Definition 9.1. Define a generating function

e8]

HGow =[]

n=1

1 1 1
1 _)Lnu/n—l l_knun I—An_ly,".

(63)

Note 9.2. In the product (68) we expand each factor using (1 —x) ™! = 14+x+x%+-- - to express
H (X, i) as a formal power series in A, ;. We will do something similar for all the generating
functions encountered in this section.

Lemma 9.3. (See [21, Corollary 3.7].) For (i, j) € N x N the following are the same:

(i) the dimension of the (i, j)-homogeneous component of U ;
(i) the coefficient of X't in H (A, ).

Recall the algebra F[z1, z2, .. .] from Definition 3.4. Shortly we will endow this algebra with
an (N x N)-grading. The grading is motivated by the following result concerning the (N x
N)-grading of ;.

Lemma 9.4. For n > 1 the elements Z,,, Z,Y are homogeneous with degree (n, n).

Proof. For Z, use Lemma 3.10 and Definition 5.1. For Z, use (53) and inductionon n. O

Definition 9.5. We endow the algebra F[z, z2,...] with an (N x N)-grading such that z, is
homogeneous with degree (n, n) forn > 1.
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Definition 9.6. Define a generating function

ad 1
zow =[] =
n=1 L=arur

Lemma 9.7. For (i, j) € N x N the following are the same:

(i) the dimension of the (i, j)-homogeneous component of F(z1, 22, ...
(i) the coefficient of A'u’ in Z(A, ).

Proof. This is routinely checked. O

We have been discussing an (N x N)-grading of U(;r and an (N x N)-grading of F[z1, z2, .. .].
We now combine these gradings to get an (N x N)-grading of U; QFlz1,22,...].

Lemma 9.8. The algebra U; ®Flz1, 22, ...] has a unique (N x N)-grading with the following
property: for all homogeneous elements f € U(;r and g € Flz1,22,...], the element [ Q g €
U; ® Flz1, 22, ...] is homogeneous with deg(f ® g) = deg(f) + deg(g). With respect to this
grading each of Wo ® 1, Wi ® 1, {1 ® 2,72 | is homogeneous with degree shown below:

Element Degree
Wo®1 (1,0)
Wi®l ©, 1)
1®zn (n,n)

Proof. By construction. O

Definition 9.9. Define a generating function

HA ) =HO, wWZ(, 1)

_1"_"[ 1 1 1
_n—l 1— )»n//«n_l (1 _knun)z 1 —)»"_I/L”.

Lemma 9.10. For (i, j) € N x N the following are the same:

(1) the dimension of the (i, j)-homogeneous component of U;‘ R F(z1,22,...];
(i) the coefficient of Mt in H(, ).

Proof. By Lemmas 9.3, 9.7 and Definition 9.9. O
Recall the isomorphism ¢ : Uq+ ®F[z1,z2,...]1 > L{q+ from Lemma 5.16 and Theorem 5.17.

Lemma 9.11. For (i, j) € N x N the isomorphism ¢ sends the (i, j)-homogeneous component
of U;‘ QF(z1,22,...] to the (i, j)-homogeneous component ofL{;'.
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Proof. Use Lemmas 3.10,5.16,9.4,9.8. O
Proposition 9.12. For (i, j) € N x N the following are the same:

(i) the dimension of the (i, j)-homogeneous component of U} ;
(ii) the coefficient of Mt in H(A, w).

Proof. By Lemmas 9.10,9.11. O

Example 9.13. For 0 < i, j < 6 the dimension of the (i, j)-homogeneous component of Z/{;' is
given in the (i, j)-entry of the matrix below:

11 1 1 1 1 1

1 3 4 4 4 4 4

1 4 10 13 14 14 14
1 4 13 27 36 39 40
1 4 14 36 69 91 101
1 4 14 39 91 161 213
1 4 14 40 101 213 361

10. A PBW basis for U
In this section we obtain a PBW basis for L[;r . First we clarify our terms.

Definition 10.1. (See [11, p. 299].) Let A denote an algebra. A Poincaré-Birkhoff-Witt (or PBW)
basis for A consists of a subset 2 C A and a linear order < on €2, such that the following is a
basis for the vector space .A:

ayaz---ay neN, ai,az,...,a, € 2, ai<ay <---<ay,.

We interpret the empty product as the multiplicative identity in A.

Before proceeding, we have a comment about our approach. Shortly we will apply [21, Propo-
sitions 6.2, 7.2]. The results in [21, Propositions 6.2, 7.2] are about U; . However the proofs
of [21, Propositions 6.2, 7.2] use only Lemmas 2.3, 2.4. Therefore the results in [21, Proposi-
tions 6.2, 7.2] apply to U, as well as U,". We will apply [21, Propositions 6.2, 7.2] to U,

Theorem 10.2. A PBW basis for U; is obtained by its alternating generators

DV_itien,  {Gj+1}jens  {Gktidkens  Wetileen

in any linear order < that satisfies

W_i <Gjp1 <Gip1 <Wepr i, j,k €eN,

Proof. Let 2 denote the set of alternating generators for L{;' . Consider the following vectors in
ut:
A

ajaz---day neN, a,ap,...,a, € 2, ar<a <---<ay,. (69)
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We will show that the vectors in (69) form a basis for the vector space Z/l;‘ . We first show that
the vectors in (69) span Z/l; . To each element of 2 we assign a weight as follows. The ele-
ments {W_;}ien (resp. {Gj11}jenN) (resp. {Git1}keN) (resp. {Wet1}een) get weight O (resp. 1)
(resp. 2) (resp. 3). Any two elements of 2 commute if they have the same weight. Let S denote
the subspace of U; spanned by (69). Note that S is spanned by the vectors

ayaz---ay neN, ay,a,...,an € K2, wt(ay) < wt(ap) < --- < wt(ay).
(70)
The algebra Z/{; is generated by €2. Therefore the vector space Z/I(;r is spanned by
ayaz---ay neN, ai,ar, ..., a, € S2. 71)

For any product ajas - - - a, in (71), define its defect to be Z?:l (n — i)wt(a;). We assume that
S # Z/{; and get a contradiction. There exists a product in (71) that is not contained in S. Let
D denote the minimum defect of all such products. Pick a product aja; - - - a, in (71) that is not
contained in S and has defect D. The product aja; - - - a, is not listed in (70). Therefore there
exists an integer s (2 < s <n) such that wt(a;_) > wt(ay). Using [21, Propositions 6.2, 7.2] we
express the product a,_ay as a linear combination of products a,_,a; such thata,_,, a; € Q and
wt(a,_,) < wt(a;) and wt(as_1) + wt(ay) = wt(a,_,) + wt(a;). Replacing a;_1a, by a,_,a; in
ayas - - - a, we obtain a product with defect less than D, and hence contained in S. We have now
expressed ajay---a, as a linear combination of products, each contained in S. Consequently
aiay - --a, is contained in S, for a contradiction. We have shown that the vectors in (69) span
Z/{; . We can now easily show that the vectors in (69) form a basis for Z/l(;r . Each element in Q is
homogeneous with respect to the (N x N)-grading of Z/{q+ . So each vector in (69) is homogeneous
with respect to the (N x N)-grading of Z/{(;r . Consequently for (i, j) € N x N the vectors in (69)
that have degree (i, j) span the (i, j)-homogeneous component of L{;‘ . The number of such
vectors is equal to the coefficient of A’x/ in H(X, i), and by Proposition 9.12 this coefficient
is equal to the dimension of the (7, j)-homogeneous component of Z/{;r . By these comments and
linear algebra, the vectors in (69) that have degree (7, j) form a basis for the (i, j)-homogeneous
component of LI; . We conclude that the vectors in (69) form a basis for the vector space L{(;r .
The result follows. O

11. Directions for future research

In this section we give some conjectures concerning the g-Onsager algebra O, and its current
algebra A, . We will use the notation of Definition 3.4 and [10, Definition 3.1].

Conjecture 11.1. There exists an algebra isomorphism Ay — Oy @ F[z1,22,...].

Conjecture 11.2. Let Z denote the center of A,. Then the algebra Z is isomorphic to
]F[Zly Z29 .. ']'

Conjecture 11.3. Let (Wo, W) denote the subalgebra of A, generated by Wy, Wi. Then the
algebra Wy, Wh) is isomorphic to O,.

Conjecture 11.4. The multiplication map

Wo, W) ® Z — A,
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Wz wz

is an algebra isomorphism.

Conjecture 11.5. The generators in order

Woideen: (GeridkeNs {Gerihens Wiriheen
give a PBW basis for A,.

See [5] for results that support the above conjectures. For more general information on A,
and Oy, see [6,10] for a mathematical physics point of view, and [9,12,16-20] for an algebraic
point of view.
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7
Appendix A. The Z)/ are central in Ll;‘

Our goal here is to prove Lemma 5.2. It will be convenient to use generating functions.

Definition A.1. We define some generating functions in an indeterminate ¢:

Gy=)_ Ga", Gy=)_ Gut",

neN neN
W)=Y Wout", WO = Want™.
neN neN

By (33) we have
[Wo, W™ ()] =0, Wi, W)l =0. (72)
Next we express the relations (30)—(32) in terms of generating functions.
Lemma A.2. We have

Wo, WHO1= W= (), Wil=(1— ¢ 7 (G1) — G()),
Wo, G, =[G(), Wol, = (¢ — g~ HIW™ (1),
[G(1), Wil, =W, Gy = (g — g HWT ().

Next we express the relations (33)—(40) in terms of generating functions. Let s denote an
indeterminate that commutes with ¢.
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Lemma A.3. We have

W™ (), W (H]1=0, W) WHn]=0,
W™ (), WH )]+ W (), W™ ()] =0,
sSIW™(5), GO + 1[G (s), W™ (1)] =0,

sV (), GO + 1[G (s), W™ ()] =0,

sSIWVT(5), GO+ 1[G (s), W ()] =0,

sIWH(5), GO+ 1[G (s), WH ()] =0,
[G(s).GN]1=0,  [G(5).G(1)]=0,

[G(s), GO+ [G(s5), G(1)] = 0.

Next we express the relations (41)—(46) in terms of generating functions.

Lemma A.4. We have

WV (5), Gy =V~ (1), G(5)]g. [G(s), W (D)]g = [G(1), WT ()],
[G(s), W™ ()] =[G(1), W ()], W), Gy =W (1), G(9)],.
t71G(), 6] — s 'G(1). G =gV~ (). WH(5)]g — gDV~ (), WH ()],
t71G(). G0O] = s G(1). G =gV (). W™ (9)]g — gDV (), W (D)]g,
[G(5).G(D]g — [G(1), G()]g = gtV (1), WH ()] — gsDV ™ (5). WH (D)1,
[G(5).G(]g — [G(1), G()]g = gtV (1), W™ ()] — gsDWV (5). W™ ()]

So far in this section we displayed many relations involving the generating functions from
Definition A.1. In the next two lemmas we express these relations in a more convenient form.

Lemma A.5. We have

W™ (OO Wo =WoW™ (1),

WHOWo = WoW (1) + (1 — ¢ 171 (G(1) - G(1)),
GOWo =" WoG () + (1 —gHW™ (1),
GOWo =g WeG(t) + (1 —q W™ (1)

and

WIW*t (1) = WHnwr,

WIW™ () =W~ OW1 + (1 — g D17 (G1) - G(1)),
WG = g*GOWr + (1 — gHWH @),
WIG(H) =q > GOWL + (1 — g HWT ).

Proof. These are reformulations of (72) and Lemma A.2. O
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Lemma A.6. We have

(gs —g'OW=1G(s) — (g — g~ HsW ()G (1)

GOW () =g¢ —
GleW (1) = g~ 4 S =W OG() + (g =g~ HsW=(5)G()
s—t ’
N (gl —qnGOWT(s) + (g — g HtGs)WH (@)
WH$)G(1) =4 — :
s (gs =g ' DGOWT(s) — (¢ — g DG )W (1)
WHs)G(1) =q —

and

WHOW™ () = W (OWH(s) + (1 — g2 DI (2 - tg (G

o W= (OW(s) =W (s)WT (1)

s —t

G)G1)=G1)G(s)+ (1 —g?)

Proof. To obtain the first equation of the lemma statement, consider the relations

sV (), GO+ 1[G (s), W™ ()] =0,
V7 (5), GO =WV (1), G(9)]q

from Lemmas A.3, A.4. These relations give a system of linear equations in two unknowns
Gs)W™ (1), G(t)W™ (s). Solve this system using linear algebra to obtain the first equation in the
lemma statement. The next three equations in the lemma statement are similarly obtained. To ob-
tain the last two equations in the lemma statement, consider the last four relations in Lemma A 4.
These relations give a system of linear equations in four unknowns

WHSW™ (1), WHOW™ (s), G(s)G(1), GG (s).

Solve this system using linear algebra to obtain the last two equations in the lemma state-
ment. 0O

The relations in Lemmas A.5, A.6 will be called reduction rules.

Definition A.7. Define the generating function

AIGED AL
neN

Lemma A.8. We have
ZY(1)=G(q 'nG(qt) —gtW (g~ Wt gn).
Proof. By Definitions 5.1, A.1, A.7. O

Lemma A.9. We have
WMo, Z¥ ()] =0, W1, Z¥ ()] =0.
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Proof. To verify each equation, eliminate Z" (¢) using Lemma A.8, and evaluate the result using
the reduction rules. 0O

Lemma A.10. We have

[G(s), Z¥ ()] =0, [G(s), Z¥ ()] =0,
W™ (s), Z"(1)] =0, W (s), Z¥(1)] = 0.

Proof. To verify [G(s), ZV(t)] = 0, eliminate ZV (z) using Lemma A.8, and evaluate the result
using the reduction rules. To obtain the remaining three equations in the lemma statement, use
Lemmas A.2, A9. O

We can now easily prove Lemma 5.2. Let n € N be given. By Lemma A.10, Z, commutes
with every alternating generator of L{,;|r , and hence everything in Z/{(;r . In other words, Z,/ is central
in U;’ .
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