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Abstract

This paper is about the positive part U+
q of the quantum group Uq(ŝl2). The algebra U+

q has a presen-
tation with two generators A, B that satisfy the cubic q-Serre relations. Recently we introduced a type 
of element in U+

q , said to be alternating. Each alternating element commutes with exactly one of A, 
B, qBA − q−1AB, qAB − q−1BA; this gives four types of alternating elements. There are infinitely 
many alternating elements of each type, and these mutually commute. In the present paper we use the al-
ternating elements to obtain a central extension U+

q of U+
q . We define U+

q by generators and relations. 
These generators, said to be alternating, are in bijection with the alternating elements of U+

q . We display 
a surjective algebra homomorphism U+

q → U+
q that sends each alternating generator of U+

q to the cor-

responding alternating element in U+
q . We adjust this homomorphism to obtain an algebra isomorphism 

U+
q → U+

q ⊗ F [z1, z2, . . .] where F is the ground field and {zn}∞
n=1 are mutually commuting indetermi-

nates. We show that the alternating generators form a PBW basis for U+
q . We discuss how U+

q is related to 
the work of Baseilhac, Koizumi, Shigechi concerning the q-Onsager algebra and integrable lattice models.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The q-Onsager algebra Oq is often used to investigate integrable lattice models [1,2,4–8,10]. 
In [6] Baseilhac and Koizumi introduced a current algebra Aq for Oq , in order to solve boundary 
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integrable systems with hidden symmetries. In [10, Definition 3.1] Baseilhac and Shigechi gave 
a presentation of Aq by generators and relations. The presentation is a bit complicated, and the 
precise relationship between Aq and Oq is presently unknown. However see [5, Conjectures 1, 2]
and [20, Conjectures 4.5, 4.6]. Hoping to shed light on the above relationship, in the present paper 
we consider a limiting case in which the technical details are less complicated. Following [21, 
Section 1] we replace Oq by the positive part U+

q of the quantum group Uq(ŝl2). We introduce an 
algebra U+

q that is related to U+
q in roughly the same way that Aq is related to Oq . We describe 

in detail how U+
q is related to U+

q . We will summarize our results after a few comments.
We now give some background information about U+

q . The algebra U+
q has a presentation 

with two generators A, B that satisfy the cubic q-Serre relations; see Definition 2.1 below. In 
[21] we introduced a type of element in U+

q , said to be alternating. As we showed in [21, 
Lemma 5.11], each alternating element commutes with exactly one of A, B , qBA − q−1AB , 
qAB − q−1BA. This gives four types of alternating elements, denoted

{W−k}k∈N , {Wk+1}k∈N , {Gk+1}k∈N , {G̃k+1}k∈N .

By [21, Lemma 5.11] the alternating elements of each type mutually commute.
The alternating elements arise naturally in the following way. Start with the free algebra V on 

two generators x, y. The standard (linear) basis for V consists of the words in x, y. In [14,15]
M. Rosso introduced an algebra structure on V , called a q-shuffle algebra. For u, v ∈ {x, y} their 
q-shuffle product is u � v = uv + q〈u,v〉vu, where 〈u, v〉 = 2 (resp. 〈u, v〉 = −2) if u = v (resp. 
u �= v). Rosso gave an injective algebra homomorphism � from U+

q into the q-shuffle algebra V , 
that sends A 	→ x and B 	→ y. By [21, Definition 5.2] the map � sends

W0 	→ x, W−1 	→ xyx, W−2 	→ xyxyx, . . .

W1 	→ y, W2 	→ yxy, W3 	→ yxyxy, . . .

G1 	→ yx, G2 	→ yxyx, G3 	→ yxyxyx, . . .

G̃1 	→ xy, G̃2 	→ xyxy, G̃3 	→ xyxyxy, . . .

In [21] we used � to obtain many relations involving the alternating elements; see Lemmas 2.3, 
2.4 below. These relations resemble the defining relations for Aq found in [10, Definition 3.1]. 
We will say more about Lemmas 2.3, 2.4 shortly. In [21, Section 10] we used the alternating 
elements to obtain some PBW bases for U+

q . For instance, in [21, Theorem 10.1] we showed that 
the elements in order

{W−k}k∈N , {G̃k+1}k∈N , {Wk+1}k∈N
give a PBW basis for U+

q , said to be alternating [21, Definition 10.3].
We now summarize the main results of the present paper. We define an algebra U+

q by gener-
ators

{W−k}k∈N , {Wk+1}k∈N , {Gk+1}k∈N , {G̃k+1}k∈N (1)

and the relations in Lemmas 2.3, 2.4. The generators (1) are called alternating. By construction 
there exists a surjective algebra homomorphism U+

q → U+
q that sends

W−k 	→ W−k, Wk+1 	→ Wk+1, Gk 	→ Gk, G̃k 	→ G̃k

for k ∈N . As we will see, this map is not injective. Denote the ground field by F and let {zn}∞n=1
denote mutually commuting indeterminates. Let F [z1, z2, . . .] denote the algebra consisting of 
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the polynomials in z1, z2, . . . that have all coefficients in F . For notational convenience define 
z0 = 1. We display an algebra isomorphism ϕ : U+

q → U+
q ⊗ F [z1, z2, . . .] that sends

W−n 	→
n∑

k=0

Wk−n ⊗ zk, Wn+1 	→
n∑

k=0

Wn+1−k ⊗ zk,

Gn 	→
n∑

k=0

Gn−k ⊗ zk, G̃n 	→
n∑

k=0

G̃n−k ⊗ zk

for n ∈ N . In particular ϕ sends

W0 	→ W0 ⊗ 1, W1 	→ W1 ⊗ 1.

We use ϕ to obtain the following results. Let Z denote the center of U+
q . We show that Z is 

generated by {Z∨
n }∞n=1, where

Z∨
n =

n∑
k=0

GkG̃n−kq
n−2k − q

n−1∑
k=0

W−kWn−kq
n−1−2k.

We show that for n ≥ 1, ϕ sends Z∨
n 	→ 1 ⊗ z∨

n where z∨
n = ∑n

k=0 zkzn−kq
n−2k . We show that 

{Z∨
n }∞n=1 are algebraically independent. Let 〈W0, W1〉 denote the subalgebra of U+

q generated by 
W0, W1. We show that the algebra 〈W0, W1〉 is isomorphic to U+

q . We show that the multiplica-
tion map

〈W0,W1〉 ⊗Z → U+
q

w ⊗ z 	→ wz

is an algebra isomorphism. We show that the alternating generators in order

{W−k}k∈N , {Gk+1}k∈N , {G̃k+1}k∈N , {Wk+1}k∈N
give a PBW basis for U+

q . Motivated by the above results, near the end of the paper we give some 
conjectures concerning Aq and Oq .

The paper is organized as follows. In Section 2 we give some background information about 
U+

q . In Section 3 we introduce the algebra U+
q and describe its basic properties. In Section 4

we obtain some results about the polynomial algebra F [z1, z2, . . .] that will be used in later 
sections. In Section 5 we show that the map ϕ is an algebra isomorphism. In Section 6 we 
describe the center of U+

q and also the subalgebra of U+
q generated by W0, W1. In Section 7

we describe several ideals of U+
q , and in Section 8 we describe some symmetries of U+

q . In 
Section 9 we describe a grading of U+

q , that gets used in Section 10 to establish a PBW basis for 
U+

q . In Section 11 we give some conjectures concerning Aq and Oq . Appendix A contains some 
technical details.

2. The algebra U+
q

We now begin our formal argument. Recall the natural numbers N = {0, 1, 2, . . .} and integers 
Z = {0, ±1, ±2, . . .}. Let F denote a field. We will be discussing vector spaces, tensor products, 
and algebras. Each vector space and tensor product discussed is over F . Each algebra discussed 
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is associative, over F , and has a multiplicative identity. A subalgebra has the same multiplicative 
identity as the parent algebra.

Fix a nonzero q ∈ F that is not a root of unity. Recall the notation

[n]q = qn − q−n

q − q−1 n ∈ Z.

For elements X, Y in any algebra, define their commutator and q-commutator by

[X,Y ] = XY − YX, [X,Y ]q = qXY − q−1YX.

Note that

[X, [X, [X,Y ]q ]q−1 ] = X3Y − [3]qX2YX + [3]qXYX2 − YX3.

Definition 2.1. (See [13, Corollary 3.2.6].) Define the algebra U+
q by generators A, B and rela-

tions

[A, [A, [A,B]q ]q−1 ] = 0, [B, [B, [B,A]q ]q−1 ] = 0. (2)

We call U+
q the positive part of Uq(ŝl2). The relations (2) are called the q-Serre relations.

We will be discussing automorphisms and antiautomorphisms. For an algebra A, an automor-
phism of A is an algebra isomorphism A →A. The opposite algebra Aopp consists of the vector 
space A and multiplication map A × A → A, (a, b) 	→ ba. An antiautomorphism of A is an 
algebra isomorphism A →Aopp.

Lemma 2.2. There exists an automorphism σ of U+
q that swaps A, B . There exists an antiauto-

morphism S of U+
q that fixes each of A, B .

We mention a grading for the algebra U+
q . The q-Serre relations are homogeneous in both 

A and B . Therefore the algebra U+
q has an (N × N)-grading for which A and B are homoge-

neous, with degrees (1, 0) and (0, 1) respectively. The trivial homogeneous component of U+
q

has degree (0, 0) and is equal to F1.
The alternating elements of U+

q were introduced in [21]. There are four types, denoted

{W−k}k∈N , {Wk+1}k∈N , {Gk+1}k∈N , {G̃k+1}k∈N . (3)

As we will review in Lemma 2.9, the above elements are obtained from A, B using a recursive 
procedure with initial conditions W0 = A and W1 = B .

In [21] we displayed many relations satisfied by the alternating elements of U+
q . In the next 

three lemmas we list some of these relations.

Lemma 2.3. (See [21, Proposition 5.7].) For k ∈N the following holds in U+
q :

[W0,Wk+1] = [W−k,W1] = (1 − q−2)(G̃k+1 − Gk+1), (4)

[W0,Gk+1]q = [G̃k+1,W0]q = (q − q−1)W−k−1, (5)

[Gk+1,W1]q = [W1, G̃k+1]q = (q − q−1)Wk+2. (6)
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Lemma 2.4. (See [21, Proposition 5.9].) For k, � ∈ N the following relations hold in U+
q :

[W−k,W−�] = 0, [Wk+1,W�+1] = 0, (7)

[W−k,W�+1] + [Wk+1,W−�] = 0, (8)

[W−k,G�+1] + [Gk+1,W−�] = 0, (9)

[W−k, G̃�+1] + [G̃k+1,W−�] = 0, (10)

[Wk+1,G�+1] + [Gk+1,W�+1] = 0, (11)

[Wk+1, G̃�+1] + [G̃k+1,W�+1] = 0, (12)

[Gk+1,G�+1] = 0, [G̃k+1, G̃�+1] = 0, (13)

[G̃k+1,G�+1] + [Gk+1, G̃�+1] = 0. (14)

Lemma 2.5. (See [21, Proposition 5.10].) For k, � ∈ N the following relations hold in U+
q :

[W−k,G�]q = [W−�,Gk]q, [Gk,W�+1]q = [G�,Wk+1]q, (15)

[G̃k,W−�]q = [G̃�,W−k]q, [W�+1, G̃k]q = [Wk+1, G̃�]q, (16)

[Gk, G̃�+1] − [G�, G̃k+1] = q[W−�,Wk+1]q − q[W−k,W�+1]q, (17)

[G̃k,G�+1] − [G̃�,Gk+1] = q[W�+1,W−k]q − q[Wk+1,W−�]q, (18)

[Gk+1, G̃�+1]q − [G�+1, G̃k+1]q = q[W−�,Wk+2] − q[W−k,W�+2], (19)

[G̃k+1,G�+1]q − [G̃�+1,Gk+1]q = q[W�+1,W−k−1] − q[Wk+1,W−�−1]. (20)

Note 2.6. By [3, Propositions 3.1, 3.2] the relations in Lemma 2.5 are implied by the relations in 
Lemmas 2.3, 2.4. For this reason we will give Lemma 2.5 less emphasis than Lemmas 2.3, 2.4.

Note 2.7. The relations in Lemmas 2.3, 2.4 resemble the defining relations for Aq found in [10, 
Definition 3.1].

Consider the four sequences in (3). By (7), (13) the elements of each sequence mutually 
commute. According to [21, Lemma 5.11],

(i) an alternating element commutes with A if and only if it is among {W−k}k∈N ;
(ii) an alternating element commutes with B if and only if it is among {Wk+1}k∈N ;

(iii) an alternating element commutes with [B, A]q if and only if it is among {Gk+1}k∈N ;
(iv) an alternating element commutes with [A, B]q if and only if it is among {G̃k+1}k∈N .

For notational convenience define G0 = 1 and G̃0 = 1.

Lemma 2.8. (See [21, Proposition 8.1].) For n ≥ 1 the following hold in U+
q :

n∑
k=0

GkG̃n−kq
n−2k = q

n−1∑
k=0

W−kWn−kq
n−1−2k, (21)

n∑
GkG̃n−kq

2k−n = q

n−1∑
Wn−kW−kq

n−1−2k, (22)

k=0 k=0
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n∑
k=0

G̃kGn−kq
n−2k = q

n−1∑
k=0

Wn−kW−kq
2k+1−n, (23)

n∑
k=0

G̃kGn−kq
2k−n = q

n−1∑
k=0

W−kWn−kq
2k+1−n. (24)

Lemma 2.9. (See [21, Proposition 8.2].) Using the equations below, the alternating elements in 
U+

q are recursively obtained from A, B in the following order:

W0, W1, G1, G̃1, W−1, W2, G2, G̃2, W−2, W3, . . .

We have W0 = A and W1 = B . For n ≥ 1,

Gn = q
∑n−1

k=0 W−kWn−kq
n−1−2k − ∑n−1

k=1 GkG̃n−kq
n−2k

qn + q−n
+ WnW0 − W0Wn

(1 + q−2n)(1 − q−2)
,

(25)

G̃n = Gn + W0Wn − WnW0

1 − q−2 , (26)

W−n = qW0Gn − q−1GnW0

q − q−1 , (27)

Wn+1 = qGnW1 − q−1W1Gn

q − q−1 . (28)

Lemma 2.10. (See [21, Proposition 5.3].) The maps σ , S from Lemma 2.2 act on the alternating 
elements as follows. For k ∈ N ,

(i) the map σ sends

W−k 	→ Wk+1, Wk+1 	→ W−k, Gk 	→ G̃k, G̃k 	→ Gk;
(ii) the map S sends

W−k 	→ W−k, Wk+1 	→ Wk+1, Gk 	→ G̃k, G̃k 	→ Gk.

Lemma 2.11. (See [21, Section 5].) The alternating elements of U+
q are homogeneous, with 

degrees shown below:

Alternating element Degree

W−k (k + 1, k)

Wk+1 (k, k + 1)

Gk (k, k)

G̃k (k, k)

3. The algebra U+
q

Motivated by Lemmas 2.3, 2.4 and [10, Definition 3.1], we now introduce the algebra U+
q .
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Definition 3.1. We define the algebra U+
q by generators

{W−k}k∈N , {Wk+1}k∈N , {Gk+1}k∈N , {G̃k+1}k∈N (29)

and relations

[W0,Wk+1] = [W−k,W1] = (1 − q−2)(G̃k+1 − Gk+1), (30)

[W0,Gk+1]q = [G̃k+1,W0]q = (q − q−1)W−k−1, (31)

[Gk+1,W1]q = [W1, G̃k+1]q = (q − q−1)Wk+2, (32)

[W−k,W−�] = 0, [Wk+1,W�+1] = 0, (33)

[W−k,W�+1] + [Wk+1,W−�] = 0, (34)

[W−k,G�+1] + [Gk+1,W−�] = 0, (35)

[W−k, G̃�+1] + [G̃k+1,W−�] = 0, (36)

[Wk+1,G�+1] + [Gk+1,W�+1] = 0, (37)

[Wk+1, G̃�+1] + [G̃k+1,W�+1] = 0, (38)

[Gk+1,G�+1] = 0, [G̃k+1, G̃�+1] = 0, (39)

[G̃k+1,G�+1] + [Gk+1, G̃�+1] = 0. (40)

The generators (29) are called alternating. For notational convenience define G0 = 1 and G̃0 = 1.

Lemma 3.2. For k, � ∈N the following relations hold in U+
q :

[W−k,G�]q = [W−�,Gk]q, [Gk,W�+1]q = [G�,Wk+1]q, (41)

[G̃k,W−�]q = [G̃�,W−k]q, [W�+1, G̃k]q = [Wk+1, G̃�]q, (42)

[Gk, G̃�+1] − [G�, G̃k+1] = q[W−�,Wk+1]q − q[W−k,W�+1]q, (43)

[G̃k,G�+1] − [G̃�,Gk+1] = q[W�+1,W−k]q − q[Wk+1,W−�]q, (44)

[Gk+1, G̃�+1]q − [G�+1, G̃k+1]q = q[W−�,Wk+2] − q[W−k,W�+2], (45)

[G̃k+1,G�+1]q − [G̃�+1,Gk+1]q = q[W�+1,W−k−1] − q[Wk+1,W−�−1]. (46)

Proof. By Note 2.6. �
The algebras U+

q and U+
q are related as follows.

Lemma 3.3. There exists an algebra homomorphism γ : U+
q → U+

q that sends

W−n 	→ W−n, Wn+1 	→ Wn+1, Gn 	→ Gn, G̃n 	→ G̃n

for n ∈N . Moreover γ is surjective.

Proof. By Definition 3.1. �
The kernel of γ is described in Section 7.
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Definition 3.4. Let {zn}∞n=1 denote mutually commuting indeterminates. Let F [z1, z2, . . .] de-
note the algebra consisting of the polynomials in z1, z2, . . . that have all coefficients in F . For 
notational convenience define z0 = 1.

Lemma 3.5. There exists an algebra homomorphism η : U+
q → F [z1, z2, . . .] that sends

W−n 	→ 0, Wn+1 	→ 0, Gn 	→ zn, G̃n 	→ zn (47)

for n ∈ N . Moreover η is surjective.

Proof. Use Definition 3.1. �
The kernel of η is described in Section 7.
We have indicated how U+

q is related to U+
q and F [z1, z2, . . .]. Next we consider how U+

q is 
related to U+

q ⊗ F [z1, z2, . . .].

Lemma 3.6. There exists an algebra homomorphism ϕ : U+
q → U+

q ⊗ F [z1, z2, . . .] that sends

W−n 	→
n∑

k=0

Wk−n ⊗ zk, Wn+1 	→
n∑

k=0

Wn+1−k ⊗ zk,

Gn 	→
n∑

k=0

Gn−k ⊗ zk, G̃n 	→
n∑

k=0

G̃n−k ⊗ zk

for n ∈ N . In particular ϕ sends

W0 	→ W0 ⊗ 1, W1 	→ W1 ⊗ 1. (48)

Proof. Use Lemmas 2.3, 2.4 and Definition 3.1. �
In Section 5 we show that ϕ is an isomorphism.
Next we consider how γ is related to ϕ. There exists an algebra homomorphism θ :

F [z1, z2, . . .] → F that sends zn 	→ 0 for n ≥ 1. The map θ is surjective. Consequently the vec-
tor space F [z1, z2, . . .] is the direct sum of F1 and the kernel of θ . This kernel is the ideal of 
F [z1, z2, . . .] generated by {zn}∞n=1.

Lemma 3.7. The following diagram commutes:

U+
q

ϕ−−−−→ U+
q ⊗ F [z1, z2, . . .]

γ

⏐⏐� ⏐⏐�id⊗θ

U+
q −−−−→

x 	→x⊗1
U+

q ⊗ F

id = identity map

Proof. Chase each alternating generator of U+
q around the diagram, using Lemmas 3.3, 3.6 and 

the definition of θ . �
Next we consider how η is related to ϕ. Since U+

q is generated by A, B and the q-Serre 
relations are homogeneous, there exists an algebra homomorphism ϑ : U+

q → F that sends A 	→
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0 and B 	→ 0. The map ϑ is surjective, so U+
q is the direct sum of F1 and the kernel of ϑ . The 

following are the same: (i) the kernel of ϑ ; (ii) the two-sided ideal of U+
q generated by A, B; (iii) 

the sum of the nontrivial homogeneous components of U+
q . By Lemma 2.11 the map ϑ sends

W−k 	→ 0, Wk+1 	→ 0, Gk+1 	→ 0, G̃k+1 	→ 0 (49)

for k ∈N .

Lemma 3.8. The following diagram commutes:

U+
q

ϕ−−−−→ U+
q ⊗ F [z1, z2, . . .]

η

⏐⏐� ⏐⏐�ϑ⊗id

F [z1, z2, . . .] −−−−→
x 	→1⊗x

F ⊗ F [z1, z2, . . .]

Proof. Chase each alternating generator of U+
q around the diagram, using Lemmas 3.5, 3.6 and 

(49). �
Next we describe some symmetries of U+

q .

Lemma 3.9. There exists an automorphism σ of U+
q that sends

W−k 	→ Wk+1, Wk+1 	→ W−k, Gk 	→ G̃k, G̃k 	→ Gk

for k ∈ N . There exists an antiautomorphism S of U+
q that sends

W−k 	→ W−k, Wk+1 	→ Wk+1, Gk 	→ G̃k, G̃k 	→ Gk

for k ∈ N .

Proof. Use Definition 3.1. �
Next we introduce a grading for U+

q .

Lemma 3.10. The algebra U+
q has an (N ×N)-grading for which the alternating generators are 

homogeneous, with degrees shown below:

Alternating generator Degree

W−k (k + 1, k)

Wk+1 (k, k + 1)

Gk (k, k)

G̃k (k, k)

Proof. The defining relations for U+
q are homogeneous with respect to the above degree assign-

ment. �
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4. The polynomial algebra F[z1, z2, . . .]

Recall the algebra F [z1, z2, . . .] from Definition 3.4. In this section we obtain some results 
about F [z1, z2, . . .] that will be used in later sections.

Definition 4.1. For n ∈N define

z∨
n =

n∑
k=0

zkzn−kq
n−2k. (50)

Note that z∨
0 = 1.

Example 4.2. We have

z∨
1 = (q + q−1)z1,

z∨
2 = (q2 + q−2)z2 + z2

1,

z∨
3 = (q3 + q−3)z3 + (q + q−1)z1z2.

Lemma 4.3. For n ≥ 1 the element z∨
n is a homogeneous polynomial of total degree n in 

z1, z2, . . . , zn, where we view each zk as having degree k. For this polynomial the coefficient 
of zn is qn + q−n.

Proof. By (50). �
For n ≥ 1, we now seek to express zn as a polynomial in z∨

1 , z∨
2 , . . . , z∨

n . Towards this goal, 
we first express zn as a polynomial in z∨

n and z1, z2, . . . , zn−1.

Lemma 4.4. For n ≥ 1,

zn = z∨
n − ∑n−1

k=1 zkzn−kq
n−2k

qn + q−n
. (51)

Proof. Solve (50) for zn. �
For n ≥ 1, we use Lemma 4.4 and induction on n to express zn as a polynomial in 

z∨
1 , z∨

2 , . . . , z∨
n .

Example 4.5. We have

z1 = z∨
1

q + q−1 ,

z2 = (q + q−1)2z∨
2 − (z∨

1 )2

(q + q−1)2(q2 + q−2)
,

z3 = (q + q−1)2(q2 + q−2)z∨
3 − (q + q−1)2z∨

1 z∨
2 + (z∨

1 )3

(q + q−1)2(q2 + q−2)(q3 + q−3)
.
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Lemma 4.6. For n ≥ 1 the element zn is a homogeneous polynomial of total degree n in 
z∨

1 , z∨
2 , . . . , z∨

n , where we view each z∨
k as having degree k. For this polynomial the coefficient of 

z∨
n is (qn + q−n)−1.

Proof. By (51) and induction on n. �
Corollary 4.7. The elements {z∨

n }∞n=1 are algebraically independent and generate F [z1, z2, . . .].

Proof. The first assertion follows from Lemma 4.3 and since {zn}∞n=1 are algebraically 
independent. The second assertion follows from Lemma 4.6 and since {zn}∞n=1 generate 
F [z1, z2, . . .]. �
Corollary 4.8. There exists an automorphism of the algebra F [z1, z2, . . .] that sends zn 	→ z∨

n

for n ≥ 1.

Proof. This is a reformulation of Corollary 4.7. �
5. The map ϕ is an isomorphism

Recall the map ϕ from Lemma 3.6. In this section we show that ϕ is an isomorphism.
The following definition is motivated by (21).

Definition 5.1. For n ≥ 1 define

Z∨
n =

n∑
k=0

GkG̃n−kq
n−2k − q

n−1∑
k=0

W−kWn−kq
n−1−2k. (52)

For notational convenience define Z∨
0 = 1.

For any algebra A, an element in A is central whenever it commutes with every element of 
A.

Lemma 5.2. For n ∈N the element Z∨
n is central in U+

q .

The proof of Lemma 5.2 is slightly technical, and contained in the Appendix.

Note 5.3. The central elements (52) resemble the central elements for Aq given in [5, 
Lemma 2.1].

Lemma 5.4. For n ∈N the map ϕ sends Z∨
n 	→ 1 ⊗ z∨

n .

Proof. Expand ϕ(Z∨
n ) using Lemma 3.6 and Definition 5.1. Evaluate the result using (21) and 

(50). �
Definition 5.5. Let Z denote the subalgebra of U+

q generated by {Z∨
n }∞ .
n=1
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For an algebra A, its central elements form a subalgebra called the center of A. By Lemma 5.2
the subalgebra Z is contained in the center of U+

q . In Section 6 we show that Z is equal to the 
center of U+

q .
Next we introduce some elements {Zn}n∈N in Z , that are related to {Z∨

n }n∈N in the same way 
that {zn}n∈N are related to {z∨

n }n∈N . The elements {Zn}n∈N are defined recursively.

Definition 5.6. Define Z0 = 1 and for n ≥ 1,

Zn = Z∨
n − ∑n−1

k=1 ZkZn−kq
n−2k

qn + q−n
. (53)

Lemma 5.7. For n ∈N ,

Z∨
n =

n∑
k=0

ZkZn−kq
n−2k. (54)

Proof. Solve (53) for Z∨
n . �

Lemma 5.8. The subalgebra Z from Definition 5.5 is generated by {Zn}∞n=1.

Proof. By Definition 5.5 and Lemma 5.7. �
Lemma 5.9. The map ϕ sends Zn 	→ 1 ⊗ zn for n ∈N .

Proof. We use induction on n. The result holds for n = 0, since Z0 = 1 and z0 = 1. Next assume 
n ≥ 1. Using Lemma 5.4 and (51), (53) along with induction,

ϕ(Zn) = ϕ(Z∨
n ) − ∑n−1

k=1 ϕ(Zk)ϕ(Zn−k)q
n−2k

qn + q−n

= 1 ⊗ z∨
n − ∑n−1

k=1(1 ⊗ zk)(1 ⊗ zn−k)q
n−2k

qn + q−n

= 1 ⊗ z∨
n − ∑n−1

k=1 zkzn−kq
n−2k

qn + q−n

= 1 ⊗ zn. �
We have a comment.

Lemma 5.10. The map ϕ sends Z onto F ⊗ F [z1, z2, . . .].

Proof. By Lemmas 5.8, 5.9. �
Next we show that the algebra U+

q is generated by W0, W1, Z .

Lemma 5.11. Using the equations below, the alternating generators of U+
q are recursively ob-

tained from W0, W1, Z∨, Z∨, . . . in the following order:
1 2
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W0, W1, G1, G̃1, W−1, W2, G2, G̃2, W−2, W3, . . .

For n ≥ 1,

Gn = Z∨
n + q

∑n−1
k=0 W−kWn−kq

n−1−2k − ∑n−1
k=1 GkG̃n−kq

n−2k

qn + q−n

+ WnW0 −W0Wn

(1 + q−2n)(1 − q−2)
, (55)

G̃n = Gn + W0Wn −WnW0

1 − q−2 , (56)

W−n = qW0Gn − q−1GnW0

q − q−1 , (57)

Wn+1 = qGnW1 − q−1W1Gn

q − q−1 . (58)

Proof. Equation (56) is from (30). To obtain (55), add qn times (56) to (52), and solve the 
resulting equation for Gn. Equations (57), (58) are from (31), (32). �
Corollary 5.12. The algebra U+

q is generated by W0, W1, Z .

Proof. By Lemma 5.11 and since {Z∨
n }∞n=1 generate Z . �

Note 5.13. Lemma 5.11 and Corollary 5.12 resemble the results for Aq given in [5, Proposi-
tion 3.1] and [5, Corollary 3.1].

Lemma 5.14. In U+
q we have

[W0, [W0, [W0,W1]q ]q−1 ] = 0, (59)

[W1, [W1, [W1,W0]q ]q−1 ] = 0. (60)

Proof. Consider (59). Setting n = 1 in (55), (57) we obtain

G1 = Z∨
1 + qW0W1

q + q−1 + [W1,W0]
(1 + q−2)(1 − q−2)

= Z∨
1

q + q−1 − q
[W0,W1]q−1

q2 − q−2 (61)

and

W−1 = [W0,G1]q
q − q−1 . (62)

The elements W0, W−1 commute by (33), and Z∨
1 is central by Lemma 5.2. By these comments 

and (61), (62) we obtain

0 = [W0,W−1]
= [W0, [W0,G1]q ]

−1
q − q
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= [W0, [W0,G1]]q
q − q−1

= −q
[W0, [W0, [W0,W1]q−1 ]]q

(q − q−1)(q2 − q−2)

= −q
[W0, [W0, [W0,W1]q ]q−1 ]

(q − q−1)(q2 − q−2)
,

which implies (59). The equation (60) is similarly obtained. �
Note 5.15. Lemma 5.14 resembles a result for Aq given in [5, Line (3.7)].

Lemma 5.16. There exists an algebra homomorphism φ : U+
q ⊗ F [z1, z2, . . .] → U+

q that sends

W0 ⊗ 1 	→ W0, W1 ⊗ 1 	→ W1, 1 ⊗ zn 	→ Zn, n ≥ 1.

Proof. By Lemma 5.14 and since {Zn}∞n=1 are central in U+
q . �

Theorem 5.17. The maps ϕ, φ are inverses. Moreover they are bijections.

Proof. By Lemma 5.8 and Corollary 5.12, the algebra U+
q is generated by W0, W1, {Zn}∞n=1. 

Each of these generators is fixed by the composition φ ◦ϕ, in view of (48) and Lemmas 5.9, 5.16. 
Therefore φ ◦ ϕ is the identity map on U+

q . By Definition 2.1 and the construction, the algebra 
U+

q ⊗ F [z1, z2, . . .] is generated by W0 ⊗ 1, W1 ⊗ 1, {1 ⊗ zn}∞n=1. Each of these generators is 
fixed by ϕ ◦ φ, in view of (48) and Lemmas 5.9, 5.16. Therefore ϕ ◦ φ is the identity map on 
U+

q ⊗ F [z1, z2, . . .]. By these comments the maps ϕ, φ are inverses, and hence bijections. �
6. Two subalgebras of U+

q

In this section we describe two subalgebras of U+
q : the center of U+

q and the subalgebra 
generated by W0, W1.

To obtain the center of U+
q we will use the following fact.

Lemma 6.1. (See [22].) The center of U+
q is F1.

Recall the subalgebra Z of U+
q described in Definition 5.5 and Lemma 5.8.

Proposition 6.2. The following (i)–(iv) hold:

(i) Z is the center of U+
q ;

(ii) there exists an algebra isomorphism F [z1, z2, . . .] → Z that sends zn 	→ Zn for n ∈N;
(iii) the above isomorphism sends z∨

n 	→ Z∨
n for n ∈N;

(iv) the inverse isomorphism is the restriction of η to Z .

Proof. (i) By Lemma 6.1 and the construction, the center of U+
q ⊗ F [z1, z2, . . .] is equal to 

F ⊗ F [z1, z2, . . .]. Applying φ = ϕ−1 and Lemma 5.10, we find that the center of U+
q is equal to 

Z .
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(ii), (iv) Since {Zn}∞n=1 mutually commute, there exists an algebra homomorphism � :
F [z1, z2, . . .] → U+

q that sends zn 	→ Zn for n ≥ 1. The map � has image Z by Lemma 5.8. 
By Lemma 3.8 and Lemma 5.9, the map η sends Zn 	→ zn for n ≥ 1. So the restriction of η to Z
is the inverse of �. These maps are invertible and hence isomorphisms.

(iii) Compare (50), (54) and use (ii) above. �
Corollary 6.3. The elements {Zn}∞n=1 are algebraically independent. Moreover the elements 
{Z∨

n }∞n=1 are algebraically independent.

Proof. The first assertion follows from Proposition 6.2(ii). The second assertion follows from 
Corollary 4.7 and Proposition 6.2(iii). �

Let 〈W0, W1〉 denote the subalgebra of U+
q generated by W0, W1.

Proposition 6.4. The following (i), (ii) hold:

(i) there exists an algebra isomorphism U+
q → 〈W0, W1〉 that sends W0 	→ W0 and W1 	→W1;

(ii) the inverse isomorphism is the restriction of γ to 〈W0, W1〉.

Proof. By Definition 2.1 and Lemma 5.14, there exists an algebra homomorphism 
 : U+
q → U+

q

that sends W0 	→ W0 and W1 	→ W1. By Lemma 3.3 the map γ sends W0 	→ W0 and W1 	→ W1. 
So the restriction of γ to 〈W0, W1〉 is the inverse of 
. These maps are invertible and hence 
isomorphisms. �

Next we describe how the subalgebras Z and 〈W0, W1〉 are related.

Proposition 6.5. The multiplication map

〈W0,W1〉 ⊗Z → U+
q

w ⊗ z 	→ wz

is an algebra isomorphism.

Proof. Let m denote the above multiplication map. The map m is an algebra homomorphism 
since Z is central in U+

q . Let γrest denote the restriction of γ to 〈W0, W1〉. The map γrest :
〈W0, W1〉 → U+

q is an algebra isomorphism by Proposition 6.4(ii). Let ηrest denote the restriction 
of η to Z . The map ηrest : Z → F [z1, z2, . . .] is an algebra isomorphism by Proposition 6.2(iv). 
By these comments and Theorem 5.17, the composition

〈W0,W1〉 ⊗Z −−−−−→
γrest⊗ηrest

U+
q ⊗ F [z1, z2, . . .] −−−−→

φ
U+

q (63)

is an algebra isomorphism. The composition (63) is equal to m, since it agrees with m on the 
generators W0 ⊗ 1, W1 ⊗ 1, {1 ⊗ Zn}∞n=1. It follows that m is an algebra isomorphism. �
7. The kernels of γ and η

Recall the maps γ and η from Section 3. In this section we describe their kernels. We begin 
with γ .
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Proposition 7.1. The following are the same:

(i) the kernel of γ ;
(ii) the 2-sided ideal of U+

q generated by {Zn}∞n=1;
(iii) the 2-sided ideal of U+

q generated by {Z∨
n }∞n=1.

Proof. (i), (ii) In the diagram of Lemma 3.7, the two horizontal maps are bijections. So the 
kernel of γ is the ϕ-preimage of the kernel of id ⊗ θ . The kernel of id ⊗ θ is obtained using the 
description of θ above Lemma 3.7.

(iii) Use (53), (54) and (ii) above. �

Proposition 7.2. The vector space U+
q is the direct sum of the following:

(i) the kernel of γ ;
(ii) the subalgebra 〈W0, W1〉.

Proof. By Proposition 6.4(ii) and linear algebra. �

We turn our attention to η.

Proposition 7.3. The following are the same:

(i) the kernel of η;
(ii) the 2-sided ideal of U+

q generated by W0, W1.

Proof. In the diagram of Lemma 3.8, the two horizontal maps are bijections. So the kernel of η
is the ϕ-preimage of the kernel of ϑ ⊗ id. The kernel of ϑ ⊗ id is obtained using the description 
of ϑ above Lemma 3.8. �

Proposition 7.4. The vector space U+
q is the direct sum of the following:

(i) the center Z of U+
q ;

(ii) the kernel of η.

Proof. By Proposition 6.2(iv) and linear algebra. �

8. The automorphism σ and antiautomorphism S

In Lemma 2.2 we gave an automorphism σ of U+
q and an antiautomorphism S of U+

q . In 
Lemma 3.9 we gave the analogous maps for U+

q . In this section we describe how the maps in 
Lemmas 2.2 and 3.9 are related.
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Lemma 8.1. The following diagram commutes:

U+
q

ϕ−−−−→ U+
q ⊗ F [z1, z2, . . .]

σ

⏐⏐� ⏐⏐�σ⊗id

U+
q −−−−→

ϕ
U+

q ⊗ F [z1, z2, . . .]

Proof. Each map in the diagram is an algebra homomorphism. To check that the diagram com-
mutes, it suffices to chase each alternating generator of U+

q around the diagram. This chasing is 
routinely accomplished using Lemma 3.6 for the horizontal maps and Lemmas 2.10, 3.9 for the 
vertical maps. �
Lemma 8.2. The following diagram commutes:

U+
q

ϕ−−−−→ U+
q ⊗ F [z1, z2, . . .]

S

⏐⏐� ⏐⏐�S⊗id

U+
q −−−−→

ϕ
U+

q ⊗ F [z1, z2, . . .]

Proof. Each horizontal (resp. vertical) map in the diagram is an algebra homomorphism (resp. 
antiautomorphism). To check that the diagram commutes, it suffices to chase each alternating 
generator of U+

q around the diagram. This chasing is routinely accomplished using Lemma 3.6
for the horizontal maps and Lemmas 2.10, 3.9 for the vertical maps. �
Proposition 8.3. Referring to the algebra U+

q ,

(i) the automorphism σ fixes everything in Z;
(ii) the antiautomorphism S fixes everything in Z .

Proof. (i) By Lemma 5.8, it suffices to check that σ(Zn) = Zn for n ≥ 1. This checking is 
routinely accomplished by chasing Zn around the diagram in Lemma 8.1, using the fact that ϕ
sends Zn 	→ 1 ⊗ zn by Lemma 5.9, and σ ⊗ id sends 1 ⊗ zn 	→ 1 ⊗ zn by construction.

(ii) By Lemma 5.8 and since Z is commutative, it suffices to check that S(Zn) = Zn for n ≥ 1. 
This checking is routinely accomplished by chasing Zn around the diagram in Lemma 8.2, using 
the fact that ϕ sends Zn 	→ 1 ⊗ zn and S ⊗ id sends 1 ⊗ zn 	→ 1 ⊗ zn by construction. �
Corollary 8.4. Referring to the algebra U+

q , for n ≥ 1 the element Z∨
n is equal to each of the 

following:

n∑
k=0

GkG̃n−kq
n−2k − q

n−1∑
k=0

W−kWn−kq
n−1−2k, (64)

n∑
k=0

GkG̃n−kq
2k−n − q

n−1∑
k=0

Wn−kW−kq
n−1−2k, (65)

n∑
G̃kGn−kq

n−2k − q

n−1∑
Wn−kW−kq

2k+1−n, (66)

k=0 k=0
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n∑
k=0

G̃kGn−kq
2k−n − q

n−1∑
k=0

W−kWn−kq
2k+1−n. (67)

Proof. By Definition 5.1 the element Z∨
n is equal to the element (64). By Proposition 8.3 the 

element Z∨
n is fixed by σ and S. By Lemma 3.9 the map σ sends the elements

(64) ↔ (66), (65) ↔ (67)

and S sends the elements

(64) ↔ (65), (66) ↔ (67).

The result follows. �
It is illuminating to compare Lemma 2.8 with Corollary 8.4.

9. The grading for U+
q

In Lemma 3.10 we introduced an (N × N)-grading for U+
q . In this section we compute the 

dimension of each homogeneous component, and express the answer using a generating function. 
Throughout this section let λ, μ denote commuting indeterminates.

We start with some comments about the (N × N)-grading for U+
q . This grading was men-

tioned below Lemma 2.2 and described further in Lemma 2.11.

Definition 9.1. Define a generating function

H(λ,μ) =
∞∏

n=1

1

1 − λnμn−1

1

1 − λnμn

1

1 − λn−1μn
. (68)

Note 9.2. In the product (68) we expand each factor using (1 −x)−1 = 1 +x +x2 +· · · to express 
H(λ, μ) as a formal power series in λ, μ. We will do something similar for all the generating 
functions encountered in this section.

Lemma 9.3. (See [21, Corollary 3.7].) For (i, j) ∈ N ×N the following are the same:

(i) the dimension of the (i, j)-homogeneous component of U+
q ;

(ii) the coefficient of λiμj in H(λ, μ).

Recall the algebra F [z1, z2, . . .] from Definition 3.4. Shortly we will endow this algebra with 
an (N × N)-grading. The grading is motivated by the following result concerning the (N ×
N)-grading of U+

q .

Lemma 9.4. For n ≥ 1 the elements Zn, Z∨
n are homogeneous with degree (n, n).

Proof. For Z∨
n use Lemma 3.10 and Definition 5.1. For Zn use (53) and induction on n. �

Definition 9.5. We endow the algebra F [z1, z2, . . .] with an (N × N)-grading such that zn is 
homogeneous with degree (n, n) for n ≥ 1.
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Definition 9.6. Define a generating function

Z(λ,μ) =
∞∏

n=1

1

1 − λnμn
.

Lemma 9.7. For (i, j) ∈ N ×N the following are the same:

(i) the dimension of the (i, j)-homogeneous component of F [z1, z2, . . .];
(ii) the coefficient of λiμj in Z(λ, μ).

Proof. This is routinely checked. �
We have been discussing an (N×N)-grading of U+

q and an (N×N)-grading of F [z1, z2, . . .]. 
We now combine these gradings to get an (N ×N)-grading of U+

q ⊗ F [z1, z2, . . .].

Lemma 9.8. The algebra U+
q ⊗ F [z1, z2, . . .] has a unique (N ×N)-grading with the following 

property: for all homogeneous elements f ∈ U+
q and g ∈ F [z1, z2, . . .], the element f ⊗ g ∈

U+
q ⊗ F [z1, z2, . . .] is homogeneous with deg(f ⊗ g) = deg(f ) + deg(g). With respect to this 

grading each of W0 ⊗ 1, W1 ⊗ 1, {1 ⊗ zn}∞n=1 is homogeneous with degree shown below:

Element Degree

W0 ⊗ 1 (1,0)

W1 ⊗ 1 (0,1)

1 ⊗ zn (n,n)

Proof. By construction. �
Definition 9.9. Define a generating function

H(λ,μ) = H(λ,μ)Z(λ,μ)

=
∞∏

n=1

1

1 − λnμn−1

1

(1 − λnμn)2

1

1 − λn−1μn
.

Lemma 9.10. For (i, j) ∈N ×N the following are the same:

(i) the dimension of the (i, j)-homogeneous component of U+
q ⊗ F [z1, z2, . . .];

(ii) the coefficient of λiμj in H(λ, μ).

Proof. By Lemmas 9.3, 9.7 and Definition 9.9. �
Recall the isomorphism φ : U+

q ⊗ F [z1, z2, . . .] → U+
q from Lemma 5.16 and Theorem 5.17.

Lemma 9.11. For (i, j) ∈ N × N the isomorphism φ sends the (i, j)-homogeneous component 
of U+

q ⊗ F [z1, z2, . . .] to the (i, j)-homogeneous component of U+
q .
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Proof. Use Lemmas 3.10, 5.16, 9.4, 9.8. �
Proposition 9.12. For (i, j) ∈N ×N the following are the same:

(i) the dimension of the (i, j)-homogeneous component of U+
q ;

(ii) the coefficient of λiμj in H(λ, μ).

Proof. By Lemmas 9.10, 9.11. �
Example 9.13. For 0 ≤ i, j ≤ 6 the dimension of the (i, j)-homogeneous component of U+

q is 
given in the (i, j)-entry of the matrix below:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
1 3 4 4 4 4 4
1 4 10 13 14 14 14
1 4 13 27 36 39 40
1 4 14 36 69 91 101
1 4 14 39 91 161 213
1 4 14 40 101 213 361

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

10. A PBW basis for U+
q

In this section we obtain a PBW basis for U+
q . First we clarify our terms.

Definition 10.1. (See [11, p. 299].) Let A denote an algebra. A Poincaré-Birkhoff-Witt (or PBW) 
basis for A consists of a subset � ⊆ A and a linear order < on �, such that the following is a 
basis for the vector space A:

a1a2 · · ·an n ∈ N, a1, a2, . . . , an ∈ �, a1 ≤ a2 ≤ · · · ≤ an.

We interpret the empty product as the multiplicative identity in A.

Before proceeding, we have a comment about our approach. Shortly we will apply [21, Propo-
sitions 6.2, 7.2]. The results in [21, Propositions 6.2, 7.2] are about U+

q . However the proofs 
of [21, Propositions 6.2, 7.2] use only Lemmas 2.3, 2.4. Therefore the results in [21, Proposi-
tions 6.2, 7.2] apply to U+

q as well as U+
q . We will apply [21, Propositions 6.2, 7.2] to U+

q .

Theorem 10.2. A PBW basis for U+
q is obtained by its alternating generators

{W−i}i∈N , {Gj+1}j∈N , {G̃k+1}k∈N , {W�+1}�∈N
in any linear order < that satisfies

W−i < Gj+1 < G̃k+1 <W�+1 i, j, k, � ∈N.

Proof. Let � denote the set of alternating generators for U+
q . Consider the following vectors in 

U+
q :

a1a2 · · ·an n ∈ N, a1, a2, . . . , an ∈ �, a1 ≤ a2 ≤ · · · ≤ an. (69)
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We will show that the vectors in (69) form a basis for the vector space U+
q . We first show that 

the vectors in (69) span U+
q . To each element of � we assign a weight as follows. The ele-

ments {W−i}i∈N (resp. {Gj+1}j∈N ) (resp. {G̃k+1}k∈N ) (resp. {W�+1}�∈N ) get weight 0 (resp. 1) 
(resp. 2) (resp. 3). Any two elements of � commute if they have the same weight. Let S denote 
the subspace of U+

q spanned by (69). Note that S is spanned by the vectors

a1a2 · · ·an n ∈N, a1, a2, . . . , an ∈ �, wt(a1) ≤ wt(a2) ≤ · · · ≤ wt(an).

(70)

The algebra U+
q is generated by �. Therefore the vector space U+

q is spanned by

a1a2 · · ·an n ∈ N, a1, a2, . . . , an ∈ �. (71)

For any product a1a2 · · ·an in (71), define its defect to be 
∑n

i=1(n − i)wt(ai). We assume that 
S �= U+

q and get a contradiction. There exists a product in (71) that is not contained in S . Let 
D denote the minimum defect of all such products. Pick a product a1a2 · · ·an in (71) that is not 
contained in S and has defect D. The product a1a2 · · ·an is not listed in (70). Therefore there 
exists an integer s (2 ≤ s ≤ n) such that wt(as−1) > wt(as). Using [21, Propositions 6.2, 7.2] we 
express the product as−1as as a linear combination of products a′

s−1a
′
s such that a′

s−1, a
′
s ∈ � and 

wt(a′
s−1) < wt(a′

s) and wt(as−1) + wt(as) = wt(a′
s−1) + wt(a′

s). Replacing as−1as by a′
s−1a

′
s in 

a1a2 · · ·an we obtain a product with defect less than D, and hence contained in S . We have now 
expressed a1a2 · · ·an as a linear combination of products, each contained in S . Consequently 
a1a2 · · ·an is contained in S , for a contradiction. We have shown that the vectors in (69) span 
U+

q . We can now easily show that the vectors in (69) form a basis for U+
q . Each element in � is 

homogeneous with respect to the (N×N)-grading of U+
q . So each vector in (69) is homogeneous 

with respect to the (N ×N)-grading of U+
q . Consequently for (i, j) ∈N ×N the vectors in (69)

that have degree (i, j) span the (i, j)-homogeneous component of U+
q . The number of such 

vectors is equal to the coefficient of λiμj in H(λ, μ), and by Proposition 9.12 this coefficient 
is equal to the dimension of the (i, j)-homogeneous component of U+

q . By these comments and 
linear algebra, the vectors in (69) that have degree (i, j) form a basis for the (i, j)-homogeneous 
component of U+

q . We conclude that the vectors in (69) form a basis for the vector space U+
q . 

The result follows. �
11. Directions for future research

In this section we give some conjectures concerning the q-Onsager algebra Oq and its current 
algebra Aq . We will use the notation of Definition 3.4 and [10, Definition 3.1].

Conjecture 11.1. There exists an algebra isomorphism Aq → Oq ⊗ F [z1, z2, . . .].

Conjecture 11.2. Let Z denote the center of Aq . Then the algebra Z is isomorphic to 
F [z1, z2, . . .].

Conjecture 11.3. Let 〈W0, W1〉 denote the subalgebra of Aq generated by W0, W1. Then the 
algebra 〈W0, W1〉 is isomorphic to Oq .

Conjecture 11.4. The multiplication map

〈W0,W1〉 ⊗Z →Aq
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w ⊗ z 	→ wz

is an algebra isomorphism.

Conjecture 11.5. The generators in order

{W−k}k∈N , {Gk+1}k∈N , {G̃k+1}k∈N , {Wk+1}k∈N
give a PBW basis for Aq .

See [5] for results that support the above conjectures. For more general information on Aq

and Oq , see [6,10] for a mathematical physics point of view, and [9,12,16–20] for an algebraic 
point of view.
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Appendix A. The Z∨
n are central in U+

q

Our goal here is to prove Lemma 5.2. It will be convenient to use generating functions.

Definition A.1. We define some generating functions in an indeterminate t :

G(t) =
∑
n∈N

Gnt
n, G̃(t) =

∑
n∈N

G̃nt
n,

W−(t) =
∑
n∈N

W−nt
n, W+(t) =

∑
n∈N

Wn+1t
n.

By (33) we have

[W0,W−(t)] = 0, [W1,W+(t)] = 0. (72)

Next we express the relations (30)–(32) in terms of generating functions.

Lemma A.2. We have

[W0,W+(t)] = [W−(t),W1] = (1 − q−2)t−1(G̃(t) − G(t)
)
,

[W0,G(t)]q = [G̃(t),W0]q = (q − q−1)W−(t),

[G(t),W1]q = [W1, G̃(t)]q = (q − q−1)W+(t).

Next we express the relations (33)–(40) in terms of generating functions. Let s denote an 
indeterminate that commutes with t .
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Lemma A.3. We have

[W−(s),W−(t)] = 0, [W+(s),W+(t)] = 0,

[W−(s),W+(t)] + [W+(s),W−(t)] = 0,

s[W−(s),G(t)] + t[G(s),W−(t)] = 0,

s[W−(s), G̃(t)] + t[G̃(s),W−(t)] = 0,

s[W+(s),G(t)] + t[G(s),W+(t)] = 0,

s[W+(s), G̃(t)] + t[G̃(s),W+(t)] = 0,

[G(s),G(t)] = 0, [G̃(s), G̃(t)] = 0,

[G̃(s),G(t)] + [G(s), G̃(t)] = 0.

Next we express the relations (41)–(46) in terms of generating functions.

Lemma A.4. We have

[W−(s),G(t)]q = [W−(t),G(s)]q , [G(s),W+(t)]q = [G(t),W+(s)]q,

[G̃(s),W−(t)]q = [G̃(t),W−(s)]q, [W+(s), G̃(t)]q = [W+(t), G̃(s)]q,

t−1[G(s), G̃(t)] − s−1[G(t), G̃(s)] = q[W−(t),W+(s)]q − q[W−(s),W+(t)]q,

t−1[G̃(s),G(t)] − s−1[G̃(t),G(s)] = q[W+(t),W−(s)]q − q[W+(s),W−(t)]q,

[G(s), G̃(t)]q − [G(t), G̃(s)]q = qt[W−(t),W+(s)] − qs[W−(s),W+(t)],
[G̃(s),G(t)]q − [G̃(t),G(s)]q = qt[W+(t),W−(s)] − qs[W+(s),W−(t)].

So far in this section we displayed many relations involving the generating functions from 
Definition A.1. In the next two lemmas we express these relations in a more convenient form.

Lemma A.5. We have

W−(t)W0 =W0W−(t),

W+(t)W0 =W0W+(t) + (1 − q−2)t−1(G(t) − G̃(t)
)
,

G(t)W0 = q2W0G(t) + (1 − q2)W−(t),

G̃(t)W0 = q−2W0G̃(t) + (1 − q−2)W−(t)

and

W1W+(t) =W+(t)W1,

W1W−(t) =W−(t)W1 + (1 − q−2)t−1(G(t) − G̃(t)
)
,

W1G(t) = q2G(t)W1 + (1 − q2)W+(t),

W1G̃(t) = q−2G̃(t)W1 + (1 − q−2)W+(t).

Proof. These are reformulations of (72) and Lemma A.2. �
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Lemma A.6. We have

G(s)W−(t) = q
(qs − q−1t)W−(t)G(s) − (q − q−1)sW−(s)G(t)

s − t
,

G̃(s)W−(t) = q−1 (q−1s − qt)W−(t)G̃(s) + (q − q−1)sW−(s)G̃(t)

s − t
,

W+(s)G(t) = q
(q−1s − qt)G(t)W+(s) + (q − q−1)tG(s)W+(t)

s − t
,

W+(s)G̃(t) = q−1 (qs − q−1t)G̃(t)W+(s) − (q − q−1)t G̃(s)W+(t)

s − t

and

W+(s)W−(t) =W−(t)W+(s) + (1 − q−2)
G(s)G̃(t) − G(t)G̃(s)

s − t
,

G̃(s)G(t) = G(t)G̃(s) + (1 − q2)st
W−(t)W+(s) −W−(s)W+(t)

s − t
.

Proof. To obtain the first equation of the lemma statement, consider the relations

s[W−(s),G(t)] + t[G(s),W−(t)] = 0,

[W−(s),G(t)]q = [W−(t),G(s)]q
from Lemmas A.3, A.4. These relations give a system of linear equations in two unknowns 
G(s)W−(t), G(t)W−(s). Solve this system using linear algebra to obtain the first equation in the 
lemma statement. The next three equations in the lemma statement are similarly obtained. To ob-
tain the last two equations in the lemma statement, consider the last four relations in Lemma A.4. 
These relations give a system of linear equations in four unknowns

W+(s)W−(t), W+(t)W−(s), G̃(s)G(t), G̃(t)G(s).

Solve this system using linear algebra to obtain the last two equations in the lemma state-
ment. �

The relations in Lemmas A.5, A.6 will be called reduction rules.

Definition A.7. Define the generating function

Z∨(t) =
∑
n∈N

Z∨
n tn.

Lemma A.8. We have

Z∨(t) = G(q−1t)G̃(qt) − qtW−(q−1t)W+(qt).

Proof. By Definitions 5.1, A.1, A.7. �
Lemma A.9. We have

[W0,Z
∨(t)] = 0, [W1,Z

∨(t)] = 0.
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Proof. To verify each equation, eliminate Z∨(t) using Lemma A.8, and evaluate the result using 
the reduction rules. �
Lemma A.10. We have

[G(s),Z∨(t)] = 0, [G̃(s),Z∨(t)] = 0,

[W−(s),Z∨(t)] = 0, [W+(s),Z∨(t)] = 0.

Proof. To verify [G(s), Z∨(t)] = 0, eliminate Z∨(t) using Lemma A.8, and evaluate the result 
using the reduction rules. To obtain the remaining three equations in the lemma statement, use 
Lemmas A.2, A.9. �

We can now easily prove Lemma 5.2. Let n ∈ N be given. By Lemma A.10, Z∨
n commutes 

with every alternating generator of U+
q , and hence everything in U+

q . In other words, Z∨
n is central 

in U+
q .
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