
2.71.7

Informational Entropy Analysis of
Artificial Helium Atoms

Marcilio N. Guimarães , Rafael N. Cordeiro , Wallas S. Nascimento and Frederico V. Prudente

Article

https://doi.org/10.3390/atoms13050042

https://www.mdpi.com/journal/atoms
https://www.scopus.com/sourceid/21100857388
https://www.mdpi.com/journal/atoms/stats
https://www.mdpi.com
https://doi.org/10.3390/atoms13050042


Academic Editor: Gordon W. F. Drake

Received: 27 February 2025

Revised: 25 April 2025

Accepted: 3 May 2025

Published: 12 May 2025

Citation: Guimarães, M.N.; Cordeiro,

R.N.; Nascimento, W.S.; Prudente, F.V.

Informational Entropy Analysis of

Artificial Helium Atoms. Atoms 2025,

13, 42. https://doi.org/10.3390/

atoms13050042

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Informational Entropy Analysis of Artificial Helium Atoms

Marcilio N. Guimarães † , Rafael N. Cordeiro † , Wallas S. Nascimento † and Frederico V. Prudente *,†

Instituto de Física, Universidade Federal da Bahia, Salvador 40170-110, BA, Brazil; mng@ufba.br (M.N.G.);
arcanjorafael2@gmail.com (R.N.C.); wallassantos@gmail.com (W.S.N.)
* Correspondence: prudente@ufba.br
† These authors contributed equally to this work.

Abstract: We use the Shannon informational entropies as a tool to study the artificial
helium atom, namely, two electrons confined in a quantum dot. We adopt configurations
with spherical and cylindrical symmetries for the physical system of interest. Using the
informational quantities, we analyze the effects of electronic confinement, we validate the
entropic uncertainty relation, we identify that the Coulomb interaction potential between
the electrons is no longer important for strong confinements, and we indicate/predict the
avoided crossing phenomena. Finally, we carried out a density function analysis. When
available, the results are compared with those in the literature.

Keywords: artificial atoms; quantum-dot helium; Shannon entropy; avoided crossing

1. Introduction

The study of nanostructures such as quantum dots has attracted the attention of
researchers due to their promising technological applications [1]. The fact that we can
alter the properties of quantum dots makes these structures useful in the manufacture of
devices such as transistors [2,3], solar cells [4,5], LEDs [6,7], etc. In the context of quantum
computing, quantum dots are treated as possible qubit candidates [8,9].

Quantum dots are conductive regions of the order of De Broglie wavelength located
in a semiconductor. A quantum dot can be formed by the junction of two semiconduc-
tors with different energy band gaps that form heterostructures with certain conduction
bands. In turn, such bands form a quantum well of finite potential that can confine charge
carriers [10,11]. Quantum dots can be modeled as artificial atoms, with the electrons con-
tained in these nanostructures being confined in the three spatial directions, (x̂, ŷ and ẑ),
and have well-defined discrete quantum states [12,13]. Nevertheless, in the literature we
find comparative investigations between quantum dots treated as artificial atoms and real
atoms [14].

In the context of spatially confined quantum systems, we find several studies on
quantum dots [15,16]. The quantum dot is an extremely manipulable structure, so we
can, for example, undertake analyses on the number of electrons that can be confined in
this nanostructure, [17,18], as well as investigations on how the size [19,20] and different
confinement potentials [21,22] can affect the properties of such a system. Furthermore,
interesting results are obtained when these nanostructures, which have confinement effects,
are crossed by a laser field [23,24] or a magnetic field [25,26].

Historically, information or entropic measures were introduced into the quantum
mechanics context for the characterization of the degree of mixedness of quantum mixed
states. Studies indicate how entropic measures of information can be used in connection
with quantum pure states in quantum mechanics (see, for instance, Ref. [27] and references
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therein). On the other hand, the Shannon informational entropy initially appears in the field
of information theory [28,29]. This informational measure has been applied in different
fields of knowledge [30,31] and, in particular, has been successfully used in the field of
atomic and molecular physics [32,33].

In the treatment of confined quantum systems, Shannon entropy has been ap-
plied in several studies involving, for example, confined hydrogen [34–36] and helium
atoms [37–39], in addition to plasma systems [40,41]. Recent work indicates the possibility
of using informational quantities in the treatment of quantum dots [42–45].

In systems such as quantum dots, there is the possibility of the occurrence of the
avoided crossings phenomenon. This phenomenon is characterized by the energy values
of different states coming very close together without becoming equal and then moving
away from each other. Neighboring energy levels with the same symmetry do not intersect.
Pioneering studies involving hydrogen atom in the presence of the uniform magnetic and
electric fields indicate that Shannon and Fisher entropies are good predictors of avoided
crossings [46,47].

The aim of this work is to investigate, through Shannon informational entropies, the
motion of two electrons confined by a three-dimensional harmonic potential (isotropic
and anisotropic cases) in a quantum dot. In this sense, we implement computational nu-
merical procedures based on the finite element approximation to determine the optimized
variational wave function and, subsequently, obtain the values of the entropic quantities
of interest.

This work is divided as follows: In Section 2 we present the theoretical background in
which we mathematically formulate the problem of the two-electron quantum dot atom,
known as the artificial helium atom, and obtain Shannon informational entropies. In
Section 3 we present the results for the computations of the entropies for the cases in which
the confinement potential is isotropic (spherical artificial helium) and anisotropic (cylindri-
cal artificial helium). Finally, in Section 4 we present the conclusions and perspectives.

2. Theoretical Background

In this section, we present as the physical system of interest the artificial helium atom
in its spherical and cylindrical configurations. In particular, we highlight the descriptions
of this system in the coordinates of the center of mass and of the relative motion between
the two electrons (Section 2.1). Besides, we define the Shannon informational entropies
(Section 2.2). We develop all the formalism of this section using effective atomic units
(h̄ = m∗

e = e/
√

κ = 1).

2.1. System of Interest

The artificial helium atom is defined as a system of two electrons confined in a quantum
dot described by the following Hamiltonian:

Ĥ =
2

∑
i=1

[
1
2

p2
i + Vdot(ri)

]
+

1
|r1 − r2|

, (1)

where ri and pi are the position and generalized momentum vectors, respectively, of the
i-th particle. In this work, we adopted a three-dimensional harmonic confinement potential,
Vdot, given by,

Vdot(ri) =
1
2

[
ω2
⊥
(

x2
i + y2

i

)
+ ω2

z z2
i

]
, (2)

where the angular frequencies ω⊥, in the XY-plane, and ωz, in the Z-direction, are con-
finement parameters. In the case in which ω⊥ = ωz (isotropic case of the potential), the
confinement potential has a spherical symmetry, characterizing a spherical artificial helium
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atom. When ω⊥ ̸= ωz (anisotropic case of the potential), the confinement potential has a
cylindrical symmetry, defining the cylindrical artificial helium atom.

The present problem allows that the Hamiltonian, Ĥ, to be separated into a contri-
bution involving only the coordinates of the center of mass (R = (r1 + r2)/2), ĤCM, and
another referring to the relative motion coordinate between the two electrons (r = r1 − r2),
ĤRM, such that,

Ĥ = ĤCM + ĤRM . (3)

In this scenario, the total solution wavefunction, Ψ(R, r), for Ĥ, and its Fourier transform,
Ψ̃(P, p), can be separable into a two-part product, that is,

Ψ(R, r) = ΨCM(R) · ΨRM(r) and Ψ̃(P, p) = Ψ̃CM(P) · Ψ̃RM(p), (4)

where ΨCM(R) and ΨRM(r) are the solution wavefunctions for ĤCM and ĤRM, respectively.
Furthermore, Ψ̃CM(P) and Ψ̃RM(p) are the appropriate momentum space wavefunction.
In turn, the total energy, E, is given by

E = ECM + ERM . (5)

As we will analyze below, the problem concerning the center of mass motion has an
analytical solution. However, the problem of the relative motion between the two electrons
cannot be solved analytically, so we will reduce the problem to a one-dimensional equation
in the radial variable that will be resolved using the finite element method (FEM).

2.1.1. Center of Mass Motion

The Hamiltonian of the center of mass motion is

ĤCM = −1
4
∇2

R + ω2
⊥
(

X2 + Y2
)
+ ω2

z Z2 , (6)

where ∇R is the Laplacian operator. The time-independent Schrödinger equation referring
to ĤCM has an exact solution, being the solution wavefunctions in the space of positions,
ΨCM(R), and momentum, Ψ̃CM(P), in cylindrical coordinates, written as

ΨCM(R) = R(R)O(Φ)Z(Z) and Ψ̃CM(P) = R̃(PR)Õ(PΦ)Z̃(PZ) , (7)

with

R(R) =

√
2 · N!

(N + |M|)! ω
|M|+1

2
⊥ · e−

ω⊥
2 R2 · R|M| · L|M|

N

(
ω⊥R2

)
(8)

O(Φ) =
1√
2π

eiMΦ (9)

Z(Z) =

√
1

2NZ NZ!

(
ωz

π

) 1
4
· e−

ωz
2 Z2 · HNZ

(√
ωzZ

)
, (10)

where, ω⊥ = 2ω⊥ and ωz = 2ωz. On the other hand, we have

R̃(PR) =

√
2 · N!

(N + |M|)! ω̃
|M|+1

2
⊥ · e−

ω̃⊥
2 PR

2 · PR
|M| · L|M|

N

(
ω̃⊥PR

2
)

(11)

Õ(PΦ) =
1√
2π

eiMPΦ (12)

Z̃(PZ) =

√
1

2NZ NZ!

(
ω̃z

π

) 1
4
· e−

ω̃z
2 PZ

2 · HNZ

(√
ω̃zPZ

)
, (13)
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being that ω̃⊥ = 1/2ω⊥ and ω̃z = 1/2ωz. The functions HNZ
and L|M|

N are the Hermite
and associated Laguerre polynomials, respectively.

In turn, the energy eigenvalues are written exactly as

ECM = (2N + |M|+ 1)ω⊥ +

(
NZ +

1
2

)
ωz , (14)

where N and M are, respectively, the radial and the azimuthal quantum numbers associated
with the XY-planar oscillator. Furthermore, NZ is the quantum number associated with the
Z-direction harmonic oscillator.

2.1.2. Relative Motion Between the Two Electrons

The Hamiltonian of the relative motion between the two electrons is

ĤRM = −∇2
r +

1
4

ω2
⊥
(

x2 + y2
)
+

1
4

ω2
z z2 +

1
r

, (15)

where ∇r is the Laplacian operator and r = |r1 − r2|. The time independent Schrödinger
equation referring to ĤRM cannot be solved analytically due to the Coulomb interaction
(1/r). In order to solve it, we first expand the wavefunctions in the space of positions,
ΨRM(r), and momentum, Ψ̃RM(p), in a product of spherical harmonics and radial functions,
so that,

ΨRM(r) = ∑
l

Ym
l (θ, φ) · ϕlm(r)

r
and Ψ̃RM(p) = ∑

l

Ym
l (pθ , pφ) ·

ϕ̃lm(pr)

pr
, (16)

where l and m are the polar and azimuthal quantum numbers. The radial function in
momentum space is written as

ϕ̃lm(pr) = (−i)l

√
2
π

∫
Jl(prr)ϕlm(r) prr dr , (17)

where Jl are the spherical Bessel functions.
Based on variational formalism, the relative motion problem turns out to be the

solution of an eigenvalue-eigenvector problem. To obtain this, the radial function, ϕlm, is
expanded in a set of base functions { f j(r)} with coefficients {cj} , obtaining the following

Hc = ERMOc , (18)

where c is the coefficient vector,

{H}ll′
ij =

∫
dr

{[
d f ∗i (r)

dr

d f j(r)

dr
+ f ∗i (r)V

e f
l (r) f j(r)

]
δll′

+
∆ω2

4
f ∗i (r)r

2 f j(r) · Am
ll′

}
(19)

and
{O}ll′

ij =
∫

dr f ∗i (r) f j(r) · δll′ . (20)
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with V
e f
l (r) = l(l + 1)/r2 + ω2

⊥r2/4 + 1/r, ∆ω2 = ω2
z − ω2

⊥ and

Am
ll′ =

[
(l − m + 1)(l + m + 1)(l − m + 2)(l + m + 2)

(2l + 1)(2l + 3)2(2l + 5)

] 1
2

δl′ ,l+2 +

[
(l − m + 1)(l + m + 1)

(2l + 1)(2l + 3)
+

(l − m)(l + m)

(2l − 1)(2l + 1)

]
δl′ ,l + (21)

[
(l − m)(l + m)(l − m − 1)(l + m − 1)

(2l + 1)(2l − 1)2(2l − 3)

] 1
2

δl′ ,l−2 ,

wherein the coupling terms, Am
ll′ , imposes the condition that the whole set of values of l

(and l′) must be either even (singlet state) or odd (triplet state).
The function expansion method we employed to generate the base functions, { f j(r)},

and to solve the generalized eigenvalue-eigenfunction problem of Equation (18), obtaining
the energies, ERM, and coefficients of expansion, {cj}, from the radial function, was the
one-dimensional finite element method. It consists of dividing the range of integration into
elements and using locally defined polynomial base functions (see reference [48] for details).

Here, exclusively, in terms of nomenclature/notation, we adopted the quantum num-
bers in the context of the problem without considering the Coulomb interaction between
the electrons. In fact, when we suppress the term (1/r) from Hamiltonian (15), we have the
problem of two electrons without interaction. In this case, the energy of the relative motion
between the two electrons is given by

Enon
RM = (2n + |m|+ 1)ω⊥ +

(
nZ +

1
2

)
ωz. (22)

Thus, the quantum numbers associated with relative motion are n, m and nz with similar
meanings to the ones in expression (14). Anyway, as we will see in the results section, the
calculations of ERM will be numerical.

2.2. Shannon Informational Entropies

In the atomic and molecular physics context, the Shannon informational entropies in
the spaces of positions, Sr, and momentum, Sp, are defined as [36,49]

Sr = −
∫

|Ψ(R, r)|2 ln
(
|Ψ(R, r)|2

)
dRdr (23)

and
Sp = −

∫
|Ψ̃(P, p)|2 ln

(
|Ψ̃(P, p)|2

)
dPdp , (24)

where Ψ(R, r) and Ψ̃(P, p) are the wavefunctions in position and momentum spaces
(both normalized the unit), respectively. The Sr and Sp quantities are measures of un-
certainty, localization or delocalization, of the wavefunction in the space [50,51]. Adding
the Equations (23) and (24) we obtain the entropy sum St = Sr + Sp, from where we can
derive the following entropic uncertainty relation [52]

St ≥ D (1 + ln π) , (25)

where D is the dimension of the system.
Employing the Equation (4) in (23) and (24) we can write the Sr and Sp entropies as

Sr = SCM + SRM and Sp = S̃CM + S̃RM , (26)

with
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SCM = −
∫

|ΨCM(R)|2 ln
(
|ΨCM(R)|2

)
dR and S̃CM = −

∫
|Ψ̃CM(P)|2 ln

(
|Ψ̃CM(P)|2

)
dP , (27)

furthermore,

SRM = −
∫

|ΨRM(r)|2 ln
(
|ΨRM(r)|2

)
dr and S̃RM = −

∫
|Ψ̃RM(p)|2 ln

(
|Ψ̃RM(p)|2

)
dp. (28)

Considering that the wavefunction of the center of mass is separable as shown by the
expressions in (7), then, by the expressions in (27), we have

SCM = SR + SΦ + SZ and S̃CM = SPR
+ SPΦ

+ SPZ
, (29)

with

SR =−
∫

|R(R)|2 ln
(
|R(R)|2

)
RdR (30)

SΦ =−
∫

|O(Φ)|2 ln
(
|O(Φ)|2

)
dΦ (31)

SZ =−
∫

|Z(Z)|2 ln
(
|Z(Z)|2

)
dZ (32)

where R(R), O(Φ) and Z(Z) functions are given by the Equations (8), (9) and (10), respec-
tively. And

SPR
=−

∫
|R̃(PR)|

2
ln
(
|R̃(PR)|

2)
PRdPR (33)

SPΦ
=−

∫
|Õ(PΦ)|

2
ln
(
|O(Φ)|2

)
dPΦ (34)

SPZ
=−

∫
|Z̃(PZ)|

2
ln
(
|Z̃(PZ)|

2)
dPZ , (35)

being that R̃(PR), Õ(PΦ) and Z̃(PZ) are given by the Equations (11), (12) and (13),
respectively.

The wavefunction of the relative motion between the electrons, given by Equation (16),
is not separable for any value of l, then, by expressions in (28), we have,

SRM = −2π

∫∫
∑
ll′

Nm
l Pm

l (θ)Nm
l′ Pm

l′ (θ) · ϕlm(r)ϕl′m(r)·

ln

(

∑
ll′

Nm
l Pm

l (θ)Nm
l′ Pm

l′ (θ)
ϕlm(r)ϕl′m(r)

r2

)
sin θ drdθ (36)

and

S̃RM = −2π

∫∫
∑
ll′

Nm
l Pm

l (pθ)Nm
l′ Pm

l′ (pθ) · ϕ̃lm(pr)ϕ̃l′m(pr)·

ln

(

∑
ll′

Nm
l Pm

l (pθ)Nm
l′ Pm

l′ (pθ)
ϕ̃lm(pr)ϕ̃l′m(pr)

p2
r

)
sin pθ dprdpθ , (37)

where Nm
l = (−1)m

√
[(2l + 1)(l − m)!]/[4π(l + m)!] and Pm

l are associated Legen-
dre polynomials.
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In general, taking into account the problems of the center of mass and relative motion
between the electrons, the entropy sum, St, is

St =SCM + SRM + S̃CM + S̃RM

St =SR + SΦ + SZ + SRM + SPR
+ SPΦ

+ SPZ
+ S̃RM. (38)

The Shannon informational entropies are dimensionless quantities from the point of
view of physics. A detailed discussion about this topic can be found in the Refs. [36,50].

3. Results

In this section, we present and discuss the values of the Sr and Sp entropies (expres-
sions in (26)) and of the entropy sum St (expressions in (38)) for the spherical and cylin-
drical artificial helium atoms in different quantum number configurations. The integrals
SR, SZ, SRM, SPR

, SPZ
and S̃RM are solved by Gauss–Laguerre, Gauss–Hermite and Gauss–

Legendre quadrature integrations. Furthermore, we determined that SΦ = SPΦ
= ln(2π).

In particular, the convergence of numerical calculations of integrations SRM and S̃RM

was tested by the normalization condition

∫
|ΨRM(r)|2dr = 1 and

∫
|Ψ̃RM(p)|2dp = 1 . (39)

In fact, they used different position and momentum radial mesh ranges in numerical
integrations due to the fact that when there is a lower dispersion of the radial function a
smaller mesh size is needed so that we can use an sufficient number of points for numerical
integration in the region where the function was not null and, consequently, ensure the
condition of normalization of the Equation (39).

We also determined the total energy, E, for the physical system of interest using the
Equation (5). ECM is obtained by Equation (14) and ERM using the numerical method we
present in the Section 2.1. All our calculations were performed using a computational
implementation in Fortran and utilizing the effective atomic units.

In order to assess the reliability, we compared our results for relative motion energies,
for some values of potential parameter, with the accurate ones from Prudente et al. [53]
calculated using the discrete variable representation method (DVR). Our calculation
with FEM was performed by making an equidistant discretization with Ne = 20 mesh
elements, k = 5 maximum polynomial order and up to 20 spherical harmonics with
a particular symmetry (l even or odd) while the DVR utilized 100 base functions and
30 spherical harmonics. At virtually all the levels compared, our results agreed perfectly
down to the fifth decimal place. Therefore, we consider that our numerical basis functions
are satisfactory.

3.1. Spherical Artificial Helium Atom

First, we investigate the spherical artificial helium atom (isotropic situation of the
potential). In this case, making ω = ω⊥ = ωz in Equation (14) we have

ECM =

(
2N + L +

3
2

)
ω . (40)

Additionally, from Equation (22) we found that

Enon
RM =

(
2n + l +

3
2

)
ω . (41)
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So, the states for the motion of the center of mass and of the relative motion between the
electrons are defined by the quantum numbers (N, L) and (n, l), respectively. In addition,
we have L = |M|+ NZ and we identify a decoupling in angular momentum l (∆ω = 0 in
Equation (19)) from which it follows l = |m|+ nZ.

We present all the results obtained for the total energy, E, and the Sr, Sp and St

entropies for different states, (n, l), but always in the ground state of the center of mass
problem, i.e., (N, L) = (0, 0).

In Figure 1 we have the total energy, E, for different quantum states, (n, l), as a function
of ω. It can be observed that the thin band structure appears when the confinement
situation increases with the increase in the ω values. In fact, for large values of ω the
influence of the Coulomb correlation of repulsion on the electrons is smaller and their
movements begin to be mainly governed by the harmonic confinement potential, whose
associated energy spectrum has degeneracies for some values of n and l, as seen in the
expression (41). No avoided crossing is noticed, apparently, this is due to the spherical
symmetry of the potential.

	

E
	[
b
o
h
r]

0

20

40

60

80

ω	[a.u.]
0 2 4 6 8 10

(0,0)

(0,1)

(0,2)

(1,0)

(0,3)

(1,1)

(0,4)

(1,2)

(2,0)

(0,5)

Figure 1. Total energy, E, for different quantum states, (n, l), as a function of ω for the spherical
artificial helium atom.

In Table 1 we present the results for the informational entropy in the position space
obtained by Cordeiro [54] and by the present work. Cordeiro [54] shows results for the
ground and first excited states, (n, l) = (0, 0) and (1, 0), respectively, also with (N, L) = (0, 0).
His calculation was performed using a method based in a set of hyperspherical coordinates
making a separation between the hyperradius and the hyperangles, similarly to the sepa-
ration adiabatic between nuclear and electronic coordinates for a molecule, and solving
differential equations using FEM. We have a good agreement between the results obtained
by Cordeiro [54] and by the present work, thus ensuring the reliability of our results.
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Table 1. Informational entropy Sr for the ground, (0, 0), and first excited states, (1, 0), with different
ω values for the spherical artificial helium atom.

Sr

(0, 0) (1, 0)
ω Cordeiro [54] Present Cordeiro [54] Present

0.1 14.1560 14.1564 14.7033 14.7037
0.25 11.1877 11.1880 11.8127 11.8137
0.5 8.9695 8.9697 9.6539 9.6545
1.0 6.7766 6.7767 7.5157 7.5168
4.0 2.4600 2.4599 3.2836 3.2836

In Figure 2, in graphs (a) and (b), respectively, we have the values of informational
entropies in the spaces of positions, Sr, and momentum, Sp, for different system states,
(n, l), as a function of ω. In graph (c) we present the curves of St versus ω. As expected,
Sr decreases with increasing confinement intensity (increasing ω values), on the other
hand, the Sp increases with increasing ω. This means that as the confinement becomes
more intense, the uncertainty associated with the position measurements decreases. As
also expected, in the excited state, the electrons are more weakly trapped by the harmonic
potential. In turn, for more rigorous confinements (ω → ∞), the entropy sum becomes ap-
proximately constant. The entropic uncertainty relation (25), with D = 6, i.e., St ≥ 12.8684,
is satisfied for the spherical artificial helium atom.

S
r

0

5

10

15

ω [a.u.]
0 2 4 6 8 10

(0,0)

(0,1)

(0,2)

(1,0)

(0,3)

(1,1)

(0,4)

(1,2)

(2,0)

(0,5)

(a)

		
SS
pp

ω	[ω	[a.u.]a.u.]

(b)

		

SS
tt

12.5

13

13.5

14

14.5

15

15.5

16

ω	[ω	[a.u.]a.u.]
0 2 4 6 8 10 12

(0,0)
(0,1)
(0,2)
(1,0)
(0,3)
(1,1)
(0,4)
(1,2)
(2,0)
(0,5)

(c)
Figure 2. In (a) Sr, (b) Sp and (c) St entropies for different quantum states, (n, l), as a function of ω

for the spherical artificial helium atom.
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In Table 2 we highlight for presentation some values of Sr and Sp for different system
states, (n, l), in ascending order of energy, with ω = 0.1, 0.5 and 4.0. We can see that
the informational entropies for a fixed value of ω do not follow the monotonic increase
behavior of the energy values.

We define here that ∆Sr are the Sr values of the spherical artificial helium atom minus
the spherical artificial helium atom without Coulomb interaction. In Figure 3 we present
the ∆Sr curves for different quantum states, (n, l), as a function of ω. We identified that
∆Sr tends to zero 0 when ω tends to infinity (increased confinement). This indicates that
the Coulomb interaction potential between the electrons is no longer important for strong
confinements and the system begins to behave as an independent particle model. It is also
visible that the ground state is more influenced by the interaction potential when compared
to other states, since it tends more slowly towards the behavior of two non-interacting
particles. This behavior is in accordance with that indicated by Nascimento et al. [38].

Table 2. Informational entropies Sr and Sp for different system states, (n, l), with three different ω

values for the spherical artificial helium atom.

ω = 0.1 ω = 0.5 ω = 4.0
(n, l) Sr Sp Sr Sp Sr Sp

(0, 0) 14.1564 −1.1391 8.9697 3.9425 2.4599 10.4151
(0, 1) 13.9867 −0.6189 8.9695 4.4120 2.6151 10.7823
(0, 2) 14.1879 −0.1239 9.2439 4.8475 2.9391 11.1698
(1, 0) 14.7037 0.2114 9.6545 5.1396 3.2836 11.4654
(0, 3) 14.3877 0.2264 9.4802 5.1598 3.1978 11.4571
(1, 1) 14.5077 0.2218 9.5551 5.1674 3.2457 11.4798
(0, 4) 14.5636 0.4904 9.6771 5.3993 3.4069 11.6820
(1, 2) 14.6687 0.5136 9.7576 5.4410 3.4726 11.7336
(2, 0) 15.0980 0.7638 10.1232 5.6979 3.8091 12.0280
(0, 5) 14.7173 0.7004 9.8439 5.5929 3.5812 11.8660
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Figure 3. Values of ∆Sr for different quantum states, (n, l), as a function of ω for the spherical artificial
helium atom.
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3.2. Cylindrical Artificial Helium Atom

We examine here the cylindrical artificial helium (anisotropic case of the potential).
In this scenario, we have ω⊥ ̸= ωz, being that, according to Equations (14) and (22),
the quantum numbers that define the states of the movement of the center of mass are
(N, M, Nz) and of the relative movement between the electrons are (n, m, nz). Still, the
coupling term, Am

ll′ (Equation (21)), imposes the condition that every set of values of l must
be either even (singlet state) or odd (triplet state).

Again, we present the results of the total energy, E, and Sr entropy for different states,
(n, m, nz), always in the ground state of the center of mass problem, (N, M, Nz) = (0, 0, 0).

In Figure 4 we have the total energy, E, for different quantum states, (n, m, nz), as a
function of ωz and fixing ω⊥ = 0.5. We identified that, compared to the isotropic case, the
band structure disappears when ωz increases since the movement becomes governed by
the harmonic potential whose associated energy spectrum has generally no degeneracy for
values of n and nz.

We noted that, between singlet (l even) and triplet (l odd) states (as discussed in
Section 2.1 examining Equation (21)), crossings can occur, but not for states of the same
parity and m value. Thus, avoided crossings appear between states of the same parity
and projection of angular momentum. The occurrence of these avoided crossings reveals
an oscillating behavior in the energy states, and the higher the energy level, the more
persistent this oscillation. Similar behavior was obtained by Nascimento et al. [45] in the
system of one electron confined in an asymmetric double quantum dot.
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Figure 4. Total energy, E, for different quantum states, (n, m, nz), as a function of ωz for the cylindrical
artificial helium atom (ω⊥ = 0.5).

Interestingly, states of the same parity are obtained from the diagonalization of the
same matrix, which led us to think that the avoided crossings could be false, resulting from
a characteristic of the diagonalization algorithms that tend to order the eigenvalues in an
increasing way. However, the analysis of the eigenvectors showed us that the ordering
of the eigenvalues was correct, and the avoided crossings are, in fact, true. For example,
in Figure 5 we show the radial density function, |Ψ(r)|2 = r2

∫
|ΨRM|2dΩ, in the second

and third quantum states of even symmetry (with m = 0) for weak (ωz = 0.1) and strong
(wz = 10.0) confinements. As we can see, in fact, the functions maintained their waveform,
that is, their number of peaks (local maxima) did not change, showing that, for these
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two levels, the ordering of the eigenvalues is compatible with their eigenvectors. Similar
analysis can be performed for other levels.

ωωzz	=	0.1	a.u.	=	0.1	a.u.

|Ψ
(

|Ψ
(r
)|r)
|22

0

0.1

0.2

0.3

0.4

0.5

r	[bohr]r	[bohr]
0 2 4 6 8 10 12 14 16 18 20

State	(0,0,2)

State	(0,0,4)

(a)

ωωzz	=	10.0	a.u.	=	10.0	a.u.

|Ψ
(

|Ψ
(r
)|r)
|22

0

0.1

0.2

0.3

0.4

0.5

r	[bohr]r	[bohr]
0 2 4 6 8 10 12 14 16 18 20

State	(0,0,2)

State	(0,0,4)

(b)

Figure 5. Radial density function in second and third singlet quantum states for the confinements in
(a) weak, ωz = 0.1, and (b) strong, ωz = 10.0 (ω⊥ = 0.5).

In Figure 6 we present the informational entropy in position space for different system
states, (n, m, nz) as a function of ωz with ω⊥ = 0.5 fixed. In the graph (a) we have Sr versus
ωz for the even parity states and in the graph (b) Sr versus ωz is for the odd parity states,
both with quantum number m = 0. For each graph, there are only avoided crossings in the
energy curves (see Figure 4) and the observed abrupt changes in behavior of Sr reflects this.
We can see that in the ground state of each parity, namely (0, 0, 0) and (0, 0, 1), there is no
abrupt change in behavior in Sr because these states do not have avoided crossings in the
energy curves. On the other hand, in the first excited state of each parity, i.e., (0, 0, 2) and
(0, 0, 3), an abrupt change in Sr occurs precisely at the location of the confinement value,
wz, where the avoided crossing happens in the energy curves. In the other excited states of
each symmetry, changes occur in more than one location, since there are several locations
where avoided crossings happen in the energy.

		

SS
rr

ωωzz	[a.u.]	[a.u.]

(a)

		

SS
rr

ωωzz	[a.u.]	[a.u.]

(b)

Figure 6. In (a,b) values of Sr in different quantum states as a function of ωz for the cylindrical
artificial helium (with ω⊥ = 0.5).

In Table 3 we organize, in ascending order of energy, the determined values of the
informational entropy Sr for different system states, (n, m, nz), with ωz = 0.1, 1.0 and 4.0.
As in the case of the spherical artificial helium atom, we can see that the Sr entropy does
not follow the monotonic increase behavior of the energy values.
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Table 3. Informational entropy Sr for different system states, (n, m, nz), with three different ωz values
for the cylindrical artificial helium (ω⊥ = 0.5).

ωz = 0.1 ωz = 1.0 ωz = 4.0
(n, m, nz) Sr (n, m, nz) Sr (n, m, nz) Sr

(0, 0, 0) 10.6205 (0, 0, 0) 8.2612 (0, 0, 0) 6.9117
(0, 0, 1) 10.5241 (0, 1, 0) 8.5527 (0, 1, 0) 7.1609
(0, 0, 2) 10.8540 (0, 2, 0) 8.7503 (0, 2, 0) 7.3573
(0, 0, 3) 10.7673 (1, 0, 0) 8.7640 (1, 0, 0) 7.3840
(0, 0, 4) 10.9458 (0, 0, 1) 8.3347 (0, 3, 0) 7.5045
(0, 0, 5) 10.9072 (0, 3, 0) 8.8962 (1, 1, 0) 7.6054
(0, 1, 0) 11.2061 (0, 1, 1) 8.7798 (0, 4, 0) 7.6204
(0, 0, 6) 11.0205 (1, 1, 0) 9.0014 (1, 2, 0) 7.7588
(0, 1, 1) 11.0988 (0, 4, 0) 9.0109 (2, 0, 0) 7.7166
(0, 0, 7) 11.0079 (1, 2, 0) 9.1536 (0, 5, 0) 7.7154

In order to analyze in more detail what occurs in the regions of avoided crossings,
in Figure 7 we show the evolution of the radial density function of the second and third
quantum states with even symmetry and m = 0, namely, states (0, 0, 2) and (0, 0, 4), for
different values of the confinement parameter ωz (with ω⊥ = 0.5). We analyze the behavior
in an interval ωz = [0.2, 1.0]. In this interval, we see in Figure 4 that the state (0, 0, 2) has
an avoided crossing with the state (0, 0, 4) around ωz = 0.5 and that, in turn, the state
(0, 0, 4) has other avoided crossings around ωz = 0.3 and ωz = 1.0. Having observed
Figure 5a and continuing the observation in Figure 7a, we see the states (0, 0, 2) and (0, 0, 4)
evolve with two and three peaks, respectively. However, as Figure 7b,c shows, the radial
density functions are deformed, since they are approaching the avoided crossing regions
around ωz = 0, 3, for (0, 0, 4) states only, and ωz = 0.5, which acts as a kind of “barrier”.
In Figure 7d, the radial density functions of the states (0, 0, 2) and (0, 0.4) are found with
one and two peaks, respectively. Then, following Figure 7e–i, we see that the state (0, 0, 2)
deforms in the sense of returning to having two peaks, since there is no other avoided
crossing for this state. However, the state (0, 0, 4) still does not return to having three
peaks, since there is ωz = 1.0 an avoided crossing with a higher state. Therefore, the state
(0, 0, 4) still feels a second “barrier” before continuing "freely" in the direction of increased
confinement. In Figure 5b we see that the state (0, 0, 4) returns to having three peaks well
after passing through the second “barrier”. Therefore, the sudden changes in the behavior
of the position entropy reflect the presence of this “barrier” encountered throughout the
variation in quantum confinement.

We conclude that the avoided crossings correspond to abrupt changes in the informa-
tion entropy Sr and, therefore, in the shape of the wave function, which can be verified
by directly plotting some of these functions. The valleys in the entropy curves indicate
a sudden concentration of the wave function, which means that for these specific values
of the confinement parameter, the electrons in these states are particularly well-localized.
We were able to conclude that, in the anisotropic case, the states of the system are espe-
cially sensitive to certain values of the confinement parameter. For large values of the
confinement parameter, the wave functions return to their ‘regular shape’.
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Figure 7. In graphs (a–i) we indicate the evolution of the radial density function in second and third
singlet quantum states for different values of ωz confining parameter (with ω⊥ = 0.5).

4. Conclusions

In this work, we have studied, on the basis of the calculation of information entropy,
the two-electron quantum dot confined by a three-dimensional harmonic potential. We
have focused on the cases in which the potential has a spherical (isotropic) and a cylindrical
(anisotropic) symmetry.

The results for the isotropic case showed that with increasing confinement intensity, the
energy spectrum begins to present a band structure, resembling the degenerate spectrum
of two non-interacting particles governed by a harmonic potential. As expected, the infor-
mation entropy in position space tends to decrease as the confinement strength increases,
which is simply interpreted as a decrease in the dispersion of the position measurements in
the case where the particles are more strongly trapped by the potential. The information
entropy in the momentum space, in turn, tends to increase with increasing confinement
strength, indicating that the momentum measurements become more spread out.

In the anisotropic case, the band structure for the energies is not observed as sharply
as in the previous case. The breaking of spatial symmetry gives rise to numerous avoided
crossings between the energies of states with the same projection of the angular momentum.
Similar effects on the information entropic curves are also analyzed in Ref. [45].

These results are interesting for defining the extent to which the interaction between
electrons and the symmetry of confinement should be taken into account in real situations.
A possible implication of our findings could be the study of the relationship between the
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behavior of information entropies and the quantum entanglement of electrons. For example,
the results of the isotropic case for the behavior of particles with increasing confinement
intensity are consistent with the results obtained by other researchers concerning the
behavior of quantum entanglement in two-electron systems [55,56]. It was found, among
other things, that the quantum entanglement between two electrons tends to decrease
when the strength of the confining potential increases, which means that the electrons
tend to behave as independent (non-entangled) particles. In turn, for the anisotropic
case, the results suggest that there may be interesting non-trivial effects related to the
behavior of entanglement between two electrons when there is a symmetry transition in
the confining potential.
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