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Abstract: The time–energy uncertainty relation in nonrelativistic quantum mechanics has been

intensely debated with regard to its formal derivation, validity, and physical meaning. Here, we

analyze two formal relations proposed by Mandelstam and Tamm and by Margolus and Levitin and

evaluate their validity using a minimal quantum toy model composed of a single qubit inside an

external magnetic field. We show that the ℓ1 norm of energy coherence C is invariant with respect

to the unitary evolution of the quantum state. Thus, the ℓ1 norm of energy coherence C of an initial

quantum state is useful for the classification of the ability of quantum observables to change in time

or the ability of the quantum state to evolve into an orthogonal state. In the single-qubit toy model,

for quantum states with the submaximal ℓ1 norm of energy coherence, C < 1, the Mandelstam–Tamm

and Margolus–Levitin relations generate instances of infinite “time uncertainty” that is devoid of

physical meaning. Only for quantum states with the maximal ℓ1 norm of energy coherence, C = 1, the

Mandelstam–Tamm and Margolus–Levitin relations avoid infinite “time uncertainty”, but they both

reduce to a strict equality that expresses the Einstein–Planck relation between energy and frequency.

The presented results elucidate the fact that the time in the Schrödinger equation is a scalar variable

that commutes with the quantum Hamiltonian and is not subject to statistical variance.

Keywords: quantum dynamics; time; uncertainty principle

1. Introduction

In the early days of the study of quantum mechanics, Werner Heisenberg [1,2], Niels
Bohr [3], Albert Einstein [4], Max Born, and Pascual Jordan [5] considered time and energy
as physical quantities, which do not commute. The derivation of the time–energy uncertainty
relation was based on thought experiments, such as Heisenberg’s microscope [1,2] or
Einstein’s photon box [6,7], where the goal was to employ physical intuition in order to
arrive at the desired final inequality. Despite the lack of mathematical rigor, one still had to
confront the fact that time t is a real-valued scalar in the Schrödinger equation [8–10]

ıh̄
d
dt
|Ψ〉 = Ĥ|Ψ〉 (1)

and commutes with the quantum Hamiltonian operator Ĥ, namely

[Ĥ, t] = Ĥt − tĤ = 0. (2)

To highlight the problem, Wolfgang Pauli [11,12] proved as a theorem in 1933 that in
nonrelativistic quantum mechanics, there cannot exist a time operator t̂ such that

[Ĥ, t̂] = Ĥt̂ − t̂Ĥ = −ıh̄ Î. (3)

Following the discovery of the generalized Ehrenfest theorem [13] and the Robertson–
Schrödinger uncertainty relation [14,15], different authors have attempted to use the quan-
tum dynamics of quantum observables in order to construct time–energy uncertainty

Symmetry 2024, 16, 100. https://doi.org/10.3390/sym16010100 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16010100
https://doi.org/10.3390/sym16010100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6846-1194
https://doi.org/10.3390/sym16010100
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16010100?type=check_update&version=2


Symmetry 2024, 16, 100 2 of 16

relations based on the statistical standard deviations of some dynamic quantum observable
and the total energy (for comprehensive reviews, see Refs. [16,17]). The motivation behind
such efforts is the practical consideration that time can only be measured by observing some
physical quantity that is dynamically changing. In this work, we will investigate the validity
and physical interpretation of two alternative uncertainty relations proposed in 1945 by
Mandelstam and Tamm [18] and in 1998 by Margolus and Levitin [19]. We will show that
the claimed time–energy uncertainty relations do not really pertain to physical time in the
nonrelativistic setting, and whenever they faithfully represent time, the relations reduce to
the strict Einstein–Planck relation between energy and frequency [20].

The presentation is organized as follows: In Section 2, we introduce the Mandelstam–
Tamm uncertainty relation. In Section 3, we derive the conservation of total energy and its
quantum statistics, including the energy variance Var(Ĥ), energy standard deviation ∆Ĥ,
and the ℓ1 norm of energy coherence C. In Section 4, we illustrate the dynamics of a minimal
quantum toy model and plot the Mandelstam–Tamm quantity ∆T purported to measure
“time uncertainty”. In Section 5, we introduce and analyze the Margolus–Levitin uncertainty
relation based on the minimal time τ⊥ taken by the quantum state vector to evolve into an
orthogonal state. Finally, in Section 6, we summarize our results on the performance of the
two alternative time–energy uncertainty relations and show that their meaningful physical
interpretation is just a manifestation of the Einstein–Planck relation between energy and
frequency. To make this work self-contained, we also provide a comprehensive summary of
quantum statistics in Appendix A, derive the generalized Ehrenfest theorem in Appendix B,
and prove the Robertson–Schrödinger uncertainty relations in Appendix C.

2. Mandelstam–Tamm Uncertainty Relation

Mandelstam and Tamm [18] derived the so-called time–energy uncertainty relation
based on the Robertson uncertainty relation (A12) for two Hermitian operators Â = Â†

and B̂ = B̂†, in which they have set B̂ = Ĥ

∆Â · ∆Ĥ ≥ 1
2

∣

∣

〈[

Â, Ĥ
]〉∣

∣ (4)

where ∆ indicates the standard deviation of the given quantum observable (cf. (A6)) and
the quantum Hamiltonian Ĥ is related to the total energy of the quantum system. After
the substitution of ıh̄ d

dt 〈Â〉 for the expectation of the commutator 〈[Â, Ĥ]〉 based on the
generalized Ehrenfest theorem (A7), we obtain

∆Â · ∆Ĥ ≥ h̄
2

∣

∣

∣

∣

d
dt

〈

Â
〉

∣

∣

∣

∣

. (5)

Now, the identification of ∆E ≡ ∆Ĥ and

∆T ≡ ∆Â
∣

∣

∣

d
dt

〈

Â
〉

∣

∣

∣

(6)

results in

∆E · ∆T ≥ h̄
2

. (7)

The Mandelstam–Tamm uncertainty relation has been also generalized for mixed
states [21–23]; however, the physical interpretation of ∆T has not been scrutinized in detail.

Before we focus on the physical interpretation of ∆T, it would be useful to recall
several fundamental theorems on the quantum statistics of the total energy Ĥ and its
expectation value 〈Ĥ〉, variance Var(Ĥ), and standard deviation ∆Ĥ.



Symmetry 2024, 16, 100 3 of 16

3. Conservation of Total Energy and Its Quantum Statistics

Theorem 1. For a closed quantum system, the expectation value of the total energy 〈Ĥ〉 does not
change in time

d
dt

〈

Ĥ
〉

= 0. (8)

Furthermore, the expectation values for individual energy eigenvectors do not change in time, which
implies that the variance Var(Ĥ) and standard deviation ∆Ĥ of energy also do not change in time.

Proof. The application of the generalized Ehrenfest theorem (A7) immediately gives

d
dt

〈

Ĥ
〉

=
1
ıh̄

〈[

Ĥ, Ĥ
]〉

= 0. (9)

Alternatively, one can start from the general basis-independent solution of the Schrödinger
equation

|Ψ(t)〉 = e−
ı
h̄ Ĥt|Ψ(0)〉 (10)

and express it in the energy basis as

|Ψ(t)〉 =
n

∑
i=1

αi(0)e
− ı

h̄ Eit|Ei〉 (11)

where {|Ei〉}n
i=1 is the complete set of energy eigenvectors that span the Hilbert space H of

the quantum system, {Ei}n
i=1 is the set of corresponding energy eigenvalues, and the initial

energy quantum probability amplitudes are αi(0) = 〈Ei|Ψ(0)〉.
Since the spectral decomposition of the Hamiltonian is

Ĥ =
n

∑
k=1

Ek|Ek〉〈Ek| (12)

for any time t, we have

〈Ψ(t)|Ĥ|Ψ(t)〉 =
n

∑
j=1

α∗j (0)e
+ ı

h̄ Ejt〈Ej|
(

n

∑
k=1

Ek|Ek〉〈Ek|
)

n

∑
i=1

αi(0)e
− ı

h̄ Eit|Ei〉

=
n

∑
i=1

n

∑
k=1

n

∑
j=1

αi(0)α
∗
j (0)Eke

ı
h̄ (Ej−Ei)t〈Ej|Ek〉〈Ek|Ei〉

=
n

∑
i=1

n

∑
k=1

n

∑
j=1

αi(0)α
∗
j (0)Eke

ı
h̄ (Ej−Ei)tδjkδki

=
n

∑
i=1

|αi(0)|2Ei = 〈Ψ(0)|Ĥ|Ψ(0)〉. (13)

Each quantum probability amplitude for the corresponding energy eigenstate

αi(t) = αi(0)e
− ı

h̄ Eit (14)

oscillates in the Hilbert space H with angular frequency ωi =
Ei
h̄ , whereas the quantum

probability |αi(t)|2 = |αi(0)|2 remains constant, d
dt |αi(t)|2 = 0.

Theorem 1 shows that for a closed quantum system, characterized by quantum Hamil-
tonian Ĥ and initial quantum state Ψ(0)〉, the quantum statistical quantities of energy are
stable system properties that do not change in time.
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Definition 1. For a quantum state vector |Ψ〉 that is expressed in some given basis {|ψi〉}n
i=1 of

n-dimensional Hilbert space H, the basis-dependent ℓ1 norm of coherence C and predictability P
are defined [24–27] as

C =
1

n − 1 ∑
i 6=j

|αi|
∣

∣αj
∣

∣, (15)

P =
√

1 − C2, (16)

where αi = 〈ψi|Ψ〉 is the quantum probability amplitude corresponding to each unit vector |ψi〉 in
the complete basis set resolving the unit operator Î = ∑

n
i=1 |ψi〉〈ψi|, namely

|Ψ〉 = Î|Ψ〉 =
n

∑
i=1

|ψi〉〈ψi||Ψ〉 =
n

∑
i=1

αi|ψi〉. (17)

Theorem 2. For a closed quantum system, the ℓ1 norm of energy coherence C and energy pre-
dictability P are constant in time.

Proof. Using the explicit time dynamics (14) for each energy eigenstate, we have

C(t) = 1
n − 1 ∑

i 6=j

|αi(t)|
∣

∣αj(t)
∣

∣ =
1

n − 1 ∑
i 6=j

|αi(0)|
∣

∣

∣
e−

ı
h̄ Eit
∣

∣

∣

∣

∣αj(0)
∣

∣

∣

∣

∣
e−

ı
h̄ Ejt
∣

∣

∣

=
1

n − 1 ∑
i 6=j

|αi(0)|
∣

∣αj(0)
∣

∣ = C(0), (18)

P(t) =
√

1 − C2(t) =
√

1 − C2(0) = P(0). (19)

Theorem 2 suggests that because the ℓ1 norm of energy coherence C is a time-invariant
physical property, it can be used as a convenient classification of quantum systems with a
given quantum Hamiltonian Ĥ and initial quantum state |Ψ(0)〉.

4. Minimal Quantum Toy Model

Consider a spin- 1
2 quantum particle (qubit) in a uniform static magnetic field ~B that is

aligned in the z-direction [28]. The quantum Hamiltonian of the system is

Ĥ =
1
2

h̄ω σ̂z =
1
2

h̄ω

(

1 0
0 −1

)

(20)

where σ̂z is the Pauli spin matrix aligned in the z-direction.

4.1. Quantum Dynamics of Energy States

The energy eigenstates of the quantum system are the eigenstates of the Hamilto-
nian (20), namely, | ↑z〉, | ↓z〉 with corresponding eigenvalues + 1

2 h̄ω,− 1
2 h̄ω.

The matrix exponential of the Hamiltonian is transformed into an ordinary exponential
of the corresponding energy eigenvalues when acting on the energy eigenstates

e−
ı
h̄ Ĥt| ↑z〉 = e−

1
2 ıωt| ↑z〉, (21)

e−
ı
h̄ Ĥt| ↓z〉 = e+

1
2 ıωt| ↓z〉. (22)

Therefore, it is useful to express the initial state |Ψ(0)〉 in the energy eigenbasis

|Ψ(0)〉 = α1| ↑z〉+ α2| ↓z〉 (23)
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with normalization condition

∑
i

|αi|2 = |α1|2 + |α2|2 = 1. (24)

The general solution of the Schrödinger Equation (10) in the energy basis becomes

|Ψ(t)〉 = α1e−
1
2 ıωt| ↑z〉+ α2e+

1
2 ıωt| ↓z〉. (25)

The expectation value of the energy is independent of time (Figure 1)

〈

Ĥ
〉

=
1
2

h̄ω〈σ̂z〉 =
1
2

h̄ω
(

|α1|2 − |α2|2
)

. (26)

0
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Figure 1. The quantum dynamics of energy eigenstates is trivial; that is, the expectation value for
each energy eigenvector does not change in time. This implies that the standard deviation of energy
is constant and fixed by the choice of initial quantum state. Based on the quantum Hamiltonian (20),
the eigenvectors of σ̂z play the role of energy eigenvectors. The quantum superposition of the
energy quantum probability amplitudes of the initial state |Ψ(0)〉 given in (23) is varied as follows:
(A) α1 = 1, α2 = 0, C = 0, (B) α1 =

√
5/6, α2 =

√
1/6, C ≈ 0.745, (C) α1 =

√
2/3, α2 =

√
1/3,

C ≈ 0.943, (D) α1 =
√

1/2, α2 =
√

1/2, C = 1.

Similarly, the variance of the energy is independent of time

Var
(

Ĥ
)

=
〈

Ĥ2
〉

−
〈

Ĥ
〉2

=
1
4

h̄2ω2Var(σ̂z), (27)

Var(σ̂z) =
〈

σ̂2
z

〉

− 〈σ̂z〉2 =

[

12 −
(

|α1|2 − |α2|2
)2
]

=

[

(

|α1|2 + |α2|2
)2

−
(

|α1|2 − |α2|2
)2
]

= 4|α1|2|α2|2, (28)
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and the standard deviation of the energy is independent of time

∆Ĥ =
1
2

h̄ω∆σ̂z =
1
2

h̄ωC = h̄ω|α1||α2| ≡ ∆E, (29)

∆σ̂z = 2|α1||α2|. (30)

The ℓ1 norm of energy coherence C and predictability P [25–27] are related to the standard
deviation and expectation value of σ̂z, respectively

C = ∆σ̂z = 2|α1||α2|, (31)

P = |〈σ̂z〉| =
∣

∣

∣|α1|2 − |α2|2
∣

∣

∣
, (32)

and satisfy the complementarity relation

P2 + C2 = 1. (33)

4.2. Quantum Dynamics of Eigenstates of the Clock Observable

From the generalized Ehrenfest theorem (A7), it is clear that any quantum observable
that commutes with the Hamiltonian Ĥ will be static and cannot be used to measure time.
Consequently, to construct a clock, one needs to consider a quantum observable that does
not commute with Ĥ. Since in the minimal quantum toy model the Hamiltonian is a
scaled version of σ̂z, it is interesting to check the behavior of a mutually unbiased quantum
observable, i.e., σ̂x or σ̂y. Without loss of generality, here, we choose σ̂x as a clock observable.

The expectation values of eigenvectors of σ̂x change in time because the eigenvectors
of σ̂x are quantum superpositions of eigenvectors of σ̂z as follows

| ↑x〉 =
1√
2
(| ↑z〉+ | ↓z〉), (34)

| ↓x〉 =
1√
2
(| ↑z〉 − | ↓z〉). (35)

To change the basis from {| ↑z〉, | ↓z〉} to {| ↑x〉, | ↓x〉}, we can add or subtract (34) and (35)
in order to obtain

| ↑z〉 =
1√
2
(| ↑x〉+ | ↓x〉), (36)

| ↑z〉 =
1√
2
(| ↑x〉 − | ↓x〉). (37)

The substitution in (25) gives

|Ψ(t)〉 = α1e−
1
2 ıωt 1√

2
(| ↑x〉+ | ↓x〉) + α2e+

1
2 ıωt 1√

2
(| ↑x〉 − | ↓x〉)

=
1√
2

(

α1e−
1
2 ıωt + α2e+

1
2 ıωt
)

| ↑x〉+
1√
2

(

α1e−
1
2 ıωt − α2e+

1
2 ıωt
)

| ↓x〉. (38)

The expectation values of the projectors | ↑x〉〈↑x | and | ↓x〉〈↓x | are

〈Ψ(t)| ↑x〉〈↑x |Ψ(t)〉 = 1
2

∣

∣

∣
α1e−

1
2 ıωt + α2e+

1
2 ıωt
∣

∣

∣

2
=

1
2

∣

∣α1 + α2eıωt
∣

∣

2

=
1
2
+ Re(α1α∗2) cos(ωt) + Im(α1α∗2) sin(ωt), (39)

〈Ψ(t)| ↓x〉〈↓x |Ψ(t)〉 = 1
2

∣

∣

∣
α1e−

1
2 ıωt − α2e+

1
2 ıωt
∣

∣

∣

2
=

1
2

∣

∣α1 − α2eıωt
∣

∣

2

=
1
2
− Re(α1α∗2) cos(ωt)− Im(α1α∗2) sin(ωt). (40)
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The quantum dynamics of the quantum observables given by the projectors | ↑x〉〈↑x | and
| ↓x〉〈↓x | onto the eigenvectors of σ̂x exhibits oscillations with an angular frequency ω

whenever the initial state of the quantum system is not an energy eigenstate (Figure 2).
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Tick Tock

Figure 2. Quantum dynamics of the eigenvectors of σ̂x is not trivial as long as the initial state of the
quantum system is not an energy eigenstate. Each eigenvector of σ̂x is a quantum superposition of
energy eigenvectors according to (34) and (35). The quantum superposition of the energy quantum
probability amplitudes of the initial state |Ψ(0)〉 given in (23) is varied as follows: (A) α1 = 1,
α2 = 0, C = 0, (B) α1 =

√
39/40, α2 =

√
1/40, C ≈ 0.312, (C) α1 =

√
5/6, α2 =

√
1/6, C ≈ 0.745,

(D) α1 =
√

1/2, α2 =
√

1/2, C = 1. The labels “Tick” and “Tock” indicate how the maxima or minima
of the dynamic expectation value 〈σ̂x〉 can be used for the engineering of a physical clock.

Since the eigenvalues for {| ↑x〉, | ↓x〉} are {+1,−1}, respectively, we subtract (40)
from (39) in order to obtain the expectation value of σ̂x and its temporal dynamics

〈σ̂x〉 = 2[Re(α1α∗2) cos(ωt) + Im(α1α∗2) sin(ωt)], (41)

d
dt
〈σ̂x〉 = −2ω[Re(α1α∗2) sin(ωt)− Im(α1α∗2) cos(ωt)], (42)

For the variance and standard deviation of σ̂x, we have

Var(σ̂x) =
〈

σ̂2
x

〉

− 〈σ̂x〉2 = 1 − 〈σ̂x〉2

= 12 −
(

1
2

∣

∣

∣
α1e−

1
2 ıωt + α2e+

1
2 ıωt

∣

∣

∣

2
− 1

2

∣

∣

∣
α1e−

1
2 ıωt − α2e+

1
2 ıωt

∣

∣

∣

2
)2

=
∣

∣

∣
α1e−

1
2 ıωt + α2e+

1
2 ıωt

∣

∣

∣

2∣
∣

∣
α1e−

1
2 ıωt − α2e+

1
2 ıωt

∣

∣

∣

2

=
∣

∣

∣
α2

1e−ıωt − α2
2e+ıωt

∣

∣

∣

2
=
∣

∣

∣
α2

1 − α2
2eı2ωt

∣

∣

∣

2
= 1 − 2|α1|2|α2|2 − 2Re

[

(α1α∗2)
2e−ı2ωt

]

= |α1|4 + |α2|4 − 2Re
[

(α1α∗2)
2
]

cos(2ωt)− 2Im
[

(α1α∗2)
2
]

sin(2ωt), (43)

∆σ̂x =
∣

∣

∣
α2

1e−ıωt − α2
2e+ıωt

∣

∣

∣
. (44)
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4.3. Physical Meaning of Mandelstam–Tamm “Time Uncertainty”

Mandelstam and Tamm [18] defined “time uncertainty” to be

∆T ≡ ∆σ̂x
∣

∣

∣

d
dt 〈σ̂x〉

∣

∣

∣

. (45)

The substitution of (42) and (44) in (45) gives

∆T =

∣

∣α2
1e−ıωt − α2

2e+ıωt
∣

∣

2ω
∣

∣Re
(

α1α∗2
)

sin(ωt)− Im
(

α1α∗2
)

cos(ωt)
∣

∣

. (46)

After combining (29) and (46), the time–energy uncertainty relation (7) becomes

∆E · ∆T =
h̄ω|α1||α2|

∣

∣α2
1e−ıωt − α2

2e+ıωt
∣

∣

2ω
∣

∣Re
(

α1α∗2
)

sin(ωt)− Im
(

α1α∗2
)

cos(ωt)
∣

∣

≥ h̄
2

. (47)

In general, the Mandelstam–Tamm quantity ∆T(t) (46) exhibits a dynamic dependence on
time t. Because the standard deviation of energy ∆E is constant, the Mandelstam–Tamm
product ∆E · ∆T(t) also exhibits a dynamic dependence on time t inherited from ∆T(t).
From the dynamic plots shown in Figure 3, it can be observed that ∆T(t) does not mean-
ingfully correspond either to physical time t or to the angular frequency ω of oscillation
of the expectation value 〈σ̂x〉. In particular, ∆T(t) → ∞ at the instances of local maxima
or minima of 〈σ̂x〉 at which d

dt 〈σ̂x〉 = 0. It can be stated that the angular frequency ω of
oscillation of the expectation value 〈σ̂x〉 is independent of the initial state |Ψ(0)〉; however,
the observable amplitude of oscillation measured by the difference 〈σ̂x〉max − 〈σ̂x〉min tends
to zero as C → 0 (Figure 2A,B).
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Only for the very special case with C = 1 shown in Figure 2D, we arrive at Mandelstam–
Tamm quantity ∆T that is independent of time due to the precise cancellation of the
numerator and the denominator

∆T =
| sin(ωt)|
∣

∣

∣

d
dt cos(ωt)

∣

∣

∣

=
1
ω

=
t

2π
, (48)

which results in minimal Mandelstam–Tamm uncertainty:

∆T · ∆E =
1
ω

· h̄ω

2
=

h̄
2

. (49)

Mandelstam and Tamm [18] have claimed that ∆T represents the amount of time it takes
the expectation value of any quantum observable Â to change by one standard deviation ∆Â. This
claim is incorrectly justified in textbooks [29] by rewriting (6) in the form

∆Â = | d
dt
〈Â〉| ∆T (50)

and then interpreting ∆Â as distance, | d
dt 〈Â〉| as speed, and ∆T as time. Here, we have

shown that in general, ∆T(t) is a dynamic function of time t and can become arbitrarily
large in the vicinity of local maxima or minima of the dynamic expectation value 〈Â〉(t),
where the instantaneous rate of change vanishes | d

dt 〈Â〉|(t) = 0 (Figure 3). In fact, by
correctly considering that all three quantities in (6) are time-dependent, namely

∆Â(t) = | d
dt
〈Â〉|(t) ∆T(t), (51)

the correct description of ∆T(t) is an instantaneous “hypothetical time duration” that would
have been taken by the quantum observable moving with a constant speed equal to the instantaneous
rate of change | d

dt 〈Â〉|(t) until a distance equal to the instantaneous standard deviation ∆Â(t)

would have been traversed. Because the rate of change | d
dt 〈Â〉|(t) accelerates or decelerates,

∆T(t) is an instantaneous quantity that does not in itself disclose how good the quantum
system is in measuring the physical passage of time. This is to be contrasted with ∆E,
which is a constant quantity that discloses how good the quantum system is at measuring
the physical passage of time.

4.4. Clock Engineering with the Einstein–Planck Relation

The engineering of a physical clock based on the time dynamics of 〈σ̂x〉 requires a
coherent quantum superposition of at least two energy eigenvectors with distinct energy
eigenvalues, E1 6= E2, in the initial state |Ψ(0)〉. Then, oscillations of 〈σ̂x〉 can be observed
with an angular frequency determined by the Einstein–Planck relation

ω =
|E1 − E2|

h̄
. (52)

Although the time t is a parameter and does not have an associated quantum operator in
nonrelativistic quantum mechanics, it is possible to measure time using the time dynamics
of the expectation value of some quantum observable, such as 〈σ̂x〉, whose eigenvectors
form a mutually unbiased basis with regard to the energy eigenbasis, which is given by
the eigenvectors of σ̂z in the minimal quantum toy model. For the overwhelming majority
of initial states |Ψ(0)〉 of the quantum system, the Mandelstam–Tamm quantity ∆T will
dynamically change in time t and will be poorly suited to act as a measure of time. For
example, let us define that at the local maxima of 〈σ̂x〉, the physical clock has generated a
“tick”, whereas at the local minima of 〈σ̂x〉, the physical clock has generated a “tock”. The
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time that passes between the consecutive “tick” at time t1 and “tock” at time t2 (Figure 2D)
is exactly the time period

δt = |t2 − t1| =
π

ω
. (53)

At the maxima or minima of the expectation value of the clock observable 〈σ̂x〉, we could say
that we know exactly what time it is measured in units of δt, i.e., 1δt, 2δt, 3δt, . . . In between
the maxima or minima of 〈σ̂x〉, we may not know how much time has passed since the last
“tick” or “tock” of the clock because the dynamic quantum state is in a coherent quantum
superposition of the eigenvectors of σ̂x. If we set δE = |E1 − E2|, we can rewrite the
Einstein–Planck relation (52) as

δE · δt =
h
2

. (54)

Equation (54) is a strict relationship between scalars, δ denotes difference instead of standard
deviation, and the expression contains h instead of h̄ when compared to (7). This shows that
the time–energy relationship in nonrelativistic quantum mechanics is due to the Einstein–
Planck relation (52) and not due to the Heisenberg uncertainty principle generalized
through the Robertson–Schrödinger inequality (A13). This is further corroborated by the
fact that, at the minima or maxima of 〈σ̂x〉, the Mandelstam–Tamm quantity ∆T will tend to
infinity and would wrongly predict that the standard deviation of time is infinite, while in
fact we know exactly how much time has passed in units of δt. This is why the Mandelstam–
Tamm quantity ∆T is not a meaningful representation of time, and the Mandelstam–Tamm
uncertainty is misleadingly labeled as “time–energy uncertainty” relationship.

In essence, the generalized Ehrenfest theorem (A7) correctly predicts that the time
dynamics of quantum observables is only possible if the initial quantum state is not an
energy eigenstate. The construction of physical clocks that are capable of measuring time,
however, is aided by the Einstein–Planck relation (52) regardless of divergent Mandelstam–
Tamm quantity ∆T near the local maxima of the measured quantum observable at which
the physical clock “ticks”.

5. Margolus–Levitin Quantum Speed Limit

Margolus and Levitin [19] have recognized that time t indeed has no variance in
nonrelativistic quantum mechanics, and they have proposed measuring τ⊥, which is the
time it takes for |Ψ(0)〉 to evolve into an orthogonal state. Furthermore, they have stated not
only an inequality based on the standard deviation of the energy

τ⊥ ≥ h

4∆Ĥ
=

πh̄

2∆Ĥ
(55)

but also, in their own words, they have formulated an alternative “somewhat surprizing”
result based on the expectation value of the energy

τ⊥ ≥ h

4
〈

Ĥ
〉 =

πh̄

2
〈

Ĥ
〉 . (56)

We will first show that in fact (56) is incorrect as stated in nonrelativistic quantum mechanics
because adding a constant energy offset to the Hamiltonian will change the expectation
value of the Hamiltonian without changing the quantum dynamics.

Theorem 3. (Constant offset to the Hamiltonian) Adding a constant offset E0 in the Hamiltonian
Ĥ = Ĥ0 + E0 Î of a closed system has no observable effect on the quantum dynamics.
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Proof. Because the identity operator commutes with every operator, the application of
the Baker–Campbell–Hausdorff formula [30–33] gives the following result for the general
basis-independent solution to the Schrödinger equation

|Ψ(t)〉 = e−
ı
h̄ (Ĥ0+E0 Î)t|Ψ(0)〉 = e−

ı
h̄ Ĥ0te−

ı
h̄ E0 Ît|Ψ(0)〉 = e−

ı
h̄ Ĥ0te−

ı
h̄ E0t|Ψ(0)〉, (57)

which means that the energy offset E0 simply adds a global time-evolving pure phase e−
ı
h̄ E0t

to every state. This global pure phase has no observable effects on measured quantum

probabilities since it has a unit modulus,
∣

∣

∣
e−

ı
h̄ E0t

∣

∣

∣

2
= 1. Thus, the freedom to add a constant

energy offset to the Hamiltonian of a closed system is granted by the U(1) symmetry of the
global (overall) phase of the quantum mechanical wavefunction Ψ, according to which the
global (overall) phase of Ψ can never be measured, whereas only relative phases of Ψ can
be measured experimentally.

Theorem 3 always makes it possible to offset the Hamiltonian so that it has an expecta-
tion value of zero, 〈Ĥ〉 = 0, which forces (56) to produce incorrect τ⊥ ≥ ∞. In fact, for the
quantum toy model shown in Figure 2D, it is exactly the case that 〈Ĥ〉 = 0 with computed
τ⊥ ≥ ∞ from (56), instead of the correct τ⊥ = π

ω seen on the plot. This shows that the
Margolus–Levitin formulation (56) based on the expectation value of energy 〈Ĥ〉 is only
meaningful in the context of their particular choice to set the zero energy level to be the min-
imal energy eigenvalue, Emin = 0. In our single-qubit toy example, the zero energy level is
set to be the arithmetic mean (average) of the two energy eigenvalues, 1

2 (Emax + Emin) = 0,
so that the quantum Hamiltonian has a symmetric matrix representation. To use (56), one
needs to properly offset the Hamiltonian (20) with the addition of 1

2 h̄ω Î.
Theorem 3 explains why the most general studies of quantum dynamics use statistical

properties such as variance or standard deviation that are invariant with respect to offset
shifts in the expectation value of energy. In fact, (55) always holds regardless of the energy
expectation value. For the case C = 1 shown in Figure 2D, plugging ∆Ĥ = 1

2 h̄ω in (55)
results in the formally correct inequality π

ω ≥ π
ω . However, we will show that for all

cases in which C < 1, and hence |α1|2 6= |α2|2, the quantum system never evolves into an
orthogonal state, meaning that τ⊥ = ∞ and (55) reduces to the trivial inequality ∞ ≥ h̄π

2∆Ĥ
,

which is always true.
To compute τ⊥ for the minimal quantum toy model, we need the minimal value of t at

which |〈Ψ(0)|Ψ(t)〉| = 0. The inner product formed by (23) and (25) is

|〈Ψ(0)|Ψ(t)〉| =
∣

∣

∣(α∗1〈↑z |+ α∗2〈↓z |)(α1e−
1
2 ıωt| ↑z〉+ α2e+

1
2 ıωt| ↓z〉)

∣

∣

∣

=
∣

∣

∣|α1|2e−
1
2 ıωt + |α2|2e+

1
2 ıωt
∣

∣

∣
=
∣

∣

∣
e+

1
2 ıωt
∣

∣

∣

∣

∣

∣|α1|2e−
1
2 ıωt + |α2|2e+

1
2 ıωt
∣

∣

∣

=
∣

∣

∣|α1|2 + |α2|2eıωt
∣

∣

∣

≥
∣

∣

∣|α1|2 − |α2|2
∣

∣

∣
= P =

√

1 − C2. (58)

From (58), it follows that for C < 1, i.e., |α1|2 6= |α2|2, the predictability of the en-
ergy eigenstate is strictly non-negative P > 0, implying that the quantum system start-
ing from an initial quantum state |Ψ(0)〉 never evolves into an orthogonal state, i.e.,
τ⊥ = ∞. Thus, the Margolus–Levitin formulation (55) is trivially satisfied and has no phys-
ical content for almost all initial quantum states (for which C < 1), while the only special
case when (55) actually works is for C = 1, i.e., |α1|2 = |α2|2, leading to the strict equality
τ⊥4∆Ĥ = τ⊥2|Emax − Emin| = h. Taking into consideration that τ⊥ = 1

2ν is the time period
from maximum to minimum, rather than between two maxima of the oscillation of 〈σ̂x〉, we
conclude that (55) is just the Einstein–Planck relation |Emax − Emin| = hν = h̄ω in disguise.
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It is noteworthy that the calculation in (58) can be straightforwardly generalized for
the quantum state vector |Ψ(t)〉 in n-dimensional Hilbert space. If we arrange the initial
energy amplitudes of |Ψ(0)〉 in decreasing order |α1| ≥ |α2| ≥ . . . ≥ |αn|, we obtain

|〈Ψ(0)|Ψ(t)〉| =
∣

∣

∣

∣

|α1|2e−ı
E1
h̄ t + |α2|2e−ı

E2
h̄ t + . . . + |αn|2e−ı En

h̄ t
∣

∣

∣

∣

≥ |α1|2 −
(

|α2|2 + . . . + |αn|2
)

, (59)

which, when combined with the normalization condition ∑n|αn|2 = 1, gives τ⊥ = ∞ for
all cases with |α1|2 >

1
2 . The minimal τ⊥ = h/(2|Emax − Emin|) is obtained when the

initial energy amplitudes of the energy eigenvectors |Emax〉 and |Emin〉, with maximal and
minimal eigenvalues, respectively, have a modulus of 1/

√
2.

Several authors [17,34,35] have previously discussed a unified quantum speed limit (QSL)
given by the maximum of the Mandelstam–Tamm and Margolus–Levitin lower bounds on
the “time uncertainty”

τQSL = max
{

πh̄

2∆Ĥ
,

πh̄

2〈Ĥ〉

}

=
h

4 × min
{

∆Ĥ, 〈Ĥ〉
} (60)

where the energy expectation value 〈Ĥ〉 is computed with the particular offset to the Hamil-
tonian for which Emin = 0. Here, we have shown that τQSL is generally neither Mandelstam–
Tamm ∆T nor Margolus–Levitin τ⊥, since for the submaximal positive ℓ1 norm of energy
coherence, 0 < C < 1, in the single-qubit toy model, both ∆T and τ⊥ could be infinite,
whereas τQSL given by (60) is always finite.

6. Conclusions

In this work, we have investigated the purported role of Heisenberg’s uncertainty
principle [1] in establishing time–energy uncertainty relations in nonrelativistic quantum
mechanics. Using a single qubit inside an external magnetic field as a minimal quantum toy
model, we have investigated two different time–energy inequalities formulated by Mandel-
stam and Tamm [18] and by Margolus and Levitin [19]. We have shown that both of these
time–energy inequalities are plagued by infinities and do not meaningfully represent the
concept of time for general initial states |Ψ(0)〉 with the submaximal ℓ1 norm of energy co-
herence C < 1. Importantly, for the special case of initial quantum state |Ψ(0)〉 with the max-
imal ℓ1 norm of energy coherence C = 1, both Mandelstam–Tamm and Margolus–Levitin
inequalities reduce to the Einstein–Planck relation |Emax − Emin| = hν = h̄ω, thereby ac-
quiring concrete physical meaning. Thus, the shortest duration of time measurable using
some quantum observable acting as a clock is not due to Heisenberg’s uncertainty principle
but follows directly from the Einstein–Planck relation. This explains why for probing physi-
cal processes at shorter timescales, particle physicists need to use larger particle accelerators
generating higher particle energies.

We have also elaborated on the fact that adding a constant energy offset to the Hamilto-
nian does not affect the quantum dynamics of closed systems. This explains why statistical
properties such as variance Var(Ĥ), standard deviation ∆Ĥ, and the ℓ1 norm of energy
coherence C, all of which are invariant with respect to shifts in the energy expectation
value 〈Ĥ〉, are well suited for the classification of quantum systems wih regard to the
magnitude of observed quantum dynamical changes, namely, when Var(Ĥ), ∆Ĥ, and C
approach zero, the observed amplitude of oscillation of dynamic quantum observables also
approaches zero.
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Appendix A. Quantum Statistics

Definition A1. (Expectation value) The expectation value of any quantum observable represented
by a Hermitian operator X̂ = X̂† is a real number written in angle brackets as 〈X̂〉. For a discrete
spectrum of eigenvalues xi of X̂, we have

〈X̂〉 = ∑
i

xi pi (A1)

where pi ∈ [0, 1] is the probability of obtaining the measurement outcome xi.
For a continuous probability density distribution p(x) = ψ∗(x)ψ(x), we use the integration

〈X̂〉 =
∫ ∞

−∞
x p(x)dx. (A2)

The expectation value is functionally dependent on the quantum state vector |ψ〉, namely

〈X̂〉 ≡ 〈ψ|X̂|ψ〉 = 〈X̂〉ψ. (A3)

To emphasize the dependence on the quantum state |ψ〉, the expectation value could be written
as 〈X̂〉ψ [36]. However, if it is clear from the context which |ψ〉 we perform the calculation for, it is
notationally simpler to write just 〈X̂〉.

Definition A2. (Variance) The variance of a quantum observable X̂ = X̂† is a real non-negative
number denoted as Var(X̂). For a discrete spectrum of eigenvalues xi of X̂, we have

Var(X̂) =
〈

(

X̂ −
〈

X̂
〉)2
〉

=
〈

X̂2
〉

−
〈

X̂
〉2

. (A4)

For a continuous probability density distribution p(x), we use integration

Var(X̂) =
∫ ∞

−∞
x2 p(x)dx −

(

∫ ∞

−∞
x p(x)dx

)2

. (A5)

Definition A3. (Standard deviation) The standard deviation is the square root of the variance

∆X̂ =
√

Var(X̂). (A6)

Appendix B. Generalized Ehrenfest Theorem

Theorem A1. (Generalized Ehrenfest theorem) The time dynamics of the expectation value 〈Â〉 of
any time-independent quantum observable Â (for which d

dt Â = 0) is given by

d
dt

〈

Â
〉

=
1
ıh̄

〈[

Â, Ĥ
]〉

(A7)

where the commutator
[

Â, Ĥ
]

= ÂĤ − ĤÂ is with respect to the quantum Hamiltonian Ĥ.

Proof. The theorem follows directly from the product rule for differentiation and the
Schrödinger Equation (1) (cf. [37])

d
dt

〈

Â
〉

=
d
dt

〈

Ψ|Â|Ψ
〉

=

(

d
dt
〈Ψ|
)

Â|Ψ〉+ 〈Ψ|
(

d
dt

Â

)

|Ψ〉+ 〈Ψ|Â
(

d
dt
|Ψ〉
)

. (A8)
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From the Schrödinger Equation (1), we have

d
dt
|Ψ〉 = 1

ıh̄
Ĥ|Ψ〉, (A9)

d
dt
〈Ψ| = − 1

ıh̄
〈Ψ|Ĥ, (A10)

where we used the Hermiticity of the Hamiltonian Ĥ = Ĥ†. After the substitution of (A9)
and (A10) together with d

dt Â = 0 inside (A8), we obtain

d
dt

〈

Ψ|Â|Ψ
〉

=
1
ıh̄
〈Ψ|
(

ÂĤ − ĤÂ
)

|Ψ〉. (A11)

Appendix C. Robertson–Schrödinger Uncertainty Relation

Theorem A2. (Robertson uncertainty relation) For any two quantum observables given by Her-
mitian operators Â = Â† and B̂ = B̂†, for which Â|Ψ〉 is in the domain of B̂ and B̂|Ψ〉 is in the
domain of Â [38], the following inequality holds [14]

∆Â · ∆B̂ ≥ 1
2

∣

∣

〈[

Â, B̂
]〉∣

∣. (A12)

Proof. The Robertson uncertainty relation is a special case of the more general Schrödinger
uncertainty relation (A13) proven below.

Theorem A3. (Schrödinger uncertainty relation) For any two quantum observables given by
Hermitian operators Â and B̂, for which Â|Ψ〉 is in the domain of B̂ and B̂|Ψ〉 is in the domain
of Â [38], the following inequality holds [15,39,40]

∆Â · ∆B̂ ≥
√

∣

∣

∣

∣

1
2

〈

ÂB̂ + B̂Â
〉

−
〈

Â
〉〈

B̂
〉

∣

∣

∣

∣

2

+

∣

∣

∣

∣

1
2

〈[

Â, B̂
]〉

∣

∣

∣

∣

2

. (A13)

Proof. The quantum observables are represented by Hermitian operators Â = Â† and
B̂ = B̂†. Therefore, the variances can be written as inner products of vectors

Var(Â) =
(

∆Â
)2

= 〈Ψ|
(

Â† −
〈

Â†
〉)

(

Â −
〈

Â
〉)

|Ψ〉, (A14)

Var(B̂) =
(

∆B̂
)2

= 〈Ψ|
(

B̂† −
〈

B̂†
〉)

(

B̂ −
〈

B̂
〉)

|Ψ〉. (A15)

Now, we can apply the Cauchy–Schwarz inequality

〈a|a〉〈b|b〉 ≥ |〈a|b〉|2 (A16)

with

|a〉 =
(

Â −
〈

Â
〉)

|Ψ〉, (A17)

|b〉 =
(

B̂ −
〈

B̂
〉)

|Ψ〉, (A18)

to obtain
(

∆Â
)2(

∆B̂
)2 ≥

∣

∣〈Ψ|
(

Â −
〈

Â
〉)(

B̂ −
〈

B̂
〉)

|Ψ〉
∣

∣

2
. (A19)

Since z = 〈a|b〉 is a complex number, we have z∗ = 〈b|a〉 and

|z|2 = z∗z = [Re(z)]2 + [Im(z)]2 =

[

z + z∗

2

]2

+

[

z − z∗

2ı

]2

. (A20)
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We also have

z = 〈a|b〉 =
〈

ÂB̂
〉

−
〈

Â
〉〈

B̂
〉

, (A21)

z∗ = 〈b|a〉 =
〈

B̂Â
〉

−
〈

Â
〉〈

B̂
〉

. (A22)

The substitution of (A21) and (A22) into (A20) gives

(

∆Â
)2(

∆B̂
)2 ≥

[

〈

ÂB̂ + B̂Â
〉

− 2
〈

Â
〉〈

B̂
〉

2

]2

+

[

〈

ÂB̂
〉

−
〈

B̂Â
〉

2ı

]2

, (A23)

which, after introducing the commutator
[

Â, B̂
]

and taking the square root on both sides,
leads to (A13).
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