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Abstract: We have developed a cosmological model by allowing the speed of light c, gravitational
constant G and cosmological constant A in the Einstein filed equation to vary in time, and solved
them for Robertson-Walker metric. Assuming the universe is flat and matter dominant at present,
we obtain a simple model that can fit the supernovae 1a data with a single parameter almost as well
as the standard ACDM model with two parameters, and which has the predictive capability
superior to the latter. The model, together with the null results for the variation of G from the
analysis of lunar laser ranging data determines that at the current time G and c both increase as dG/dt
=5.4GHo and dc/dt = 1.8cHo with Ho as the Hubble constant, and A decreases as dA/dt = -1.2AHo.
This variation of G and c is all what is needed to account for the Pioneer anomaly, the anomalous
secular increase of the moon eccentricity, and the anomalous secular increase of the astronomical
unit. We also show that the Planck’s constant / increases as di/dt = 1.87Ho and the ratio D of any
Hubble unit to the corresponding Planck unit increases as dD/dt = 1.5DHo. We have shown that it is
essential to consider the variation of all the physical constants that may be involved directly or
indirectly in a measurement rather than only the one whose variation is of interest.

Keywords: astroparticle physics; astrometric anomaly; supernovae redshift; cosmology theory;
variable physical constants; VSL

PACS: 98.80.-k; 98.80.Es; 98.62.Py

1. Introduction

Variation of physical constants is a subject that is marred with semantics: What exactly is varying
and how is it being measured? There is an ongoing debate about dimensionful and dimensionless
constants (e.g., Uzan [1,2], Duff [3], Chiba [4]). Our approach therefore would be to work mostly with
easily comprehensible dimensionful constants and later on see if a meaningful relationship can be
established for a common dimensionless parameter and how it evolves with time. The physical
constants considered in this work are primarily the speed of light ¢, the Newton’s gravitational
constant G, the Einstein’s cosmological constant A, the Planck’s constant 71, the Hubble constant H,
and the fine structure constant a. There is a plethora of literature discussing the variation, or lack
thereof, of these physical constants and others, and there are excellent reviews on the subject [1-6].
We will therefore limit ourselves to a selected few with direct relevance to our work. In addition, we
will focus only on the time variation of physical constants in the spirit of the cosmological principle,
which assumes the universe to be isotropic and homogeneous in space at large scale.

Varying physical constant theories gained traction after Dirac [7,8] in 1937 suggested such
variation based on his large number hypothesis that related ratios of certain scales in the universe to
that of the forces of nature. Magueijo [6] reviewed the variable speed of light (VSL) theories and their
limitations in 2003 that included theories based on hard breaking of Lorentz invariance, biometric
models, local Lorentz invariance, color dependent speed of light, extra dimension (e.g., brane-world)
induced variation, and field functions. Farrell and Dunning-Davis [9] discussed in 2004 the VSL
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theories that were used as alternatives to the inflationary model of the universe and reviewed
evidence for the same.

Maharaj and Naidoo [10] introduced variable G and A in Einstein field equation using
Robertson-Walker metric in 1993. Belenchon and Chakrabarty [11] added the variation of ¢ to
develop a perfect fluid cosmological model in 2003. Recently (2017) Franzmann [12] developed an
approach that included space as well as time dependence of the constants. More recently Barrow and
Magueijo [13] proposed that the constants be considered as quantum observables in a kinematical
Hilbert space. These works are mostly theoretical and do not directly offer how much exactly they
vary and if they can directly explain some observations or measurements. Our focus will be to
develop a model that can be used to explain certain anomalies, hitherto not explained satisfactorily,
as well as the redshift vs distance modulus data on supernovae 1a better than alternative models.

The possible variation of the fine structure constant @ has been of great interest as it is perhaps
the most basic dimensionless constant in physics. Rosenband et al. [14] have put a constraint on the
d/a = (—1.6+2.3) x 1077yr~! derived from the constancy of the ratio of aluminum and mercury
single-ion optical clock frequencies. More recently Gohar [15], using his entropic model of the
universe and data on supernovae la, baryon acoustic oscillations, and cosmic microwave
background, has established even more stringent constraint on the variation of a. Additionally, he
states that in his model G and c should be increasing with the evolution of the universe, which
corroborates our findings in this work. Similar constraints on @ were shown by Songaila and Cowie
[16] from the observation of narrow quasar absorption lines at redshift z > 1.5. There is a significant
amount of work on the subject, most of it can be found referenced in the papers cited above.

If & does vary, no matter how small the variation, it is normal to ask what causes its variation —
electric charge e, ¢ or 1? We will show that since ¢ and 7 variations cancel out, itis e that should
be considered responsible for the variation of « if there is any.

We will solve the Einstein field equation with varying ¢,G and A with Robertson-Walker
metric in Section 2, and show that A/A = —1.2H and H/H = —0.6H where H is the Hubble
parameter. Based on the Hofmann and Miiller’s [17] determination of a very tight constraint on the
variation of G from the analysis of laser lunar ranging data of more than 40 years, we will
establish in Section 3 that G/G = 5.4H and ¢/c = 1.8H. Section 4 is devoted to the derivation of
the expression for distance modulus p of an intergalactic light emitting source in terms of its
redshift z. Section 5 delineates the methodology for fitting the u — z data and applying the same
to the new model, the variable ¢,G and A (VcGA) model, and for comparison also to the
standard ACDM model. Having shown that the VcGA model fits the supernovae la y —z data
almost as well as the ACDM model and has predictive capability better than the latter, we will
proceed to demonstrate that the model can explain the three astrometric anomalies that have not
yet been explained satisfactorily. All we need to explain these anomaliesis G/G = 5.4H, and ¢/c
= 1.8H, at current time with H, as the Hubble constant.

The first anomaly we will consider here is the Pioneer anomaly, which refers to the near constant
acceleration back towards the sun, observed when a spacecraft cruises on a hyperbolic path away
from the solar system (Anderson et al., 1998 [18]). Many explanations have been given for such an
anomaly but none appears to be satisfactory and they are difficult to incorporate in the models used
for real time spacecraft astrodynamics. Principal among these explanations are as follows: (a)
Turyshev et al. [19] in 2012 tried to explain the anomaly as being due to the recoil force associated
with an anisotropic emission of thermal radiation off the spacecraft. However, it is not clear why it
should be the same for Pioneer 10/11, Galileo and Ulysses spacecrafts. (b) Feldman and Anderson
[20] in 2015 used “the theory of inertial centers” [21] to develop a model to compute the anomaly. (c)
Kopeikim [22] in 2012 used Hubble expansion of the universe to address the anomaly and gave a
reason why one should see deceleration rather than acceleration of the spacecraft due the expansion
of the universe. These approaches are rather circuitous and depend on many assumptions to explain
the anomaly. Feldman and Anderson [20] allocated 12% of the total anomalous acceleration of 8.74 +
1.33x 107! ms™2 to various thermal contributions, leaving 7.69 + 1.17 x 107!° ms™? that
requires other explanations. In Section 6 we will try to explain this unexplained Pioneer acceleration.
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The lunar laser ranging technique has improved to the extent that it can determine the Iunar
orbit with an accuracy of better than a centimeter. The moon’s orbit has an eccentricity that depends
on the tidal forces due to surficial and the geophysical processes interior to Earth and the moon. After
all the known sources responsible for the eccentricity e were included, Williams and Dickey [23] in
2003 estimated that there remained a discrepancy of Aé = (16 +5) X 1072 yr=! between the
observed and calculated values. This value was revised downward by Williams and Boggs [24] in
2009 to Aé =(9£3)x 1072 yr~! and by Williams, Turyshev and Boggs [25] in 2014 to Aé =
(5+2) x 107" yr ! with updated data and tidal models. With additional terrestrial tidal modeling,
William and Boggs [26] in 2016 were able to further reduce the number and stated that it might even
be negative. While these authors possibly felt that unexplained secular increase of the eccentricity
was due to the deficiency in their model and therefore a better tidal modeling should eliminate it,
others feel that the anomaly may be pointing to some unknown physical process. There have been
attempts to resolve the anomaly using Newtonian, relativistic and modified gravity approaches [27-
29] as well as using some unfamiliar gravitational effects [27]. Reviews by Anderson and Nieto [30]
in 2009 and Iorio [31] in 2015 have covered the above and additional attempts to solve the problem.
It appears that none of the models secularly affect the lunar eccentricity. Attempts of cosmological
origin were also not successful [22,29,32,33]. We attempt to explain this anomaly in Section 7 with the
varying G and c¢ approach developed here.

The anomalous secular increase of astronomical unit AU was first reported by Krasinsky and
Brumberg [34] in 2004 as dAU/dt = (15 + 4) m cy! from the analysis of all radiometric measurements
of distances between Earth and the major planets they had available over the period 1971-2003,
which included the observations of Martian landers and orbiters. They noted that unexplained
secular increase in AU might point to some fundamental features of space time that are beyond the
current cosmological understanding according to which the Hubble expansion yields dAU/dt =1 km
cy. This value is almost two orders of magnitude higher than observed. Their theoretical analysis
revealed that the relativistic calculations that included the gravitational shift of proper time gave null
results. Anderson and Nieto [30] in 2009 corroborated Krasinsky and Brumberg's [34] findings. They
showed that the effect of the loss of solar mass on AU is miniscule and will cause the AU to shrink
rather than increase (dAU/dt =-0.34 cm cy?). Iorio [31] in 2015 reviewed the status of the AU anomaly
in significant details and concluded that, considering the various unsatisfactory attempts to explain
the anomaly and the new IAU definition of astronomical unit, the anomaly no longer exists (just by
virtue of new definition). We show in Section 8 that the AU anomaly based on the old definition can
be easily explained with the new approach.

Section 9 shows how we obtain the variation of # from the null result on the variation of fine
structure constant. We explore the relationship between Planck units and Hubble units in Section 10,
and show that all units have the same constant relating them, and then determine how this constant
evolves in time. Section 11 is devoted to discussion and Section 12 to conclusions.

2. Evolutionary Constants Model

We will develop our model in the general relativistic domain starting from the Robertson-
Walker metric with the usual coordinates x* (ct,r, 6, ¢):

2
ds? = 2dt? — a(t)— 12— + r2(d6” + sin? 0dp?)] 1)
1—kgr?
where a(t) is the scale factor and kg determines the spatial geometry of the universe: ks =
—1 (closed), O (flat), +1 (open). The Einstein field equations may be written in terms of the Einstein
tensor GH*Y, metric tensor g* , energy-momentum tensor T#' , cosmological constant 4,
gravitational constant G and speed of light ¢, as:

8nG
G* + Ag*’ = — ™ 2)
When solved for the Robertson-Walker metric, we get the following non-trivial equations for the
flat universe (ks = 0) of interest to us here, with p as the pressure and ¢ as the energy density [10]:
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If we do not regard G, ¢ and A to be constant and define K = C%,

continuity equation by taking time derivative of Equation (4) and substituting in Equation (3) (see

we may easily derive the
Appendix A):
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E+—(e+p)+oe+—=0 ©)
a ETP et g

This reduces to the standard continuity equation when K and A are held constant. And since
the Einstein field equations require that the covariant derivative of the energy-momentum tensor T#"
be zero, we can interpret Equation (5) as comprising of two continuity equations [10], viz:

é+ﬁ(e+p)=0 (6)
a

8neK+A=0 )

This separation simplifies the solution of the field equations (Equations (3) and (4)). Equation (6)
yields the standard solution for the energy density & = gya=31*"). Here w is the equation of state
parameter defined as p = we with w = 0 for matter, 1/3 for radiation and —1 for A.

As has been explicitly delineated by Magueijo in several of his papers (e.g., reference [35]), this
approach is not generally Lorentz invariant albeit relativistic. Strictly speaking we should have used
the Einstein-Hilbert action to obtain correct Einstein equations with variable ¢ and c as scalar
fields. Thus, one may consider the current formulation quasi-phenomenological.

Since the expansion of the universe is determined by H(t) = d/a, itis natural to assume the time
dependence of any time dependent parameter to be proportional to a/a (the so called Machian
scenario—Magueijo [6]). Let us therefore write:

K a) A a H ay .
= k() 2=1() and G=m(Q) e, ®)
K = Kya*, A = Agal and H = Hya™. )
where k, | and m are the proportionality constants, and subscript zero indicates the parameter
value at present (t = t,). With this substitution in Equation (4) we may write:
42
Z—z = HZa®™ = %n (Koa¥)eoa™30+W) + §A0al. (10)

Comparing the exponents of the only time dependent parameter a of all the terms, we may write
2m =k — 3 — 3w = [, and with w = 0 for matter, we have 2m = k — 3 = [. Thus, if we know k, we
know [ and m.

We can now have a closed analytical solution of Equation (10) as follows (since a(t,) = 1):

2
_a®) _ (t\33w-k, 4 _ 2 -1, 11
a(t) = ate) (to) 7 a 3+3w-k e an
i a 3+3w-k _da _ —1-3w+k
o ()12t g2 w

where q is the deceleration parameter. It may be noticed that q does not depend on time, i.e., qo =
q. As we know the radiation energy density is negligible at present, and dark energy A is implicitly
included in the above formulation, so we need to be concerned with the matter only solutions, i.e.,
with w = 0.

The deceleration parameter g, has been analytically determined on the premise that expansion
of the universe and the tired light phenomena are jointly responsible for the observed redshift,
especially in the limit of very low redshift [36]. One could see it as if the tired light effect is
superimposed on the Einstein de Sitter’s matter only universe rather than the cosmological constant
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[37]. By equating the expressions for the proper distance of the source of the redshift for the two, one
gets qo = —0.4. Then from Equation (12) we get k = 1.8, and also | = —1.2 and m = —0.6. We thus
have from Equation (8) K/K = 1.8H, A/A = —1.2H and H/H = —0.6H.

3. Varying G and ¢ Formulation

Having determined the value of k = 1.8, and since the Hubble parameter is definedas H = a/a,
we may write from Equations (8) and (9):

K = Koa'®,and = = 1.8H. (13)
We may also write explicitly:
K_G_2_18H. (14)
K G c

Taking H at the present time as Hy =70 km s ' Mpc? (227 x 1078 s71) we get g =
4.09 x 1078571 = 1.29 x 10710 yr~1,

The findings from the Lunar Laser Ranging (LLR) data analysis provides the limits on the
variation of G/G (7.1 + 7.6 x 107'*) [17], which is considered to be about three orders of magnitude
lower than was expected [7,8,38]. However, the LLR data analysis is based on the assumption that
the distance measuring tool, i.e., the speed of light, is constant and non-evolutionary. If this constraint
were dropped then the finding would be very different.

As is well known [39], a time variation of G should show up as an anomalous evolution of the
orbital period P of astronomical bodies expressed by Kepler’s 3rd law:

,  Am?r?

PP =— (15)
where r is semi-major axis of the orbit, G is the gravitational constant and M is the mass of the
bodies involved in the orbital motion considered. If we take time derivative of Equation (15), divide
by P? and rearrange, we get:

G_3 2P M 16
G r P M (16)

If we write r = ct then E = % + S Here t may be considered associated with the Hubble time

(i.e,, 1/H), as are other quantities. We may now rewrite Equation (16) as:

G_3¢_3_ 2 M (17)
G ¢ t P M

Since LLR measures the time of flight of the laser photons, it is the right hand side of Equation
(17) that is determined from LLR data analysis [17] tobe 7.1 £ 7.6 x 107'* and not the right hand
side of Equation (16).

Then, taking the right hand side of Equation (17) as 0 and combining it with Equation (14), one
can solve the two equations and get G/G = 5.4H and ¢/c = 1.8H. It should be emphasized that both
G/G and ¢/c are positive and thus both of them are increasing with time rather than decreasing, as
is generally believed (e.g., [7,8,40]). This may be considered as the most significant observational
finding of cosmological consequences just by studying the Earth-moon system.
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4. Redshift vs. Distance Modulus

The distance d of a light emitting source in a distant galaxy is determined from the
measurement of its bolometric flux f and comparing it with a known luminosity L. The luminosity

distance d, is defined as:
L
— 18
4= |a (18)

In a flat universe the measured flux could be related to the luminosity L with an inverse square
relation f = L/(4md?). However, this relation needs to be modified to take into account the flux
losses due to the expansion of the universe through the scale factor a, the redshift z and all other
phenomena that can result in the loss of flux. Generally accepted flux loss phenomena are as follows
[41]):

a. Increase in the wavelength causes a flux loss proportional to 1/(1 + z).
b. Inanexpanding universe, an increase in detection time between two consecutive photons emitted
from a source leads to a reduction of flux proportional to q, i.e., proportional to 1/(1 + z).

Therefore, in an expanding universe the necessary flux correction required is proportional to
1/(1 + z)?. The measured bolometric flux fz and the luminosity distance d; may thus be written
as:

fz = L/[4nd?(1 + 2)?], and (19)
d, = d(1 +2). 20)

How does d compare with and without varying c? Let us first consider the case of non-
expanding universe. The distance from the point of emission at time t, to the point of observation

attime t, may be written as d. = [ :0 ¢ dt. Therefore for constant ¢ = c:
e

te
de, = coto(1— t_) (21)
0

2
When ¢ = ¢yal8, and since a = (ti)l'z from Equation (11), we may write:
0

d.=c fto(ifdtzc—oftoﬁdt:lc t (1—§> (22)
(4 0 f tO tg f 4 0%0 tg

The ratio of the two distances may be considered the normalization factor F when using the
variable c in calculating the proper distance of a source. Since a = 1/(1 + z), we may write for the
source of redshift z with emission time t,:
te _ 0.6
= a(2)"S, or @)
Z=(1+2)70 (24)

to

Now the proper distance of the source with variable ¢ may be defined as [41] (page 105):

Co a1.8

to
)dt = cof a®8 dt
e (25)

7

~eo (&) e = el - ()]

From Equation (11) Hy = a/a = (2/1.2)t5*. Therefore:

to c to
dre= [ Qae= [

1
dpo = 77 Co/H)L = (1 +2)7H]. (26)

Thus the expression for d to be substituted in Equation (20) to determine the luminosity
distance of the source is d = dp F.
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Since the observed quantity is distance modulus p rather than the luminosity distance d;, we
will use the relation:

u = 5log(d,) + 25,
1 27)
= 510g(ﬂR0(1 —(1+2)7*) +5log(F(2))

+5log(1 + z) + 25. (28)

where R, = cy/H, and all the distances are in Mpc. It is the only free parameter in Equation (28).

We will compare the new model, hereafter referred to as the VcGA (variable ¢, G and A) model,
with the standard ACDM model, which is the most accepted model for explaining cosmological
phenomena, and thus may be considered the reference models for all the other models. Ignoring the
contribution of radiation density at the current epoch, we may write the distance modulus u for
redshift z in a flat universe for the ACDM model as follows [42]:

u = 5log[R, J;)Z du/\/ﬂm‘o(l +u)3+1—Qppol 29)

+51log(1 + z) + 25.

Here Q,, is the current matter density relative to critical density and 1 —Q,,, = Q,, is the
current dark energy density relative to critical density.

5. Supernovae Ia z-u Data Fit

We tried the VcGA model developed here to see how well it fits the best supernovae la data [43]
as compared to the standard ACDM model. The data fit is shown in Figure 1. The VcGA model
requires only one parameter to fit all the data (H, = 68.90 + 0.26 km s~! Mpc™'), whereas the ACDM
model requires two parameters (Hy = 70.16 £ 0.42 km s~! Mpc~t and €Q,,, = 0.2854 £ 0.0245).

The data used in this work is the so-called Pantheon Sample of 1048 supernovae Ia in the range
of 0.01 <z < 2.3 [43]. The data is in terms of the apparent magnitude and we added 19.35 to it to
obtain normal luminosity distance numbers as suggested by Scolnic [43]. To test the fitting and
predictive capability of the two models, we divided the data in 6 subsets: (a) z < 0.5; (b) z < 1.0; (c)
z<15;(d) z>0.5; (¢) z>1.0; and (f) z > 1.5. The idea is to parameterize a model with a low
redshift data subset and then see how the model, using parameters thus obtained, fits the remaining
redshift data. In addition, we considered the fits for the whole data. The models were parameterized
with subsets (a), (b) and (c). The parameterized models were then tried to fit the data in the subsets
that contained data with z values higher than in the parameterized subset. For example if the models
were parameterized with data subset (a) z < 0.5, then the models were fitted with the data subsets
(d) z>0.5,(e) z > 1.0 and (f) z > 1.5 to examine the models” predictive capability.

The Matlab curve fitting tool was used to fit the data by minimizing x? and the latter was used
for determining the corresponding y* probability [44] P. Here x? is the weighted summed square
of residual of u:

2
X2 =X wi[1(zi; Ro, D1, D2 ) — Hobsi] (30)

where N isthe number of data points, w; is the weight of the ith data point p,,;; determined from

the measurement error in the observed distance modulus p,,s; using the relation w; =

GﬂObS,i
1 /alfom, and u(z; Ry, p1,p;-.) is the model calculated distance modulus dependent on parameters
R, and all other model dependent parameter p,,p,, etc. As an example, for the ACDM models

considered here, p; = Q,,, and there is no other unknown parameter.
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Figure 1. Supernovae Ia redshift z vs. distance modulus p data fit using the variable c¢,G and A
(VcGA) model as compared to the fit using the ACDM model.

We then quantified the goodness-of-fit of a model by calculating the x? probability for a model
whose x? has been determined by fitting the observed data with known measurement error as
above. This probability P for a x? distribution with n degrees of freedom (DOF), the latter being
the number of data points less the number of fitted parameters, is given by:

PGt = <T1)> i 7 au, (31)

where T' is the well know gamma function that is generalization of the factorial function to complex
and non-integer numbers. The lower the value of x?, the better the fit, but the real test of the
goodness-of-fit is the x? probability P; the higher the value of P for a model, the better the model’s
fit to the data. We used an online calculator to determine P from the input of y? and DOF [45]. Our
primary findings are presented in Table 1. The unit of the Hubble distance R, is Mpc and that of the
Hubble constant H, is km s Mpc. The table is divided into four categories vertically and four
categories horizontally. Vertical division is based on the parameterizing data subset indicated in the
second row and discussed above. The parameters determined for each model are in the first
horizontal category. The remaining horizontal categories show the goodness-of-fit parameters for
higher redshift subsets than those used for parameterizing the models. Thus this table shows the
relative predictive capability of the two models. The model cells with the highest probability in each
category are shown in bold and highlighted.
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Table 1. Parameterizing and prediction table for the two models. This table shows how well a model is able to fit the data that is not used to determine the model

parameters. The unit of Ro is Mpc and of Ho is km s Mpc™. P% is the x2 probability in percent that is used to assess the best model for each category; the higher the

X2 probability P, the better the model fits to the data. R? is the square of the correlation between the response values and the predicted response values. RMSE is

the root mean square error. Highest P% value in each category is shown in bold and the cell highlighted.

Action/Item ACDM VcGA ACDM VcGA ACDM VcGA ACDM VcGA
Parameterized Model Dataset z < 0.5; 832 Points Model Dataset z < 1.0; 1025 Points Model Dataset z < 1.5; 1042 Points Model Dataset all; 1048 Points
Ro 4259 + 34 4337 +18 4269 +27 435117 4271 +£26 4352 +17 4273 £26 435116
Om,o 0.2601 + 0.0457 NA 0.2793 +0.0261 NA 0.2818 +0.0249 NA 0.2845 + 0.0245 NA
Ho 70.39 + 0.56 69.13 +0.29 70.23 + 0.44 68.90 + 0.27 70.19 +0.42 68.89 +0.27 70.16 + 0.42 68.90 +0.25
X2 863.5 889.4 1018 1060 1033 1074 1036 1076
DOF 830 831 1023 1024 1040 1041 1046 1047
P% 20.39 7.83 53.82 21.15 55.53 23.26 58.11 26.02
R? 0.9961 0.9960 0.9969 0.9968 0.9970 0.9969 0.9970 0.9969
RMSE 1.020 1.035 0.9977 1.017 0.9965 1.016 0.9951 1.014
Model Fit Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points
D)gF 1769 216 120 NOT APPLICABLE SINCE THIS NOT APPLICABLE SINCE THIS NOT APPLICABLE SINCE
~ o 59.58 DATASET INCLUDES THE DATASET INCLUDES THE THIS DATASET INCLUDES
R 0.9605 0.9575 DATASET USED TO DATASET USED TO THE DATASET USED TO
: : PARAMETERIZE THE MODEL PARAMETERIZE THE MODEL PARAMETERIZE THE MODEL
RMSE 0.905 0.938
Model Fit Dataset z > 1.0; 23 points
X2 19.54 17.01 17.59 16.75
DOF 3 NOT APPLICABLE SINCE THIS NOT APPLICABLE SINCE
> DATASET INCLUDES THE THIS DATASET INCLUDES
I;f 06279441 0?2'94034 07289637 08;'91231 DATASET USED TO THE DATASET USED TO
PARAMETERIZE THE MODEL PARAMETERIZE THE MODEL
RMSE 0.9216 0.86 0.8746 0.8533
Model Fit Dataset z > 1.5; 6 points
X2 4.090 1.946 3.167 1.983 3.076 1.986
DOF NOT APPLICABLE SINCE
P% 66.44 92.45 78.76 92.12 79.92 92.09 THIS DATASET INCLUDES
R2 0.5993 0.8093 0.6897 0.8057 0.6986 0.8054 THE DATASET USED TO
PARAMETERIZE THE MODEL
RMSE 0.8256 0.5696 0.7265 0.5749 0.716 0.5754
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6. Pioneer Anomaly

Having determined the valuesof G/G and ¢/c we can now proceed to calculate the anomalous
acceleration towards the sun of Pioneer 10 and 11 spacecraft [20]. Since the gravitational pull of the

. . G .
sun on the spacecraft decreases according the inverse square law, — cannot be expected to give a

constant acceleration independent of the distance of the spacecraft. If the acceleration is denoted by
f, one can easily work out, using the Newtonian relation f = GM/r?, that f/f = —3.74 x 107% s,
which yields negligible anomalous acceleration. Thus, we need to only consider the effect of ¢/c
from a different perspective. If the spacecraft is at a distance r, from Earth then the signal from Earth
will have a two way transit time At given by 21, = cpAt, assuming c, as the speed of light. But, if
the speed of light is evolving as ¢/c = 1.8H, near t = t,, i.e.,, as ¢ = cye®Ho(t=t) during the transit
time, then the actual transit time will be shorter than At (since ¢ > ¢y for t > t;). Because of the
shorter actual transit time, an observer would consider the spacecraft to be nearer to Earth than it
actually is and thus would think that there is a deceleration of the spacecraft due to some
unaccounted-for cause.
We could write the proper distance of the spacecraft 7, and its apparent distance 7, as:

21, = coAt, and

At
21, =co [ etSHotdt = —1;‘;0 (e18HoAL _ 1)
and since 1.8HyAt < 1,
c 1 . (32)
2, = oo [(1+ LBHoAL +3 (1.8H)?A? ... ) — 1], or
T, = %coAt + 1'iH° CoAt? =1, + % (0.9H,co)At?, or
Ta =1 —5(6.129 X 1071 m s72)A¢2, (33)

Thus the acceleration is —6.129 X 107'° ms™2, and since it is negative, it is towards the observer
at Earth.

Outof 7.69 +1.17 x 107 ms™2 anomalous acceleration of Pioneer 10 and 11 towards the sun
(truly towards Earth) we are able to analytically account for 6.129 x 1071° ms™2, leaving only
1.56 £ 1.17 x 107 ms™2 as the anomaly.

It should be mentioned that Kopeikin [22] has obtained essentially the same result and explained
it as due to the cosmological effect of quadratic divergence between the electromagnetic and atomic
time scales governing the propagation of radio waves in the Doppler tracking system and the atomic
clock on Earth, respectively. However, his approach is not conducive to explaining the other two
anomalies.

7. The Moon’s Eccentricity Anomaly

The eccentricity e of the orbit of the moon may be written as [46]:

2 2
e= 1+Zzz,orez—1=2;:. (34)
where €= —u/2a,, is the specific orbital energy, u = G(m,+m,); here the gravitational

parameter for the Earth-moon system, h = r X v m, /M, is the specific relative angular momentum,
an, is the semi-major axis of the orbit, m, is mass of Earth, m,, is the mass of the moon, r is the
radius vector and v is the velocity vector of the moon, and M, = m,m,,/(m, + m,,) is the reduced
mass. Taking a,, = r and assuming 7 is normal to v, we may write Equation (34) as:

1—e2= ﬁ(w) (35)

2
G m2
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Differentiating this equation with respect to time, assuming the mass factor to be constant, and
dividing by the same equation, we get:

1-e? T v G (36)
and, since e « 1:

ee =8I 2 37)

Since r is measured by electromagnetic waves, the measuring tool for distance, the speed of
light, enters in it, i.e., r = ct,or ¥ =v = ¢t + cf, or ; = §+ % Since all the parameters are expressed
at current time, t in the denominator must be expressed in terms of the Hubble time 1/H,.
However, it is better to write t = pHy* where (1 —p) is the small factor very close to 0 that may be

considered to correct for the approximations made in our model (p here is not pressure). We can also

determine -: ¥ =# = ¢t + ¢ + ¢ = 2¢, assuming ¢ as constant. Thus - = L 2—6/(51: +1). We
v v ct+c c c
may therefore write Equation (37) as:
.G ¢ 1 4¢ ¢
ee=2—((+2)-X/Ce+ 1) 0r (38)
eé _ 1\ 72
Hy >4 (1'8 + p) 1.8p+1° (39)

For p =1,eé/H, = 0.0285715 and taking Hy, = 0.716 x 107*° yr™*, and e = 0.0549 for the
moon, we get é =37 x 1072 yr~t. This is about twice the original value of the anomalous rate of
eccentricity increase.

The value determined is very sensitive to the value of the parameter p. We have therefore
plotted dimensionless eccentricity variation eé/H, against p in Figure 2. It can be approximated
near p = 1 with the expression:

£ = 0.0285714 + 2.65306(p — 1). (40)

Ho
There are three values of é that are significant here:

a. é=16%5 x 10712 yr! originally estimated by Williams and Dickey in 2003 [23]; it gives p =
0.993855 + 0.001445.

b. €=913x10"'? yr~?, the updated value using more data and ‘better’ tidal effect model by
Williams and Boggs in 2009 [24]; it gives p = 0.991832 % 0.000867.

c. é=542x107"% yr7!, the updated value with even more data and ‘even better’ tidal effect
model by Williams et al. in 2014 [25]; it gives p = 0.990676 + 0.000578.

All the values of p are very close to 1, indicating that our model is a very good approximation
to the exact solution of the Einstein field equations, at least locally, with variable ¢ and G. Even lower
and negative values of é derived by Williams and Boggs in 2016 [26] can be easily explained with
this approach. The question remains—is it the tidal model's deficiency that is being corrected or is it
presumed that there could be no other cause for the anomaly?
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Figure 2. Dimensionless eccentricity variation eé/H, plotted against age of the universe parameter p.

8. Astronomical Unit (AU) Anomaly

The orbit of Earth around the sun is Keplerian and thus is governed by Equation (15). A
radiometric measurement will therefore yield a null result in our approach using evolutionary
G and c. However, the eccentricity evolution is equally valid for the moon and Earth. Thus applying
Equation (39) to Earth’s orbit, and assuming p = 1and e = 0.0167, we get é = 122.5 x 1072 yr~%.
This can be translated easily into AU increase as follows. The semi-major axis a and semi-minor axis
b of an orbit may be written as [46]:

a=-L and b =2 (41)

1-e? 1-e2

where, ps = a = b defines a circle when e = 1. AU may then be written as:

AU =22 =Bs
2z 2

1 1
1-e? + ‘/1—e2)

Suppose now that the eccentricity e increases by Ade to e’ in a time period At. Then e =e +
deand e? = e? + 2e?Ae when we ignore higher order terms in Ae. We may now write the increase
in AU as AAU:

=ps(1+ %ez + %e”’ +0(e®)). (42)

=3p e2 a4y
AAU—ZpSe Ae, or o

=2e26 X AU. (43)

Here we have approximated ps; = AU since e? « 1. Taking AU = 1.496 x 10** m and using
Equation (39) for e¢ with p =1, we get dAU/dt = 0.77 mcy ! against its measured value of
1.5mcy~!. As can be seen from Equation (40) and Figure 2, if we took p = 1.010 instead of 1, we
would get the desired value. The reason could be the same as discussed at the end of the previous
section. Alternatively, there may be other phenomena contributing to the anomalous AU.

It should be mentioned that recently the AU has been redefined (e.g., [47]) and just by definition
the AU anomaly has been eliminated. One has to resort to the old definition of AU to appreciate the

AU anomaly and its resolution.

9. Variation of Planck’s Constant h

The variation of the fine structure constant a = (1/4me,)e?/hc (here ¢, is the vacuum
permittivity and e is electron charge) has been studied extensively. Since €, = 1/pc?, where yu, is

the vacuum permeability, a = (uo/4m)e?c/h. Recent estimates put a very low value on d [14,15]. We
h
h s
¢/c, and p,y is a constant, then it is implied that h/h = ¢/c = 1.8H. This possibly answers the
question posed by Magueijo et al. [48]: Isit e orisit c?

may write g= ZS - +§ .If @¢/a and é/e are zero, or varying very little compared to h/h and



Galaxies 2019, 7, 55 13 of 18

10. Planck Units and Hubble Units

We will now review the Plank and Hubble units of time, length, mass, charge and temperature
and then explore how the dimensionless constant relating the two units evolves in time.

Plank time tp = 2—?
Planck length [p = 2—(3;
hc

Planck mass mp = -

Planck charge gqp = +/4meyhc

5
Planck temperatureT, = hLZ
GkZ

Hubble time ty; = 1/H,

Hubble length I, = c¢/H,
3

c
Hubble mass my = —
GHo
41€0C®

GHE

Hubble charge qy =

c5

GHokp

Hubble temperature Ty =

where €, is the permittivity of space, h is the Planck’s constant and kjp is the Boltzmann constant.
If we divide any of the Hubble units by the corresponding Planck unit we always get the

dimensionless quantity, say D, as:
= _CS = 61
D= ’Hgah = 0.818 x 10°". (44)

Every Hubble unit is 61 orders of magnitude larger than the corresponding Planck unit. Taking
time derivative of the equation and dividing by itself, we get:

Dol(si-Ze b 9 - i5H, (45)

This means that the dimensionless D that relates Hubble units and Planck units is increasing in
time.

11. Discussion

As should be expected, the two-parameter ACDM model is able to fit any data set better than
the one-parameter VcGA model. What is unexpected is that when parameterized with a relatively
low redshift data the VcGA model is able to fit the higher redshift data better than the ACDM model.
This shows that the second parameter in the latter, while trying to fit a limited dataset as best as
possible, compromises the model fit for data not used for parameterizing. This means that the ACDM
model does not have as good a predictive capability (i.e., the capability to fit the data that is not
included for determining the model parameters) as the VcGA model, despite having twice as many
parameters as the VcGA model. In addition, the VcGA model has the analytical expression for the
distance modulus p unlike the ACDM model, which must be evaluated numerically.

One would notice that while R, (and hence H,) values are relatively stable with the
parameterizing dataset containing higher and higher redshift values, varying no more than 0.35%,
the variation in the £,,, is up to 9.4%, i.e., 27 time larger. This confirms that the (2,,, parameter,
and hence A through £,,, is an artificially introduced parameter to fit the data rather than being
fundamental to the ACDM model. In contrast, A is an integral part of the VcGA model. Since K (=
G/c?)and A are related through Equation (7), one could easily derive that the A term contributes
60% for the VcGA model against 70% for the ACDM model.

We have established that the supernovae la data is compatible with the variable constants
proposition. This is contrary to the findings of Mould and Uddin [49] in 2014 who considered only
the variation of G in their work. We believe most of the negative findings on the variation of physical
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constants are possibly due to the variation of a constant being considered in isolation rather than
holistically for all the constants involved. We have established that the physical constants not only
vary but also how much they vary: ¢/c = 1.8H, G/G = 5.4H, A/A=—12Hand H/H = —0.6 H. In
addition, from the null results on the variation of the fine structure constant [14,15], we have shown
that h/h = 1.8H. We urge that they be used in union rather than in isolation. This indeed was not
possible until now when one knows the exact form of the variation of each as above.

One basic question naturally arises—what is the consequences of the findings here? It is clear
from the above that at time t = 0 the dark energy parameter A was infinity, whereas ¢,G and h
were zero. Existence of any baryonic matter and radiation was irrelevant since they did not provide
any energy density due to ¢,G and h all being zero. We may need to explore how the universe
would evolve from such a state against the state assumed in the standard model.

One may wonder how the physical constants’ variation could be measured experimentally. The
most accurate device developed to date to measure the variation of fine structure constant « is
atomic clock based on the hyperfine trasitions of certain atoms at microwave and optical frequencies.
The transitions are also used for tests of quantum electrodynamics, general relativity and the
equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-
statistics theorem [50-52]. However, tests related to the variation of ¢,G and # as presented here are
not possible using the atomic transitions since the latter are dependent on the variation of a, which
is already assumed to be zero in our theory.

Spinning bodies cause spacetime to rotate around it causing the nearby angular momentum
vector to precess. This so-called frame-dragging phenomenon causes the electromagnetic signal from
an orbiting spacecraft to register a redshift Az, given by [53]:

GM
e3P

Az

where M is the mass of the spinning body and P is its spinning period. If ¢ and G evolve in time
as determined in this paper then Az will not vary in time due to the variation of these constants, and
therefore this method is not suitable for measuring their variation.

If we could isolate all the perturbative and relativistic effects on a high eccentricity satellite orbit
then any residual increase in its eccentricity and orbit size may be attributed to the variation of G
and ¢, and Equations (40) and (43) may be adapted to the satellite parameters. In addition, any
spacecraft receding from Earth should experience anomalous deceleration similar to Pioneer’s. The
spacecraft may be designed to eliminate or minimize the thermal radiation anisotropy. One could
possibly design other experiments that could test the variability of constants when all the constants
discussed here are simultaneously varying.

Existence of the parameter p in estimating eccentricity increase can be seen as a deficiency of
the quasi-phenomenological model we have used. Since the Moon eccentricity involves Earth and
Moon whereas the AU increase involves Earth and Sun, and since the masses of the two systems are
enormously different, the parameter p may be considered to take this difference into account. We
will need to develop a fully relativistic theory to eliminate this arbitrariness in p for estimating the
two anomalies with varying ¢ and G. Until then it would be prudent to leave p = 1 and just be
contended that the variable ¢ and G theory is able to estimate the anomalies within a factor of 2.

12. Conclusions
Salient points of the finding in this work are:

1. The single-parameter VcGA model fits the supernovae la data almost as well as the two-
parameter standard ACDM model. The VcGA model has better predictive capability than the
ACDM model.

2. One could see that the approach taken here to explain the three anomalies is based on a very
simple analytically derived expression for the evolution of the speed of light and gravitational
constant. Thus one could infer that the Occam’s razor principle would favour the new approach
over other approaches. In the case of the Pioneer anomaly, it should be rather easy to implement
it in the real time modeling of the astrodynamics of long-range spacecraft.
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3.

The expression of eccentricity variation involves ¢ and ¢ in a manner that the contributions of
G/G and ¢/c almost cancel each other except for a small residual. This may be compared with
the case of using Kepler’'s Equation (15) when the two contributions cancel out entirely.

Based on G variation alone, one can see from Equations (37)—(39) that calculated é is more than
two orders of magnitude higher than measured é. Current work corrects this by including ¢
variation.

There may be bias factors in the models (say in favour of tidal effects) used for data analysis,
since a model is not considered good enough unless it can account for all the observed value.
We believe that one may be able to remove this bias by the inclusion of the local effect of
cosmology, as presented here, in the data analysis models.

As mentioned above, both G/G and ¢/c are positive and thus both of them are increasing with
time rather than decreasing. The simple model presented above is effectively inclusive of the
cosmological constant. The existence of cosmological constant A in standard ACDM model
leads to a continuous addition of dark energy to the universe as the universe expands, i.e., it
causes the total energy of the universe to increase. The same is achieved by the increase of G and
c¢ through the second continuity equation (Equation (7)).

Variability of all the constants is expressed in terms of the Hubble parameter H(t), and at the
present time, relative to the Hubble constant H,. In summary, the physical constants evolve as
follows: ¢/c = 1.8H, G/G = 5.4H, h/h = 1.8H, A/A = —1.2H,and H/H = —0.6H.

There is an exact proportionality between the quantum Planck units and cosmological Hubble
units and the proportionality is evolutionary. All Hubble units are 61 orders of magnitude larger
than the corresponding Planck units. The factor determining the same, i.e,, D = V[c®/(HZGh)],
variesas D/D = 1.5H, = 1.07 x 1071 yr~1,

The model limitation is that it does not use Einstein-Hilbert action with ¢ and G as scalar fields
rather than constants to determine variable constants compliant with field equations [54]. Thus,
the VcGA model, albeit simple, can only be considered quasi-phenomenological as it does not
fully account for the variability of c, G, and A.
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Appendix A
We may write Equation (4) with K = G/c? as follows:
. 8mK. 1
a2 = (= +24) (A1)
Differentiating it with respect to time gives:
... (8mKe 1 . 8nKe  8mKe 1 i\ 5
2ai = (= +24) 200 + (B + L+ 1) a2, (A2)
Dividing it by 2da yields:
('i_(87rK£+1A>+ 8nke+8nKé+1A & A3
U3 '3 3 3 '3 )%2a (13)

Substituting ¢d/a from Equation (3):

1/a\? 1 (87TK5 1 ) 8nKe 8mKé
2\a 2 3

1.
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N a)2 .
Substituting (Z) from Equation (4):

8mKe | 1 1 8mKe | 1 8nKe | 8nKé | 1 :\(a
= (Pt 5a) —ankp + A= (545 4) = (0 T+ 2A) (5) = 0 or (A5)
a\ (8m 8T, . 1z
anke +4nkp + (3) (2 Ke + ke +24) = 0, 0r (46)
%(24an + 247Kp) + 8nKe + 8nKé + A = 0. (47)
Dividing it by 8nK and rearranging we get:

. i K A

e+3(§)(e+p)+;s+ﬁ=0. (48)

This is the same equation as Equation (5).
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