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Abstract: We have developed a cosmological model by allowing the speed of light c, gravitational 
constant G and cosmological constant Λ in the Einstein filed equation to vary in time, and solved 
them for Robertson-Walker metric. Assuming the universe is flat and matter dominant at present, 
we obtain a simple model that can fit the supernovae 1a data with a single parameter almost as well 
as the standard ΛCDM model with two parameters, and which has the predictive capability 
superior to the latter. The model, together with the null results for the variation of G from the 
analysis of lunar laser ranging data determines that at the current time G and c both increase as dG/dt 
= 5.4GH0 and dc/dt = 1.8cH0 with H0 as the Hubble constant, and Λ decreases as dΛ/dt = −1.2ΛH0. 
This variation of G and c is all what is needed to account for the Pioneer anomaly, the anomalous 
secular increase of the moon eccentricity, and the anomalous secular increase of the astronomical 
unit. We also show that the Planck’s constant ħ increases as dħ/dt = 1.8ħH0 and the ratio D of any 
Hubble unit to the corresponding Planck unit increases as dD/dt = 1.5DH0. We have shown that it is 
essential to consider the variation of all the physical constants that may be involved directly or 
indirectly in a measurement rather than only the one whose variation is of interest. 

Keywords: astroparticle physics; astrometric anomaly; supernovae redshift; cosmology theory; 
variable physical constants; VSL 

PACS: 98.80.-k; 98.80.Es; 98.62.Py 
 

1. Introduction 

Variation of physical constants is a subject that is marred with semantics: What exactly is varying 
and how is it being measured? There is an ongoing debate about dimensionful and dimensionless 
constants (e.g., Uzan [1,2], Duff [3], Chiba [4]). Our approach therefore would be to work mostly with 
easily comprehensible dimensionful constants and later on see if a meaningful relationship can be 
established for a common dimensionless parameter and how it evolves with time. The physical 
constants considered in this work are primarily the speed of light 𝑐 , the Newton’s gravitational 
constant 𝐺, the Einstein’s cosmological constant 𝛬, the Planck’s constant ħ, the Hubble constant 𝐻଴, 
and the fine structure constant 𝛼. There is a plethora of literature discussing the variation, or lack 
thereof, of these physical constants and others, and there are excellent reviews on the subject [1–6]. 
We will therefore limit ourselves to a selected few with direct relevance to our work. In addition, we 
will focus only on the time variation of physical constants in the spirit of the cosmological principle, 
which assumes the universe to be isotropic and homogeneous in space at large scale. 

Varying physical constant theories gained traction after Dirac [7,8] in 1937 suggested such 
variation based on his large number hypothesis that related ratios of certain scales in the universe to 
that of the forces of nature. Magueijo [6] reviewed the variable speed of light (VSL) theories and their 
limitations in 2003 that included theories based on hard breaking of Lorentz invariance, biometric 
models, local Lorentz invariance, color dependent speed of light, extra dimension (e.g., brane-world) 
induced variation, and field functions. Farrell and Dunning-Davis [9] discussed in 2004 the VSL 
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theories that were used as alternatives to the inflationary model of the universe and reviewed 
evidence for the same. 

Maharaj and Naidoo [10] introduced variable 𝐺  and 𝛬  in Einstein field equation using 
Robertson-Walker metric in 1993. Belenchon and Chakrabarty [11] added the variation of 𝑐  to 
develop a perfect fluid cosmological model in 2003. Recently (2017) Franzmann [12] developed an 
approach that included space as well as time dependence of the constants. More recently Barrow and 
Magueijo [13] proposed that the constants be considered as quantum observables in a kinematical 
Hilbert space. These works are mostly theoretical and do not directly offer how much exactly they 
vary and if they can directly explain some observations or measurements. Our focus will be to 
develop a model that can be used to explain certain anomalies, hitherto not explained satisfactorily, 
as well as the redshift vs distance modulus data on supernovae 1a better than alternative models. 

The possible variation of the fine structure constant 𝛼 has been of great interest as it is perhaps 
the most basic dimensionless constant in physics. Rosenband et al. [14] have put a constraint on the 𝛼ሶ /𝛼 = (−1.6 ± 2.3) × 10ିଵ଻yrିଵ derived from the constancy of the ratio of aluminum and mercury 
single-ion optical clock frequencies. More recently Gohar [15], using his entropic model of the 
universe and data on supernovae 1a, baryon acoustic oscillations, and cosmic microwave 
background, has established even more stringent constraint on the variation of 𝛼. Additionally, he 
states that in his model 𝐺 and 𝑐 should be increasing with the evolution of the universe, which 
corroborates our findings in this work. Similar constraints on 𝛼 were shown by Songaila and Cowie 
[16] from the observation of narrow quasar absorption lines at redshift 𝑧 > 1.5. There is a significant 
amount of work on the subject, most of it can be found referenced in the papers cited above. 

If 𝛼 does vary, no matter how small the variation, it is normal to ask what causes its variation—
electric charge 𝑒, 𝑐 or ħ? We will show that since 𝑐 and ħ variations cancel out, it is 𝑒 that should 
be considered responsible for the variation of 𝛼 if there is any. 

We will solve the Einstein field equation with varying 𝑐, 𝐺 and 𝛬  with Robertson-Walker 
metric in Section 2, and show that 𝛬ሶ/𝛬 = −1.2𝐻  and 𝐻ሶ /𝐻 = −0.6𝐻  where 𝐻  is the Hubble 
parameter. Based on the Hofmann and Müller’s [17] determination of a very tight constraint on the 
variation of 𝐺  from the analysis of laser lunar ranging data of more than 40 years, we will 
establish in Section 3 that 𝐺ሶ /𝐺 = 5.4𝐻 and 𝑐ሶ/𝑐 = 1.8𝐻. Section 4 is devoted to the derivation of 
the expression for distance modulus 𝜇 of an intergalactic light emitting source in terms of its 
redshift 𝑧. Section 5 delineates the methodology for fitting the 𝜇 − 𝑧 data and applying the same 
to the new model, the variable 𝑐, 𝐺 and 𝛬  (VcG Λ)  model, and for comparison also to the 
standard ΛCDM model. Having shown that the VcGΛ model fits the supernovae 1a 𝜇 − 𝑧 data 
almost as well as the ΛCDM model and has predictive capability better than the latter, we will 
proceed to demonstrate that the model can explain the three astrometric anomalies that have not 
yet been explained satisfactorily. All we need to explain these anomalies is 𝐺ሶ /𝐺 = 5.4𝐻଴ and 𝑐ሶ/𝑐 = 1.8𝐻଴ at current time with 𝐻଴ as the Hubble constant. 

The first anomaly we will consider here is the Pioneer anomaly, which refers to the near constant 
acceleration back towards the sun, observed when a spacecraft cruises on a hyperbolic path away 
from the solar system (Anderson et al., 1998 [18]). Many explanations have been given for such an 
anomaly but none appears to be satisfactory and they are difficult to incorporate in the models used 
for real time spacecraft astrodynamics. Principal among these explanations are as follows: (a) 
Turyshev et al. [19] in 2012 tried to explain the anomaly as being due to the recoil force associated 
with an anisotropic emission of thermal radiation off the spacecraft. However, it is not clear why it 
should be the same for Pioneer 10/11, Galileo and Ulysses spacecrafts. (b) Feldman and Anderson 
[20] in 2015 used “the theory of inertial centers” [21] to develop a model to compute the anomaly. (c) 
Kopeikim [22] in 2012 used Hubble expansion of the universe to address the anomaly and gave a 
reason why one should see deceleration rather than acceleration of the spacecraft due the expansion 
of the universe. These approaches are rather circuitous and depend on many assumptions to explain 
the anomaly. Feldman and Anderson [20] allocated 12% of the total anomalous acceleration of 8.74 ±1.33 ×  10ିଵ଴ m sିଶ  to various thermal contributions, leaving 7.69 ± 1.17 ×  10ିଵ଴ m sିଶ  that 
requires other explanations. In Section 6 we will try to explain this unexplained Pioneer acceleration. 
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The lunar laser ranging technique has improved to the extent that it can determine the lunar 
orbit with an accuracy of better than a centimeter. The moon’s orbit has an eccentricity that depends 
on the tidal forces due to surficial and the geophysical processes interior to Earth and the moon. After 
all the known sources responsible for the eccentricity 𝑒 were included, Williams and Dickey [23] in 
2003 estimated that there remained a discrepancy of Δ𝑒ሶ = (16 ± 5) × 10ିଵଶ yrିଵ  between the 
observed and calculated values. This value was revised downward by Williams and Boggs [24] in 
2009 to Δ𝑒ሶ = (9 ± 3) × 10ିଵଶ yrିଵ  and by Williams, Turyshev and Boggs [25] in 2014 to Δ𝑒ሶ =(5 ± 2) × 10ିଵଶ yrିଵ with updated data and tidal models. With additional terrestrial tidal modeling, 
William and Boggs [26] in 2016 were able to further reduce the number and stated that it might even 
be negative. While these authors possibly felt that unexplained secular increase of the eccentricity 
was due to the deficiency in their model and therefore a better tidal modeling should eliminate it, 
others feel that the anomaly may be pointing to some unknown physical process. There have been 
attempts to resolve the anomaly using Newtonian, relativistic and modified gravity approaches [27–
29] as well as using some unfamiliar gravitational effects [27]. Reviews by Anderson and Nieto [30] 
in 2009 and Iorio [31] in 2015 have covered the above and additional attempts to solve the problem. 
It appears that none of the models secularly affect the lunar eccentricity. Attempts of cosmological 
origin were also not successful [22,29,32,33]. We attempt to explain this anomaly in Section 7 with the 
varying 𝐺 and 𝑐 approach developed here. 

The anomalous secular increase of astronomical unit AU was first reported by Krasinsky and 
Brumberg [34] in 2004 as dAU/dt = (15 ± 4) m cy−1 from the analysis of all radiometric measurements 
of distances between Earth and the major planets they had available over the period 1971–2003, 
which included the observations of Martian landers and orbiters. They noted that unexplained 
secular increase in AU might point to some fundamental features of space time that are beyond the 
current cosmological understanding according to which the Hubble expansion yields dAU/dt = 1 km 
cy−1. This value is almost two orders of magnitude higher than observed. Their theoretical analysis 
revealed that the relativistic calculations that included the gravitational shift of proper time gave null 
results. Anderson and Nieto [30] in 2009 corroborated Krasinsky and Brumberg’s [34] findings. They 
showed that the effect of the loss of solar mass on AU is miniscule and will cause the AU to shrink 
rather than increase (dAU/dt = −0.34 cm cy−1). Iorio [31] in 2015 reviewed the status of the AU anomaly 
in significant details and concluded that, considering the various unsatisfactory attempts to explain 
the anomaly and the new IAU definition of astronomical unit, the anomaly no longer exists (just by 
virtue of new definition). We show in Section 8 that the AU anomaly based on the old definition can 
be easily explained with the new approach. 

Section 9 shows how we obtain the variation of ℏ from the null result on the variation of fine 
structure constant. We explore the relationship between Planck units and Hubble units in Section 10, 
and show that all units have the same constant relating them, and then determine how this constant 
evolves in time. Section 11 is devoted to discussion and Section 12 to conclusions. 

2. Evolutionary Constants Model 

We will develop our model in the general relativistic domain starting from the Robertson-
Walker metric with the usual coordinates 𝑥ఓ (𝑐𝑡, 𝑟, 𝜃, 𝜙): 𝑑𝑠ଶ = 𝑐ଶ𝑑𝑡ଶ − 𝑎(𝑡)ଶ[ 𝑑𝑟ଶ1 − 𝑘௦𝑟ଶ + 𝑟ଶ(𝑑𝜃ଶ + sinଶ 𝜃𝑑𝜙ଶ)] (1) 

where 𝑎(𝑡)  is the scale factor and 𝑘௦  determines the spatial geometry of the universe: 𝑘௦ =−1 (closed), 0 (flat), +1 (open). The Einstein field equations may be written in terms of the Einstein 
tensor 𝐺ఓఔ, metric tensor 𝑔ఓఔ , energy-momentum tensor 𝑇ఓఔ , cosmological constant 𝛬 , 
gravitational constant 𝐺 and speed of light 𝑐, as: 𝐺ఓఔ + 𝛬𝑔ఓఔ = − 8𝜋𝐺𝑐ସ 𝑇ఓఔ (2) 

When solved for the Robertson-Walker metric, we get the following non-trivial equations for the 
flat universe (𝑘ௌ = 0) of interest to us here, with 𝑝 as the pressure and 𝜀 as the energy density [10]: 
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𝑎ሷ𝑎 + 12 ൬𝑎ሶ𝑎൰ଶ = − 4𝜋𝐺𝑐ଶ 𝑝 + 12 𝛬 (3) 𝑎ሶ ଶ𝑎ଶ = 8𝜋𝐺3𝑐ଶ 𝜀 + 13 𝛬 (4) 

If we do not regard 𝐺, 𝑐 and 𝛬 to be constant and define 𝐾 ≡ ௖ீమ , we may easily derive the 
continuity equation by taking time derivative of Equation (4) and substituting in Equation (3) (see 
Appendix A): 𝜀ሶ + 3𝑎ሶ𝑎 (𝜀 + 𝑝) + 𝐾ሶ𝐾 𝜀 + 𝛬ሶ8𝜋𝐾 = 0 (5) 

This reduces to the standard continuity equation when 𝐾 and 𝛬 are held constant. And since 
the Einstein field equations require that the covariant derivative of the energy-momentum tensor 𝑇ఓఔ 
be zero, we can interpret Equation (5) as comprising of two continuity equations [10], viz: 𝜀ሶ + 3𝑎ሶ𝑎 (𝜀 + 𝑝) = 0 (6) 8𝜋𝜀𝐾ሶ + 𝛬ሶ = 0 (7) 

This separation simplifies the solution of the field equations (Equations (3) and (4)). Equation (6) 
yields the standard solution for the energy density 𝜀 = 𝜀଴𝑎ିଷ(ଵା௪). Here 𝑤 is the equation of state 
parameter defined as 𝑝 ≡ 𝑤𝜀 with 𝑤 = 0 for matter, 1/3 for radiation and −1 for 𝛬. 

As has been explicitly delineated by Magueijo in several of his papers (e.g., reference [35]), this 
approach is not generally Lorentz invariant albeit relativistic. Strictly speaking we should have used 
the Einstein-Hilbert action to obtain correct Einstein equations with variable 𝐺  and 𝑐  as scalar 
fields. Thus, one may consider the current formulation quasi-phenomenological. 

Since the expansion of the universe is determined by 𝐻(𝑡) ≡ 𝑎ሶ /𝑎, it is natural to assume the time 
dependence of any time dependent parameter to be proportional to 𝑎ሶ/𝑎 (the so called Machian 
scenario—Magueijo [6]). Let us therefore write: ௄ሶ௄ = 𝑘 ቀ௔ሶ௔ቁ, ௸ሶ௸ = 𝑙 ቀ௔ሶ௔ቁ and ுሶு = 𝑚 ቀ௔ሶ௔ቁ, i.e., (8) 𝐾 = 𝐾଴𝑎௞, 𝛬 = 𝛬଴𝑎௟ and 𝐻 = 𝐻଴𝑎௠. (9) 

where 𝑘 , 𝑙 and 𝑚 are the proportionality constants, and subscript zero indicates the parameter 
value at present (𝑡 = 𝑡଴). With this substitution in Equation (4) we may write: ௔ሶ మ௔మ = 𝐻଴ଶ𝑎ଶ௠ = ଼గଷ (𝐾଴𝑎௞)𝜀଴𝑎ିଷ(ଵା௪) + ଵଷ 𝛬଴𝑎௟. (10) 

Comparing the exponents of the only time dependent parameter a of all the terms, we may write 2𝑚 = 𝑘 − 3 − 3𝑤 = 𝑙, and with 𝑤 = 0 for matter, we have 2𝑚 = 𝑘 − 3 = 𝑙. Thus, if we know 𝑘, we 
know 𝑙 and 𝑚. 

We can now have a closed analytical solution of Equation (10) as follows (since 𝑎(𝑡଴) ≡ 1): 𝑎(𝑡) = ௔(௧)௔(௧బ) = ቀ ௧௧బቁ మయశయೢషೖ; ௔ሶ௔ = ଶଷାଷ௪ି௞ 𝑡ିଵ; (11) 

௔ሷ௔ሶ = ቀ௔ሶ௔ቁ ቀ1 − ଷାଷ௪ି௞ଶ ቁ ; and −𝑞 ≡ ௔ሷ ௔௔ሶ మ = ିଵିଷ௪ା௞ଶ  (12) 

where 𝑞 is the deceleration parameter. It may be noticed that 𝑞 does not depend on time, i.e., 𝑞଴ =𝑞. As we know the radiation energy density is negligible at present, and dark energy Λ is implicitly 
included in the above formulation, so we need to be concerned with the matter only solutions, i.e., 
with 𝑤 = 0. 

The deceleration parameter 𝑞଴ has been analytically determined on the premise that expansion 
of the universe and the tired light phenomena are jointly responsible for the observed redshift, 
especially in the limit of very low redshift [36]. One could see it as if the tired light effect is 
superimposed on the Einstein de Sitter’s matter only universe rather than the cosmological constant 



Galaxies 2019, 7, 55 5 of 18 

 

[37]. By equating the expressions for the proper distance of the source of the redshift for the two, one 
gets 𝑞଴ = −0.4. Then from Equation (12) we get 𝑘 = 1.8, and also 𝑙 = −1.2 and 𝑚 = −0.6. We thus 
have from Equation (8) 𝐾ሶ /𝐾 = 1.8𝐻, 𝛬ሶ/𝛬 = −1.2𝐻 and 𝐻ሶ /𝐻 = −0.6𝐻. 

3. Varying G and c Formulation 

Having determined the value of 𝑘 = 1.8, and since the Hubble parameter is defined as 𝐻 = 𝑎ሶ /𝑎, 
we may write from Equations (8) and (9): 𝐾 = 𝐾଴𝑎ଵ.଼, and ௄௄ሶ = 1.8𝐻. (13) 

We may also write explicitly: ௄ሶ௄ = ሶீீ − ଶ௖ሶ௖ = 1.8𝐻. (14) 

Taking 𝐻 at the present time as 𝐻଴ ≃ 70  km sିଵ  Mpc−1 (2.27 × 10ିଵ଼ sିଵ ) we get ௄ሶ௄ =4.09 × 10ିଵ଼ sିଵ = 1.29 × 10ିଵ଴ yrିଵ. 
The findings from the Lunar Laser Ranging (LLR) data analysis provides the limits on the 

variation of 𝐺ሶ /𝐺 (7.1 ± 7.6 × 10ିଵସ) [17], which is considered to be about three orders of magnitude 
lower than was expected [7,8,38]. However, the LLR data analysis is based on the assumption that 
the distance measuring tool, i.e., the speed of light, is constant and non-evolutionary. If this constraint 
were dropped then the finding would be very different. 

As is well known [39], a time variation of 𝐺 should show up as an anomalous evolution of the 
orbital period 𝑃 of astronomical bodies expressed by Kepler’s 3rd law: 𝑃ଶ = 4𝜋ଶ𝑟ଷ𝐺𝑀 , (15) 

where 𝑟 is semi-major axis of the orbit, 𝐺 is the gravitational constant and 𝑀 is the mass of the 
bodies involved in the orbital motion considered. If we take time derivative of Equation (15), divide 
by 𝑃ଶ and rearrange, we get: 𝐺ሶ𝐺 = 3𝑟ሶ𝑟 − 2𝑃ሶ𝑃 − 𝑀ሶ𝑀 (16) 

If we write 𝑟 = 𝑐𝑡 then ௥ሶ௥ = ଵ௧ + ௖ሶ௖. Here 𝑡 may be considered associated with the Hubble time 
(i.e., 1/𝐻), as are other quantities. We may now rewrite Equation (16) as: 𝐺ሶ𝐺 − 3𝑐ሶ𝑐 = 3𝑡 − 2𝑃ሶ𝑃 − 𝑀ሶ𝑀. (17) 

Since LLR measures the time of flight of the laser photons, it is the right hand side of Equation 
(17) that is determined from LLR data analysis [17] to be 7.1 ± 7.6 × 10ିଵସ and not the right hand 
side of Equation (16). 

Then, taking the right hand side of Equation (17) as 0 and combining it with Equation (14), one 
can solve the two equations and get 𝐺ሶ /𝐺 = 5.4𝐻 and 𝑐ሶ/𝑐 = 1.8𝐻. It should be emphasized that both 𝐺ሶ /𝐺 and 𝑐ሶ/𝑐 are positive and thus both of them are increasing with time rather than decreasing, as 
is generally believed (e.g., [7,8,40]). This may be considered as the most significant observational 
finding of cosmological consequences just by studying the Earth–moon system. 
  



Galaxies 2019, 7, 55 6 of 18 

 

4. Redshift vs. Distance Modulus 

The distance 𝑑  of a light emitting source in a distant galaxy is determined from the 
measurement of its bolometric flux 𝑓 and comparing it with a known luminosity 𝐿. The luminosity 
distance 𝑑௅ is defined as: 

𝑑௅ = ඨ 𝐿4𝜋𝑓 (18) 

In a flat universe the measured flux could be related to the luminosity 𝐿 with an inverse square 
relation 𝑓 = 𝐿/(4𝜋𝑑ଶ). However, this relation needs to be modified to take into account the flux 
losses due to the expansion of the universe through the scale factor 𝑎, the redshift 𝑧 and all other 
phenomena that can result in the loss of flux. Generally accepted flux loss phenomena are as follows 
[41]: 

a. Increase in the wavelength causes a flux loss proportional to 1/(1 + 𝑧). 
b. In an expanding universe, an increase in detection time between two consecutive photons emitted 

from a source leads to a reduction of flux proportional to 𝑎, i.e., proportional to 1/(1 + 𝑧). 

Therefore, in an expanding universe the necessary flux correction required is proportional to 1/(1 + 𝑧)ଶ. The measured bolometric flux 𝑓஻ and the luminosity distance 𝑑௅ may thus be written 
as: 𝑓஻ = 𝐿/[4𝜋𝑑ଶ(1 + 𝑧)ଶ], and (19) 𝑑௅ = 𝑑(1 + 𝑧). (20) 

How does 𝑑  compare with and without varying 𝑐 ? Let us first consider the case of non-
expanding universe. The distance from the point of emission at time 𝑡௘ to the point of observation 
at time 𝑡଴ may be written as 𝑑௖ = ׬ 𝑐 𝑑𝑡௧బ௧೐ . Therefore for constant 𝑐 = 𝑐଴: 𝑑௖బ = 𝑐଴𝑡଴(1 − 𝑡௘𝑡଴) (21) 

When 𝑐 = 𝑐଴𝑎ଵ.଼, and since 𝑎 = ቀ ௧௧బቁ మభ.మ from Equation (11), we may write: 

𝑑௖ = 𝑐଴ න ൬ 𝑡𝑡଴൰ଷ 𝑑𝑡௧బ௧೐ = 𝑐଴𝑡଴ଷ න 𝑡ଷ𝑑𝑡௧బ௧೐ = 14 𝑐଴𝑡଴ ቆ1 − 𝑡௘ସ𝑡଴ସቇ. (22) 

The ratio of the two distances may be considered the normalization factor 𝐹 when using the 
variable 𝑐 in calculating the proper distance of a source. Since 𝑎 ≡ 1/(1 + 𝑧), we may write for the 
source of redshift 𝑧 with emission time 𝑡௘: ௧೐௧బ = 𝑎(𝑧)଴.଺, or (23) ௧೐௧బ = (1 + 𝑧)ି଴.଺. (24) 

Now the proper distance of the source with variable 𝑐 may be defined as [41] (page 105): 𝑑௉௖ = න (𝑐𝑎) 𝑑𝑡௧బ௧೐ = න (𝑐଴𝑎ଵ.଼𝑎 ) 𝑑𝑡௧బ௧೐ = 𝑐଴ න 𝑎଴.଼ 𝑑𝑡௧బ௧೐  

= 𝑐଴ ׬ ቀ ௧௧బቁరయ  𝑑𝑡௧బ௧೐ = ଷ଻ 𝑐଴𝑡଴[1 − ቀ௧೐௧బቁళయ]. (25) 

From Equation (11) 𝐻଴ ≡ 𝑎ሶ /𝑎 = (2/1.2)𝑡଴ି ଵ. Therefore: 𝑑௉௖ = 11.4 (𝑐଴/𝐻଴)[1 − (1 + 𝑧)ିଵ.ସ]. (26) 

Thus the expression for 𝑑  to be substituted in Equation (20) to determine the luminosity 
distance of the source is 𝑑 = 𝑑௉೎𝐹. 
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Since the observed quantity is distance modulus 𝜇 rather than the luminosity distance 𝑑௅, we 
will use the relation: 𝜇 = 5 log(𝑑௅) + 25, = 5log ( 11.4 𝑅଴(1 − (1 + 𝑧)ିଵ.ସ) + 5 log൫𝐹(𝑧)൯ 

(27) 

+5 log(1 + 𝑧) + 25. (28) 

where 𝑅଴ ≡ 𝑐଴/𝐻଴ and all the distances are in Mpc. It is the only free parameter in Equation (28). 
We will compare the new model, hereafter referred to as the VcGΛ (variable 𝑐, 𝐺 and 𝛬) model, 

with the standard ΛCDM model, which is the most accepted model for explaining cosmological 
phenomena, and thus may be considered the reference models for all the other models. Ignoring the 
contribution of radiation density at the current epoch, we may write the distance modulus 𝜇 for 
redshift 𝑧 in a flat universe for the ΛCDM model as follows [42]: 𝜇 = 5log [𝑅଴ න 𝑑𝑢/ටΩ௠,଴(1 + 𝑢)ଷ + 1 − Ω௠,଴]௭

଴  +5 log(1 + 𝑧) + 25. (29) 

Here Ω଴,௠ is the current matter density relative to critical density and 1 − Ω௠,଴ ≡ Ωஃ,଴ is the 
current dark energy density relative to critical density. 

5. Supernovae Ia z-µ Data Fit 

We tried the VcGΛ model developed here to see how well it fits the best supernovae Ia data [43] 
as compared to the standard ΛCDM model. The data fit is shown in Figure 1. The VcGΛ model 
requires only one parameter to fit all the data (𝐻଴ = 68.90 ± 0.26 km sିଵ Mpcିଵ), whereas the ΛCDM 
model requires two parameters (𝐻଴ = 70.16 ± 0.42 km sିଵ Mpcିଵ and Ω௠,଴ = 0.2854 ± 0.0245). 

The data used in this work is the so-called Pantheon Sample of 1048 supernovae Ia in the range 
of 0.01 < 𝑧 < 2.3 [43]. The data is in terms of the apparent magnitude and we added 19.35 to it to 
obtain normal luminosity distance numbers as suggested by Scolnic [43]. To test the fitting and 
predictive capability of the two models, we divided the data in 6 subsets: (a) 𝑧 < 0.5; (b) 𝑧 < 1.0; (c) 𝑧 < 1.5; (d) 𝑧 > 0.5; (e) 𝑧 > 1.0; and (f) 𝑧 > 1.5. The idea is to parameterize a model with a low 
redshift data subset and then see how the model, using parameters thus obtained, fits the remaining 
redshift data. In addition, we considered the fits for the whole data. The models were parameterized 
with subsets (a), (b) and (c). The parameterized models were then tried to fit the data in the subsets 
that contained data with z values higher than in the parameterized subset. For example if the models 
were parameterized with data subset (a) 𝑧 < 0.5, then the models were fitted with the data subsets 
(d) 𝑧 > 0.5, (e) 𝑧 > 1.0 and (f) 𝑧 > 1.5 to examine the models’ predictive capability. 

The Matlab curve fitting tool was used to fit the data by minimizing 𝜒ଶ and the latter was used 
for determining the corresponding 𝜒ଶ probability [44] 𝑃. Here 𝜒ଶ is the weighted summed square 
of residual of 𝜇: 𝜒ଶ = ∑ 𝑤௜ൣ𝜇(𝑧௜; 𝑅଴, 𝑝ଵ, 𝑝ଶ … ) − 𝜇௢௕௦,௜൧ଶே௜ୀଵ , (30) 

where 𝑁 is the number of data points, 𝑤௜ is the weight of the 𝑖th data point 𝜇௢௕௦,௜ determined from 
the measurement error 𝜎ఓೀ್ೞ,೔  in the observed distance modulus 𝜇௢௕௦,௜  using the relation 𝑤௜ =1/𝜎ఓೀ್ೞ,೔ଶ , and 𝜇(𝑧௜; 𝑅଴, 𝑝ଵ, 𝑝ଶ. . ) is the model calculated distance modulus dependent on parameters 𝑅଴  and all other model dependent parameter 𝑝ଵ, 𝑝ଶ, etc. As an example, for the ΛCDM models 
considered here, 𝑝ଵ ≡ Ω௠,଴ and there is no other unknown parameter. 
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Figure 1. Supernovae Ia redshift 𝑧 vs. distance modulus µ data fit using the variable 𝑐, 𝐺 and 𝛬 
(VcGΛ) model as compared to the fit using the ΛCDM model. 

We then quantified the goodness-of-fit of a model by calculating the 𝜒ଶ probability for a model 
whose 𝜒ଶ  has been determined by fitting the observed data with known measurement error as 
above. This probability 𝑃 for a 𝜒ଶ distribution with 𝑛 degrees of freedom (DOF), the latter being 
the number of data points less the number of fitted parameters, is given by: 𝑃(𝜒ଶ, 𝑛) = ቆ ଵ୻ቀ೙మቁቇ න 𝑒ି௨𝑢೙మିଵ𝑑𝑢ஶഖమమ , (31) 

where Γ is the well know gamma function that is generalization of the factorial function to complex 
and non-integer numbers. The lower the value of 𝜒ଶ, the better the fit, but the real test of the 
goodness-of-fit is the 𝜒ଶ probability 𝑃; the higher the value of 𝑃 for a model, the better the model’s 
fit to the data. We used an online calculator to determine 𝑃 from the input of 𝜒ଶ and DOF [45]. Our 
primary findings are presented in Table 1. The unit of the Hubble distance 𝑅଴ is Mpc and that of the 
Hubble constant 𝐻଴ is km s−1 Mpc−1. The table is divided into four categories vertically and four 
categories horizontally. Vertical division is based on the parameterizing data subset indicated in the 
second row and discussed above. The parameters determined for each model are in the first 
horizontal category. The remaining horizontal categories show the goodness-of-fit parameters for 
higher redshift subsets than those used for parameterizing the models. Thus this table shows the 
relative predictive capability of the two models. The model cells with the highest probability in each 
category are shown in bold and highlighted. 
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Table 1. Parameterizing and prediction table for the two models. This table shows how well a model is able to fit the data that is not used to determine the model 
parameters. The unit of R0 is Mpc and of H0 is km s−1 Mpc−1. P% is the χ2 probability in percent that is used to assess the best model for each category; the higher the 
χ2 probability 𝑃, the better the model fits to the data. R2 is the square of the correlation between the response values and the predicted response values. RMSE is 
the root mean square error. Highest P% value in each category is shown in bold and the cell highlighted. 

Action/Item ΛCDM VcGΛ ΛCDM VcGΛ ΛCDM VcGΛ ΛCDM VcGΛ 
Parameterized Model Dataset z < 0.5; 832 Points Model Dataset z < 1.0; 1025 Points Model Dataset z < 1.5; 1042 Points Model Dataset all; 1048 Points 

R0 4259 ± 34 4337 ± 18 4269 ± 27 4351 ± 17 4271 ± 26 4352 ± 17 4273 ± 26 4351 ± 16 
Ωm,0 0.2601 ± 0.0457 NA 0.2793 ± 0.0261 NA 0.2818 ± 0.0249 NA 0.2845 ± 0.0245 NA 
H0 70.39 ± 0.56 69.13 ± 0.29 70.23 ± 0.44 68.90 ± 0.27 70.19 ± 0.42 68.89 ± 0.27 70.16 ± 0.42 68.90 ± 0.25 
χ2 863.5 889.4 1018 1060 1033 1074 1036 1076 

DOF 830 831 1023 1024 1040 1041 1046 1047 
P% 20.39 7.83 53.82 21.15 55.53 23.26 58.11 26.02 
R2 0.9961 0.9960 0.9969 0.9968 0.9970 0.9969 0.9970 0.9969 

RMSE 1.020 1.035 0.9977 1.017 0.9965 1.016 0.9951 1.014 
Model Fit Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points 

χ2 176.9 190 
NOT APPLICABLE SINCE THIS 

DATASET INCLUDES THE 
DATASET USED TO 

PARAMETERIZE THE MODEL 

NOT APPLICABLE SINCE THIS 
DATASET INCLUDES THE 

DATASET USED TO 
PARAMETERIZE THE MODEL 

NOT APPLICABLE SINCE 
THIS DATASET INCLUDES 

THE DATASET USED TO 
PARAMETERIZE THE MODEL 

DOF 216 
P% 97.59 89.84 
R2 0.9605 0.9575 

RMSE 0.905 0.938 
Model Fit Dataset z > 1.0; 23 points 

χ2 19.54 17.01 17.59 16.75 
NOT APPLICABLE SINCE THIS 

DATASET INCLUDES THE 
DATASET USED TO 

PARAMETERIZE THE MODEL 

NOT APPLICABLE SINCE 
THIS DATASET INCLUDES 

THE DATASET USED TO 
PARAMETERIZE THE MODEL 

DOF 23 
P% 66.94 80.43 77.93 82.13 
R2 0.8741 0.8904 0.8867 0.8921 

RMSE 0.9216 0.86 0.8746 0.8533 
Model Fit Dataset z > 1.5; 6 points 

χ2 4.090 1.946 3.167 1.983 3.076 1.986 
NOT APPLICABLE SINCE 

THIS DATASET INCLUDES 
THE DATASET USED TO 

PARAMETERIZE THE MODEL 

DOF 6 
P% 66.44 92.45 78.76 92.12 79.92 92.09 
R2 0.5993 0.8093 0.6897 0.8057 0.6986 0.8054 

RMSE 0.8256 0.5696 0.7265 0.5749 0.716 0.5754 
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6. Pioneer Anomaly 

Having determined the values of 𝐺ሶ/𝐺 and 𝑐ሶ/𝑐 we can now proceed to calculate the anomalous 
acceleration towards the sun of Pioneer 10 and 11 spacecraft [20]. Since the gravitational pull of the 
sun on the spacecraft decreases according the inverse square law, 

ሶீீ
 cannot be expected to give a 

constant acceleration independent of the distance of the spacecraft. If the acceleration is denoted by 𝑓, one can easily work out, using the Newtonian relation 𝑓 = 𝐺𝑀/𝑟ଶ, that 𝑓ሶ/𝑓 = −3.74 × 10ିଵଽ 𝑠ିଵ, 
which yields negligible anomalous acceleration. Thus, we need to only consider the effect of 𝑐ሶ/𝑐 
from a different perspective. If the spacecraft is at a distance 𝑟଴ from Earth then the signal from Earth 
will have a two way transit time Δ𝑡 given by 2𝑟଴ = 𝑐଴Δ𝑡, assuming 𝑐଴ as the speed of light. But, if 
the speed of light is evolving as 𝑐ሶ/𝑐 = 1.8𝐻଴ near 𝑡 = 𝑡଴, i.e., as 𝑐 = 𝑐଴𝑒ଵ.଼ுబ(௧ି௧బ) during the transit 
time, then the actual transit time will be shorter than Δ𝑡 (since 𝑐 > 𝑐଴ for 𝑡 > 𝑡଴). Because of the 
shorter actual transit time, an observer would consider the spacecraft to be nearer to Earth than it 
actually is and thus would think that there is a deceleration of the spacecraft due to some 
unaccounted-for cause. 

We could write the proper distance of the spacecraft 𝑟௣ and its apparent distance 𝑟௔ as: 2𝑟௔ = 𝑐଴Δ𝑡, and 2𝑟௣ = 𝑐଴ ׬ 𝑒ଵ.଼ுబ௧𝑑𝑡୼௧଴ = ௖బଵ.଼ுబ (𝑒ଵ.଼ுబ୼௧ − 1), 

and since 1.8𝐻଴Δ𝑡 ≪ 1, 2𝑟௣ = ௖బଵ.଼ுబ [ቀ1 + 1.8𝐻଴Δ𝑡 + ଵଶ (1.8𝐻଴)ଶΔ𝑡ଶ … . ቁ − 1], or 𝑟௣ = ଵଶ 𝑐଴Δ𝑡 + ଵ.଼ுబସ 𝑐଴Δ𝑡ଶ = 𝑟௔ + ଵଶ (0.9𝐻଴𝑐଴)Δ𝑡ଶ, or 

 

(32) 

𝑟௔ = 𝑟௣ − ଵଶ (6.129 × 10ିଵ଴ m 𝑠ିଶ)Δ𝑡ଶ. (33) 

Thus the acceleration is −6.129 × 10ିଵ଴ msିଶ, and since it is negative, it is towards the observer 
at Earth. 

Out of 7.69 ± 1.17 × 10ିଵ଴ msିଶ anomalous acceleration of Pioneer 10 and 11 towards the sun 
(truly towards Earth) we are able to analytically account for 6.129 × 10ିଵ଴ msିଶ , leaving only 1.56 ± 1.17 × 10ିଵ଴ msିଶ as the anomaly. 

It should be mentioned that Kopeikin [22] has obtained essentially the same result and explained 
it as due to the cosmological effect of quadratic divergence between the electromagnetic and atomic 
time scales governing the propagation of radio waves in the Doppler tracking system and the atomic 
clock on Earth, respectively. However, his approach is not conducive to explaining the other two 
anomalies. 

7. The Moon’s Eccentricity Anomaly 

The eccentricity 𝑒 of the orbit of the moon may be written as [46]: 𝑒 = ට1 + ଶఢ௛మఓమ , or 𝑒ଶ − 1 = ଶఢ௛మఓమ . (34) 

where 𝜖 = −𝜇/2𝑎௠  is the specific orbital energy, 𝜇 = 𝐺(𝑚௘ + 𝑚௠);  here the gravitational 
parameter for the Earth–moon system, 𝒉 = 𝒓 × 𝒗 𝑚௘/𝑀௥ is the specific relative angular momentum, 𝑎௠ is the semi-major axis of the orbit, 𝑚௘ is mass of Earth, 𝑚௠ is the mass of the moon, 𝒓 is the 
radius vector and 𝒗 is the velocity vector of the moon, and 𝑀௥ = 𝑚௘𝑚௠/(𝑚௘ + 𝑚௠) is the reduced 
mass. Taking 𝑎௠ = 𝑟 and assuming 𝒓 is normal to 𝒗, we may write Equation (34) as: 1 − 𝑒ଶ = ௥௩మீ ቀ௠೐ା௠೘௠೐మ ቁ. (35) 
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Differentiating this equation with respect to time, assuming the mass factor to be constant, and 
dividing by the same equation, we get: − ௘௘ሶଵି௘మ = ௥ሶ௥ + ଶ௩ሶ௩ − ሶீீ

  

and, since 𝑒 ≪ 1: 
(36) 

𝑒𝑒ሶ = ሶீீ − ௥ሶ௥ − ଶ௩ሶ௩ . (37) 

Since 𝑟 is measured by electromagnetic waves, the measuring tool for distance, the speed of 
light, enters in it, i.e., 𝑟 = 𝑐𝑡, or 𝑟ሶ = 𝑣 = 𝑐ሶ𝑡 + 𝑐𝑡ሶ, or ௥ሶ௥ = ௖ሶ௖ + ଵ௧. Since all the parameters are expressed 
at current time, 𝑡  in the denominator must be expressed in terms of the Hubble time 1/𝐻଴ . 
However, it is better to write 𝑡 = 𝑝𝐻଴ି ଵ where (1 − 𝑝) is the small factor very close to 0 that may be 
considered to correct for the approximations made in our model (𝑝 here is not pressure). We can also 
determine ௩ሶ௩ : 𝑣ሶ = 𝑟ሷ = 𝑐ሷ𝑡 + 𝑐ሶ + 𝑐ሶ = 2𝑐ሶ , assuming 𝑐ሶ  as constant. Thus ௩ሶ௩ = ଶ௖ሶ௖ሶ௧ା௖ = ଶ௖ሶ௖ /(௖ሶ௖ 𝑡 + 1) . We 
may therefore write Equation (37) as: 𝑒𝑒ሶ = ሶீீ − ቀ௖ሶ௖ + ଵ௧ቁ − ସ௖ሶ௖ /(௖ሶ௖ 𝑡 + 1), or (38) ௘௘ሶுబ = 5.4 − ቀ1.8 + ଵ௣ቁ − ଻.ଶଵ.଼௣ାଵ. (39) 

For 𝑝 = 1, 𝑒𝑒ሶ/𝐻଴ = 0.0285715 and taking 𝐻଴ = 0.716 × 10ିଵ଴  yrିଵ , and 𝑒 = 0.0549  for the 
moon, we get 𝑒ሶ = 37 × 10ିଵଶ yrିଵ. This is about twice the original value of the anomalous rate of 
eccentricity increase. 

The value determined is very sensitive to the value of the parameter 𝑝. We have therefore 
plotted dimensionless eccentricity variation 𝑒𝑒ሶ/𝐻଴ against 𝑝 in Figure 2. It can be approximated 
near 𝑝 = 1 with the expression: ௘௘ሶுబ = 0.0285714 + 2.65306(𝑝 − 1). (40) 

There are three values of 𝑒ሶ that are significant here: 

a. 𝑒ሶ = 16 ± 5 × 10ିଵଶ yrିଵ originally estimated by Williams and Dickey in 2003 [23]; it gives 𝑝 =0.993855 ± 0.001445. 
b. 𝑒ሶ = 9 ± 3 × 10ିଵଶ yrିଵ, the updated value using more data and ‘better’ tidal effect model by 

Williams and Boggs in 2009 [24]; it gives 𝑝 = 0.991832 ± 0.000867. 
c. 𝑒ሶ = 5 ± 2 × 10ିଵଶ yrିଵ, the updated value with even more data and ‘even better’ tidal effect 

model by Williams et al. in 2014 [25]; it gives 𝑝 = 0.990676 ± 0.000578. 

All the values of 𝑝 are very close to 1, indicating that our model is a very good approximation 
to the exact solution of the Einstein field equations, at least locally, with variable 𝑐 and 𝐺. Even lower 
and negative values of 𝑒ሶ derived by Williams and Boggs in 2016 [26] can be easily explained with 
this approach. The question remains—is it the tidal model's deficiency that is being corrected or is it 
presumed that there could be no other cause for the anomaly? 
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Figure 2. Dimensionless eccentricity variation 𝑒𝑒ሶ/𝐻଴ plotted against age of the universe parameter 𝑝. 

8. Astronomical Unit (AU) Anomaly 

The orbit of Earth around the sun is Keplerian and thus is governed by Equation (15). A 
radiometric measurement will therefore yield a null result in our approach using evolutionary G and c. However, the eccentricity evolution is equally valid for the moon and Earth. Thus applying 
Equation (39) to Earth’s orbit, and assuming 𝑝 = 1 and 𝑒 = 0.0167, we get 𝑒ሶ = 122.5 × 10ିଵଶ yrିଵ. 
This can be translated easily into AU increase as follows. The semi-major axis 𝑎 and semi-minor axis 𝑏 of an orbit may be written as [46]: 𝑎 = ௣ೞଵି௘మ, and 𝑏 = ௣ೞඥଵି௘మ. (41) 

where, 𝑝௦ = 𝑎 = 𝑏 defines a circle when 𝑒 = 1. AU may then be written as: AU = ௔ା௕ଶ = ௣ೞଶ ( ଵଵି௘మ + ଵඥଵି௘మ) = 𝑝௦(1 + ଷସ 𝑒ଶ + ଵଵଵ଺ 𝑒ସ + 𝑂(𝑒଺)). (42) 

Suppose now that the eccentricity 𝑒 increases by 𝛥𝑒 to 𝑒′ in a time period 𝛥𝑡. Then 𝑒′ = 𝑒 +𝛥𝑒 and 𝑒′ଶ = 𝑒ଶ + 2𝑒ଶ𝛥𝑒 when we ignore higher order terms in 𝛥𝑒. We may now write the increase 
in AU as ΔAU: ΔAU = ଷଶ 𝑝௦𝑒ଶ𝛥𝑒, or ௗ஺௎ௗ௧ = ଷଶ 𝑒ଶ𝑒ሶ × AU. (43) 

Here we have approximated 𝑝௦ = AU since 𝑒ଶ ≪ 1. Taking AU = 1.496 × 10ଵଵ m and using 
Equation (39) for 𝑒𝑒ሶ  with 𝑝 = 1 , we get dAU/dt  = 0.77 m cyିଵ  against its measured value of 1.5 m cyିଵ. As can be seen from Equation (40) and Figure 2, if we took 𝑝 = 1.010 instead of 1, we 
would get the desired value. The reason could be the same as discussed at the end of the previous 
section. Alternatively, there may be other phenomena contributing to the anomalous AU. 

It should be mentioned that recently the AU has been redefined (e.g., [47]) and just by definition 
the AU anomaly has been eliminated. One has to resort to the old definition of AU to appreciate the 
AU anomaly and its resolution. 

9. Variation of Planck’s Constant ħ 

The variation of the fine structure constant 𝛼 = (1/4𝜋𝜖଴ ) 𝑒ଶ/ħ𝑐  (here 𝜖଴  is the vacuum 
permittivity and e is electron charge) has been studied extensively. Since 𝜖଴ = 1/𝜇଴𝑐ଶ, where 𝜇଴ is 
the vacuum permeability, 𝛼 = (𝜇଴/4𝜋)𝑒ଶ𝑐/ħ. Recent estimates put a very low value on 𝛼ሶ  [14,15]. We 
may write ఈሶఈ = 2 ௘௘ሶ − ħሶħ + ௖ሶ௖ . If 𝛼ሶ /𝛼 and 𝑒ሶ/𝑒 are zero, or varying very little compared to ħሶ /ħ and 𝑐ሶ/𝑐 , and 𝜇଴  is a constant, then it is implied that ħሶ /ħ = 𝑐ሶ/𝑐  = 1.8𝐻 . This possibly answers the 
question posed by Magueijo et al. [48]: Is it 𝑒 or is it 𝑐? 
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10. Planck Units and Hubble Units 

We will now review the Plank and Hubble units of time, length, mass, charge and temperature 
and then explore how the dimensionless constant relating the two units evolves in time. 

Plank time 𝑡௉ = ටħீ௖ఱ 

Planck length 𝑙௉ = ටħீ௖య  

Planck mass 𝑚௉ = ටħ௖ீ 

Planck charge 𝑞௉ = ඥ4𝜋𝜖଴ħ𝑐 

Planck temperature𝑇௉ = ට ħ௖ఱீ௞ಳమ  

Hubble time 𝑡ு = 1/𝐻଴ 
Hubble length 𝑙ு = 𝑐/𝐻଴ 
Hubble mass 𝑚ு = ௖యீுబ 

Hubble charge 𝑞ு = ටସగఢబ௖లீுబమ  

Hubble temperature 𝑇ு = ௖ఱீுబ௞ಳ 

where 𝜖଴ is the permittivity of space, ħ is the Planck’s constant and 𝑘஻ is the Boltzmann constant. 
If we divide any of the Hubble units by the corresponding Planck unit we always get the 
dimensionless quantity, say 𝐷, as: 𝐷 ≡ ට ௖ఱுబమீħ = 0.818 × 10଺ଵ. (44) 

Every Hubble unit is 61 orders of magnitude larger than the corresponding Planck unit. Taking 
time derivative of the equation and dividing by itself, we get: ஽ሶ஽ = ଵଶ ቀ5 ௖ሶ௖ − ଶுሶ బுబ − ħሶħ − ሶீீቁ = 1.5𝐻଴. (45) 

This means that the dimensionless 𝐷 that relates Hubble units and Planck units is increasing in 
time. 

11. Discussion 

As should be expected, the two-parameter ΛCDM model is able to fit any data set better than 
the one-parameter VcGΛ model. What is unexpected is that when parameterized with a relatively 
low redshift data the VcGΛ model is able to fit the higher redshift data better than the ΛCDM model. 
This shows that the second parameter in the latter, while trying to fit a limited dataset as best as 
possible, compromises the model fit for data not used for parameterizing. This means that the ΛCDM 
model does not have as good a predictive capability (i.e., the capability to fit the data that is not 
included for determining the model parameters) as the VcGΛ model, despite having twice as many 
parameters as the VcGΛ model. In addition, the VcGΛ model has the analytical expression for the 
distance modulus 𝜇 unlike the ΛCDM model, which must be evaluated numerically. 

One would notice that while 𝑅଴  (and hence 𝐻଴)  values are relatively stable with the 
parameterizing dataset containing higher and higher redshift values, varying no more than 0.35%, 
the variation in the 𝛺௠,଴ is up to 9.4%, i.e., 27 time larger. This confirms that the 𝛺௠,଴ parameter, 
and hence 𝛬 through 𝛺௸,଴, is an artificially introduced parameter to fit the data rather than being 
fundamental to the ΛCDM model. In contrast, 𝛬 is an integral part of the VcGΛ model. Since 𝐾 (≡𝐺/𝑐ଶ) and 𝛬 are related through Equation (7), one could easily derive that the 𝛬 term contributes 
60% for the VcGΛ model against 70% for the ΛCDM model. 

We have established that the supernovae 1a data is compatible with the variable constants 
proposition. This is contrary to the findings of Mould and Uddin [49] in 2014 who considered only 
the variation of 𝐺 in their work. We believe most of the negative findings on the variation of physical 
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constants are possibly due to the variation of a constant being considered in isolation rather than 
holistically for all the constants involved. We have established that the physical constants not only 
vary but also how much they vary: 𝑐ሶ/𝑐 = 1.8𝐻, 𝐺ሶ /𝐺 = 5.4𝐻, 𝛬ሶ/𝛬 = −1.2𝐻 and 𝐻ሶ /𝐻 = −0.6 𝐻. In 
addition, from the null results on the variation of the fine structure constant [14,15], we have shown 
that ħሶ /ħ = 1.8𝐻. We urge that they be used in union rather than in isolation. This indeed was not 
possible until now when one knows the exact form of the variation of each as above. 

One basic question naturally arises—what is the consequences of the findings here? It is clear 
from the above that at time 𝑡 = 0 the dark energy parameter 𝛬 was infinity, whereas 𝑐, 𝐺 and ħ 
were zero. Existence of any baryonic matter and radiation was irrelevant since they did not provide 
any energy density due to 𝑐, 𝐺 and ħ all being zero. We may need to explore how the universe 
would evolve from such a state against the state assumed in the standard model. 

One may wonder how the physical constants’ variation could be measured experimentally. The 
most accurate device developed to date to measure the variation of fine structure constant 𝛼 is 
atomic clock based on the hyperfine trasitions of certain atoms at microwave and optical frequencies. 
The transitions are also used for tests of quantum electrodynamics, general relativity and the 
equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-
statistics theorem [50–52]. However, tests related to the variation of 𝑐, 𝐺 and ℏ as presented here are 
not possible using the atomic transitions since the latter are dependent on the variation of α, which 
is already assumed to be zero in our theory. 

Spinning bodies cause spacetime to rotate around it causing the nearby angular momentum 
vector to precess. This so-called frame-dragging phenomenon causes the electromagnetic signal from 
an orbiting spacecraft to register a redshift Δ𝑧, given by [53]: Δ𝑧 ∼ ீெ௖య௉,  

where 𝑀 is the mass of the spinning body and 𝑃 is its spinning period. If 𝑐 and 𝐺 evolve in time 
as determined in this paper then Δ𝑧 will not vary in time due to the variation of these constants, and 
therefore this method is not suitable for measuring their variation. 

If we could isolate all the perturbative and relativistic effects on a high eccentricity satellite orbit 
then any residual increase in its eccentricity and orbit size may be attributed to the variation of 𝐺 
and 𝑐, and Equations (40) and (43) may be adapted to the satellite parameters. In addition, any 
spacecraft receding from Earth should experience anomalous deceleration similar to Pioneer’s. The 
spacecraft may be designed to eliminate or minimize the thermal radiation anisotropy. One could 
possibly design other experiments that could test the variability of constants when all the constants 
discussed here are simultaneously varying. 

Existence of the parameter 𝑝 in estimating eccentricity increase can be seen as a deficiency of 
the quasi-phenomenological model we have used.  Since the Moon eccentricity involves Earth and 
Moon whereas the AU increase involves Earth and Sun, and since the masses of the two systems are 
enormously different, the parameter 𝑝 may be considered to take this difference into account.  We 
will need to develop a fully relativistic theory to eliminate this arbitrariness in 𝑝 for estimating the 
two anomalies with varying 𝑐 and 𝐺.  Until then it would be prudent to leave 𝑝 = 1 and just be 
contended that the variable 𝑐 and 𝐺 theory is able to estimate the anomalies within a factor of 2. 

12. Conclusions 

Salient points of the finding in this work are: 

1. The single-parameter VcGΛ model fits the supernovae 1a data almost as well as the two-
parameter standard ΛCDM model. The VcGΛ model has better predictive capability than the 
ΛCDM model. 

2. One could see that the approach taken here to explain the three anomalies is based on a very 
simple analytically derived expression for the evolution of the speed of light and gravitational 
constant. Thus one could infer that the Occam’s razor principle would favour the new approach 
over other approaches. In the case of the Pioneer anomaly, it should be rather easy to implement 
it in the real time modeling of the astrodynamics of long-range spacecraft. 
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3. The expression of eccentricity variation involves 𝐺 and 𝑐 in a manner that the contributions of 𝐺ሶ /𝐺 and 𝑐ሶ/𝑐 almost cancel each other except for a small residual. This may be compared with 
the case of using Kepler’s Equation (15) when the two contributions cancel out entirely. 

4. Based on 𝐺 variation alone, one can see from Equations (37)–(39) that calculated 𝑒ሶ is more than 
two orders of magnitude higher than measured 𝑒ሶ. Current work corrects this by including 𝑐ሶ 
variation. 

5. There may be bias factors in the models (say in favour of tidal effects) used for data analysis, 
since a model is not considered good enough unless it can account for all the observed value. 
We believe that one may be able to remove this bias by the inclusion of the local effect of 
cosmology, as presented here, in the data analysis models. 

6. As mentioned above, both 𝐺ሶ/𝐺 and 𝑐ሶ/𝑐 are positive and thus both of them are increasing with 
time rather than decreasing. The simple model presented above is effectively inclusive of the 
cosmological constant. The existence of cosmological constant 𝛬  in standard ΛCDM model 
leads to a continuous addition of dark energy to the universe as the universe expands, i.e., it 
causes the total energy of the universe to increase. The same is achieved by the increase of 𝐺 and 𝑐 through the second continuity equation (Equation (7)). 

7. Variability of all the constants is expressed in terms of the Hubble parameter 𝐻(𝑡), and at the 
present time, relative to the Hubble constant 𝐻଴. In summary, the physical constants evolve as 
follows: 𝑐ሶ/𝑐 = 1.8𝐻, 𝐺ሶ /𝐺 = 5.4𝐻, ħሶ /ħ = 1.8𝐻, 𝛬ሶ/𝛬 = −1.2𝐻, and 𝐻ሶ /𝐻 = −0.6𝐻. 

8. There is an exact proportionality between the quantum Planck units and cosmological Hubble 
units and the proportionality is evolutionary. All Hubble units are 61 orders of magnitude larger 
than the corresponding Planck units. The factor determining the same, i.e., 𝐷 ≡ √[𝑐ହ/(𝐻଴ଶ𝐺ħ)], 
varies as 𝐷ሶ /𝐷 = 1.5𝐻଴ ≃ 1.07 × 10ିଵ଴ yrିଵ. 

9. The model limitation is that it does not use Einstein-Hilbert action with 𝑐 and 𝐺 as scalar fields 
rather than constants to determine variable constants compliant with field equations [54]. Thus, 
the VcGΛ model, albeit simple, can only be considered quasi-phenomenological as it does not 
fully account for the variability of 𝑐, 𝐺, and 𝛬. 
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Appendix A 

We may write Equation (4) with 𝐾 ≡ 𝐺/𝑐ଶ as follows: 𝑎ሶ ଶ = ቀ଼గ௄ఌଷ + ଵଷ 𝛬ቁ 𝑎ଶ. (A1) 

Differentiating it with respect to time gives: 2𝑎ሶ𝑎ሷ = ቀ଼గ௄ఌଷ + ଵଷ 𝛬ቁ 2𝑎𝑎ሶ + ቀ଼గ௄ሶ ఌଷ + ଼గ௄ఌሶଷ + ଵଷ 𝛬ሶቁ 𝑎ଶ. (A2) 

Dividing it by 2𝑎ሶ 𝑎 yields: 𝑎ሷ𝑎 = ൬8𝜋𝐾𝜀3 + 13 𝛬൰ + ቆ8𝜋𝐾ሶ 𝜀3 + 8𝜋𝐾𝜀ሶ3 + 13 𝛬ሶቇ ( 𝑎2𝑎ሶ ) (A3) 

Substituting 𝑎ሷ/𝑎 from Equation (3): − 12 ൬𝑎ሶ𝑎൰ଶ − 4𝜋𝐾𝑝 + 12 𝛬 = ൬8𝜋𝐾𝜀3 + 13 𝛬൰ + ቆ8𝜋𝐾ሶ 𝜀6 + 8𝜋𝐾𝜀ሶ6 + 16 𝛬ሶቇ (𝑎𝑎ሶ ) (A4) 
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Substituting ቀ௔ሶ௔ቁଶ
 from Equation (4): − ቀ଼గ௄ఌ଺ + ଵ଺ 𝛬ቁ − 4𝜋𝐾𝑝 + ଵଶ Λ − ቀ଼గ௄ఌଷ + ଵଷ 𝛬ቁ − ቀ଼గ௄ሶ ఌ଺ + ଼గ௄ఌሶ଺ + ଵ଺ 𝛬ሶቁ ቀ௔௔ሶ ቁ = 0, or (A5) 4𝜋𝐾𝜀 + 4𝜋𝐾𝑝 + ቀ௔௔ሶ ቁ ቀ଼గ଺ 𝐾ሶ 𝜀 + ଼గ଺ 𝐾𝜀ሶ + ଵ଺ 𝛬ሶቁ = 0, or (46) ௔ሶ௔ (24𝜋𝐾𝜀 + 24𝜋𝐾𝑝) + 8𝜋𝐾ሶ 𝜀 + 8𝜋𝐾𝜀ሶ + 𝛬ሶ = 0. (47) 

Dividing it by 8𝜋𝐾 and rearranging we get: 𝜀ሶ + 3 ቀ௔ሶ௔ቁ (𝜀 + 𝑝) + ௄ሶ௄ 𝜀 + ௸ሶ଼గ௄ = 0. (48) 

This is the same equation as Equation (5). 
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