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Abstract

Quantum Chromodynamics (QCD) is the quantum field theory describing strong nuclear interac-
tions. Due to the titular strong nature of these interactions, obtaining reliable predictions from
the theory has proven challenging in many physically interesting regions of the phase diagram.

The most well-established current framework for handling strongly coupled, non-perturbative
systems is that of lattice simulations. Even this framework has its weaknesses when applied to
QCD, however, such as simulating systems where real-time dynamics are relevant or that have
non-zero chemical potential. Such cases are found in e.g. the early-time dynamics of heavy-ion
collisions and inside neutron stars, respectively. These nonperturbative systems provide us with
an ideal testing ground for new methods such as holography.

Holography is an umbrella term for various dualities which connect a quantum field theory
with a higher-dimensional theory of quantum gravity. One general property of these dualities is
that they map operators in strongly coupled field theories into fields in weakly coupled classical
gravity. It therefore seems natural to apply the methods provided by these dualities to the study
of strong coupled real-world theories such as QCD. However, there is no known holographic
dual for QCD yet, and we must resort to some modeling if we wish to compute predictions via
holographic methods.

In this thesis, we apply holographic models of QCD — namely Improved Holographic QCD and
its extension called V-QCD — in the study of both the thermalization of hot quark-gluon plasma
produced in heavy-ion collisions and the structure and astrophysical properties of cold, dense
matter in neutron stars. We also provide an introduction to the different facets concerning these
applications from the motivation in QCD and the challenges the QCD phase diagram provides to
current computational methods, to holography, heavy-ion collision phenomenology and neutron

star observations.
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Chapter 1

Introduction

In his book The Structure of Scientific Revolutions, philosopher Thomas Kuhn argued that
science does not progress solely in a linear manner — by accumulating more and more new
knowledge — but also by undergoing revolutionary periods, during which the prevailing theory of
the field in question is overthrown and replaced by a new one [1]. After this paradigm shift, one
enters again the stage of conceptual continuity, of “normal science”, where the new prevailing
theory is explored and new experiments are made, until enough anomalies are discovered that
lead the way to a new theory which again overthrows the now-old ruling theory.

Kuhn’s theory of scientific revolutions can of course be easily critiqued. Paradigms can be seen
as much more malleable and undergoing slight shifts even in the phase of normal science. One
can also argue that the notion of incommensurability underlying the discrepancy between the
prevailing theoretical paradigm and anomalous empirical results is too radical, or say that the
model gives a simplified and after-the-fact account of the history of science and the development
of theoretical models. We can nonetheless use some of Kuhn'’s terminology and ideas to make at
least some heuristic statements about the position of the research being carried out; is it aiming
for a revolution, or is it exploring the established theory of its field?

In view of this, the position of holography — and by association, of this thesis — in the historical
process of science is somewhat curious. Holography provides a correspondence between quantum
gravity and quantum field theory; between a string theory living in a higher-dimensional space
and a highly symmetric field theory living on the boundary of this space. Therefore, one can
take two disparate positions concerning how to preface a dissertation on holography; either you
focus on holography as a gateway to quantum gravity and the Theory of Everything, and see the
subsequent model as an application of the principle, or you focus on the problems of strongly
coupled gauge theories and introduce holography as a computational tool — a hammer to hit nails
with — within the established theories. One can either focus on the revolutionary gauge/gravity
duality or solving the puzzles within current theories.

This thesis will take the latter approach, as we focus on bypassing the problems one is faced
with when applying the usual methods of perturbation theory and lattice simulations to Quantum
Chromodynamics (QCD).



1. Introduction

QCD is one of the theories making up the Standard Model of particle physics, which has, as a
whole, proven time and time again to agree to an astonishing accuracy with experiments. However,
the strong nature of the interactions that QCD describes makes it theoretically challenging
to compute predictions from it in most circumstances. The reason one cannot currently just
determine, say, the structure of neutron stars from QCD lies in the way we compute observables
in quantum field theory at present. Most of the standard computational methods include the
use of perturbation theory, in which one studies observables in different orders of an expansion
with respect to the coupling constant of the theory. In many crucial cases though, the coupling

constant is not small.

There are other tools available to assist one in these instances, namely effective field theories
and lattice simulations. The problem with the former arises from their applicability, as the
underlying approximations, such as chirality of the vacuum, fail, whereas the latter is at present
the gold-standard method when dealing with strongly coupled field theories. The applicability of
lattice methods is also limited to some extent, as the current computational methods are unable
to cope with non-negligible chemical potentials due to the infamous sign problem [2], and with

real-time processes due to their reliance on Euclidean discretization [3].

The problems plaguing non-perturbative approaches become most apparent when one considers
the phase diagram of QCD. Even after almost half a century of research, the details of the diagram
outside the region with vanishing chemical potential remain elusive to theoretical endeavors.
From the empirical standpoint, the new century has provided us with new probes to QCD scales,
as colliders such as RHIC and the LHC have been able to commence the study of quark-gluon
plasma, the hot particle soup made of the constituent particles making up protons, neutrons and
other hadrons. The heavy-ion collision experiments conducted in these facilities have actually
allowed us to experimentally explore the properties of this phase, revealing that the plasma
created in these experiments is strongly coupled and behaves like a nearly perfect relativistic
fluid.

On another front, the recent LIGO/Virgo gravitational wave detection of a neutron star
merger [4, 5], together with the observation of its electromagnetic counterpart [6], have opened
up interesting possibilities. With the growing body of data on neutron stars and their dynamics,
we are offered a laboratory to probe the phase diagram of QCD in the high-density limit that is
manifest within neutron stars. These observations provide us with a possibility to constrain the
equation of state of QCD by its connection to neutron star observables, such as the maximum

observed mass, observed radii and tidal deformabilities.

Here the aforementioned holography steps in. Holographic dualities provide us with a tool
to compute observables in strongly coupled field theories by describing them with fields in a
higher-dimensional gravity theory. There are multiple known holographic dualities between
different theories, the most famous being the AdS/CFT correspondence, which connects a type
IIB string theory in AdSs x S° spacetime with an A/ = 4 supersymmetric Yang-Mills theory
living on the boundary of the AdS space [7].



Like is the case with AdS/CFT, in the known dualities the boundary theory is usually highly
symmetric, with supersymmetries and conformal symmetry, which is not the case for real QCD.
In fact, there is no known holographic dual for QCD, and so, if one wishes to compute predictions
from QCD within the holographic framework, they need to resort in some form of model-building.
There have been surprising successes in this modeling, most prominently in predicting the nature
of the quark-gluon plasma as a near-perfect fluid [8]. Since then, holography has become a
standard tool in the study of heavy-ion collisions [9].

The particular holographic framework in the center of this dissertation is called Veneziano-QCD
(V-QCD). It is a family of models based on two building blocks: a holographic, bottom-up dilaton-
gravity model for pure Yang-Mills theory — which in itself is known as Improved Holographic QCD
(IHQCD) — and a flavor sector, where the dynamics of quarks are described by a Dirac-Born-Infeld
action. These two sectors are fully backreacted with each other in the Veneziano limit. The
action, motivated by string theory, is generalized to contain nontrivial potentials, which can be
matched to QCD results both qualitatively, by requiring the model to e.g. be confining in the
IR, and quantitatively where reliable lattice results are available.

Herein, in the application of this model, lies the thesis of this thesis: I claim that we can make
reasonable qualitative predictions in the strongly coupled regime of QCD by using V-QCD. In
this work, we apply holographic methods in the study of both the thermalization of the hot
quark-gluon plasma formed in heavy-ion collisions and of the cold, dense matter that neutron
stars comprise of.

In the first part of this thesis we look into the generalities behind the work exhibited in the
accompanying publications: in Chapter 2 we review some relevant background in QCD, its
Lagrangian and properties such as asymptotic freedom and confinement. We then introduce
lattice QCD and discuss what is currently known about the QCD phase diagram. In Chapter 3,
we introduce holography, starting from anti-de Sitter spaces, go through the argumentation
behind the original AdS/CFT duality, study the implementation of thermodynamics in the
holographic framework and review the different modeling philosophies. Coming to Chapter 4, we
introduce V-QCD. We explain how the model is put together and what is the reasoning behind
each part. We also examine the process of matching the model to QCD and the thermodynamics
of the model. In Chapter 5, we review the time-evolution of heavy-ion collisions, and our studies
concerning the thermalization process in the context of IHQCD. The matter of neutron stars is
discussed next, in Chapter 6. We begin with a review of some of the observations and the state
of knowledge concerning the equation of state, and continue on to summarize our research on
the subject using V-QCD. We will end with concluding remarks in Chapter 7.






Chapter 2
Quantum Chromodynamics

The basis of our current understanding of subatomic physics is formulated in the language
of quantum field theories (QFT). The Standard Model of particle physics, the best and the
most rigorously tested theory concerning the matter content and the interactions governing our
universe (excluding gravity), is built on such theories. The quantum field theories making up the
Standard Model describe the different interactions between the matter fields via their respective
gauge fields. These different interactions are named the electromagnetic, the weak, and the strong
interaction. The electromagnetic and the weak interactions are unified under the Electroweak
theory, and the strong interaction is described by Quantum Chromodynamics (QCD).

These different theories manifest different gauge symmetries, which — along with other symmetry
requirements — uniquely determine the way in which the theory is constructed. The electroweak
sector is described by a spontaneously broken gauge symmetry of SU(2) x U(1). The gauge
bosons which mediate these interactions are the charged W+ and W, and the neutral Z — all
of which are massive particles — for the weak interaction, and the massless photon ~ for the
electromagnetic interaction. The strong interaction is described by QCD, which is a manifestation
of SU(3) gauge symmetry, the carriers of which are the gluons. The only matter particles in the
Standard Model charged under SU(3) are the six different types, or flavors of quarks, which are
called up, down, strange, charm, bottom, and top, all of which are summarized with the other
particles of the Standard Model in Fig. 2.1.

Unlike the electron, which carries a single unit of U(1) charge, each of the different flavors of
quarks can carry any of three different SU(3) charges, also known as color charges (hence the name
for the theory). One further and extremely important difference between the electromagnetic
and strong interactions is in their respective gauge bosons; photons do not carry electric charge
whereas gluons do carry color charge, meaning that gluons can interact with each other.

While the subject particles of the other facets of the Standard Model are, however briefly,
observed as isolated particles, this is not the case for quarks and gluons, which are bound

1

into color-neutral states known as hadrons'. Among these hadrons are the familiar proton

Tt is worth also mentioning the color singlet states comprising entirely of gluons, called glueballs. Their existence

has not yet been confirmed by experiments, but some of the observed light scalars exhibit properties similar to
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Figure 2.1: Particles making up the Standard Model, excluding the antiparticles. The fermions can be further

divided into three generations by the column they are in, with each generation being heavier than the previous.

and neutron, which make up most of the visible mass in the Universe, and comprise of three
constituent quarks. The composite particles consisting of an odd number of valence quarks are
collectively known as baryons. The other option in making color-neutral states of quarks is by a
quark and an antiquark with opposite color charges forming a bound state known as a meson.

In this chapter we will shortly review some central properties of QCD, in order to explain why
we need to develop new tools to produce testable predictions from QCD in the strongly-coupled
regime. This dissertation is meant to be but a pebble on that path.

QCD has been the subject of extensive theoretical and experimental inquiry for the majority
of the past century, and there are inevitably too many phenomenologically interesting details and
detours to be dealt with here. This chapter will mostly focus on the subjects especially relevant
for the work done in this thesis. For a more complete and relatively up-to-date review of the
current status of the study of QCD, see e.g. Ref. [12].

We will begin this chapter by recalling some of the basic properties and parameters of the
QCD Lagrangian in Sec. 2.1. We will then focus on the corollaries that the QCD Lagrangian and
Nature present us in the form of asymptotic freedom in Sec. 2.2 and confinement in Sec. 2.3 and
review some aspects of a few approximate symmetries that aid us in the later discussion, more

specifically chiral symmetry in 2.4.1 and conformal symmetry in 2.4.2. We will then introduce

what one expects from glueballs [10]. The lightest glueball state is expected to have a mass of around 1.7 GeV

based on lattice simulations [11].



2.1. Lagrangian and Parameters

the very basics of lattice QCD in Sec. 2.5, as it will play a crucial role both in determining the
structure of the QCD phase diagram and also in the building of our holographic model later
on in the dissertation. After that, we review the current state of knowledge on the QCD phase

diagram in Sec. 2.6.

2.1 Lagrangian and Parameters

To determine the dynamics and the kinematics of a QFT, it is usually helpful to write down the

(classical) Lagrangian of the theory. The QCD Lagrangian can be written as
1 (s 1 a v
ﬁQCD = Zdﬂ (Z]»Z) - mq) 1/](1 - ZG;U/GZ ) (21)
q

where quarks ¢, labeled ¢ = u,d, ..., Ny, transform in the fundamental representation of SU(3),
and gluons, transforming in the adjoint representation of SU(3), have color indices a and b, which
for N, colors take values a,b=1,2,..., N> — 1 = 8. Indices y,v = 0,1,...,3 are Lorentz indices.

The covariant derivative ) = v#D,, and the gluon field strength tensor G are defined through

D/L =0u — igtaA;lu (22)
Ghy = A, — 0L Aj + gfabC.AZ.Af,, (2.3)

ng

where t, = %)\a, with the Gell-Mann ), being the generators of SU(3), which have a traceless,

Hermitian 3 x 3 matrix representation. The coefficients fg;. are the structure constants of the su(3)

algebra, defined by the commutation relation [t,,t,] = iff.t. The v* are Dirac gamma-matrices.
There is also freedom for a CP-violating term of the form

« ~
= Zsgge Gm
Lo =205, GL", (2.4)

to be present in the Lagrangian (2.1). The parameter 6 is called the QCD vacuum angle, or
simply f-angle, and Gﬁy = %eu,,ng‘”/’ is the dual of G. Experimental constraints limit the angle
18] < 10710 [13-15], the smallness of which poses a problem called the strong CP problem. This
term is also relevant for the structure of the QCD vacuum, and 6 is one of the few fundamental

parameters of QCD alongside 2.

All this, however, is outside the focus of this thesis, and
interested readers can find more information e.g. in reviews such as Ref. [16, 17].
Alongside these terms, to produce the final Feynman rules from (2.1), one needs to include a

gauge fixing term?®

1
Laor = —(0"A%)? 2.5
GF 25 ( Ap,) ’ ( )
where £ appears from the Lagrange multiplier. One should note that adding the gauge fixing

term obviously breaks gauge invariance, as a gauge is now chosen. If one chooses the above

2The others being the quark masses, which have their origin in the electroweak theory.
3Here, the R¢ gauge is presented. It is a simple generalization of the Lorenz gauge.

7



2. Quantum Chromodynamics

gauge instead of the axial or temporal gauges, an additional term is needed to cancel unphysical

polarization states of the gluons
Lpp = 01" 0" 10 + g f " Al (0 )1, (2.6)

where 7 is a scalar Grassmann field called the Faddeev-Popov ghost [18]. The alternative gauges
mentioned have unphysical singularities in the Feynman integrals, so the inclusion of these
unphysical degrees of freedom is a worthwhile trade-off, and they are not relevant for the
phenomenological conclusions we draw from the Lagrangian (2.1) [19)].

There are multiple features that make QCD special compared to arguably simpler theories
such as QED, and most of these properties are rooted in the non-Abelian gauge group SU(3).
One of the consequences of which is that gluons are self-interacting, i.e. they carry a color
charge, as can be seen from the indices of the field strength tensor. These three- and four-gluon
self-interactions contribute to the peculiar characteristics of QCD, among which are asymptotic

freedom and color confinement.

2.2 Asymptotic Freedom

Almost immediately after QCD was formulated, Wilczek, Gross and Politzer [20, 21] discovered
in 1973 that when QCD (or in fact, any suitable SU(N,) Yang-Mills theory) is examined at
arbitrarily high energies — or equivalently, small distances — one is able to distinguish individual
quarks and gluons, which do not form bound states. This observation is called asymptotic
freedom.

One can see this behavior by examining the rate at which the coupling constant changes with

the varying renormalization scale p, as encoded in the behavior of the beta function 3,

9 0as (#2)

Blas) = p ouz (2.7)
with as = g?/4m. This can be further expanded as
Blas) = —boad(i?) = brad(u?) — baaig(u?) .. (2.8)

where the expansion is taken up to a three-loop level. The lowest b; can be written as [22]

332N

by =" (2.9)
p, _ 153 19Ny
2472 ’
77139 — 15009Ny + 325N
2 345673 :

where Ny is the number of active flavors available at a given energy scale. One should note

that coefficients by and by are renormalization-scheme-independent, unlike the ones at higher

8



2.2. Asymptotic Freedom

orders, which are all dependent on the choice of renormalization scheme. The one adopted for
this chapter is the modified minimal subtraction scheme (M S) [23].

Given a renormalization scale y, we can define A = A 75, such that

A% = e (2.10)
exp ((boas(p?)) ™)’ '

allowing us to write a formula for a4 by solving Eq. (2.7):

1
CYs(/’LQ) = bO 111(/1,2/[\2)7

(2.11)

up to a one-loop contribution. From this equation, we see that for Ny < 17 flavors, as is the
case for QCD, the strength of the interaction ay(u?) — 0 when p — oo, pointing us towards
the realization that, at least when considering only the first loop, we could see free quarks at
asymptotically high energies.

This theoretical observation — which naturally has been studied further than the mere one-loop
level presented here — is also supported by the earliest experimental observations of quarks: in
high-energy scattering experiments performed with electrons scattering from nucleons (Deep
Inelastic Scattering [24]) one sees the scatterings occur from the constituent particles rather
than the whole nucleon. The running of the coupling is demonstrated in Fig. 2.2, where we have
shown the energy scale dependence of o up to the four-loop level, along with some observations
from various experiments, as reported in Ref. [17].

In the formula for by in Eq. (2.9), the factor of 33 comes from gluon self-interactions, and it is
the factor that most clearly separates QCD and other Yang-Mills theories from QED and other
Abelian theories. For SU(N.) Yang-Mills theories with N, colors and Ny flavors, the term can
be written as [20, 21]

11 2
pM=_—N.—-—N 2.12
v 127 ¢ 1270 (212)
whereas for QED the corresponding term is [25]
4N
b = L 2.13
0 19n (2.13)

Thus QED can effectively be handled perturbatively at all scales?, whereas for QCD, perturbative
methods — and the renormalization group equation (2.7) — are only valid at scales Q > Agep,
where Agcep ~ 200 MeV is the QCD scale, set by the confinement scale of ~ 1 fm.

One further aside to make here on Eq. (2.12) concerns the large-N, expansion of the SU(N,)
theory [27], which will play a key role later in this thesis. By rescaling g> — 32 = N.g°, we
can rewrite by = % — %N #/Ne, suppressing the fermion loop effects in the N, — oo limit. This
points us towards a general feature of this limit; if one further keeps the rescaled coupling §
(usually denoted by A = 32 and called the t Hooft coupling) fixed, the limit is called the ’t Hooft

4We are glossing over important subtleties here: QED has a perturbatively defined Landau pole at high energies,
setting a definite higher limit in the applicability of the theory. There are more nuances to this discussion, and

the interested reader can see e.g. Ref [26].
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Figure 2.2: Summary of measurements of the strong coupling a, as a function of the energy scale ). The degree
of QCD perturbation theory used in the extraction of the coupling from the data is indicated in brackets. Figure
from Ref. [17].

limit. Taking this limit allows one to topologically classify Feynman diagrams, separating them
into planar and non-planar diagrams, with non-planar ones being suppressed by 1/N, for any
given process, simplifying computations tremendously. The immediate question is of course, if
the large- N, limit provides any insight into QCD, which has N. = 3. The answer is “yes” to a
certain extent: one can gain insight to certain non-trivial nonperturbative aspects of QCD by
studying the large-N, limit (see e.g. Refs. [28, 29]), as the 1/N, expansions seem to converge

quite well to results close to ones at N, = 3, if the scaling of the quantities is done correctly.

2.3 Confinement

While the nature of the theory at asymptotically high energies is both useful and revealing, the
more familiar (from the everyday perspective) and simultaneously more challenging frontier is
found in the low-energy regime of the theory. As we saw in Fig. 2.2, the perturbatively determined
coupling constant becomes quite considerable at a high energy: in a back-of-the-envelope fashion,
we see that if there are between two to five active flavors, Eq. (2.11) would give us as > 1 at
around p < 0.1...1 GeV [30], signifying the definite breakdown of the perturbative expansion.
However naive, this dabbling leads us to discuss the other aforementioned property of QCD,
confinement — or the observation that we do not observe isolated color-charged particles in Nature.

This (proposed) property conforms with our intuition: we only see color-neutral objects in the
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world around us, not quarks and gluons. However, rigorously proving that QCD actually is
a confining theory still provides a considerable, nonperturbative theoretical challenge, and is
one of the reasons why the generalized problem of “Yang-Mills existence and mass gap” is a
Millennium Problem. From a phenomenological point of view the problem is not that severe, as
we are able to reproduce observationally valid bound state (i.e. hadron) spectra within the QCD
framework by multiple different methods, some of which we have already mentioned in passing,
while others we will later discuss. There is also a lot of theoretical work related to the topic of
confinement [31-37], and the signs pointing towards QCD being confining are strong.

One way to gain intuition on confinement is by again contrasting Eq. (2.12) with Eq. (2.13).
The fermionic contributions from the vacuum behave the same in both theories, but due to the
non-Abelian nature, and the resulting self-interactions of the gauge fields, the gluonic contribution
has an opposite effect to the fermionic one, which can be seen as the relative minus sign in
Eq. (2.12). This effect is called antiscreening of the color charge, and it enhances the color
charge at larger distances as 11N, > Ny, implying that separated particles attract each other
the stronger the further away they are from one another.

The current state-of-the-art computations to address the question of confinement are provided
by lattice simulations — which we will talk about a bit more in-depth later in this Chapter. One
can see signs of confinement by studying the static quark-antiquark potential in pure SU(3)
gauge theory [19, 38, 39]

V(r) %*34*0'7‘4’%7 (2.14)

where a, 0,V are constants. What is important here is the linear term or, which models a
color-flux tube, and the parameter o is often called the string tension. For very heavy quarks in
a pure Yang-Mills theory, Eq. (2.14) implies that the binding energy of the pair grows without
a limit, due to presence the linear term, as the separation r — co. In real QCD, due to the
presence of light quarks, the phenomenon of string breaking takes place: as the gluon field gains
more energy, color singlet gq pairs are created between the original gg pair. Thus, no quarks can
be isolated.

2.4 On the Approximate Symmetries of the Lagrangian

To fully understand some of the oncoming discussions, we need to briefly consider a few of the
other symmetries associated with the QCD Lagrangian (2.1) besides those of gauge and Poincaré
invariance. Some of the symmetries of the Lagrangian, such as CPT and U(1)p are conserved
even in the full quantum theory, whereas others, like the axial symmetry [40], are broken by
quantization. Some symmetries that have proven useful for effective computations are actually
not exact symmetries of the complete Lagrangian, but approximate symmetries, such as isospin
symmetry, conformal symmetry and chiral symmetry. The symmetries we are most interested in

here are those of chirality and conformality.
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2. Quantum Chromodynamics

2.4.1 Chiral symmetry

Chirality, in this context, refers to representations of the Lorentz group SO(1,3). We can deform
the group into SL(2,C)p x SL(2,C)g, the representations of which can be labeled by half-integer
numbers (m,n). Scalars naturally transform in the (0,0) representation, whereas four-vectors
%, %) representation. When transforming spinors, we have two
) and (%,0)7 or the right- and the left-handed representation respectively.

such as z# transform in the (
3
We can write the full spinor ¢ as a sum of spinors transforming in either representation, i.e.
W = r, + YR, where ¢/, = 5(1£7°)0.

Using the anticommutation relations of Dirac gamma matrices, the part of the Lagrangian (2.1)

possibilities: (0

concerning the quarks can be written using this decomposition as
Lo =04 DY] + SpDwh — mg (0505 + o) (2.15)

where the summation over the flavors ¢ is made implicit and we have suppressed the color indices.
Chiral symmetry refers to a property that the above Lagrangian does not explicitly have;
a theory is considered chirally symmetric, if one can perform rotations in the flavor space

independently for each chirality, i.e. if performing
Wh s Ll il s R, (2.16)

where L and R are unitary matrices and i, j run from 1 to Ny, leaves the Lagrangian invariant.
Chiral symmetry is thus an SU(Ny)r x SU(Ny)r symmetry.

The presence of the mass term in the Lagrangian (2.15) means that the Lagrangian is explicitly
not chirally symmetric. However, in QCD the lightest of the quarks, the up and the down, have
fairly small constituent masses — 2.2 MeV and 4.7 MeV respectively — compared to the masses
of the nucleons, which are around M ~ 1 GeV [17]. Therefore one can treat the Lagrangian as
effectively massless at hadronic scales, with the symmetry violation being around mg,/M ~ 1%
for two massless flavors. For three massless flavors, the violation is of the order of 10 %, as the
strange quark is comparatively heavy.

Even if chiral symmetry were an exact symmetry of the classical Lagrangian, it turns out
that it is still broken spontaneously, i.e. by the vacuum of the theory. If chiral symmetry were
respected, one expects (1r1g) to equal zero [41]. However, even the simple chiral Lagrangian
produces — when correctly quantized — a chiral condensate, and (@Liwgﬁ = —X0;; [42, 43], with
¥ # 0.5 This breaks the global symmetry, as to preserve the Lorentz invariance of the vacuum
one must require L;; = I;;.

The above consideration holds true at low temperatures, but the expectation value of the
condensate lowers with temperature, and eventually vanishes and the chiral symmetry is re-

stored [44-46]. The nature of the chiral transition is affected by the number of chiral quarks —

5The non-zero vacuum expectation value of (151/)) can be seen to signal that the vacuum harbors quark-antiquark
pairs that come in and out of existence and contribute to the vacuum structure, as was alluded to earlier in this
Chapter.
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and in the massive Lagrangian the exact physical masses — which determine the chiral transition
at finite temperature to be crossover (see the Columbia plot in Ref. [47]).

Why the chiral symmetry is relevant for the topic of this thesis is however its usefulness. The
approximate chirality of the QCD Lagrangian serves as a starting point for some effective field
theories [48-50], most notably Chiral Perturbation Theory (ChPT) [51, 52] and Chiral Effective
Theory (CET)(see e.g. Ref. [53] for a review), which have proven remarkably useful in the study
of nuclear forces, the structure of the nuclei and nuclear matter (see e.g. Refs. [53-59]), allowing

for systematic and model-independent computations while respecting the symmetries of QCD.

2.4.2 Conformal Invariance

The other approximate symmetry relevant to our endeavors is the conformal symmetry, more due
to its importance in holography and therefore the remainder of this thesis than the applications
of the symmetry itself. To understand the connection of QCD to this topic, we need to begin
with a brief refresher on conformal symmetry [60, 61].

Conformal transformations are angle-preserving spacetime transformations. They form a
symmetry group, which in D-dimensional Minkowski space is SO(2, D). The group has fifteen
generators: ten corresponding to the full Poincaré group, one to dilatations and four to the
special conformal group. It is easy to see why the Poincaré group is a part of the conformal
group, as translations, rotations and Lorentz transformations naturally leave the Minkowski
metric invariant. Simple scaling transformations z# — z/# = \z* also rightfully belong to the
group, as they do not affect the angles between vectors. The final four generators correspond to
the group of special conformal transformations, which can be parametrized with a vector b and
written as )

ot — bl

at — 't = W (2.17)
The field theories that are invariant under the conformal group are highly symmetric, scale-
invariant theories, implying also the absence of any dimensionful parameters, such as mass, or
scale dependence, such as a running gauge coupling. It is clear that the Lagrangian in Eq. (2.1)
does not exhibit conformal behavior, as we have a scale introduced in the form of quark masses,
and we have also discussed the running of the coupling in Section 2.2. However, if one considers
the asymptotically high energies, where the gauge coupling tends to zero, in the absence of the
mass terms we could expect QCD to manifest conformal symmetry [62]. And in fact, we do
not even have to go to asymptotically high energies for perturbative SU(N,) Yang-Mills theory
with Ny massless flavors for certain choices of Ny and N, to have a fixed point® with nonzero
coupling in the renormalization group flow, known as the Banks-Zaks fixed point [63, 64] (see
also Refs. [65, 66]).

SFixed points are points in the renormalization group flow where 8 = 0. More formally, if K is a coupling constant
of the Hamiltonian that transforms as R¢K under the renormalization group transformation Ry, then K* is a

fixed point of the renormalization group flow iff R, K* = K*.
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2. Quantum Chromodynamics

The conformal symmetry of the classical Lagrangian is broken in quantization by quantum
anomalies. We can easily see this by considering a scaling transformation of the coordinate
x — Az, with the fermion field transforming as ¥ (z) — A*2y(A\z), and the gauge field as
A () = A (Ax). Now the corresponding Noether current is J# = x, ", where T"" is the
energy-momentum tensor [19].

Noether’s theorem requires the conservation of current J#, and thus 9, J* = T, =0. If one

however actually computes the trace of the energy-momentum tensor, it is [19]

B

T = 2
29s

# GG, + Y mgqq, (2.18)
q

which has a non-zero vacuum expectation value in the quantized theory. This discrepancy is
called trace anomaly, or conformal anomaly, and it can be used to illustrate the origin of the
mass of the nucleon, which is considerably larger than the mass of the constituent quarks due to
the contribution from the gluon fields, which crowd the vacuum.

Although the full QCD Lagrangian is not conformal, the fact that aspects of conformality are
still present in the theory, and that the theory is asymptotically conformal is encouraging, when

we are considering the applicability of holography in the study of QCD.

2.5 Lattice QCD

As we have already seen, the usual perturbative methods only work in QCD for high energy
processes, where the coupling constant is sufficiently small. However, quite a bit of interesting
physics takes place well below these energies. One non-perturbative method that has proven
very successful is lattice gauge theory. To understand some of the reasons why it has been so
successful and why it ultimately fails at some tasks, we need to sketch a simple outline of lattice
QCD. For a more complete introduction to the subject, see e.g. Ref. [67].

The naive way one would go about discretizing spacetime would be to construct a lattice version
of Minkowski space. This attempt is however ultimately doomed to fail, as the resulting action
would be complex, and would hence interfere with the use of Monte Carlo methods. Success
in discretization is achieved by working with Euclidean spacetime. This way, one can compute
the correlator functions and spectra of the theory, as the resulting lattice theory is essentially a
statistical system where the free energy is determined by the Euclidean action and where the
lattice spacing a acts as a natural UV regulator. The downsides of the use of the imaginary time —
resulting from the Wick rotation to the Euclidean coordinates — are however visible when dealing
with real-time dynamics, such as is the case with out-of-equilibrium processes” [31, 69, 70].

Next, we encounter the question of placing the particles on the lattice. Again, the naive
attempt would be to put both fermions and gauge bosons on lattice points, but this effort glosses
over what anyone familiar with differential geometry has recognized; the gauge field can be

thought of as a connection, i.e. it can be interpreted to describe how the internal color degrees of

“Although much progress has happened at this front in the recent years. See e.g. Ref. [68].
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freedom change when a particle is transported from a lattice point to another. From this picture
it is clear that the gauge fields reside on the links between the lattice points.

The useful version of the continuum gauge fields A,(x) on lattice is the Wilson line Uy (z)
between the lattice points x and = + i, defined as

Uu(z) = Pexp [igs /:ﬂt drc;Au(;z:')} , (2.19)
with a slight abuse of the index notation — the repeated indices are not summed over. The
operator P is the path-ordering operator.

Under a gauge transformation A(x), U, (z) — A(x)U,(z)At(z + 1), and from the fact that the
transformation only depends on the end points of the integration, it is easy to devise a gauge
invariant combination of Wilson lines by taking a trace over a closed loop. We can define a
plaquette Uy, as

Uy (%) = Up(2)U, (x + )Uf (2 + D)U (2). (2:20)

Given that the trace over these plaquettes is gauge invariant, we can construct an action — called
the Wilson action — from them [31]

Sy = % 3 (1 - %Tr [U;L,(gc) + Uw(x)]) . (2.21)

9s T, u>v

In the continuum limit ¢ — 0, the Wilson action reduces to [71]
17
Sw = ; / dxTr [F, F*™) 4 O(a?), (2.22)

i.e. the usual pure gauge SU(N) Yang-Mills action with a discretization error of O(a?) in this
particular case.

An easy attempt of a fermionic action is simply
Sp =32 Uo(x) (D +mg) Vy(2), (2.23)
q =z

where ¥ are Grassmann vectors and D, = ﬁ(V;L — VJ ) is a lattice difference operator, with
(Vi)ay = Uu(2)d544,y, and all the parameters are appropriately rescaled to be dimensionless. It
bears stressing that this is a simple approach chosen for illustrative purposes, and this choice
of fermionic action faces many problems, including 15 additional poles in the momentum space
fermion propagator. This is an obstacle not just for our simple action, but a common problem
when defining a lattice theory [72, 73], and there are multiple strategies to getting around it [31,
74, 75]. The current best way to include fermions to a lattice theory is to use something called
staggered fermions [76], which we will not introduce here.

Combining these actions — which one should note, are gauge invariant, need no gauge fixing

terms and do not rely on a perturbative expansion — one can crank out predictions by doing
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2. Quantum Chromodynamics

Monte Carlo computations of the relevant path integrals, and then take the lattice spacing a — 0
to gain the continuum theory.

Simplifying the notation a bit, the partition function Z can be written as a path integral on
the Euclidean lattice

i 8 ‘
7 - / DA, DIDY exp {— / dr / d%ﬁE} , (2.24)
0

where 3 is the inverse temperature and Lg is the full Euclidean Lagrangian.
Because Lgcp is bilinear in the quark fields, we can perform the path integral over the

Grassmann variables analytically, ending up with
Z = /DAH det(ID +m, — pyo)e ™, (2.25)

where S, is the gluonic action, and we have already included the chemical potential y in the
Dirac operator.

Now, as performing the infinite-dimensional integral would be too numerically taxing, lattice
computations rely on Monte Carlo methods and on the use of importance sampling. When p = 0,
this works out fine, as the Dirac operator is v5-Hermitian, and the corresponding determinant is
thus real. However, the inclusion of nonzero p means that the operator is no longer Hermitian,
and the corresponding determinant is no longer real-valued. Therefore the determinant can no
longer be interpreted as a probability measure for the importance sampling. There is nothing
wrong with the partition function itself, but the complex determinant still foils the use of Monte
Carlo methods. This is known as the sign problem, and a lot of effort has been dedicated to either
solving or bypassing it (see for example Refs. [77-88] and references therein), but no method has
yet been shown to be reliable in the finite-y regime of the QCD phase diagram.

It is worth stressing that, although we have honed in on some of issues with the lattice
framework here, lattice simulations are the current gold-standard method when strongly coupled
systems are concerned, one of the most remarkable feats being the reproduction of the (light)
hadron spectrum (see e.g. [71, 89-91]). Outside of the u/T > 1 regime, lattice QCD has also
proven itself extremely useful in determining the thermodynamics of QCD, as we shall see in in

the following section.

2.6 QCD Phase Diagram

Having shortly reviewed some relevant aspects of QCD along with some of the most valuable
computational tools, we can try to piece together what is known of the QCD phase diagram.
The below discussion is summarized in the (ug,T) plane in Fig. 2.3. In the case of magnetars®,
the inclusion of an external magnetic field might be necessary, as strong magnetic fields induce
Lorentz symmetry breaking expectation values. For a review on QCD phase diagram with

magnetic fields, see e.g. Ref. [93].

8Magnetars are neutron stars with exceptionally strong magnetic fields, with field strengths up to 10'® Gauss [92].
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Quark-gluon plasma

E

Color
superconductor

Nuclear

Hadron gas
matter

1B

Figure 2.3: A sketch of the conjectured QCD phase diagram in the temperature — baryon chemical potential plane.
The lines demarcate first order phase transitions and E denotes the possible critical endpoint to the deconfinement
transition line. There are uncertainties related to the transitions marked here: the existence of the first-order
deconfinement transition line is debatable, and the location of the transition to the color superconducting phase is

unclear.

Even though the phase structure of QCD is now known to be extremely rich, our everyday
experience with strongly interacting matter is only at relatively low temperatures and densities
compared to the QCD scale Agcep. In this low-energy phase, the relevant degrees of freedom
needed to explain the thermodynamics of a given system are hadrons and their resonances. In
the thermodynamic limit and at low chemical potential, this confined phase can be described as
an ideal gas of hadrons embedded in the QCD vacuum. This is possible, because even though
the interactions that confine the partons into hadrons are strong, the interhadronic interactions
in a dilute enough hadron gas are considerably weaker, even negligible. This model, called
Hadron Resonance Gas (HRG) [94, 95] agrees well with lattice Monte Carlo simulations for 2+1
flavors [96], and the agreement will likely still improve with the improvement of hadron resonance
data [97].

Let us now follow the vertical axis up to higher temperatures. When analyzing asymptotically
high temperatures, asymptotic freedom guarantees that the relevant degrees of freedom are
quarks and gluons and we can use perturbative methods. At lower temperatures, gauge coupling
becomes strong and we need to rely on lattice simulations, which at up = 0 connect the HRG
and perturbative QCD results well [98, 99].

At low densities, this deconfined phase of quarks and gluons is called quark-gluon plasma
(QGP). This phase is now routinely reproduced in heavy-ion experiments in colliders such as the
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). These heavy-ion
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collisions create environments that are considered to have low net baryon density, as even though
the initial state has an excess of quarks over antiquarks, the imbalance is negligible compared to
the total number of particles created.

QGP is weakly interacting at asymptotically high temperatures, but at intermediate tempera-
tures heavy-ion experiments have shown that the plasma is strongly coupled [100-105] and is a
nearly perfect fluid [105-107] with an extremely low shear viscosity to entropy density ratio n/s [8,
108, 109] and so the dynamics of the (near-)equilibrium plasma can be accurately described
by relativistic hydrodynamics [110, 111]. This also acts as an additional proof on the strongly
coupled nature of the plasma, as perturbative computations give larger values for n/s [112, 113].
Also, pure gauge lattice simulations reproduce the shear viscosity closely [114], pointing towards
the dynamics of QGP being determined to a high degree by gluonic contributions. We will
discuss the evolution of heavy-ion collisions in more depth in Chapter 5.

It is worth nothing here that in the deconfined phase, chiral symmetry is also restored [105,
115-117]. The occurrence of the deconfinement transition and chiral restoration do not necessarily
have to coincide, but if they do not, the deconfinement transition needs to occur first [118].

The transition between the hadronic and the quark-gluon phase at low baryon densities is
known to be a crossover transition [105]. It is up to debate how to define a critical temperature 7
in the case of a crossover transition, and the exact value is dependent on the discretization of the
fermionic action, but regardless of the definition used the transition occurs around 160 MeV [46,
119].

In Fig. 2.3, there is a critical point £ at (up,Tg) ending the deconfinement transition line,
with the transition at up > pp being of first order. The existence of this point, and therefore also
the first order phase transition line, are under intense research. Various effective models [120-128]
predict the transition at higher pup to be of first order, pointing towards the existence of the
critical point.

Current experiments do not show evidence for the existence of a critical point up to pup ~ 400
MeV [129]. Also, recent 2 + 1 flavor lattice QCD simulations exploring this area, both by using
Taylor expansion of the thermodynamic potentials in pp /T [46] and the imaginary p method [119)
seem to disfavor the existence of a critical point at least up to up ~ 300 MeV. Some studies [130]
suggest that the transition is probably weak at least below up ~ 500 MeV, and for example
Dyson-Schwinger [131] and functional renormalization group [132] methods would expect the
critical point to exist at around pg/TE = 4-6.

The existence of the endpoint can be studied by future experiments at lower energies than
those reached in RHIC and LHC, by studying larger baryon densities. These experiments include
the Facility for Antiproton and Ion Research (FAIR) and Nuclotron-based Ion Collider fAcility
(NICA). Also, RHIC has already commenced with the second phase of the Beam Energy Scan
(BES) program [133], which could in its part help close on some of the questions about the
critical point.

If we now consider the high-density part of the phase diagram, the first feature we encounter
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at low temperatures is the liquid-gas transition in the hadronic phase between the hadron gas
and nuclear matter phases, as the nuclei in the gas are packed closer and closer together until
they overlap at around the nuclear saturation density ny, = 0.16 fm~3. This transition occurs
around pp ~ 425 MeV at T'= 0 MeV and has a second order critical point at about the same
chemical potential and 7" ~ 10 MeV [134-136]. We can expect to compute the properties of this
phase when the nucleons are weakly coupled with each other using ab initio methods such as
CET [137-139].

Further right in Fig 2.3 we have a transition from the confined nuclear matter phase to
the deconfined phase, which we have discussed above. The difference in this phase (besides
the considerably lower temperature) is the quark density and the available degrees of freedom.
Although the term “quark matter” is used quite indiscriminately to mean any phase where
quarks are the relevant degrees of freedom, from QGP (e.g. the Quark Matter conferences) to
superconducting phases, in this dissertation the meaning is limited to this low-temperature,
quark-rich deconfined phase [140].

Then, lastly, at the high-up end of the diagram, we have the color superconducting phases [124,
125, 141-146]. Here, we have hidden quite a lot of complications resulting from ongoing discussions
on the exact structure of the region under the umbrella term of color superconductivity. The
quark degrees of freedom can form Cooper pairs in multiple different ways, each resulting in a
distinct phase. At extreme pp, the Color-Flavor Locked (CFL) phase, in which all three low-mass
flavors participate symmetrically in forming Cooper pairs, is preferred [146]. It is also possible,
depending on the exact model, that at lower chemical potential another color superconducting
phase, such as the two-color superconducting (2SC) phase, in which u and d pair with two colors,
is preferred [147, 148].

In the CFL phase, both the color and chiral symmetries are broken due to the locking, resulting
in gluons acquiring mass among other exciting phenomena, making the phenomenology of the
superconducting phases extremely rich [146, 149]

There are also some arguments to support that as a precursor to condensing in the supercon-
ducting phase, quark matter can exhibit various collective behaviors and pseudogaps reminiscent
of superconductivity [150-159]. There is also a possibility of a crystalline superconducting
phase [160] at sufficiently high densities.

The research presented in this thesis is not aimed towards probing the color superconducting
area of the phase diagram, so we will not delve into more detail on it. For a recent review on the
subject of color superconductivity, see Refs. [161, 162] and on the applications of holographic
methods, see e.g. Ref. [163] and references therein.

We are left with an amount of unanswered questions. The next Chapter introduces us to a

tool that is hopefully of use in alleviating these troubles.
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Chapter 3
Holography

Holography is an umbrella term for a variety of dualities between lower-dimensional quantum
field theories and higher-dimensional theories of quantum gravity. Originally, the holographic
principle that states this correspondence was proposed in form by ’t Hooft and Susskind in
1994 [164, 165], but the first! realization of the principle was found in the AdS/CFT duality in
1997 [7]. This conjectured duality states, in its strongest form that there is a correspondence
between a type IIB string theory formulated in AdSs x S° spacetime, and a N = 4 SU(N)
super-Yang-Mills theory living on the four-dimensional boundary of the string theory.

The original motivation behind holographic dualities was to study theories of quantum gravity,
but the fact that duality connects a weakly coupled limit of the quantum gravity — i.e. classical
gravity — to a strong coupled quantum field theory has opened up intriguing possibilities of
application in the study of strongly coupled theories such as QCD. Because of this, holography
has become one of the most actively studied topics in high-energy physics.

To familiarize the reader with the building of holographic dualities, we will begin this chapter
by giving a brief review of the basics on anti-de Sitter spaces before introducing the original
AdS/CFT duality. This chapter relies heavily on different limits of type IIB string theory that
are not elaborated here in any detail, and the reader is referred to e.g. Refs [167-169] for a
pedagogical introduction to string theory and holography. We will then expand upon the idea by
looking into model-building within the holographic framework, with an eye on strongly coupled

QCD.

3.1 A Primer on Anti-de Sitter Spacetimes

Anti-de Sitter (AdS) spacetimes (or at least spacetimes asymptotically so) are central to many
parts of the following discussion, so it is necessary to expound upon some of the basic properties
of AdS spaces.

!One could argue that Ref. [166] in 1986 was the first realization, as they found that a three-dimensional AdS
spacetime has the same asymptotic symmetry group as a two-dimensional CFT, but this was done before the
idea of holographic duality.
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AdS, spacetime is one of the three maximally symmetric? vacuum solutions to the Einstein-

Hilbert action in d dimensions

_ 1 d
S = {52 / A% /| det g|(R — 24), (3.1)

where G4 is Newton’s gravitational constant in d dimensions, ¢ is the metric, R is the Ricci

scalar and A is the cosmological constant. With our choice of sign, the AdS solution corresponds
to a negative cosmological constant, whereas de Sitter spaces result from a positive cosmological
constant and Minkowski spaces from A = 0.

The Einstein field equations for action (3.1) are
1
R, — §gﬂ,,R +Agu =0, (3.2)

the solutions of which, for A < 0 are of constant, negative curvature. Thus the AdS spaces can be

considered the non-Euclidean counterpart of hyperbolic spaces. The solutions for Eq. (3.2) read
2 2d

——Agu, =——A. .

q—2 M B=575 (3:3)

There are multiple useful ways to write the embedding of AdS,; in R%4~1. One of the more

R, =

illuminating ones is
SXE - XGH X X = L (3.4)

with the metric signature diag(—1,—1,1,...,1) and £ is the AdS radius. In this formulation, the
global SO(2,d — 1) symmetry of the AdS space is manifest. From this one can already suspect
why it is precisely AdS spaces that we are interested in when constructing dual theories. But we
are getting ahead of ourselves.

We can now relate the cosmological constant to the AdS radius £ by
(d—1)(d—2)

2L2 '

One of the most useful formulations of the metric is the Poincaré coordinate patch metric

A=-— (3.5)

£2
ds* = — ( dr? + 1, dat da”) (3.6)
r

where 7 is the d — 1-dimensional Minkowski metric. From Eq. (3.6) it is straightforward to see
that in the limit » — 0 the metric is conformally equivalent to the Minkowski spacetime metric
in d — 1 dimensions. The coordinate patch in this case only covers a half-space, namely r > 0.
The metric can be arrived at from the global coordinates in Eq. (3.4) by

r Jrhay + L2
Xoy=1 (1 + M) 7 (3.7)
c
Xﬂ = ?Il“ (3.8)
r Jatat — L2
Xi1 =7 (1 + “) 7 (3.9)

where p=0,1,...,d — 2.

2That is, it has @ Killing vectors and corresponding isometries.
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3.2 A Sketch of an Argument for AdS/CFT Duality

The methods applied in this thesis rely on argumentation that is based on — or at least enlightened
by — the original AdS/CFT duality [7]. To familiarize the uninitiated reader with the holographic
jargon, it seems necessary to introduce the basic argument for holographic duality in wide brush
strokes, mainly following Ref. [169].

Type IIB string theory is formulated with a 10-dimensional spacetime, and in addition to
strings, it supports the existence of extended, dynamical, nonperturbative, p-dimensional objects
called Dp-branes. The excitations of these branes are open strings, whereas closed strings can
be considered excitations of the bulk spacetime. Each of the open strings attach to a brane
by Dirichlet boundary conditions (thus the name “Dp-brane”). From the point of view of the
branes, the endpoints of the open strings appear as point-like particles carrying SU(N) charges,
associated with a gauge group generated by a stack of N coincident branesS.

To find the correspondence, let us consider the type IIB theory with a stack of N parallel,
coincident D3-branes embedded in ten dimensions. There are now two equally correct ways to
find the low-energy limit of this theory.

First, we can examine the open and closed string spectra separately. In the low-energy limit,
we can write the complete action as S = Sopen + Sclosed + Sint; Where the last term corresponds
to interactions between the two sectors. It turns out that in the low-energy limit the interaction
term Sine goes to zero [169] and the two sectors become decoupled. The dynamics of the particles
on the branes is described by a Dirac-Born-Infeld (DBI) action [170, 171], which is a nonlinear
generalization of the familiar Yang-Mills action, to which the DBI action also reduces to in the
appropriate low-energy limit. Correspondingly, the low-energy theory of the open string sector
on the four-dimensional D3-brane world-volume is the A = 4 supersymmetric Yang-Mills theory,
which is a highly symmetric conformal field theory (CFT). The low-energy theory of the closed
string sector is a type IIB supergravity* in ten-dimensional Minkowski spacetime.

Second, we can simply regard the whole theory in toto, and examine its low-energy limit. We
end up directly with the type IIB supergravity in ten dimensions, but with D3-branes embedded
in the spacetime. Far from the stack of branes, the metric becomes ten-dimensional Minkowski,
and there the theory is again a type IIB supergravity in Minkowski space. However, when
observing the metric near the branes, it becomes that of AdSs x S5 [7] with a stack of branes
at the boundary. At low energies, these two regions become decoupled. This can be seen by
considering what kinds of excitations a distant observer can see in the low-energy limit: one
immediately clear case are the massless excitations propagating in the ten-dimensional Minkowski,

but which do not see the the branes due to their wavelength being much larger than the size of

3Each brane contributes U(1), but for a coincident stack, the symmetry is enhanced to U(N), and all string
modes become massless. The symmetry can be however written as SU(N), as there is a dynamically superfluous
prefactor of U(1) corresponding to the location of the branes in the bulk.

4For our purposes, it is enough to know that in the low-energy limit, supergravity solutions satisfy the Einstein
equations. Supergravity can be arrived to from two distinct but commensurate directions: either as gauged local

supersymmetry, or as a supersymmetric theory of gravity. One can read more on the subject in Refs. [167, 172].
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the brane [173]. The other possible excitations in the low-energy limit are actually arbitrarily
energetic modes near the horizon. This is because for an observer placed at the asymptotic
infinity, the measured energy F. is related to the energy emitted at r by a redshift factor f, such
that Eo = f~Y4E,. In the Maldacena limit, where the string length ¢, — 0 while keeping =
fixed, Eo ~ (E,«ES)Z% [169], and hence the high-energy modes near r = 0 are seen as low—energ;/
modes by a distant c;bserver, as the excitations close to the branes find it hard to climb from the
gravitational well and into the asymptotic region. It follows that in the low-energy limit the two
regions cannot interact. Thus, in this view, the low-energy limit of the full string theory can be
described by a type IIB supergravity in ten-dimensional Minkowski spacetime plus a decoupled
type IIB supergravity in AdSs x S°.

With some caveats, for these two views on the low-energy limit to be equivalent, the resulting
theories must be the same. As both of them include two decoupled theories, one of which is
a type IIB supergravity in ten-dimensional Minkowski space in both of the descriptions, this
leads us to conclude that N =4 SU(N) super Yang-Mills in the four dimensions of the brane
world-volume must correspond to a type IIB supergravity in AdSs x S® with the brane system at
the boundary. This is an extremely powerful and surprising statement, as it equates a quantum
field theory with a higher-dimensional classical theory of gravity.

The precise conjectured correspondence can be summed up in the equation that also defines the
holographic dictionary, which tells us how different boundary operators are related to different
fields in the bulk [174]

<exp / ¢00>CFT = Zpas|oo], (3.10)

where, in the CFT side, ¢¢ acts as the source of the operator @. On the AdS side, Z is the
partition function and the field ¢g = ¢o(x) is defined by ¢o(z) = lim,_,o r>~*®(z,r), where ®
is the bulk field, r is the bulk coordinate and A is the scaling dimension® of operator ©. For
future reference, the correspondence between different fields and operators can be expressed
schematically as

Bulk Boundary
® «— O
Ay — J,
G — T

The bulk scalar field ® couples to the boundary scalar operator O, the bulk vector A, is connected
to the conserved boundary current .J, and the metric g, is coupled to the stress-energy tensor
T,.. The exact correspondence is tied to the definition of the on-shell supergravity action and

the renormalization procedure, and it is discussed in detail in Ref. [175].

®For a coordinate transformation & — Az, ¢o(z) — A" ¢o(x).
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3.3. Holographic Thermodynamics

We can immediately perform a nontrivial check on the duality by comparing the global
symmetries of the theories. In the AdS side we have the aforementioned SO(2,4), combined
with an SO(6) from the S°. We also have 16 Poincaré supersymmetries and 16 superconformal
supersymmetries, all in total giving the supergravity theory the symmetry group PSU(2, 4|6) [176].
This matches the global symmetry group of the A' = 4 super Yang-Mills, with the spacetime
symmetries of AdS5 x S® corresponding to the bosonic subgroup of the whole supergroup. There
are additional tests, such as computing free field propagators protected by the symmetries from
quantum corrections that also support the duality [173, 177].

We would go amiss if we would not immediately temper the statement (3.10) with the caveats
only referred to above. Whilst taking the different decoupling limits, we have implicitly assumed
that the string coupling gs and N satisfy A = 4wgs N > 1. This parameter A can actually be
identified with the 't Hooft coupling A = g%,;N, to which the AdS radius £ and the string length
{5 are related to by (L£/€s)* = \.

The classical supergravity limit A — oo, N — oo, gs — 0 implies another alluring aspect of the
duality: it connects a notoriously difficult strongly coupled quantum field theory to a classical,
weakly coupled theory of gravity, which are remarkably simpler to solve.

The stronger form of Maldacena’s conjecture states that the correspondence holds for any A, as
long as gs — 0, or equivalently N — oo [7]. This limit corresponds to a classical string theory in
the AdS side. What is intriguing about this limit is that fixing A while taking N — oo coincides
with the 't Hooft limit in the Yang-Mills theory [27], making for considerable simplifications in
computing diagrams in the field theory.

The strongest form of the conjecture posits that the equivalence holds for any N and A, and is
thus a duality between type IIB string theory in AdSs x S® and N = 4 SU(N) super Yang-Mills
in four-dimensional Minkowski spacetime. Above we have focused mostly on the weakest form of
the duality, as it is sufficient for most of the practical contents of this thesis.

We have glossed over some extremely complicated issues here, but the main takeout one should
have from this is that we are fairly certain that certain highly symmetric quantum field theories
are dual to higher-dimensional gravity theories. The conjecture is by no means proven exactly
correct yet, but the non-trivial tests that the duality passes make it as good as true for the

purposes of model-building.

3.3 Holographic Thermodynamics

Before we delve into modeling, we should discuss thermodynamics. The conjectured equality (3.10)
points us towards a fantastic statement: the partition functions of the two theories are the
same, and thus there exists a one-to-one correspondence between the thermodynamic quantities
between the bulk and the boundary once we generalize the duality to finite temperatures [178].

We can implement thermodynamics in the gravity theory by introducing a black hole, which

are solutions to Einstein equations and have a temperature associated with them, into our
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3. Holography

background. The correspondence stays intact as long as the studied Einstein manifolds in the
bulk theory have the correct asymptotic behavior at the boundary [174, 178, 179]. This leaves
the UV behavior unaffected, but allows us to modify the IR physics.

Given a generic AdS-Schwarzschild Ansatz

[:2

ds? = (—f(r)dt® + f(r)~tdr? + dx?), (3.11)

where we have placed a Schwarzschild black hole with a horizon located at r = 75 in the bulk,
with f being a regular function with the near-horizon boundary condition lim,_,,, f(r) =0, we
can write the metric with a Wick rotation to Euclidean time 7 = 4t [180, 181]. In order to avoid
a conical singularity in the radial coordinate, the Euclidian time must be 27-periodic, and by
identifying the period with inverse temperature [182], we get the Hawking temperature

|f'(rn)]
dr

Ty = (3.12)

We can use black hole thermodynamics even further. The Bekenstein-Hawking formula, which
relates the entropy S and the area of the black hole A by Sgy = ﬁ [183, 184], where Gp is
the D-dimensional Newton’s constant, determines the entropy of the bulk. However, as the black
hole is actually extended in the x-directions, the total entropy turns out infinite, and a more
helpful, finite quantity is the entropy density s = Spg/V3, where V3 is the volume of the brane
in the extended directions.

For metric (3.11), taking f(r) = 1 —r}/r%, the entropy density is [169)

A 72

S bTeR A 7NQT;“}, (3.13)

which is concurrently somewhat surprising and altogether expected: our construction here
depends on the limit N, A — oo, but the expression (3.13) only differs from the result for the free
N =4 SU(N) super Yang-Mills by a factor of 3/4 [185], and at the same time it agrees with the
blackbody scaling law S ~ VT3,

It is relieving to note that one can arrive at exactly the same expression for entropy by using
the saddle point approximation [176]

7~ e e (3.14)
F=-TlnZ="T5g, (3.15)
OF
__(9oF 1
s (acr)v’ (3.16)

where Z is the partition function, Sg is the Euclidean supergravity action, and F' is the Helmholtz
free energy.

To include chemical potential among the thermodynamic quantities, we need to expand our
considerations by considering charged solutions, such as AdS-Reissner-Nordstrom black holes.
Why this is so is less obvious than the previous correspondences, and we need to consult our
holographic dictionary.
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3.4. Building Models: Bottom-Up and Top-Down

We argued above that the global boundary current J# is sourced by the local® field A*. The

standard way to include this sourcing of the current in the action is by the coupling term
/dd;v A, J". (3.17)

We should note now that for e.g. the conserved global U(1)p symmetry in QCD, the associated
conserved current is J* ~ 1)y*1p. This leads us to realize that near the boundary [186-189]

Ag~p+nr24..., (3.18)

where g is the chemical potential and n is the associated number density. Therefore, the chemical
potential can be included in the description of thermodynamics by turning on the temporal
component of the bulk gauge field. There is no clear interpretation for the r-component of the
gauge field, so it is better left turned off.

3.4 Building Models: Bottom-Up and Top-Down

The AdS/CFT duality is truly an awe-inspiring contraption. However, as it stands in the
formulation above, it is of limited use in studying QCD. The N = 4 super Yang-Mills theory is
not confining, exhibits a continuous spectrum, has all the matter in the adjoint representation,
has no running coupling and no chiral condensate, is considered at large N, and is maximally
supersymmetric [190]. Multiple other dualities have been found [191, 192], but the field theory is
usually supersymmetric and conformal.

Unfortunately, there is no algorithm to obtain a holographic dual for a given field theory”.
If we are interested in obtaining a holographic dual to QCD, which is only asymptotically
conformal and not at all supersymmetric, we have a choice between two approaches: top-down
and bottom-up.

Before delving into modeling, we might want to address an obvious question: why do we
even think QCD has a holographic dual? Which theories have? Unfortunately, there are no
all-encompassing criteria yet. It is known that for a conformal gauge theory to have a semi-
classical bulk counterpart, the bulk geometry must be encoded in the induced spacetime on the
boundary [194]. QCD has many things going for it: we know that the theory is asymptotically
conformal and has a well-established large-N, expansion [27, 190, 195]. Considering the relative
closeness of QCD and SYM it is tentatively believable that there might exist a reasonably
QCD-like theory with a gravitational dual.

Top-down approaches start from a known duality and generalize it minimally to obtain a more

realistic field theory dual. The constructions might include nontrivial brane configurations and

5 As global symmetries in gravity theories are restricted, global symmetries in the boundary theory correspond to
local isometries in the bulk.
"As I am writing this, an extremely interesting prerprint [193], which might prove to open new pathways to

building bulk theories in the future, was uploaded to arXiv.
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3. Holography

geometrical engineering, and they generally rely on a strong version of the conjectured duality.
This way of constructing a duality is more or less rigorous, but often quite complicated and
technically challenging. The constructions have gotten more and more realistic, as implementing
more generic background manifolds [196, 197], and background deformations [198] have allowed
for the boundary theory to be non-conformal and confining with chirally broken matter. Non-
supersymmetric, non-conformal theories have also been achieved in Refs. [199-201]. Fundamental
matter has also been implemented in the quenched approximation by embedding a probe D7-
brane into the bulk [202], and also studied in the unquenched limit in e.g. Refs. [203-205] and
generalized to finite temperatures in Refs. [206, 207] (for a review, see Ref. [208]).

As impressive as the current state of the top-down constructions is, with the most QCD-like
models currently available being the Witten-Sakai-Sugimoto (WSS) model [202, 209-211] based on
a D4 — D8 — DS brane configuration in type IIA string theory, and the D3 — D7 models [204, 212,
213], they are still not QCD, and have limited applicability beyond the low-energy regime [214,
215].

Even if the top-down models are not exactly QCD, they still provide a way to make qualitative
predictions about strongly coupled phenomena, especially at finite temperature®. Such feats as
predicting properties such as jet quenching and the shear viscosity of strongly interacting plasma |8,
216-219] and the hydrodynamization of the fireball ensuing from heavy-ion collisions [220-223]
have given a lot of credibility for holographic constructions as a promising line of inquiry into
QCD matter.

Looking for the correct bulk dual, one might want to partake in some more phenomenologically-
minded activities to obtain qualitative predictions by holographic methods, while also probing
the applicability of said methods. This is the aim of bottom-up approaches. They involve
generalizing the AdS/CFT conjecture maximally by claiming that any classical gravity theory
that can be completed into a theory of quantum gravity is dual to a quantum field theory living
on the boundary. Taking the bottom-up approach one does not always strictly know the bulk
string theory, but starts from the wanted field theory and emulates it in the bulk by adding
elements from string theory. This makes of course for an uncontrolled approximation and a more
effective approach than the top-down constructions, but as the Russian proverb goes, “kTo He
PUCKYET, TOT He LT ITaMIancKoe””.

Even with the more relaxed qualifications, building a viable gravity model is not straight-
forward. One still needs to consider how to build a consistent gravity model with the fields
that correspond to the boundary operators one wants to study as the dictionary only fixes the
boundary asymptotics of the fields. The IR behavior needs to be fixed by other information one
has available. When one has fixed all the parameters, fields and functions one can from the a
priori constraints, the rest are fitted by computing observables from the model and comparing

them to observations, experiments, perturbation theory or lattice data.

8Introducing finite temperature breaks both the supersymmetry (due to bosons and fermions having different

statistics) and the conformal invariance (due to the introduction of an energy scale).
9Tr. “Who takes no risk, drinks no champagne.”
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3.4. Building Models: Bottom-Up and Top-Down

The clear downside of this procedure is that one has no other guarantee of the validity of the
duality than success in reproducing known results. Even if the bulk theory could be traced to a
theory of quantum gravity — justifying the duality between the bulk and the boundary — one
cannot usually in practice even write down the boundary action.

Of the bottom-up models for QCD, the hard- and soft-wall AdS/QCD models, as constructed in
Refs. [224-227], should be mentioned here. They are founded on a simple Einstein-dilaton action,
with linear confinement and chiral symmetry breaking being imposed by boundary conditions
at the IR boundary. They have been somewhat successful, especially in reproducing of meson
spectrum and dynamics [228-231]. However the thermodynamics of the models have not been
extensively studied.

The above taxonomy of dividing models into being either top-down or bottom-up is not
as clear-cut as it might appear, as some approaches classified as being bottom-up base their
structures somewhat rigidly in well-studied top-down constructs, but implement some effective
potentials that can be used to fit the model to data. The V-QCD models that form the crux of
this thesis belong among this class. This is done in an effort to be malleable enough to model
QCD better than usual top-down approaches do, while being more rigorous in the construction
than bottom-up models to ensure a solid basis. To achieve this, the model takes cues from
top-down constructions, with the main difference being the ignorance about the correct brane
action in curved spacetime. This ignorance is encoded in the effective potentials within the
action, which are used to fit the model to qualitative and quantitative QCD behavior, as we will

see in the following chapter.
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Chapter 4

Holographic QCD in the Veneziano

limit

Veneziano-QCD (V-QCD) is a family of models based on two building blocks: a holographic,
bottom-up dilaton-gravity model for pure Yang-Mills theory called Improved-Holographic QCD
(IHQCD), and a flavor brane sector, which are fully backreacted with each other in the Veneziano
limit. The construction of the action is motivated by noncritical string theory, but it is generalized
to contain nontrivial potentials, which can be matched to QCD results both qualitatively — e.g.
by requiring the model to be confining in the IR — and quantitatively where reliable lattice
results are available. In this way, one can hopefully retain some rigor in defining the holographic
dictionary, but still have enough leeway compared to the top-down approaches to allow for a

more realistic, QCD-like boundary theory.

In this Chapter, we will review this model, whose applications form the main body of this
thesis. In articles I and III, we used the full V-QCD machinery in concert with nuclear physics
models to produce equations of state at T' ~ 0 to both gain insight to the physics of neutron
stars and also to apply astrophysical constraints to the parameter space of V-QCD. In article
II, we continued the line of work started in e.g. Refs. [232-235] by including the logarithmic
corrections in the effective potential of IHQCD, and computing the quasinormal modes for tensor

fluctuations in order to study aspects related to thermalization in heavy-ion collisions.

We will — for the sake of conciseness and the coherence of the thesis — discuss the totality of
V-QCD as also including THQCD, which V-QCD can be seen as an extension of. This point
of view will slightly affect the way we define the potential Ansatz we use, as we will see when

discussing the setup of article IT in Section 5.2.1, where we do not consider flavor physics.

We begin in Section 4.1 by introducing and motivating the building blocks that make up
V-QCD. In Section 4.2 we will then show how the effective potentials and parameters are matched
to existing QCD results both in the UV and IR. We will end the chapter with Section 4.3, where

we will review the thermodynamic properties and the phase structure of the model.
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4. Holographic QCD in the Veneziano limit

4.1 Building Blocks of the Model

V-QCD models are constructed from two basic building blocks: the glue and the flavor sector.
The dynamics of gluons is described by THQCD, a bottom-up holographic 5D Einstein-dilaton
model for pure Yang-Mills theory [236-241]. The flavor sector is introduced through a tachyonic
Sen-like Dirac-Born-Infeld (DBI) action, together with the associated Wess-Zumino (WZ) term,
which describe dynamical quarks [202, 242-250]. These sectors are fully backreacted [251] in the
Veneziano limit [252]

N
N, — o0 and Ny—oo, with a:fzﬁf and g¢2N, fixed. (4.1)
c
Most of the literature has been focused on the 't Hooft probe limit, but to accurately reproduce
the dynamics of most strongly coupled systems where you have two to three flavors and three
colors, it is truly important to study the backreaction of the flavor and color sectors.

The action of V-QCD can be schematically written as
S=58,+S5r+ 5, (4.2)

where S, describes the gluon sector, Sy the flavor sector. We have delegated the CP-odd terms
to Sg, which will not be relevant for our interests, as we are only concerned with manifest CP
symmetry. The CP-odd effects in V-QCD have been studied in e.g. Ref. [253].

4.1.1 Improved Holographic QCD

Let us begin by sketching a motivation for the way IHQCD [236, 237, 240, 241] is built. First,
we need to address the question: why noncritical string theory in five dimensions? With large-IV
theories, each independent adjoint field typically corresponds to one extra dimension in the bulk
theory. QCD has four fields transforming in the adjoint representation, with only one of them
being independent in flat, Lorentz-invariant background [254]. Thus we could reasonably expect
the dual theory for QCD to be five-dimensional. This way, one can also dodge the problem of
extraneous massive Kaluza-Klein modes that often plague higher-dimensional formulations [254].

Starting from the assumption we are working in a five-dimensional context, and aim to produce
a boundary theory that is conformally symmetric in the extreme UV, we can already specify the

metric Ansatz we will be using
ds? = 240 (dr? + N dat dz”), (4.3)

where 7 is the conventional four-dimensional Minkowski metric and r is the holographic dimension.

Ar) ~ % in the UV regime r — 0, where

The conformal scale factor e2(") goes asymptotically to e
¢ corresponds to the radius of the AdSs. Thus, the metric is asymptotically AdSs, suggesting
that the dual field theory, just like QCD, is asymptotically conformal in the UV. This, together

with the monotonous behavior of A(r) and arguments from gravitational red-shift [199, 236],
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leads us to identify this factor with the boundary theory renormalization scale E in the UV
regime by the relation In(E) o A.

Assuming we have a stack of coincident D3 branes in the bulk, which are responsible for the
metric (4.3), we can start specifying the field content in the bulk. Pure Yang-Mills theory has
no gauge-invariant space-time fermions, and thus the dual theory should not have NSR or RNS
sectors. In the NSNS sector, the lowest-lying fields are! the metric g,,,, which is dual to the
traceless stress tensor 7}, in the Yang-Mills theory; the dilaton ¢, which is dual to Tr [F2]; and
the antisymmetric tensor By, which is trivial in the vacuum [236].

The RR sector contains three independent fields that can be identified as the axion a, dual to
Tr [F A FJ; dC4, which seeds the D3 branes; and dC7, which couples minimally to baryon density
on flavor branes [244]. The axion sources the 6-angle, and as we are only considering backgrounds
with manifest CP symmetry here, we will neglect the a terms in the following discussion. In
this section, we are only considering backgrounds without flavor, so we need not consider the
RR-sector for now. These terms will become relevant once we have specified a flavor sector in
the next section, and they will be incorporated into the V-QCD action there.

Before we go any further, let us define A\ = N,e?, which will be used here to define the action.
We will further identify A with the 't Hooft coupling near the boundary, as is conventional in an
AdS/CFT duality with a dilaton.

Having laid out the lowest-lying bulk fields relevant for constructing the gluonic model, we

can write the action in the Einstein frame as

2
Sy = MpN; / &’z /=g [R G

3o V| (4.4)
where the effective potential Vj is the ingredient that realizes our construction as a bottom-up
model. Even though to some extent the potential can be seen as a term that has absorbed the
higher-curvature contributions and non-dynamical fields that have been integrated out. [236, 254],
we will here treat it as an arbitrary function that will be used to fit the model to the boundary
theory in Section 4.2.1.

In Eq. (4.4), we have implied the Gibbons-Hawking boundary term [255], which can be written
as [237]

Sar = 2M}N? / d*z VhEK (4.5)
oM
where K is the extrinsic curvature and h the induced metric at the boundary OM.

4.1.2 Flavor Action

Adding flavor into a holographic model can and has been done in multiple different ways in
top-down approaches depending on the exact details of the model in question, but from the dual

string theory perspective, it necessitates adding a corresponding open string sector, and thus

!The higher-dimensional operators are analyzed in Ref. [236]. Here we will only work in the two-derivative level.

33
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also D-branes — called flavor branes in this context — to the closed string background to carry
flavor indices [202].

In our case, adding flavor and implementing dynamical chiral symmetry breaking is achieved
by Ny pairs of coincident space-filling D4-D4 branes [243, 244]. In this configuration, the lowest
modes on open strings that are dual to dimension-3 operators on the boundary are the spin-0
bifundamental tachyon Tj; and the spin-1 gauge fields A? 1y and Ai‘ R (where we have marked
the chiral label in parentheses), all of which are Ny x Ny matrices in the flavor space. The
tachyon propagates between the D4 and D4 branes and it is dual to the quark bilinear operator
4(Rr)iq(L)j> and the gauge fields arise from open strings with both endpoints on the same brane,
which are the D4 and D4 respectively, and are dual to the corresponding classically conserved
currents J(”L/R)ij = q/rRiY Ry (237, 243, 244, 247, 251].

The action that arises from this brane configuration can be written as
Sy = Sppr+Swz, (4.6)
where the dynamics are described by a Sen-like [256] DBI action
Sppr = —%M%Nc Tr/ doz (vf(A, TTT)\/W+ Vi(\,TTT) —detA(R>> .4

where the trace Tr is taken over the flavor indices, and the determinant over the spacetime

indices, V; is the tachyon potential and

AN = gun +w\T)E, + @ [(DwT) (DNT) + (DNT)(DNT)] . (48)
AT = gun + w\ TPy + @ [(DyT)(DNT) + (DNT)(DMT)T] - (49)

The field strengths F(&/%) and the covariant derivative D are defined as

FL/R) IdA(L/R) _iA(L/R)AA(L/R)v (4.10)
Dy = ouT +iTAS) — a7 (4.11)

The Wess-Zumino (WZ) term in (4.6) describes the coupling of the flavor branes to the background
RR fields, and can be written as [244]

Swz =Ty C ASTr exp [i2nd/ F] (4.12)
M

where Mj is the world-volume of the D4-D4 branes, Ty ~ N, is the D4-brane tension, sTr stands
for supertrace, C' = °,,(—i) 2z C,, is the sum of the RR potentials C,,, and F is the curvature of

the superconnection A, which can be expressed as [244, 257]

: i
A= (Mo T (4.13)
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A B
so that 7 = dA —iA A A. The supertrace for a 2Ny x 2Ny block matrix M = (C D)’ where

A,B,C,D are Ny x Ny matrices, is
sTr M =TrA —TrB. (4.14)
Setting 2ma’ = 1, we can expand the action (4.12) as [244]
SWZ=T4/05AZO+03AZZ+CIAZ4+C,1AZG, (4.15)

where the various Z, are the forms coming from the expansion of the exponential of the
superconnection. Of these, Zy = 0, to ensure gauge anomaly cancellation at the boundary [244].
The Z; term provides the mixing between the 1’ meson and the axion, connecting the term
to the U(1)4 axial anomaly? [244, 251]. The precise dual operator of C; is not known, but it
is expected to source the topological baryon current at the boundary [251]. The final term is
the one most interesting for the purposes of this thesis, as it automatically provides us with a

Chern-Simons term; by writing Zs = d€2s, it can be written as

/071 A dQs = / FoNQs5, (416)

where Fy = dC_1, is the zero-form field strength, which couples to bulk instantons. We will
discuss the applications of this term in more detail below, when we introduce the role of instantons
more properly.

Before we can use the expression (4.7), we need to address some issues. Firstly, this is not the
full flavor action, which is as yet unknown [262, 263]. In the full picture, the trace would be more
properly written as a symmetric trace, the exact definition of which in the case of non-Abelian
fields is somewhat unclear. Here, as we are only considering the first nontrivial term in the DBI
expansion for the non-Abelian fields, a normal trace suffices. Also, we have very few string theory
guidelines to go by when trying to guess the correct potentials.

We can make some simplifying assumptions that ensure that the ambiguities of non-Abelianity
do not enter the quadratic terms, and work the DBI action to a more usable form. First, we
can choose to suppress the flavor structure for now, and fix the complex tachyon T' = TNy,
where 7 € R, which is dual to the quark bilinear gg. This choice, besides making the terms
flavor-independent, also suppresses the chirality of the terms, as now TT = T. The quark masses
are, naturally, now fixed to be equal. Furthermore, we will not be considering massive quarks in
this thesis. For an analysis on massive flavors, see Ref. [264].

We will also choose the tachyon dependence of the potential Vy to be Vy(1) = e*‘”z, which
matches what is seen to work in the probe limit [245, 246].The full tachyon potential can be now
expressed as

2

Vi(\T) = Vig(Ne ™, (4.17)

2The connection between the 7’ meson and axial anomaly is discussed in e.g. Refs. [258-261].
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4. Holographic QCD in the Veneziano limit

where the dilaton dependence is delegated to the function Vg, and the constant a is absorbed
into the tachyon normalization. This form is also motivated by the requirement that the tachyon
should diverge in the IR to ensure vanishing gauge anomaly [244], and thus this choice of potential
suppresses the DBI action in the IR.

Also assuming that the couplings w and x depend only on the dilaton A, as they do in the

conventional DBI action, the action can now be written as

Sppr = —]\/I%NfNC/ doz Vfo(A)€7T2 \/— det(gMN + f'i()\)aMTaNT + w()\)FMN) . (4.18)

We will discuss the determination of the potentials Vg, x and w in Section 4.2.

Baryonic matter

Including baryons in the V-QCD framework is still a rather new area of study. In article ITT
we expanded on the model we previously used in article I by including baryons in the model
following Ref. [265] to describe the strongly coupled nuclear matter phase.

Critical string theory-based top-down descriptions of baryons in the four-dimensional boundary
theory are known to arise from Dp branes wrapped in the compactified dimensions in the bulk
theory [209, 266], appearing in the low-energy limit as small point-like topological defects in
the bulk. These solitonic objects have been studied extensively in the N/ = 4 SYM, and the
description has also been expanded to other top-down approaches, such as the Witten-Sakai-
Sugimoto model [267-273].

To describe baryons in a holographic context, we need to examine solitonic configurations,
and it turns out that the interactions of solitons with the background are described by the CS
term included in the WZ action. It is worth underlining here that the CS term and the resulting
baryon physics are not an artificial add-on to the V-QCD framework, but the physics of the
branes automatically provides us with the relevant term.

The CS term can be written as
iN. [
Sos = 3 / 05 (4.19)

The explicit form of 5 was derived, and can be found in Eq. (3.13) in Ref. [244].

However, solving for interacting solitons with nontrivial spatial profiles is extremely difficult
and computationally taxing, as it involves solving groups of PDEs. So, here too, is the time
for approximations. In article ITI, we adopted the second approximation scheme introduced for
V-QCD in Ref. [265], in which a high-density soliton configuration is described by a homogeneous
configuration of non-Abelian gauge fields. An analogous approach has been studied in the WSS
model [270, 274-276]. In the high density approximation, it is preferable for the solitons to lie at
finite distance r = r. from the UV. Around r. the configuration is highly inhomogeneous, but far
from this “soliton center”, the gauge fields can be well approximated by a homogeneous field

structure.
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4.2. Matching the Model to QCD

The homogeneous SU(Ny = 2) Ansatz for the spatial components of the gauge fields reads
AL = — A% = h(r)ot, (4.20)

where h(r) can be considered the baryon field and o? are the Pauli matrices. When plugged into
the CS and DBI terms as probes on top of a thermal gas background, the Ansatz produces [ITI,
265]

SpeI = *QCszNC/d% Vfo(/\)ef#e“\/é[l + 6r(\)T2e24R? (4.21)
+6w(\)2e MRt 4 %w()\)ge*‘“‘fE*l (h/)ﬂ 7 (4.22)

_ 2aNe [ 5 AT _br(r)?; (03 2
Sos =~ /d 2 ®(r) = [T R (1 - 267())] (4.23)
ZE=1+e 2 e\ (r)? — e HMw(N)?()?, (4.24)

where ¢, fixes the pressure normalization and b controls the location of the instanton in the bulk
and how it is coupled to the tachyon field. The function f(r) is called the blackening factor, and
it will be discussed in Section 4.3.

Now, if h(r) is a smooth function, the CS term reduces to a boundary integral, which evaluates
to zero, because the tachyon diverges in the IR and the baryon field h(r) must vanish in the
UV. This points towards h(r) being discontinuous, which is actually a well-motivated choice. As
mentioned above, the solitons reside at some finite distance r. in the bulk. The homogeneous
approximation is expected to work well both at the boundary r < r. and in the IR r > r., but
at r ~ r¢, the configuration is nontrivial. This nontriviality can be modeled by introducing a
discontinuity in h(r) at r = r., while keeping the charge density continuous.

Neglecting the inhomogeneities in the instanton configuration introduces some uncertainty on
the exact normalization of the action, which needs to be resolved in order to reliably compute
thermodynamic observables from the model [265]. We parametrized this ignorance in article
IIT by introducing the normalization factor ¢, which can be — along with the parameter b
— determined by matching the holographic equation of state with established nuclear matter
models, which are known to be reliable at low densities. We will discuss this matching procedure
in Chapter 6.

4.2 Matching the Model to QCD

In this section, we will review fitting the potentials V, V¢, x and w in Eqgs. (4.4) and (4.18) to
both qualitative [I, 236, 237, 251, 264, 277] and quantitative [I, 240, 278] constraints from QCD.
This is also done in detail in Appendix A in article I, so we will keep this review short and focus
more on some of the details that are not elaborated on in the articles included in this thesis.

In the work done in this thesis, the common starting Ansatz for all potentials Vg, V, 1/w and
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4. Holographic QCD in the Veneziano limit

1/k can be taken to be of the form

V(A = anjV ViR o e 720/ (N /o) ¥ (In(1 + A/ Ao))? S ve(A/Xo) 7" (4.25)
k=0 k=0

where a and 8 control the IR asymptotics, as in the UV (A — 0) the potential tends to a constant
value, and at small A, the first term dominates. The second term introduces nonperturbative
contributions and the powers o and /3 can be determined to match the wanted features of QCD.
This form is chosen, as it has been seen to be able to reproduce important qualitative constraints
such as confinement and linear glueball and meson trajectories and gapped spectra in the IR,
and asymptotic freedom in the UV [236, 237, 251, 277].

Ansatz (4.25) is also close to what one would expect based on string theory arguments: simple
power laws with logarithmic corrections in the IR. Intriguingly, the powers a usually correspond
exactly to the string theory expectations [236, 237]. One should however keep in mind that the
potentials are not unique to the detail, and there is a lot of fixing-by-hand involved — V-QCD is,
after all, a bottom-up model.

In this section, we will first present how the glue sector is fit to QCD data, and then analyze
the flavor sector. We will also shortly argue for the form of the Ansétze we employ at the start

of the each section.

4.2.1 Fitting Glue

For fitting the glue sector, we can start from two broad requirements, which also argue for the
form of Eq. (4.25):

1. In the UV (A — 0), the potential should be represented by the power expansion
Vy(A) ~ Vo(1+ Vid+ 1607, (4.26)

in order to guarantee the agreement with the Yang-Mills RG flow, thus also implementing
asymptotic freedom. Also, to guarantee the existence of an AdSs solution near the UV
boundary, we require V) # 0.

2. In the IR (A — o), the potential should asymptote to
V,(A) ~ X2 (In NP, (4.27)

where either P is arbitrary and 2/3 < Q < 2/2/3, or Q = 2/3 and P > 0 [251]. This form
guarantees confinement, as determined by the Wilson loop test, and the avoidance of “bad”
singularities [236, 237, 251, 279]. There is a unique solution with @ = 2/3 and P = 1/2,
which reproduces an asymptotically linear glueball spectrum with m2 ~ n [237]. We will
use this solution.
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4.2. Matching the Model to QCD

The form of Ansatz in Eq. (4.25) fulfills both of these limits. From here on, we will choose to
specifically work with the Ansatz

2
V,(A) =12 [1+ VA + X Vir € 2N/ 20) 3 /In(1 4+ A/Xo)| (4.28)
‘ 1+ X o

which has been shown to work especially well with backreacted flavors [278]. In article II, we
used a slightly altered form, as there we did not incorporate any flavor structure to our analysis,
but the general arguments made here are true for all gluonic IHQCD and V-QCD potentials.
The potential (4.28) has four unfixed parameters; V1, Vo, Vig and A\g. Additionally, in order to
perform thermodynamic computations, we need to fix the Planck mass Mp and the dynamically
generated energy scale Ayy, which can be defined by the UV expansion of the dilaton A [236]:
1 8by In(—In(rAyv)) 1
- bo In(rAyy) B 962 In(rApy)? <ln(rAUv)3)
where b; are beta function expansion coefficients, which are defined shortly.
Let us begin the fitting from the UV coefficients. Because we have identified A with the ’t

(4.29)

Hooft coupling and the conformal factor E = e” with the renormalization scale, we contrast the
UV expansion of the holographic beta function S(A) with the Yang-Mills beta function Syy up
to renormalization-scheme-independent two-loop level
dA dA
N =——m == b\ + b N+ O 4.30
B = 0 = = —hoX 4+ O, (4:30)
Bym = BoA? + BiA3 + O\ . (4.31)

We can write b; in terms of V; and demand the two S-functions to be equal in the UV. This,
together with the Einstein equations, fixes the coefficients V; and Va2 to be [236]
11 4619
T 2772 7T 466567
In the IR, we have no reliable perturbative results to use, and thus we fix the remaining
parameters to fit the lattice data [280] at u = 0 [240]. To produce the fit presented in Fig. 4.1,

the parameter values are fixed to [278]

1% (4.32)

o = 872/3, Vigp =2.05. (4.33)

The global parameters Ayy and Mp are determined later, together with the flavor sector. The
values used for plotting are Ayy = 1.28T,, where T, is the critical temperature for the lattice
data, and M3} = 1.3/4572. Note that to reproduce the Stefan-Boltzmann law for the pressure in
the high-T limit, one would need M3 = 1/4572. This overshooting of the limit by around® 30%
is needed for a good fit, and it is actually to be anticipated; we do not expect to reproduce the
behavior of the system deep in the perturbative regime, as we are modeling the strongly coupled
limit of QCD, where holographic methods are applicable. We have also seen already in article I
that for these values the pressure given by the model coincides with the pQCD pressure at finite

chemical potential, in the region where pQCD is expected to break down.

3The actual value depends on the chosen flavor parameters, as we shall note in the next section.
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0.5F

04F

0.3F

0.2F

0.1 (e-3p) /N2 T

Figure 4.1: Comparison of the pressure p, energy density ¢ and interaction measure € — 3p of the glue sector
of V-QCD to large N. Yang-Mills lattice data from Ref. [280]. The solid lines and error bars represent the
extrapolation of lattice data to N. — 0o, and the dashed lines are the results for the holographic model [278].

4.2.2 Fitting Flavor

The fitting of the flavor sector was done in detail in articles I and ITI, and the exact details and
parameter values can be found there in Appendices A. Here, we will go through the basic idea
and show the resulting fits.

Let us concentrate on Vyo(A) first. In the UV, the potential should have a regular power

expansion

Vio(A) = Wo + Wil + Wad? + ... (4.34)

With the flavor turned on, the dilaton effective potential can now be written Veg(A\) = V() —
zfVyo(A), and we can use the holographic S-function to determine W; and W from the full
QCD pS-function. Up to two-loop level, the coefficients are

_21172‘%}&' b1 347131’]‘

bpp=-— -4 == """/ 4.
T3 (m? 0 2 (11— 2z (4.35)
If we take? xy =1, we can write W1 and W3 as
8 + 3Wy 66488 + 999
_ — 2 T 4.
e 972 2 155524 (4.36)

4As mentioned previously, the parameter 7 makes sure that flavor is as important as color in the large- N, limit.
In this thesis, we are mostly using zy = 1 in the computations presented here, and therefore I do not discuss the
parameter at length. However, a rich phase structure reveals itself when varying x¢, as analyzed in length in
Refs. [251, 264]

40



4.2. Matching the Model to QCD

Also, the AdS radius ¢ is fixed by

= (4.37)

J1— 2 W 12

In the IR, the DBI action is suppressed by the tachyon diverging. The divergence is required,
among other considerations, to reproduce bulk flavor anomalies similar to QCD and reasonable
meson spectra [244, 245]. This can been seen as a result of the D4 and D4 branes annihilating
in the IR, analogously to the WSS model.

The exact potential Vio(A) is determined by the fit to lattice thermodynamics. Here, we have
adopted the simple Ansatz

WaA?

—Xo/A 2 4
e Wine e (439

Vio(A) = Wo + Wid +
which produces regular solutions with non-zero 6-angle [253], i.e. when the axion is turned on,
as well as a phase diagram as a function of zy, which is qualitatively in agreement with that
from QCD in the Veneziano limit [251]. The inclusion of the exponent in the Ansatz is to ensure
that the UV part does not dominate in the IR.

The remaining parameters Wy and Wrg are determined by the fit to the lattice data, which
we will discuss below.

The couplings x(A) and w(\) can be treated in a similar manner by demanding that their
UV expansions are regular, and that the Ansétze reproduce the correct asymptotics in the IR
. Namely, if we start from the common Ansatz V(\) ~ A%(In \)?, demanding that the meson
trajectories are asymptotically linear and that axial and vector meson towers have different
slopes, together with the demand for a hadronic phase at non-zero p [265], fixes the powers «
and f in the IR asymptotics of both x(A) and w(\) [251, 264, 277]. Here we will use the Ansétze

1 _ fil)\o> o (A 20)*B
— = 1 A 14+ —— 0/ e 4.39
ey K0|: + K1 +f€0< + N )€ A ( )
1 wiA/Ao — —Xo/A ()\/)\0)4/3
—w(/\)—wo 1+71+/\//\0+w08 I+ A | (4.40)

Analogously to using the S-function to constrain Vg, we go about constraining the parameters
of k(A) by demanding that the UV behaviour of the model needs to reproduce the quark mass
anomalous dimension

dInmyg
dln FE

up to the scheme-independent one-loop level, where /by = 9/(22 — 4z¢). The holographic
equivalent is defined by [282]

dinT

o (4.42)

y=1+
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(e-3p)IT* pIT?

Figure 4.2: Comparison of different thermodynamic quantities between V-QCD and lattice QCD data [98, 281]
with 2 + 1 flavors. The red dots and error bars are lattice data and the various curves represent different fit results
with slightly different parameter values. Top left: interaction measure versus temperature in units of critical
temperature. Top right: pressure versus temperature. Bottom: baryon number susceptibility xp = d?p/du® at
1 = 0 versus temperature. The different color curves represent different fit strategies.

where the addition of 1 is due to the perturbative dimension of the quark mass operator. Plugging

in the equations of motion and demanding the two v to be equal fixes [I1I, 264]

L 12-W, 11

T Mg (4.43)

Ko

The rest of the parameters need to be determined by a fit to lattice data at g = 0. In the case
of the gluon sector, we were able to use large N, Yang-Mills data, but for full QCD, no such data
exists. The available lattice data is for N, = 3 and Ny =2+ 1 [98, 281]. We used this data —
which roughly corresponds to xy = 1, although the approximation is uncontrolled and corrections
for finite N are challenging to obtain — to constrain the holographic model. There are multiple
different choices of parameters that result in excellent fits, and we analyzed 18 different sets of
parameters in article I. These fits are presented in Fig. 4.2, and the exact parameter values can
be found in Appendix A in article I.
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4.3 Thermodynamics of the Model

We have touched upon some of the thermodynamic quantities while fitting the potentials, but
let us now discuss the phase structure of the model in a more systematic manner. Determining
the thermodynamics with the nontrivial potentials we established in Section 4.2 is numerically
somewhat involved, as the resulting equations of motion are also quite nontrivial. Here we
will gloss over most of the numerical details for the sake of brevity. The thermodynamics with
massless quarks has been studied in the case of IHQCD in Refs. [238, 239], for © =0 in V-QCD
in Refs. [278, 283], for nonzero p in V-QCD in Refs. [I, 282] and including baryons in Refs. [III,
265]. Here we will only consider the case of massless quarks. The effects of nonzero quark masses
on the thermodynamics have been considered in Ref. [264].

Generally speaking, in V-QCD, there are two classes of vacuum solutions for the geometry: the
thermal gas (TG) solution and the black hole (BH) solution. The metric in Eq. (4.3) corresponds
to the thermal gas solution, which is a horizonless metric with trivial thermodynamics, with the
pressure scaling as O(N?) [278, 283]. The solution can be thus identified with the vacuum or
thermal gas solution in the boundary theory — or more succinctly, with the confined phase [239,
282, 283]. The BH solution can be identified with the deconfined phase, due to the Polyakov
loop having non-zero expectation value [251, 282, 283].

As is conventional in holography, we incorporate non-trivial thermodynamics in the model by
introducing a black hole horizon to our bulk geometry. This reflects upon our metric Ansatz,

which becomes

f(r)

The bulk direction r is now truncated by the horizon at r = r,, and the coordinate runs r € (0, 7).

2
ds? = 240 (f(r) dt? + dx? + dr) . (4.44)

The function f(r) is called the blackening factor, and we impose upon it the boundary conditions
f(r=10) =1 (so we retain the asymptotically AdS metric in the UV) and f(r =) = 0.
Now the boundary thermodynamics are essentially determined by the bulk black hole thermo-

dynamics. Thus, we can introduce temperature 7" and entropy density s by

ro irh)7 s = ArMEN2HAM) | (4.45)
T

from which we can deduce the pressure p and the energy density € by the conventional thermo-

dynamic relations

dp=sdT +ndpy, (4.46)
e=Ts+nu—p, (4.47)

where 7 is the number density, and p is the chemical potential. As was elaborated in Section 3.3,
the chemical potential is introduced by turning on the temporal component of the gauge field
A%(r) = ®(r) in the DBI action.
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4. Holographic QCD in the Veneziano limit

The thermodynamics can now be determined by first finding pressure as a function of tempera-
ture at p = 0 by integrating s(T") = p/(T), which sets a boundary condition for determining p(u)
at a given temperature by integrating Eq. (4.46). The process of determining the thermodynamic
quantities is quite involved, and the exact details on how this is done can be found in Ref. [282],

with the nuclear matter quantities being determined in Ref. [265].

T T T T
140 - Confined, chirally broken il
Confined, chirally broken, baryonic
Deconfined, chirally symmetric
120 First order phase transition =
100 - -
% 80 i
Z
'_
60 ~ B
40 - B
20 - -
0 |
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u [MeV]

Figure 4.3: The V-QCD phase diagram at mq = 0 with the homogeneous approximation for baryons, presented
in Section 4.1.2. The lines correspond to first order phase transitions. In the green region, the thermodynamically
favored solution is the thermal gas background with non-zero tachyon. The thermal gas solution with baryons,
corresponding to strongly coupled nuclear matter, is dominant in the blue region. In the red region, the black hole
solution with no tachyon condensate is favored, the phase being thus chirally symmetric as well as deconfined.
Figure from Ref. [265].

As we are transitioning between a horizonless geometry to a one with a horizon, the transition
between these two states is a first-order Hawking-Page transition [238]. The transition is actually
generically strong at 1" = 0, as discussed in articles I and III, but it is expected to weaken with
rising temperature [219] and stringy loop corrections [278].

There is a further distinction to be made when discussing the possible phases; we can
have solutions with or without the tachyon, and thus states which are chirally symmetric or
have spontaneously broken chiral symmetry. This, along with the prevalent metric, results in
four distinct baryonless phases. Three of these four possibilities can be thermodynamically
dominant [282]

e Confined phase with broken chiral symmetry, corresponding to a thermal gas solution with

non-zero tachyon condensate.
e Deconfined, chirally symmetric phase, corresponding to a tachyonless black hole solution.
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¢ Deconfined phase with broken chiral symmetry, corresponding to a black hole solution with

non-zero tachyon condensate.

The last of these is quite an exotic state that is also found in top-down models, such as models
based on the D3 — DT brane system [284] as well as the WSS model [285, 286]. The appearance
of this state in the phase diagram is strongly dependent on the choice of potentials. Fits to
lattice results seem to disfavor the potentials enabling the dominance of this state [I], and in
the phase diagram presented here with the current fits, the deconfined phase with broken chiral
symmetry is absent.

Additionally, we must address the nuclear matter phase. Baryons are introduced as a probe on
top of the thermal gas background, corresponding to a hadron gas state with condensed baryons.
There occurs a first order phase transition between the vacuum and the nuclear matter phase,
which is exactly vertical in the phase diagram, as the temperature dependence is suppressed
by N2. If one takes the parameter b in the CS action to be b = 10, the transition occurs at
p = 313 MeV [265]. The thermodynamics of this phase was studied in Ref. [265] as well as in
Article ITI.

As is clear from Fig. 4.3, when contrasted with the conjectured QCD phase diagram in Fig. 2.3,
the model reproduces most of the expected features of the real QCD phase diagram. We have a
confined and a deconfined phase, with the dense nuclear matter phase appearing where it should.
Here, I would like to remind the reader that all quantitative fitting to lattice QCD data is done
at up = 0, and thus the relatively faithful reproduction of the phase diagram — as well as the
equation of state, as is shown in the articles — at finite up is a significant tour de force concerning
the predictivity of the model.

The feature clearly missing from Fig. 4.3 is the crossover. The nature of the deconfinement
transition in the bulk theory makes it extremely difficult to modify it into a crossover. One
possibility, which also ensures a more complete fit to lattice data at low temperatures, would be
to match the holographic model with the hadron resonance gas solution [278]. The possibility of
the Hawking-Page transition in an Einstein-scalar model being able to accommodate a higher
order transition in the boundary theory in some scenarios has been studied in Ref. [287].

Here we did not consider the effect of a magnetic field to the thermodynamics of the model,
which has been studied in Refs. [288-290]. The inclusion of the magnetic field, by inverse magnetic
catalysis [93], weakens the chiral condensate, decreasing the temperature of the chiral transition

at small density. This effect has also been observed in lattice studies [291].
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Chapter 5
Heavy-Ion Collisions and Holography

We can create quark-gluon plasma (QGP) in a laboratory by means of heavy-ion collisions (HIC).
In the LHC and RHIC, heavy ions such as lead and gold nuclei are accelerated to near the speed
of light, and hence these nuclei appear as discs in the lab frame due to Lorentz contraction.
The discs then collide, interacting with each other and creating a plethora of new particles —
a medium with a temperature of around 300 MeV. Forming this medium, quarks, antiquarks
and gluons quickly start behaving as a strongly coupled fluid, the properties of which can be
described by relativistic hydrodynamics. Expanding, driven by pressure, the QGP cools until
the temperature and energy density are low enough for the partons to form new hadrons, which
stream freely until they are picked up by the detectors.

The above is a short, coherent-seeming story about the time-evolution of heavy-ion collisions,
also depicted in Fig. 5.1, but there are still some question marks hidden in the text. Firstly, the
story is told chronologically — as we will continue to do shortly — but it is constructed inversely.
The experiments do not see the plasma as it forms, but the resulting shower of particles with
some global observables such as particle multiplicities and energies, from which the collision can
be reconstructed using some theoretical framework. The global observables from e.g. Au+Au
collisions can be used to constrain the model, which in turn can be used to predict other events,
such as Pb+Pb collisions. Examples of this kind of analysis can be found in e.g. Refs [292-295].
Here, for the sake of simplicity, we will recount the events chronologically based on the results
from such global observable analyses.

Secondly, there are some holes in the description of the very early stages of the strongly coupled
far-from-equilibrium plasma. Some of the remaining open questions are related to the timescales
associated with the processes: the hydrodynamic description of the plasma seems to be valid
extraordinarily quickly after the collision, but exactly how quickly? How soon does the plasma
thermalize? In this thesis, we are interested in the latter question.

Because of the strongly coupled nature of the plasma, combined with the out-of-equilibrium
nature of these real-time processes, both perturbative methods and lattice simulations are
of limited use in answering the above questions. However, as discussed shortly in Section 3.4,

holographic methods have proved themselves extremely useful in the study of HIC as they are well
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suited to study strongly coupled systems and even far-from-equilibrium processes. Unsurprisingly,
there have been a lot of studies of HIC within the AdS/CFT framework ever since the seminal
article by Policastro, Son and Starinets [8], and a lot of insight has been gained by studying the
super Yang-Mills theory [9]. Still, it is clear that for the results to be applicable to real QCD, one
needs to implement finite gauge coupling and conformal invariance breaking. And truly, there
have been multiple finite coupling, nonconformal studies in different contexts, featuring shockwave
collision in the bulk [296-298], but often restricted to the study of the quasinormal mode (QNM)
spectra of undulating black hole solutions [299-301]. We will discuss these approaches more later.

Encouraged by the success of holographic descriptions in predicting the behavior of the plasma,
in article IT we applied the IHQCD model to the study of the QNM spectra. The spectrum allows
us to determine how the black hole system equilibrates when subjected to small perturbations.
The equilibration of the bulk system is of course closely related to the equilibration on the
boundary, allowing us to determine the poles of the retarded Green’s function through the duality.

We will use the first part of this chapter to shortly discuss the big picture and some details
of the time-evolution in heavy-ion collisions. For recent reviews on the subject from different
perspectives, see e.g. Refs. [9, 302-305]. We use the latter part of this chapter to discuss the use

of QNMs in the study of thermalization and elaborate on the work done in article II.

5.1 Time-evolution of Heavy-Ion Collisions

Let us begin complicating the story we told to start this chapter. One must first remind oneself
of the fact that the nuclear discs are not homogeneous; the nucleons making up the nuclei are
made up of quarks, antiquarks and gluons (collectively called partons), with each nucleon having
exactly three more quarks than antiquarks. The density profile of these partons fluctuates within
each nucleon, making the nucleus a complex system. Thus, the discs could be thought of more
realistically as having ragged edges.

In the following, we are only talking about central collisions, i.e. ones where the nuclei, A,
collide head-on. Usually the collisions are of course off-center, but by restricting ourselves to
central collisions, we remove some complications that are not central for the work at hand. When
considering off-center collisions, the picture changes by the initial shape of the overlap region
being lenticular, and that only a fraction of the nucleons take part in the interactions, but all
general points made here also apply for off-central collisions.

In the initial stage of the collision, the nuclei interact via hard scatterings, yielding high-energy,
large transverse momentum (7.e. momentum perpendicular to the beam line) parton pairs and
electroweak bosons, which decay into jets of hadrons. These large-pr particles act as hard probes
of the medium created in the HIC. The processes behind the hard probes are well-understood;
the conventional pp cross-sections with their large-pr scatterings are accurately described by
pQCD methods, and from observations from both pA collisions and AA collisions we know that

the processes in AA collisions are essentially the same, but modified by the number of colliding
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Figure 5.1: Stills from a central Pb-Pb collision at \/syn = 2.76 TeV. Hadrons are represented by blue and gray
spheres and QGP by red spheres. The number under each column indicates the time since the collision in fm/c.

Figure adapted from animation in Ref. [313].

nucleons. This is attested to by the measured production rates of electroweak bosons, which are
not affected by the colorful environment [306-308]. Especially photons are interesting, as they
provide us with the information from which the temperature of the system can be determined.

Naturally, particles charged under SU(3). are also created in the initial processes. The lighter
quarks, u, d and s, are created in ratios well represented by a system in chemical equilibrium [309-
311], but the heavier b and ¢ quarks are too heavy to reach chemical equilibrium, and only a few
of them are ever produced per event. The heavier quarks form heavy T and J/1 mesons that
are affected by the charged environment.

Continuing forward on the timeline, the discs overlap at time which we take as 7 = 0, and
interact, passing through each other. Longitudinal color fields fill the space between the distancing
discs, slowing them down, and eventually the field decays into a multitude of ¢g pairs and gluons.
The initial energy density of the system is also enormous, clearly exceeding the value needed for
the deconfinement transition (see e.g. Refs. [292, 312] for analyses on the initial energy density).
Initially this body of particles is obviously not isotropic or in thermal equilibrium. However,
soon after the collision, the plasma seems to behave as a strongly coupled, relativistic fluid.
The hydrodynamic description of the plasma seems to be applicable very early in the evolution,
with kinetic theory estimations being < 1 fm/c [314], while some holographic simulations favor
hydrodynamization as early as 0.35 fm/c [315].

One should note that hydrodynamization does not necessarily need thermalization [316]. A
hydrodynamic description can work before the plasma is completely isotropic, so the fast hydro-
dynamization need not imply that the thermalization is also fast. There are some implications
that the system is completely isotropic only later in the evolution [315], but there is still no
consensus on the exact thermalization timescale, the study of which necessitates studies of
far-from-equilibrium, real-time dynamics at strong coupling [317].

Going back to the large-pr probes, we can provide some of the reasons why we know the

plasma is strongly coupled and behaves like a fluid. The initially produced color charged jets
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show considerable energy loss as they propagate through the medium created in the collision [318,
319]. In the case of the bb and c¢ pairs, forming Y and J /¥ mesons respectively, their presence in
the observations is suppressed, as the quark-antiquark pairs see the attractive force binding them
being weakened in the color charged environment due to Debye screening. If the plasma was a
weakly coupled gas, the jet quenching would be less severe, but as it stands, the suppression of

quarkonium serves as an indicator of the strongly coupled nature of the plasma.

The differences in the suppression of different flavors is an interesting feature: due to their
heavier mass, b quarks end up with a smaller multiplicity in the initial high-pr processes than
¢ quarks. If we look at Y suppression, it is quite severe. Smaller excitations are more tightly
bound than the ones with larger radii, and thus have a higher change of making it through the
plasma [320, 321]. The case with the more abundant charmonium, J/v, is slightly different.
Due to ¢ being more abundant, the quarks separated from their antiparticle pairs have a higher
chance of meeting a similar quark in the plasma sufficiently close to hadronization, and this is
reflected in their final abundance [322-325].

Additional support for the strongly-coupled, fluid nature of the plasma is provided by the
anisotropies in the final momentum distribution; if the plasma was a weakly interacting gas,
the initial lumpiness of the nuclei would be smoothed out as the plasma expands and random
movement erases the traces of the initial spatial anisotropies. However, as it stands, we see
the effects of both the initial spatial anisotropies and centrality in the resulting momentum
distribution [295, 326-328]. This is due to the anisotropies in the local fluid pressure driving the
expansion, and which results in velocity anisotropies in the fluid that can be observed in the

momentum distributions of the final state particles.

The QGP has some interesting hydrodynamic properties, the predominant one being the
lowest specific shear viscosity 7/s of any known fluid, enunciating the near-perfect fluidity of
the medium. While the plasma has extremely large values of both 1 and s, the relativistically
interesting, dimensionless ratio 7/s is close to the conjectured lower bound 1/47 [329], with n/s
in the range of 0.08 — 0.16 being consistent with the RHIC data [330-333]. Recent Bayesian
parameter analysis suggests 7/s = 0.07f8:8§ near the transition temperature [334] (see Fig. 5.2).
This low-viscosity system, driven by the pressure, expands radially and cools. The system stays
in the plasma phase until the energy density drops below that of a hadron, at which point
the plasma begins to break apart into individual hadrons. Soon after this hadronization, the
resonances having decayed into stable particles, the composition of this hadron gas freezes in
what is called the chemical freeze-out. After a while, the system becomes dilute enough for
the scatterings to cease (kinetic freeze-out), and the resulting composition of particles is in free

streaming until it ends up in a detector.
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Figure 5.2: Temperature dependence of the shear viscosity (1/s)(T") from Bayesian analysis. The blue line
indicates the posterior distribution median with the blue band being the 90% credible region. The gray region
indicates the prior range for the linear (1/s)(T") parametrization. The holographic bound 7/s = 1/47 is also
indicated as the KSS bound. Figure from Ref. [334].

5.2 Holographic Thermalization

When it comes to the study of heavy-ion collisions, holography has by now become a standard
tool in the field [9]. This is not least due to the above-mentioned article [8] and its extensions
proving that one can gain not only qualitative insight but also quantitative predictions from
holographic models. Most of the early studies were naturally done in N’ = 4 super Yang-Mills
at infinite coupling, but there is a growing, not-insignificant body of work looking at HIC at
finite-coupling in nonconformal theories. Rightfully so, as there is evidence (see Fig. 5.2) that
for higher temperature plasma, there is an evident need for finite coupling corrections to the

transport coefficients.

However, here we are not applying the model presented in Chapter 4 to hydrodynamization,
but to thermalization, the quantitative description of which is a notoriously complicated problem.
Luckily, this problem has been extensively studied in recent years in different holographic
frameworks, and thus there are some established frameworks that are able to provide us with
tools to study equilibration processes in gauge/gravity context.

One way to approach the problem is by numerical general relativity simulations of shock wave
collision. This is possible, because if the Lorentz-contracted nuclei are approximated by infinitely
expanded planar shock waves in the boundary theory, the collision can be described by colliding
gravitational shock waves in bulk. This approach is described in detail in Refs. [220, 222, 335,
336] and the references therein. The shock-wave description has been successful, being able to see
the onset of hydrodynamization and even the elliptic flow in off-central collisions [222, 337-339].
See also Refs. [296-298].
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One other, less numerically taxing method to study heavy-ion collisions in the boundary is
by studying a shell collapsing into a black hole in the bulk [340, 341]. The rationale behind
this description can be seen by working backwards from equilibrated QGP, which corresponds
to a black hole in equilibrium in the bulk theory. Therefore, the formation and evolution of a
far-from-equilibrium plasma in the boundary theory should correspond to the formation and
evolution of a black hole!, and thus the thermalization corresponds to the relaxation of the
horizon [343]. This ringing down of the black hole is encoded in the quasinormal mode (QNM)
spectrum [329]. The QNMs corresponding to electromagnetic and gravitational perturbations in
the bulk theory can be identified with poles of the corresponding Green’s functions in boundary
field theory (see also Refs. [344-347] for different treatments on the subjects, and Refs. [299-301]
for studies of QNMs at finite coupling).

Furthermore, Ref. [348] argues that the thermalization time of a Wightman function in the
boundary theory dual to a bulk system undergoing gravitational collapse should be inversely
proportional to the imaginary part of the lowest QNM of the same correlator in thermal
equilibrium, which would allow us to relate the QNM spectrum straight to the thermalization

timescale of the boundary system.

5.2.1 Thermalization in IHQCD

In article IT, we studied the QNM spectrum of a gauge-invariant scalar field dual to the retarded

Green’s function of the corresponding boundary operator in the context of IHQCD. This can be

seen to be in continuum with e.g. Refs. [232-235] and Refs. [349-355], with the difference lying

in the use of the IHQCD potential introduced in [283], including the logarithmic corrections.
In the article, we use the metric Ansatz

ds? = b(r)(—f(r)dt® + f(r)"Ldr? 4+ dx?), (5.1)

where we have denoted b(r) = e, Note that and we are using notation consistent with the
earlier chapters, but which differs from the one used in article II.
We used the IHQCD action (4.4), together with the potential

88\ 4619)\2 .
N=12(1+ 224 0 1222043, /1 + In(1 + 2X 2
V() ( +27+729(1+2/\)+3e (2X) +1In(142)) ], (5.2)

which is modified slightly with respect to the one in Eq. (4.28), which is used in tandem with
the full V-QCD model [283].

For q = 0, the equation of motion for the gauge-invariant scalar fluctuation ¢(w,r) in the
absence of mixing with the metric fluctuations can be written as [232, 356, 357)
W2
12

'Here, we are strictly talking about central collisions. It has been proposed that off-center collision thermalization

. d .
6+ 5 (f)o+ 56 =0, (5:3)

could be studied with Myers-Perry black holes, which are a generalization of the familiar Kerr black holes. See
e.g. Ref. [342] and references therein.
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Figure 5.3: Left: location of the lowest quasinormal mode w shown for five different temperatures. Right:
thermalization time 7y, in units of 7, ! versus the temperature in units of T, T, being the critical temperature.

with the dot denoting a derivative with respect to . We can further mold this equation into a

Scrodinger-type form by introducing the variable

T dr!
u= /O s (5.4)
and defining ¢(u) = Vb3¢(u), giving us

=" (u) + Vaen (w3 2)9 (u) = w3 (u), (5.5)
302 3 f'i)}
z=2(u) 7

T (5.6)

Vaen(u, z) = f* BZ +
where the dash denotes a derivative with respect to u.

We require for the solution to be ingoing at the horizon, i.e. 1 o< et®% at large u. To obtain
the QNMs, we need to determine those eigenvalues w, for which the solutions that satisfy this
boundary condition are normalizable when v — 0. To implement these boundary conditions
simultaneously in the numerical computation, it is convenient to find the solution in the infrared

analytically and match it with the numerically determined ultraviolet solution.

The Heuristic Method

Here we will shortly elaborate on the numerical method, first introduced in Ref. [232], that we
used to finding the QNM spectra in article IT. Most of the other technical details, alongside the
results, are presented in the article, so we will not dwell on them too much here.

Eq. (5.5) is linear, so one would be tempted to think that finding the eigenvalues w would
be quite simple using the standard spectral methods, such as Chebyshev expansions together
with a Lobatto grid. However, these methods rely on the solution being regular in the boundary,
i.e. to be expanded in a power series, but in our bulk model the expansions contain logarithmic
corrections, foiling the plans of using spectral methods. Therefore, we need to find other ways of

numerically solving the equation.
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From a numerical point of view, we do not expect any w to be exactly at a QNM. It is therefore
reasonable to expect that the corresponding solution 1 contains a part of the non-normalizable
solution ¢(u = 0) = 1, meaning that v (u) — u~%/2, and diverges. For w close to a QNM, we
expect that the normalizable solution is dominant for closer to v = 0, and the divergence only
occurs when u is very small.

If one accepts this heuristic (which has been tested with known spectra), one can compute the
QNM spectrum by taking a trial value of w, then numerically finding the smallest local minimum
of |1(u)|, which we denote by u = umyi,. Computing this on a grid over the complex w-plane, we
get Umin(w), and the QNM spectrum is approximately given by the values of w which minimize

Umin (w) .

Results

Using the above method we get the lowest QNMs as a function of temperature, presented in the
left panel in Fig. 5.3 for temperatures ranging from T, to 37.. As mentioned above, it is argued
in Ref. [348] that the thermalization time is inversely proportional to the imaginary part of the
lowest-lying QNM. The thermalization time 7, presented in the right panel in Fig. 5.3 as a

function of temperature, is obtained for from the corresponding lowest mode via the relation [348]
Tth = —— . (5.7)

The curve for 7, (T) decreases slightly faster than 1/7, with the scale being of order 7y, ~
0.5/T. = 0.5 fm/c.

There is an interesting observation to be made about the behavior of higher QNMs as a
function of temperature. When computing a spectrum for a given temperature, we found clearly
separated, individual QNMs, which then terminate at an extended structure at a constant Im w,
with the number of accessible separate QNMs decreasing with increasing 7. One is tempted to
interpret this structure as a branch cut in the complex w-plane, as nearly similar behavior is seen
in other studies of QNM spectra (see e.g. Ref. [234]), but any certain statements cannot yet be
made. This behavior is discussed in some more detail in the article with examples of the spectra.

To relate our holographic results back to the context of heavy-ion phenomenology; we have seen
in Sections 4.2.1 and 4.3 that the finite temperature phase diagram of the holographic model we
employ agrees quantitatively very well with lattice results. We have furthermore demonstrated
that the model is also consistent with early thermalization dynamics. While both interesting for
the building of the holographic model, our results also give further support for the applicability
of hydrodynamics of a strongly coupled, rapidly equilibrating fluid, consisting of collectively
free quarks and gluons, as a model of the initial stages of the system created in ultrarelativistic

heavy-ion collisions.

54



Chapter 6
Neutron Stars and Holography

In the previous chapter, we established further confidence on the applicability of the holographic
model we set up in Chapter 4, the use of which in the study of quark-gluon plasma is already
bolstered to some extent by the preceding accomplishments of holographic methods concerning
the subject. Now, to further map the possibilities in the utilizing the model, we shall explore the
low-temperature, high-density regime of the QCD phase diagram realized in neutron stars.

The application of holographic methods in the study of neutron stars is a relatively young field,
emerging in recent years in concurrence with the breakthrough in gravitational wave astronomy
and more accurate astrophysical measurements of neutron star properties. These advances have
already allowed for constraining the QCD equation of state (EoS) in the low-temperature regime,
prompting a new era in the study of dense QCD. However, the densities reached in the cores of
neutron stars are currently out of reach of lattice simulations due to the sign problem, and we
thus need to find another first-principles approach to account for the sharpening picture we have
of the QCD EoS. On the grounds of the regime in question being strongly coupled, this seems to
accommodate the application of holographic methods.

In this chapter, we will first briefly review some information currently known about neutron
stars, with a focus on the constraints applied in articles I and ITI. Subsequently, we will discuss
the current state of theoretical knowledge as it relates to the microphysics of neutron stars. Then
we consider the content of articles I and III, with a focus on the latter, as it builds on the work
started in the former. We will look into how we use the existing effective models to complement
the holographic approach. We will then subject these hybrid EoSs to the astrophysical constraints
obtained from the study of neutron stars, discussing some of the implications and findings from

this procedure.

6.1 Neutron Stars

Neutron stars are the densest observed objects in the universe besides black holes. They are
created as remnants in supernova explosions of massive (M > 8 Mg, where Mg ~ 1.989 x 10%0 kg

is the mass of the Sun) main-sequence stars. These events ensue as the stars burn through their
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fuel up to iron-group elements, which start accumulating in the center of the star, leading to
the gravitational collapse of the core as its mass surpasses the Chandrasekhar limit of around
1.4M¢, [358-360], i.e. when the electron degeneracy pressure within the core is lower than the
gravitational pressure compressing it. Through many complex stages, this core collapse supernova
event leads to the birth of a black hole, or of a neutron star’.

These compact stars, while initially hot, rapidly cool down. Quiescent neutron stars have a
temperature below 100 eV [361], which, even though translating to approximately 10° kelvins,
is small compared to the QCD scale. Thus neutron stars can be considered low-temperature
objects for our purposes. In the following, we will discuss the properties of these objects in this

dormant state.

6.1.1 Neutron Star Observations

Since the discovery of pulsars? in 1967 [363], thousands of neutron stars have been observed [364],
and we have accrued some amount of data on them with some accuracy. Recent years have
seen a flood of new data thanks to progress in observational technology and the dawning of
the era of multimessenger astronomy, heralded by the LIGO/Virgo gravitational wave detection
of a neutron star binary merger [4, 5] in concert with the observation of its electromagnetic
counterpart [6].

In this section, we will briefly go through some of the key observables, some of which we have

utilized in articles I and III to constrain the holographic potentials.

Mass Measurements

The most accurate measurements currently available on neutron star masses are from observing
millisecond pulsars. The period at which these pulsars rotate is extraordinarily stable, allowing
for precise measurements of the properties of the system when bound in binaries. The total mass
of the system, along with the orbital size can be inferred from the Doppler shift. One can further
measure the Shapiro delay [365] in binaries with highly inclined orbits to deduce the mass of the
companion as the radiation from the pulsar is further delayed by the gravity of the companion
when the beam passes near it.

The most massive neutron stars observed by this method are PSR J1614-2230 with a mass
of M = 1.97 £+ 0.04Mg [366], PSR J0348+0432 with M = 2.01 + 0.04M [367], and MSP
JO7404+6620 with M = 2.147049 M, [368], all with 1-o confidence intervals.

Together with Low-Mass X-Ray Binary (LMXB) measurements (see e.g. Refs. [369, 370]), these
measurements provide convincing evidence for the existence of a neutron star with M ~ 2M,,

providing us with a stringent lower bound for the maximum mass of a neutron star.

!There are also other speculated possibilities, such as quark and twin stars, none of which have yet been confirmed
by observations.
2Quickly rotating compact stars [362], which emit electromagnetic radiation. The beam that the pulsar emits is

usually misaligned with the spin axis, making it seem to pulse when observed from Earth.
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There are no widely accepted observational upper bounds for the maximum mass of a neutron
star. However, the electromagnetic signal from the kilonova counterpart to GW170817 (which
we will discuss shortly) suggests that the remnant of the neutron star merger collapsed into a
black hole. This would set an upper bound for a mass of a non-rotating neutron star, with the
estimates being around 2.2Mg, [371-373].

Radius Measurements

Radius measurements of neutron stars have proven extremely difficult due to the small size of,
and large distance to the objects in question. However, the measurements have been getting
increasingly better in the past years, with multiple different strategies being developed.

Some interesting developments include the publication of the results by the NICER collab-
oration [374, 375], which studied the energy-dependent X-ray pulse waveform data from the
isolated millisecond pulsar PSR J0030+0451. They had two independent teams develop codes
to determine the pulse waveforms, using different models for the X-ray emitting spots on the
surface of the pulsar as well as for the instrumental response. The teams arrived at consistent
estimates for the mass and radius of the pulsar, with the 1-o results being indicated in Fig. 6.1,
with the data by Riley et al. in black and Miller et al. in blue.

Further promising results are achieved by applying state-of-the art atmospheric models to data
for the time-evolving type-I X-ray burst cooling tail spectra from LMXBs. The thermonuclear
bursts originate from the matter from the accretion hitting the surface and sinking into the
star until the pressure is high enough to fuse the nuclei together, starting a chain reaction that
engulfs the surface of the star, releasing a burst of X-rays, until all the new fuel is exhausted.
From observing the cooling tails of these bursts, one can infer properties such as the radius of
the star, assuming one knows the composition of the neutron star atmosphere. In Fig. 6.1, we
indicate some of these results; LMXB 4U 1702-429 (in dark cyan) from Ref. [376], 4U 1724-307
(in magenta), and SAX J1810.8-2609 (in light green) from Ref. [377]

Tidal Deformability Measurements from Neutron Star Mergers

The recent gravitational wave detection of a neutron star merger [6] has unlocked new possibilities
in probing neutron star properties. For our interests here, the most relevant parameter that
can be inferred from the data is the tidal deformability A, which quantifies the effect of an
external tidal field on the induced quadrupole moment of the star [378, 379]. This deformation
enhances gravitational wave emission, accelerating the decay of the inspiral, and thus affecting
the signal [378].

The parameter A is given by the equation [378, 379]

2 (2 R\’

where R is the radius of the star, M is its mass and the parameter ks is called the second Love
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number, the definition of which can be found in Ref. [379]. To determine ko for a given star,
one needs to know its mass and the EoS, making the determination of the tidal deformability a
subtle question.

In Ref. [5], the authors used Bayesian analysis to determine A based on the gravitational wave
observation from the inspiral. They sampled different equations of state?, requiring the EoS to
be causal, thermodynamically stable and internally and observationally consistent, and assuming
that both of the infalling bodies were slowly spinning neutron stars described by the same
EoS, they generated pairs of tidal deformabilities which were then used to compute waveform
templates for the merger events.

In this manner the tidal deformability for a M = 1.4M star was constrained with low-spin
priors to [5]

70 < A(1.4Mg) < 580, (6.2)

which provides a tighter constraint on A compared to the initial analysis in Ref. [4], where they
provided an upper limit A < 800 for the value. This is due to the assumption made in the later
analysis that both bodies involved in the merger were neutron stars described by the same EoS,
and have spins within the range of observed Galactic binary neutron stars.

The discussion of the exact dynamics of the merging system after the neutron stars touch is
beyond the scope of this thesis. The merger process has been recently reviewed in Ref. [380].
However, suffice to say that with some caution we can relate some of the characteristic frequencies
of the gravitational wave signal — including peak frequencies of the power spectral density of
the postmerger phase and the instantaneous frequency at the time of the merging of the stars —
back to observables computable from the EoS by universal relations based on hydrodynamics
and general relativity simulations [381-385].

6.1.2 Equation of State and the Structure of a Neutron Star

Although the first observations of neutron stars were made in 1967, their existence was already
proposed on a theoretical basis by Baade and Zwicky in 1934 # [388]. The theoretical interest in
neutron stars has increased in recent years because of the tantalizing prospects the observations
discussed above present. Due to their enormous density, neutron stars provide us with an
extraterrestrial laboratory to study the properties of QCD in extreme conditions differing from
the one studied in heavy-ion collisions, where the baryon densities are meager due to the presence
of antiparticles, but which probe considerably higher temperatures than are reached inside
neutron stars.

The connection between the thermodynamic properties of QCD at high densities (i.e. the

EoS) and the measurable macroscopic characteristics of quiescent neutron stars is provided

3The parametrization itself is model dependent, as it assumed that the logarithm of the adiabatic index v =
dIlnp/dlne can be expressed as a polynomial of the pressure.

4Arguably Landau anticipated the existence of neutron star-like objects, comparable to big nuclei, already in
1931 [386, 387].
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by the Tolman-Oppenheimer-Volkoff (TOV) equations [389, 390]. These equations allow us to
determine the mass and the radius of a self-gravitating, non-rotating®, spherically symmetric
body in hydrostatic equilibrium, given an EoS and the central pressure of the star. Examples of
M — R curves can be seen in Fig. 6.1.

For an isotropic, spherically symmetric star with the ideal fluid energy-momentum tensor

TH = diag(e, p, p, p), the TOV equations can be written as

dp  G(e +p/c)(m + drrdp/c?)

dr 2 r(r —2Gm/c?) ’ (6:3)
dm €

Rl .
I g (6.4)

where m is the gravitational mass enclosed within distance r from the center, p is pressure and
¢ is energy density. For a neutron star with total mass of M and a radius of R, the boundary
conditions in the center are m(r = 0) = 0 and p(0) = p. and £(0) = &, while at the surface
m(r=R) =M, p(R) =0 and £(R) = 0. Using these equations, we could determine the exact
M — R curve that encompasses all neutron stars fulfilling the above conditions, if we would just

know the exact EoS.

As was foreshadowed in Section 2.6, the dense, zero-temperature EoS is known to certain
extent for beta-equilibrated, strongly coupled matter in two opposing limits. In the low-density
limit, we can use both established nuclear physics models (see e.g. Ref. [395] and references
therein), and Chiral Effective Theory (CET) [137-139], to build the EoS. These various nuclear
matter models are constructed in the small density regime, where the physics is well understood,
and are then extrapolated to higher densities. There is a limit to their applicability — namely,
relying on the interactions between the nucleons being weak — causing the extrapolations to
eventually break down. CET, which is the state-of-the-art effective theory for neutron matter, is
expected to be more or less valid up until the baryon number density np is between 1ng to 2ng,
where ngy = 0.16/fm? is called the nuclear saturation density. Beyond this point, non-perturbative
effects are expected to lead to large differences in the equation of state [396-398].

At very high densities, asymptotic freedom ensures that eventually the coupling constant admits
perturbative computations [140, 399, 400]. The perturbative computations have uncertainties
in the EoS comparable to the CET calculations around np = 40n; [400, 401], where np is the
baryon number density. Between these two regimes, there is a gap in our knowledge, as the
established methods are not suited to deal with intermediate chemical potentials.

The cores of heavier neutron stars are expected to have a density of around np ~ 5 — 10ng,
meaning that the densities of neutron star cores fall well within this intermediate theoretical
nether-realm. However, various nuclear matter models are still applicable to study the (surface)

structure of neutron stars with some certainty.

SFor slowly rotating stars, a set of equations can be found in e.g. Refs. [391, 392]. The discussion for rapidly

rotating stars is more involved, and can be found in e.g. Refs. [393, 394]
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The Structure of Neutron Stars

Based on the models discussed above, the structure of a neutron star can be roughly divided into
three regions: the core, the crust and the atmosphere. Of these, the atmosphere consists of the
familiar, non-degenerate matter: electrons, ions, atoms and even molecules, but the thickness
of the layer is only O(cm) [402]. While the atmosphere does not significantly contribute to the
mass of the star, it is a key factor in determining the spectrum of the electromagnetic radiation
coming from the surface of the star, as was pointed out earlier in this chapter when we discussed

the radius measurements.

Beneath the atmosphere is the O(km) thick crust comprising of different sub-layers, which
may differ depending on the formation and the magnetic field of the star. The outermost layer
consists of a solid Coulomb crystal of charged particles, such as iron nuclei. As one goes deeper
in the crust, the fraction of free neutrons grows as the neutrons drip out of the nuclei, forming
a gas of neutrons in which the nuclei are embedded in the inner crust. Eventually, the matter
becomes so neutron-rich and the pressure so high that the matter forms a uniform liquid of
nucleons and electrons, with neutrons making the bulk of this strongly interacting Fermi liquid.
Below this layer the so called “pasta” layer, which forms as the nucleons pack close enough
together to arrange themselves into various exotic configurations, is believed to exist. In the
familiar picture, this is usually taken to be the bottom-most layer before the crust-core interface,
the exact location of which depends on the EoS, but is generally at around np ~ ng, as beyond
that point the nucleons begin to overlap, forming uniform nuclear matter. The structure of the

crust is reviewed in detail in e.g. Ref. [403].

The exact nature of the core, which is multiple kilometers thick and makes up a substantial
fraction of the total mass of the star, remains an open question. We have some certainty with
regards to the outer part of the core, which consists of nuclear matter, together with electrons
and possibly muons, with the physics being determined by beta equilibrium and many-body
nuclear interactions, as depicted by ab-initio methods. Below this layer, the results are heavily
model dependent, and the uncertainties in the EoSs grow significant, with various possibilities in

even the particle composition of the core being open.

Even if we have no tractable first-principles description of the core, its existence provides
us with an opportunity to study and constrain the QCD EoS in the intermediate regime of
ns < ng < 40ns by the use of astrophysical observations. Recent years have seen a lot of work
in this strain (see e.g. Refs. [401, 404-406] and references therein), and they usually include
some sort of interpolation between the two known realms, with some physical limitations, such
as causality and thermodynamic stability, being imposed on the interpolating functions. These
interpolating EoSs are then put through the TOV equations, and the astrophysical constraints are
imposed on the resulting M — R curves and tidal deformabilities, allowing one to also constrain

the space of possible interpolating functions.
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6.2 Neutron Stars in V-QCD

One cannot a priori know for certain, how well applicable holographic methods are in the study
of neutron stars. However, the success of holography in describing hot QGP might embolden
us to at least ponder whether it could also teach us something at finite baryon density. The
ability of holography to do so is not at all obvious at a glance, as the physics of matter at
finite density depend on N., whereas the gravity limit within the bulk dual framework relies
heavily on N, — oco. However, as we have discussed in the text above, we now are able to
include backreacted fundamental flavor in the holographic description, along with describing
finite chemical potential. Together with recent studies on both finite density quark matter and
neutron star physics (see e.g. Refs. [219, 407-412]) using holographic methods give us a reason
for optimism.

In articles I and ITI, we applied V-QCD to the study of the dense, cold QCD matter. In I, we
were using polytropic interpolations similar to the ones in Ref. [405] to quantify our ignorance of
the nuclear matter phase as we were describing the quark matter phase using holography. In
ITI, we expanded on this work, doing away with the interpolations and including baryons in the
homogeneous approximation in our description of the nuclear matter phase. As the later work in
article ITT complements and furthers the analysis that begun in article I, and the unique content
of article I — the fitting of the flavor potentials — was already discussed in Section 4.2.2, we will
not describe the results of I concerning neutrons stars here in detail.

As was mentioned in Section 4.1.2, the homogeneous approximation can only be expected
to be accurate when the interactions between the nucleons making up the nuclear matter are
strong and the baryon density is high. To complement this strongly coupled approach and in an
effort to quantify our ignorance of the correct weakly-coupled holographic nuclear matter EoS,
we employed the use of various nuclear matter models, the use of which we will discuss next.
From the point of view of the nuclear matter models, the holographic approach also complements
them, as they are reliable only up to around two times the nuclear saturation density, which is

much smaller than the transition density to quark matter.

6.2.1 Hybrid Equations of State

To combine the holographic and weakly coupled nuclear matter EoSs, we need to make the
transition as smooth as possible, since the two models are supposed to be different descriptions of
the same matter. In practice, we can only make the transition a second order one, as we have two
unfixed parameters in the holographic nuclear matter phase: ¢, which acts as a normalization of
the pressure in the holographic model; and b, which controls the location of the instanton in the
bulk and its coupling to the tachyon, as was discussed in Section 4.1.2.

Using these two parameters, we can join a given nuclear matter model with the V-QCD
model together at a given matching density n¢, by requiring that both the pressure and its first

derivative with respect to the chemical potential are equal in both descriptions in that point.
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Figure 6.1: (Left) The EoS cloud spanned by the hybrid EoSs. On the vertical axis is pressure p and on the
horizontal axis is energy density €. The EoSs satisfying both the maximum mass and the tidal deformability
constraints span the light red band, whereas the excluded EoSs span the striped band. Also presented is the cloud
spanned by the polytropic interpolations between the nuclear matter and the pQCD EoSs, which also satisfy both
the astrophysical constraints. Along with the bands, we present some examples of hybrid EoSs for the different
nuclear matter models used, combined with potential 7a at n¢./ns = 1.9, with a thick curve indicating that the
EoS satisfies the constraints.

(Right) The mass-radius cloud spanned by the hybrid EoSs. Also indicated are the 1-o results discussed in
Section 6.1.1, with the NICER analysis on PSR J00304+0451 from Ref. [374] being marked by the dashed blue
line and from Ref. [375] with the dashed black line, along with the fits for the time-evolving X-ray burst spectra
for 4U 1702-429 (dark cyan) from Ref. [376], 4U 1724-307 (magenta) and SAX J1810.8-2609 (light green), both
from Ref. [377].

This gives us a family of EoSs which are parametrized by the matching density nt, between the
two parts. We choose to examine the values lying within the range 1.2ns; < ny < 2.6ng, which,
as we will see shortly, is sufficient considering the constraints. This allows us to compute the
EoS varying ni,. We can then compute the astrophysical observables for these EoSs and apply
astrophysical constraints to limit our choice of ny,.

The matching density is not the only unknown parameter, however. As was discussed in
Section 4.2.2, the fitting of the flavor sector of V-QCD allows for different choices of parameters
that all result in excellent fits to the up = 0 lattice data. To represent the different possible
choices we analyzed in article I, we chose to work with three of the potentials in article ITI,
specifically potentials 5b, 7a, and 8b, ordered here from the softest to the stiffest®. It bears
repeating that for any given potential, the model describes both the dense nuclear matter phase
and the quark matter phase, with a first order transition between them. The strength of this
transition depends on the choices of the parameters ¢, and b, which will be determined by
constraining n;.

To allow for generic predictions to be made from our construction, and to properly parametrize

the uncertainty that is involved with models of nuclear matter at finite densities, we also

5The stiffer the EoS, the larger the pressure for a given density. A consistently stiffer EoS means that the matter

resists compression, leading to a larger radius for a given mass.
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Figure 6.2: The tidal deformability A(1.4Mp) (left) and the maximum mass (right) constraints on the hybrid
equations of state. The different colors indicate the nuclear matter model used, as explained by the label, and the
dotted, solid and dashed curves correspond with different choices of potentials in V-QCD, the parametrizations of

which are explained in Appendix A in article ITI.

considered a wide range of different nuclear matter models, as mentioned earlier. Varying
from soft to stiff, the models were the Hebeler-Lattimer-Petchick-Schwenk (HLPS) soft [138],
Akmal-Pandharipande-Ravenhall (APR) [413], Skyrme-Lyon (SLy) [414, 415], HLPS intermediate,
IUF [416, 417] and DD2 [418]. For our purposes, we need not consider EoSs that are stiffer than
DD2, as it is already too stiff to pass the astrophysical constraints, as we will see.

To summarize the construction, the hybrid EoSs effectively describe three regions:

e Weakly coupled nuclear matter, described by one of the nuclear matter models

i) 2nd order transition at n = ng,

¢ Dense nuclear matter described by V-QCD

1 15 order transition at n = ny,

¢ Quark matter described by V-QCD

Having constructed the hybrid EoSs, we can compute the associated M — R curves and the tidal
deformabilities and impose constraints on them based on the maximum observed mass (which
we take to be 2Mg) and the tidal deformability of a 1.4M neutron star. The cloud of EoSs and
M — R curves spanned by the hybrid EoS is presented in Fig. 6.1. Both My, and A(1.4Mg)
are presented in Fig. 6.2 as a function of the matching density ng;-.

The zones excluded by the constraints are indicated in the plots in Fig. 6.2 by the gray regions,
and the thick curves indicate the EoSs which pass both constraints. Different models of nuclear
matter are indicated by different colors, whereas the different dashings correspond to different
choices of V-QCD potentials. Also shown are the 1-o lower bounds for the mass measurements
for both J0348+0432 and J0740+6620 discussed previously in the chapter. One can immediately
note that the astrophysical constraints rule out the hybrid EoSs with DD2, effectively determining
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Figure 6.3: Radius of a 1.4 solar mass (left) and 2.0 solar mass (right) neutron star as a function of the matching

density n¢y. The thick curves satisfy the imposed astrophysical constraints.

an upper limit to the stiffness of the weakly coupled part of the nuclear matter EoS.
Because both curves are monotonically descending, the upper limit for A(1.4My) acts as a
lower limit for n¢,, and the lower limit for M.« acts as an upper limit for n,, bracketing the

permissible values for ny,.

6.2.2 Some Key Results

In article ITI, we discussed the results for a multitude of different observables from the analysis
of the hybrid EoSs. Here we will only focus on a few of them that seem especially relevant for
the preceding discussion.

The hybrid EoSs favor relatively large neutron star radii. The smallest of these radii are
achieved using HLPS soft together with the (generically considerably stiff) V-QCD EoS. This
large change in the stiffness of the EoS causes a considerable jump in the speed of sound at
the matching density. The EoSs more regular in the speed of sound favor larger radii. The
radii at both 1.4M¢ and at 2M, are presented in Fig. 6.3 as functions of the transition density.
Considered en masse, the hybrid EoSs satisfying the astrophysical constraints predict that the
radius of a 1.4 solar mass star is within the range

10.9 km < R(1.4My) < 12.8 km. (6.5)

Similarly, due to the stiffness of the EoSs, the produced tidal deformabilities are on the larger

side, with all constrained EoSs having
A(1.4Mg) Z 230. (6.6)

We should also note that for the hybrid EoSs satisfying the astrophysical constraints, the
deconfinement transition is strongly first order, with the latent heat Ae > 700 MeV/fm®. This,
together with the fact that for central pressures that could support quark matter the TOV
equations prove unstable (i.e. dM/dr > 0), makes quark matter cores in cold, quiescent neutron

stars unstable. We also came to the same conclusion in article I, where we used the V-QCD
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EoS for quark matter and combined it with quardutropes for nuclear matter. This does not
however mean that quasistable quark matter cores could not exist in mergers, as the latent heat
is expected to decrease with increasing temperature [419].

This finding is in stark contrast with analysis of e.g. Annala et al. [401], who claim that
massive neutron stars most likely contain massive quark matter cores. Their analysis was based
on multiple different kinds of interpolating functions — piecewise polytropic interpolations of
the pressure as a function of baryon density, spectral interpolations of the adiabatic index, and
piecewise linear interpolations of the speed of sound ¢2 — between the two well-controlled regimes,
and imposing astrophysical constraints similar to ours.

This disparity between the two approaches raises interesting questions, which have not yet
been fully explained, but to some extent they could be reflective of the assumptions Annala et al.

make about the adiabatic index v = 3}2’6’ in the quark matter phase, namely that if v < 1.75,

the EoS is describing a quark matter phase. However, for the hybrid EoSs, almost all models
show a high peak in 7 just above the matching density ny,, after which the index decreases fast,
reaching values near 1.5 in the nuclear matter phase. Because this kind of behavior does not
seem common in other models of nuclear matter, this might provide smoking gun evidence for

holography in dense stars.
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Chapter 7
Summary

In this thesis, we have discussed the application of holographic methods to probe the QCD phase
diagram, studying both out-of-equilibrium processes in the high-temperature, low-baryon density
region, and in the high-density, low-temperature regime of neutron stars.

The motivation for using holography to study QCD is founded on the theory being strongly
coupled at low energies, which has provided researchers with theoretical challenges for decades.
To combat this, frameworks such as lattice QCD have been developed, but they too have their
shortcomings, namely reproducing real-time dynamics and finite chemical potentials.

The need for new methods to tackle strongly coupled systems has been accentuated, as both
the high-temperature and high density realms of the QCD phase diagram have become under
newfound empirical scrutiny. This has been made possible by both the collider experiments
probing the properties of hot QCD matter resulting from heavy-ion collisions, as well as the
recent gravitational wave detection of a neutron star merger, which has allowed us an access to
high-density laboratories out of reach for Earth-bound colliders.

Holography has arisen as a tool — if one wishes to view it as such — to study strongly coupled
gauge theories by providing a link between said theories and weakly coupled gravity theories
living in a higher-dimensional spacetime. However, there is still no known gravity dual for QCD,
and so to study it, one needs to resort to modeling. The different holographic models have
already had a lot of success in describing the dynamics of quark gluon plasma, its properties and
hydrodynamization.

In Chapter 4, we presented the model that is in the heart of the articles that form this
thesis. We considered the construction of the model, motivations behind choosing the action
and the fusing together of the string-inspired gluonic action and the tachyonic Dirac-Born-Infeld
flavor action, which are fully backreacted in the Veneziano limit. We also reviewed the recently
introduced homogeneous approximation of baryons within the V-QCD framework that allows
us to include a description of nuclear matter in the description of the QCD phase diagram, a
holographic version of which was also provided later on in the chapter. We also discussed the
effective potentials, and how their asymptotics are determined so as to reproduce qualitative

properties of QCD, such as confinement and the logarithmic running of the coupling, and we
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then used both the running coupling and lattice QCD results to fix parameters. The resulting
fits were stiff, and for the flavor potential, multiple different sets of parameter choices produce
equally good fits, thus calling for further constraints on the model, as was found in article I.

However, we first discussed the phenomenology associated with heavy-ion collisions, and
discussed the work done in article II, where we considered the quasinormal mode spectrum
of a scalar field for a range of temperatures from 7. up to 37, in the gluonic part of V-QCD,
Improved Holographic QCD. The quasinormal mode spectrum of the gravity dual is connected
to the equilibration of the boundary theory, and therefore we could make predictions on the
thermalization timescale associated with the out-of-equilibrium plasma that is created in heavy-
ion collisions. We obtained a very phenomenologically reasonable estimate for the thermalization
time of the correlator. Moreover, we found qualitatively interesting behavior associated with the
quasinormal mode spectrum: instead of a clean spectrum of individual modes, there emerged an
additional a linear structure parallel to the real axis of the complex frequency plane, the existence
of which might be interpreted to suggest the presence of a branch cut. Similar behavior of has
been observed in both kinetic theory [420] and some holographic models at finite coupling [234,
421].

After that, we moved to discuss neutron stars, both from the point of view of astronomical
observations as well as particle physics. This, in the dual purpose of constraining the effective
potentials — including the description of strongly coupled nuclear matter as in article III — by
the use of astrophysical constraints, and also to see if we could already make some predictions
on the structure and properties of neutron stars. We found that V-QCD, combined with nuclear
models in the weakly coupled regime in an effort to parametrize our ignorance on the weakly
coupled nuclear matter description, provides viable equations of state which satisfy the current
astrophysical bounds. The model has strong predictive power, with the qualitative features of
the models being similar with different parameter choices. The constructed hybrid equations of
state were generically stiff, producing stars with larger radii, tidal deformabilities and speeds of
sound. The model does not support the existence of stable quark matter cores within quiescent
neutron stars.

In the future, both of these lines of research could be furthered in many ways. In the study of
the quasinormal mode spectrum, it would be interesting to use the full V-QCD machinery by
including dynamical quarks, and to further study the emerging linear structure in the complex
frequency plane and include q # 0 into the fluctuation equations. Whereas in the case of neutron
stars, one could improve on the description of the nuclear matter phase and include non-zero
or even flavor-dependent quark masses. Also, if one wishes to fully study neutron star mergers
within the model, the finite temperature effects cannot be ignored. Most of these improvements
are quite realistically implemented soon, and we will hopefully get an even more vivid picture of
the possibilities that holography provides for the study of QCD.
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