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Abstract. Quantum tunneling of the magnetization is a phenomenon that impedes the use of small
anisotropic spin systems for storage purposes even at the lowest temperatures. Phonons, usually consid-
ered for temperature dependent relaxation of magnetization over the anisotropy barrier, also contribute to
magnetization tunneling for integer spin quantum numbers. Here we demonstrate that certain spin–phonon
Hamiltonians are unexpectedly robust against the opening of a tunneling gap, even for strong spin–phonon
coupling. The key to understanding this phenomenon is provided by an underlying supersymmetry that
involves both spin and phonon degrees of freedom.

1 Introduction

Single-ion magnetic anisotropy provides the simplest
mechanism for fundamental phenomena such as mag-
netic bistability as well as quantum tunneling of the
magnetization [1–3]. The Hamiltonian is so simple that
any student after an introductory course on quantum
mechanics can diagonalize it. It consists of two terms:

H∼ SI = D(s∼z)2 + E
{

(s∼x)2 − (s∼y)2
}

(1)

= D(s∼z)2 +
E

2

{
(s∼

+)2 + (s∼
−)2

}
, (2)

which, for obvious reasons, have been termed D- and
E-term, see, e.g., [1] for a full account of the story. A
negative D, D < 0, results in an easy-axis anisotropy
which, in the absence of the E-term, would express itself
as a perfect parabolic anisotropy barrier, compare l.h.s.
of Fig. 1. E leads to a splitting of the otherwise degen-
erate pairs of levels left and right of the barrier if the
considered spin is integer, compare r.h.s. of Fig. 1. If
the spin is half integer, Kramers’ theorem applies, and
the levels are bound to be degenerate for B = 0.

In a magnetic field applied along the easy-axis one
encounters a perfect level crossing for E = 0; such
systems—single ion magnets (SIM) or single molecule
magnets (SMM)—do show bistability of the magneti-
zation and are thus suitable candidates for magnetic
storage devices [5–12]. In case of a splitting of the two
lowest levels, one observes an avoided level crossing as

a e-mail: jschnack@uni-bielefeld.de (corresponding
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a function of applied field as depicted on the r.h.s. of
Fig. 1. The magnetization is not bi-stable at B = 0,
instead it tunnels as described for two-level systems by
Landau, Zener, and Stueckelberg [13–15]. The splitting
therefore is also called tunnel splitting.

To our surprise, this simple scheme—tunnel splitting
for integer spins, no tunnel splitting for half-integer
spins— needs a modification for integer spins in the
case of phonon-induced tunnel splitting, if the spin is
coupled to phonons of the material in a certain way.
It may then happen that the tunnel splitting opens
up only for even spin quantum numbers, whereas one
observes a perfect level crossing in the case of odd spin
quantum numbers.

This behavior is exceptional for two reasons. The
insight that spin–phonon interactions open a tunnel
splitting dates back to the late 1960’s [17–19] and was
discussed in connection with molecular magnetism ever
since then, see, e.g., [20–26]. Here we demonstrate with
an example that special phonon modes exist that do
not open up a tunneling gap, independent of the spin–
phonon coupling strength. The second unexpected find-
ing is that this behavior is not rooted in the phonon
subsystem alone but can be traced back to a combined
symmetry of the spin and phonon modes, which resem-
bles a supersymmetry of the problem. Note that the
authors of [27] have already recognized that the rules
concerning the occurrence of avoided level crossings are
overridden by existing symmetries. We provide a fun-
damental example.

The article is organized as follows. In Sect. 2, we
introduce our model and the applied method. Section 3
presents the results. After a discussion in Sect. 4 and the
references an extended appendix provides more detailed
insight.
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Fig. 1 L.h.s.: Sketch of the low-lying energy levels of a
spin s = 3 with dominant easy-axis anisotropy vs. magnetic
quantum number. Red bars denote energy eigenvalues. Blue
arrows show magnetization tunneling pathways for states
with negative magnetic quantum number, and green arrows
depict some of the possible excitations due to phonons, com-
pare e.g. [4]. R.h.s.: Example of a tunnel splitting for a spin
s = 1 with D < 0 and E �= 0 anisotropy terms

2 Model and method

Specifically, we consider the following Hamiltonian

H∼ = H∼ SI + H∼HO + H∼Zeeman , (3)

where the interaction of the spin with the phonons of
the system is reduced to a single harmonic oscillator:

H∼HO = ω
(
a∼

†a∼ + 1
2

)
, (4)

for educational reasons. a∼
† and a∼ are the creation and

destruction operators of a certain normal mode that
couples to the spin as outlined below. The spin also
interacts with the external magnetic field along the easy
axis described by H∼Zeeman.

Key to our observation is the way the oscillator mode
couples to the spin. Out of the many couplings possi-
ble [16,21–25,28], we investigate those cases where the
phonons modify only the E-terms, compare Fig. 2 and
first term of Eq. (6) of Ref. [16] for a specific relation to
the strain tensor. We assume two different couplings, a
linear coupling

E = α1

(
a∼

† + a∼

)
, (5)

where E is proportional to the generalized coordinate
of the normal mode as well as a quadratic coupling

E = α2

(
a∼

† + a∼

)2

. (6)

It will later turn out that the fundamental difference
we found exists between odd and even powers of the
generalized coordinate

(
a∼

† + a∼

)
of the normal mode.

Hamiltonian 3 can be diagonalized numerically
exactly using the product basis |m,n 〉, with m being
the magnetic quantum number and n the oscillator

Fig. 2 Sketch of the coupling of the anisotropy tensor to
phonons of the material. The reddish ellipsoid represents
the anisotropy tensor whose components (E-terms) along
major axes perpendicular to the easy axis are modified via
a coupling to a special phonon mode (green coil). For a
relation to the strain tensor compare e.g. the first term of
Eq. (6) of Ref. [16] for a specific example

quantum number, if n is cut at some maximal value
nmax. We investigated various nmax = 0, 1, . . . , 5, and
it turns out that small nmax, even nmax = 1, are suf-
ficient to accurately describe ground state properties
[26].

3 Results

A numerical diagonalization with practically arbitrary
parameters reveals that an odd–even effect determines
the tunnel splitting for the linear coupling, see Fig. 3.

Fig. 3 Linear coupling: Lowest energy eigenvalues relative
to E0 vs. magnetic field strength for different integer spin
quantum numbers s = {1, . . . , 4} (from left to right and top
to bottom) with D = −5, nmax = 1, α1 = 0.5, ω = 5 in
natural units. E0 denotes the ground state energy at B = 0
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Fig. 4 Quadratic coupling: Lowest energy values relative
to E0 vs. magnetic field strength for different integer spin
quantum numbers s = {1, . . . , 4} (from left to right and top
to bottom) with D = −5, nmax = 1, α2 = 0.5, ω = 5 in
natural units. E0 denotes the ground state energy at B = 0

For the quadratic coupling, the tunneling gap opens for
all integer spins, compare Fig. 4. The behavior persists
for higher spin quantum numbers and nmax as we have
numerically verified.

The case of a quadratic coupling, or in general of a
coupling with an even power of

(
a∼

† + a∼

)
, can be imme-

diately understood when considering that, whatever the
eigenstates of the total Hamiltonian 3, the oscillator
part will contribute zero-point motion, i.e. a parameter
E definitely larger than zero. Similar to the case with
constant E, these yield a tunnel splitting for all integer
spin quantum numbers [25,26].

The case of a linear coupling, where the unexpected
level crossings for odd integer spins occur, needs a
deeper investigation. The key to understanding this
phenomenon is provided by an underlying not yet
considered supersymmetry together with some reason-
able estimates. To this end we rewrite Hamiltonian
2 using for the normal mode the coordinate operator
ξ
∼

∝
(
a∼

† + a∼

)

H∼ SI = D
(
s∼z

)2 + α
√

2μω ξ
∼

[(
s∼x

)2 − (
s∼y

)2]
, (7)

with μ being the oscillator mass (� = 1 throughout the
paper). It is now more obvious that this operator, and
also the full Hamiltonian without Zeeman term, have
got a fourfold symmetry with respect to the following
symmetry operation

U∼ = exp
{

−iπs∼z/2
}

⊗ Π∼ , (8)

which inverts ξ (parity operation Π∼ acting on ξ) and
simultaneously rotates the spin vector operator about
its z-axis by π/2. The cyclic group generated by U∼
is of order four and has got four irreducible repre-

Fig. 5 Graphical representation of the four sets of prod-
uct basis states spanning H�, � = 0, 1, 2, 3 (clockwise from
3 o’clock) according to their eigenvalue with respect to the
symmetry transform U∼, see (9). m denotes the magnetic

quantum number, k is an integer, and n is the oscillator
quantum number

sentations that may be labeled by their characters
exp{−iπ�/2}, � = 0, 1, 2, 3. All four irreps are realized
by product basis states that are already eigenstates of
U∼:

U∼ |m,n 〉 = exp {−iπm/2} (−1)n |m,n 〉 (9)

= (−i)m(−1)n |m,n 〉 , (10)

and can thus be grouped according to these eigenval-
ues. Therefore, the total Hilbert space can be decom-
posed into four mutually orthogonal subspaces H =
H0⊕H1⊕H2⊕H3. This is graphically depicted in Fig. 5.

The system possesses a second symmetry

V∼ = exp
{

−iπs∼x

}
⊗ 1∼, (11)

which affects the spin part only. It leaves s∼x invariant
and rotates s∼y and s∼z into their respective negatives.
This operation also commutes with the Hamiltonian,
since H∼ depends on the squares of these operators. But
symmetry V∼ does not commute with U∼, at least not
on the full Hilbert space. However, thanks to the prop-
erties of Hamiltonian 1, basis states |m,n 〉 are only
connected to |m,n 〉 by (s∼z)2 and to |m ± 2, n 〉 by
(s∼

+)2 and (s∼
−)2, which divides the Hilbert space into

a direct sum of two mutually orthogonal subspaces for
even and odd m, that is

H = Heven ⊕ Hodd, with (12)
Heven = H0 ⊕ H2, (13)
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Hodd = H1 ⊕ H3. (14)

U∼ and V∼ commute on Heven, whereas they anticom-
mute on Hodd. Using concepts from supersymmetry,
where U∼ and V∼ can be embedded into a Lie superal-
gebra [29], one can derive the following conclusions, see
also appendix.

One can show that symmetry V∼ maps H1 onto H3

and vice versa and eigenstates of H∼ that are element
of one of these two subspaces onto the respective eigen-
states in the other space. Therefore, their energy eigen-
values must be at least twofold degenerate. V∼ leaves H0

and H2 invariant. Since H1 and H3 contain the states
with odd m quantum number, these states are bound
to be degenerate at B = 0 and thus have to cross.
Eigenstates with even values of m are not degenerate
by symmetry, except for a possible, but unlikely acci-
dental degeneracy. These levels split, and therefore we
observe an avoided level crossing in such cases.

Although from the point of view of applications only
interesting for the ground state, this observation holds
also for excited states. All levels that have been degen-
erate for E = 0 split under linear coupling to phonons
if m is an even integer and they remain degenerate if
m is an odd integer.

The question whether the pair of levels that make
up the ground state without anisotropy, i.e. without
coupling to the phonons, remains a (tunnel-split) pair of
ground state levels shall be answered using perturbation
theory. If the interaction with the phonon subsystem
is weak, i.e., much weaker than given by the energy
scale provided by the easy-axis anisotropy D—and only
these systems are technologically interesting—we find
that the ground states consist to a large extent of

|m = s, n = 0 〉 and |m = −s, n = 0 〉 (15)

for odd m and of the two superpositions

|m = s, n = 0 〉 ± |m = −s, n = 0 〉 (16)

for even m. Admixtures of other basis states remain
very small, see analytical examples for s = 1 and s = 2
in the appendix. Therefore, the related energy eigen-
values of the ground states also deviate only little from
those of the axial system with E = 0. Our numerical
studies for spin quantum numbers up to s = 8 and
nmax = 5, of which a part is shown in Figs. 3 and 4,
arrive at the same conclusions.

4 Discussion

The aim of the present paper is not to solve the spin–
phonon problem in all details or to model specific mag-
netic molecules realistically. Instead, our findings pro-
vide an interesting insight into the effect of certain
phonon modes on the tunneling gap at an avoided level

crossing. Counter-intuitive for a physics approach, the
linear term of a power series describing the interaction
of the phonon mode with the E term of the anisotropy
tensor—which one would naively assume to have the
strongest effect—does not lead to any tunnel splitting
in the case of odd integer spin quantum numbers. It
is the quadratic term that does the job. The symmetry
argument we found holds for all odd powers of

(
a∼

† + a∼

)

where no splitting is observed for odd integer spins,
whereas for all even powers thereof, a tunnel splitting
exists.

Further on, the argument carries through also for
coupled spins. If spins interact via a Heisenberg inter-
action, and if the phonons affect the anisotropy tensors
as described, our findings hold for the zero-field split
multiplets in case of integer total spin.

Thus, we understand from a more fundamental point
of view why a phonon that tilts an anisotropy ten-
sor, as investigated in [26], always opens a tunnel-
ing gap (for any integer spin). The tilt, expressed as
changes of both E and D, yields a Taylor series in E
that contains only even powers of the oscillator elon-
gation. Thanks to the zero-point motion of the oscil-
lator, this leads to E > 0 and an immediate opening
of the tunneling gap, as explained above. In addition,
also D is modified contrary to the investigation in this
paper.

In a real magnetic molecule many phonon modes
contribute to the physical behavior [17–25]. However,
the rational design of ligands and chemical bonds aims
at reducing the number of decohering and relaxing
low-energy modes. It is therefore desirable to qual-
itatively understand the character of the remaining
active modes. With this article we hope to contribute
insight for a class of supersymmetric spin–phonon sys-
tems where due to an odd-even effect the impact on the
tunneling gap is known a priori.

Odd-even effects appear in many places in physics. In
the context of tunneling and supersymmetry, we found
an article on Inelastic cotunneling into a superconductor
nano particle, where odd and even numbers of tunneling
electrons behaved differently [30], for curiosity.
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A Appendix

In this appendix, we will substantiate the statements in the
main part of the paper about the role of supersymmetry for
the problem under consideration, see Sect. A.1. In the fol-
lowing two sections, we will further confirm the numerical
results on the degeneracy of the ground state by exact ana-
lytical diagonalization of the Hamiltonian (without Zeeman
term) for the case of s = 1, see Sect. A.2, and by rigorous
estimates for the analogous case of s = 2, see Sect. A.3.

A.1 Role of supersymmetry

The even-odd effect described in the main part of the paper
depends on the fact that the second symmetry:

V∼ = exp
{

−iπs∼x

}
⊗ 1∼ (17)

permutes the eigenspaces H�, � = 0, 1, 2, 3, of the first sym-
metry

U∼ = exp
{

−iπs∼z/2
}

⊗ Π∼, (18)

in the following way:

V∼ H0 = H0, V∼ H2 = H2,

but V∼ H1 = H3 and V∼ H3 = H1. (19)

This in turn follows from the observation that U∼ and V∼ com-

mute on the subspace Heven = H0 ⊕ H2, but anti-commute
on Hodd = H1 ⊕ H3. In fact, let φ ∈ H�, � = 1, 3, be an
eigenvector of U∼,

U∼ φ = (−i)� φ, (20)

then it follows that

U∼

(
V∼ φ

)
= −V∼ U∼ φ (21)

(20)
= −V∼ (−i)� φ (22)

= (−i)�+2
(
V∼ φ

)
. (23)

Hence, V∼φ ∈ H�+2, where �+2 is understood modulo 4, and

V∼ maps H� onto H�+2 for � = 1, 3, if
{

U∼, V∼

}
= 0 on Hodd.

This particular situation concerning the symmetries U∼, V∼
can be conveniently reformulated by using concepts from

supersymmetry. This reformulation could also be useful to
identify other examples that fit into the same scheme. In
particular, we will embed U∼ and V∼ into a Lie superalge-

bra such that these symmetries “super-anticommute” in a
sense to be explained. Since the spacial factors of U∼ and V∼ ,

namely Π∼ and 1∼, commute anyway, it will suffice to con-

sider their spin factors and hence to confine ourselves to
finite-dimensional Lie superagebras.

Recall that a Lie superalgebra (LSA) is defined as a Z2-
graded algebra. This means it is a linear space (over the
field R or C) of the form

A = A0 ⊕ A1 , (24)

equipped with a bilinear map

[ , } : A × A → A , (25)

called the “super-bracket”. An element a ∈ A0 or a ∈ A1 is
called “homogeneous of degree |a|” if a ∈ A|a| and the fol-
lowing axioms (26)–(28) are understood to hold for homo-
geneous elements.

| [a, b} | = |a| + |b| mod 2 ,

“Z2 − grading” (26)

[a, b} = − (−1)|a| |b| [b, a} ,

“(anti)symmetry” (27)

[a, [b, c}} = [[a, b} , c} + (−1)|a| |b| [b, [a, c}} ,

“Jacobi identity” (28)

see, e. g., [29].
In the following we will only use a special complex LSA

defined as follows: Let s be an (integer) spin quantum num-
ber and M0 denote the space of all complex (2s+1)× (2s+
1)-matrices. Let M1 be a copy of M0 such that

M = M0 ⊕ M1 . (29)

The matrices M ∈ M0 will be called “even” and those
of M1 will be called “odd”. The Lie superbracket [ , } is
defined as the commutator [A, B] ∈ M0 for A, B ∈ M0, or,
similarly, as [A, B] ∈ M1 for A ∈ M0 and B ∈ M1. On
the other hand, the superbracket between two odd matrices
A, B ∈ M1 is defined as the anti-commutator {A, B} ∈ M0.
Finally, the superbracket is extended to M by means of
bilinearity. It is straightforward to show that (26)–(28) is
satisfied and hence (M, [, }) will be a complex LSA.

We will denote by U and V the spin factors of U∼ and V∼ ,

resp., that w.r.t. the eigenbasis |m〉, m = −s, . . . , s, of s∼z

assume the form:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 i 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 −i 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)
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and

V = (−1)s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 . · ·

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

. · · 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

Next, we split U and V into “even” and “odd” parts accord-
ing to

U = U0 + U1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(32)

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −i 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

and

V = V0 + V1

= (−1)s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 . · ·

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

. · · 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)

+ (−1)s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 . · ·

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

. · · 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

We embed these parts into M such that

U0, V0 ∈ M0 and U1, V1 ∈ M1 . (36)

W.r.t. this embedding it can be easily shown that the fol-
lowing holds:

Proposition 1

[U,V} = 0, (37)

that is,

[U0,V0] = [U0,V1] = [V0,U1] = 0,

and {U1,V1} = 0. (38)

Thus, the general scenario where we can expect a similar
alternating behaviour between level crossing and avoided
level crossing as in the present paper is the case where there
exist two super-commuting symmetries. Further aspects of
super-symmetric quantum mechanics like the occurrence of
super-symmetric pairs of Hamiltonians do not appear to be
realized in the present case.

A.2 Exact diagonalization for s = 1

The phenomenon of degenerate eigenspaces caused by
super-symmetry occurs for all Hamiltonians of the form pro-
vided by Eqs. (4) and (8) in the main document, such that
B = 0 and hence H∼ Zeeman = 0. The latter condition will

be tacitly assumed in the remainder of this section, i. e., we
always write

H∼ = H∼ SI + H∼ HO

= D(s∼z)
2 ⊗ 1∼ +

α

2

{
(s∼

+)2 + (s∼
−)2

}
⊗ x∼ (39)

+1∼ ⊗ ω

(
a∼

†a∼ +
1

2

)
, (40)

using
(
(s∼x)2 − (s∼y)2

)
= 1

2

(
(s∼

+)2 + (s∼
−)2

)
. Additionally,

the question arises whether the ground state is degenerate,
i.e., whether the ground state lies in one of the subspaces H1

or H3 and hence in both. Numerical evidence suggests that
this will be the case for D < 0 and odd s. In this section
we will confirm this finding by exact diagonalization of the
Hamiltonian for s = 1 and B = 0.

Since the Hamiltonian H∼ leaves the eigenspaces H� of

U∼ for � = 0, 1, 2, 3 invariant, it is possible to perform the

diagonalization for each of the four subspaces separately.
Due to the symmetry V∼ only one of the two cases H1 or H3

needs to be considered.

A.2.1 Subspace H1

The subspace H1 is spanned by the product states

|m, n〉 = |(−1)n+1, n〉, n = 0, 1, 2, . . . . (41)

Let H denote the matrix of H∼ w. r. t. this basis. It is tri-

diagonal since x∼ is represented by a tri-diagonal matrix. The

diagonal elements of H are obtained as

Hnn =
〈
(−1)n+1, n

∣∣∣ H∼

∣∣∣ (−1)n+1, n
〉

= D
〈
(−1)n+1

∣∣∣(s∼z)
2
∣∣∣ (−1)n+1

〉
(42)

+ω
〈
n

∣∣∣
(
a∼

†a∼ + 1
2

)∣∣∣ n
〉

(43)
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= D + ω
(
n + 1

2

)
, (44)

since 〈n|x∼|n〉 = 0. For the upper secondary diagonal of H

we have

Hn,n+1 =
〈
(−1)n+1, n

∣∣∣ H∼

∣∣∣ (−1)n, n + 1
〉

= α
2

〈
(−1)n+1

∣∣∣(s∼+)2 + (s∼
−)2

∣∣∣ (−1)n
〉

× (45)

〈
n

∣∣∣x∼
∣∣∣ n + 1

〉
(46)

= α
√

2 μ ω n, (47)

since the secondary diagonal matrix elements of (sz)
2 and

H∼ HO vanish and

(s∼
+)2 + (s∼

−)2 =

⎛
⎝

0 0 2
0 0 0
2 0 0

⎞
⎠ . (48)

Obviously, Hn+1,n = Hn,n+1.
It follows that H is the same matrix as that of the oper-

ator

K∼ ≡ H∼ HO + D 1∼ + α x∼, (49)

w. r. t. the harmonic oscillator eigenbasis |n〉, n = 0, 1, 2, . . ..
Neglecting for the moment the constant energy shift due to
D 1∼ we may write

H∼ HO + α x∼ = 1
2μ

p
∼
2 + μω2

2
x∼
2 + αx∼ (50)

= 1
2μ

p
∼
2 + μω2

2

(
x∼ + x0

)2

− μω2

2
x2
0, (51)

where

x0 ≡ α

μω2
. (52)

We conclude that K is the matrix of a harmonic oscillator
Hamiltonian with a spatially shifted minimum of the poten-
tial and a constant energy shift of

δE = D − μ ω2

2
x2
0
(52)
= D − α2

2 μ ω2
. (53)

Its eigenvalues are hence of the form

E(1)
n = ω

(
n + 1

2

)
+ D − α2

2 μ ω2
, (54)

with the relative ground state energy

E
(1)
0 =

ω

2
+ D − α2

2 μ ω2
. (55)

Moreover, this result supports the remark in the main doc-
ument referring to Eq. (15), since the ground state of the
shifted oscillator and the ground state of the unshifted have
a considerable overlap for small x0.

A.2.2 Subspace H0

The subspace H0 is spanned by the product states

|m, n〉 = |0, n〉, n = 0, 2, 4, . . . . (56)

Since the matrix elements of x∼ between different states of

this basis vanish the matrix K of the restriction of H∼ to

the subspace H0 is already of diagonal form. Its diagonal
elements that represent the energy eigenvalues read

Kn,n =
〈
0, n

∣∣∣1 ⊗ H∼ HO + D(s∼z)
2 ⊗ 1

∣∣∣ 0, n
〉

(57)

= ω
(
n + 1

2

)
, (58)

for n = 0, 2, 4, . . ., and yield the relative ground state energy

E
(0)
0 =

ω

2
. (59)

A.2.3 Subspace H2

Analogously to Sect. A.2.2, the subspace H2 is spanned by
the product states

|m, n〉 = |0, n〉, n = 1, 3, 5, . . . . (60)

Since the matrix elements of x∼ between different states of

this basis vanish, the matrix K of the restriction of H∼ to

the subspace H0 is already of diagonal form. Its diagonal
elements read

Kn,n =
〈
0, n

∣∣∣1 ⊗ H∼ HO + D(s∼z)
2 ⊗ 1

∣∣∣ 0, n
〉

(61)

= ω
(
n + 1

2

)
, (62)

for n = 1, 3, 5, . . ., and yield the relative ground state energy

E
(2)
1 =

3 ω

2
(
(59)
> E

(0)
0 . (63)

A.2.4 Total ground state

Summarizing the results of the Sects. A.2.1–A.2.3 we con-

clude that E
(1)
0 according to (55) represents the total ground

state energy since

E
(1)
0 − E

(0)
0 = D − α2

2 m ω2
< 0 (64)

according to the assumption D < 0 made in this section.
This completes the arguments for the groundstate lying in
the subspace Hodd in the case of s = 1.

A.3 Ground state for s = 2

According to numerical evidence, the groundstate lies in
Heven for even s. We will confirm this result by rigorous
estimates of the (relative) ground state energies for s = 2.
We again consider the Hamiltonian (40) and the various
invariant subspaces H�, � = 0, 1, 2, 3.
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A.3.1 Subspace H1

The results of Subsection A.2.1 can largely be adopted, with
the exception that for s = 2 the matrix of (s∼

+)2 + (s∼
−)2

assumes the form

(s∼
+)2 + (s∼

−)2 =

⎛
⎜⎜⎜⎜⎝

0 0 2
√

6 0 0
0 0 0 6 0

2
√

6 0 0 0 2
√

6
0 6 0 0 0

0 0 2
√

6 0 0

⎞
⎟⎟⎟⎟⎠

. (65)

By comparison with (48) this means that the parameter α
in Sect. A.2.1 has to be replaced by 3 α for the present case
which gives the new expressions for the eigenvalues:

E(1)
n = ω

(
n + 1

2

)
+ D − 9 α2

2 μ ω2
, for n = 0, 1, 2 . . .(66)

and the relative ground state energy

E
(1)
0 =

ω

2
+ D − 9 α2

2 μ ω2
. (67)

A.3.2 Subspace H2

The subspace H2 is spanned by the product states

|m, n〉 = | ± 2, 0〉, |0, 1〉, | ± 2, 2〉, |0, 3〉, . . . . (68)

It can be further split into the two eigenspaces of V∼ formed

by symmetric or antisymmetric linear combinations of the
states |±m, n〉 in (68). These eigenspaces are also left invari-
ant by the Hamiltonian H∼ . In the following, we only consider

the symmetric subspace H2,s spanned by the states

|2̃, 0〉, |0, 1〉, |2̃, 2〉, |0, 3〉, . . . , (69)

where |2̃〉 denotes the spin state

|2̃〉 =
1√
2

(|2〉 + | − 2〉) . (70)

Let K denote the matrix of the Hamiltonian H∼ w. r. t. the

basis (69). Its diagonal entries read

Kn,n =
〈
2̃, n

∣∣∣1 ⊗ H∼ HO + D (s∼z)
2 ⊗ 1

∣∣∣ 2̃, n
〉

(71)

= ω
(
n + 1

2

)
+ 4D, for even n. (72)

Here we have used that the state |2̃〉 is an eigenstate of (s∼z)
2

corresponding to the eigenvalue m2 = 4. Analogously,

Kn,n =
〈
0, n

∣∣∣1 ⊗ H∼ HO + D (s∼z)
2 ⊗ 1

∣∣∣ 0, n
〉

(73)

= ω
(
n + 1

2

)
, for odd n, (74)

since the state |0〉 is an eigenstate of (s∼z)
2 corresponding to

the eigenvalue m2 = 0.
For the upper secondary diagonal entries of K, we first

consider the case of even n and obtain

Kn,n+1 =
α

2

〈
0, n

∣∣∣
(
(s∼

+)2 + (s∼
−)2

)
⊗ x∼

∣∣∣ 2̃, n + 1
〉

=
α

2
√

2

(
〈0

∣∣∣(s∼
+)2 + (s∼

−)2
∣∣∣ 2〉

+ 〈0
∣∣∣(s∼

+)2 + (s∼
−)2

∣∣∣ − 2〉
)

〈n|x∼|n + 1〉(75)

(65)
= =

α

2
√

2

(
2 × 2

√
6
) √

2 μ ω n (76)

= α 2
√

3
√

2 μ ω n. (77)

The result for odd n is the same. It follows that, analogously
to Sect. A.2.1, K equals the matrix of a shifted harmonic

oscillator Hamiltonian Ĥ∼ plus a diagonal operator Δ∼ . Here,

Ĥ∼ =
1

2μ
p
∼
2 +

μω

2

(
x∼ + x0

)2

− μω

2
x2
0, (78)

where

x0 =
2
√

3α

μω2
, (79)

and hence

Ĥ∼ =
1

2μ
p
∼
2 +

μω

2

(
x∼ + x0

)2

− 6α2

μω2
. (80)

Further,

Δ∼ = 4 D diag (1, 0, 1, 0, . . . , ) . (81)

We want to determine an upper bound of E
(2)
0 of the

form

E
(2)
0 ≤

〈
Φ

∣∣∣Ĥ∼ + Δ∼

∣∣∣ Φ
〉

, (82)

where Φ is chosen as the normalized ground state of Ĥ∼ , to

wit,

Φ(x) =
(μω

π

)1/4

exp
(
−μω

2
(x + x0)

2
)

. (83)

Further, we will have to use the explicit form of the harmonic
oscillator eigenfunctions

φn(x) =

(
2n n!

√
π

μω

)−1/2

exp
(
−μω

2
x2

)
Hn (

√
μωx) , (84)

where Hn(. . .) denotes the n-th Hermite polynomial.
We first note that

〈
Φ

∣∣∣Ĥ∼
∣∣∣ Φ

〉
=

ω

2
− 6α2

μω2
. (85)

Then we consider
〈
Φ

∣∣∣Δ∼
∣∣∣ Φ

〉
= 4 D

∑
n=0,2,...

〈Φ|n〉 〈n|Φ〉. (86)

After some calculations we obtain the intermediate result

〈Φ|n〉 =

∫ ∞

−∞
Φ(x) φn(x) dx

=

(√
μωx0

)n

√
2nn!

exp

(
−μωx2

0

4

)
. (87)
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and hence
〈
Φ

∣∣∣Δ∼
∣∣∣ Φ

〉
= 4 D

∑
n=0,2,...

|〈Φ|n〉|2

= 4 D exp

(
−μωx2

0

2

)
cosh

(
μωx2

0

2

)

= 2 D
(
1 + exp

(−μωx2
0

))
(88)

(79)
= 2 D

(
1 + exp

(
−12α2

μω3

))
. (89)

Summarizing,

E
(2)
0 ≤ ω

2
− 6α2

μω2

+2 D

(
1 + exp

(
−12α2

μω3

))
. (90)

A.3.3 Total ground state

Combining the previous results, we obtain

E
(2)
0 − E

(1)
0

(90,67)

≤ −3

2

α2

μω2

+D

(
1 + 2 exp

(
−12α2

μω3

))

(91)
< 0, (92)

since D < 0. This proves that E
(1)
0 cannot be the total

ground state energy and hence the total ground state cannot
lie in Hodd. Actually, the numerical calculations show that it
lies in the subspace H2,s considered above, while the above
analytical considerations prove only the weaker result that
the total ground state lies in Heven.

Finally, we would like to provide an example for our state-
ment that the ground state with spin–phonon coupling con-
sists mainly of the two ground states for E = 0. The ground
state in the discussed case of s = 2 (D = −5, nmax = 1,
α = 0.5, and ω = 5 in natural units) is

| Φ0 〉 = +0.706684 | m = 2, n = 0 〉
+0.706684 | m = −2, n = 0 〉
−0.034579 | m = 0, n = 1 〉. (93)

Thus, it contains only 0.1 % admixture of other states.
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