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The field of accelerator neutrino experiments is entering an era of precision oscillation

measurements in which many of the remaining unknown neutrino measurements will be

determined. The upcoming DUNE and Hyper-K experiments aim to determine the neutrino

mass hierarchy and degree of Charge-Parity (CP) violation in the neutrino sector, providing po-

tential insight on the matter-antimatter imbalance observed in the universe. However, these

experiments require highly accurate measurements, and neutrino cross section modeling

uncertainties may limit their capabilities. Cross section measurements at current-generation

experiments can aid the development of neutrino interaction models to reduce these uncer-

tainties. This is especially true for measurements of neutrino energy, which drive neutrino

oscillations and are of key importance to oscillation experiments.

The MicroBooNE experiment uses a Liquid Argon Time Projection Chamber (LArTPC) to

produce neutrino-argon cross sections as one of its physics goals. The MicroBooNE detector’s

fully active volume, precision reconstruction, and calorimetry information are leveraged in

the Wire-Cell analysis to produce a muon neutrino selection that is 92% pure while main-

taining 68% efficiency. A reconstruction chain featuring a fully 3D charge reconstruction and

a graph-based particle trajectory fit are used to produce accurate measurements of lepton

kinematics as well as visible hadronic energy produced in a neutrino interaction. This thesis

presents the first neutrino-argon triple-differential cross section measurement, targeting in-

clusive charged-current final states. Wiener SVD unfolding is used to produce a measurement

over neutrino energy, muon momentum, and muon scattering angle. A series of constrained

goodness of fit tests are used to demonstrate the validity of MicroBooNE’s model in describing
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the distribution of reconstructed kinematics seen in data to ensure the accuracy of unfolding.

The validated unfolding to neutrino energy represents a step forward in the field of neutrino

cross sections, and demonstrates the capabilities of the LArTPC detector.
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My dissertation focuses on the steps involved in producing the first neutrino-argon in-

clusive muon-neutrino charged-current triple-differential cross section measurement. This

measurement can help improve neutrino interaction modeling, assisting future neutrino

oscillation experiments such as DUNE. Sec. 1 provides a theoretical framework to neutrino

physics, and Sec. 2 discusses the importance and modeling of neutrino interactions. Sec. 3

gives an overview of the history of neutrino experiments, which gives context to the Mi-

croBooNE experiment, discussed in general detail in Sec. 4. This analysis focuses on the

Wire-Cell reconstruction and selection within MicroBooNE, which are extensively described

in Sec. 5 and Sec. 6, respectively. The measurement resolutions of various reconstructed

quantities are discussed in Sec. 7, and the estimation of various systematic uncertainties

on the MicroBooNE model prediction are covered in Sec. 8. The validation of this model is

introduced in Sec. 9, based on a new data-driven conditional constraint procedure. With

the model fully introduced and validated, the reconstructed event selection is unfolded,

following the Wiener SVD technique discussed in Sec. 10, to produce the triple-differential

cross section measurement presented in Sec. 11.
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1 THEORY

1 Theory

The standard model of particle physics is one of the must successful theories in physics for

predicting a wide range of experimental results. It describes the strong, weak, and electromag-

metic forces, as well as all 17 known fundamental particles, including the six quarks, three

leptons and their respective neutrinos, four force carriers, and the Higgs boson. Neutrinos

were first hypothesized almost 100 years ago at a relatively early time within standard model

particle physics, which was not fully developed until the discovery of quarks in the late 20th

century. However, today neutrinos remain some of the least understood particles, with some

of their properties not yet determined. Over the last century studying neutrinos has repeat-

edly revealed insight into new physics, and current and upcoming neutrino experiments

hope to provide further insight through measuring the remaining unknowns.

In 1930, Wolfgang Pauli proposed the existence of the neutrino as a way to preserve

conservation of energy and momentum in beta decay processes, where a neutron decays to a

proton and emits an electron as well as an anti-electron-neutrino:

n → p +e−+νe (1.1)

Experiments showed a continuous distribution of ejected electron energies, suggesting that

the total energy released on decay was split among the electron and another particle, named

the neutron by Pauli (and later renamed the neutrino). Furthermore, although electrons carry

spin 1
2 , beta decay creates no net change in the spin of the nucleon, so the production of a

neutrino with opposite spin to the electron is necessary to conserve angular momentum.

The neutrino’s existence was experimentally confirmed in 1956 by Cowan and Reines [1] by

observing the capture of reactor-produced anti-neutrinos on protons:

p +νe → n +e+ (1.2)
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1 THEORY

To account for the vanishingly small neutrino interaction probabilities, a new interaction

mechanism was required, dubbed the weak force. This force is mediated by charged massive

bosons W + and W − as well as a neutral massive boson Z 0, and mediates interactions between

all of the quarks and leptons, not just neutrinos [2]. Only left-handed neutrinos have ever

been observed [3], a fact which initially motivated the massless description of the neutrino in

the standard model [4]. An intuitive interpretation is that if neutrinos travel below the speed

of light (and therefore have mass), it would be possible to change frame of reference to flip

their helicity; only a massless neutrino can exist with only a single handedness. However, the

standard model massless description of neutrinos and the conservation of lepton flavor is

only an accidental symmetry, not one imposed by the model, and so it is possible for new

physics to break the symmetry through a more detailed description of the physics.

1.1 Neutrino Mass

With the discovery of neutrino oscillations the existence of neutrino mass is established,

and the presumed framework used in the standard model must be expanded [5]. Neutrino

oscillations depend on differences in mass between neutrino mass eigenstates, so the mea-

surement of oscillations implies that at most one neutrino state can be mass-less, and in

all three may have mass. There are multiple mechanisms that could be used to explain the

existence of neutrino mass [6, 7]. Some of them are less compelling, such as the prospect that

the familiar Higgs interaction gives the neutrino mass like it does to other standard model

particles, but for an unexplained reason with a much weaker coupling. Perhaps the most

plausible explanation is through the Seesaw Mechanism [8, 9, 10], which explains neutrino

mass without introducing any new fields. In this explanation, the Higgs boson couples only

to the right-handed neutrino of each flavor. Then, slight mixing of the mass and flavor eigen-

states allows for a massive but sterile (non-weakly-interacting) and thus unobserved neutrino,

as well as the lightweight left-handed neutrino that has been experimentally detected.

2



1 THEORY

The right- and left-handed wavefunctions ΨR and ΨL are eigenstates of the chirality

matrix γ5 ≡ iγ0γ1γ2γ3, where γ0 through γ3 are the gamma matrices:

γ5ΨR/L =±ΨR/L (1.3)

This enables the construction of chiral projection operators PR and PL, which project the

wavefunction into its right- and left-handed states:

PR/L = I ±γ5

2
(1.4)

PR/LΨ=ΨR/L (1.5)

Ψ= PRΨ+PLΨ=ΨR +ΨL (1.6)

Antiparticles are described by the conjugation operator Ĉ :Ψ→Ψc =CΨ
T

with the conjuga-

tion matrix C = iγ2γ0. This produces the expected result that right- and left-handed fermions

are antiparticles of each other:

(Ψ)c
R/L = (Ψc )L/R (1.7)

By substituting the right- and left-handed fields into the Dirac Lagrangian, the relationship

between Dirac mass term and the right- and left-handed fields is found:

LD =ΨR iγµ∂µΨR +ΨLiγµ∂µΨL −mD (ΨRΨL +ΨLΨR ) (1.8)

Furthermore, the electroweak Lagrangian also allows for right and left Majorana mass terms

3



1 THEORY

mR and mL (not to be confused with Majorana and Dirac particle types):

LM =−1

2
mR (Ψ

c
RΨR +ΨRΨ

c
R )− 1

2
mL(Ψ

c
LΨL +ΨLΨ

c
L) (1.9)

The distinction between Majorana and Dirac mass terms in the Lagrangian is useful for

looking at how they interact with weak charge and leptonic (non) conservation. Assuming

that the neutrino is a Dirac particle, meaning that ν and ν are separate particles, the Dirac

Lagrangian term violates weak charge by converting νL with weak charge 1
2 to the sterile

νR with weak charge 0 (or vice versa). However, since this process does not, for example,

replace ν with ν, lepton number is conserved. This is contrasted with the Majorana terms,

which allow for the creation of neutrinos from the vacuum, violating weak charge and lepton

number. Things change slightly if the neutrino is a Majorana particle, where ν and ν are the

same particle and therefore must have weak charge of 0, nullifying the weak charge violation

present in the change of handedness. In either case, the potential Dirac and Majorana mass

terms can be grouped to form the matrix depiction:

Lmass =−1

2
[ΨL ,Ψ

c
R ]M

Ψc
L

ΨR

− 1

2
[Ψ

c
L ,ΨR ]M

ΨL

Ψc
R

 (1.10)

M =

mL mD

mD mR

 (1.11)

So far neutrinos have been discussed in their flavor statesΨR andΨL . Switching to mass

states, the Seesaw Mechanism supposes that the Higgs boson only couples to one of the

neutrino mass eigenstatesΨα andΨβ, generating eigenvalues of 0 and a GUT-scale [11] mass

term mν, respectively. Solving Eqn 1.11 for the mass eigenvalues 0 and mν in terms of mR ,

mL , and mD gives:

m2
D = mR mL (1.12)
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1 THEORY

mν = mR +mL (1.13)

Equation 1.12 is what gives rise to the name of the Seesaw Mechanism, as the larger mR gets,

the smaller mD must be to counterbalance it. Furthermore, solving for the neutrino mass

eigenstates, we see that they are composed of only slightly mixed combinations of the flavor

states:

Ψα = (ΨL +Ψc
L)− mD

mR
(ΨR +Ψc

R ) (1.14)

Ψβ = (ΨR +Ψc
R )+ mD

mR
(ΨL +Ψc

L) (1.15)

Given the incredibly small allowed values for mL and the imagined massive GUT-scale mR ,

we necessarily find that mD << mR , giving rise to a small degree of mixing. Ultimately, the

Seesaw Mechanism proposes that this small mass eigenstate mixing gives rise to the small

left-handed neutrino mass that is observed.

Unfortunately, the Seesaw Mechanism can only be tested at much higher energies, placing

it outside the reach of current experimental capabilities. However, in the event that there

are Majorana neutrinos [12], their mass can be tested through neutrinoless double beta

decay [13]:

(Z , N ) → (Z +2, N −2)+2e− (1.16)

Under double beta decay, two neutrons decay to protons in a nucleus, emitting electrons as

well as anti-electron neutrinos. However, in the hypothetical case of Majorana type neutrinos,

they are their own anti-particles and are capable of annihilating each other, leaving no

neutrino emission. This process inherently violates lepton number, and even lepton minus

baryon number L-B. To conserve angular momentum, the neutrinos can only annihilate

if one is left-handed and the other right-handed, which has a probability of occurrence

proportional to mν/E . Therefore, experiments measuring this rate are sensitive to the overall
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1 THEORY

neutrino mass. However, it is a second order effect due to the simultaneous decay of two

neutrons, making it a rare process to observe. Furthermore, the low energies involved make

neutrino detection (or rather, confidence of their absence) difficult. Still, experiments have

set a lower bound on the decay lifetime at around 1026 seconds, and experiments such as

CUORE [14] and KamLAND-Zen [15] continue to search for the existence of the Majorana

neutrino through neutrinoless double beta decay.

1.2 Neutrino Mixing

Although the mechanism giving neutrinos mass is not yet determined, the oscillations gen-

erated by neutrino mass differences are well understood. There are three neutrino flavors

να ∈ {νe ,νµ,ντ}, corresponding to the three lepton flavors α ∈ {e,µ,τ}. Similar to the quark

sector, neutrino flavors are a mixture of their mass eignestates ν j ∈ {ν1,ν2,ν3}. While quark

mixing is described through the CKM matrix [16, 17], neutrino mixing is described through

the PMNS matrix U , named after Bruno Pontecorvo for predicting neutrino oscillations [18]

and Ziro Maki, Masami Nakagawa, and Shoichi Sakata for constructing the mixing matrix for-

malism [19]. This construction allows any flavor state to be expressed as a linear combination

of mass eigenstates, and vice-versa:

|να〉 =
∑

j
Uα j

∣∣ν j
〉

(1.17)

∣∣ν j
〉=∑

α

U∗
α j |να〉 (1.18)

For three neutrino flavors, the PMNS matrix is a 3×3 unitary matrix described by nine

degrees of freedom. However, five degrees of freedom can be absorbed into the phases

of particle fields, leaving a degree of freedom for the overall phase. As a result there are a

total of four degrees of freedom [20], which can be described through three mixing angles,
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1 THEORY

{θ12,θ13,θ23}, and a complex phase δC P that allows for potential Charge-Parity (CP) violation:

U =


U11 U12 U13

U21 U22 U23

U31 U32 U33



=


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−iδC P

0 1 0

−s13e iδC P 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e−iδC P

−s12c23 − c12s23s13e iδC P c12c23 − s12s23s13e iδC P s23c13

s12s23 − c12c23s13e iδC P −c12s23 − s12c23s13e iδC P c23c13



(1.19)

Here si j and ci j represent sinθi j and cosθi j respectively.

1.3 Neutrino Oscillations

Although neutrinos are always created and detected in flavor states, their time evolution is

governed by their energy, which depends on their mass eigenstates. As a result, neutrino

mass differences drive oscillations between flavor states as the phases evolve at different rates.

In all known cases neutrinos are ultra-relativistic, with their momentum p j much larger than

their mass m j . This allows for the energy E j of each mass eigenstate to be approximated as:

E j =
√

p2
j +m2

j ≈ p j +
m2

j

2p j
≈ E +

m2
j

2E
(1.20)

where the neutrino energy E was substituted for the momentum p j . The relativistic sub-

stitution of t ≈ L can help replace the unobserved time t in the neutrino’s frame with the

measurable distance travelled L. In the case of vacuum oscillations, the time evolution of the
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mass eignestates becomes:

∣∣ν j (t )
〉= e−i H t

∣∣ν j (0)
〉= e−i (E+

m2
j

2E )L
∣∣ν j (0)

〉≈ e−i
m2

j L

2E
∣∣ν j (0)

〉
(1.21)

where the last step ignores the overall common phase e−i EL of the eigenstates. From this, it is

possible to work out the oscillation probability from an initial flavor state α to a final state β:

Pνα→νβ(L) =
∣∣〈νβ∣∣να(L)

〉∣∣2

=
∣∣∣∣∣
〈
νβ

∣∣∣∣∣∑
j

Uα j

∣∣∣∣∣ν j (L)

〉∣∣∣∣∣
2

=
∣∣∣∣∣
〈
νβ

∣∣∣∣∣∑
j

Uα j e−i
m2

j L

2E

∣∣∣∣∣ν j (0)

〉∣∣∣∣∣
2

=
∣∣∣∣∣
〈
νβ

∣∣∣∣∣∑
j

∑
γ

U∗
γ jUα j e−i

m2
j L

2E

∣∣∣∣∣νγ
〉∣∣∣∣∣

2

=
∣∣∣∣∣∑

j
U∗
β jUα j e−i

m2
j L

2E

∣∣∣∣∣
2

=
∑

j

∑
k

U∗
β jUα jU

∗
αkUβk e−i

∆m2
j k

L

2E

=
∑

j
|Uα j |2|Uβ j |2 +2Re

(∑
j

∑
k> j

U∗
β jUα jU

∗
αkUβk e−i

∆m2
j k

L

2E

)

= δαβ+2Re

(∑
j

∑
k> j

U∗
β jUα jU

∗
αkUβk

(
e−i

∆m2
j k

L

2E −1

))

= δαβ+2
∑

j

∑
k> j

Re
(
U∗
β jUα jU

∗
αkUβk

)
Re

(
cos

∆m2
j k L

2E
+ i sin

∆m2
j k L

2E
−1

)

−2
∑

j

∑
k> j

Im
(
U∗
β jUα jU

∗
αkUβk

)
Im

(
cos

∆m2
j k L

2E
+ i sin

∆m2
j k L

2E
−1

)

= δαβ−4
∑

j

∑
k> j

Re
(
U∗
β jUα jU

∗
αkUβk

)
sin2

∆m2
j k L

4E

+2
∑

j

∑
k> j

Im
(
U∗
β jUα jU

∗
αkUβk

)
sin

∆m2
j k L

2E
(1.22)
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Note that ∆m2
j k = m2

j −m2
k represents the difference in squared masses between eigenstates

that drives neutrino oscillations. Trivially, if all eigenstates had the same mass then the

transition probability would be δαβ, allowing for no neutrino oscillations. In the derivation

above, the unitarity of U was used in multiple places. It was used to split the double sum over

j and k into a sum over the diagonal elements of U and a doubled sum of the upper diagonal

elements of U , where only the real component survives since Uab =U∗
ba . Additionally, it was

used to introduce δαβ:

∑
j

∑
k

U∗
β jUα jU

∗
αkUβk =

(∑
j

U∗
β jUα j

)(∑
k

U∗
αkUβk

)
= δβαδαβ = δαβ (1.23)

The oscillation probability for anti-neutrinos, Pνα→νβ , can be computed by replacing

U with U∗ in Eq. 1.22. This also allows for CP violation to be computed as the difference

between the neutrino and anti-neutrino oscillation probabilities:

Pνα→νβ −Pνα→νβ = 4
∑

j

∑
k> j

Im
(
U∗
β jUα jU

∗
αkUβk

)
sin

∆m2
j k L

2E
(1.24)

Referring back to the decomposition of U in Eq. 1.19 into its four degrees of freedom, it can

be seen that δC P is the only variable capable of producing imaginary terms in U , and thus

controls the degree of CP violation.

Before moving on, it is worth emphasizing some of the key features of neutrino oscil-

lations introduced in the preceding derivations. Under the three-flavor standard model

description, neutrino mixing is described through the PMNS matrix U by four parameters:

three mixing angles and a complex phase that describes the degree of charge-parity viola-

tion. Neutrino oscillations between flavors also depends on the difference in mass (squared)

between eigenstates, adding three additional parameters of interest (although it will later

be discussed how two masses are so similar as to reduce the description to two measurable

mass differences). The situation is further complicated by the dominant oscillation term’s
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dependence on the square of the mass difference, leaving it insensitive to the mass ordering.

The remaining sensitivity directly available in the oscillation probability only appears if U

has an imaginary component and correspondingly there is charge-parity violation in the

neutrino sector. Alternatively, matter effects can be used to generate a potential that shifts the

νe mass eigenstate value, revealing the hierarchy depending on whether the mass difference

shrinks or grows, especially when compared against νe measurements that would observe an

opposite shift [21].

For all these parameters of interest, there are only two variables that can be directly con-

trolled in experimental design. Neutrino energy can be controlled in accelerator experiments

through the beamline used, and otherwise varies significantly between sources of cosmic

neutrinos, solar neutrinos, atmospheric neutrinos, and neutrinos created in nuclear reactors.

The more easily controlled variable is the distance travelled between a neutrino source and a

detector, making detector placement a key design consideration in an experiment. However,

these two variables only appear together as the ratio L/E , reducing the number of control-

lable degrees of freedom to one. As a result, the PMNS matrix has only been determined as

well as it has through clever experiment designs that aim to isolate elements of the mixing

matrix or other parameters of interest, as future sections will describe in more detail. The

neutrino sector is not yet fully measured, however, as there remain unknowns such as the

mass hierarchy [21], the value of δC P [22], the octant of θ23 [23], and the overall neutrino

masses [24]. Next generation experiments are currently being constructed to determine

answers for each of these unknowns [25].

1.4 Two-Flavor Oscillations

To help make sense of the oscillation probability formula, it can be useful to consider the

simplified case of two-flavor oscillations. This is equivalent to assuming that two of the
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mixing angles, say θ13 and θ23, are 0, simplifying the PMNS matrix to:

U2×2 =

 cosθ sinθ

−sinθ cosθ

 (1.25)

where ν3 has been dropped as it does not mix, and the single remaining mixing angle is simply

given as θ. The oscillation probabilities can then be computed to give the straightforward

expressions:

Pνα→να(L) = 1− sin2 2θ sin2 ∆m2L

4E
(1.26)

Pνα→νβ(L) = sin2 2θ sin2 ∆m2L

4E
(1.27)

where α and β are presumed to be different flavors and the single remaining mass difference

is given as ∆m2. This formula shows that there is a maximum degree of mixing established by

the mixing angle, which is periodically achieved as the neutrino oscillates over its length scale

L0 = 4E
∆m2 . This simplified two-flavor case may seem too basic to be of any real use in a three-

flavor world; however, the particular values of mixing and mass splitting parameters allow for

multiple situations to reduce to the two-neutrino case under reasonable approximations.
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2 Neutrino Interactions

2.1 Importance of Cross Section Measurements

Accurate knowledge of neutrino cross sections is important for any neutrino experiment, es-

pecially modern accelerator oscillation experiments. These aim to determine the remaining

unspecified neutrino parameters and explore new physics through precision neutrino ap-

pearance and disappearance searches. To achieve these goals, measurements must be highly

accurate with low overall uncertainties. A disappearance measurement can be expressed in

terms of the oscillation probability Pνα→να , the neutrino fluxΦ, the total cross section σ, the

selection efficiency ϵ, the detector response from true to reconstructed neutrino energy D,

and the background event rate B :

N (Eν) = B +
∫

Pνα→να(Eν) × Φ(Eν) × σ(Eν) × ϵ(Eν) × D(Eν,Er eco)dEν (2.1)

Clearly there are multiple factors that threaten to undermine the sensitivity of a measurement;

experimentalists work hard to reduce sources of background while maintaining high (and

well understood) selection efficiency, and uncertainties on the modeling of the flux and

detector response are addressed through the use of a near detector.

By comparing the measurement at a near detector before significant neutrino oscillations

to that at a far detector including oscillation effects, many uncertainties can be significantly

reduced, including those on the flux modeling and detector response. This is because near

and far detectors are often designed to be as similar as possible, so that a ratio of event rate

measurements is insensitive to effects in common between the two detectors. As a result,

cross section modeling can become the largest remaining source of uncertainty. To help

address this situation, cross section measurements are produced at numerous experiments to

aid the development of neutrino interaction models towards more accurate predictions with

smaller uncertainties. This is the primary motivation of the triple-differential cross section
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measurement in this dissertation.

Among cross section measurements, neutrino-energy-dependent cross section measure-

ments are particularly useful in aiding oscillation searches. Neutrino energy is the most

physically relevant quantity in a neutrino interaction; it is responsible for determining the

overall interaction type. Identification of final state particles can help determine the inter-

action channel; however, Final State Interactions (FSIs) smear this mapping, reducing its

usefulness. Neutrino energy provides an additional degree of separation, from Quasi-Elastic

(QE) interactions at low energy to Deep Inelastic Scattering (DIS) at high energy. Furthermore,

neutrino oscillations inherently depend on neutrino energy, so for oscillation experiments

that observe a neutrino flux over a wide energy range it is important to both accurately re-

construct the neutrino energy and to understand the cross section and therefore interaction

probability at that specific energy.

2.2 Neutrino Interaction Channels

Neutrinos have no electromagnetic or strong charge, so they interact with matter exclusively

through the weak force carriers. These are the charged W and neutral Z bosons, giving rise

to the corresponding Charged Current 2.2 (CC) and Neutral Current 2.3 (NC) interactions,

respectively:

νl A → l− A+

νl A → l+ A− (2.2)

νl A → νl A

νl A → νl A (2.3)
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Here l ∈ {e,µ,τ} is used to represent the lepton flavor and A represents the nuclear target, such

as an atom, nucleon, or quark. CC interactions produce final states that allow the neutrino

flavor l to be easily identified, making them of particular interest to oscillation experiments.

Neutrino interactions can be further classified by the size of the nuclear target and the

degree of interaction produced. Below 50 MeV neutrinos coherently scatter off entire nuclei

in an elastic collision, producing a faint interaction signature of nuclear recoil that was only

recently detected in 2017 by COHERENT [26]. As neutrino energy increases, the interaction

becomes quasi-elastic, where a single nucleon (and the lepton) are ejected. While this

definition seems simple, in practice it can be difficult to correctly identify QE interactions

in cases where some final state particles are not able to be detected, such as the production

and subsequent capture of a pion inside the nucleus [17, 27]. This is especially an issue

with the larger nuclear targets used in many modern neutrino experiments, where there

are more complicated nuclear effects to consider. As a result, FSIs can play an important

role in interaction channel modeling and identification, and have been an increasingly large

focus of cross section measurements. In addition to neutrino cross section measurements,

high-statistics electron-nucleus scattering data has been a valuable resource in studying FSIs

occurring within the atomic nucleus, despite the differences between neutrino and electron

primary interactions [28].

QE interactions remain dominant up to ∼ 1GeV , at which point there begins to be enough

energy to excite the nucleon to resonant baryonic states. Most notably these include the

∆ resonance with a mass of 1.232 GeV [29] and the Roper Resonance N∗ with a mass of

1.44 GeV [30]. In both cases, the baryon is unstable and quickly decays, most commonly

emitting a charged or neutral pion, but sometimes emitting multiple pions, a kaon or other

meson, or a photon [31]. At these energies it is also possible for coherent inelastic neutrino-

nucleus scattering, producing a pion with a particularly forward-scattered distribution [32]:

νl A → l− Aπ+
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νl A → νl Aπ0

νl A → l+ Aπ−

νl A → νl Aπ0 (2.4)

Together, these interactions create a ∼ 1GeV landscape dominated by pion (and lepton)

final states, with numerous other possible final states. This is all before considering final

state interactions, which again serve to complicate an already varied landscape. Neutral

pion production can be particularly relevant for measurements of other channels, as the π0

produced does not interact electromagnetically and often cannot be detected until it decays,

typically into a pair of photons [33]. If this decay is not spotted and associated with the

neutrino interaction, the event becomes a background for QE interactions, and alternatively

if the pion decay is detected but not properly identified, it can appear as an electromagnetic

shower typical of an electron, such as in a νe appearance search. While baryonic resonance

and coherent pion production are usually not the dominant interaction channels observed

by an experiment, they still play an important role in the few GeV range.

Above ∼ 3GeV a significant fraction of interactions involve deep inelastic scattering, and

above ∼ 5GeV DIS interactions dominate. Deep inelastic scattering involves high momentum

transfer, often defined by requiring the four-momentum Q2 ≡−q2 > 1GeV, as well as high

energy, requiring an invariant mass W > 2GeV. In DIS interactions the neutrino can resolve

individual quarks directly, with a resolution determined by the wavelength λ= ℏ/
√

Q2. The

high interaction energy allows for the nucleon to be broken apart, and as a result, final states

can involve a large number of hadronic particles. DIS interactions have been studied at

a number of experiments [34, 35, 36, 37, 38, 39], using various nuclear targets to produce

measurements on the cross section as a function of neutrino energy, as well as on the weak

mixing angle and structure functions that describe high energy neutrino-nucleus interactions.

To first order, the DIS cross section increases linearly with neutrino energy, as predicted by

15



2 NEUTRINO INTERACTIONS

the quark parton model.
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ∗ (Baranov et al., 1979), � (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

Figure 1: Total muon and antineutrino per nucleon CC cross sections divided by neutrino
energy and plotted as a function of neutrino energy, taken from [31].

Clearly, the various neutrino interaction channels present a complicated picture for exper-

imentalists to grapple with. It can be difficult to accurately identify final state particles and

separate channels, especially when there can be overlapping visible interaction signatures
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and FSIs are considered. The inclusive channel, consisting of all the different interaction

channels as shown in Fig. 1, can help avoid these selection issues by making a selection

agnostic to the underlying interaction channel. It also presents the largest possible statis-

tics for a measurement, as no channels are excluded. For these reasons, it is typically the

channel of choice for performing an oscillation measurement, and so is of particular interest

for producing precision cross section measurements. However, there are challenges with

reconstructing the inclusive channel: a wider signal definition means more phase space for

backgrounds as well, the analysis needs to be able to reconstruct a wide range of topologies,

and the modeling of exclusive channels is still important to prevent large systematic errors

through mis-modeling.

2.3 Nuclear Effects

A crucial part of neutrino cross section modeling is bridging the gap between neutrino

interactions with free nucleons imagined in a vacuum, and the complex reality of the many-

body atomic nucleus. While the free-nucleon approximation may function well for simple

atomic targets like Hydrogen, it neglects many nuclear effects in the heavy atomic targets

more frequently seen in modern experiments. To understand where and how cross section

measurements can aid model development, it can help to see what problems these models

have to address. These can be split into two groups: the modeling of the initial state of the

nucleus and its nucleons, including their kinematic distributions and bound states, and the

modeling of the passage of final state particles through the nucleus following an interaction.

Modeling neutrino-nucleus interactions begins with a description of the nucleons’ initial

states, achieved succinctly through the use of a spectral function P (k,E), which gives the

probability that a nucleon struck in a neutrino-nucleus interaction will have initial momen-

tum k and removal energy E [40]. The Relativistic Fermi Gas (RFG) model produces a spectral

function through a simple description of nucleons as a degenerate gas of non-interacting
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particles up to the Fermi momentum kF [41]:

P (k,E) = δ
(
E + ℏ2

2m
k2

)
(2.5)

This description is expanded on in the Local Fermi Gas (LFG) model, which treats the Fermi

momentum as a function of radius through the nucleon density function ρ(r ) [42]:

kF (r ) =
(

3

2
π2ρ(r )

)1/3

(2.6)

Perhaps the simplest model of how a neutrino interacts with the nucleus is the Impulse

Approximation (IA), which assumes that the neutrino interacts with individual nucleons and

that final states produced in this interaction do not interact with the remaining nucleons

in the atom [43]. This ignores the nucleon-nucleon correlations in the initial state (as well

as FSIs after interaction), so as a result models attempt to describe these effects separately

and add them back in. Nucleon-nucleon correlations serve to form bound states within the

nucleus of an atom, through quarks and gluons at short distances, and through pion(s) at

longer distances [44], earning them the name Meson Exchange Current (MEC). These bound

states can affect the distribution of final state topologies, such as through the correlated

ejection of protons and neutrons [45]. One noteworthy effect is the two-nucleon correlation,

called the Two-Particle-Two-Hole (2p2h) interaction [46], as it is the lowest order bound state.

Long distance interactions are particularly important at low and medium energies (Q2 <

1GeV), and are described using the Random Phase Approximation (RPA), which condenses

the large number of small interactions between distant nucleons into an overall effective

potential [47]. The nuclear initial state can be probed experimentally through the study of

Transverse Kinematic Imbalance (TKI), which is driven by the kinematics of the nuclear initial

state [48, 49]. In total, there is significant focus on accurate modeling of the nuclear initial

state, which makes sense given the large impact it can have on final states and kinematic
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distributions produced.

In addition to nuclear initial state modeling, significant attention is given to an accurate

treatment of final state particles as they travel through the nucleus. A simple but useful

approach is through the hA model, which skips the many interactions between a hadron and

the nucleons and instead uses the total cross section for each nuclear process [50]. Although

this reductive approach has a limited capacity to describe the nuances in nature, it achieves

decent accuracy from a wealth of hadron-nucleus cross section data while allowing for fast

computation and simple re-weighting.

Going beyond the simple hA model, the Intranuclear Cascade (INC) model provides a

description that computes a large number of hadron-nucleon interactions [51, 52]. This

approach simulates interactions probabilistically over steps of length L based on the mean

free pathλ= 1
ρσ

, computed from the nucleon density ρ and the hadron-nucleon cross section

σ [53]:

P (L) = e−L/λ (2.7)

One such INC model is the hN implementation, used in event generators such as Genie

v2.6. Owing to its more detailed modeling, the hN implementation is able to more accurately

describe final state interactions than hA in Genie [50]. The modeling of FSIs is difficult to do

accurately, and event generator improvements are continuously made [54, 55], aided by cross

section measurements.
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3 History of Neutrino Experiments

3.1 Discovery

There have been many neutrino experiments performed since the particle’s conception by

Wolfgang Pauli in 1930. They can largely be grouped into four sources of neutrino emissions:

solar, atmospheric, reactor, and accelerator, as well as four main methods of detection:

nuclear emulsion, Cherenkov radiation, scintillation light, and Liquid Argon Time Projection

Chambers (LArTPC).

Solar and atmospheric neutrino experiments have led the field to new physics through

the latter half of the 20th century, first with hints of neutrino oscillations from the Homestake

experiment [56], and then conclusive evidence of their existence with Super-Kamiokande [57,

58] and Sudbury Neutrino Observatory (SNO) [59]. Solar electron neutrinos are produced in

the sun as a byproduct of pp-chain fusion reactions, predominantly through the formation

of deuterons and sub-MeV neutrinos, with branches involving Be7 and B8 contributing the

majority of higher energy neutrinos [60]:

p +p → 2
1D+e++νe (3.1)

7
4Be+e− → 7

3Li+νe (3.2)

8
5B → 8

4Be+e++νe (3.3)

The presence of electrons in matter alters the Hamiltonian describing neutrino flavor time

evolution. Weak interactions between electrons and sufficiently energetic (>1MeV) electron

neutrinos, known as the MSW effect, or matter effect [61, 62], create a potential experienced

by electron neutrinos. The mass eigenstate and thus the oscillation probabilities are changed
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as a result, as these depend on the mass difference (squared) between eigenstates, as shown

in Eq. 1.22. As a result, although the sun produces overwhelmingly electron neutrinos, the

flux leaving the sun at high energies such as through the B8 channel is significantly mixed

between the three flavors, with a Pee survival probability of 34%. Low energy neutrinos such

as from the deuteron branch are not effected by the MSW effect, and reach the earth with a

Pee survival probability of 60% due to vacuum oscillations between the sun and earth.

The first hint of neutrino oscillations was detected by the Homestake experiment in the

late 1960s. Located deep underground in the Homestake gold mine in Lead, South Dakota,

the experiment counted the rate of neutrino capture on Ar37 through the measurement of

the resulting Ar37 :

νe + Cl37 → Ar37 +e− (3.4)

It wasn’t until 30 years later with the measurements from Super-Kamiokande and SNO that

neutrino oscillations were conclusively proven. Kamiokande II and later Super-Kamiokande

are water Cherenkov detectors [63], which observe the Cherenkov radiation generated by

fast-moving electrically charged particles that exceed the speed of light in water. Kamiokande

II was able to reconstruct the direction of incident neutrinos from the Cherenkov light

cone generated by high-energy electrons produced by electron neutrino charged current

interactions [64]:

νe +X → X ′+e− (3.5)

This confirmed the sun as the source of the neutrinos observed in Homestake and Kamiokande

II.

Furthermore, Kamiokande II also measured a rate deficit of neutrino interactions when

compared to predicted values using the Standard Solar Model (SSM) [65], affirming the deficit

seen in Homestake. Super-Kamiokande went further, reconstructing atmospheric muon

neutrinos generated from the decay of pions created by cosmic rays. By reconstructing the

direction of the incoming muon neutrinos, Super-Kamiokande demonstrated the existence of
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neutrino oscillations by measuring a relative rate deficit in events entering the detector from

below, caused by oscillations into tau neutrinos over the longer distance travelled through

the earth. Furthermore, adding the tau-like-event measurement to the muon measurement

accounted for the muon deficit, demonstrating the muon-to-tau oscillation directly.

Finally, in 2001 SNO provided definitive evidence of electron neutrino oscillations caus-

ing the solar electron neutrino deficit. Similar to Super-Kamiokande, SNO is a Cherenkov

detector that measured the electron neutrino flux from the electrons produced in the CC

interaction 3.1, observing the familiar deficit. Additionally, by measuring the neutral cur-

rent interaction rate, which was independent of neutrino flavor, the total neutrino flux was

measured and found to agree with prediction:

νl +D → p +n +νl (3.6)

Therefore, the deficit of electron neutrinos but agreement in overall neutrino flux showed

that electron neutrinos must be oscillating to other flavors.

3.2 Oscillation Parameter Searches

While solar and atmospheric neutrino experiments are responsible for discovering the ex-

istence of neutrino oscillations, they are not well equipped to measure all of the oscillation

parameters. Probing a given parameter requires an experimental setup within a specific

L/E range, the appropriate source neutrino flavor, and meeting energy constraints to enable

the detection of the particular neutrino interaction of interest. These requirements come

together to motivate human-produced neutrino sources, where the length scale can be freely

set, and, in the case of accelerator experiments, the energy scale can even be chosen.

KamLAND is a reactor neutrino experiment that demonstrates the power in being able

to choose the neutrino oscillation baseline distance. The liquid scintillator [66] detector is

located in Japan near Kamiokande, allowing it to see ν̄e from a total of 55 Japanese nuclear
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reactor cores, with a weighted average baseline of 180 km. Given the solar ∆m2
12 estimate of

7.5×10−5eV 2 , the νe → νµ oscillation wavelength/Eν is 33 km/MeV. KamLAND estimated

the incident neutrino energy from the positron produced, and observed two full oscillation

periods over the measured energy range, with best fits improving estimates of ∆m2
12 and θ12,

in particular resolving the degeneracy of θ12 around 45◦ and confirming the Large Mixing

Angle (LMA) scenario [67].

Going beyond θ12 and θ23, a precision measurement of the mixing angle θ13 used in

νe → ντ is beyond the scope of solar and atmospheric experiments. The best way to measure

θ13 without involving θ12 or θ23 (and their uncertainties) in the calculation is through νe → νe

or νe → νe disappearance. At an L/E of roughly 0.5 km/MeV, the disappearance probability

from νe → νµ is negligible. However, the atmospheric∆m2
23 estimate of 2.4×10−3eV 2 predicts

maximal νe → ντ oscillations, measuring θ13 via:

Pνe→νe = 1−cos4θ13 sin2 2θ12 sin2 ∆m2
12L

4E

− sin2 2θ13

(
cos2θ12 sin2 ∆m2

13L

4E
+ sin2θ12 sin2 ∆m2

23L

4E

)

≈ 1− sin2 2θ13 sin2 ∆m2
23L

4E

(3.7)

where the approximation sin2 ∆m2
12L

4E ≈ 0 was used to drop the first term, and∆m2
13 ≈∆m2

23 was

used to simplify the second to fully eliminate θ12 dependence through sin2θ12 +cos2θ12 = 1.

Reactor neutrino experiments are ideal for this search; the νe produced allow for ν̄e → ν̄e

disappearance to be measured. The Daya Bay [68], Double CHOOZ [69], and RENO [70]

experiments all performed this measurement with scintillator detectors in the early 2010s,

generating similar results for a global fit of θ13 = 8.93◦ +0.34
−0.45 [71, 72]. Daya Bay led the series of

measurements, featuring three different detector and reactor locations for weighted baseline

lengths of 360m, 500m, and 1650m. By comparing the measurements of the near detectors

with those of the far detector, a clear ν̄e deficit (before considering oscillations) at the far
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detector was observed, leading to the θ13 best fit measurement.

Thus far, solar, atmospheric, and reactor neutrino experiments have been explored, and

shown to allow for a wide range of available baselines to effectively measure the different

mixing and mass difference parameters. However, only the atmospheric neutrinos exceed a

few MeV in energy, and these still do not probe the highest energies. Exploring neutrino inter-

actions at high energies can be particularly important for probing the large-mass-splitting

regime for oscillations, as well as for direct detection of ντ through the production of τ parti-

cles, which require GeV energy scales due to its mass. Looking ahead, access to high energy

neutrinos can also be useful for experiments such as DONUT [73] and DUNE [74] that aim to

reconstruct ντ interactions.

The motivation to choose the neutrino energy regime in an experiment is clear, and

particle accelerators provide the means to do so. In a particle accelerator, protons are

accelerated using electromagnetic fields to highly relativistic speeds and smashed into a

target. Typically these collisions create charged π and K mesons that are focused into a

tight beam via a magnetic horn before creating neutrinos as they decay at rest. A significant

amount of the incident proton’s momentum is transferred to the meson and then the neutrino,

causing it to decay within a cone of a few degrees in width along the beam direction set by

the incoming proton beam and meson focusing horn. Any other decay products are stopped

by matter along the beamline before reaching a neutrino detector, leaving a pure neutrino

beam incident on the neutrino detector.

The T2K experiment [75] uses the freedom allowed in experimental design of accelerator

experiments to simultaneously measure multiple neutrino parameters. A 99.5% pure νµ

beam is produced in Tokai, Japan, and sent 295 km to the Super-Kamiokande detector

discussed previously. The neutrino beam reaches multiple GeV in energy, but is purposefully

directed so that the detector is 2.5◦ off-axis, changing the flux profile to sharply peak at 600

MeV. This achieves the familiar L/E of 0.5 km/MeV to allow for maximal νµ→ ντ oscillation,
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Table 1: Best fit values with uncertainties for each neutrino mixing and mass splitting param-
eter. Source [78].

Parameter Best Fit Value ±1σ

θ12 (degrees) 33.48+0.77
−0.74

θ13 (degrees) 8.52+0.20
−0.21

θ23 (degrees) 42.2+0.1
−0.1 or 49.4+1.6

−2.0

δC P (degrees) 251+67
−59

∆m2
21 ×10−5 (eV) 7.50+0.19

−0.17

(normal) ∆m2
32 ×10−3 (eV) +2.458+0.046

−0.047

(inverted) ∆m2
32 ×10−3 (eV) −2.448+0.047

−0.047

allowing T2K to produce high precision measurements of θ23 and ∆m2
23 [76]. Additionally,

the T2K beamline is so pure in νµ that a νe appearance search is possible. This allows for a

measurement of θ13 [77] via:

Pνµ→νe ≈
1

2
sin2θ13 sin2 ∆m2

23L

4E
(3.8)

Counter-intuitively, the νµ → νe oscillation probability does not (to good approximation)

depend on θ12 at short distances. This is because ∆m2
12 is so small and thus the oscillations

require a much larger distance; meanwhile ∆m2
23 and ∆m2

13 are similarly large, so that the

oscillation can be thought of as primarily νµ→ ντ→ νe rather than the more straightforward

νµ→ νe oscillation. T2K was able to measure 28 νe with an expected background of only 11

events, constituting a positive measurement of νµ→ νe oscillations at 7σ and contributing to

the global θ13 fit described earlier. Table 1 shows the best fit values for each of the neutrino

mixing and mass splitting parameters.

Particle accelerator experiments have also been able to confirm the νµ→ ντ oscillations

first found in atmospheric experiments. The DONUT experiment [73] first detected the ντ

using the Fermilab Tevatron to generate the high energy beam needed, and used a nuclear

emulsion detector to identify τ particles indicative of ντ CC interactions through the tau’s
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kinked track at the point of decay. Building on this, the OPERA experiment [79] at CERN used

a similar emulsion detector to identify ντ interactions originating from a νµ beam 732 km

away in Gran Sasso, providing direct evidence of νµ→ ντ oscillations.

Because of their high energies and freedom to choose very short baselines, accelerator

experiments are able to pick L/E values that probe drastically different mass splittings than

the measured ∆m2
12 ≈ 7.5× 10−5eV 2 and ∆m2

23 ≈ 2.4× 10−3eV 2. LSDN was a scintillator

detector built in the 1990s before the three mass splittings were well measured, and used an

extremely short baseline of 30m to probe the ∆m2 ≈ 1eV 2 region. Surprisingly, it measured

a νe appearance, indicating νµ → νe oscillations [80], a result which is in conflict with the

numerous experiments discussed above, as well as cosmological measurements that set a

hard limit of three weakly interacting neutrinos [81]. The three neutrinos discussed thus far,

νe , νµ, and ντ, allow only two unique mass splittings between them, so a third unique mass

splitting at 1eV 2 would require a fourth neutrino. Cosmological constraints disallow this new

particle from interacting weakly, so the hypothetical particle is called the sterile neutrino. As

a sterile neutrino is not predicted by the standard model, it falls into the category of proposed

physics Beyond the Standard Model (BSM). Of course there are other potential explanations

for the νe excess observed by LSND, BSM and otherwise; further measurements are needed.

The MiniBooNE experiment was built to investigate the LSND anomalous measurement

using the Fermilab Booster Neutrino Beam (BNB) and a Cherenkov detector. Using a different

beamline, energy range, and detector type, MiniBooNE would represent a fully independent

measurement to corroborate or reject the LSND data. MiniBooNE did find an anomalous

excess in νe appearance, particularly at low energy below 600 MeV, now dubbed the Low

Energy Excess (LEE). Together, the MiniBooNE and LSND measurements represent a 6.1σ

disagreement with the standard model [82]. Either there are significant errors in the modeling

used in these experiments, such as in the rate of background pion decays appearing as

electrons, or there is some new physics explanation such as a sterile neutrino. A sterile
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neutrino could explain the excess through the oscillation νµ→ νs → νe adding to the small

rate of direct νµ→ νe oscillations predicted.

3.3 Overview of Detector Types

Investigating the Low Energy Excess of MiniBooNE is one of the primary goals the Micro-

BooNE experiment [83]. To explain how MicroBooNE can provide new information despite

using the same Fermilab BNB beamline as MiniBooNE and a very similar L/E, 470 m instead

of 500 m, the differences in detector types must be discussed. As mentioned earlier, most

experiments use either nuclear emulsion, Cherenkov radiation, scintillation light, or LArTPCs

to detect neutrino interactions. Nuclear emulsion uses a photographic plate coated in photo-

graphic emulsion, capable of detecting high energy ionizing particles with sub-micrometer

resolution [84]. By stacking plates, a full 3D image of particle trajectories can be created. This

high resolution imaging was particularly helpful for the DONUT and OPERA experiments in

identifying the complex event topologies of energetic tau neutrino interactions. However,

the emulsion approach has a few drawbacks. First, although the positional resolution is

spectacular, there is no direct calorimetric information available for use in determining the

energies involved. Additionally, the technology struggles to scale well; although a single plate

of emulsion may not be too expensive to purchase or later to analyze for data, the technology

struggles to maintain practicality for use in modern kiloton+ size detectors.

Not mentioned thus far are bubble chambers, which face similar advantages and draw-

backs to emulsion detectors. The detector volume is filled with superheated liquid which

vaporizes in the presence of highly energetic particles, creating a precise record of the particle

trajectory when photographed by cameras around the detector [85]. Similar to emulsion

detectors, they face difficulties in scaleability, both in analyzing the images produced, and in

maintaining the large volume of superheated liquid, often liquid hydrogen.

By comparison, Cherenkov and scintillation detectors are scaleable, making them the
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chosen detector type for many of the experiments discussed. As discussed earlier, Cherenkov

detectors utilize the reduced speed of light in a medium such as water to produce Cherenkov

radiation. This light travels outward in a cone coaxial with the direction of motion of the

radiating particle, and is detected by photo-multiplier tubes (PMTs). This allows the par-

ticle’s trajectory and point of origin to be roughly determined, but with far less accuracy

than emulsion detectors. As a result, it can be difficult to distinguish between different

particle signatures, such as electromagnetic showers originating from electrons or photons.

However, Cherenkov detectors can be built to be extremely large, such as in the case of

Super-Kamiokande, and are able to reconstruct the energy of the radiating particle involved.

Scintillation detectors produce light through a different mechanism than Cherenkov

detectors, but similarly detect it with PMTs. Scintillating material throughout the detector

can become energized by the passage of ionizing particles. The scintillating material will then

emit photons of its own after a short period of time, generating a trail of where the ionizing

particle traveled. Like Cherenkov detectors, scintillation detectors are capable of measuring

the energy of the ionizing particles involved, aiding in the physics analysis. It is even possible

to combine these detector technologies, such as in LSND, which measures the Cherenkov

and scintillation light produced. However, the spacial resolution of scintillation detectors is

still far inferior to that of emulsion detectors.

There is a clear trade-off between the precision of emulsion and bubble chambers, and

the scaleability and calorimetry of scintillators and Cherenkov detectors. As a relatively

new detector type to neutrino physics, the LArTPC offers many of the benefits of each of

these detectors all in one. High energy ionizing particles, such as those produced from

neutrino interactions, leave a trail of detached electrons as they travel through the liquid

argon detector [86]. An applied electric field across the detector draws the electrons towards

the cathode, where multiple (often three) stacked wire planes detect the presence of passing

electrons through current induced on the wires. The wires of each plane are arranged at
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an angle to the other planes, so that while a single plane only provides information along

one spatial direction, combined they can give an accurate 2D picture. The initial neutrino

interaction time is known through the use of PMTs which observe the prompt light flash

generated. The interaction time is combined with the time information of the induced wire-

plane currents to project the charge measurements to a 3D location based on the known drift

velocity.

The 3D images produced by LArTPCs are not quite as accurate as emulsion detectors, but

still offer millimeter level resolution, which makes is possible to clearly identify many particle

topologies and decays. To add to this, the number of electrons ionized is proportional to

the energy deposited, meaning that the LArTPC is a highly effective calorimeter. This can

be useful for big picture physics goals such as measuring the total neutrino energy, as well

as for smaller tasks such as identifying particles and their directionality by measuring the

rate of energy deposition along a particle track. LArTPCs are also practical for large-scale

experiments, as the argon required is not overly expensive, and the number of wires in a

plane (and associated electronics) scales with the detector length not the detector volume. As

a relatively new detector type, perhaps their largest potential drawback is the challenge posed

in fully reconstructing highly accurate 3D images from the raw current waveform recorded.

However, this is a task that has now been accomplished to a high degree of success, paving

the way for future analyses.
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4 The MicroBooNE Experiment

4.1 Primary Goals

The MicroBooNE experiment was designed with three primary goals: investigate the LSND

and MiniBooNE Low Energy Excess (LEE), provide research and development experience on

building large scale LArTPCs, and produce a wide range of neutrino-argon cross sections.

While the MiniBooNE LEE measurement achieved a high statistical significance, it struggled

to produce a pure event selection, as NC π0 events dominated the νe signal, shown in Fig. 2.

Because of the high background, mis-modeling of the π0 background prediction beyond its

uncertainty could have a significant impact on the measured tension with the standard model.

The MicroBooNE experiment took data over 5 years, or runs, from 2015 to 2021, and addresses

this ambiguity by using a LArTPC detector. Unlike the MiniBooNE Cherenkov detector, it

is able to differentiate electron showers from the π0 → γγ decay. MicroBooNE investigated

the LEE region under both CC νe and NC 1γ hypotheses, disfavoring both explanations

as sole explanations for the MiniBooNE LEE [83, 87]. This leaves the interpretation of the

MiniBooNE LEE unclear, with candidate explanations including potential mis-modeling as

described earlier, potential BSM interpretations beyond the single sterile neutrino case, or a

combination of multiple factors.

MicroBooNE has also contributed to the field of neutrino experiments through the insight

gained in building and running the experiment. The field of accelerator neutrino physics has

embraced the LArTPC detector in recent years, with all three Short Baseline Neutrino (SNB)

program experiments and the upcoming DUNE experiments using LArTPC detectors. In this

context, the MicroBooNE experiment is an important pioneer of the technology. MicroBooNE

is the first large-scale LArTPC to use cold electronics to significantly reduce the noise intro-

duced in wire-plane readouts. Additionally, MicroBooNE dealt with multiple unexpected

challenges such as dead wires across the three wire planes. As a result of encountering these
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3

TABLE I: The expected (unconstrained) number of events for
the 200 < EQEν < 1250 MeV neutrino energy range from all
of the backgrounds in the νe and ν̄e appearance analysis before
using the constraint from the CC νµ events. Also shown are
the constrained background, as well as the expected number of
events corresponding to the LSND best fit oscillation probabil-
ity of 0.26%, assuming oscillations at large ∆m2. The table
shows the diagonal-element systematic plus statistical uncer-
tainties, which become substantially reduced in the oscillation
fits when correlations between energy bins and between the
electron and muon neutrino events are included. The antineu-
trino numbers are from a previous analysis [3].

Process Neutrino Mode Antineutrino Mode
νµ & ν̄µ CCQE 73.7 ± 19.3 12.9 ± 4.3

NC π0 501.5 ± 65.4 112.3 ± 11.5
NC ∆→ Nγ 172.5 ± 24.1 34.7 ± 5.4

External Events 75.2 ± 10.9 15.3 ± 2.8
Other νµ & ν̄µ 89.6 ± 22.9 22.3 ± 3.5

νe & ν̄e from µ± Decay 425.3 ± 100.2 91.4 ± 27.6
νe & ν̄e from K± Decay 192.2 ± 41.9 51.2 ± 11.0
νe & ν̄e from K0

L Decay 54.5 ± 20.5 51.4 ± 18.0
Other νe & ν̄e 6.0 ± 3.2 6.7 ± 6.0

Unconstrained Bkgd. 1590.6± 176.9 398.2± 49.7
Constrained Bkgd. 1577.8± 85.2 398.7± 28.6

Total Data 1959 478
Excess 381.2 ± 85.2 79.3 ± 28.6

0.26% (LSND) νµ → νe 463.1 100.0

ties from nuclear effects, and uncertainties in detector
modeling and reconstruction. A covariance matrix in
bins of EQEν is constructed by considering the variation
from each source of systematic uncertainty on the νe and
ν̄e CCQE signal and background, and the νµ and ν̄µ
CCQE prediction as a function of EQEν . This matrix in-
cludes correlations between any of the νe and ν̄e CCQE
signal and background and νµ and ν̄µ CCQE samples,
and is used in the χ2 calculation of the oscillation fits.

Table I also shows the expected number of events cor-
responding to the LSND best fit oscillation probability
of 0.26%, assuming oscillations at large ∆m2. LSND
and MiniBooNE have the same average value of L/E,
but MiniBooNE has a larger range of L/E. Therefore,
the appearance probabilities for LSND and MiniBooNE
should not be exactly the same at lower L/E values.

Fig. 1 shows the EQEν distribution for νe CCQE
data and background in neutrino mode for the total
12.84× 1020 POT data. Each bin of reconstructed EQEν
corresponds to a distribution of “true” generated neu-
trino energies, which can overlap adjacent bins. In neu-
trino mode, a total of 1959 data events pass the νe
CCQE event selection requirements with 200 < EQEν <
1250 MeV, compared to a background expectation of
1577.8 ± 39.7(stat.) ± 75.4(syst.) events. The excess is
then 381.2 ± 85.2 events or a 4.5σ effect. Note that the
162.0 event excess in the first 6.46 × 1020 POT data is
approximately 1σ lower than the average excess, while
the 219.2 event excess in the second 6.38 × 1020 POT
data is approximately 1σ higher than the average ex-
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FIG. 1: The MiniBooNE neutrino mode EQEν distributions,
corresponding to the total 12.84 × 1020 POT data, for νe
CCQE data (points with statistical errors) and background
(histogram with systematic errors). The dashed curve shows
the best fit to the neutrino-mode data assuming two-neutrino
oscillations. The last bin is for the energy interval from 1500-
3000 MeV.

cess. Fig. 2 shows the excess events in neutrino mode
from the first 6.46 × 1020 POT data and the second
6.38 × 1020 POT data (top plot). Combining the Mini-
BooNE neutrino and antineutrino data, there are a to-
tal of 2437 events in the 200 < EQEν < 1250 MeV en-
ergy region, compared to a background expectation of
1976.5±44.5(stat.)±88.5(syst.) events. This corresponds
to a total νe plus ν̄e CCQE excess of 460.5± 99.0 events
with respect to expectation or a 4.7σ excess. Fig. 2
(bottom plot) shows the total event excesses as a func-
tion of EQEν in both neutrino mode and antineutrino
mode. The dashed curves show the two-neutrino oscilla-
tion predictions at the best-fit point (∆m2 = 0.041 eV2,
sin2 2θ = 0.92), as well as at a point within 1σ of the
best-fit point (∆m2 = 0.4 eV2, sin2 2θ = 0.01).

A two-neutrino model is assumed for the MiniBooNE
oscillation fits in order to compare with the LSND data.
However, the appearance neutrino experiments appear
to be incompatible with the disappearance neutrino ex-
periments in a 3+1 model [10, 12], and other models
[15–19] may provide better fits to the data. The oscil-
lation parameters are extracted from a combined fit of
the observed EQEν event distributions for muonlike and
electronlike events using the full covariance matrix de-
scribed previously in the full energy range 200 < EQEν <
3000 MeV. The fit assumes the same oscillation proba-
bility for both the right-sign νe and wrong-sign ν̄e, and
no νµ, ν̄µ, νe, or ν̄e disappearance. Using a likelihood-
ratio technique [3], the confidence level values for the
fitting statistic, ∆χ2 = χ2(point) − χ2(best), as a func-
tion of oscillation parameters, ∆m2 and sin2 2θ, is de-

Figure 2: The MiniBooNE CCQE νe measurement over EQE
ν using 12.84×1020 POT, as pub-

lished in [82]

issues, future LArTPC design has been improved to greatly reduce their risk of occurrence, or

otherwise mitigate the challenges they present. On the software side, the development of

MicroBooNE analyses has resulted in numerous advances to the field that can be applied to

similar tasks in future LArTPC experiments.

To date, MicroBooNE has collected the largest data set of neutrino-argon interactions,

enabling a large suite of cross-section measurements. Key to these measurements is the

LArTPC detector technology, featuring precision spacial resolution and calorimetry to enable

strong particle identification capabilities. In turn, this enables the reconstruction and high-

efficiency event selection for many topologies. Furthermore, MicroBooNE can leverage

its long-term exposure to both the BNB and NuMI beamlines at Fermilab, granting high

statistics for both electron and muon neutrinos. As discussed earlier, these cross section

measurements help advance the field by guiding the path for model development. Moreover,
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since MicroBooNE analyses report cross sections on argon, the same detection medium used

in SBND, ICARUS, and DUNE, the cross section measurements at MicroBooNE are especially

valuable to the suite of upcoming US-based accelerator neutrino experiments.

4.2 The Booster Neutrino Beam

Figure 3: The Fermilab accelerator complex. MicroBooNE uses the Booster Neutrino Beam,
labeled here for Low-Energy Neutrino Experiments.

The MicroBooNE experiment is situated along the Booster Neutrino Beamline [88] at

Fermilab. The Fermilab accelerator complex consists of the Ion Source, Linear Accelerator

(Linac), Booster ring, and in the case of the Neutrino Main Injector (NuMI) beamline, the

Main Injector and Recycler, as shown in Fig. 3. The neutrino beam is produced through the

acceleration of protons in several stages. First H− ions are accelerated to 750keV at the Ion
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Source before reaching 400 MeV in the Linac. Before entering the Booster, the electrons are

stripped off with a carbon foil, leaving a proton beam. The Booster is a 474m circumference

synchrotron capable of accelerating protons to 8GeV. A kicker magnet creates 1.6µs spills of

∼ 4×1012 protons at a time to be sent to the Booster Neutrino Beamline. Two toroids measure

the beam flux with a 2% margin of error, and magnets focus the beam into a ∼ 1mm wide

column through a beryllium target.

The MicroBooNE flux prediction uses the flux prediction for MiniBooNE [89] updated to

the MicroBooNE detector location [90]. The p-Be interactions at the target produce mainly

π± and K ±, but also include p, n, and K 0
L . The target is located inside a toroid called the horn,

which uses its magnetic field to focus particles of the preferred sign, and de-focus particles

of the opposite sign. When run in Forward Horn Current (FHC) mode, it focuses positively

charged particles which later decay to neutrinos in a 50m long decay pipe filled with air, while

alternatively in Reverse Horn Current (RHC) mode it focuses negatively charged particles to

produce anti-neutrinos on decay:

π+ →µ+νµ

π− →µ−νµ (4.1)

K + →µ+νµ or π+π0

K − →µ−νµ or π−π0 (4.2)

Notably, muon decay produces different neutrinos than the type selected by the FHC or RHC

mode, constituting a contamination to both oscillation measurements through intrinsic νe

in the beamline, and cross section measurements through an (anti-)neutrino background:

µ+ →e+νµνe
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µ− →e−νµνe (4.3)

At the end of the decay pipe, a concrete absorber stops non-neutrino particles so that a

pure neutrino beam reaches the MicroBooNE detector 470m past the beryllium target. The

neutrino flux at MicroBooNE is estimated to consist of 93.6% νµ, 5.68% νµ, 0.52% νe , and

0.05% νe , shown per POT and as a function of neutrino energy in Fig. 4.
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Figure 1: The absolute neutrino flux prediction through the MicroBooNE detector as
calculated by the beam simulation. Shown is the flux for νµ, ν̄µ, νe, and ν̄e averaged through
the TPC volume with dimensions 2.56m×2.33m×10.37m.
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Figure 2: The νµ (left) and νe (right) neutrino flux just upstream of the MicroBooNE
detector. Shown is the comparison of flux constrained by global fit to K+ production data
(old) to the one that additionally includes SciBooNE data [6] (new).

2 Neutrino Flux Calculation

Figure 1 shows the predicted neutrino flux averaged through the MicroBooNE detector TPC
volume. This is the absolute flux as generated by the simulation. No scaling factors are
needed or applied.

Figure 2 shows the effect on the neutrino flux when SciBooNE data [5] is included in the
global fit of K+ production data [6]. Note that the flux shown in the figure was calculated
upstream of MicroBooNE detector, and not averaged through TPC volume as in Figure 1.

2

Figure 4: The absolute neutrino flux prediction through the MicroBooNE detector as calcu-
lated by the beam simulation. Shown is the flux for νµ, νµ, νe , and νe averaged through the
TPC volume with dimensions 2.56 m (x) × 2.32 m (y) × 10.36 m (z). Source: Booster Neutrino
Flux Prediction at MicroBooNE [82]

4.3 The MicroBooNE LArTPC

The MicroBooNE detector is a 2.56 m (x) × 2.32 m (y) LArTPC with an 85 tonne fiducial volume,

encased in a cylindrical cryostat for a total mass of 170 tonnes of liquid argon. The cryostat
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maintains a sealed environment of liquid argon (86−89K) at 1.24bar of pressure, and contains

the cold electronics, field cage, cathode, and anode plane assemblies. A voltage of −70kV is

applied to the cathode plane to generate a nearly-constant electric field of 273.9V/cm across

the 2.56m drift dimension (x axis). A series of three wire planes are located at the anode

to detect the drift of electrons dislodged by ionizing particles, and an array of 32 PMTs are

arranged behind the wire planes to detect prompt scintillation light. The detector is aligned

along the neutrino beam (z axis) to present the longest possible dimension to image the

trajectories of particles generated in neutrino interactions.

4.3.1 Liquid Argon Physics

The detector uses argon as the target mass for neutrino interactions for multiple reasons.

First, as a noble gas, or rather noble liquid, it is chemically inert. This allows free electrons

liberated by ionizing particles to drift through the argon medium without recombining with

an argon atom. In fact, even slight impurities in the argon can drastically reduce the free

electron lifetime. However, the MicroBooNE LAr purity achieved is quite high, allowing for

a mean electron lifetime of 18ms under the 273.9V/cm electric field [91]. A long lifetime

means that more electrons will reach the wire planes for a stronger signal and more reliable

detection of energy deposited in the detector. Argon is used instead of other noble gases

because it is both heavy, providing more target nucleons to generate a larger ν-Ar cross

section, and relatively cheap to produce, owing in part to the fact that it is the third most

abundant element in the atmosphere, comprising ∼ 1%. Finally, argon acts as an excellent

scintillator [92], which makes the detection and identification of neutrino interactions much

easier through use of the light detection system.

In ν-Ar interactions a significant amount of energy is transferred to the final state particles.

Energetic electrically charged particles (π±, µ, p, e) ionize argon atoms as they travel through

the argon medium, producing positive argon ions and free electrons. This ionization deposits
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energy into the LAr, and the energy deposition per unit distance dE
d x is well described by the

Bethe-Bloch equation [17]:

〈−dE

d x
〉 = K z2 Z

A

1

β2

[
1

2
ln

2me c2β2γ2Wmax

I 2
−β2 − δ(βγ)

2

]
(4.4)

In this equation, K is a coefficient derived from the electron mass and volume (∼ 0.307

MeVcm2/mol), z represents the incident particle’s charge (±1), Z represents the atomic

number (18 for Ar), A represents the atomic mass (∼ 40g/mol for Ar), γ represents the Lorentz

factor, c represents the speed of light, β represents the velocity divided by c, me represents

the electron mass, Wmax represents the maximum possible energy transfer to an electron

in a single collision, I represents the mean excitation energy, and δ(βγ) represents a density

effect correction to ionization energy loss. Fig. 5 shows the energy deposition rate over the

range of energies observed in MicroBooNE.

Of particular interest is the so-called “Minimum ionization" region, where the energy

deposition rate is largely flat as a function of energy, and low compared to the overall particle

energy (< 1%). This means that particles in this region, called Minimumly Ionizing Particles

(MIPs), can traverse a large distance while depositing a roughly constant amount of energy.

Once an ionizing particle loses enough energy, its energy deposition rate increases, causing

the particle to abruptly stop over a few centimeters as it deposits its remaining energy at a

high rate, known as the Bragg peak. The minimumly ionizing region and Bragg peak are useful

both for calibrating the detector response and identifying particle type and directionality. In

contrast to the ease of ionizing particle detection, neutrally charged particles leave no trail

through the detector, and can usually only be spotted upon decay (such as π0 → γγ) if at all.

4.3.2 Recombination

Directly following the ionization of an electron, there is a relatively high chance of recapture

by a nearby Ar+ ion, called recombination. By representing the fraction of electrons that
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4 34. Passage of Particles Through Matter

Muon momentum

1

10

100

M
as

s s
to

pp
in

g 
po

w
er

 [M
eV

 c
m

2 /
g]

Li
nd

ha
rd

-
Sc

ha
rf

f

Bethe Radiative

Radiative
effects

reach 1%

Without δ

Radiative
losses

βγ
0.001 0.01 0.1 1 10 100

1001010.1

1000 104 105

[MeV/c]
100101

[GeV/c]
100101

[TeV/c]

Minimum
ionization

Eμc

Nuclear
losses

μ−
μ+ on Cu

Andersen-
Ziegler

Figure 34.1: Mass stopping power (dE/dx) for positive muons in copper as a function of βγ =
p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy).
Solid curves indicate the total stopping power. Data below the break at βγ ≈ 0.1 are taken from
ICRU 49 [6] assuming only β dependence, and data at higher energies are from [7]. Vertical bands
indicate boundaries between different approximations discussed in the text. The short dotted lines
labeled “µ− ” illustrate the “Barkas effect,” the dependence of stopping power on projectile charge
at very low energies [8]. dE/dx in the radiative region is not simply a function of β.

34.2.3 Stopping power at intermediate energies
The mean rate of energy loss by moderately relativistic charged heavy particles is well described

by the “Bethe equation” [2, 4, 5, 9],
〈
−dE
dx

〉
= Kz2Z

A

1
β2

[
1
2 ln 2mec

2β2γ2Wmax
I2 − β2 − δ(βγ)

2

]
. (34.5)

Eq. (34.5) is valid in the region 0.1 . βγ . 1000 with an accuracy of a few percent. At βγ ∼ 0.1
the projectile speed is comparable to atomic electron “speed,” and at βγ ∼ 1000 radiative effects
begin to be important (Sec. 34.6). Both limits are Z dependent. A minor dependence on M at
high energies is introduced through Wmax, but for all practical purposes the stopping power in a
given material is a function of β alone. Small corrections are discussed in Sec. 34.2.6.1,2

This is the mass stopping power ; with the symbol definitions and values given in Table 34.1,
the units are MeV g−1cm2. As can be seen from Fig. 34.2, dE/dx defined in this way is about
the same for most materials, decreasing slowly with Z. The linear stopping power, in MeV/cm, is
ρ dE/dx, where ρ is the density in g/cm3.

1For incident spin 1/2 particles, (Wmax/E)2/4 is included in the square brackets. Although this correction is
within the uncertainties in the total stopping power, its inclusion avoids a systematic bias.

2In this section, “dE/dx” will be understood to mean the mass stopping power “〈−dE/dx〉.”

11th August, 2022

Figure 5: Mass stopping power (dE/d x) for positive muons in copper as a function of βγ=
p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in kinetic
energy). Solid curves indicate the total stopping power. Vertical bands indicate boundaries
between different approximations. Source: Passage of Particles Through Matter from the
Particle Data Group [17].

survive recapture through the recombination factor R , the deposited energy dE
d x can be related

to the ionized charge through:

dE

d x
= Wi on

R

dQ

d x
(4.5)

where Wi on = 23.6eV represents the energy required to ionize an argon atom. Under the

columnar model, recombination includes a significant bulk effect from the roughly cylindrical

distribution of Ar+ ions left in the trail of an ionizing particle [93]. The box model assumes a

constant charge density from Ar+ ions within a box region, and predicts the recombination

factor as:

RBox = 1

β(dE/d x)
ln(α+βdE

d x
) (4.6)

37



4 THE MICROBOONE EXPERIMENT

where α= 1 is theoretically motivated and β is fit as a free parameter. However, given the

assumptions made in this model, it fails to accurately describe reality at low dE/d x, so a

modified box model is used where α is fit to 0.93 and β is fit to 0.3cm/MeV.

4.3.3 Diffusion

LArTPCs detect ionized electrons in the detector volume after it has drifted to the anode plane.

Ideally, this drift occurs in a uniform manner, with a constant drift velocity vd ≈ 1m/ms

perpendicular to the anode plane. Then, simply multiplying the drift time t by the drift

velocity would determine the location along the x-axis where the charge originated. However,

in practice there are two significant real-world effects that must be considered for accurate

charge reconstruction. First is the effect of diffusion, where the charge spreads out in a

cloud over time from the pseudo-random walk of each particle. Because of the applied

electric field, however, there is a preferred direction for electrons to drift, and so diffusion is

parameterized by separate constants DL and DT for the longitudinal and transverse motion

respectively. Through the electron mobility µ, the diffusion parameters can be computed

from an extension of the Einstein-Smoluchowski relation [94]:

DT = kT

e
µ

DL = kT

e

(
µ+E

∂µ

∂E

)
(4.7)

where kT is the electron temperature and e is the electric charge. The diffusion parameters

control the rate at which an electron cloud grows, smearing the resolution from transverse

diffusion and widening the signal pulse from longitudinal diffusion:

σ2
t (t ) =σ2

t (0)+
(

2DL

v2
d

)
t (4.8)
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The passage of an electron past each wire plane motivates the non-zero width at t = 0 of

σ2
t (0) ≈ 1.6µs.

4.3.4 The Space Charge Effect

While the discussion of ionization charge so far has focused on electrons, as they are the

particles detected at the anode, it is also important to consider the impact caused by Ar+

residing in the detector. Eventually Ar+ ions will drift to the cathode and leave the fiducial

volume; however, because of their much larger mass, they drift much slower and remain in

the detector for an appreciable amount of time. Because the MicroBooNE detector is located

on the Earth’s surface and observes a significant flux of ionizing cosmic radiation, Ar+ ions

are constantly being generated throughout the detector, not just from neutrino interactions.

The steady state background resulting from the roughly uniform production of Ar+ ions

and constant drift velocity towards the cathode is a linearly increasing charge density as you

approach the cathode. This steady state is called space charge, and the impact that it has

on electron drift through distorting the electric field lines in the detector is called the Space

Charge Effect (SCE).

Since the positive space charge attracts negatively charged electrons, the SCE is seen

primarily as pulling tracks towards the center of the detector. This creates an effective

detector boundary, where charge ionized on the actual detector boundary will pass through

the wire planes and be reconstructed inward of this boundary. Since the space charge

distortions build over time (and therefore over drift distance), the effective detector boundary

is largely unchanged near the anode, and becomes increasingly distorted towards the cathode.

The effect was measured empirically by studying cosmic ray muons that cross the detector

boundary, ionizing charge up to the true detector edge. The observed cutoff of these tracks,

measured over a large sample, generates a reliable mapping from the effective to true detector

boundary [95], as seen in Fig. 6. This mapping is especially important for dedicated cosmic
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ray identification algorithms that leverage precision knowledge of the detector boundary.
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FIG. 10. The effective detector boundary (black lines) at the four corners on the cathode side of the detector. The color scale
shows the map of cosmic-muon charge clusters in the detector.
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FIG. 11. Effective detector boundaries in the Y-X plane for
the sub-volume at different Z-slices. A clear position depen-
dence is shown. The color represents the number of recon-
structed points; regions with little activity (blue) are outside
the active TPC volume. The black lines represent the pro-
posed effective detector boundary.

of the cosmic-ray muons traverse the active TPC volume;
therefore, they are named through-going muons.

It is straightforward to identify a TGM with the ef-
fective boundary and fiducial volume defined previously.
First, a set of extreme points of the corresponding TPC
cluster are found, including:

• the highest and lowest points in all three directions:
vertical (Y) direction, drift direction (X), and beam
direction (Z).

• the highest and lowest points in the vertical direc-
tion along the principle axis, determined by the

principle component analysis (PCA), of the clus-
ter.

If two of the extreme points are outside the fiducial vol-
ume boundary, this cluster is identified as a TGM, and
these two points are defined as the two end points of the
TGM. As a by-product, an event is tagged as fully con-
tained if all extreme points are inside the fiducial volume.

Two cases need special care to improve the TGM tag-
ging accuracy:

• Gaps in the cluster caused by either nonfunctional
channels or inefficient signal processing, which
could lead to misplacement of the extreme points.
This issue is mitigated by re-examining test points
along the principle axis of the cluster against the
known locations of the nonfunctional channels, and
against the deconvolved signals from the original
wire plane measurements.

• A neutrino interaction cluster where there are two
separate particle tracks exiting the fiducial volume
boundary, mimicking a TGM. This issue is caused
by the simplified assumption that each cluster is a
single track-like object. Although a full multiple-
track fitting algorithm is not developed for this
work, a simplified algorithm to detect any large
angle deflection along the track trajectory of the
cluster is applied to protect against this case.

Figure 12 shows a typical TGM from MicroBooNE
data. The muon enters and exits through the TPC ef-

Figure 6: The effective detector boundary (black lines) at the four corners on the cathode
side of the detector. The color scale shows the density of cosmic-muon charge clusters in the
detector. Source: [95]

4.3.5 Charge Measurement

MicroBooNE has three wire planes located at the anode that serve as its primary particle

detection instruments. The wire planes are flush with each other, with a 3mm spacing

between planes as well as a 3mm pitch between wires on each plane [96]. When viewed

along the drift dimension, the wires of different planes intersect at 60◦ angles, forming

equilateral triangles. The first two planes in the path of drift electrons, labeled “U " and “V "

respectively, each consist of 2400 wires at ±60◦ angles with the vertical, while the final “W "

plane (sometimes called the “Y " plane) consists of 3456 wires oriented vertically.

The “U " and “V " planes are held at −110V and 0V respectively, and measure current
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induced by the passage of electrons past them, earning them the name of induction planes.

The “W " plane has a voltage of 230V, drawing electrons onto it and giving it the label of

collection plane. The signal measured on induction planes is bipolar as a result of electrons

passing by them, while the signal on the collection plane is uni-polar. Since bipolar signals

with a slight time offset interfere destructively, the collection plane is capable of producing

more reliable charge measurements. Additionally, the “U " plane is exposed to variations in

the voltage at the cathode while shielding the “V " and “W " planes behind it, making it the

least reliable of the three planes.

The MicroBooNE detector uses a cold electronics system to amplify the current signal

measured on the wires [96]. This is achieved using Application Specific Integrated Circuits

(ASICs), with a gain of 14mV/fC. By operating within close proximity to the wire planes and

at liquid argon temperatures, the noise experienced in the electronics system is significantly

reduced. This is crucial for enabling a low charge detection threshold, and is a significant

advancement to the field of LArTPC design pioneered by MicroBooNE. After the signal is

amplified by the cold electronics, it is sent outside the cryostat and digitized using a Data

Acquisition system (DAQ). Current measurements are sampled at 2MHz by the Analog-to-

Digital Converter (ADC), creating a time tick interval of 0.5µs.

Through de-convolution of the current measured on the wires of a plane, the time and

1D location of passage of electrons along the wire plane (perpendicular to the wire length) is

determined, as shown in Fig. 7. By combining this information across two or more planes,

the electron’s 2D location of passage on the wire plane can be determined. In the case of

MicroBooNE, the use of three wire planes gives a level of redundancy for a more accurate

position measurement. Full 3D positional information is later achieved by determining the

drift time from the time of passage and the time of interaction as measured through the light

system, and then multiplying by the drift velocity.

For MicroBooNE’s electric field of 273.9V/cm, the electron drift velocity is approximately

41



4 THE MICROBOONE EXPERIMENT

Figure 7: Diagram showing how charge is measured using the wire planes in a TPC.

1m/ms, with a total drift time from cathode to anode of 2.3ms, called the drift window. The

full readout window is 4.8ms long, comprised of three 1.6ms windows corresponding to

the expected drift window time at a nominal voltage of 500V/cm (which MicroBooNE was

unable to fully achieve). The readout window begins one 1.6ms window before the beam

spill and continues a further two nominal drift windows to help with cosmic ray detection.

Any charge measured within one drift window of a BNB beam spill could potentially be the

result of a neutrino interaction, allowing for a significant cosmic ray background as a result

of the inherently slow drift velocity of electrons. On average, there are 20-30 cosmic rays

in each drift window, with only one neutrino per ∼ 600 beam spills. Reducing this source

of background is the primary goal of the PMT light system, which measures the prompt

scintillation light released by Ar following a neutrino interaction.
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4.3.6 Light Collection System

The passage of ionizing particles through argon can create two excited states, 1Σ+
µ and 3Σ+

µ [92].

These decay with half-lives of τs = 5ns and τ3 = 2.1µs, emitting a photon at 128nm that LAr is

optically transparent to. As a result, ionizing particles created in a neutrino interaction create

a signature of prompt Ar scintillation light with two decay widths that is easily detected.

An array of 32 PMTs is arranged behind the anode plane to capture this scintillation light,

with a digitized time resolution of 15.6ns. Each PMT first has a plate coated in tetraphenyl-

butadiene, which absorbs the 128nm scintillation light and re-emits light at ∼ 425nm, which

the PMT photocathode is sensitive to. Through the photoelectric effect, photons striking the

photocathode eject electrons [97]. These cascade toward the anode, increasing the strength

of the signal measured, given in units of Photo-Electrons (PEs). The precision timing of

the PMT system allows for timing of ionizing particles to be determined to a much higher

resolution than either the TPC drift window (2.3ms) or the BNB beam spill (1.6µs). After

matching a PMT light flash to a TPC charge cluster, its 3D position and time of origin can be

well determined for use in event selection.

The PMT array collects data over a 23.4µs window for each neutrino beam spill reported

by the Fermilab accelerator division. Combined with the 4.8ms TPC readout window, this

selective data taking in sync with beam spills is called the hardware trigger. However, the

hardware trigger alone is not selective enough, as only 1 in 600 beam spills contain a neutrino

interaction. A software trigger is also applied, which rejects data taken from any readout

window that contains less than 9.5 PEs of energy, as measured by the PMT array. Together,

the hardware and software triggers greatly reduces cosmic ray background contamination in

event selections, and greatly reduce the amount of information storage required.
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5 Wire-Cell Event Reconstruction

The MicroBooNE collaboration has developed three separate analysis chains to reconstruct

and select neutrino events inside the detector. This analysis is based on the Wire-Cell recon-

struction, which takes a philosophy of preserving as much information as possible through

the reconstruction chain. Sec. 5.1 describes the process of computing charge measurements

from the current readout on wires through a 2D deconvolution algorithm that leverages the

correlated info across wires. Sec. 5.2 describes the process of combining charge measure-

ments across wire planes to form a fully 3D representation of the measured charge, followed

by steps that cluster this charge into fully-connected interactions. The 3D charge clusters

are used in a global fit of charge clusters to light flashes, described in Sec. 5.3. Then, Sec. 5.4

describes how these charge clusters are parsed through the use of a graph-based framework

that allows for accurate determination of particle trajectories and energy deposition rates.

Together, these algorithms serialize the information-dense raw data produced in the LArTPC

into a high-level description that contains a vast amount of the salient features of the data,

leading to the overall particle flow diagram and neutrino vertex identification in Sec. 5.5.

This forms the foundation on which the selection algorithms in Sec. 6 rely to produce a

high-quality neutrino selection. The algorithms described in this chapter each represent ad-

vancements in the field of LArTPC reconstruction tools, and together comprise the Wire-Cell

reconstruction chain, which has pioneered a maximally-information-preserving technique

of event reconstruction.

5.1 Signal Processing

Signal Processing covers the steps involved in taking the raw current measurements on the

LArTPC wires and producing a measurement of the charge that passed by each wire. This

is roughly split into two parts: the modeling of the electric field response in the presence of

moving charge, described in Sec. 5.1.1, followed by the extraction of the charge distribution
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from the convolution of the current measurement with the detector response, described in

Sec. 5.1.2. Wire-Cell builds upon existing techniques by developing a 2D deconvolution algo-

rithm that uses the combined current measurements across nearby wires to more accurately

determine the charge signal at each wire. This is a substantial advancement to the field, and

the technique has since been adopted by all MicroBooNE analyses. As the beginning of the

reconstruction chain, improved extraction of the charge distribution allows for more accurate

particle reconstruction at all stages downstream.

5.1.1 Field Response

To convert the measured current signals on each wire to accurate charge estimates, it is

important to precisely describe the field response generated on each wire by drifting electrons.

This relation can be found by considering the electric field along the length of a wire, as

produced by an electron and across the electron’s drift path. However, it is simpler to use

newton’s 3rd law to instead consider the electric field produced by a wire, E⃗ (⃗r ). This is

achieved by simulating the field response in the MicroBooNE detector with the Garfield [98]

software package. A 2D simulation was used, shown schematically in Fig. 8, in which a range

of 10 wires on either side of the wire of interest were used for each of the three wire planes. To

compute the electron drift path, the electron was simulated with a starting position 10cm

ahead of the “U " plane, across a range of transverse starting locations, each 0.3mm apart.

The simulated drift path and electric potential at each location are shown in Fig.9.

Electron drift v⃗d in LArTPCs is slow enough to allow for a quasi-static approximation,

under which Ramo’s theorem [100] describes the current i (⃗r ) induced by an electron cloud of

charge q as a function of the drift velocity and the electric field of a wire at unit potential:

i (⃗r ) =−qE⃗ (⃗r ) · v⃗d (5.1)

From combining Eqn. 5.1 with Fig. 9, a few key insights can be made. The drift paths and
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negative voltage at the upper boundary of the simulated area. The nominal MicroBooNE operating
bias voltages for each wire plane are used in the calculation.

There are two stages in calculating the field response functions. The first one is the calculation
of the electron drift paths in the applied electric field as shown in figure 2a. The second stage is the
calculation of the weighting electric potentials as shown in the remaining panels of figure 2. The
induced current can be calculated following equation (2.1). The electron drift velocity as a function
of electric field is taken from recent measurements [5, 24]. For these single-electron simulations,
diffusion is omitted.
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Figure 3: Illustration of the 2D Garfield simulation scheme (dimensions not to scale), where
black dots indicate individual wires. MicroBooNE’s anode plane-to-plane spacing is 3 mm, with
3 mm wire pitch in each plane. The inset denotes the sub-pitch designation of electron drift paths
whereupon the field response is calculated.

For a single drift path calculation, the electron starts from a point 10 cm away from the wire
plane above the central wire (shown as “0 wire” in figure 3). The field response functions for
that central wire and ±10 wires on both sides (21 wires in total) are calculated. The simulation is
then repeated starting at different transverse locations, each shifted by 0.3 mm from the previous,
spanning 0 mm to 1.5 mm. In total, 126 field responses (six electron positions × 21 readout wires)
are calculated. In the described 2D scheme, the inter-plane wires are aligned. The shift in relative
inter-plane 2D geometry is a 3D effect and has minimal impact on the calculated field response
shape.

Figure 4 shows the overall response functions for each wire of interest for induction U (top
panel), induction V (middle panel), and collection Y (bottom panel) wire planes, where the overall
response is the field responses convolved with the electronics response (to be described in sec-
tion 2.2). The X-axis in figure 4 is the initial transverse position of the ionization electron relative
to the central wire of each plane and expressed in units of wire number. Each wire region (±0.5
wire pitch) is sampled by 11 electron drift paths with starting points that are regularly separated
by 0.3 mm. The field response on the central wire for a single path is thus represented by a slice

– 7 –

Figure 8: Illustration of the 2D Garfield simulation scheme (dimensions not to scale), where
black dots indicate individual wires. MicroBooNE’s anode plane-to-plane spacing is 3 mm,
with 3 mm wire pitch in each plane. The inset denotes the sub-pitch designation of electron
drift paths whereupon the field response is calculated. Source: [99]

potential maps suggest a significant difference in current induced between charge incident

on a wire, and charge originating at a location equidistant between two wires. This difference

is shown in Fig. 10. Moreover, there is significant current induced on the wires in the local area

beyond the closest wire. These effects are plane dependent, with the un-shielded “U " plane

experiencing the largest impact from distant charge, both in the transverse and longitudinal

directions.

These effects combine to create significant differences in wire response based on the

larger topology of the ionized charge. Shifting focus beyond a single point of drift charge, the

full 3D structure of a cluster of charge can impact how overall current signals are measured,

and how charge can be reconstructed. For simplicity (and largely adhering to the reality

of particle trajectories), a linear charge distribution is considered, which is defined by two

angles. θxz describes the direction within the xz plane, with 0◦ corresponding to the beam

direction z and 90◦ corresponding to the drift direction x, while θy is the angle off of the wire
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(a) Electron drift paths.

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.8   -0.6  -0.4   -0.2     0     0.2    0.4    0.6   0.8
z-Axis (cm)

x-
Ax

is
 (c

m
)

(b) Weighting potential on a U wire.
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(c) Weighting potential on a V wire.
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(d) Weighting potential on a Y wire.

Figure 2: A demonstration of electron drift paths in the applied electric field (panel a) and weighting
potentials (panels b, c, d) on individual wires of the 2D MicroBooNE TPC model, using the Garfield
program. The coordinates for each plane are defined in section 2.3 as shown in figure 8a. The x-Axis is in
the drifting field direction and the z-Axis is in the beam direction. The weighting potential is a dimensionless
quantity, given as a value relative to the to the electric potential on the target wire. Values for the weighting
potential are indicated in percentage on each equipotential line, ranging from 1% for the farthest to 60% for
the closest illustrated.
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Figure 9: A demonstration of electron drift paths in the applied electric field (panel a) and
weighting potentials (panels b, c, d) on individual wires of the 2D MicroBooNE TPC model, us-
ing the Garfield program. The x-Axis is in the drift field direction and the z-Axis is in the beam
direction. Values for the weighting potential are indicated in percentage on each equipoten-
tial line, ranging from 1% for the farthest to 60% for the closest illustrated. Source: [99]

direction y (not to be confused with the overall detector vertical dimension y).

The current induced from a 1m MIP track is shown in Fig. 11 for various configurations of

θxz and θxz . There are three extreme cases to consider. First is the isochronous track, consid-

ered in Fig. 11b, where θxz = 0 and all ionized charge arrives at the wire planes simultaneously.
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Figure 5: Field responses (induced-current) from various paths of one drifting ionization electron
for the three wire planes. Y-axis is the integrated charge over 0.1 µs. Within the central wire
pitch, a center path at 0 mm (solid) and a boundary path at 1.5 mm (dashed) are employed for this
demonstration. See figure 3 for an illustration of the simulated geometry. The fine structures in the
field responses are subject to the path of the drifting ionization electron and the weighting potential
as shown in figure 2.

2.2 Electronics response

The induced current on the wire is received, amplified, and shaped by a pre-amplifier. This process
is described by the electronics response function. The impulse response function in the time
domain is shown in figure 6a. The MicroBooNE front-end cold electronics [25] are designed to be
programmable with four different gain settings (4.7 mV/fC, 7.8 mV/fC, 14 mV/fC and 25 mV/fC)
and four peaking time settings (0.5 µs, 1.0 µs, 2.0 µs and 3.0 µs). In MicroBooNE, the gain is
roughly 3.5% lower than expected and the peaking time is 10% higher than expected [19]. For
a fixed gain setting, the peak of the impulse response is always at the same height independent
of the peaking time. The peaking time is defined as the time difference between 5% of the peak
at the rising edge and the peak. The different gain settings allow for applications with differing
ranges of input signal strength. The four peaking time settings are provided to satisfy the Nyquist
criterion [26] at different sampling rates. Two additional RC filters are exploited to remove the
baseline from the pre-amplifier and the intermediate amplifier. The intermediate amplifier provides
an additional gain of 1.2 (dimensionless) to compensate for the loss without any shaping/filtering.
The time-domain impulse response is as follows (and is shown in figure 6b):

Single RC : h(t) = δ(t) − 1
τ
· e−t/τu(t), (2.6)

RC ⊗ RC : h(t) = δ(t) + ( t
τ
− 2)1

τ
· e−t/τu(t), (2.7)

where the time constant τ = RC and δ(t), u(t) are the delta function and the step function, respec-
tively. In general, the time constant is 1 ms in MicroBooNE and the RC filter effect is visible when
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Figure 10: Induced current from a center path (incident on sensing wire) and boundary path
(1.5mm transverse offset, equidistant between wires) of one drifting ionization electron for
the three wire planes. The Y-axis is the integrated charge over 0.1 µs intervals. Source: [99]

In this case, long-range electric field effects are important across all wires, especially those

in the induction plane. However, time-based cancellation effects on bipolar signals do not

play a role. The next case is the prolonged track, where θxz = 90◦. In this situation, there is

maximal destructive interference in the induction plane wire signals resulting from charge at

different time offsets. As a result, it can be particularly difficult to accurately measure charge

on the induction planes.

Finally, there are aligned tracks, where a track is (nearly) parallel with the wires of a

particular plane, although of course this can never happen to multiple planes simultaneously.

In this case, the aligned plane is useless at determining the distribution of charge along the

particle trajectory, leaving the job to the other two planes. This can make successful trajectory

fitting in Sec. 5.4 difficult, and can be particularly problematic when the aligned wire plane is
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Figure 9: Simulated baseline-subtracted MicroBooNE TPC signals for a 1 meter long MIP track
(≈4400 ionization electrons per mm) traveling perpendicular to each wire plane orientation (θy =
90◦) with θxz varying in the x − z plane with respect to the z-axis. Detector physics effects and
the nominal MicroBooNE electronics response [19] were included. The signal shape is solely
determined by θxz , independent of θy .
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Figure 10: Simulated baseline-subtracted MicroBooNE TPC signals for a 1 meter long MIP track
(≈4400 ionization electrons per mm), isochronous (θxz = 0◦) with θy varying with respect to the
wire orientation. Detector physics effects and the nominal MicroBooNE electronics response [19]
were included. Given a θxz , θy just changes the signal amplitude.
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(b)

Figure 11: Simulated baseline-subtracted MicroBooNE TPC signals for a 1 meter long MIP
track (∼ 4400 ionization electrons per mm). Detector physics effects and the nominal Micro-
BooNE electronics response [101] were included. Left: the track is traveling perpendicular
to each wire plane orientation (θy = 90◦) with θxz varying in the xz plane with respect to
the z-axis. Right: the track is isochronous (θxz = 0) with θy varying with respect to the wire
orientation. Source: [99]

the collection plane and the induction planes’ signals suffer from destructive interference

or high noise (such as from the cathode), or when one or more of the required planes suffer

from dead wires in the region. These difficulties will be discussed in more detail in Sec. 5.4.
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5.1.2 Charge Measurement

With the induced current across wires accurately modeled, it is time to compute the un-

derlying charge distribution for a given current measurement on each wire. The current

measurement M(t ′) can be seen as a convolution of the desired charge signal distribution

S(t ) and the detector response R(t , t ′), which maps the current measurement at some time t’

to an element of original charge signal at time t:

M(t ′) =
∞∫

−∞
R(t , t ′) ·S(t )d t

=
∞∫

−∞
R(t ′− t ) ·S(t )d t (5.2)

where the time invariance of the response function has been asserted in the second line.

Inverting this relation to solve for S(t ) involves the method of deconvolution, and has been

performed in 1D in previous LArTPC experiments [102]. This is achieved by taking the Fourier

transform to express the relation across the angular frequency ω, and then solving for S(ω):

S(ω) = M(ω)

R(ω)
(5.3)

The charge signal distribution over the time domain S(t ) can be obtained by simply applying

the inverse Fourier transform to S(ω).

This straightforward procedure encounters a couple of difficulties from real-world con-

siderations. First, the measured current contains noise from the electronics [103], and the

mathematical solution R(ω) to the Fourier transform ignores practical limitations of detector

equipment, by which R(ω) → 0 at large ω. This necessitates the introduction of a filter func-

tion F (ω) to modify the effective detector response description by attenuating high-frequency
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noise and respecting the limitations of a realistic detector:

S(ω) = M(ω)

R(ω)
·F (ω) (5.4)

The filter function used is derived from the Wiener filter [104], which suppresses regions

of high expected noise N 2(ω) relative to signal strength S2(ω):

FW (ω) = R2(ω)S2(ω)

R2(ω)S2(ω)+N 2(ω)
(5.5)

The Wiener filter has the advantage of maximizing the signal-to-noise ratio with minimum

mean-squared-error of the deconvolved distribution. However, the Wiener filter does not

conserve the overall charge signal measurement (lim
ω→0

FW (ω) < 1), and smears the distribution

non-locally over the time domain (and therefore the drift dimension). To prevent these issues,

a Wiener-inspired filter is used:

F (ω) =


e− 1

2

(
ω
a

)b
ω> 0

0 ω= 0

(5.6)

where a and b are free parameters, and the function F (ω) is fit to the Wiener filter FW (ω). By

setting F (ω= 0) = 0, the filter removes any DC component of the current measurement, while

lim
ω→0

FW (ω) = 1 ensures that the overall charge normalization is not affected. The decaying

Gaussian tail suppresses non-local smearing effects on the distribution of charge.

The procedure as presented so far is mathematically valid for extracting the signal charge

from the current measurement on a wire-by-wire basis. However, it does not include the

current information from nearby wires, which has been shown to be significant. Under real-

world conditions, with noise and measurement uncertainty, as well as destructive interference

on induction planes, the additional information measured on nearby wires is particularly

helpful for an accurate charge measurement.
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The information from nearby wires can be incorporated by redefining the measured

current Mi (t ′) on wire number i at time t ′ as a sum of charge distributions Si+ j (t ) associated

with their closest wire, over the 2k +1 local wires j ∈ {−k, ...,k} (as well as the convolution

over time domain):

Mi (t ′) =
∞∫

−∞

k∑
j=−k

R j (t ′− t ) ·Si+ j (t )d t (5.7)

This essentially represents the measured current as a 2D convolution, over both time and

wire number. As before, applying a Fourier transform solves the convolution in time:

Mi (ω) =
k∑

j=−k
R j (ω) ·Si+ j (ω) (5.8)

What is left is a system of linear equations, and can be simplified by asserting that the response

function should be symmetric in wire number (R− j (ω) = R j (ω)):



M1(ω)

M2(ω)

...

Mn−1(ω)

Mn(ω)


=



R0(ω) R1(ω) Rn−2(ω) Rn−1(ω)

R1(ω) R0(ω) Rn−3(ω) Rn−2(ω)

...
...

. . .
...

Rn−2(ω) Rn−3(ω) R0(ω) R1(ω)

Rn−1(ω) Rn−2(ω) R1(ω) R0(ω)





S1(ω)

S2(ω)

...

Sn−1(ω)

Sn(ω)


(5.9)

where R j (ω) should be 0 for any j > k corresponding to the response function for charge

outside the local region of a wire.

Since the matrix R is symmetric and Toeplitz (meaning that each diagonal descending

from left to right has all elements equal), the matrix inversion can be computed using a

discrete Fourier transform [105]. Fig. 12 shows the resulting charge signal extracted before

and after both 1D and 2D deconvolution, highlighting the sensitivity to signal topology and

the robust performance of the 2D deconvolution.

In theory, the deconvolution in time could be performed over the entire readout window.
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Figure 11: A neutrino candidate from MicroBooNE data (event 41075, run 3493) measured on the
U plane. (a) Raw waveform after noise filtering in units of average baseline subtracted ADC scaled
by 250 per 3 µs. (b) Charge spectrum in units of electrons per 3 µs after signal processing with 1D
deconvolution. (c) Charge spectrum in units of electrons per 3 µs after signal processing with 2D
deconvolution.

the measured signal contains electronics noise, which is not necessarily as suppressed at low
frequencies. Therefore, following equation (3.3), the low frequency noise will be amplified in the
deconvolution process. The amplification of low frequency noise can be seen clearly in figure 18a.
Left unmitigated, the amplification of low frequency noisewould lead to an unacceptable uncertainty
in the charge estimation.

In principle, the amplification of the low-frequency noise through the deconvolution process
can be suppressed through the application of low-frequency (high-pass) filters similar to the filters
suppressing high-frequency (low-pass) noise. However, as explained in section 3.1.1, applying such
a low-frequency filter would lead to an alteration of the charge distribution in extended (non-local)
time ranges, which is not desirable. Instead we turn to the technique of selecting a signal region of
interest (ROI) in the time domain.

The region of interest (ROI) technique was proposed [30] to reduce the data size and to speed
up the deconvolution process. The idea is to limit the deconvolution to a small time window that is
slightly bigger than the extent of the signal it contains. The entire event readout window (4.8 ms
for MicroBooNE) is replaced by a set of ROIs. For induction wire signals, the ROI technique also

– 21 –

Figure 12: A neutrino candidate from MicroBooNE data (event 41075, run 3493) measured on
the “U " plane. (a) Raw waveform after noise filtering in units of average baseline subtracted
ADC scaled by 250 per 3 us. (b) Charge spectrum in units of electrons per 3 us after signal
processing with 1D deconvolution. (c) Charge spectrum in units of electrons per 3 us after
signal processing with 2D deconvolution. Source: [99]

However, this would be a slow process, and more importantly leave the deconvolution

vulnerable to low-frequency noise. The wider a time window used, the longer the period of

noise allowed through a Fourier transform. In theory, a high-pass filter could be applied to

suppress this noise similar to how the Wiener filter suppresses high-frequency noise, however

this could destroy real charge information, as well as smear the calculated charge distribution.

Instead, a Region of Interest (ROI) is used, which is a time interval surrounding each period

of current measurement on a wire. The deconvolution is only performed within this time

window, avoiding sources of noise outside the ROI and corresponding to low-frequency noise.
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5.2 Tomographic Imaging

The goal of imaging is to tomographically reconstruct a fully 3D distribution of charge from

the charge measurements across each wire plane as a function of time. Moreover, this recon-

struction should be topology independent and preserve as much of the physical information

captured in the wire measurements, so as to allow for the widest range of accurate particle

reconstruction and event selection downstream of imaging. After a 3D distribution is con-

structed, it is useful to group charge into connected components called clusters, ultimately

so that a single interaction is fully grouped as one cluster. This allows downstream algorithms

to be written without having to significantly consider whether the scope of charge considered

is too wide or too narrow, allowing for efficient high-level feature extraction.

These goals are made difficult by some of the limitations in LArTPC capabilities, as well as

imperfections of the MicroBooNE detector. Typically, tomography is performed by combining

many lower dimensional projections to reproduce the original image, such as in medical

applications including MRIs and CT scans. However, in the case of LArTPCs, only three

projections corresponding to the three wire planes are available. This makes reconstructing

an image more difficult, and in general even with perfect information no unique solution

mapping from wires to 3D charge exists. It is also possible to reconstruct so-called ghosts,

where a coincidental intersection of wires with simultaneously measured charge suggests a

solution that is in fact non-physical. These issues are greatly exacerbated by the existence

of dead wires within MicroBooNE, which span ∼ 10% of each wire plane, covering ∼ 30% of

the wire plane surface area. In these regions, only two wire planes (or fewer!) are functional,

further reducing the information available to perform tomography with.

To maintain fidelity in the reconstruction despite these obstacles, the full range of detector

information is used, as well as a number of key insights connecting wire measurements and

characterizing the structure of the 3D imaging solution. The wire measurements provide

information on the time of arrival, 1D location along wire number for each plane, and
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magnitude of charge observed. Additionally, since induction planes are set at a potential so

as to not collect charge, we can apply charge conservation between wire plane measurements

to aid in the reconstruction. Furthermore, charge drifting towards the anode is always the

same polarity and never reverses direction, implying a condition of positivity in the solution.

Finally, the physics of ionizing particles motivates the use of a proximity constraint, by which

continuous charge distributions, such as particle tracks, are preferred.

The imaging detailed in this section is able to reconstruct a fully 3D charge distribution

with non-functional regions totalling only 3% of the wire plane area. This is achieved through

a robust reconstruction algorithm that is capable of reconstructing charge in regions with only

two functional wire planes, aided by more precise 3-plane measurements in the surrounding

areas. The 3D charge distribution reconstruction is particularly noteworthy, as it enables a

suite of high-level particle reconstruction algorithms, some of which are discussed in Sec. 5.4.

The completion of 3D charge reconstruction represents turning a corner from unraveling the

convoluted measurements produced by TPC wires towards freely using detector information

as presented in its most physically fundamental form to identify particle types, energies, and

other kinematics.

5.2.1 Tiling

Before solving for a 3D charge distribution, wire info needs to be appropriately bundled to

reduce the computational time needed and complexity encountered by a solving algorithm.

Furthermore, as a result of smearing from diffusion, noise filtering, and residual long-range

charge-current induction, conservation of charge across planes is more accurate when ap-

plied over a larger area. Obtaining a consistent charge measurement across wire planes

is critical to solving the imaging equation 5.10 in Sec. 5.2.2, therefore bundling together

wires corresponding to a region of charge is necessary [106]. Additionally, tiling serves as

a conservative estimate on the possible 3D locations of charge, limiting the scope of later
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charge solving and and deghosting steps to one of deciding where charge is not.

Figure 1. Cells constructed with the MicroBooNE detector geometry. Cell boundaries are represented by
colored lines, while the wire centers are represented by gray lines. All cells have equilateral triangular shapes
due to the ±60◦ wire orientations.

wires, the possible hit cells are constructed. Any ambiguities at this point are simply retained and
addressed by the following steps.

Incorporating charge information: Voxel-based reconstruction is natural in pixel-readout de-
tectors but it is hindered in LArTPC because of the ambiguities due to the limited number of angular
views provided by the wire planes. Such ambiguities are illustrated in Fig. 2 with a simplified exam-
ple consisting of only two wire planes. There, three cells (H1, H5, H6) are “hit” by the distribution
of charge passing through the wire planes in the given single time slice. Due to the wire readout,
five wires (u1, u2, v1, v2, v3) record signals. This leads to 6 possible hit cells, including 3 fake
ones (H2, H3, H4). Such ambiguities cannot be resolved with geometry information alone.

However, given that any charge deposited inside a cell is measured independently by the
associated wires, additional charge equations can be constructed. For the example in Fig. 2, we
have:

©­­­­­­«

u1
u2
v1
v2
v3

ª®®®®®®¬
=

©­­­­­­«

0 0 0 1 1 1
1 1 1 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0

ª®®®®®®¬
·

©­­­­­­­­­«

H1
H2
H3
H4
H5
H6

ª®®®®®®®®®¬

, (2.1)

or, more generally, in a matrix form:
y = Ax, (2.2)

where y is a vector of charge measurements spanning the hit wires from all planes, x is a vector of
expected charge in each possible hit cell to be solved, and A is the biadjacency matrix connecting
wires and cells, which is determined solely by the wire geometry. We first consider the case where
there is no uncertainty in the charge measurement and the bi-adjacency matrix A is invertible. Upon
solving Eq. 2.2, the true hit cells will have the deduced charges equal to their true charges, while the
fake hit cells will have the deduced charges equal to zero. In reality, the uncertainty in the charge
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Figure 13: Cells constructed with the MicroBooNE detector geometry, colored differently
for visibility. Wires are colored in grey. Each cell is an equilateral triangle as a result of the
detector geometry of ±60◦ angles between wires across planes. Source: [107]

First wire measurements over time are merged into 2µs time slices consisting of four

sampling points of TPC readout. This introduces negligible information loss because noise

filtering heavily suppresses signals above 0.25MHz. Next fired wires can be bundled based on

their proximity. To do this, the concept of a “cell" is defined, as a primitive geometric object

that maps reconstructed charge from its nearest associated wires to a 2D position. For three

wires on different planes that nearly intersect, they will bound a smallest-size equilateral

triangle across the planes. The center of each of such triangle is used to seed a Voronoi

cell [108], which together divide the plane, as shown in Fig. 13.

In the simplest case, three wires across planes that bound a cell and registered as “fired"

(indicating the presence of nearby charge) would map to the bounded cell being labeled as

“hit" [107]. Note that in general, many wires can fire and the association to hit cells is not

so simple, such as in Fig. 14. Tiling is the process by which multiple adjacent hit cells are

grouped into a blob, defined by the consecutive fired wires on each plane that span the hit.

Fig. 15 shows a region of hit cells (with centers marked by blue dots) and corresponding fired

wires (red) that are tiled together to form a single blob, outlined in blue. The boundary of a

single cell is also shown, in black.

Note that this definition of a blob requires all three wire planes to be functioning in the
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Figure 2. Illustration of the hit ambiguity caused by the wire readout in a simplified two-wire-plane
example.

measurement needs to be considered, and the A matrix may not be invertible leading to ambiguous
solutions. In the following, we describe detailed techniques in handling these challenges..

Incorporating charge uncertainty: In practice, the charge measured on each wire has associ-
ated uncertainties from noise contributions and imperfection of the signal processing procedures.
Therefore, Eq. 2.2 is only approximate. The charge uncertainties can be taken into account by
constructing a χ2 function:

χ2 = (y − Ax)T · V−1 · (y − Ax) (2.3)
≡ ||y′ − A′x | |22,

where V is the covariance matrix representing the uncertainty of the measured charge on each
wire. The vector y and x are then pre-normalized through V−1 = QTQ (Cholesky decomposition),
y′ = Q · y, and A′ = Q · A. The notation | | · | |p defines the `p-norm of a vector such that
| |x | |p = (

∑
i |xi |p)1/p.

The best solution is found to be:

x =
(
AT · V−1 · A

)−1
· AT · V−1 · y (2.4)

by minimizing the above χ2 function. Therefore, when the matrix M = ATV−1 A is invertible, the
best-fit charges of hit cells can be derived directly using Eq. 2.4. The true hit cells will have the
expected charges close to the true charges, while the fake hit cells will have the expected charges
close to zero.

– 4 –

Figure 14: Illustration of the hit ambiguity caused by the wire readout in a simplified two-
wire-plane example. This examples imagines sets of two and three wires that fire, creating six
potential intersections, but only three correspond to true charge hits. Source: [107]

region. This requirement is at odds with the reality of the MicroBooNE detector, which suffers

from ∼ 10% dead wires on each wire plane. This means that ∼ 30% of cells are bounded by at

least one dead wire, shown visually in Fig. 16. This represents a significant loss in selection

efficiency corresponding to events originating in a dead region. Even among surviving events,

the chance of losing information across part of an interaction threatens the overall ability to

correctly identify particles and estimate energies, harming both oscillation and cross section

measurements.

Motivated by these dire prospects, the requirements to label a cell as hit are relaxed. In

addition to cells bound by three fired wires, hit cells are also allowed to be bound by two

fired and one non-functional wire. This redefinition reduces the non-functional regions from

∼ 30% of the wire-plane area to ∼ 3%, at the cost of greatly increasing the number of false hits,

called ghosts. Although some ghosts are always possible, as demonstrated in Fig. 14, they are
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3D space points will be used to describe the algorithms and a “space point” is equivalent to a “cell”
hereafter, which represents a 3D voxel of the space with a finite size. Its charge is deduced by the
total charge of the blob that contains it, divided by the number of space points within the blob.

U wires

V wires

Y wires

Vertical 
direction

Beam direction

MicroBooNE

Figure 2: An example of the hit cells and blob constructed by the hit wires with the MicroBooNE
detector geometry. Each wire is represented by a solid red line and the wire (pitch) boundaries are
represented by dashed black lines. All hit cells have equilateral triangular shapes and are marked
with blue dots at their centers. An example cell is marked by the black triangle. A blob is formed
by the contiguous hit cells and marked by solid blue lines.

There are three advantages to the tiling. Firstly, it completely collects the reconstructed charge
smeared to the adjacent wires, resulting in more consistent charge values across the wire planes.
Secondly, it greatly reduces the number of unknowns in the later stage of solving. Thirdly, it
significantly reduces the computational cost. The charge smearing is different for different wire
planes. Obtaining consistent charge measurements across multiple wire planes by the tiling is
fundamental to construct and solve the Wire-Cell 3D imaging equation as described in section 3.2.

Figure 2 corresponds to a single track traversing the time slice in a local area. In reality, there
could be multiple tracks from cosmic-ray muons or a neutrino interaction traversing the time slice
(a fixed x position) at various Y-Z locations as shown in figure 3. The solid red lines represent the
hit wires from each wire plane. The resulting blobs are marked in blue or green. One may notice
that in figure 3, the green blobs only have two corresponding wire bundles from two wire planes.
This is because the hit wires in the third wire plane are not able to provide reasonable signals if
they are nonfunctional or too noisy. Note that figure 3 is the result after applying the de-ghosting
algorithm as introduced in section 3.3, so some blobs are determined to be fake and removed.

Generally, a 3-plane tiling approach requires the wires from all three wire planes to be func-
tional. Given that about 10%of channels are nonfunctional inMicroBooNE for various reasons [12],
this requirement introduces 30% inactive regions on the 2D anode plane as illustrated in the top
panel of figure 4. To address this issue, we allow for a 2-plane tiling procedure in areas where at least
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Figure 15: An example of the hit cells and blob constructed by fired wires. Each wire is
represented by a solid red line and the wire boundaries are represented by dashed black lines.
All hit cells have equilateral triangular shapes and are marked with blue dots at their centers.
An example cell is marked by the black triangle. A blob is formed by the contiguous hit cells
and marked by solid blue lines. Source: [106]

far more prevalent when ∼ 10% of the wires are essentially treated as always fired. This issue

will be addressed in detail in Sec. 5.2.3.

5.2.2 Charge Solving

The core goal of imaging in a LArTPC is solving the relation between the charge of fired wires

and the 3D distribution of charge across time and cells. After tiling, this becomes a relation

between merged wires and blobs, and can be expressed through a system of linear equations

called the imaging equation:

y = Ax (5.10)
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Figure 3: An example event with hit wires and blobs after applying the deghosting algorithm (see
section 3.3). Blobs are marked in blue or green. Blue blobs correspond to 3-plane tiling requiring
all three wire planes to be functional. Green blobs correspond to the additional blobs created in
2-plane tiling requiring at least two wire planes to be functional. Hit wires are represented by solid
red lines.

two planes have functional wires. This means that only the area having two or three nonfunctional
wires is regarded as the nonfunctional region. This drastically reduces the nonfunctional volume
from 30% to 3% as shown in the bottom panel of figure 4, and an increase of the number of blobs
(green blobs) can be seen in figure 3. Outside this 3% nonfunctional region, the 2-plane tiling
procedure assumes all the nonfunctional wires are assumed to be hit all the time.

Active detector if three live wires are required prior to tiling

Active detector if two live wires are required to tile

MicroBooNE

Figure 4: Impact of the nonfunctional wires (gray) on the anode plane. The borders of the two
figures correspond to the boundaries of the LArTPC active volume. Top: the gray area that has at
least one wire nonfunctional is 30%. Bottom: the gray area that has at least two wires nonfunctional
is 3%.

While the missing 3-plane blobs are recovered with 2-plane tiling, a number of fake blobs, or
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Figure 16: Visualization of non-functional detector regions in grey under a three-plane
requirement (totaling ∼ 30% non-functional) in the top panel and a two-plane requirement
(totaling ∼ 3% non-functional) in the bottom panel. Source: [106]

where y is a vector of charges across fired wires, x is a vector of charge across hit cells, and A is

a matrix with elements Ai j = 1 if and only if the cell x j has been grouped with wire yi through

tiling, and 0 otherwise. This system of equations is inherently under-determined [107], as

there are ∼ n2 hit cells corresponding to the ∼ n fired wires on each plane; even in Fig. 15

there are 15 hit cells and only 11 fired wires. This prevents the existence of a unique solution,

even before considering measurement uncertainty, noise filtering, and non-functional wires.

Instead of attempting to directly solve Eqn. 5.10, it is important to leverage our physical

knowledge and intuition regarding the system. First, it is important to apply the positivity

constraint. Only electrons drift toward the anode, and they never reverse direction, meaning

that the charge solution can be described through a distribution of a single polarity (in this

case, positive is used). Additionally, LArTPC activity is sparse; there are far more un-fired

than fired wires at any time. When considering the distribution of charge across hit cells,
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the true solution is most likely to be the one with the most ghost hits and correspondingly

the fewest true hits with nonzero charge. This intuition can be applied mathematically by

shifting from exactly solving a system of linear equations to minimizing a test statistic T0 that

measures the number of hits with nonzero charge, while obeying the relations in Eqn. 5.10.

This is achieved through the mathematics of the ℓp norm, specifically the ℓ0 norm in this

case:

ℓp (x) = ||x||p =
(∑

i
|x|p

)1/p

(5.11)

T0 = ||x||0 (subject to y = Ax) (5.12)

While minimizing T0 is sufficient to find the best practical solution to the imaging equa-

tion, it is often not computationally feasible. It is essentially a combinatorics problem

of testing all possible configurations, with an NP-hard complexity. This is a problem en-

countered elsewhere in the field of tomography [109], where the technique of compressed

sensing [110, 111] allows for the approximation of the ℓ0 norm solution with a much faster

time complexity. This is achieved by replacing the ℓ0 norm with the ℓ1 norm, which well

approximates the ℓ0 solution and is convex in x with a global minimum, allowing for speedy

minimization via gradient descent.

This test statistic can be improved by applying the physical knowledge of proximity;

touching blobs over adjacent time slices are more likely physical, and so their ℓ1 penalty term

should be reduced. A series of weights ω is applied to the cells in x, scaling them down by

an where n is the number of blobs connected in time to the target blob and a is a scaling

factor. The test statistic is further modified by allowing some flexibility in the solution to

Eqn. 5.10 to account for measurement uncertainty. The measurement and signal vectors y

and x are normalized with the covariance matrix V of charge measurement uncertainties

using Cholesky decomposition: V −1 = QT Q. The new test statistic T1 to be minimized is
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MicroBooNE Data

MicroBooNE Data

MicroBooNE Data

Figure 5: Comparison of the tiling results and the charge solving result from MicroBooNE data
(event 41075, run 3493). The solid black box represents the LArTPC active volume with an X-
position (converted from the readout time) relative to the neutrino interaction time. Only time and
geometry information are used in the tiling. Sparsity, positivity, and proximity information are
incorporated in the charge solving as described in section 3.2. Top: 3-plane tiling with 70% active
volume. Middle: 2-plane tiling with 97% active volume. Bottom: 2-plane tiling result after the
charge solving. The color scale represents the resulting charge values in the charge solving.
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Figure 17: Comparison of the tiling results and the charge solving result from MicroBooNE
data (event 41075, run 3493). The solid black box represents the LArTPC active volume with
an x-position (converted from the readout time) relative to the neutrino interaction time.
Top: tiling result under the strict 3-plane requirement. Middle: tiling result under the relaxed
2-plane requirement. Bottom: solved charge distribution from the blobs generated under
the 2-plane requirement. The color scale represents the resulting charge values in the charge
solving. Source: [106]
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given by:

T1 = ||Q y −Q Ax||22 +λ||ω ·x||1 (5.13)

where λ controls the strength of the ℓ1 norm.

Fig. 17 demonstrates the results of charge solving as discussed in this section. The set of

blobs under 3-plane and 2-plane requirements are contrasted with the solved distribution

of charge, which removes many of the ghosts introduced in the 2-plane case. However,

many ghosts still remain, motivating a dedicated effort to remove them through a repeated

deghosting process.

5.2.3 Deghosting

The reason that the imaging equation misses so many ghosts is because it is only attempting

to reduce positional redundancy, with just a slight modification in the form of the weights ω

to connect the information across time slices. Therefore, the overall charge solution should

be made more global by looking for redundant blobs over projections involving the time

dimension (equivalently, the drift dimension). In this manner, deghosting and charge solving

can be seen as complementary steps, each aiming to remove redundant solutions (ghosts)

across different marginalizations of the full 3D charge distribution.

When viewed in 3D, adjacent blobs across time slices can be connected to form proto-

clusters. These form an intermediate step towards a complete description of the activity in an

interaction; however, gaps between proto-clusters within an interaction may exist because of

both real and artificial causes, such as π0 decay and poor reconstruction respectively. The

step of forming proto-clusters from blobs can be thought of as a form of tiling over the time

(drift) dimension. Some of these proto-clusters are ghosts, and are redundant in explaining

the charge measured across wires. To identify these ghosts, their structure and relation to

non-functional regions and real charge are examined.

First, as is typically the case, ghosts will often exist in detector regions with a non-
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functional wire plane. Ghosts must lie along at least two sets of fired wires, corresponding to

coincidental charge distributions at other locations. Track-like ghosts can hide in the non-

functional region of one wire plane, and in the projected shadow of real charge distributions

along the other wire planes. However, as the 2D anode-projected position of charge has

already been solved under the constraint of sparsity through the imaging equation, it is likely

that ghosts hide, and therefore are redundant, in all three 2D wire-versus-time projections.

This motivates the deghosting procedure, where each proto-cluster is examined for

redundancy by considering whether the charge distribution minus the candidate proto-

cluster, viewed under each 2D wire-versus-time projection, is capable of describing the set

of fired wires. Because the removal of ghost proto-clusters decreases the total charge of

the 3D distribution, the imaging equation must be re-solved to recover an accurate charge

distribution. The remaining blobs after deghosting are used as input for this round of charge

solving. This overall procedure is iterative, and empirically it was found that three rounds of

charge solving plus deghosting were useful, with further rounds providing minimal benefit.

5.2.4 Clustering

The proto-clusters established in the previous section help to group the activity of a particle

within an interaction, but they are disjointed and insufficient for future reconstruction goals.

It is necessary to group all of the activity of an event together, for organizational purposes

and algorithmic ones. In particular, charge-light matching in Sec. 5.3 requires a full count of

all the charge in an event to be able to accurately match this charge with the corresponding

light signal it produces. Although charge may reach the TPC at different times within the

drift window, the true interaction occurs at relativistic speed and so all parts of an interaction

begin emitting scintillation light to be recorded by the PMT system simultaneously. Therefore,

light activity is recorded as a single flash, and charge-light matching will be most successful if

the entire interaction can be grouped into a single charge cluster.

63



5 WIRE-CELL EVENT RECONSTRUCTION

Existing proto-clusters are incomplete for a number of reasons. There are gaps resulting

from non-functional regions (3% of the detector volume) as well as errors in signal processing,

particularly in the case of difficult topologies such as isochronous and prolonged tracks. A

cluster may also contain multiple separated components resulting from non-ionizing neutral

particles that are invisible to the LArTPC but may later decay to ionizing particles, such as

π0 → γγ and γ→ e+e−.

It is also possible that an interaction may be over-clustered, where charge from sepa-

rate coincidental interactions overlap. The chance of this happening is largely driven by

the existence of cosmic rays, which populate every drift window, although usually without

overlapping. The source interactions for overlapping charge occur at different times, and

therefore produce separate light flashes, but it is possible for their ionized charge to reach the

wire planes simultaneously, hence the overlap. This can happen, for example, if one interac-

tion occurs early in a drift window near the cathode while a second interaction occurs later

in time but near the anode. It is important to de-cluster these interactions both to accurately

describe each interaction for purposes of particle identification and event selection, and to

allow for accurate charge-light matching. Finally, all of the sources of imperfection discussed

can hamper the effectiveness of charge solving and deghosting, producing some ghosts that

cannot be removed through the methods discussed earlier, so some residual ghosts remain

as isolated proto-clusters.

Recovering the original structure in the presence of gaps is based on two metrics: the

distance between the gaps and the directionality of both proto-clusters. The distance vector

between clusters is defined as the minimum distance between pairs of points across the

clusters, and is computed by constructing a k-dimensional graph connecting the 3D charge

points through nearest neighbors using the nanoflann package [112]. The direction of each

cluster is determined by taking the Hough transform [113] of the point cloud, which maps

the 3D position of each point to multiple locations on a 4D phase space characterizing the
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MicroBooNE Data

MicroBooNE Data

Figure 13: Demonstration of the effectiveness of the algorithmof bridging gaps. The solid black box
represents the LArTPC active volume with an X-position (converted from the readout time) relative
to the neutrino interaction time. Top: proto-clusters solely based on proximity. Bottom: clusters
after the application of the algorithm of bridging gaps. The two circles indicate remaining clustering
issues, e.g. over-clustering of cosmic-ray muons and under-clustering of neutrino interactions.
Cluster membership is indicated by uniform color.
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Figure 13: Demonstration of the effectiveness of the algorithmof bridging gaps. The solid black box
represents the LArTPC active volume with an X-position (converted from the readout time) relative
to the neutrino interaction time. Top: proto-clusters solely based on proximity. Bottom: clusters
after the application of the algorithm of bridging gaps. The two circles indicate remaining clustering
issues, e.g. over-clustering of cosmic-ray muons and under-clustering of neutrino interactions.
Cluster membership is indicated by uniform color.
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Figure 18: Demonstration of the effectiveness at bridging gaps in clusters. The solid black
box represents the LArTPC active volume with an x-position (converted from the readout
time) relative to the neutrino interaction time. Top: proto-clusters solely based on proximity.
Bottom: clusters after bridging gaps. The two circles indicate remaining clustering issues, e.g.
over-clustering of cosmic-ray muons and under-clustering of neutrino interactions. Cluster
membership is indicated by uniform color. Source: [106]

position and orientation of all possible lines. If the space of possible line orientations, SO(3),

is parameterized by n possible orientations, then each 3D space point will map to n locations

in 4D phase space, where two dimensions controlling the physical offset of the line are fixed
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by the 3D location of the point in the domain. This can be thought of conceptually as taking

the plane normal to the orientation being considered and projecting all 3D points onto

this plane and recording their 2D projection. The set of n orientations under consideration

are then iterated to complete the mapping. For a given orientation, points along nearby

parallel lines will map to nearby phase space locations. If a point cloud is track-like, only

the orientations that match the directionality of the point cloud will map all 3D points into

a dense region in phase space. The best orientation can be easily found by searching for

regions of highest density in the phase space. Clusters are merged based on the distance

between them as well as the difference in directionality between them. The performance of

bridging gaps in clustering is demonstrated in Fig. 18.

After clusters are merged across gaps, over-clustering from coincidental overlaps is de-

tected and the clusters are separated. Candidates for over-clustering are found by inspecting

the Principle Component Analysis (PCA) [114] of the point cloud of charge. Track-like events

will only have a single large PCA eigenvalue, while overlapping tracks will have two non-trivial

PCA eigenvalues. Over-clustered events are detected by looking for a primary track that

extends along the length of the largest PCA axis. This is achieved by constructing the smallest

convex shape bounding the point cloud using the quickhull algorithm [115], and looking for

endpoints indicative of the primary track near the boundary of the convex region. These

endpoints must be located near the PCA primary axis, and the local point cloud must extend

along this axis. Once a primary track of an over-clustered event is selected, a Kalman fil-

ter [116] is used to crawl along the track to locate the other end. Then, Djikstra’s shortest path

algorithm [117] is run over the graph of charge points to assign a simple trajectory along the

track, and the local charge points along the trajectory are associated with it. These points are

considered one cluster, and are removed from the point cloud. This process can be iterated

to further separate clusters in the case of multiple overlaps. The performance of separating

over-clustered events is demonstrated in Fig. 19.
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MicroBooNE Data

MicroBooNE Data

Figure 14: Demonstration of the effectiveness of the clustering algorithm to separate a “coincidental
overlap” cluster. The solid black box represents the LArTPC active volume with an X-position
(converted from the readout time) relative to the neutrino interaction time. The top and bottom
panels show the clusters before and after applying this algorithm. Cluster membership is indicated
by uniform color.
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Figure 19: Demonstration of the effectiveness of the clustering algorithm to separate coinci-
dental overlaps in clusters. The solid black box represents the LArTPC active volume with an
x-position (converted from the readout time) relative to the neutrino interaction time. The
top and bottom panels show the clusters before and after applying this algorithm. Cluster
membership is indicated by uniform color. Source: [106]

After clustering to bridge gaps and separate coincidental overlaps, there is room for

improvement with another round of deghosting. By connecting proto-clusters across gaps,
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ghosts that could not previously be found redundant within a single proto-cluster can now be

identified when the full cluster information is available. After coincidental overlap separation,

some ghost proto-clusters are now properly isolated and may be removed without also

removing sections of valid charge.

There is a final clustering algorithm dedicated to group isolated components in a neutrino

interaction, which can have more complicated topologies, such as π0 → γγ decay, than

cosmic ray activity. This algorithm is only run on the 2.3ms of drift window following the

beam spill, corresponding to candidate neutrino interactions. It follows a similar technique to

the gap-bridging algorithm, where the directionality of a (> 1cm long) cluster is determined

through use of the Hough transform. The trajectory of the cluster is extended and examined

to see whether it intersects with the endpoint or extended trajectory of another cluster. These

cases indicate a common decay vertex, although not necessarily the neutrino vertex, and all

associated clusters are merged.

The clustering achieved in this section, building on the broader suite of imaging algo-

rithms before it, finishes the task of preparing a robust 3D description of the data for each

TPC interaction. The fully-3D charge point cloud solved for in Sec. 5.2.2 represents a novel

step forward in LArTPC physics and enables more powerful implementations of high-level

reconstruction algorithms by virtue of working with the more physical 3D charge distribution

instead of 2D projections. Deghosting in Sec. 5.2.3 fixes many of the problems introduced by

taking on the ambitious goal of 3D imaging under a 2-plane requirement, producing a solved

charge distribution with minimal errors. Finally, this distribution is assembled into com-

pleted clusters corresponding to entire interactions in Sec. 5.2.4 so that the results produced

may be easily fed into upcoming algorithms.

68



5 WIRE-CELL EVENT RECONSTRUCTION

5.3 Charge-Light Matching

The completion of charge reconstruction through imaging marks the transition from process-

ing data into fundamental, information rich descriptions toward the creation of high-level

descriptions of the particles that produced these interactions. In-between these two halves

of the reconstruction chain sits flash-light matching. The clusters produced in Sec. 5.2.4

enable the pairing of TPC charge activity with the corresponding light flash as measured by

the PMT array. This has the primary benefit of allowing the precise interaction time to be

linked with the charge cluster, as the PMT array is capable of measuring prompt scintillation

light at sub-µs resolution. Precise interaction timing allows cosmic ray background events

to be rejected using the narrow beam window (1.6µs) instead of the lengthy drift window

(2.3ms). There are additional benefits derived from knowing the drift offset: cosmic ray data

can be studied to form the effective detector boundary described in Sec. 4.3.4, and candidate

neutrino position will be used in Sec. 6 to remove cosmic rays.

5.3.1 Flash Reconstruction

The light collection system consists of 32 PMTs arranged across the anode to maximize

coverage of the TPC volume. They measure the light produced over a ∼ 23.4µs window,

beginning 4µs before the beam spill and consisting of 1,500 samples taken at a rate of 64MHz.

There is also a cosmic discriminator window that triggers on light activity throughout the

entire 6.8ms PMT readout window, and stores data for 40 samples, corresponding to 0.6µs.

A Fast Fourier Transform (FFT) [118] algorithm is used to deconvolve the raw waveform to

unfold the electronics response. Flashes are identified based on the paired requirements

of a) at least three PMTs measuring ≥ 1.5PE and b) more than 6 PE measured in total, both

evaluated based on the total PE measured over a rolling 100ns (7 samples) window. Once a

flash is detected, the flash start time is set as the sampling bin with the largest total PE, and

any PE activity measured in the following 7.3µs is associated with the flash, to include the
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MicroBooNE

Figure 20: Illustration of two reconstructed flashes from beam discriminator PMT waveforms. The
black curves are the deconvolved PE spectra for each PMT. The red lines represent the flash times
and the red bands represent the flash windows. For the second flash at about 4.6𝜇s, there is a Michel
electron as indicated by the second peak (at about 5.3𝜇s) of its PE spectra.

MicroBooNE

Figure 21: The reconstructed PEs of a flash as a function of flash time. The 6.4 ms PMT readout
window is shown relative to the trigger time. The flashes from the beam discriminator (23.6 𝜇s
long) are shown as inset. The flash in coincidence with the BNB beam spill (between dashed red
lines) is indicated. In general, there are 40–50 reconstructed PMT flashes in each BNB event.

4.3 Many-to-many charge-light matching

Now that the TPC charge activities have been reconstructed and grouped into physically distinct
clusters in section 3 and the PMT light measurements have been reconstructed into distinct flashes
in section 4.2, the next step is to match the 20–30 TPC clusters to the 40–50 PMT flashes for
each recorded event. This will allow each matched cluster to be assigned the precise starting time
measured by the PMTs, and enable using the short BNB time window to reject the vast majority of
cosmic-ray muons as neutrino candidates.

As an example shown in figure 22, there are many TPC clusters spanning the entire readout
window with unknown electron drift start time. The X-position is assigned by a direct conversion
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Figure 20: Deconvolved waveform of the 32 PMT array. The red bands represent flash
windows for two separate flashes, at times of 4.6µs and 5.3µs. The measured PE is represented
by the z-axis. Source: [106]

late scintillation light contribution. However, if another flash is detected before the end of the

first flash window, as is the case in Fig. 20, it is cut short and the remaining PE is associated

with the later flash. To trigger this, there must be a spike in the PE profile over time, and it

must either be more than 1.6µs after the original flash time or it must produce a significantly

different PE distribution across the PMTs as determined by a Kolmogorov-Smirnov (KS) [119]

test.

5.3.2 Match Determination

In the entire PMT readout window there are typically 30−50 light flashes reconstructed, as

shown in Fig. 21. This is larger than the ∼ 30 TPC charge clusters recorded because the PMT

array is capable of detecting light from activity outside the fiducial volume but still inside

the cryostat. As a result, some flashes have no corresponding charge cluster. However, there

are also charge clusters with no corresponding reconstructed flash, particularly in cases of
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low visible energy interactions and those occurring near the cathode (away from the PMTs).

Additionally, there are some inaccuracies in the clustering in Sec. 5.2.4, resulting in cases

where multiple clusters should be grouped together, and so correspond in reality to a single

flash. This motivates a charge-light matching algorithm that is capable of handling the variety

of possibilities instead of exclusively or exhaustively pairing flashes to clusters.

MicroBooNE

Figure 20: Illustration of two reconstructed flashes from beam discriminator PMT waveforms. The
black curves are the deconvolved PE spectra for each PMT. The red lines represent the flash times
and the red bands represent the flash windows. For the second flash at about 4.6𝜇s, there is a Michel
electron as indicated by the second peak (at about 5.3𝜇s) of its PE spectra.

MicroBooNE

Figure 21: The reconstructed PEs of a flash as a function of flash time. The 6.4 ms PMT readout
window is shown relative to the trigger time. The flashes from the beam discriminator (23.6 𝜇s
long) are shown as inset. The flash in coincidence with the BNB beam spill (between dashed red
lines) is indicated. In general, there are 40–50 reconstructed PMT flashes in each BNB event.

4.3 Many-to-many charge-light matching

Now that the TPC charge activities have been reconstructed and grouped into physically distinct
clusters in section 3 and the PMT light measurements have been reconstructed into distinct flashes
in section 4.2, the next step is to match the 20–30 TPC clusters to the 40–50 PMT flashes for
each recorded event. This will allow each matched cluster to be assigned the precise starting time
measured by the PMTs, and enable using the short BNB time window to reject the vast majority of
cosmic-ray muons as neutrino candidates.

As an example shown in figure 22, there are many TPC clusters spanning the entire readout
window with unknown electron drift start time. The X-position is assigned by a direct conversion
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Figure 21: Total reconstructed PE as a function of time across the entire 6.4µs PMT read-
out window. In general, there are 40–50 reconstructed PMT flashes in each BNB event.
Source: [106]

Matches are determined by comparing the measured flash on the PMT arrays against a

predicted light distribution based on the measured charge in a cluster. This predicted flash is

computed using a photon library [120] mapping charge across 3D voxel locations to predicted

light at the PMT array based on a large number of simulations. To accurately predict a flash

measurement, under each candidate charge-light pairing the charge cluster is moved along

the drift (x) direction to the location set by the flash time, adjusting the light prediction at the

location of the PMTs. Before proceeding to a global fit to match flashes to charge clusters, a

pre-selection is made to reduce the number of matches considered, and therefore reduce the
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complexity of the fit. The pre-selection restricts the set of clusters that can be matched to a

flash based on two requirements. First is a requirement of plausible causality: at the time

of the flash, the charge cluster must be fully contained within the TPC volume, accounting

for drift position. Second, the predicted and measured light distributions must be roughly

compatible, as determined by both a KS test and a comparison of overall PE.

Now that many of the potential matches are eliminated, the global fit is performed. The

match relations are formulated in a similar manner to the imaging equation, relating PMT-

measured light to charge-based predictions via y = Ax. Again, this is an under-determined

system with more unknowns than knowns, and the method of compressed sensing is used to

arrive at a probable solution through the use of an ℓ1 norm regularization term R1. There are

also regularization terms R2 and R3 enforcing the constraint that each cluster have only one

match and that the number of unmatched flashes should be small, respectively. The total χ2

test statistic is given as:

χ2 =
∑

i

∑
j
χ2

i j +R1 +R2 +R3

χ2
i j =

(
Mi j (1−bi )−∑

k ai k Pki j
)2

δM 2
i j
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∑

i

∑
k

ai k
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∑

i

(∑
k

ai k −1

)2

R3 =λ3
∑

i
bi (5.14)

where the indices i , j , and k run over flashes, hit PMTs in a flash, and charge clusters,

respectively. Mi j and δMi j represent the measured charge and its uncertainty on the j ′th

PMT of the i ′th flash, respectively. Pki j represents the predicted light from the k ′th cluster

at the i ′th flash time on the j ′th PMT. ai k ,bi ∈ [0,1] represent the degree of certainty that

flash i matches with cluster k and a dummy parameter that allows for a flash to find no
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match, respectively, and are solved for in the χ2 minimization. Finally, λ1, λ2, and λ3 are

regularization strengths.

MicroBooNE Data

Figure 23: Selected 7 matched pairs out of the 31 pairs from a data event. From left to right,
they are the front (Y-Z), side (Y-X), and top (X-Z) views of the detector, respectively. The black
or red boxes correspond to the LArTPC active volume. The gray solid circles in the front view
represent PMTs in different locations. The red solid circles represent the measured PE in the PMTs.
The green solid circles represent the predicted PE based on the matched TPC cluster(s). The area
of the circle is proportional to the number of PEs. The black box has no X-position shift, and it
corresponds to the starting time of the neutrino interaction. The red box corresponds to the time of
the matched PMT flash, i.e. the starting time of the cosmic-ray muon, and the X-position shift is
corrected.
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Figure 22: A selection of 4 out of 31 matched pairs, corresponding to cosmic rays, from a
data event readout window. The y-z (left), y-x (center), and x-z (right) 2D projections of the
charge distribution in the detector are shown, with the matched drift window in red and the
neutrino drift window in black. In the y-z view, grey circles show the PMT locations on the
anode, with red circles representing the magnitude of measured PE. Offset below for visibility,
the predicted light of the matched cluster is shown. Source: [106]

After the fit is performed, a number of flashes will remain unmatched, with ai k ≈ 0.

These are removed from the set of considered flashes, all bi values are fixed at 0, and a

second round of minimization is performed to solve for ai k alone. Afterwords, each cluster

is examined, and the strongest flash match as determined by ai k is selected. Since each

flash is allowed to match to multiple clusters, the flashes and their corresponding matched
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clusters are examined. For each flash, the largest matched cluster is considered the principle

component, and subsequent cluster matches are considered, and kept if they improve the

match compatibility, as defined by the KS test and overall PE comparison described earlier.

The unmatched clusters are tested against unmatched flashes to look for any remaining

matches that have been missed.

clusters are taken to be neutrino interaction candidates, and the remainders are rejected as cosmic-
ray background. Figure 24 and figure 25 demonstrate successfully matching muon and electron
neutrino clusters to their respective in-beam flashes. The performance of the matching algorithm is
evident from these event displays and quantitative evaluations are provided in section 5. On average,
the charge-light matching consumes about 30 seconds per event with less than 1.5 GB memory on
an Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz.

MicroBooNE Data

Figure 24: A muon neutrino event is shown with its matched flash. The red boxes correspond to
the LArTPC active volume. The gray solid circles in Y-Z view represent the PMTs in different
locations. The red solid circles represent the measured PE in the PMTs. The green solid circles
represent the predicted PE based on the TPC cluster(s). The area of the red or green circle is
proportional to the number of PEs.

– 34 –

Figure 23: A matched muon neutrino interaction from a data event. The y-z (left), y-x (center),
and x-z (right) 2D projections of the charge distribution in the detector are shown, with the
matched drift window in red. In the y-z view, grey circles show the PMT locations on the
anode, with red circles representing the magnitude of measured PE. Offset below for visibility,
the predicted light of the matched cluster is shown. Source: [106]

Fig. 22 shows 4 out of 31 matched flash-cluster pairs, corresponding to cosmic rays,

from a data event readout window, including the comparison between measured PE in

red and predicted PE in green. Fig. 23 shows the match for a muon neutrino interaction.

Flash matching is the first step in a series of event selection algorithms, as will be discussed

in Sec. 6, and is also an important part of the reconstruction chain. Through matching,

the results of clustering are improved, and the drift distance is established. Matching is

computationally important as it represents a ∼ 40× reduction in candidate neutrino events,

owing to the removal of non-beam-coincident cosmic rays, significantly reducing the amount
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of work generated in upcoming reconstruction algorithms. Finally, he use of a many-to-

many matching strategy achieves a significant performance improvement over one-to-one

solutions that aim to only match candidate neutrino flashes, leaving the majority of cosmic

rays unmatched. Not only does matching cosmic rays assist other areas of the analysis,

such as effective detector boundary mapping, but it also improves the neutrino flash match

accuracy. Through the use of a global fit, information from cosmic ray flashes is incorporated

to help reduce the chance of accidentally matching neutrino flashes to cosmic ray charge

clusters, preserving a higher selection efficiency. The performance of charge-light matching

in producing a high-quality neutrino selection is discussed in more detail in Sec. 6.

5.4 Trajectory Fitting

Trajectory fitting is a multi-purpose procedure. The primary and immediate goal is to aid the

identification of cosmic rays through a computation of the charge deposition rate dQ/d x of a

particle track. However, the benefits are far larger. Through dQ/d x, the directionality of many

particle tracks can be determined. Also, measurements of dQ/d x translate easily to energy

deposition dE/d x, which is useful for particle identification and energy estimation. More

generally, in computing the trajectories of each particle in an interaction a graph structure

of the entire interaction (or at least its connected components) is constructed, connecting

the flow between various particles. This makes the future steps easier, as half the work is

already done in determining which particles decayed to which. The larger construction of

particle flow as a top-level description of an entire neutrino interaction is a logical extension

of the groundwork built in trajectory fitting. The trajectory fitting algorithm discussed in

this section is focused on determining the trajectory of a single particle; in Sec. 5.5 it will be

expanded upon to accurately parse each individual track in a neutrino interaction.

The task of global trajectory fitting is largely enabled by a 3D reconstruction of the charge

distribution, as determining a seed trajectory would be far more challenging without the
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physically relevant 3D point cloud. However, there are still numerous challenges that remain,

and drive the overall shape of the procedure. There are inaccuracies in the 3D charge points,

especially resulting from smearing through the Wiener filter in signal processing as well as

the challenging reconstruction of difficult topologies (isochronous, prolonged, and aligned

tracks). As always, regions with non-functional wires reduce the reconstruction quality in

their vicinity. There is also an issue particular to trajectory fitting, the difficulty in fitting a

trajectory because of the non-linear nature of the fit. Simply feeding the global point cloud

distribution into a test statistic minimization calculation would be highly unstable and fail to

produce a reliable trajectory [95].

For these reasons, the process of determining a trajectory is split into multiple sections.

First, a seed trajectory is established through a graph-based treatment of the point cloud of

charge. The seed trajectory is intended to be reliably accurate in describing a particle through

the general path it takes, although the exact positioning of its points may be wrong. From

this, a precision trajectory in 3D is computed by projecting the 3D trajectory points into each

2D (wire number vs time) plane projection and simultaneously fitting to the pixels within

each projection, inspired by the Projection Matching Algorithm in ICARUS [121]. The use

of 2D projections in the fit avoids the issues with 3D points result from track topology and

signal processing and are limited to one plane projection. Meanwhile 3D trajectory points

still provide crucial information on the geometry of the interaction and on relating these 2D

projections. From trajectory fitting an ordered set of 3D points S{xi , yi , zi } with associated

2D projections U {ui , ti }, V {vi , ti }, W {wi , ti } is created. Once trajectory points are established,

the measured charge is assigned along the track to fit a dQ/d x profile. By separating this step

from the prior trajectory fit, issues resulting from the non-linear nature of the overall fit are

minimized to allow for a stable procedure.
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5.4.1 Minimum Spanning Tree

The trajectory seed is established in a robust manner by first organizing the 3D charge point

cloud into a graph capable of accurately describing the relation of points along a particle

trajectory. In theory a simple graph based on nearest-neighbor connections could be formed

as was used in Sec. 5.2.4. This would be insufficient for the level of precision desired here,

because such a graph could essentially be over-connected. Intuitively, the problem can be

seen when assigning a trajectory around a hard turn such as at a vertex. In a highly connected

graph, the shortest path from one end to another would cut corners, failing to well describe

particle trajectories. This is especially important under the very same example of particle

vertices, where vertex placement can play a critical role in accurate particle identification.

To prevent a shortest-path algorithm from deviating from real trajectories in such a

manner, the graph used to connect point cloud points is based on a Steiner tree [122]. A

Steiner tree takes as input an unordered graph of vertices and edges with non-negative

weights, where a subset of the vertices are labeled as Steiner terminals. The tree is then

constructed as a minimum spanning tree connecting these terminals, so that the sum of

the weights used in a minimum. It may include connections to other vertices, but has no

requirement to connect them at all, making it a sub-graph of the original. Steiner terminals

are selected as local maxima charge points (higher charge than any nearest neighbors) above

a threshold charge. By selecting high-charge points as Steiner terminals, the shortest path is

required to follow along these points. Naturally, high charge points tend to be concentrated

around the center of a trajectory, and so the shortest path over the Steiner tree much more

closely follows actual particle trajectories. Edges of the graph are computed by scaling the

Euclidean distance by a function based on their charges to preference connections between

high-charge points. Since forming the Steiner tree is NP-complete and computationally slow,

a Steiner tree greedy algorithm [123] is used to approximately solve it by connecting nearby

regions as determined through a Voronoi tiling. Results are shown in Fig. 24, comparing the
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performance before and after weighting edges based on charge magnitude and uncertainty.

24

(a) (b)

FIG. 25. Impact of adding charge information to the weight
calculation. Blue points represent the shortest path. Space
points are displayed in colors with their charge information.
(a) Weights are calculated only according to distances. (b)
Weights are calculated including the charge information.

with Q0 = 104 electrons, and Qs and Qt being the av-
erage charge of the starting and ending vertices, respec-
tively. ∆r represents the original distance between the
two vertices. This choice leads to a slightly smaller weight
for edges connecting two high-charge points. Figure 25
shows the impact of adding the charge information to
the weight calculation. The shortest path is found on
the Steiner-tree-inspired graph. The initial trajectory
seed for the track trajectory fitting is chosen from the
the shortest path such that the distance between two ad-
jacent points is not too small nor too large (1 cm for
the coarse-spacing fit and 0.6 cm for the fine-spacing fit,
as described in Sec. IV). This operation leads to a more
uniform set of seed points to produce the desired spacial
granularity.

2D pixel association: During the track trajectory fit,
the associations between the 3D points and 2D pixels
need to be formed, so that only a limited number of 2D
pixels participate in determining each track trajectory
point. This association is aided by the initial trajectory
seed. The 3D points (vertices) on the first-stage graph
close to the initial trajectory seed are found, and their
parent blobs are saved. These 3D blobs are projected to
the three 2D views to find the close-by 2D pixels (within
90% of the projected 2D distance) to associate. This
procedure is repeated on the Steiner-tree-inspired graph,
which helps to bridge the gaps in the original 3D image.
Since there are no blobs associated with the vertices on
the Steiner-tree-inspired graph, the 2D pixels that are
close to a projected 3D point are directly saved to form
the association. If no 2D points are found to be asso-
ciated with a particular 3D point in all three views, a
virtual association from the projection of the 3D point is
created as a regularization in the fit.

The associations that have been formed are further ex-
amined. Only 2D pixels that are not associated with
known nonfunctional channels and those with recon-
structed charge higher than a threshold (2000 electrons
as the default) are used during the examination. For any
given view, the average location of the eligible 2D pix-

els is checked against the initial 2D projection of the 3D
point. If the distance is larger than 75% of the position
spread and the number of eligible 2D pixels is small com-
pared to the possible number of 2D pixels, the established
association is replaced by a virtual association to avoid
the bias in the trajectory fit near nonfunctional channels.
If a 2D pixel is associated among multiple 3D candidate
points, its charge is equally distributed amongst the 3D
points.

APPENDIX B: STOPPED MUON EXAMPLES

In this appendix, we show several representative STM
examples with difficult topologies or unusual dQ/dx dis-
tributions, and some example neutrino interactions that
could be mis-identified as an STM.

Figure 26 shows a tagged up-going STM that enters
from the bottom of the detector. The black curve is
the fitted dQ/dx, and the blue curve is the reduced
chi-squared (χ2/ndf) value comparing the predicted and
measured charge from each 2D pixel. This track is clearly
not a cosmic-ray muon which would enter the detector
from the top or side. However, a clear rise in dQ/dx near
the stopping point is seen. This track originates from a
νµCC interaction outside the TPC active volume. Only
the muon enters the active TPC and is seen by the de-
tector.

A similar example is shown in Fig. 27. This track en-
ters the detector from the cathode plane and travels to-
ward the top of the detector. The angle of the track is not
consistent with that of a cosmic-ray muon. However, a
clear rise in dQ/dx near the stopping point is seen. This
track, which also should originate from a νµCC interac-
tion outside the TPC active volume, is tagged as a STM
background. Similarly, a νµCC interaction is tagged as
a TGM if its neutrino interaction vertex is outside the
active volume and only the muon goes through the de-
tector.

Figure 28 shows an example of a STM with a Michel
electron attached to the end. This track enters from the
anode plane. The stopped muon is quite short, with a
length of about 23 cm. The Michel electron is travel-
ing vertically downward, leading to a very compact view
in the collection W plane. The decay of the STM to
a Michel electron (at ≈23 cm) is clearly seen in the
dQ/dx distribution. The rise of dQ/dx before 23 cm
is properly tagged by the STM tagger, and the resid-
ual dQ/dx is consistent with that of the Michel electron
topology.

Figure 29 shows another example of a STM with
a Michel electron attached to the end. The rise of
dQ/dx before 256 cm is smaller compared to that in
Fig. 26, but the residual track is consistent with a Michel
electron. The algorithm discussed in Sec. V C success-
fully tags this event as a STM background by considering
the possibility of a muon decaying in flight.

Similarly to the TGM tagger described in Sec. V B,

Figure 24: Performance of Steiner-tree-based shortest path algorithm before (a) and after (b)
including charge weights to otherwise Euclidean graph edges. The shortest path forms the
basis of the trajectory seed to be fit. Source: [95]

5.4.2 Trajectory Seed

The trajectory seed is computed by connecting the extreme points on either end of the

point cloud (as determined using PCA) through the shortest path along the Steiner tree.

The ordered set of graph points along this path form the basis of the trajectory seed. To

improve the upcoming trajectory fit, points are added or removed as needed along the path

to maintain a spacing of ∼ 1cm between points. In preparation for the trajectory fit, the

seed points are associated with the nearby 2D (wire number vs time) pixels. This association

is formed for each trajectory seed point by considering the nearby 3D points, finding their

parent blobs, and projecting into the 2D views to locate close-by 2D pixels. By fixing the

trajectory-point to pixel associations, the computation of the fit can be controlled to avoid fit
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instability.

5.4.3 Trajectory Fit

To compute the trajectory fit, a test statistic T is constructed, comparing the fit quality of

each 3D point projected into each 2D view:

T (S{x j , y j , z j }) =
∑

k=u,v,w
Tk (5.15)

where k is an index over the U, V, and W wire planes and S{x j , y j , z j } is the set of trajectory

points to be fit. The test statistic for each plane is computed as:

Tk =
∑

j

∑
i

q2
i

δq2
i

· (∆Lk )2
i j (5.16)

(∆Lu)2
i j =∆u2 · (ui −u j (y j , z j ))2 +∆x2 · (ti − t j (x j ))2 (5.17)

where the construction of ∆Lv and ∆Lw follow the example shown for ∆Lu , and each repre-

sent the distance between the projection of the j ′th 3D trajectory point and the i ′th pixel. q

and δq represent the measured charge and its uncertainty at the associated pixel on a wire

plane readout, enhancing the weight of high-charge points and suppressing the weight of

high-uncertainty points. ∆x and∆u represent the width of the time slice (2µs, corresponding

to 2.2mm of drift) and wire pitch (3mm) respectively. The indices i and j run over nearby 2D

pixels and 3D trajectory points respectively. The 2D coordinates (wire number, time slice) for

pixel i are given by ui and ti , respectively, and correspondingly u j and t j are the projected

coordinates from the j ′th 3D trajectory point. The projection from 3D {x j , y j , z j } coordinates
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to {t j ,u j , v j , w j } is computed as:

t = 1

∆x
· x + t0

u = 1

∆u
· (−si n(θu)+ cos(θu)z)+u0

v = 1

∆v
· (−si n(θv )+ cos(θv )z)+ v0

w = 1

∆w
· (−si n(θw )+ cos(θw )z)+w0 (5.18)

where θu , θv , and θw are the wire orientations with respect to the vertical direction for each

wire plane, and {t0,u0, v0, w0} are the coordinates of the origin. These equations can be

combined to form an overall matrix equation for the test statistic:

T =
∑

k=u,v,w
(Mk −Pk ·S)2 (5.19)

where Mk is the charge-weighted 2D pixel coordinates and Pk is the charge-weighted pro-

jection matrix for each wire plane. Minimizing T leads to a matrix equation to solve for S:

( ∑
k=u,v,w

P T
k Pk

)
·S =

( ∑
k=u,v,w

P T
k Mk

)
(5.20)

The trajectory S is solved for numerically by using the Biconjugate Gradient Stabalized

method (BiCGSTAB) [124].

5.4.4 dQ/dx Fit

Since the trajectory has already been determined, the hard work is done and dQ/d x can

easily be computed by minimizing a test statistic T ′ that compares the projected charge from

each trajectory point to the charge of associated 2D pixels:

T ′(S{Q j };S{x j , y j , z j }) =
∑

k=u,v,w
T ′

k +T ′
r eg (5.21)
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S{Q j } is an ordered set of charges for each corresponding trajectory point. The regularization

term promotes a smooth solution by computing a penalty based on the second derivative of

the dQ/d x distribution over trajectory points:

T ′
r eg =

∑
i

(∑
j

Fi j ·
Q j

s j

)2

(5.22)

where s j represents the length of the j ′th segment, computed as the average distance to

each adjoining point. This makes
Q j

s j
an approximation of dQ/d x at j . F encodes the second

derivative information by taking the difference between adjacent
Q j

s j
entries when the product

is summed:

F = η ·



−1 1 0 0 0 0 0

1 −2 1 0 0 0 0

...
...

...
. . .

...
...

...

0 0 0 0 1 −2 1

0 0 0 0 0 1 −1


(5.23)

where η provides an overall normalization strength, set to 0.3 or 0.9 when an adjacent non-

functional wire is on the induction or collection plane respectively. The use of regularization

is important to dampen the impact of poorly defined trajectory points in the vicinity of

non-functional wires. The test statistic over each plane is computed as:

T ′
k =

∑
i

1

δq2
i

·
(

qi −
∑

j
Rk

i j Q j

)2

(5.24)

where Rk
i j computes the detector response from original ionization charge along the trajec-

tory Q j and the measured charge qi at a wire. Because of computation time costs, instead

of simulating the full chain of detector effects, including diffusion, TPC field response, elec-

tronics response, and signal processing, a much faster approach is used to approximate an

effective signal response. A Gaussian distribution is used, with width computed in quadrature
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from contributions of diffusion and the software filter:

σDL =
√

2DL · tdr i f t

σDT =
√

2DT · tdr i f t

σFt = 1.57mm

σFu = 0.36mm

σFv = 0.66mm

σFw = 0.11mm (5.25)

where DL and DT are computed in Eqn. 4.7, and tdr i f t is the drift time.

10

with large local curvatures. This term is important in the
dQ/dx fit to mitigate the impact of ill-defined points, es-
pecially when the 2D pixels are inside or close to the
nonfunctional channels. The regularization strength η is
set to be 0.3 or 0.9 if the nonfunctional channels belong
to induction or collection wire planes, respectively. Fur-
ther adjustment to η is made for each trajectory point j
if the adjacent points share a large number of nearby 2D
pixels.

With the test statistic T ′ defined in Eq. (7), the best-
fit set of charge depositions S{Qj} for all 3D trajectory
points is obtained by minimizing T ′ with respect to Qj .
Since the trajectory itself is fixed in the previous step
(Sec. IV A), the minimization of T ′ leads to a system of
linear equations similar to those in Eq. (6) and is solved
numerically using the BiCGSTAB method when the di-
mension is high. Reducing the problem to a linear system
significantly improves the stability and speed of the fit.
Finally, as defined in Eq. (10), dQ/dx for each point j is
calculated as the ratio between Qj and its corresponding
segment length sj .

The accurate determination of track trajectory and
dQ/dx is vital to rejecting many of the cosmic ray back-
grounds described in this work and plays a central role in
subsequent steps such as performing particle identifica-
tion. Figure 4 shows the performance of the dQ/dx deter-
mination for a simulated muon track. The reconstructed
dQ/dx is consistent with the true dQ/dx along the tra-
jectory, which is sufficient in identifying the increase of
dQ/dxat the Bragg peak. In the next subsection, the
performance of the full track trajectory and dQ/dx fit-
ting procedure with a few representative data events from
MicroBooNE are shown for illustration.
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FIG. 4. The best-fit dQ/dx (in black) along a simulated muon
track trajectory is compared with the true dQ/dx (in red) as
a function of the residual range (distance along the track with
respect to the stopping location).

C. Performance

For most tracks, the trajectory and dQ/dx fitting
procedures are robust and accurate due to the excel-
lent tracking and calorimetry performance of the Mi-
croBooNE detector. However, there are several difficult
cases where extra care is taken to ensure a high quality
fit:

• An isochronous track: A track that is parallel to the
wire planes, such that all TPC activity is recorded
at approximately the same time. This leads to large
ambiguities in determining the trajectory.

• A track that is compact in the collection (W) plane
view. This leads to difficulty in assigning correct
charges to the trajectory points.

• A track with segments in the nonfunctional chan-
nels, which leads to gaps in the track. This creates
difficulty in both trajectory and dQ/dx determina-
tion, as they have to be inferred from the other wire
plane views in the same time slice.

The key to dealing with these difficult cases is in the
initial trajectory seed determination, which is described
in detail in Appendix A. Figure 5 shows a typical “bad
topology” track from MicroBooNE data. It poses dif-
ficulties in all three categories. It is isochronous, com-
pact in the W plane, and has gaps in the measurement
due to nonfunctional channels in both the U and W
planes. Figure 5(a) shows the track topology from the
side, end, and top views. The predicted light pattern (in
green) is consistent with the measured light pattern (in
red). Unresponsive areas due to nonfunctional channels
are shown in dark gray. Figure 5(b) shows the best-fit
dQ/dx curve as a function of the track length. Since this
track is a through-going muon (TGM), the dQ/dx fit
is consistent with one minimum ionizing particle (MIP),
observed to be about 45k e−/cm in data, for most of
the track segments. The high dQ/dx region corresponds
to the segments with a delta-ray electron, and the dip
near 100 cm is the result of an incorrect track trajec-
tory fit near nonfunctional channels. Figure 5(c) shows
the three projection views. The channels that have no
measurement are nonfunctional. The magenta lines are
the projections of the best-fit 3D trajectory in each wire
plane view. The magenta circles correspond to the bad
fit in dQ/dx around 100 cm. Despite this imperfection,
the majority of the trajectory is successfully determined,
including a bridging of the gap corresponding to 100-
170 cm in the best-fit dQ/dx curve.

As mentioned previously, accurate determination of
dQ/dx is crucial in rejecting one of the main backgrounds
to neutrino detection: the STM background. Figure 6
shows such an example from a MicroBooNE data event.
The side, end, and top views are shown in Fig. 6(a). The
STM entered on the cathode side and stopped inside the
detector. Figure 6(b) shows the best-fit dQ/dx curve as a

Figure 25: The best-fit dQ/dx (in black) along a simulated muon track trajectory is compared
with the true dQ/dx (in red) as a function of the residual range (distance along the track with
respect to the stopping location). Source: [95]

The fit dQ/d x as a function of residual range (distance along the track with respect to
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the stopping location) demonstrates the capability to detect particle directionality, as shown

on simulation in Fig. 25. From the Bethe-Bloch equation 5, the signature Bragg peak can be

seen as the muon comes to rest. Determining particle directionality is an important result

in general, for determining vertices of origin and overall particle flow. It is also particularly

useful for identifying cosmic ray muons to efficiently remove them from a neutrino selection.

Cosmic rays typically enter from above and outside the detector, providing a signature that

can be identified from determining a particle’s trajectory.

5.5 Particle Identification and Vertexing

This section completes the Wire-Cell reconstruction chain by separating a neutrino inter-

action into a tree that tracks the flow of individual particles. Each particle has its trajectory

computed in a manner built upon the algorithm described in Sec. 5.4, and vertices are created

to label the decay/origin location of particles. Finally, the neutrino vertex is located and

the overall neutrino energy is computed [125]. Note that these algorithms are only run on

candidate neutrino interactions that pass a number of event selection cuts based on the

flash-light matching and simple particle trajectory algorithms of Sec. 5.3 and Sec. 5.4.

5.5.1 Track Segmentation

Track segmentation expands on the previously established single-trajectory fit algorithm,

which only follows the primary (longest) track in an interaction for the purposes of cosmic ray

muon identification. Taking the endpoints of this trajectory as an input, a Kalman filter [116]

is used to crawl along the trajectory and look for kinks, identified by sharp turns in the

trajectory. Wherever a kink is located, the track is split into two segments and a vertex

is created at the intersection. Each segment is re-fit using the trajectory fit algorithm to

determine a new trajectory and dQ/d x. Those fit trajectories are removed and the remaining

cluster is iterated over to look for additional segments to be fit. In this manner, all track
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segments in the interaction are identified and fit. At the end, and vertices in close proximity

to each other are merged. However, the determination of precise vertex location is left for the

next section. Segmentation and track fitting performance is demonstrated in Fig. 26.reproducible. Figure 6 shows an example of the multi-track trajectory and 𝑑𝑄/𝑑𝑥 fitting for the
event shown in figure 4.

MicroBooNE data (run 5384, event 2561)

Figure 6: Example display of the results from multi-track trajectory and 𝑑𝑄/𝑑𝑥 fitting. The three
panels on the left show the reconstructed ionization charge on different planes (two induction planes
and one collection plane) overlaid with the projection of the best-fit track trajectories. The track
trajectories are color coded and labeled with numbers of the same color. The top right panel shows
the 3D view of the best-fit track trajectories. The bottom right panel shows the best-fit 𝑑𝑄/𝑑𝑥 for all
track trajectories. 𝑑𝑄/𝑑𝑥 distribution for each stopped track can be used to determine the direction
of the track according to the Bragg peak. The color coding can be used to link the same trajectories
in 2D and 3D views. Also using the color coded numbers, the trajectories can be further linked
to the 𝑑𝑄/𝑑𝑥 fitting in the bottom right panel. The gray lines in the induction V view represent
non-functional channels. In the induction U view, short track number 6 is highly compacted because
of the nature of 2D projection.

2.2 3D Vertex Fitting

In order to improve the quality of the multi-track trajectory and 𝑑𝑄/𝑑𝑥 fitting (described in
section 2.1), a dedicated algorithm is introduced to better determine the position of the vertex
when multiple track segments are connected. Note, this vertex fitting algorithm is used to improve
the precision of all vertices, both primary and secondary. The neutrino vertex (primary vertex)
identification algorithms introduced later in section 2.4 and 2.5 are used to find the primary vertex.

Instead of operating on 2D projections, the vertex fitting procedure is performed on the 3D
space points. First, we denote the position of the vertex to be determined as (𝑥, 𝑦, 𝑧). For the 3D
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Figure 26: Example of multi-track trajectory fitting. The 2D projections on the U , V , and W
planes are shown on the left, and a 3D view is shown in the top right. The fit dQ/d x of each
trajectory is shown in the bottom right. Source: [125]

5.5.2 Vertex Fitting

Vertex fitting is a fully 3D algorithm, relying on the trajectory points for each track segment

connected to a vertex. For each segment, iterated with the variable i , the trajectory points

near the vertex are considered, omitting those within 1.5cm as they may be associated with

the wrong track segment. PCA [114] is run over the selected trajectory points to establish

the eigenvectors {v⃗i 1, v⃗i 2, v⃗i 3} and eigenvalues {λi 1,λi 2,λi 3} that describe the variance in the

trajectory, with v⃗i 1 describing the overall track trajectory.
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The distance from the center of each set of trajectory points to the vertex is described by

r⃗i . Then, the minimum distance from the vertex to the primary axis of a track (along v⃗i 1) is

described by:

s2
i = (r⃗i · v⃗i 2)2 + (⃗ri · v⃗i 3)2 (5.26)

The vertex location is computed by minimizing a test statistic defined based on a weighted

computation of s2
i , as well as a sort of regularization term:

T =
∑

i
λi 1

(
(⃗ri · v⃗i 2)2

λi 2
+ (⃗ri · v⃗i 3)2

λi 3

)
+λ(

(x −xor i g )2 + (y − yor i g )2 + (z − zor i g )2) (5.27)

The regularization prevents instability in edge cases such as nearly-straight lines by penalizing

fit vertex locations {x, y, z} that stray from the original candidate location {xor i g , yor i g , zor i g },

controlled by a strength λ. By weighting the test statistic by the inverse variance along the

corresponding direction, the fit preferences minimizing dimensions with a more precise

measurement and therefore less variance. Furthermore, by weighting the contribution of

each track segment by the variance along the trajectory, proximity to longer and more linear

tracks is emphasized in the fit.

5.5.3 Track-Shower Separation

Showers are identified using three techniques, spanning a range of energies and topologies. At

low energies, Multiple Coulomb Scattering (MCS) [17, 126] can be used identify electrons from

muons, and nearby isolated segments of charge can indicate Bremsstrahlung photons from

an electron. At higher energies, electrons produce complex showers that expand outward in

a cone, and so the cone width can be used to identify them.

MCS is a process driven by numerous Coulomb scattering interactions between an ioniz-

ing particle and the surrounding medium. Since electrons are far lighter than muons, they

will deflect more strongly. The numerous interactions with atomic electrons cause ionizing
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electrons to travel in wiggled tracks, as opposed to the mostly straight tracks of muons. These

cases are compared algorithmically by taking a track and constructing 10cm segments from

it. Then, the path length (∼ 10cm) is compared to the direct end-to-end length (≤ 10cm) for

each segment. Muon tracks measure direct lengths close to 10cm, while electron tracks will

be significantly shorter in direct length. For low energy electrons, individual Bremsstrahlung

photons can produce isolated segments of charge near the electron track, providing a second

method of identification. To confidently associate these segments with the candidate electron

track, the isolated segment must be aligned with the beginning of the track, requiring an

accurate vertex location.

High energy electrons produce showers involving an exponentially increasing number of

photons and secondary electrons and positrons resulting from pair production. This causes

the shower to grow wider perpendicular to the direction of its momentum, forming the shape

of a cone. By comparison, muon tracks do not grow in width at all, creating a clear difference

in signature. By measuring the shape and direction of the electromagnetic shower cone,

the vertex of an electron can also be identified if not already known, and by measuring the

perpendicular width of the cone high energy electromagnetic showers are separated from

muon tracks.

5.5.4 Traditional Neutrino Vertex Identification

The traditional approach to neutrino vertex identification is developed by considering

a number of observations about neutrino vertices. This leads to an overall score being

computed for each vertex, and the highest score being selected. This occurs for each TPC

charge cluster, and in the case that multiple clusters are matched to a single flash, one of

these candidate neutrino vertices is selected, following a similar set of considerations to the

individual score computations.

The most important consideration in determining the neutrino vertex is noticing that
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a neutrino vertex is uniquely the originating vertex of the interaction. That means that no

particles lead into it; all connected particles travel outward. By comparison, in the case

of particle tracks there is always one entering particle, with all remaining tracks traveling

outward. Furthermore, neutrino interactions statistically have more outgoing particles, owing

to the complex nuclear interactions described in Sec. 2. Because of its high initial momentum

along the beam direction, neutrino vertices are typically upstream of all other activity in the

interaction.

2.4 Neutrino Vertex Identification with Traditional Techniques

The reconstructed particle direction provides important information for the neutrino interaction
vertex identification. In the primary neutrino interaction vertex, the particles entering into the vertex
would be the neutrino (invisible to the detector) and the argon nuclei (also invisible to the detector).
Therefore, all tracks and EM showers would travel outward from the primary neutrino interaction
vertex. The situation is different for a secondary interaction vertex in the main interaction cluster
containing the true neutrino interaction vertex. In this case, the particles entering into the vertex
would be a charged particle (e.g. produced by the primary neutrino interaction) and an argon
nuclei (invisible to the detector). The rest of tracks and EM showers would travel outward from
the secondary vertex. Given each interaction always involves an argon nuclei, the chance to have
two visible particle tracks entering into a vertex is negligible. Therefore, the determination of the
track and EM shower directions is crucial. As described in section 2.3, the gradual increase of
the EM shower’s width can be used to determine its direction. For tracks, the identification of a
Bragg peak can be used to determine the direction. Figure 9 shows the 𝑑𝑄/𝑑𝑥 distribution as a
function of the residual range (distance to the end point of a track). The 𝑑𝑄/𝑑𝑥 rise can be used
to mark the end point of a track. In addition, two clearly separated bands, indicated by black and
red lines, correspond to protons and muons/pions. And this can be used to separate protons from
muons/pions.

MicroBooNE data

Figure 9: 𝑑𝑄/𝑑𝑥 vs residual range fromMicroBooNE data. Two clearly separated bands, indicated
by black and red lines, represent protons and muons. The measurement of 𝑑𝑄/𝑑𝑥 near the end
point of the track can be used to determine the track direction and particle identification. The
band around 𝑑𝑄/𝑑𝑥 ∼ 50k e/cm extending to zero residual range represents the muons exiting the
detector. The black and red curves are the predictions of most probable 𝑑𝑄/𝑑𝑥 values for protons
and muons, respectively, considering the recombination effect as reported in Ref. [39]. The yellow
curve indicates the empirical cut to separate protons and muons/pions.
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Figure 27: Separation of muon (red band) and proton (black band) tracks through the
measurement of dQ/d x as a function of residual range. The yellow band indicates the
selection cut between the particles. Source: [125]

The determination of particle directionality is clearly a key component of neutrino vertex

identification. Shower directionality is computed following the method described previously

in Sec. 5.5.3, and track directionality is determined by identifying the Bragg peak in the

dQ/d x profile, as described in Sec. 5.4 and shown in Fig. 27. Limited particle identification
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can also be determined using the dQ/d x profile, such as separating protons from muons and

pions. Certain topologies can also be excluded such as a vertex with an entering shower and

exiting track, or a vertex along a muon track resulting from a δ ray. Overall, this traditional

approach is 70% accurate at determining the vertex location within 1cm in the case of muon

neutrino interactions, and this result is improved upon through the inclusion of machine-

learning-based vertex finding.

5.5.5 Deep Neutral Network Vertexing

To improve the vertex identification performance, particularly on νe CC interactions, a Deep

Neural Network (DNN) is constructed. The goal of the network falls under the category of

region proposal [127], with the specific output chosen to be a prediction at each voxel of

the distance to the neutrino vertex, which greatly improves training compared to a simple

yes/no vertex location prediction. Following the work in other MicroBooNE analyses [128],

the SparseConvNet package [129, 130] is used because it is designed for sparse datasets

like a LArTPC readout, and in particular Sparse U-Net [131] is used to extract a feature

vector at each voxel. The reconstructed 3D points are voxelized using 0.5cm cubes. An

illustrative diagram of the Sparse U-Net structure is shown in Fig. 28, which shows a 2-level

implementation. Levels are added by iteratively inserting more “Concat-Join” blocks, and the

Wire-Cell implementation uses 5 levels.

The network takes in position and charge information tensors for the voxels and produces

a confidence value for each to form a Confidence Map [132], describing the distance from the

neutrino vertex. The truth labels Ctr ue are computed before voxelization, using the neutrino

position r⃗tr ue and a regularization parameter σ= 1cm:

Ctr ue (⃗r ) = exp

(
−||⃗r − ⃗rtr ue ||2

2σ2

)
(5.28)

Fig. 29 shows charge information and Ctr ue labels on a simulated neutrino interaction before
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SC Block
1 ⟶ 16 Identity

BN, Conv
16⟶32

SC Block
32 ⟶ 32

BN, Decon
32 ⟶ 16

SC Block
32 ⟶ 16JoinTable

Concat-Join
32, 64, 32

Concat-Join

BN SC BN SC

SC Block (repeat 2)
• BN: Batch Normalization
• SC: SubmanifoldConvolution
• Conv: Convolution
• Decon: Deconvolution

Figure 11: Illustration of the Sparse U-Net network structure from SparseConvNet [42, 43]. The
bottom diagram shows a level 2 Sparse U-Net.

The key part of our regressional segmentation network is a Sparse U-Net [46] which extracts
a feature vector for each pixel or voxel. Figure 11 shows details of a level 2 Sparse U-Net. One can
add more levels by iteratively inserting more “Concat-Join” blocks. We use level 5 in this paper.
More implementation details can be found in [47]. The SparseConvNet works on sparsified 2D or
3D images, which consist of a list of pixels (2D) or voxels (3D). The Wire-Cell reconstructed 3D
points are placed into voxels, which is a cube with 0.5 cm in each of three dimensions. If multiple
3D points fall into the same voxel, the values are averaged. The SparseConvNet takes two tensors as
input. One is a coordinate tensor (integer type) with position information for each voxel. The other
one is a feature tensor (float type) with the charge information. The output of the SparseConvNet is
also a list of features for each voxel, for now we extract only one feature which we call confidence
value related to the distance between a point and the truth vertex. The truth label for this confidence
value is calculated before voxelization, and the equation used is:

𝐶𝑜𝑛 𝑓truth = exp
(
− ‖®𝑥 − ®𝑣truth‖2

2𝜎2

)
, (2.2)

where 𝐶𝑜𝑛 𝑓truth is the truth label of the confidence value; ®𝑥 and ®𝑣truth are the reconstructed 3D
charge and truth vertex positions; 𝜎 is a regularization parameter (1 cm is used). Confidence values
from multiple voxels (pixels) form a “Confidence Map” [48]. Figure 12 shows an example of the
input (charge) and label before voxelization.
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Figure 28: Illustration of a 2-level implementation the structure of Sparse U-Net. Source: [125]
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Figure 12: Example of input (charge) and label (confidence value) images before voxelization
(showing a 2Dprojection). The color represents reconstructed charge in the left panel and confidence
value in the right panel. From the right panel, we can see the confidence value becomes larger when
getting closer to the vertex as defined in Eq. 2.2.

The dataset used for training the network consists of 48k 𝜈𝑒CC events simulated through the
MicroBooNE simulation chain andWire-Cell reconstruction. The dataset for validating the network
performance consists of 4k 𝜈𝑒CC events. The dataset for testing the network performance consists
of 4k 𝜈𝑒CC and 4k 𝜈𝜇CC events. The total dataset size is chosen based on the available official
MicroBooNE simulation production sample size. Then we try to maximize the training set size
while keeping enough for validation and testing. The choice of focusing on the 𝜈𝑒CC event topology
is motivated by the need to improve 𝜈𝑒CC event selection, which is much more challenging than the
𝜈𝜇CC event selection. Nevertheless, the final testing results of the network show an improvement
over the performance of the traditional algorithm (described in section 2.4) in both 𝜈𝑒CC and 𝜈𝜇CC
events.
Machine learning model parameters are estimated with the help of loss functions [49]. The loss
function we used is:

L =
1

𝑁𝑣𝑜𝑥𝑒𝑙

𝑁𝑣𝑜𝑥𝑒𝑙∑︁ 

𝐶𝑜𝑛 𝑓𝑝𝑟𝑒𝑑 − 𝐶𝑜𝑛 𝑓𝑡𝑟𝑢𝑡ℎ


2 . (2.3)

The optimizer used is Adam [50]; the learning rate decays after each epoch as 𝑙0 · 𝑒𝑥𝑝(−𝑛 · 𝑙𝑑),
where 𝑙0 is 10−5 and 𝑙𝑑 is 0.05 and 𝑛 is the epoch number. Figure 13 shows the training progress,
epoch average loss, and hit rate as a function of epoch number for the 𝜈𝑒CC training and validation
samples. “Hit rate” here is defined as the probability that the best predicted voxel is within 1 cm of
the truth voxel (the voxel closest to the truth vertex). From figure 13, we can see that: i) the solution
phase space is not fully covered by the training sample according to the gaps between the train and
validation curves (we also observed the gaps getting smaller when increasing training samples); ii)
there are signs of over-training; and iii) validation performance stopped improving after epoch 24.
The results shown in this paper are based on the model at epoch 24.
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Figure 29: Example of a simulated neutrino interaction with charge info (left) and truth
confidence value (right) shown. Source: [125]

The network was trained on 48k simulated νe CC events using the Adam optimizer [133]
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with the loss function L:

L= 1

Nvoxel

Nvoxel∑
||Cpr ed −Ctr ue ||2 (5.29)

and an exponentially decaying learning rate to allow for fast early learning followed by precise

refinement. The network was validated using 4k simulated νe CC events and tested on 4k

simulated νe CC events and 4k simulated νµCC events. Although training focused on the

νe CC interaction as vertexing is more difficult on it, improvement was found for both νe CC

and νµCC vertexing.

𝜈𝜇CC. This is because the performance of traditional algorithm for 𝜈𝑒CC is worse than that for
𝜈𝜇CC. As mentioned before, the hybrid vertex is used as the main result in the current workflow to
accommodate existing Wire-Cell reconstruction/pattern recognition algorithms. In the future, it is
likely we will revise the downstream reconstructions directly based on the DNN vertexing results
then we do not need to use the “hybrid” one.

MicroBooNE simulation

Figure 14: An event display to demonstrate finding the hybrid vertex based on a DNN vertex.
Each filled circle represents a voxelized 3D charge projected on the Y-Z plane. In this example, the
hybrid vertex (indicated by the black arrow) is different from the DNN one, which is better in this
case.
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Figure 30: A simulated neutrino interaction demonstrating the performance of traditional,
DNN, and hybrid vertex selection. Each filled circle represents a voxelized 3D charge projected
on the Y-Z plane. Source: [125]

Existing reconstruction algorithms rely on the neutrino vertex being one of the candidate

vertices found in Sec. 5.5.2. Therefore, a hybrid neutrino vertex selection algorithm is used

that incorporates the DNN vertex finding information into its decision. From the best DNN

neutrino vertex voxel, the 3D position is computed and the nearest vertex candidate is chosen
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as the DNN vertex. If it is within 2cm of the traditional vertex, the DNN vertex is used,

otherwise the traditional vertex is kept. A visual comparison of the traditional and DNN

vertex selections is shown in Fig. 30. The hybrid vertex selection leads to a 30% improvement

in vertex identification within 1cm for νe CC interactions and a 10% improvement for νµCC

interactions, shown in Fig. 31.

MicroBooNE simulation

Figure 15: 𝜈𝑒CC neutrino vertex identification efficiency as a function of the maximum distance
between the reconstructed and the truth, i.e., the numerator of the efficiency is defined as the number
of events with a neutrino vertex reconstructed within 𝑋 cm of the truth, where 𝑋 is the horizontal
coordinate of the plot. Three algorithms are compared: Traditional, DNN and Hybrid.

MicroBooNE simulation

Figure 16: 𝜈𝜇CC neutrino vertex identification efficiency as a function of the maximum distance
between the reconstructed and the truth, i.e., the numerator of the efficiency is defined as the number
of events with a neutrino vertex reconstructed within 𝑋 cm of the truth, where 𝑋 is the horizontal
coordinate of the plot. Three algorithms are compared: Traditional, DNN and Hybrid.
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Figure 31: νµCC vertex identification efficiency as function of the maximum distance be-
tween the reconstructed and truth vertex position, using traditional, DNN, and hybrid vertex
selection. Source: [125]

5.5.6 Particle Flow Tree

The particle flow tree is a complete, hierarchical description of the visible activity in a neutrino

interaction. It identifies each particle, their dependencies (parent, children), and their energy.

The steps of segmenting, trajectory fitting, vertexing, and neutrino vertex identification have

already enabled a significant fraction of a particle flow tree to be constructed. What remains is

the complete the categorization and organization of disconnected electromagnetic showers.

The previous shower identification algorithm struggles to fully capture the numerous

disconnected segments in an electromagnetic shower. Since photons are invisible to the
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MicroBooNE data

Figure 21: Illustration of EM shower clustering. (a) shows the identified track segments with
different colors in different TPC clusters. (b) shows the EM showers after clustering. The green
lines illustrate the associations. The red lines connect the start and end points of each EM shower.
The numbers of EM showers are also displayed with the particle flow information (Refer to the
caption of figure 4 for more details).

be used to constrain backgrounds in single EM shower searches, for example the 𝜈𝑒CC selection or
a single photon selection.
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Figure 32: Illustration of electromagnetic shower grouping and the overall particle flow tree.
(a) shows each track segment in separate colors, and (b) shows the same after grouping the
electromagnetic shower and introducing the particle flow tree. In the particle flow, green
lines show connections between spatially separated particles, and red lines connect the start
and endpoints of showers. Source: [125]

LArTPC, showers appear as a large number of disconnected electron segments. To group

all these segments, a 15◦ wide cone is extended 80cm along the shower direction, with

any isolated segments in the cone being assigned to the shower. Then, remaining isolated

segments are examined individual, and potentially assigned to nearby showers based on

proximity. An example of grouping the segments of an electromagnetic shower is shown in

Fig. 32

With electromagnetic showers fully identified, it is possible to reconstruct the decay of

invisible π0 particles, which 99% of the time follows π0 → γγ. Reconstruction of π0 is useful

for validating the electromagnetic shower energy scale, identifying the interaction type for

NC and exclusive channel analyses, and to accurately reconstruct the neutrino energy. In the

case of NC interactions, the neutrino vertex may have no visible directly connected particles,

causing it to be misidentified, such as at the location of an electromagnetic shower. If there

are at least two reconstructed electromagnetic showers, PCA [114] is used to determine the
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MicroBooNE dataMicroBooNE data

Figure 22: Examples of reconstructed neutral pions. (a): a neutral pion is reconstructed at an
invariant mass of 142 MeV/c2 without any TPC activity at its generation location. (b): a neutral
pion is reconstructed at an invariant mass of 122MeV/c2 from the primary neutrino vertex. Separate
photons are labeled with the corresponding numbers in the particle flow diagram. The color coding
in both (a) and (b) are to separate different reconstructed particles similar as used in panel (c) of
figure 4. The reconstructed particle flow information is also displayed (Refer to the caption of
figure 4 for more details).

For a 𝜋0 produced in a neutral current interaction (or outside the TPC active volume), there
may not be any other TPC information to identify the 𝜋0 vertex. In these cases, the reconstructed
primary neutrino vertex is erroneously connected to an EM shower. A dedicated algorithm is
therefore implemented to find a 𝜋0 with a displaced vertex. For each EM shower, a PCA is
performed to find the EM shower’s primary axis (i.e. its direction). Given any two EM showers
with calculated primary axes, we find two points, one on each of them. These points are the closest
to the opposite primary axis. The midpoint of the pair is then identified and labeled as the displaced
vertex. Once the displaced vertex is determined, the direction of each EM shower is redefined with
respect to that vertex for the invariant mass calculation. Figure 22a shows such an example.

For each vertex with two or more associated EM showers, a 𝜋0 is reconstructed with two
separate strategies. The first is to find the pair of photons (above a certain energy threshold) that
reconstruct as a 𝜋0 with an invariant mass closest to the 𝜋0 mass. The second is to find the pair of
photons that have the highest total energy. Both strategies are implemented and applied to all events
with two or more photons reconstructed from the same vertex. The first strategy is used to construct
the particle flow and is generally good for rejecting backgrounds of 𝜈𝑒CC events, as incorrectly-
paired photons would generally result in an incorrect invariant 𝜋0 mass. The second strategy is
used to select 𝜋0 events, which is useful in calibrating the electromagnetic energy reconstruction,
given that it has no bias in the invariant mass reconstruction. Figure 22 shows two examples of 𝜋0

reconstructions. In figure 22b the 𝜋0 vertex is also associated with other activities. Figure 23 shows
the reconstructed 𝜋0 mass in simulation for the fully contained 𝜈𝜇CC 𝜋0 selection. Here, the fully
contained events are defined to be events with the reconstructed TPC activity fully contained within
the fiducial volume (3 cm inside the effective TPC boundary [22], which is the corrected boundary

– 27 –

Figure 33: Examples of reconstructed π0. In (a) a 142MeV/c2 π0 is reconstructed without any
TPC activity at the reconstructed vertex, and in (b) a 122MeV/c2 π0 is reconstructed from
the primary neutrino vertex. Photons are labeled in each event, and distinct segments are
colored separately for identification. Source: [125]

that takes a space charge effect [31, 53] into account). Compared to the earlier MicroBooNE
results [54], the resolution of the reconstructed 𝜋0 mass is improved by about 15%.

MicroBooNE simulation

Figure 23: Reconstructed 𝛾𝛾 invariant mass (
√︁
2𝐸𝛾1𝐸𝛾2 · (1 − cos𝜃𝛾𝛾)) on simulated fully con-

tained charged-current 𝜈𝜇𝜋0 events. The tail at the high reconstructed mass is the result of incorrect
association of 𝛾 candidates.

3.3 Reconstruction Performance of Primary Leptons

The reconstruction quality of the primary leptons (muons and electron EM showers) is essential
for both neutrino event flavor tagging and neutrino energy reconstruction. Therefore, we evaluate
the reconstruction efficiency and angular resolution. The first step of the evaluation is to define
truth-reco matching. We select events with a good reconstructed neutrino vertex (within 1 cm of
the truth vertex), to decouple the evaluation of single particle reconstruction and neutrino vertex
reconstruction. Then within the selected events, using the simulation truth information, we find
all the leading (with largest energy) primary (from neutrino interaction vertex) muons or electrons
originating inside a fiducial volume (20 cm from the active volume boundary) as the truth target.
The fiducial volume requirement ensures that the particles deposit enough visible information
for reconstruction in the detector. With the particle flow information reconstructed from the
aforementioned pattern recognition algorithms, we find all the leading primary muons or electrons.
If those muons or electrons have a reconstructed vertex within 1 cm of the truth counterpart, we
count this as a truth-reco matching in the following evaluations in this subsection.

Figure 24 shows the reconstruction efficiencies as a function of the truth particle energy
for leading primary muons and electrons. These efficiencies are related to the performances of
algorithms introduced in this section as well as algorithms from section 2, i.e., the track segment
finding, the trajectory and 𝑑𝑄/𝑑𝑥 fitting, the track-shower separation, the PID and the neutrino
vertex identification. The denominators are the number of the truth targets aforementioned and
the numerators are the number of matched reconstructed counterpart. The muon reconstruction
efficiency rises to its plateau at about 85% to 95% above 300 MeV. The electron reconstruction
efficiency plateaus at about 90% and slightly decreases above 1.5 GeV. The slight reduction in
efficiency at high energy is the result of incorrect reconstruction for isochronous event topologies
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Figure 34: Reconstructed γγ invariant mass on simulated νµCC interactions. The tail at the
high reconstructed mass is the result of incorrect association of γ candidates. Source: [125]
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primary axis of each. The closest approach of each pair of primary axes is located, consisting

of the closest point on each axis. If the distance between them is small enough, a candidate

π0 is considered. The π0 is reconstructed from the candidate with the largest summed energy

of the photons, its vertex is set as the midpoint between the closest points on each axis, and

the direction of the two showers are adjusted to pass through the π0 vertex. The particle

flow is also updated, so that in appropriate cases the neutrino vertex is accurately labeled.

Fig. 33 shows the reconstruction of two separate π0s, and Fig. 34 shows the distribution of

reconstructed π0 masses in a simulated νµCCπ0 selection, demonstrating a 15% improved

resolution over previous MicroBooNE measurements [134].

5.5.7 Energy Reconstruction

Particle flow reconstructs the neutrino energy by summing the energies of all particles at-

tached to the neutrino vertex. Therefore, accurate neutrino energy reconstruction requires

accurate energy reconstruction of each particle type. In general, once a particle has been

identified using the methods in previous sections, its energy is reconstructed in one of three

ways: two for different cases of tracks and one for showers. In addition to the kinetic energy

calculated from the visible charge in the detector, particle masses are added to the energy

calculation in the case of muons and pions, and a nucleon binding energy of 8.6MeV is added

for each proton that was knocked out of the argon nucleus.

The majority of tracks are reconstructed from their measured travel range, using the

NIST PSTAR database [135] to convert to total energy for a given travel range and particle

mass. At very short travel distances, below 4cm, the uncertainty on track length makes this

an uncertain measurement, and so a second energy reconstruction method is used. This

second approach sums the dE/d x measurements along a track to estimate the total energy,

converting from dQ/d x to dE/d x using the modified box recombination model discussed

in Sec. 4.3.2. However, this method is still not perfect, and underestimates the track energy
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by ∼ 10%. This second approach is also used in the case of very long tracks where δ rays are

visible and bias the range-based estimate.

Electromagnetic showers have too complex a topology for either the range-based or

dE/d x-based approaches to work. Instead, they have their energy reconstructed by summing

all the measured charge in the shower and scaling it by a factor of 2.5 to account for the

recombination effect (∼ 50% loss) as well as bias in the charge reconstruction. Then, the

scaled charge is converted to an energy measurement by multiplying by 23.6eV per ionization

electron. The performance of these energy reconstruction approaches will be studied in

more detail in Sec. 7.
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6 Wire-Cell Event Selection

As a surface detector, MicroBooNE is bombarded by cosmic ray muons that present a signifi-

cant source of background. There are roughly 30−40 cosmic rays per beam window, and only

1 neutrino per 600 beam spills, creating a default neutrino : background rate of 1 : 20,000.

These cosmic rays can appear similar to νµCC interactions, and both consist primarily of a

muon track. This presents a threat to the neutrino purity of any selection, or through clumsily

removing cosmic rays, the neutrino selection efficiency. A reduced efficiency and purity

can harm an analysis, either through reduced statistics or through increased uncertainty

on the makeup of a selection. This is essentially the difficulty MiniBooNE faced with its π0

background that motivated the MicroBooNE experiment in the first place. Therefore, the

Wire-Cell reconstruction was designed to leverage as much detector information as possible

to enable a high-purity, high-efficiency selection. First a series of traditional cosmic ray

tagging algorithms are employed, discussed in Sec. 6.1, already achieving over 80% purity

and 80% efficiency in is referred to as the Generic Neutrino Detection (GND) [95, 136]. Then,

the selection is refined by using a Boosted Decision Tree (BDT) in Sec. 6.2 that leverages the

multitude of data products created in the reconstruction chain to reach 92% purity with 68%

efficiency in the νµCC selection [137]. This analysis uses data from runs 1-3, constituting

∼ 6.4×1020 POT of neutrino flux. The 1D and 3D distributions of selected events are studied

in Sec. 6.3 and Sec. 6.4, respectively.

6.1 Generic Neutrino Detection

To achieve a purity of 50%, over 99.99% of cosmic rays need to be successfully identified and

removed. The Wire-Cell selection relies on a number of algorithms developed throughout the

reconstruction chain to reach this goal. First are the hardware and software triggers common

to all MicroBooNE analyses that limit data taking to periods of beam spill and BNB-coincident

light activity, respectively, as discussed earlier in Sec. 4.3.6. The neutrino : background rate of
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1 : 20,000 is measured starting after the hardware trigger, and the software trigger reduces

this by a factor of 100 to 1 : 210. Then flash-light matching removes non-BNB-coincident

cosmic rays, reducing the window for cosmic coincidence from the 2.3ms TPC drift time

to the 1.6µs beam spill duration, and reducing the cosmic ray background by a factor of 40.

These selection cuts have only leveraged beam timing, PMT light information, and rough

charge distribution (for the purposes of the predicted light pattern), without giving particular

consideration to the differences in topology between neutrino interactions and cosmic rays,

or to the detailed calorimetry information produced in LArTPCs. To further remove sources

of background, these details will be used in combination with the beam timing information.

A key feature of cosmic rays that distinguishes them from neutrino interactions is their

point of origin. Cosmic rays produce long tracks, typically originating outside the detector

and passing through it. Those that pass all the way through, beginning and ending outside the

fiducial volume, are called Through-Going Muons (TGMs), while those that begin outside the

detector but come to rest inside it are called Stopped Muons (STMs). An easy way to remove

these cosmic rays is to require that a candidate neutrino interaction be Fully Contained

(FC), by which its entire ionization activity must occur within the detector fiducial volume.

This contrasts with events that are Partially Contained (PC) and exist in part outside of the

fiducial volume. While a fully contained selection cut would remove over 95% of remaining

background events, it would also remove partially contained neutrino interactions. Especially

at high energies, neutrino interactions can produce long muon tracks that exit the detector,

and in total roughly 2/3 of all νµCC interactions are partially contained. This represents an

unacceptable loss in efficiency, and so more refined selection criteria must be selected.

The first cosmic removal algorithm is inspired by the observation that singular tracks

touching the detector boundary at multiple points represent TGMs and not neutrino interac-

tions. It works by looking at the extreme points on a cluster in {x, y, z}, as well as along the

primary axis as determined by using PCA [114]. If two or more extreme points are located
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at the effective detector boundary, following the mapping described in Sec. 4.3.4, the event

is labeled a possible TGM. To protect against removing neutrino interactions with multiple

exiting tracks, a kink-finding algorithm is run from one endpoint to another to search for

kinks that indicate a more complicated topology than a simple cosmic ray muon. If kinks

are detected, the event is no longer considered a candidate TGM. Some TGMs may avoid

detection under this algorithm because of non-functional wires at the detector boundary,

preventing the reconstruction of charge in the area and the subsequent identification of a

boundary intersection. To prevent this, when an extreme point lies near the detector bound-

ary, test points are extended along the principle axis out to the detector boundary. If all test

points lie in regions of non-functional wires, the track is considered to extend to the boundary

in truth, and is labeled as a TGM. The removal of TGMs at this stage results in a factor of 6

reduction in the overall background.

To further separate PC cosmic rays from PC neutrino interactions, directionality informa-

tion from the trajectory fit algorithm in Sec. 5.4 is leveraged. Neutrino events in the signal

definition will always originate inside the fiducial volume and travel outward, while most

cosmic rays will originate outside the detector and travel inward. Stopped muons can be

removed from the candidate neutrino selection by identifying this directionality informa-

tion. First, an event is checked to see whether it contains exactly one boundary intersection,

following the extreme-points-based definition in the TGM tagger. The track is checked for

kinks indicative of interaction or decay vertices. If there is no vertex, or one vertex located

near the stopping point, the event is considered a candidate STM (as muons can decay to

Michel electrons [138]); otherwise it is considered a candidate neutrino interaction. For

candidate STMs, the trajectory is fit up to the Michel electron vertex if it exists, or endpoint

otherwise, to allow dQ/d x to be measured. The dQ/d x along the final 35cm of the candidate

muon track is compared using a KS test [119] against two hypotheses: a STM profile ending

in a Bragg peak and a MIP profile with a flat dQ/d x distribution. For both predictions, the
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PSTAR [135] database is used to generate the dE/d x profile, which is converted to dQ/d x

using the recombination model described in Sec. 4.3.2. Based on the difference in KS test

scores, the event is either considered an STM and removed, or kept as a candidate neutrino

interaction. The removal of STMs at this stage results in a further factor of 3 reduction in the

overall background. Fig. 35 shows the detection of a cosmic ray using the STM tagger. 12
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FIG. 6. Example of a stopped muon from MicroBooNE data.
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FIG. 7. (a) Examples of best-fit dQ/dx curves for different simulated stopped charged particles as a function of residual range
(distance along the track with respect to the stopping location) using the fitting procedures described in this section. (b) The
distribution of best-fit dQ/dx vs. residual range from a sample of ≈2000 stopped muon tracks in MicroBooNE data. The color
indicates number of trajectory points. The shape of the dQ/dx distribution is consistent with the model-predicted dQ/dx curve
(black curve) of the muon. More details of this analytical model are described in Sec. V C.
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Figure 35: An example of a stopped muon from MicroBooNE data. The boundary intersection
can be seen in the end and top views. Source: [95]

Remaining background events consist primarily of non-BNB-coincident cosmic rays that

were incorrectly matched to the neutrino flash. Many Light Mismatch (LMM) events are the

result of either small or cathode-side charge clusters that lead to a small measured flash that

is difficult to correctly match, or of inaccuracies in the light predictions generated by the

photon library. Although the true interaction time of the matched cosmic ray lies outside

the beam spill window, this incorrect match allows them to survive the flash-light matching

selection cut. Furthermore, an incorrect timing gives them a false x-axis position within

a drift window, hiding their detector boundary intersections and allowing them to avoid

detection through the STM and TGM taggers. These events are detected by reconsidering

candidate neutrino flash-charge match quality in conjunction with a search over the other

measured flashes.

First, the existing flash match KS test score is examined, and very low scores are im-

mediately tagged as LMM events. If the KS test score is moderate, the matched cluster is
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FIG. 13. A STM candidate with a short stopped muon track following by a Michel electron. A purple circle indicates the
Bragg peak.

ergy, a Kolmogorov–Smirnov (KS) test is performed be-
tween the observed and the predicted light pattern with-
out any normalization constraint. LMM events are usu-
ally caused by the inefficiency of the PMT system to
detect cathode-side events, the light production outside
of the TPC active volume, or the inaccuracy of the pho-
ton library for anode-side events. If the KS test score is
extremely low, the cluster is directly tagged as an LMM
event and rejected. If the KS test score indicates a mod-
est inconsistency, a further check is performed to see if the
LMM candidate can match a different light flash from the
cosmic discriminator, and if it is consistent with either
a through-going muon or a stopped muon. This check
relies on the precise knowledge of the effective boundary
that is distorted by the space charge effect, and so the Z-
dependent effective boundary as shown in Fig. 11 is used.
Firstly, any such candidate LMM cluster is paired with
the other flashes in the PMT readout window. Under the
new pair of flash-cluster hypotheses, the LMM cluster is
placed at a different drift location given the new flash
time. Several scenarios follow:

• If a new flash is found to be more consistent with
the cluster prediction, and the cluster has two end
points on the effective detector boundary, this clus-
ter is then re-tagged as a TGM and rejected.

• If a new flash is found to be more consistent with
the cluster prediction, and the cluster has only the
entering point on the effective detector boundary,
this cluster is tagged as a possible STM and then
vetted by the STM tagger (Sec. V C) to confirm
and reject.

• If no new flashes are more consistent with the clus-
ter prediction, but the cluster is moved along the
drift direction such that both end points exactly
touch the effective boundary, this cluster is also re-
tagged as a TGM and rejected. The associated
flash is assumed to be lost in the light detection
or flash reconstruction (Sec. III A). The boundary
contact tolerance is made more stringent in order
for the TGM to be determined purely by the geo-
metric information.

Figure 36: Example of a TGM crossing throughout he TPC at the effective detector boundary
as a result of space charge distortions. The red (green) circles represent the measured (pre-
dicted) light flash PE. Source: [95]

tested against other flashes, again using a KS test between predicted and measured light.

For any potential match, the new boundary intersections under the matched drift time are

considered. If there are one or two boundary intersections, the cluster is evaluated with the

corresponding STM or TGM tagger, respectively, and removed if found to be a cosmic ray.

Additionally, even in the absence of a flash match the cluster is translated along the drift axis

until it intersects the detector boundary. If multiple intersections occur simultaneously under

a strict tolerance (to prevent mislabeling), the requisite flash for this drift location is assumed

to be lost in the light detection or flash reconstruction steps, and the cluster is evaluated

under the TGM tagger and removed if found to be a cosmic ray. Fig. 36 demonstrates the

case of identifying a TGM at the effective detector boundary. Note that the effective detector

boundary varies with drift distance, so that intersections with the anode and cathode are

subdominant under a varied drift time.

To produce a selection of simulated events with a high degree of fidelity to the selection

performance on real data, a special data product called overlay events are created. First,

data is taken of background, largely cosmic rays, from a time window non-coincident with

the BNB spill time. The set of these background events is referred to as EXTBNB or EXT, for

external-to-the-BNB. An overlay event consists of a simulated neutrino interaction overlaid

onto the readout measurements of an EXT event. This way, real background measurements
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Table 2: Summary of the cumulative νµCC selection efficiency, cumulative (relative) back-
ground reduction, and overall background rate. Errors represent statistical uncertainties only.
Source [95].

Selection Cut νµCC Efficiency Background Reduction ν : Background

Hardware Trigger 100% 1(1) 1 : 20,000

Software Trigger (98.31±0.03)% (0.998±0.002)×10−2(0.01) 1 : 210

Charge-Light Matching (92.1±0.01)% (2.62±0.04)×10−4(0.026) 1 : 6.4

TGM Rejection (88.8±0.01)% (4.4±0.2)×10−5(0.17) 1.1 : 1

STM Rejection (82.9±0.01)% (1.4±0.1)×10−5(0.32) 2.8 : 1

LMM Rejection (80.4±0.01)% (6.9±0.6)×10−6(0.50) 5.2 : 1
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Figure 1: Cut-based νµCC selection. The left panel shows the result after generic neutrino detection
where ∼ 2/3 of the events are already νµCC with an efficiency of about 80%. The right panel shows
the cut-based νµCC selection where 90% of the events are νµCC with an efficiency of about 65%. The
X-axis in the left plot is reconstructed visible energy, and the one in the right plot is reconstructed
neutrino energy. See text for more clarifications.

events and the residual cosmic-muon backgrounds. Visible energy in Fig. 1a is the sum of364

charge (ionization electrons) signals in the collection plane with an average correction factor365

considering the recombination effect in LAr. Reconstructed neutrino energy in Fig. 1b is a366

sophisticated energy reconstruction after applying Wire-Cell pattern recognition and particle367

identification. It is a sum of reconstructed particles’ kinetic energies, leptons or mesons’368

masses, and average binding energy (8.6 MeV) for each single proton (primary or from neu-369

tron scattering) identified in the final states. More details about this energy reconstruction370

can be found in Sec 2.9 in Ref. [1].371

Our BDT selection, along with other improvements in vertex finding and energy recon-372

struction, allow us to further improve performance to ∼93% purity and ∼64% efficiency. The373

details of the νµCC selection are described in this section.374

3.1 Residual Cosmic Background Rejection375

376

A dedicated background tagger is developed to reject residual cosmic-ray muon back-377

grounds as well as neutrino interactions with the primary vertex outside the TPC active378

volume. Human hand scanning was used to identify selected features.379

• The reconstructed neutrino interaction vertex must be inside the fiducial volume,380

which is defined to be 3 cm inside the empirical detector boundary, which is distorted381

by the existence of space charge. This detector boundary is also used in generic neu-382

trino detection [3, 24]. Figure 2a shows an example background in which a neutrino383

interaction occurs outside the fiducial volume and its muon track enters the detector384
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Figure 37: Distribution of selected events under generic neutrino detection over recon-
structed visible energy (sum of all reconstructed charge with 2.5 scaling factor applied). The
breakdown of predicted signal and backgrounds shown in each bin.

without model bias are used to generate a simulated event selection with reliable estimates

of efficiency and purity. The terms “overlay" and “simulation" are largely used interchange-

ably within the context of estimated selection efficiencies and purities. Table 2 shows the

performance of each selection cut leading up to the GND, and Fig. 37 shows the distribution

of events over reconstructed visible energy.
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6.2 νµCC Selection

A boosted decision tree allows the many correlated variables reconstructed previously to

be used in combination to remove background events, even when few individually demon-

strate a high selective power. A human scan of the remaining backgrounds was performed

to detect their characteristics in common and salient kinematics for the purposes of back-

ground identification. These variables notably include neutrino vertex location, particle

energies, and particle trajectory directionality. For example, as discussed earlier the primary

muons produced in neutrino interactions rarely travel backwards or downwards. Typical

backgrounds, however, include light mismatched TGMs and STMs, as well as “dirt" events,

which refers to neutrino interactions outside the fiducial volume. The remaining dirt events

usually feature a charged hadron that enters the detector from upstream before undergoing a

hadronic interaction, which gets labeled as the neutrino vertex. In these cases the STM tagger

is not well suited to identify the background, but the combined observations of a backward

facing particle that is highly energetic can give a high likelihood of background identity. To

remove NC events from the selection, each event is required to reconstruct a muon track at

least 5cm long attached to the vertex.

A total of over 300 such variables are used in the BDT, which is trained using the BDT

package XGBoost [139]. XGBoost uses parallel tree boosting, and improves the generalizability

of the trained model, allowing such a large number of variables to be used without over-fitting.

The performance of the BDT is shown by comparing the νµCC selection efficiency and purity

as a function of BDT score in Fig. 38. A selection cut is made keeping events with a score

above 0.9, producing a νµCC event selection with 92% purity and 68% efficiency.

6.3 Event Selection Over 1D Distributions

While the ultimate goal of this analysis is to produce a triple-differential cross section mea-

surement, single differential measurements can serve as useful stepping stones capable of
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15

91%. The overall ratio between data and nominal NuMI
MC prediction for FC and PC νe CC without consider-
ing any anomalous enhancement is 0.99±0.06 (stat.) and
1.08± 0.08 (stat.) indicating an overall good agreement.

B. Charged-Current νµ Selection

The generic neutrino selection results in a 88.4% selec-
tion efficiency and 65.0% purity for νµ CC events [57, 84].
Here, the selection efficiency is defined with respect to all
true νµ CC events with their neutrino interaction vertices
inside the fiducial volume. The achieved purity is limited
by the residual cosmic-ray muon background, neutrino-
induced background originating outside the fiducial vol-
ume, and NC interactions inside the fiducial volume. The
precise reconstruction of the νµ CC neutrino vertex (res-
olution is less than 1 cm) and particle identification (an
integrated efficiency of 90% for primary muons) are lever-
aged to suppress these backgrounds. The reconstructed
neutrino vertex is required to be inside the fiducial vol-
ume and the length of primary muons is required to be
greater than 5 cm before applying the BDT selection.

In analogy to the νe CC selection, human scans of the
remaining backgrounds were performed to extract the
main features of each type of background. The residual
cosmic-ray background is typically the result of incorrect
charge-light matching where the TPC cluster is placed at
an incorrect location along the electric field direction. A
through-going muon could have only one track end recon-
structed at the detector boundary instead of two track
ends reconstructed at the detector boundary, mimicking
a single muon starting inside the TPC and exiting the
detector. A stopped muon might also appear to be fully
contained and, alternatively, be reconstructed with the
candidate neutrino vertex at the muon decay vertex con-
necting the muon and the Michele electron. These topo-
logical features are leveraged to do this background rejec-
tion. For neutrino-induced background originating out-
side the fiducial volume, a charged hadron usually enters
the detector and undergoes a hadronic interaction. For
this kind of events, the neutrino vertex is typically recon-
structed at the hadronic interaction point, and the event
could then appear to originate inside the fiducial vol-
ume with a misidentified muon candidate. Note, with an
exiting high-energy charged particle track, one may not
achieve a reliable PID for MIP particles such as muons.
The kinematics, especially the direction of the muon can-
didate, can be used to reject such background since most
of the hadrons entering the detectors from outside of the
detector are not as forward-going as expected.

For NC neutrino interaction background inside the
fiducial volume, the main difference from νµ CC events
is the absence of a primary muon at the neutrino ver-
tex. However, the separation of νµ CC and this NC
background, which mainly relies on the discrimination
of charged pions and muons, is very difficult if only the
dQ/dx information is used. To further reject such NC
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FIG. 9: (a) νµ CC selection efficiency and purity at dif-
ferent BDT cut values with the finalized cut value of
0.9 indicated. (b) νµ BDT score distribution for events
with BDT score>0.

background, the activities associated with charged pions,
e.g. proton scattering, and the relatively large-angle de-
flection (∼10 degrees) of the trajectory of charged pions
can be used to provide additional separation power.

With the identification of the major features of the
residual cosmic-ray background, neutrino-induced back-
ground originating outside the fiducial volume, and NC
events inside the fiducial volume, the BDT was trained
and applied to improve the νµ CC selection. A similar
training strategy as discussed in Sec. IV A is used with a
signal definition switched to the νµ CC events. Figure 9
shows the νµ CC selection efficiency and purity as a func-
tion of the νµ CC BDT score as well as the distribution of
the νµ CC BDT score. The final cut value of 0.9 was cho-
sen for the νµ CC selection with a 68% efficiency and 92%
purity. Figure 10 shows the selected νµ CC events and
selection efficiency as a function of neutrino energy and
muon cosθ. The efficiency is generally higher for more

Figure 38: Performance of BDT shown by comparing νµCC selection efficiency and purity as
a function of BDT score. The finalized event selection uses the cut at the highlighted BDT
score of 0.9. Source: [137]

providing insight in their own right. Here the distribution of events is studied over muon

energy Eµ, muon scattering angle cos(θµ), visible hadronic energy E r eco
had , and neutrino energy

Eν. These variables are particularly interesting, as together they are capable of describing the

principle neutrino-argon interaction kinematics. Since this interaction is described by thee

degrees of freedom, the four reconstructed quantities are redundant, with {Eµ,cos(θµ),E r eco
had }

sufficing. However, as was discussed in Sec. 2.1, the neutrino energy is the most physically

important variable, as it drives neutrino oscillations and can be used to separate interaction

channels. The neutrino energy can be expressed in terms of Eµ and the energy transferred

to the argon system, denoted as ν (context is needed to tell if one means transfer energy or

neutrino by ν). The transfer energy is comprised of a visible portion, measured with E r eco
had , as

well as an invisible portion, E mi ssi ng
had , largely consisting of non-ionizing particles such as neu-

trons that cannot be detected in a LArTPC. Therefore, E r eco
had is the best direct measurement of
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ν, and together with Eµ can be used to reconstruct Eν. As a result, either {Eµ,cos(θµ),E r eco
had }

or {Eµ,cos(θµ),Eν} can be seen as a suitable choice of variables to describe the kinematic

phase space.
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(b) Muon cosθ, broken down with event types
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(c) Neutrino energy, broken down with interaction types
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(d) Muon cosθ, broken down with interaction types
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FIG. 10: The final νµ CC selections as a function of reconstructed neutrino energy [(a) and (c)] and reconstructed
muon cosθ [(b) and (d)]. (a) and (b) are categorized by event types, and (c) and (d) by interaction types. The
number of events correspond to the range shown in the plot. The bottom sub-panels present both the statistical
and systematic uncertainties. The pink band includes the statistical, cross section, and flux uncertainties. The pur-
ple band corresponds to the full uncertainty with the addition of the detector systematic uncertainty. The selection
efficiencies are shown as a function of (e) true neutrino energy and (f) true muon cosθ with only statistical uncer-
tainty considered. The other dimensions are integrated in calculating these efficiencies.

Figure 39: νµCC selection efficiency in simulation as a function of (left) neutrino energy and
(right) muon scattering angle. Source: [137]
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Figure 40: Distribution of selected FC (left) and PC (right) νµCC events over reconstructed
muon angle. The predicted distribution of signal and background events are stacked in
each bin. Ratio plots are shown on the bottom, with statistical uncertainties on the data
measurement, and systematic uncertainties given with the blue (all uncertainties) and red
(no detector uncertainties) bands.

A selection cut is applied onto the νµCC selection described in the previous section,

requiring Eν ∈ [0.2,4.0]GeV. The reconstruction struggles to detect and reconstruct events

properly below 200MeV, and there are few events produced by the BNB above 4GeV, making

these suitable cutoffs to the selection with only 1% efficiency loss. Fig. 39 shows the νµCC

104



6 WIRE-CELL EVENT SELECTION

0 500 1000 1500 2000 2500

E
ve

nt
 c

ou
nt

s

0

100

200

300

400

500

600

700

800
numuCC3_FC_bnb_11_kine_reco_Enu_all

0.19(pred err)±0.02(data err)±(MC+EXT)=1.10ΣDATA/Σ
Scaled to POT: 5.327e+19 /ndf=10.82/252χ
BNB data, 3685.0 Pred. uncertainty
Beam-off, 45.9 Dirt, 21.1
Cosmic, 25.5 NC,  155.8
Other CC, 46.2  CC in FV, 3062.4µν

numuCC3_FC_bnb_11_kine_reco_Enu_all

Neutrino energy [MeV]
0 500 1000 1500 2000 2500

D
at

a/
Pr

ed

0

0.5

1

1.5

2
Pred total uncertainty Pred stat+xsec+flux uncertainty

0 500 1000 1500 2000 2500

E
ve

nt
 c

ou
nt

s

0

200

400

600

800

1000

1200

1400

1600

numuCC3_PC_bnb_11_kine_reco_Enu_all

0.18(pred err)±0.01(data err)±(MC+EXT)=1.05ΣDATA/Σ
Scaled to POT: 5.327e+19 /ndf=12.56/252χ
BNB data, 7853.0 Pred. uncertainty
Beam-off, 246.6 Dirt, 39.5
Cosmic, 44.4 NC,  139.8
Other CC, 262.4  CC in FV, 6751.5µν

numuCC3_PC_bnb_11_kine_reco_Enu_all

Neutrino energy [MeV]
0 500 1000 1500 2000 2500

D
at

a/
Pr

ed

0

0.5

1

1.5

2
Pred total uncertainty Pred stat+xsec+flux uncertainty

Figure 41: Distribution of selected FC (left) and PC (right) νµCC events over reconstructed
neutrino energy. The predicted distribution of signal and background events are stacked
in each bin. Ratio plots are shown on the bottom, with statistical uncertainties on the data
measurement, and systematic uncertainties given with the blue (all uncertainties) and red
(no detector uncertainties) bands.
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Figure 42: Distribution of selected FC (left) and PC (right) νµCC events over reconstructed
muon energy. The predicted distribution of signal and background events are stacked in
each bin. Ratio plots are shown on the bottom, with statistical uncertainties on the data
measurement, and systematic uncertainties given with the blue (all uncertainties) and red
(no detector uncertainties) bands.

selection efficiency in simulation over Eν and cos(θµ), showing the improved selection effi-

ciency at high energy and forward angles. Fig. 40, Fig. 41, Fig. 42, and Fig. 43 show the signal

distribution and breakdown of background sources as a function of cos(θµ), Eν, Eµ, and Ehad ,

respectively, separated by FC and PC channels.

Maintaining a high selection efficiency across the signal phase space is particularly im-

portant for two reasons. First, it reduces the change that the final event distribution is biased
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Figure 43: Distribution of selected FC (left) and PC (right) νµCC events over reconstructed
hadronic energy. The predicted distribution of signal and background events are stacked
in each bin. Ratio plots are shown on the bottom, with statistical uncertainties on the data
measurement, and systematic uncertainties given with the blue (all uncertainties) and red
(no detector uncertainties) bands.

MicroBooNE Internal Wire-Cell Xs Extraction

Figure 17: Efficiency of the νµCC selection in the active TPC volume as functions of true neutrino
energy, true muon energy, and true transferred energy to Ar Tr ue Etr ans = ν, respectively.

To further validate if this νµCC selection is inclusive, we break down the selection results786

into different interaction types as shown in Fig. 22. From these plots, all major interaction787

types (CCQE, CCRES, CCMEC, CCDIS, etc.) have been selected without obvious efficiency788

holes. The efficiencies for each interaction type as a function of different kinematic variables789

are shown in Fig. 18, Fig. 19, Fig. 20, and Fig. 21. In the development of an inclusive νµCC790

selection, one of the key kinematic variable to distinguish signal from background (cosmic791

or NC) is the muon polar angle (θ) relative the beam direction. As shown in Fig. 18, all792

interaction types share similar cosθ dependence in their efficiency results. This proves that793

this νµCC selection is “inclusive”. For CCMEC, the reduction of efficiency at the backward794

angle is attributed to the events with invisible protons in the final states, in which case a795

single backward-going muon will be more likely tagged as cosmic-rays. The efficiencies in796

other kinematic spaces depend on their event distributions as well as the underlying muon797

angle distribution in each bin. For example, in neutrino or muon energy space, the CCMEC798

and CCothers (mostly CC-COH) in general have relatively higher efficiencies than other799

interaction types because their muon angle distributions are more forward-going.800

Figure 18: (Left) Efficiencies of νµCC selection as a function of true muon cosθ for different interaction
types. (Right) Event distributions before/after selection.
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Figure 44: Simulated true muon angle (left) selection efficiency and (right) binned event
distribution before/after selection.

with respect to the types of events it selects. This is checked in Fig. 44, Fig. 45, Fig. 46, and

Fig. 47 in simulation over cos(θµ), Eν, Eµ, and ν, respectively. The event distributions shown

on the right side of Fig. 45, Fig. 46, and Fig. 47 are grouped into the analysis binning used later

to produce unfolded cross section measurements. The choice of binning is motivated by the

statistics available, as well as the reconstructed variable resolutions, which will be discussed

more in Sec. 7.

Each interaction channel is shown, and there are no clear holes in efficiency that would
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6 WIRE-CELL EVENT SELECTIONMicroBooNE Internal Wire-Cell Xs Extraction

Figure 19: (Left) Efficiencies of νµCC selection as a function of true neutrino energy for different
interaction types. (Right) Event distributions before/after selection. The binning is the same as that in
the final cross section result shown in Sec. 6.

Figure 20: (Left) Efficiencies of νµCC selection as a function of true muon energy for different interac-
tion types. (Right) Event distributions before/after selection. The binning is the same as that in the
final cross section result shown in Sec. 6.

Figure 21: (Left) Efficiencies of νµCC selection as a function of true energy transfer for different
interaction types. (Right) Event distributions before/after selection. The binning is the same as that in
the final cross section result shown in Sec. 6.
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Figure 45: Simulated true neutrino energy (left) selection efficiency and (right) binned event
distribution before/after selection.

MicroBooNE Internal Wire-Cell Xs Extraction

Figure 19: (Left) Efficiencies of νµCC selection as a function of true neutrino energy for different
interaction types. (Right) Event distributions before/after selection. The binning is the same as that in
the final cross section result shown in Sec. 6.

Figure 20: (Left) Efficiencies of νµCC selection as a function of true muon energy for different interac-
tion types. (Right) Event distributions before/after selection. The binning is the same as that in the
final cross section result shown in Sec. 6.

Figure 21: (Left) Efficiencies of νµCC selection as a function of true energy transfer for different
interaction types. (Right) Event distributions before/after selection. The binning is the same as that in
the final cross section result shown in Sec. 6.
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Figure 46: Simulated true muon energy (left) selection efficiency and (right) binned event
distribution before/after selection.

MicroBooNE Internal Wire-Cell Xs Extraction

Figure 19: (Left) Efficiencies of νµCC selection as a function of true neutrino energy for different
interaction types. (Right) Event distributions before/after selection. The binning is the same as that in
the final cross section result shown in Sec. 6.

Figure 20: (Left) Efficiencies of νµCC selection as a function of true muon energy for different interac-
tion types. (Right) Event distributions before/after selection. The binning is the same as that in the
final cross section result shown in Sec. 6.

Figure 21: (Left) Efficiencies of νµCC selection as a function of true energy transfer for different
interaction types. (Right) Event distributions before/after selection. The binning is the same as that in
the final cross section result shown in Sec. 6.
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Figure 47: Simulated true transfer energy (left) selection efficiency and (right) binned event
distribution before/after selection.

indicate a strong bias in the selection. In particular, the similar performance between interac-

tion channels over muon scattering angle, which is heavily utilised in distinguishing neutrino
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interactions from cosmic rays, demonstrates the inclusive nature of the selection. The other

reason a selection should maintain a non-zero efficiency is so that the model prediction

can be fully validated. Producing a cross section measurement requires an accurate model

prediction to account for biases in the selection, such as efficiency loss. The details of model

validation are discussed in detail in Sec. 9, and rely heavily on the fact that the event selection

is able to test the model prediction over the analysis phase space.

6.4 Event Selection Over 3D Distribution

The triple-differential analysis uses a 3D measurement space with bins in the reconstructed

variables of {Eν,Pµ,cos(θµ)}, where the muon momentum Pµ is used in place of Eµ. Both

variables represent the same detector information, but using Pµ allows for a more direct

comparison with the previous MicroBooNE double-differential νµCC cross section measure-

ment [140] performed over {Pµ,cos(θµ)}. For the most accurate comparison, a final selection

cut requiring the muon momentum to be less than 2.5GeV/c is added, removing only 1.5% of

events. The complete list of selection criteria is given below:

The analysis uses a reconstructed binning following a grid-based structure. Each variable

is cut into a number of slices, with a 3D bin defined by its slice along each axis. The neutrino

energy is reconstructed into four slices, given by the edges Eν ∈ {0.2,0.57,1.05,1.57,4.0}GeV.

The muon momentum is reconstructed in 15 slices, 0.1GeV/c each, up to 1.5GeV/c, plus an

overflow slice up to 2.5GeV/c. The muon scattering angle is reconstructed into nine slices,

given by the edges cos(θµ) ∈ {−1,−0.5,0,0.27,0,45,0,62,0.76,0.86,0.94,1}. Fully and partially

contained events are reconstructed separately, for a total of 4×9×16×2 = 1152 reconstructed

bins.

The distribution of reconstructed events and predicted signal and backgrounds is shown

in Figs. 48-55. Each figure shows data from a particular Eν slice, with each of the nine

sub-plots containing data from a particular θµ slice. The same distributions shown with a
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breakdown of the predicted signal interaction channel are presented in Figs. 56-63. Below

each distribution is a ratio plot comparing the measured values to their predicted counterpart

in each bin, with statistical uncertainties on the data, and systematic uncertainties including

(excluding) detector systematics shown in the purple (red) bands. Some bins have low

statistics and therefore large statistical uncertainties, particularly at high neutrino energy.

These bins do not negatively impact the overall unfolded measurement uncertainty, since

the unfolding simultaneously maps from FC and PC measurements to fully inclusive analysis

bins, as will be discussed in more detail in Sec. 10.

• Pass Wire-Cell Generic Neutrino Selection

– Hardware Filter

– Software Filter

– Flash-Light Matching

– Through-going Muon Rejection Rejection

– Stopped Muon Rejection

– Light Mismatch Rejection

• Pass Wire-Cell νµCC Selection

– ν Vertex Inside Fiducial Volume

– Primary µ Track > 5cm

– νµ BDT Score Above 0.9

• Eν ∈ [0.2,4.0]GeV

• Pµ < 2.5GeV/c

“Cosmic" refers to cosmic rays coincident with the beam spill window, “EXT" refers to

non-coincident cosmic rays, “dirt" refers to neutrino interactions outside the cryostat, “out
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Figure 48: Distribution of selected FC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice Eν ∈
[0.2,0.705]GeV.
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Figure 49: Distribution of selected FC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice Eν ∈
[0.705,1.05]GeV.
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6 WIRE-CELL EVENT SELECTION
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Figure 50: Distribution of selected FC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice Eν ∈
[1.05,1.57]GeV.
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Figure 51: Distribution of selected FC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice Eν ∈
[1.57,4.0]GeV.
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Figure 52: Distribution of selected PC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice Eν ∈
[0.2,0.705]GeV.
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Figure 53: Distribution of selected PC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice Eν ∈
[0.705,1.05]GeV.
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Figure 54: Distribution of selected PC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice Eν ∈
[1.05,1.57]GeV.
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Figure 55: Distribution of selected PC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice Eν ∈
[1.57,4.0]GeV.
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6 WIRE-CELL EVENT SELECTION
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Figure 56: Distribution of selected FC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
Eν ∈ [0.2,0.705]GeV.
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Figure 57: Distribution of selected FC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
Eν ∈ [0.705,1.05]GeV.
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6 WIRE-CELL EVENT SELECTION
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Figure 58: Distribution of selected FC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
Eν ∈ [1.05,1.57]GeV.
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Figure 59: Distribution of selected FC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
Eν ∈ [1.57,4.0]GeV.
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Figure 60: Distribution of selected PC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
Eν ∈ [0.2,0.705]GeV.
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Figure 61: Distribution of selected PC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
Eν ∈ [0.705,1.05]GeV.
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Figure 62: Distribution of selected PC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
Eν ∈ [1.05,1.57]GeV.
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Figure 63: Distribution of selected PC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
Eν ∈ [1.57,4.0]GeV.
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6 WIRE-CELL EVENT SELECTION

FV" refers to neutrino interactions outside the fiducial volume, “NC π0 in FV" refers to neutral

current interactions with a π0 and a neutrino vertex inside the fiducial volume, “NC in FV"

refers to other neutral current interactions inside the fiducial volume, “νe CC in FV" refers

to electron neutrino interactions inside the fiducial volume, and “νµCC in FV" refers to the

signal channel.

Some features of the data are easily identified over the 3D distribution. There is a clear

shift in the distribution of muon momentum across energy ranges and angles, with higher

energies and more forward angles experiencing a higher peak momentum. Backgrounds are

more common in the set of partially contained events, as is expected, and are most prevalent

in backwards facing directions because of the low signal statistics in the region. For fully

contained events the largest source of background is neutral current interactions, while for

partially contained events it is cosmic rays. In the breakdown of signal interaction channels,

separation between QE, RES, and DIS is apparent over each of the three kinematic variables.

QE interactions are most common at low energies, but when the do occur at high Eν they

are more forward facing and at higher Pµ than other interaction types, owing to the lower

magnitude of energy imparted into the hadronic system. By comparison, DIS events require

high energies and leave little energy for the muon exiting the interaction.

The unfolded analysis binning is largely (but not completely) grid-like, constructed by

taking a completely grid-based binning and merging certain bins with low statistics. In

this manner, the detector resolutions, discussed more in Sec. 7, are considered in the con-

struction of the grid slices, and the available statistics as distributed over the phase space

is considered through the merging of bins. There are a total of 138 analysis bins, con-

structed from the familiar slice definitions of Eν ∈ {0.2,0.57,1.05,1.57,4.0}GeV, cos(θµ) ∈

{−1,−0.5,0,0.27,0.45,0.62,0.76,0.86,0.94,1}, as well as nine muon momentum slices defined

by the edges Pµ ∈ {0,0.18,0.3,0.45,0.61,0.77,0.97,1.28,1.66,2.5}GeV/c.

The selection efficiency over the 3D distribution is shown in Fig. 64, showing that a non-
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6 WIRE-CELL EVENT SELECTION

Figure 64: Selection efficiency for simulated events over {Pµ, cos(θµ)} within each Eν slice.
Eν energy bins are {[0.2,0.705], [0.705,1.05], [1.05,1.57], [1.57,4.0]} GeV.
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Figure 65: Distribution of simulated events over truth {Pµ, cos(θµ)} for each of the four Eν
slices, determined by the bin edges [0.2, 0.705, 1.05, 1.57, 4.0] GeV. The 138 analysis bins are
shown in red.

zero reconstruction efficiency is maintained over the complete phase space of reconstructed

events. Regions with very few simulated events are not drawn because of the inaccurate

efficiency estimation in these spaces. Since (almost) no interactions are expected to exist at
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6 WIRE-CELL EVENT SELECTION

those phase space regions, the efficiency there is not relevant. The distribution of simulated

events over the 3D distribution is shown in Fig. 65. The red lines indicate the analysis bins,

constructing by appropriately merging bins from the grid structure.
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7 RESOLUTIONS OF RECONSTRUCTED QUANTITIES

7 Resolutions of Reconstructed Quantities

The Wire-Cell reconstruction of the highly detailed LArTPC detector measurements has

enabled the high-performance event selection of the previous selection, and also allows

for precision measurement of reconstructed variables used in cross section measurements.

However, difficulties with the MicroBooNE LArTPC such as non-functional wires, as well

as imperfections in the reconstruction, leave room for improvement on future LArTPC ex-

periments and analyses. The following sections detail both the success and limitations of

the Wire-Cell reconstruction, ultimately in terms of the resolution of kinematic variables

suitable for use in cross section measurements. Sec. 7.1 gives details on the foundation of

the Wire-Cell reconstruction, the capability to accurately reconstruct charge in 3D through

tomographic imaging. Sec. 7.2 quantifies the performance of the neutrino vertex identifi-

cation algorithms at the heart of the particle flow tree construction. Finally, Sec. 7.3 shows

the resolution of each of the kinematic variables used in producing unfolded cross section

measurements.

7.1 Performance of Charge Reconstruction

The success of charge reconstruction through 3D imaging 5.2 has already been discussed.

However, the precise accuracy in charge reconstruction has not been thoroughly quantified.

Errors in charge reconstruction can contribute to difficulties in the later trajectory fitting and

pattern recognition tools, impacting the overall resolution of kinematic quantities such as

particle energies.

In this section, the charge reconstruction performance is evaluated through the metrics

of purity and completeness to give context to further statements on detector resolutions.

Charge reconstruction purity is defined as the number of reconstructed hits overlapping

with truth hits divided by the total number of reconstructed hits. Charge reconstruction

completeness is defined as the number of reconstructed hits overlapping with truth hits

121



7 RESOLUTIONS OF RECONSTRUCTED QUANTITIES

MicroBooNE Simulation

MicroBooNE Simulation

Figure 32: Event display of a 1𝑒2𝑝1𝜋0 𝜈𝑒 CC interaction. Top: side view of the full TPC readout;
each cluster is labeled in one color. The black box corresponds to the LArTPC active volume with
an X-position (converted from the readout time) relative to the neutrino interaction time. Bottom:
the charge-light matching result – the in-beam flash matched TPC activities; the blue points are
the reconstructed 3D space points and the red ones are the true space points corresponding to the
neutrino interaction. There is an offset of about 1 cm between the blue point and the red point to
clearly show the event. The voxel size and opacity are also tuned for event display.

for BNB 𝜈𝜇 CC, 𝜈𝑒 CC, and NC interactions, respectively. The efficiency plus incorrectness is
100% in this figure except for the first bin with low visible energy <50 MeV in which case some
of events fail to match in-beam TPC activities to any PMT flash. A neutrino interaction, close to
the TPC boundary or with a significant number of neutral particles in the final states, tends to have
a large portion of its charges escaping the active TPC volume, which then become invisible to the
wire readout plane. However, the light signals originating from this neutrino interaction can still
be collected if there is any charge deposition outside the TPC but still in the liquid argon volume.
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Figure 32: Event display of a 1𝑒2𝑝1𝜋0 𝜈𝑒 CC interaction. Top: side view of the full TPC readout;
each cluster is labeled in one color. The black box corresponds to the LArTPC active volume with
an X-position (converted from the readout time) relative to the neutrino interaction time. Bottom:
the charge-light matching result – the in-beam flash matched TPC activities; the blue points are
the reconstructed 3D space points and the red ones are the true space points corresponding to the
neutrino interaction. There is an offset of about 1 cm between the blue point and the red point to
clearly show the event. The voxel size and opacity are also tuned for event display.

for BNB 𝜈𝜇 CC, 𝜈𝑒 CC, and NC interactions, respectively. The efficiency plus incorrectness is
100% in this figure except for the first bin with low visible energy <50 MeV in which case some
of events fail to match in-beam TPC activities to any PMT flash. A neutrino interaction, close to
the TPC boundary or with a significant number of neutral particles in the final states, tends to have
a large portion of its charges escaping the active TPC volume, which then become invisible to the
wire readout plane. However, the light signals originating from this neutrino interaction can still
be collected if there is any charge deposition outside the TPC but still in the liquid argon volume.

– 44 –

Figure 66: Event display of a 1e2p1π0 νe CC interaction simulated using overlay. Top: pro-
jected xy view of the TPC readout, with each cluster labeled by color. The black box represents
the drift window corresponding to the beam spill timing. Bottom: Reconstructed (red) and
truth (blue) charge distributions are shown. The reconstructed charge is artificially offset by
∼ 1cm for visual clarity. Source: [106]

divided by the total number of truth hits. These terms can be expressed through the set of

reconstructed hits, R and the set of true hits T :

Charge Reconstruction Purity = |R ∩T |
|R|

Charge Reconstruction Completeness = |R ∩T |
|T | (7.1)
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Figure 33: 3D imaging and charge-light matching performance for BNB 𝜈𝜇 CC , 𝜈𝑒 CC, and NC
interactions in the TPC. The neutrino interactions are simulated and overlaid with real data from
cosmic rays. The clustering and charge-light matching steps are applied to select the neutrino
interaction. Left: efficiency and incorrectness of charge-light matching as a function of the simply
reconstructed visible energy (a simple conversion from the reconstructed visible charge using a
constant conversion factor); binomial statistics is used to calculate the efficiency uncertainty while
Poisson statistics (large error bars in the plot) is used where the efficiency is 100%, mainly for the
low statistic bins. Right: purity vs. completeness for each selected neutrino interaction. The color
scale (Z-axis value) represents the fraction of events. The integrated fraction of the events within
the solid black and dashed red boxes can be found in table 4.
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Figure 67: Distribution of purity and completeness scores on overlay νµCC events after
imaging and charge-light matching. The black (red) box bounds a region of well reconstructed
events with > 80% purity and > 70% (> 80%) completeness, totaling 80.2% (73.0%) of events.
Source: [106]

Fig. 66 shows an overlay event display with a simulated neutrino interaction and multiple

cosmic rays, and compares the distribution of reconstructed charge to the truth distribution.

Fig. 67 shows the distribution of events over their purity and completeness scores. The

black (red) box highlights well reconstructed events with > 80% purity and > 70% (> 80%)

completeness, totaling 80.2% (73.0%) of events. It is worth noting that errors in purity can be

corrected in stages of reconstruction after imaging (when these metrics are computed) by

ignoring or rejecting areas of faulty charge reconstruction (such as a trajectory fit ignoring

ghosts in a region with non-functional wires). However, errors in completeness can not be so

easily recovered, as missing charge cannot be reconstructed by later steps.
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7.2 Vertex Identification Resolution

2.6 Evaluation of the Neutrino Vertex Identification Performance

The efficiency of the neutrino vertex identification plays a crucial role in 𝜈𝜇CC and 𝜈𝑒CC event
selections. Therefore, we performed evaluations of the neutrino, primary muon, and primary EM
shower vertex reconstruction. Pandora [51] is another state-of-the-art traditional pattern recognition
technique‡ that is also used in MicroBooNE. We compare the performance of the Wire-Cell vertex
identification with Pandora as a benchmark.

Two types of overlay MC samples are used to evaluate the neutrino vertexing performance.
BNB 𝜈 overlay MC, which simulates neutrino interactions based on the BNB neutrino flux of which
99.5% are 𝜈𝜇’s, is used to evaluate the performance for 𝜈𝜇CC and NC events. BNB intrinsic 𝜈𝑒
overlay MC, which is a 𝜈𝑒-enriched MC sample only simulating the electron neutrino interactions
based on the 𝜈𝑒/𝜈̄𝑒 component in the BNB neutrino flux, is used to evaluate the performance for
𝜈𝑒CC events.

The left panels of figure 17, 18, and 19 show distributions of the distance between the re-
constructed neutrino vertex and true neutrino vertex for charged-current events in BNB 𝜈 overlay,
neutral-current events in BNB 𝜈 overlay, and charged-current events in BNB intrinsic 𝜈𝑒 overlay
samples, respectively. Percentages of events with a neutrino vertex reconstructed within 1 cm of the
truth for these three samples are 70.3%, 49.3% and 65.2%; within within 5 cm are 84.8%, 63.5%
and 80.0%, respectively. In the right panels of these figures we calculate the percentage of events
with the reco-truth vertex distance less than 1 cm.

MicroBooNE simulation MicroBooNE simulation

Figure 17: Neutrino vertex reconstruction of the 𝜈 overlay sample, charged-current interaction,
reconstructed with Wire-Cell. Left: distance between the reconstructed and truth neutrino vertex;
Right: efficiency for events with vertex reconstruction position within 1 cm of the truth, as a function
of truth neutrino energy. The error bars represent the statistical uncertainties.

Table 1 summarizes the performance comparison between Wire-Cell and Pandora [51] recon-
structions. In order to make a fair performance comparison focusing on reconstruction algorithms,
the same input events, with cosmic-rays cleaned up and unresponsive detector areas recovered using
the upstream Wire-Cell imaging and clustering algorithms [18], are feed into both Wire-Cell and

‡Some new developments of Pandora reconstruction start to involve deep-learning algorithms, but such developments
were not included in this comparison and are yet to be used in the MicroBooNE experiment.

– 22 –

Figure 68: Neutrino vertex reconstruction of GND-selected overlay events. The distribution of
events is shown as a function of the reconstructed vertex displacement magnitude. Statistical
uncertainties are shown. Source: [125]

Neutrino vertex reconstruction is highly influential in both event selection and overall

reconstruction performance. There are essentially two types of vertexing errors: categorical

errors where the incorrect particle interaction is labeled as the neutrino interaction vertex,

and precision errors where the interaction is identified correctly, but there are small positional

errors in the identified location of the vertex. Categorical errors are indicative of a poorly

reconstructed particle flow tree, while precision errors can lead to poor trajectory fitting,

dE/d x reconstruction, and particle identification.

The distribution of GND-selected overlay events as a function of the reconstructed vertex

displacement magnitude is shown in Fig. 68. To help separate categorical and precision error
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2.6 Evaluation of the Neutrino Vertex Identification Performance

The efficiency of the neutrino vertex identification plays a crucial role in 𝜈𝜇CC and 𝜈𝑒CC event
selections. Therefore, we performed evaluations of the neutrino, primary muon, and primary EM
shower vertex reconstruction. Pandora [51] is another state-of-the-art traditional pattern recognition
technique‡ that is also used in MicroBooNE. We compare the performance of the Wire-Cell vertex
identification with Pandora as a benchmark.

Two types of overlay MC samples are used to evaluate the neutrino vertexing performance.
BNB 𝜈 overlay MC, which simulates neutrino interactions based on the BNB neutrino flux of which
99.5% are 𝜈𝜇’s, is used to evaluate the performance for 𝜈𝜇CC and NC events. BNB intrinsic 𝜈𝑒
overlay MC, which is a 𝜈𝑒-enriched MC sample only simulating the electron neutrino interactions
based on the 𝜈𝑒/𝜈̄𝑒 component in the BNB neutrino flux, is used to evaluate the performance for
𝜈𝑒CC events.

The left panels of figure 17, 18, and 19 show distributions of the distance between the re-
constructed neutrino vertex and true neutrino vertex for charged-current events in BNB 𝜈 overlay,
neutral-current events in BNB 𝜈 overlay, and charged-current events in BNB intrinsic 𝜈𝑒 overlay
samples, respectively. Percentages of events with a neutrino vertex reconstructed within 1 cm of the
truth for these three samples are 70.3%, 49.3% and 65.2%; within within 5 cm are 84.8%, 63.5%
and 80.0%, respectively. In the right panels of these figures we calculate the percentage of events
with the reco-truth vertex distance less than 1 cm.

MicroBooNE simulation MicroBooNE simulation

Figure 17: Neutrino vertex reconstruction of the 𝜈 overlay sample, charged-current interaction,
reconstructed with Wire-Cell. Left: distance between the reconstructed and truth neutrino vertex;
Right: efficiency for events with vertex reconstruction position within 1 cm of the truth, as a function
of truth neutrino energy. The error bars represent the statistical uncertainties.

Table 1 summarizes the performance comparison between Wire-Cell and Pandora [51] recon-
structions. In order to make a fair performance comparison focusing on reconstruction algorithms,
the same input events, with cosmic-rays cleaned up and unresponsive detector areas recovered using
the upstream Wire-Cell imaging and clustering algorithms [18], are feed into both Wire-Cell and

‡Some new developments of Pandora reconstruction start to involve deep-learning algorithms, but such developments
were not included in this comparison and are yet to be used in the MicroBooNE experiment.

– 22 –

Figure 69: Neutrino vertex reconstruction of GND-selected overlay events. The reconstruc-
tion efficiency (percentage of events with a reconstructed ν vertex displacement magnitude
< 1cm) is shown as a function of the true neutrino energy. Statistical uncertainties are shown.
Source: [125]

cases, an efficiency metric is defined, labeling vertices as successfully reconstructed if the

displacement magnitude is within 1cm. The reconstruction efficiency is shown as a function

of neutrino energy in Fig. 69. The decrease in efficiency below 500MeV is likely a result of

the reduced effectiveness of heuristics such as “the neutrino interaction vertex is located

upstream of the TPC activity, resulting from the imparted momentum from the neutrino." As

discussed in Sec. 5.5, these heuristics are incorporated into the particle flow tree construction,

but not strictly relied on.
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MicroBooNE simulation MicroBooNE simulation

MicroBooNE simulation MicroBooNE simulation

Figure 25: Difference between reconstructed and truth track angle as a function of truth particle
energy for leading primary muons (top) and electrons (bottom). The left panels are for polar angles
and the right panels are for azimuthal angles. Slice-wise mean and resolution values from Gaussian
fittings are overlaid. The slight bias in the polar angle is because of its non-negative nature in its
reconstruction.

𝑑𝑄/𝑑𝑥 or range. After multiplying 23.6 eV per ionization pair [57, 58], the energy of EM
showers is estimated by applying another overall scaling factor 2.50 (= 1/0.4). This factor
is derived from a simulation that includes the bias in the reconstructed charge [18] and the
average recombination factor (≈0.5) of an EM shower in argon. For 𝜈𝑒CC events, the energy
reconstruction of the primary electromagnetic shower gives a 12% energy resolution with
about 2% bias, indicating a good performance of charge clustering for EM showers (described
in section 3.1).

The three methods are combined in the neutrino energy estimation. For a stopped track longer
than 4 cm, range method is used. For short stopped tracks (< 4 cm), the summation of 𝑑𝐸/𝑑𝑥
method is used, given the range measurement is expected to have a larger uncertainty since track
trajectories consist of points separated by 0.6 cm. For a long muon, where delta rays become visible
(multiple track segments are part of a reconstructed muon track), we again use the summation of
𝑑𝐸/𝑑𝑥 method, given the track length of delta rays may bias the range calculation of the long muon.
For EM showers, the charge scaling method is used, since track trajectories are not well defined in

– 30 –

Figure 70: Difference between reconstructed and truth leading-muon-track scattering angle
for selected overlay νµCC events, as a function of truth muon energy. Gaussian distributions
are fit to each Eµ bin, with the fit parameter values overlaid. Since the polar angle cannot be
negative, it has a slight positive bias overall. Source: [125]

MicroBooNE simulation MicroBooNE simulation

MicroBooNE simulation MicroBooNE simulation

Figure 25: Difference between reconstructed and truth track angle as a function of truth particle
energy for leading primary muons (top) and electrons (bottom). The left panels are for polar angles
and the right panels are for azimuthal angles. Slice-wise mean and resolution values from Gaussian
fittings are overlaid. The slight bias in the polar angle is because of its non-negative nature in its
reconstruction.

𝑑𝑄/𝑑𝑥 or range. After multiplying 23.6 eV per ionization pair [57, 58], the energy of EM
showers is estimated by applying another overall scaling factor 2.50 (= 1/0.4). This factor
is derived from a simulation that includes the bias in the reconstructed charge [18] and the
average recombination factor (≈0.5) of an EM shower in argon. For 𝜈𝑒CC events, the energy
reconstruction of the primary electromagnetic shower gives a 12% energy resolution with
about 2% bias, indicating a good performance of charge clustering for EM showers (described
in section 3.1).

The three methods are combined in the neutrino energy estimation. For a stopped track longer
than 4 cm, range method is used. For short stopped tracks (< 4 cm), the summation of 𝑑𝐸/𝑑𝑥
method is used, given the range measurement is expected to have a larger uncertainty since track
trajectories consist of points separated by 0.6 cm. For a long muon, where delta rays become visible
(multiple track segments are part of a reconstructed muon track), we again use the summation of
𝑑𝐸/𝑑𝑥 method, given the track length of delta rays may bias the range calculation of the long muon.
For EM showers, the charge scaling method is used, since track trajectories are not well defined in
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Figure 71: Difference between reconstructed and truth leading-muon-track azimuthal angle
for selected overlay νµCC events, as a function of truth muon energy. Gaussian distributions
are fit to each Eµ bin, with the fit parameter values overlaid. Source: [125]
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this case. The neutrino energy is estimated by summing up the kinetic energy of all particles in
the reconstructed particle flow tree. For each muon or charged pion or electron, its mass is added
to the energy reconstruction. In addition, an average binding energy of 8.6 MeV per nucleon in
which case an argon-40 nucleus is completely disassembled is added for each identified proton in
the reconstructed particle flow. These protons may be produced at the primary neutrino interaction
or secondary interactions (e.g. produced by a neutron).

MicroBooNE simulation MicroBooNE simulation

MicroBooNE simulation

Figure 26: Energy reconstruction for selected fully contained 𝜈𝑒CC candidates: reconstructed
visible energy (top left), reconstructed neutrino energy (top right), and ratio of reconstructed
neutrino energy to truth (bottom). In the bottom panel, the peak values and the corresponding
resolutions (asymmetric) for each true energy bin are plotted as well.

Figures 26 and 27 summarize the neutrino energy reconstruction performance for fully con-
tained 𝜈𝑒CC and 𝜈𝜇CC interactions. The top left panels show the reconstructed visible energy and
the top right panels show the reconstructed neutrino energy. We can see that the reconstructed
neutrino energy is closer to the diagonal line, meaning that the bias is largely corrected from the
reconstructed visible energy. The bottom panels show that the reconstructed neutrino energy reso-
lution is 10% to 15% for 𝜈𝑒CC events and 15-20% for 𝜈𝜇CC events. At a truth neutrino energy of
800 MeV, the reconstructed neutrino energy resolution is 15% for 𝜈𝑒CC and 20% for 𝜈𝜇CC. The
bias of the reconstructed neutrino energy relative to the true neutrino energy is 7% and 10% on
average for BNB 𝜈𝑒CC and 𝜈𝜇CC interactions, respectively. The bias in the high energy region,
e.g. true neutrino energy greater than 1 GeV, is obvious for the selected 𝜈𝜇CC sample. This is
because the high energy 𝜈𝜇CC interactions after the selection, in particular with the full containment
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Figure 72: Reconstructed vs truth neutrino energy for selected overlay νµCC events.
Source: [125]

this case. The neutrino energy is estimated by summing up the kinetic energy of all particles in
the reconstructed particle flow tree. For each muon or charged pion or electron, its mass is added
to the energy reconstruction. In addition, an average binding energy of 8.6 MeV per nucleon in
which case an argon-40 nucleus is completely disassembled is added for each identified proton in
the reconstructed particle flow. These protons may be produced at the primary neutrino interaction
or secondary interactions (e.g. produced by a neutron).
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Figure 26: Energy reconstruction for selected fully contained 𝜈𝑒CC candidates: reconstructed
visible energy (top left), reconstructed neutrino energy (top right), and ratio of reconstructed
neutrino energy to truth (bottom). In the bottom panel, the peak values and the corresponding
resolutions (asymmetric) for each true energy bin are plotted as well.

Figures 26 and 27 summarize the neutrino energy reconstruction performance for fully con-
tained 𝜈𝑒CC and 𝜈𝜇CC interactions. The top left panels show the reconstructed visible energy and
the top right panels show the reconstructed neutrino energy. We can see that the reconstructed
neutrino energy is closer to the diagonal line, meaning that the bias is largely corrected from the
reconstructed visible energy. The bottom panels show that the reconstructed neutrino energy reso-
lution is 10% to 15% for 𝜈𝑒CC events and 15-20% for 𝜈𝜇CC events. At a truth neutrino energy of
800 MeV, the reconstructed neutrino energy resolution is 15% for 𝜈𝑒CC and 20% for 𝜈𝜇CC. The
bias of the reconstructed neutrino energy relative to the true neutrino energy is 7% and 10% on
average for BNB 𝜈𝑒CC and 𝜈𝜇CC interactions, respectively. The bias in the high energy region,
e.g. true neutrino energy greater than 1 GeV, is obvious for the selected 𝜈𝜇CC sample. This is
because the high energy 𝜈𝜇CC interactions after the selection, in particular with the full containment
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Figure 73: Difference between reconstructed and truth neutrino energy for selected overlay
νµCC events, as a function of truth neutrino energy. Gaussian distributions are fit to each Eν
bin, with the fit parameter values overlaid. Source: [125]

127



7 RESOLUTIONS OF RECONSTRUCTED QUANTITIES

Figure 74: Reconstructed vs truth muon momentum for selected overlay νµCC events.

Figure 75: Reconstructed vs truth visible hadronic energy for selected overlay νµCC events.

7.3 Resolutions of Kinematic Variables

For each kinematic variable, the resolution is computed by comparing the reconstructed

value to the truth value using overlay events. The distribution of events is examined over

bins of the corresponding truth variable, and a Gaussian distribution is fit to determine the

reconstructed resolution [125, 137]. Fig. 70 and Fig. 71 show the measured angular resolution
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for the muon scattering angle θµ and the muon azimuthal angle φµ, respectively. At forward

scattering angles, the resolution is ∼ 5◦, performing worse at backward angles. Fig. 72 and

Fig. 73 show the measured neutrino energy resolution, which is seen to be ∼ 20% across

the energy range. Fig. 74 shows the measured muon momentum resolution, and Fig. 75

shows the measured visible hadronic energy resolution, both of which are approximately

10−15%. The sub-dominant off-diagonal band of reconstructed muon momentum is the

result of imperfect energy reconstruction using the summation of dE/d x method discussed

in Sec. 5.5.7. In future analyses this method could be improved, and augmented with other

approaches such as multiple Coulomb scattering.
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8 Estimation of Systematic Uncertainties

The analysis incorporates statistical uncertainties from the number of events as well as

systematic uncertainties from a wide range of estimated parameters into the overall mea-

surement. This is done through the covariance matrix formalism [141], which describes

the correlated uncertainties between each of the reconstructed bins (and after unfolding,

between analysis bins). Because of the bilinearity of covariance, contributions from each

systematic effect can be computed separately and summed to form the overall covariance

matrix. Sec. 8.1 describes the estimation of statistical uncertainties on the sample of simu-

lated overlay events used. Sec. 8.2 describes the estimation of uncertainties from the flux

prediction, POT measurement, neutrino interactions outside the cryostat, and number of

target nuclei in the fiducial volume. Sec. 8.3 describes the estimation of uncertainties from the

modeling of ν-Ar interactions in the Genie event generator and hadronic interactions in the

argon medium using GEANT 4. Sec. 8.4 describes the estimation of systematic uncertainties

from the modeling of detector effects. Finally, the overall covariance matrix is discussed in

Sec. 8.5.

8.1 Estimation of Monte-Carlo Statistical Uncertainties

It is tempting to use the frequentist approach to estimate the statistical uncertainties in the

Monte-Carlo (MC) overlay event sample. Under this method, a measurement of n events in a

particular bin would have an estimated uncertainty of
p

n. However, this approach struggles

in the particular case of bins without any measured events, assigning an uncertainty of 0.

Therefore, a Bayesian approach is used to predict MC statistical uncertainties included in

the overall covariance matrix. The actual implementation accounts for the non-uniform

weighting of simulated events, following the method described in reference [142], however

the details of the simpler uniform weights case is discussed below.

The number of events measured in a given bin is assumed to be Poisson distributed,
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described by a mean event rate µ. The goal, then, is to estimate µ and its uncertainty given

a measurement of N events over a particular time interval. To achieve this, an uninformed

prior is selected, describing the distribution of µ through a step function with value 0 for

µ< 0 and 1 for µ≥ 0. This leads to a posterior distribution approximated as:

P (µ|N ) ≈ exp
(
N −µ+N l n

( µ
N

))
(8.1)

Therefore, in the case of N = 0, the posterior distribution becomes P (µ|0) = e−µ, allowing

an RMS uncertainty of
p

2 to be computed for a taken central value of µ= N = 0. In general,

uncertainties for all measured values can be computed in this manner.

8.2 Estimation of Flux Uncertainties

The flux prediction uncertainties follow the flux prediction computed for MiniBooNE [89],

and primarily consider the production rate of hadrons through p −Be interactions in the

target, determined through GEANT4 simulation [143]. The production rate of pions is re-

weighted based on hadron production data measured in HARP [144]. There are also other

effects considered, such as the mis-modeling and mis-calibration of the horn current, as well

as the total, QE, and inelastic cross sections of pions and nucleons on the beryllium target and

aluminum horn. The flux covariance matrix is constructed by using a multisim technique,

where each parameter is varied simultaneously following a Gaussian distribution given by a

predicted central value and uncertainty. In total, N = 1000 universes are constructed this way,

and the covariance Covi j between different bins xi and x j is computed using the formula:

Covi j =
1

N

N∑
n=1

(xi ,n −µi )((x j ,n −µ j )) (8.2)

where µ⃗ describes the central value prediction for each bin. An additional 2% overall nor-

malization uncertainty is applied to account for the uncertainty in the number of protons on
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Table 3: Contribution of different sources to overall flux uncertainty, given as a percentage of
the central value prediction. Source [90].

Systematic νµ (%) νµ (%) νe (%) νe (%)

POT 2.0 2.0 2.0 2.0

π+ 11.7 1.0 10.7 0.03

π− 0.0 11.6 0.0 3.0

K + 0.2 0.1 2.0 0.1

K − 0.0 0.4 0.0 3.0

K 0
L 0.0 0.3 2.3 21.4

Other 3.9 6.6 3.2 5.3

Total 12.5 13.5 11.7 22.6

target. This includes both the uncertainty in the measured beam intensity as measured in the

toroids upstream of the target, as well the uncertainty in the number of protons that actually

interact with the target. The overall uncertainty contribution from each source (POT count,

hadronic production, other considerations) is shown in Table 3, and the total flux correlation

matrix is shown in Fig. 76.

There is also a ∼ 1% uncertainty added to the overall covariance matrix because of the

estimation of the number of target nuclei in the fiducial volume, resulting from the following

considerations. The fiducial volume has dimensions 2.50m × 2.26m × 10.31m, totaling

58.2511m3, so a ±1cm uncertainty on each detector boundary contributes an overall volume

uncertainty of ∼ 0.35%. There is also a ∼ 0.9% variation in the density of argon between the

temperatures of 87K and 89K. Finally, the purity of argon remains above 99.6%, allowing for

an overall target nuclei estimation of 1.21×1031 ±1%. Finally, in addition to the modeling of

signal neutrino interactions inside the fiducial volume, background neutrino interactions

outside the cryostat, called dirt interactions, must be considered. The most difficult part of

this estimation is the modeling of interactions with outside materials, therefore a conservative

50% bin-to-bin (uncorrelated) uncertainty is applied to the predicted rate of dirt events.

However, since dirt is a negligible contribution to the overall background, this has a minimal
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MicroBooNE Internal Wire-Cell Xs Extraction

Figure 11: Correlations of flux systematics (top), GEANT4 systematics (middle), and cross section
systematics (bottom). For the cross-section analysis, the flux and the GEANT4 systematics are the
same as those in eLEE analysis. On the other hand, the cross section systematics are reduced with
respect to those in eLEE analysis.

Page 33 of 122

Figure 76: Correlation matrix of flux systematics across reconstructed neutrino energy, with
FC and PC selections separated.

impact.

8.3 Estimation of Cross Section Uncertainties

Within the MicroBooNE experiment, neutrino interactions are simulated using the Genie

event generator [145] for the central value MC prediction. Previous Genie models have been

validated against bubble chamber data in the past, as well as MiniBooNE CC0π data more

recently. However, MicroBooNE is the first experiment to adopt Genie v3 for its central value

MC prediction, and initially found a data/MC discrepancy in the CC0π channel. As a result,

MicroBooNE decided to re-tune the CCQE and CCMEC predictions to better describe the data

seen in MicroBooNE [146]. To avoid bias from tuning on MicroBooNE data, T2K CC0π data
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was used [147] to create a “MicroBooNE Tune" version of Genie 3.0.6 G18_10a_02_11a [148].

This version features an initial state described by the Local Fermi Gas model, and final state

interactions described through an effective hA2018 intra-nuclear cascade model. For more

details on the nuclear effects considered in a neutrino event generator, see the discussion in

Sec. 2.3.

MicroBooNE Internal Wire-Cell Xs Extraction

Figure 11: Correlations of flux systematics (top), GEANT4 systematics (middle), and cross section
systematics (bottom). For the cross-section analysis, the flux and the GEANT4 systematics are the
same as those in eLEE analysis. On the other hand, the cross section systematics are reduced with
respect to those in eLEE analysis.

Page 33 of 122

Figure 77: Correlation matrix of Genie systematics across reconstructed neutrino energy,
with FC and PC selections separated.

Although cross section uncertainties are naturally suppressed in the production of cross

section measurements, as the unfolded signal distribution does not include cross section

uncertainties, it is still very important to accurately model the data within listed uncertainties,

so as to not introduce significant bias in the unfolded result. The sufficiency of the Genie

model and its uncertainties to describe the distribution in data seen in MicroBooNE will be

discussed more in Sec. 9, but for now the estimation of Genie uncertainties will be briefly
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discussed. Within Genie, there are a large number of parameters available for re-weighting

that are used in the simulation of neutrino interactions, with a full description available in the

Genie users manual [149]. To estimate the overall uncertainty contribution from the choice

of each parameter value, they are varied simultaneously in a multisim approach, as described

in Sec. 8.2. A total of 600 universes are generated and the resulting correlation matrix across

neutrino energy is shown in Fig. 77.

MicroBooNE Internal Wire-Cell Xs Extraction

Figure 11: Correlations of flux systematics (top), GEANT4 systematics (middle), and cross section
systematics (bottom). For the cross-section analysis, the flux and the GEANT4 systematics are the
same as those in eLEE analysis. On the other hand, the cross section systematics are reduced with
respect to those in eLEE analysis.

Page 33 of 122

Figure 78: Correlation matrix of GEANT4 systematics across reconstructed neutrino energy,
with FC and PC selections separated.

The interaction between hadronic final states and external argon nuclei throughout

the detector volume is modeled using GEANT4 [143]. In addition to ionizing electrons,

interactions with atomic nuclei can occur that can change an ionizing particle’s direction,

or form new particles. The chance of interaction is described by the hadron-nucleus cross
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section, and for a given particle energy and travel distance, survival and (complementary)

re-interaction probabilities are computed. These are used to assign weights to interacting and

non-interacting hadrons on a per-event basis. A conservative 30% uncertainty is assigned

to the interaction cross section, contributing an overall 0.612% uncertainty on the neutrino

interaction cross section as determined through multisim using 10 universes. The correlation

matrix across neutrino energy is shown in Fig. 78

8.4 Estimation of Detector Systematic Uncertainties

The detector response simulates many non-idealizations of the MicroBooNE detector that

can impact the overall reconstruction and selection of events. The different effects considered

can be grouped into three categories: light yield and propagation throughout the detector,

recombination and space charge effects on the drift of ionization charge, and variations in

the reconstructed TPC waveform. For each effect, a 1σ uncertainty is defined so that the

impact on the overall event selection can be determined through a unisim procedure [150].

Light yield considers the reduction in PEs observed at the PMT array resulting from at-

tenuation through the detector as well as degradation of the PMT array. Over the course of

runs 1-3 of data taking used in this analysis there was a ∼ 25% reduction in the measured PE

resulting from PMT degradation, therefore this difference is taken as the 1σ uncertainty value

on the simulated light yield. The 1σ uncertainty on the recombination effect is estimated by

taking a different set of parameters on the modified box recombination model and computing

the difference in predicted recombination. The space charge effect is mapped by studying

throughgoing muon tracks, assumed to be largely straight, and noticing the common devia-

tions in path at each voxelized detector location. The 1σ uncertainty on this map is taken as

the residual deflection from straight-line tracks after applying the space charge map to tracks

produced by a laser shined through the detector volume. The TPC waveform 1σ uncertainty

is computed as the ratio of measured to simulated values of reconstructed charge and signal
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width after deconvolution and digitization. By using the digitized values, the estimation

is computationally efficient and also captures the entire range of non-idealizations in the

simulated TPC waveform that are not directly simulated [151].

A sample of overlay events is produced using parameter central-values, and additional

samples are created after varying each parameter by the previously described 1σ values one

at a time (unisim). Because of random processes in the event processing and reconstruction

software, there may be uncorrelated uncertainties for each simulated event, in addition to

the correlated uncertainties between bins. It is important to understand the divide between

correlated and uncorrelated uncertainties both for an accurate treatment of the detector

uncertainties, and particularly in the case of the conditional constraint procedure used for

model validation in Sec. 9. This procedure will be discussed in more detail in the following

section, but essentially it relies on a Bayesian procedure to update the model prediction over a

particular distribution of interest by using the data measurement over another distribution of

a more trusted reconstructed variable. Correlations between predictions allows the constraint

procedure to limit the posterior prediction over the distribution of interest, but it is important

to correctly identify the uncorrelated part of the uncertainty so that the updated prediction is

correctly computed. Over a sufficiently large sample, these variations may be fully captured;

however, computational constraints and the use of overlay events limits the available sample

size. Since each simulated neutrino interaction is paired with an EXTBNB readout of cosmic

ray activity, the maximum number of overlay events is determined by the amount of EXTBNB

data available.

8.4.1 Bootstrapping

To compensate for the limited sample size available, a bootstrapping procedure is used to

re-sample the reconstruction and selection of events many times. This allows for the correct

determination of correlated variations between bins, as well as uncorrelated variations
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resulting from random processes in the reconstruction, as opposed to statistical fluctuations.

The set of all overlay events is sampled once using the central values for each detector

response parameter, and again with the 1σ deviation for each detector response parameter

(applied one at a time), in what is described as one universe of simulation. The difference

in selected event distribution between the CV and 1σ sample for each parameter is taken

as a difference vector V⃗D,i j representing the 1σ uncertainty in event selection distribution

associated with the uncertainty in the i ’th detector response parameter for the j ’th universe.

This process is repeated N1 = 1000 times to capture the range of possible variations in V⃗D,i

resulting from the random processes in the event processing and reconstruction. The average

1σ deviation V⃗ nomi nal
D,i is computed by averaging the difference vectors across all simulated

universes:

V⃗ nomi nal
D,i = 1

N1

N1∑
j=1

V⃗D,i j (8.3)

Additionally, the uncertainty on V⃗ nomi nal
D,i is computed as the covariance matrix MR,i from

the difference vectors for each universe, V⃗D,i j , following the familiar covariance matrix

construction described in Eq. 8.2. Since V⃗ nomi nal
D,i describes the uncertainty on the overall

event selection from the i ’th detector response parameter, MR,i describes an uncertainty on

an uncertainty.

The overall covariance matrix is constructed from the both V⃗ nomi nal
D,i and MR,i in a way

that fully captures the detector response uncertainty. Again N2 = 1000 universes are used,

although these are separate from the universes discussed earlier. For each universe, an

overall difference vector V⃗ f i nal
D,i is constructed from V⃗ nomi nal

D,i as well as a deviation δV⃗D,i

representing the uncertainty in V⃗ nomi nal
D,i . The deviations are constructed from the n eigen-

vectors {⃗e1,i , ..., e⃗n,i } and eigenvalues {λ1,i , ...,λn,i } as well as n Gaussian distributed scalars

rk,i ∈ N (0,1) following:

δV⃗D,i =
n∑

k=1
rk,i

p
λk,i e⃗k,i (8.4)

138



8 ESTIMATION OF SYSTEMATIC UNCERTAINTIES

There is also an overall Gaussian distributed scalar r0,i ∈ N (0,1) that scales the entire differ-

ence vector to construct a sampled event distribution for the universe:

V⃗ f i nal
D,i = r0,i

(
V⃗ nomi nal

D,i +δV⃗D,i

)
(8.5)

After repeating the process of generating random numbers rk,i ∈ N (0,1)∀k ∈ [0,n] for each

of the N2 universes, the overall covariance matrix MD,i for the i ’th detector variation can be

constructed from the V⃗ f i nal
D,i of each universe following Eqn. 8.2 for constructing a covariance

matrix. Finally, the complete detector covariance matrix MD is simply the sum of covariance

matrices for each detector response effect considered.

8.4.2 Gaussian Processes Regression Smoothing

The procedure above is sufficient for analyses with a small number of bins, where the number

of events per bin under the bootstrapping procedure is not too small. However, in the case of a

triple-differential analysis there are enough bins, covering rare regions of the kinematic phase

space, that statistical fluctuations become extreme in the computation of MR,i . This leads

to over-estimation of the uncertainty on V⃗ nomi nal
D,i and ultimately on the total covariance

matrix MD . Therefore, to reduce the over-estimation of statistical fluctuations, a smoothing

technique is applied within the bootstrapping procedure to the computation of V⃗ nomi nal
D,i

and MR,i before MD,i is computed. Smoothing describes a class of algorithms that assert

an intuition of smoothness on a function, de-preferencing extreme variations in the con-

struction of a function to describe the data. In particular, Gaussian Processes Regression

(GPR) [152, 153, 154] smoothing is employed in this analysis, which has been used in physics

broadly [155], as well as in high energy physics in particular [156] [157] [158]. GPR assumes

measurement bins to be jointly Gaussian distributed with a particular covariance, and uses

Bayesian statistics to form a prediction based on the measured data. The GPR posterior

distribution takes the form of non-parametric curves that are able to describe the observed
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data. The mean posterior prediction from GPR smoothing is used as the as the smoothed

central value prediction, V̂ nomi nal
D,i , with a smoothing error estimate given by the covariance

of the posterior, M̂R,i . In this manner, GPR smoothing is able to take as input the simulated

estimates for the nominal difference vector V⃗ nomi nal
D,i and its uncertainty MR,i and reduce

the statistical fluctuations to form a posterior prediction that better describes the overall

detector covariance from the stated detector response parameter uncertainties. Smoothing

is performed on each detector response parameter separately; going forward the index over

parameters will be ignored.
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Figure 79: Correlation matrix of detector response uncertainties across reconstructed bins
after removing bins with zero predicted and measured value. Bins are arranged in the top-
down hierarchy of FC/PC, Eν slice, cos(θµ) slice, and finally Pµ slice.

GPR begins with an uninformed prior p (⃗xa) = N (µ⃗a ,ΣK ,aa) = N (⃗0a ,ΣK ,aa) over the set

of prediction points x⃗a , where µ⃗a represents the mean prediction at each point and ΣK ,aa

is a covariance matrix describing the correlations between prediction points based on a

kernel function K (xi , x j ). Note that since the prediction points are located in the 3D phase
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space {Eν,cos(θµ),Pµ}, each prediction point is itself a vector. The kernel function asserts

the intuition of smoothness by correlating nearby points highly, chosen to be a Radial Basis

Function (RBF) in this analysis:

ΣK ,aa,i j = K (⃗xi , x⃗ j ) = e−|(⃗xi−x⃗ j )·⃗s|2/2 (8.6)

where si = 1
Li

for characteristic length scales Li along each of the three kinematic dimensions.

Length scales are chosen based on measured detector resolutions to be 0.1 in cos(θµ), 20%

in Eν, and 20% in Pµ, where fractional length scales are achieved by taking the log of the

energy and momentum coordinates for use within GPR smoothing. This prior is then updated

through the use of the measurement y⃗ (⃗xb) = V⃗ nomi nal
D over measurement points x⃗b , although

in this analysis the prediction points and measurement points are the same, so x⃗a = x⃗b . The

measurement has uncertainty given by the covariance matrix Σy = MR , which is added to the

kernel function to form the total covariance matrix over the measurement points ΣT,bb :

ΣT,bb =Σy +ΣK (8.7)

Given the prior prediction and the measurement, a posterior prediction can be constructed:

p̂ (⃗xa |y⃗) = N (µ̂a|y , Σ̂T,aa|y )

µ̂a|y = µ⃗a +ΣK ,ab
(
ΣT,bb

)−1 (y⃗ − µ⃗b)

Σ̂T,aa|y =ΣK ,aa −ΣK ,ab
(
ΣT,bb

)−1
ΣK ,ba (8.8)

The posterior prediction CV µ̂a|y and covariance Σ̂T,aa|y are used in place of the originally

simulated values V⃗ nomi nal
D and MR . Because of GPR smoothing, statistical fluctuations

are controlled and become less impactful in MD , reducing the overall detector response

covariance from ∼100% to ∼50%. The detector response correlation matrix (after removing
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bins with zero data and prediction) is shown in Fig. 79.

Low Stats Low Stats w/ Smoothing High Stats

Pµ Bin Index Pµ Bin Index Pµ Bin Index

Figure 80: Diagonal covariance matrix elements for each uncertainty, stacked, over the 1D Pµ

distribution, with FC and PC sections separated. Detector response uncertainties are shown
in magenta, labeled as “Det." Left: low (∼ 10%) stats data set used. Middle: low stats data set
with GPR smoothing. Right: High stats data set used.

A test was performed over the 1D Pµ distribution to see whether GPR smoothing would re-

duce the detector response uncertainties beyond the point enabled by using a high-statistics

data set. The test was performed by comparing the detector response uncertainties from

a small data set containing only ∼ 10% of events before and after GPR smoothing with the

uncertainties under the full data set. By using a small data set, the conditions found in the

triple-differential analysis were roughly reproduced, and statistical fluctuations caused a

massive over-estimation of detector response uncertainties. After applying GPR smoothing

to V⃗ nomi nal
D and MR , the estimated uncertainties shrunk considerably, but notably not below

the values achieved through the high-stats data set, shown in Fig. 80. This outcome agreed

with the premise that GPR smoothing reduces statistical fluctuations without suppressing

physical uncertainties computed through the bootstrapping procedure.

8.5 Total Covariance Matrix

The overall correlation matrix over the reconstructed bins is shown in Fig. 81. The breakdown

of uncertainties (diagonal elements only) between the various statistical and systematic

components is shown in Fig. 82. The largest systematic is the detector response uncertainty,

comprising an average of ∼ 50% of the data values. This is followed by cross section and flux

uncertainties, at ∼ 20% and ∼ 5−15% over the energy range, respectively. Stats and MC stats
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Figure 81: Correlation matrix of overall uncertainties across reconstructed bins after removing
bins with zero predicted and measured value. Bins are arranged in the top-down hierarchy of
FC/PC, Eν slice, cos(θµ) slice, and finally Pµ slice.
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Figure 82: Breakdown of uncertainties (diagonal elements only) by source after removing
bins with zero predicted and measured value. Bins are arranged in the top-down hierarchy of
FC/PC, Eν slice, cos(θµ) slice, and finally Pµ slice.
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each contribute ∼ 20 uncertainties, and GEANT4, dirt, and number of target nuclei all have

minor contributions.
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9 Model Validation

Neutrino experiments rely on model predictions to convert event counts over reconstructed

variables into measurements on physically relevant quantities. Event selections fail to de-

tect some signal events, described by the selection efficiency, and incorrectly label some

background activity as signal, described by the selection purity. Furthermore, even within

correctly selected events, there can be biases that alter the distribution of reconstructed

events, such as an under-estimation of neutrino energy after failing to reconstruct all the

interaction activity. Reconstruction biases can lead to bin migration, such as to lower energy

bins in the previous example, as well as bin smearing resulting from poor variable resolution,

and even more complicated effects. If not properly corrected for, measured quantities will

not produce an accurate statement on physical quantities of interest, such as oscillation

parameters or cross sections.

There are two general ways to account for the range of biases introduced in producing an

event selection: forward folding and unfolding. Forward folding leaves the measurement in

terms of reconstructed variables and smears the model prediction over a truth distribution

by the estimated detector response, allowing a direct comparison with the measured data.

Note that here “detector response" includes all aspects of the experiment that separate a

measured event count from the underlying physical parameter of interest, including the flux

and cross section, unlike the more narrow “detector response" considered in Sec. 8.4. The

detector response mapping includes the effects discussed earlier, such as selection efficiency,

bin migration, and bin resolution, and can be described by the matrix equation:

M⃗ = R · S⃗ + B⃗ (9.1)

where M⃗ is the measured distribution over reconstructed bins, S⃗ is the predicted truth distri-

bution, R is the response matrix that maps from truth to reconstructed variables, and B⃗ is the
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predicted distribution of selected background events. Forward folding can be advantageous

when an analysis requires a coarse binning of reconstructed variables, either as a result of

low available statistics or poor measurement resolution, as it is easy to map fine-grain model

predictions into any reconstructed binning. Forward folding can also yield more powerful

model tests [159], however it has the downside of not producing a measurement over the

physically relevant truth variables.

In contrast with forward folding, unfolding accounts for selection biases by creating an

inverse mapping of the detector response, and computing the measured distribution in terms

of truth variables after undoing the detector response effects. This provides a result that

is more physically intuitive and relevant, and can be directly compared with other model

predictions or experimental measurements on the same physics. The details of unfolding

are more complicated than simply computing an inverse matrix to R, and will be discussed

in more detail in Sec. 10. However, no matter what unfolding procedure is used, the same

relation between reconstructed measurement M⃗ and truth distribution S⃗ given in Eqn. 9.1 is

present, and must be accounted for through the estimation of the detector response R . In both

forward folding and unfolding, this detector response is estimated through simulation, where

the underlying truth values generated in the simulation are compared with the reconstructed

event distribution. Therefore, no matter what type of analysis is being performed, it is

important that the model prediction is accurate.

In many cases, the model prediction can be directly tested. For example, model predic-

tions on muon kinematics can be directly compared to the observed distributions of muon

kinematics seen in data. Furthermore, muons are both easily reconstructed as a result of

their simple topology, and well understood from previous experiments and theory 5. These

advantages give confidence in the validation of the modeling of reconstructed muon kine-

matics. By comparison, quantities such as neutrino energy cannot be tested so directly and

thoroughly, and therefore their modeling must be considered very carefully in any analysis
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that relies heavily on it. The neutrino energy cannot be observed directly like the muon

energy, so it must be reconstructed from the final state particles following an interaction.

However, in many detectors, some of these particles escape detection, such as neutrons in

LArTPC detectors. To err on the side of caution, cross section analyses can avoid producing

measurements over neutrino energy, and instead focus on fully observable quantities such

as muon kinematics. However, oscillation analyses are afforded no such luxury as neutrino

oscillations depend explicitly on neutrino energy, motivating the measurement of neutrino

energy in cross section analyses (which serve to improve modeling in oscillation and other

other physics search analyses) whenever its modeling can be trusted. Finally, even cross

section analyses over observable variables rely on modeling to account for the biases of

selection efficiency and purity, meaning that accurate modeling remains a key consideration

of every analysis.

The goal of model validation is to ensure that the model and its uncertainties are capable

of describing the distribution in data. As has been discussed in Sec. 8, model predictions

cover an immense number of parameters, and even then they vastly over-simplify reality. As

such, the data in its totality can be thought of as a massively higher-dimensional distribution.

In practice, the data and MC prediction are always seen through reconstructed distributions

over a few dimensions at most. This represents a marginalization of the higher dimen-

sional distribution, where all non-present dimensions have been integrated over, hiding an

data/MC differences. As mentioned earlier, the existence of of invisible detector activity

further complicates attempts to validate model predictions in data.

Faced with these complications, many analyses use supplemental model predictions

to test the coverage of the analysis model prediction. By using different model predictions,

such as Neut [160], NuWro [161], and GiBUU [162], the complex phase space of possible

model predictions can be explored in a physically motivated manner (to the extent that

each model prediction is a reasonable description of the data). While the data distribution
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over the full higher-dimensional space cannot be directly tested, nor can invisible activity

in the detector, comparing model predictions can give a sense of the expected range of

variations possible in data. A common stance is to require the analysis model prediction

(including uncertainties) to cover the variation seen in other model predictions. Minerva

considers the unfolded measurement when separately unfolded using their latest analysis

model MnvTune-v3 (based on a modified version of Genie v2.8.4) and the earlier MnvTune-

v1.2, and takes the difference between unfolded measurements as an additional uncertainty

on the measurement [163, 164]. T2K unfolds a large number of fake data set generated from

different models, and requires that the unfolded fake data “measurements" agree with the

analysis prediction within half of the listed uncertainty. Both of these approaches ensure

that any data mis-modelings of the analysis model that are within the scope of the other

models considered would not bias the unfolded measurement beyond the listed uncertainties.

However, these methods leave open the question of whether the set of physicist-produced

models has sufficient variability to cover nature. Furthermore, in theory if a particular model

does not describe data well, an analysis model shouldn’t need to have enough uncertainty to

cover it.

9.1 The Wire-Cell Model Validation Procedure

Wire-Cell adds the to the field of model validation techniques by introducing a procedure

for data-driven validation [137] that allows for increased sensitivity to mis-modeling errors.

This is made possible through the wealth of information available in the LArTPC detector

and preserved through the Wire-Cell reconstruction, resulting in the non-zero efficiency

throughout the kinematic phase space 64 that allows for a complete data/MC comparison.

By directly evaluating model performance on data, this approach avoids having to determine

whether comparisons to alternate models provide sufficient and reasonable coverage. It is

possible that reality differs from the range of available model predictions, or that an alternate
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model CV prediction does not well describe reality, in which case any tension between the

analysis model and it should not give concern. Instead of relying on the accuracy of alternate

models, the Wire-Cell validation procedure is able to leverage simultaneous measurements

over different kinematic distributions to produce a stringent test of the capability to describe

the distribution seen in data.

The key insight leveraged is that model predictions over different reconstructed vari-

ables are correlated, allowing measurements over well-reconstructed variables such as muon

kinematics to narrow the model prediction over other distributions through the conditional

constraint procedure. This creates a more stringent model test that is more sensitive to

mis-modeling than the unfolded measurement, warning against unfolding in cases where

there is significant model error. Furthermore, the correlated predictions across reconstructed

variables can be simultaneously leveraged to construct a test that is sensitive to the mod-

eling of invisible detector activity, which will be discussed in further detail in the following

paragraphs. It is important to note that the conditional constraint procedure is only used to

produce updated model predictions for validation purposes; unfolded measurements are

performed with the default MicroBooNE model without applying any constraint.

The conditional constraint formalism uses a Bayesian approach to update the model pre-

diction based on the data measurement over a separate distribution, in a format very similar

to the GPR smoothing procedure used in Sec. 8.4.2. It starts by viewing the model prediction

as a joint distribution over multiple variables of interest {a,b, ...}, which is easily achieved

since the analysis arranges uncertainties using the covariance matrix formalism [141]:

p(a,b) = N


µa

µb

 ,

Σaa Σab

Σba Σbb


 (9.2)

The prior is taken to be the default model prediction, and a posterior distribution on a is
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computed following Bayes theorem for a given measurement yb :

p̂(a|yb) = N
(
µ̂a|yb , Σ̂aa|yb

)
µ̂a|yb =µa +Σab (Σbb)−1 (yb −µb)

Σ̂aa|yb =Σaa −Σab (Σbb)−1Σba (9.3)

From the posterior prediction, the updated model prediction on a can be tested through

a Pearson χ2 Goodness of Fit (GoF) test between measurement M = ya and prediction

P = p̂(a|yb):

χ2 = (M −P )T ×C−1 × (M −P ) (9.4)

where C represents the full covariance matrix. Note that while the Pearson construction is

more accurate for the GoF validation tests, the Combined Neyman-Pearson construction

gives smaller bias and is used in the unfolded measurement [165, 166]. Under the null

hypothesis, the model prediction is accurate, and the distribution in data should represent

a reasonable draw from the posterior. However, if the model prediction is insufficient to

describe the distribution in data, then a χ2/nd f > 1 and p-value< 0.05 will be observed,

rejecting the null hypothesis. Note that in the case of χ2/nd f << 1, strictly speaking the

data does not appear to be reasonable draw from the model; however, this is indicative of

an over-estimation of uncertainties in the model, which suggests a conservative unfolded

measurement but not significant bias from the model.

By applying the measurement on yb as a constraint, the updated prediction on a is re-

stricted, based on the correlated predictions over a and b, as shown in Fig. 83. Conceptually,

this can be thought of as restricting the model parameters to ranges that are consistent with

yb . For example, an overall rate abundance observed in yb may restrict the flux normalization

parameter to only allow higher values. In this way, the uncertainties in common between a

and b are significantly, reduced through the application of the constraint. While a straightfor-
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Figure 83: Illustration of conditional constraint procedure being used to update the model
prediction over a given the measurement of yb . The marginalised prior (posterior) prediction
over a is shown in red (blue).

ward model comparison may fail to detect model deficiencies, owing to the combination of

uncertainties across model components over the marginalized reco-space distribution, the

conditional constraint procedure allows uncertainties of interest to be somewhat isolated.

The resulting GoF test produces a focused evaluation of whether the remaining uncertainties

can adequately cover the distribution seen in data over the target variable(s).

To help demonstrate the capabilities of the constrained GoF test, a series of fake data

sets are used. In particular, the Genie v2.12.10 CV prediction is used to generate a set of

fake data that is statistically independent from the MicroBooNE model prediction using a

tuned version of Genie 3.0.6 (see Sec. 8.3). Since the Genie v2.12.10 CV prediction is known

to disagree with the MicroBooNE model (and also with data), we expect to find tension in

the GoF tests. Another fake data set is constructed from the MicroBooNE model prediction

with artificially lowered proton energy, mimicking the possibility that the division of transfer

energy ν between visible hadronic and missing energy is mis-modeled. In both cases, the

goal of the GoF test is to identify the known mis-modeling, even when the bias introduced is

not so severe as to exceed the listed uncertainties in the measurement. This is made possible
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through the reduced uncertainties and focused model prediction in the constrained GOF test,

allowing it to be more sensitive to mis-modeling than the unfolded data/MC χ2 comparison.

The performance of these fake data studies is discussed in more detail in Sec. 9.5.

9.2 Validation of the Modeling of Kinematic Event Distributions

MicroBooNE Internal Wire-Cell Xs Extraction

1µN p) is different between the FC and PC samples, the data has different behaviours in the946

forward muon angle bin with respect to the data.947

Figure 32: Comparison between data and prediction as a function of cosθr ec
µ (relative to Z/beam):

(left) all systematic uncertainties, (right) without detector systematic uncertainties. The statistical
uncertainties of the data and Monte Carlo are also included in the bands. For each plot, the first 20
bins correspond to the fully contained events covering from -1 to 1. The next 20 bins correspond to
the partially contained events covering from -1 to 1.

Figure 33 shows the comparison between data and prediction as a function of the recon-948

structed energy of the hadronic system E r ec
had . Left (right) panel is shown with fully systematic949

uncertainties (without detector systematics). The GoF in the case without detector system-950

atics is slightly above unity (p-value of 0.46) showing good agreement between data and951

model prediction. We should further note that the data of the lowest E r ec
had bin is above the952

prediction and outside the uncertainty band. This difference is consistent with the fact that953

data are systematically higher than the prediction at 1µ0p channel [1]. Since the E r ec
had is954

low for these events (1µ0p), it is natural to raise the question whether the model describe955

the missing energy because of neutrons or low-energy gammas well. Of course, if there is956

a problem with the modeling of the missing energy because of the neutrons or low-energy957

gammas, the impact would be more broad and not just limited to the low E r ec
had region. We958

will come back to this point in the next two sections and show the current model is sufficient959

in describing the observations in data.960
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Figure 30: Comparison between data and prediction as a function of E r ec
µ : (left) all systematic uncer-

tainties, (right) without detector systematic uncertainties. The statistical uncertainties of the data
and Monte Carlo are also included in the bands. For each plot, the first 14 bins with 100 MeV per
bin correspond to the fully contained events from 0.1 GeV to 1.5 GeV. The 15th bin is the overflow
bin corresponding to fully contained events above 1.6 GeV. The next 14 bins with 100 MeV per bin
correspond to the partially contained events from 0.1 GeV to 1.5 GeV. The last bin is the overflow bin
corresponding to the partially contained events above 1.5 GeV.
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Figure 84: Left: Comparison between measured and predicted distributions of selected
events over cos(θµ). FC events are shown in the first 20 bins on the left and PC events are
shown in the next 20 bins on the right. Right: Comparison between measured and predicted
distributions of selected events over Eµ. FC events are shown from 0.1GeV to 2.5GeV in the
first 15 bins (including overflow) on the left and PC events are shown in the next 15 bins on
the right. The data/MC ratios are shown below the overall event distribution.

In this section, each kinematic variable used is evaluated under a standard GoF test,

without applying the conditional constraint procedure. Later sections will investigate key

distributions featuring difficult modelings in more detail by employing the conditional con-

straint. In each GoF test, a χ2/nd f < 1 and corresponding p-value< 0.05. indicate that the

model is capable of describing the distribution seen in data. Fig. 84 shows the GoF tests over

cos(θµ) and Eµ, and Fig. 85 shows the GoF tests over Eν and E r eco
had . Since 1D distributions

probe a smaller section of phase space, the 2D distribution of {Pµ,cos(θµ)} is studied in

Fig. 86 to test the multi-variable phase space used in the triple-differential measurement. 3D
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Figure 34: Comparison between data and prediction as a function of E r ec
ν : (left) all systematic uncer-

tainties, (right) without detector systematic uncertainties. The statistical uncertainties of the data
and Monte Carlo are also included in the bands. For each plot, the first 25 bins with 100 MeV per
bin correspond to the fully contained events from 0 GeV to 2.5 GeV. The 26th bin is the overflow
bin corresponding to fully contained events above 2.5 GeV. The next 25 bins with 100 MeV per bin
correspond to the partially contained events from 0 GeV to 2.5 GeV. The last bin is the overflow bin
corresponding to the partially contained events above 2.5 GeV.

5.7 GoF of PC νµCC after constraints of FC νµCC972

For PC events, the reconstructed (neutrino, muon, hadronic) energy only takes into account973

the visible part of the system inside the active TPC volume. The conversion between the true974

energy and the reconstructed energy thus has stronger dependence on the overall model.975

Therefore, it is crucial to perform dedicated validations on this part. Since the missing976

energy (outside the active TPC volume) is invisible by definition, the validation can only977

be performed on the reconstructed energy. As shown in the previous section, the direct978

comparison of the PC distributions with the overall model yields good GoF values indicating979

consistent results. However, these tests include all sources of systematics, which may hide the980

potential discrepancies on the modeling of missing energy for the PC events. To validate the981

modeling of the missing energy for the PC events, we perform a more stringent test: calculate982

GoF of the PC νµCC distributions after constraining the FC νµCC distributions following the983

method outlined in Eq. 36. In this case, the common systematic uncertainties to the PC and984

FC channels are largely cancelled, and a more stringent validation on the modeling of missing985

energy of PC events can be achieved.986

Figure 35 shows the comparison between data and prediction as a function of E r ec
µ for987
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Figure 33: Comparison between data and prediction as a function of E r ec
had : (left) all systematic

uncertainties, (right) without detector systematic uncertainties. The statistical uncertainties of the
data and Monte Carlo are also included in the bands. For each plot, the first 15 bins with 100 MeV
per bin correspond to the fully contained events from 0 GeV to 1.5 GeV. The 16th bin is the overflow
bin corresponding to fully contained events above 1.5 GeV. The next 15 bins with 100 MeV per bin
correspond to the partially contained events from 0 GeV to 1.5 GeV. The last bin is the overflow bin
corresponding to the partially contained events above 1.5 GeV.

Figure 34 shows the comparison between data and prediction as a function of the recon-961

structed neutrino energy E r ec
ν . Left (right) panel is shown with fully systematic uncertainties962

(without detector systematics). The GoF in both cases showing good agreement between data963

and model prediction. As shown in Ref. [1], the slope in the ratio between data and simulation,964

is the result of data enhancement in the 1µ0p channel and the fact that percentage of 1µ0p965

events is reduced with the increase of the E r ec
ν .966

The plots shown in this section cover the essential kinematics variables to reconstruct967

the neutrino energy and the primary muon angle. These comparisons indicate that the968

model with its associated uncertainties can describe the observations in the data well. More969

validation plots can be found in Ref. [1]. In next two sections, we will use the conditional970

covariance matrix method to perform more stringent examinations of the model.971
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Figure 85: Left: Comparison between measured and predicted distributions of selected events
over Eν. FC events are shown from 0GeV to 4GeV in the first 26 bins (including overflow) on
the left and PC events are shown in the next 26 bins on the right. Right: Comparison between
measured and predicted distributions of selected events over Ehad . FC events are shown
from 0GeV to 2.5GeV in the first 16 bins (including overflow) on the left and PC events are
shown in the next 16 bins on the right. The data/MC ratios are shown below the overall event
distribution.
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Figure 86: Comparison between measured and predicted distributions of selected FC (left)
and PC (right) events over Pµ within each cos(θµ) slice. The particularly large uncertainty in
a few bins is because of very low statistics.
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distributions are not used as they are over-constrained through the conditional constraint

procedure given that the underlying kinematics are largely defined by three degrees of free-

dom. In the upcoming sections, 2D distributions under constraint will be studied, providing

more sensitive tests of the model than a simple 3D distribution could.

9.3 Validation of the Modeling of Partially Contained Event Reconstruc-

tion

MicroBooNE Internal Wire-Cell Xs Extraction

FC sample.1005

Figure 36: Comparison between data and prediction as a function of reconstructed muon angle
cosθr ec

µ (relative to Z/beam): (left) all systematic uncertainties, (right) without detector systematic
uncertainties. The red (blue) lines and bands show the prediction without (with) the constraints from
the fully contained event sample. The statistical uncertainties of the data and Monte Carlo are also
included in the bands. For each plot, the 20 bins covers from -1 to 1.

Figure 37: Comparison between data and prediction as a function of the E r ec
had : (left) all systematic

uncertainties, (right) without detector systematic uncertainties. The red (blue) lines and bands show
the prediction without (with) the constraints from the fully contained event sample. The statistical
uncertainties of the data and Monte Carlo are also included in the bands. For each plot, the first 15
bins correspond to 0 GeV to 1.5 GeV. The last bin correspond to overflow bin above 1.5 GeV.
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the PC events. After applying the constraints from the FC sample in E r ec
µ , the uncertainties988

of the prediction are significantly reduced. Nevertheless, the GoF values are still reasonable989

indicating the model describe the difference between FC and PC events very well.990

Figure 36 shows the comparison between data and prediction as a function of cosθr ec
µ for991

the PC events. After applying the constraints from the FC sample in cosθr ec
µ , the uncertainties992

of the prediction are significantly reduced. Nevertheless, the GoF values (e.g. GoF = 28.30/20993

with a p-value of 0.10) are still reasonable indicating the model describe the difference994

between FC and PC events well. We should note at the most forward muon angle, the995

prediction after constraints is enhanced, which slightly increase the difference between data996

and prediction. This change is the result of the fact that the data is higher than prediction in997

this bin for the FC events.998

Figure 35: Comparison between data and prediction as a function of E r ec
µ for the partially contained

events: (left) all systematic uncertainties, (right) without detector systematic uncertainties. The red
(blue) lines and bands show the prediction without (with) the constraints from the fully contained
event sample. The statistical uncertainties of the data and Monte Carlo are also included in the bands.
For each plot, the first 14 bins for 100 MeV per bin covers from 0.1 GeV to 1.5 GeV. The last bin is the
overflow bin for events above 15 GeV.

Figure 37 shows the comparison between data and prediction as a function of E r ec
had for999

the PC events. After applying the constraints from the FC sample in E r ec
had , the uncertainties1000

of the prediction are significantly reduced. Nevertheless, the GoF values are still reasonable1001

indicating the model describe the difference between FC and PC events very well. In particu-1002

lar, we should note the prediction at the lowest bin of E r ec
had is enhanced after applying the1003

constraints from the FC sample. This is expected since a similar behaviour is observed in the1004
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Figure 87: Left: Comparison between measured and predicted distributions of selected PC
events over cos(θµ) before (red) and after (blue) applying the measured FC distribution as a
constraint. Right: Comparison between measured and predicted distributions of selected
PC events over Eµ before (red) and after (blue) applying the measured FC distribution as a
constraint. The data/MC ratios are shown below the overall event distribution.

PC events include activity outside the FV, making them a situation where invisible energy

must be accounted for through modeling. This is particularly the case for muons, whose long

tracks can extend a significant distance outside the detector volume. As mentioned earlier,

1D and 2D marginalizations of higher-dimensional distributions can hide mis-modeling

through the collapse of various systematic uncertainties, many not related to the modeling of

particle energies in PC events. Therefore, the (well understood) FC event distribution is used
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Figure 38 shows the comparison between data and prediction as a function of E r ec
ν for1006

the PC events. After applying the constraints from the FC sample in E r ec
ν , the uncertainties1007

of the prediction are significantly reduced. Nevertheless, the GoF values are still reasonable1008

indicating the model describe the difference between FC and PC events very well.1009

Figure 38: Comparison between data and prediction as a function of E r ec
ν : (left) all systematic un-

certainties, (right) without detector systematic uncertainties. The red (blue) lines and bands show
the prediction without (with) the constraints from the fully contained event sample. The statistical
uncertainties of the data and Monte Carlo are also included in the bands. For each plot, the first 25
bins with 100 MeV per bin correspond to the fully contained events from 0 GeV to 2.5 GeV. The 26th
bin is the overflow bin corresponding to fully contained events above 2.5 GeV. The next 25 bins with
100 MeV per bin correspond to the partially contained events from 0 GeV to 2.5 GeV. The last bin is the
overflow bin corresponding to the partially contained events above 2.5 GeV.

With results shown in this section, we demonstrate that the model with its associated1010

uncertainties can describe the difference between the PC and FC events (i.e. the missing1011

energy that are outside the TPC active volume) well.1012

5.8 GoF of Ehad after constraints muon kinematics for νµCC1013

1014

Similar to the situation of PC events, the reconstructed energy of the hadronic system1015

E r ec
had cannot be directly mapped to the energy transfer to the Argon system, since some of1016

the energy going into the neutron and low-energy gamma might be missing. In this case, the1017

map of the E r ec
had to the energy transfer would rely on the overall model, particularly the cross1018

section model. To validate the modeling of the these missing energies of the neutrons and low-1019
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FC sample.1005

Figure 36: Comparison between data and prediction as a function of reconstructed muon angle
cosθr ec

µ (relative to Z/beam): (left) all systematic uncertainties, (right) without detector systematic
uncertainties. The red (blue) lines and bands show the prediction without (with) the constraints from
the fully contained event sample. The statistical uncertainties of the data and Monte Carlo are also
included in the bands. For each plot, the 20 bins covers from -1 to 1.

Figure 37: Comparison between data and prediction as a function of the E r ec
had : (left) all systematic

uncertainties, (right) without detector systematic uncertainties. The red (blue) lines and bands show
the prediction without (with) the constraints from the fully contained event sample. The statistical
uncertainties of the data and Monte Carlo are also included in the bands. For each plot, the first 15
bins correspond to 0 GeV to 1.5 GeV. The last bin correspond to overflow bin above 1.5 GeV.
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Figure 88: Left: Comparison between measured and predicted distributions of selected
PC events over Eν before (red) and after (blue) applying the measured FC distribution as a
constraint. Right: Comparison between measured and predicted distributions of selected
PC events over Ehad before (red) and after (blue) applying the measured FC distribution as a
constraint. The data/MC ratios are shown below the overall event distribution.

as a constraint on the model prediction of the PC event distribution to validate the mapping

between truth and reconstructed PC event kinematics.

Fig. 87 shows the GoF tests over cos(θµ) and Eµ for PC events, with the respective FC

event distributions used as a constraint. Fig. 88 shows the GoF tests over Eν and E r eco
had for PC

events, with the respective FC event distributions used as a constraint. The red bands show

the uncertainties before constraint, and the blue bands show the updated model prediction

and uncertainties after constraint. Fig. 89 shows the Gof test over the 2D distribution of

{Pµ,cos(θµ)} for PC events, with the FC event distribution used as a constraint. In each case,

the model uncertainty is significantly reduced by the constraint, but the model prediction CV

is also updated to a more accurate distribution, allowing the constrained model prediction

to still cover the distribution in data. If there was significant mis-modeling in the PC events

not seen in FC events, then applying the FC selection as a constraint would not improve the

model prediction CV, causing the constrained GoF test χ2/nd f to increase significantly. This

was not seen in the data, and instead each GoF test shows good data/MC agreement even
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Figure 89: Comparison between measured and predicted distributions of selected PC events
over Pµ within each cos(θµ) slice before (red) and after (blue) applying the measurement of
the distribution of FC events over {Pµ,cos(θµ)}. The particularly large uncertainty in a few
bins is because of very low statistics.

after applying the constraint.

9.4 Validation of the Modeling of Transfer Energy

The modeling of the energy transferred to the argon system, ν, is critically important to

neutrino experiments. As has been discussed already in Sec. 2.1 and Sec. 9, accurate neutrino

energy reconstruction is important for both oscillation analyses and cross section analyses,
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and the transfer energy represents one of two components in the neutrino energy: Eν = Eµ+ν.

Furthermore, ν includes energy carried away in non-ionizing particles such as neutrons and

low-energy photons, making it a primary source of invisible activity in LArTPC detectors.

This is described by separating the transfer energy into visible and missing components: ν =

E vi s
had +E mi ssi ng

had , where the reconstructed quantity E r eco
had serves as an estimate of E vi s

had , up to

inaccuracies in the reconstruction and event selection. Therefore, the mapping from E r eco
had to

ν and ultimately to Eν relies on accurate modeling, and in particular cross section modeling.

Reliable model validation is necessary for unfolding to Eν, or else mis-modelings in the the

prediction of ν may introduce significant bias into the unfolded measurement.

While E mi ssi ng
had cannot be directly measured, the GoF test on the distribution of E r eco

had

using the measurement of Eµ as a constraint is sensitive to the modeling of E mi ssi ng
had , because

of the correlated predictions of muon kinematics and hadronic energy. There are two intuitive

arguments to help see this fact. First is the argument of conservation of energy: Eν = Eµ+

ν= Eµ+E vi s
had +E mi ssi ng

had . The constrained GoF test directly leverages measurements of Eµ

(through Pµ) and E vi s
had (through E r eco

had ). Furthermore, the accurate measurement of the

distribution over Eµ creates a constraint on the flux modeling parameters, and therefore on

the Eν prediction. This leaves E mi ssi ng
had = Eν−Eµ−E vi s

had as the only unknown to be solved for,

making the constrained GoF test sensitive to it through the simultaneous measurements of

the distributions over Pµ and E r eco
had .

Another way to view the sensitivity to the modeling of missing energy is to consider

the underlying interaction channels that comprise the model prediction, and how they are

updated through the application of the constraint. Model predictions over Pµ, E r eco
had , ...

are comprised of predictions on the QE, RES, MEC, and DIS interactions, each withe their

own distribution over each kinematic variable. By using the measured muon kinematic

distribution as a constraint, the model predictions on the interaction channels are updated

akin to a constrained re-weighting. Then, the updated QE, RES, MEC, and DIS predictions
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energy gammas, a similar strategy using the conditional covariance matrix formalism can be1020

used. We examine the E r ec
had distribution after constraining the muon kinematics. In particular,1021

we consider two one-dimensional muon kinematics: E r ec
µ and θr ec

µ . For this examination,1022

we use the boostrapping method to estimate the correlated statistical uncertainties (see1023

discussions in Sec. 5.5).1024

Figure 39 shows the comparison between data and prediction as a function of E r ec
had for1025

both FC and PC events. After applying the constraints from the E r ec
µ distribution, the uncer-1026

tainties of the prediction are significantly reduced. Nevertheless, the GoF values improves1027

indicating that the model describes the relation between E r ec
had and E r ec

µ very well. In particu-1028

lar, we note the prediction at the lowest bin of E r ec
had is enhanced after applying the constraints1029

from the E r ec
µ distribution. In another word, the differences between data and prediction1030

in the E r ec
had distributions are significantly reduced, once the difference between data and1031

prediction in the E r ec
µ distributions are eliminated within the allowed range of the model1032

predictions.1033

Figure 39: Comparison between data and prediction as a function of E r ec
had : (left) all systematic

uncertainties, (right) without detector systematic uncertainties. The red (blue) lines and bands show
the prediction without (with) the constraints from the distributions as a function of E r ec

µ . The statistical
uncertainties of the data and Monte Carlo are also included in the bands. For each plot, the first 15
bins with 100 MeV per bin correspond to the fully contained events from 0 GeV to 1.5 GeV. The 16th
bin is the overflow bin corresponding to fully contained events above 1.5 GeV. The next 15 bins with
100 MeV per bin correspond to the partially contained events from 0 GeV to 1.5 GeV. The last bin is the
overflow bin corresponding to the partially contained events above 1.5 GeV.

To further examine the E r ec
had distributions, we apply the constraints from the distribu-1034

tions of reconstructed muon angle. First, Fig. 40 shows the comparison between data and1035

Page 61 of 122

Figure 90: Comparison between measured and predicted distributions of selected events
over E r eco

had before (red) and after (blue) applying the measured Eµ distribution as a constraint.
FC events are shown from 0GeV to 2.5GeV in the first 16 bins (including overflow) on the
left and PC events are shown in the next 16 bins on the right. The data/MC ratios are shown
below the overall event distribution.

create new predictions over E r eco
had and E mi ssi ng

had . If there is mis-modeling in E mi ssi ng
had , then

there should also be mis-modeling in E r eco
had that the GoF test is sensitive to because of the

underlying physics in common. As a result, the constrained GoF test is capable of validating

the modeling of correlations between muon kinematics and hadronic energy, and is sensitive

to the modeling of missing energy.

Fig. 90 shows the GoF test over E r eco
had , using the measurement of the distribution over

Eµ as a constraint. Fig. 91 shows the GoF test over {E r eco
had ,cos(θµ)}, using the measurement

of the distribution over {Pµ,cos(θµ)} as a constraint. In each case, the constrained χ2 re-

mains roughly constant despite the significant reduction in uncertainties, demonstrating

the accurate modeling of correlations between the constraint and target distributions. The
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Figure 91: Comparison between measured and predicted distributions of selected FC (left)
and PC (right) events over E r eco

had within each cos(θµ) slice. The model prediction before (after)
applying the measurement of the distribution over {Pµ,cos(θµ)} is shown in red (blue).

successful constrained GoF tests over E r eco
had give confidence in the mapping from E r eco

had to

ν, and therefore the modeling of Eν within uncertainties. Any bias from mis-modeling of

ν introduced through unfolding should be within the listed uncertainties of the unfolded

measurement.

9.5 Examining the Goodness of Fit Test with Fake Data

The modeling of ν discussed in Sec. 9.4 takes the focus of these fake data studies, as it is

the largest source of invisible activity, and most prone to mis-modeling. Fake data allows

the reasoning presented in the previous sections to be tested by creating conditions where

we may expect model failure and observing how the GoF tests perform. Specifically, the

constrained GoF tests should be more stringent than the overall unfolded measurement,

meaning that it should be possible to demonstrate a GoF test that detects mis-modeling even

when the bias introduced in the unfolded measurement is within uncertainty. This level of

forewarning gives significant confidence to the unfolding and overall measurement, seeing as
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the GoF tests serve as the canary in the coal mine - detecting problems before the disastrously

harm the overall measurement.

MicroBooNE Internal Wire-Cell Xs Extraction

Figure 87: Comparison between data and prediction as a function of E r ec
had : all systematic uncertainties.

The red (blue) lines and bands show the prediction without (with) the constraints from the recon-
structed muon energy E r ec

µ and angle cosθr ec
µ . The statistical uncertainties of the data and Monte

Carlo are also included in the bands. For each plot, the first 15 bins with 100 MeV per bin correspond
to the fully contained events from 0 GeV to 1.5 GeV. The 16th bin is the overflow bin corresponding
to fully contained events above 1.5 GeV. The next 15 bins with 100 MeV per bin correspond to the
partially contained events from 0 GeV to 1.5 GeV. The last bin is the overflow bin corresponding to the
partially contained events above 1.5 GeV.

Although we have shown that fake data set 5 is not consistent with our current model1384

with its uncertainties, we went ahead to extract the total cross section as function of neutrino1385

energy. The left panel of Fig. 88 shows the extracted total cross section per argon nuclei1386

as a function of neutrino energy. The right panel of Fig. 88 shows the extracted total cross1387

section per nucleon after normalizing by the neutrino energy. The truth total cross section of1388

the fake data set 5 is the "GENIE v2". For each of the extracted total cross section, they are1389

consistent with the truth information within 1-σ. The overall goodness-of-fit value, which1390

considers the full correlations of the uncertainties, gives the smallest goodness-of-fit value1391

χ2/N DF = 5.7/10 (i.e. p-value of 0.84) among three models.1392
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had (MeV)

Figure 92: Comparison between measured and predicted distributions of selected events
over E r eco

had before (red) and after (blue) applying the measured {Eµ,cos(θµ)} distribution as a
constraint. FC events are shown from 0GeV to 2.5GeV in the first 16 bins (including overflow)
on the left and PC events are shown in the next 16 bins on the right. The data/MC ratios are
shown below the overall event distribution. Source: [167]

The first fake data set, consisting of 7.2×1020 POT, is generated using Genie v2.12.10,

which is known to disagree with the MicroBooNE model based on Genie v3.0.6 [167]. Note

that as an entirely separate set of MC events, this fake data set is fully statistically independent

from the MicroBooNE model. Fig. 92 shows the comparison between measured and predicted

distributions of events over E r eco
had both before and after applying the measurement of the

distribution of events over {Eµ,cos(θµ)} as a constraint. The unconstrained model prediction
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9 MODEL VALIDATION

is unable to detect mis-modeling, owing to the fact that it is a 1D marginalization of higher-

dimensional distribution. However, after applying the constraint, the tension between fake

data and MicroBooNE model prediction grows significantly, rising to χ2/nd f = 16.9/32 with

a corresponding p-value of 1.338×10−11. This demonstrates the increased sensitivity of the

constrained GoF test, which only becomes apparent in situations with significant tension

between measurement and prediction.

MicroBooNE Internal Wire-Cell Xs Extraction

Figure 88: Extracted total cross sections as a function of neutrino energy are shown. (Left) total
cross section per argon nuclei, (Right) total cross section per nucleon after normalizing the neutrino
energy. Three model predictions including GENIE v2, GENIE v3, and µB Tuned (nominal Monte Carlo
simulation) are shown. The goodness-of-fit χ2/N DF for each model is shown. As expected, the GoF
value for the GENIE v2, which is the truth of the fake data set 5, is the smallest.

We should note that only Xs model is changed in fake data set 5. In another word, the1393

neutrino flux, detector systematics are not varied. Therefore, it is better to perform the Xs1394

extraction excluding the systematic uncertainties from neutrino flux, GEANT4, and detector1395

performance. Figure 89 shows the extracted total cross section as a function of neutrino1396

energy by only consider cross section systematic uncertainties in addition to the MC statistics1397

and data statistical uncertainties. Compared the results shown in Fig. 88, the uncertainties1398

of the unfolded cross section become much smaller. Compared to the truth information,1399

many of the points are beyond 1σ error band. However, given the unfolded cross section1400

is highly correlated, a more accurate measure of the data/model comparison is the the1401

overall goodness-of-fit χ2/N DF . For the truth, the GoF yields χ2/N DF = 11/10, which gives1402

a p-value of 0.36, indicating the unfolded cross section results are consistent with the truth1403

information.1404
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Figure 89: Extracted total cross sections as a function of neutrino energy are shown. Only the Xs sys-
tematic uncertainties are considered in addition to the MC statistics and data statistical uncertainties.
(Left) total cross section per argon nuclei, (Right) total cross section per nucleon after normalizing
the neutrino energy. Three model predictions including GENIE v2, GENIE v3, and µB Tuned (nomi-
nal Monte Carlo simulation) are shown. The goodness-of-fit χ2/N DF for each model is shown. As
expected, the GoF value for the GENIE v2, which is the truth of the fake data set 5, is the smallest.

A comment can be made based on the results of fake data set 5. While the extracted total1405

cross sections are consistent with the truth information, the fake data set 5 is shown to be not1406

consistent with the overall model. The validation of the neutrino energy reconstruction using1407

the conditional covariance method (particularly examining the data/MC comparison of E r ec
had1408

after applying the constraints on muon kinematics) is much more stringent than the total1409

cross section unfolding procedure. The exercise of fake data set 5 has confirmed the validity1410

of our cross section extraction procedure.1411

F.2 Fake data with GENIE v3 model1412

Another fake dataset of GENIE v3 model is constructed with the standard MCC9 overlay1413

sample, in which the additional event weights of uBtune are removed. As shown in Fig. 90,1414

the extracted cross section agree with the underlying true model (GENIE v3) with small1415

χ2/dof. It is worth noting that the statistical fluctuation in this fake data is small as it is not1416

independently generated. Also, the underlying interaction physics is the same for the uBTune1417

and GENIE v3 model, resulting in similar efficiency. Therefore, the small χ2/dof is expected.1418
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Figure 93: Extracted total cross section as a function of Eν, using Genie v2.12.10 as fake data.
Left: Unfolded with the full covariance matrix. Right: Unfolded with only cross section, stat,
and MC stat uncertainties for a more accurate comparison, given that the fake data only
deviates in the cross section modeling. Three model predictions, including GENIE v2, GENIE
v3 default tune, and Genie v3 MicroBooNE-tune, are shown. Source: [167]

The results of the GoF test would warn against unfolding in the case of real data; however,

we can proceed with unfolding to judge the level of bias introduced by the mis-modeling

that was detected. Fig. 93 shows the unfolded total cross section measurement as a function

of neutrino energy, considered separately when unfolded using the full covariance matrix

and a modified version with only cross section and statistical uncertainties. Since the model

differences between the fake data and the MicroBooNE model are limited to the cross section

prediction (and not, say, flux), the limited covariance matrix gives a more accurate compari-

son. In both cases the bias introduced is not nearly as large as the disagreement detected in

the GoF test, with χ2/nd f s of 5.7/10 and 11/10 for the full and limited covariance matrices,
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9 MODEL VALIDATION

Table 4: χ2 and p-value of constrained E r eco
had GoF test using proton-energy-scaled fake data.

Only stats, MC stats, and cross section uncertainties were used. Source: [167]

E r eco
p Scaling Factor χ2(nd f = 32) p-value

0.95 5.34 1.0

0.9 21.05 0.93

0.85 47.01 0.04

0.8 80.6 0.00

and p-values of 0.84 and 0.36 respectively. This fake data study exemplifies the capability

of the constrained GoF test to detect mis-modeling with more sensitivity than the unfolded

measurement.

MicroBooNE Internal Wire-Cell Xs Extraction

check has detected that a 15% of the energy shift in the proton energy is outside the allowed1462

region of cross section systematic uncertainties, we again confirmed the earlier conclusion1463

that the validation of the neutrino energy reconstruction using the conditional covariance1464

method (particularly examining the data/MC comparison of E r ec
had after applying the con-1465

straints on muon kinematics) is much more stringent than the total cross section unfolding1466

procedure.1467

Figure 94: Extracted total cross sections as a function of neutrino energy are shown. Proton energies
are scaled by 0.85. Full systematic uncertainties are considered. (Left) total cross section per argon
nuclei, (Right) total cross section per nucleon after normalizing the neutrino energy. Three model
predictions including GENIE v2, GENIE v3, and µB Tuned (nominal Monte Carlo simulation) are
shown. The goodness-of-fit χ2/N DF for each model is shown.

Figure 95: Extracted total cross sections as a function of neutrino energy are shown. Proton energies
are scaled by 0.85. Only cross section systematic uncertainties are considered. (Left) total cross section
per argon nuclei, (Right) total cross section per nucleon after normalizing the neutrino energy. Three
model predictions including GENIE v2, GENIE v3, and µB Tuned (nominal Monte Carlo simulation)
are shown. The goodness-of-fit χ2/N DF for each model is shown.
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Figure 94: Extracted total cross section as a function of Eν, using the MicroBooNE MC with
85% proton energy scaling as fake data. The measurement was unfolded with only cross
section, stat, and MC stat uncertainties for a more accurate comparison, given that the fake
data only deviates in the cross section modeling. Three model predictions, including GENIE
v2, GENIE v3 default tune, and Genie v3 MicroBooNE-tune, are shown. Source: [167]

An additional fake data set is constructed to specifically test the hypothesis of mis-
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9 MODEL VALIDATION

modeling the division of transfer energy between visible and missing components. This

data set is generated by taking the MicroBooNE model MC and scaling down the recon-

structed proton energy in each interaction, simulating a case where the lost energy was

transferred away in neutrons. Proton energies were scaled down by 5%, 10%, 15%, and 20%,

and GoF tests performed in each case, using only statistical and cross section uncertainties.

The results of each GoF test is shown in Table 4. At 15% proton energy loss the GoF test is able

to detect the mis-modeling with χ2/nd f = 47.01/32 and a p-value of 0.04. In this scenario

the cross section measurement was extracted, shown in Fig. 94. A χ2/nd f = 4.1/10 with the

MicroBooNE model prediction indicates a low amount of bias introduced, demonstrating

that the model validation procedure is able to detect mis-modeling in the transfer energy

before it significantly biases the extracted measurement.

Since this data set is generated from the MicroBooNE MC events, they are not statistically

independent. In theory, the extracted cross section should be unfolded without statistical

uncertainties. However, this presents a practical in-feasibility, as the statistical uncertainties

give the covariance matrix diagonal terms that allow a pseudo-inverse to be computed. Still,

the MC data set is large, at roughly 10 times the size of the real data, so statistical fluctuations

are small. Given these circumstances, the cross section is extracted using statistical and cross

section uncertainties only, which is a reasonable approximation of cross section statistics

only. Furthermore, the GoF test is constructed from statistical and cross section uncertainties,

so if all statistical uncertainties were removed for a fully faithful treatment, both the extracted

cross section bias and the model validation tension would grow, preserving the status-quo

where the model validation is a more stringent test of mis-modeling.
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10 UNFOLDING PROCEDURE

10 Unfolding Procedure

As discussed in Sec. 9, unfolding is the process of solving for an underlying signal distribution

s given a measurement m, background prediction b, and detector response r that smears the

signal distribution, presented in Eqn. 9.1. For convenience, here the background-subtracted

measurement m′ = m −b will be used to construct the master equation for unfolding:

m′ = r · s (10.1)

10.1 Unfolding without Regularization

The naive approach to unfolding is to simply solve for S by computing the pseudo-inverse

of R and applying it to each side. Accounting for the uncertainty on M ′ in the form of the

covariance matrix Cov , this is performed by minimizing the test statistic χ2
0 describing the

difference between background-subtracted measurement and smeared response:

χ2
0 = (m′− r · s)T Cov−1(m′− r · s) (10.2)

Through Cholesky decomposition [168], the covariance matrix can be decomposed into

triangular matrices and used to pre-scale the measurement and response matrix:

Cov−1 =QT ·Q

M ′ =Q ·m′

R =Q · r (10.3)

This leads to the simplified form of the test statistic:

χ2
0 = (M ′−R · s)T (M ′−R · s)
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=
∑

i

(
M ′

i −
∑

j
Ri j s j

)2

(10.4)

with solution ŝ given by:

ŝ = (
RT R

)−1
RT ·M ′ (10.5)

This solution can be simplified by considering the Singular Value Decomposition (SVD) of R :

R =U ·D ·V T (10.6)

which expresses R in terms of orthogonal matrices U and V that satisfy UU T = U T U = I

and V V T = V T V = I , as well as the diagonal matrix D composed of the singular values di

arranged in descending order. The simplified solution for ŝ becomes:

ŝ =V ·D−1 ·U T ·M ′

=V ·D−1 · ·M ′
U (10.7)

where M ′
U =U T M ′ represents the background-subtracted measurement in the singular-value

basis.

This naive solution is prone to instability resulting from measurement noise. This can

be shown by expressing M ′ as a combination of the true underlying signal str ue and the

measurement noise N :

M ′ = R · str ue +N

M ′
U = RU · str ue +NU

ŝ =V ·D−1 · (RU · str ue +NU ) (10.8)

where RU = U T R and NU = U T N are the transformed response matrix and noise in the
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10 UNFOLDING PROCEDURE

singular-value basis, respectively. Notably, the noise terms are uncorrelated and all Gaussian

distributed following N (⃗0, I ) (in the pre-scaled coordinate system), so after re-ordering by the

orthogonal matrix U T the noise terms are left unchanged. The least impactful eigenvectors in

the SVD basis have correspondingly small singular values di , which causes the corresponding

elements 1/di in D−1 to be very large. Normally, the corresponding smeared signal elements

will be very small to counteract the influence of large elements of D−1, however, the presence

of noise allows for large fluctuations in the extracted signal.

10.2 Wiener SVD Unfolding

Typically this instability can be addressed through the use of regularization, which suppresses

fluctuations through the inclusion of a penalty term λ in the χ2 that constrains the extracted

signal distribution:

χ2 =χ2
0 +λ (10.9)

Often the smoothness of the signal distribution is asserted by constructing the penalty term

from a derivative (1st, 2nd, 3rd, ...) of ŝ. The inclusion of a regularization term in the test

statistic smears the extracted signal distribution, described through the additional smearing

matrix A:

A =V ·F ·V T (10.10)

ŝ = A ·V ·D−1 ·M ′
U

=V ·F ·D−1 ·M ′
U (10.11)

for some matrix F in the SVD basis.

The goal of regularization is to suppress the eigenvectors in SVD that contain high noise

relative to the signal while leaving signal-dominant modes undisturbed. The Wiener Fil-

ter [169, 104], used earlier in Sec. 5.1.2, is designed to do just this, by suppressing eigenvectors
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10 UNFOLDING PROCEDURE

based on their signal-to-noise ratio. By substituting the expectation value of the unknown

true signal distribution s tr ue with the expectation value of the extracted signal distribution s

and using Eqn. 10.6, the terms of the Wiener filter can be computed for each SVD bin i :

R2
U · s2 = D ·V T · s2 = d 2

i

(∑
j

V T
i j · s j

)2

N 2 = 1 (10.12)

The Wiener filter is constructed as:

Wi k =
R2

U · s2

R2
U · s2 +N 2

=
d 2

i ·
(∑

j V T
i j · s j

)2

d 2
i ·

(∑
j V T

i j · s j

)2
+1

(10.13)

This matrix takes the place of F in determining the regularization and subsequent additional

smearing A.

To better apply the intuitive goal of smoothness, the Wiener filter can be modified to

regularize the curvature of the spectrum rather than simply the strength. This is achieved by

introducing the matrix C , commonly taken to be C1 or C2, which take the first and second

derivative respectively, into the definitions of RU and s:

RU · s = (RU ·C−1) · (C · s) (10.14)

In this triple-differential analysis, C3 representing the third derivative is chosen as it intro-

duces the least bias into the extracted distribution. This is because most slices of the data

form the shape of a downward parabola, representing a significant second derivative. Ap-

plying a penalty term based on the first or second derivative would then attempt to flatten

the distribution in a consistently biased manner. However, the general first-order shape of

the data presents no significant third derivative, reducing the shape bias introduced As will
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10 UNFOLDING PROCEDURE

be discussed in more detail shortly, it is worth noting that no matter what regularization

is chosen within the Wiener SVD method, so long as the additional smearing matrix AC is

computed the bias introduced is known, and can be applied to any model comparison to

account for its effect, akin to forward folding.

By redefining the response matrix, the SVD decomposition basis is changed, adjusting

the computation of the extracted signal, additional smearing matrix, and Wiener filter:

R ·C−1 =UC ·DC ·V T
C (10.15)

ŝ = AC · (RT R)−1 ·R ·MU (10.16)

AC =C−1 ·VC ·W ·V T
C ·C (10.17)

Wi k =
d 2

Ci ·
(∑

j V T
Ci j ·

(∑
l C j l · sl

))2

d 2
Ci ·

(∑
j V T

Ci j ·
(∑

l C j l · sl
))2

+1
(10.18)

In this manner, the Wiener filter can be customized to be applied to whatever derivative

of the extracted signal distribution is wanted. Regularizing the derivative of the signal dis-

tribution proves to be an overall better way to control instability in unfolding [169]. The

Wiener filter has the advantage of maximizing the overall signal-to-noise ratio in the effective

frequency domain (SVD basis). This allows it to effectively control fit instability fluctuations

without over-suppressing the desired signal, all without requiring the regularization strength

to be tuned. Furthermore, the additional smearing introduced through the Wiener filter

regularization is captured in the matrix AC , which is computed and published alongside the

extracted cross section measurement. In this way, any model can be directly compared to the

measurement by simply applying the additional smearing matrix.

Since unfolding is a linear transformation from the measurement m over reconstructed

variables to the signal distribution ŝ over truth variables, it is possible to easily compute the

covariance matrix in the unfolded domain. This is done by recognizing that Eqn. 10.16 is
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essentially a relation between these two quantities:

ŝ = Rtot ·m (10.19)

Rtot = AC · (RT R
)−1 ·RT ·Q (10.20)

This allows the unfolded covariance matrix to be easily deduced as:

Cov ŝ = Rtot ·Cov ·RT
tot (10.21)

10.3 Regularization in Multiple Dimensions

The procedure outlined above relies on taking derivatives of the signal distribution ŝ. In a

single dimension this is a simple procedure, and can simply be computed from the differences

of adjacent bins. However, across a multi-dimensional distribution, taking a derivative

requires defining a path. So as to not preference any particular dimension in the choice of

path, a more complicated combined derivative is computed from a combination of simple

derivatives. For each dimension, the derivative along a single variable is computed separately,

computed using the third derivative matrices C3,Eν , C3,θµ , and C3,Pµ . Then a combined

derivative matrix is computed by adding each C3 matrix in quadrature:

C 2
3,3D =C3,Eν ·C T

3,Eν
+C3,θµ ·C T

3,θµ
+C3,Pµ ·C T

3,Pµ

C3,3D =
√

C 2
3,3D (10.22)

The square root of C 2
3,3D can be computed by diagonalizing it into V DV T , which is guaranteed

to be possible since since C 2
3,3D is symmetric and positive definite, Then the square root of

each diagonal element of D is taken, before recombining. The resultant matrix can be thought

of as computing a mixed derivative that treats all three physical dimensions equally. This

approach has been found to introduce less bias and reduce the instability fluctuations of the
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unfolding when compared to simpler solutions such as simply using DPµ or Dcos(θµ) as the

derivative matrix of choice. Additionally, it provides a general procedure that can be applied

to Wiener SVD unfolding in any multi-dimensional analysis, regardless of the number or

content of variables.

It is worth noting that the distortion introduced in unfolding resulting from regularization

as well as the Wiener filter are captured in the additional smearing matrix. This is applied

to model predictions, so overall there is no change to the goodness of fit χ2 for any model

comparison. Still, smearing distortions can impact how we interpret the data, and should

be reduced where possible. The Wiener filter inherently reduces the overall cross section

measurement based on the signal to noise ratio, creating a smeared result with an overall

normalization bias. A triple-differential cross section measurement contains a large number

of bins, and so the Wiener filter can have a significant suppression effect on the unfolded

cross section. To address this issue, the total 1-bin cross section prediction is compared

before and after applying the additional smearing matrix, and a 21% deficit is observed. This

1.21 ratio is then applied to the data and MC as an overall rate re-normalization, effectively

generating a re-normalized additional smearing matrix, leaving all model comparison χ2

computations unchanged.

10.4 Estimation of the Detector Response Matrix

So far the discussion has assumed that the detector response R mapping the underlying signal

s to the measurement m is known. To compute this, it is helpful to rewrite the measurement

in terms of the various detector effects involved in producing it [167]:

m(E r eco
ν ) = POT ·T

∫
F (Eν) ·σ(Eν) ·D(Eν,E r eco

ν ) ·ϵ(Eν,E r eco
ν ) ·dEν+b(E r eco

ν ) (10.23)

where POT represents the number of protons on target, T represents the number of target

nuclei, and Eν and E r eco
ν represent the true and reconstructed neutrino energy, respectively.
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F (Eν) represents the neutrino flux as a function of neutrino energy, and D(Eν,E r eco
ν ) repre-

sents the detector response matrix, which describes the smearing from true to reconstructed

neutrino energy. ϵ(Eν,E r eco
ν ) represents the selection efficiency, and b(E r eco

ν ) represents the

estimated number of background events. By grouping the various terms, Eqn. 10.23 can be

simplified by expressing it in terms of the background events bi and selected events s̃i j in

each reconstructed bin i and truth bin j :

mi =
∑

j
s̃i j +bi (10.24)

By grouping the terms in Eqn. 10.23 as well as employing some cancellation, s̃i j can be

expressed in terms of the nominal-flux averaged total cross section s j in each true neutrino

energy bin, a flux constant F̃ j that can be computed from the predicted flux, and the ratio of

events selected in bin i that originate in bin j to the total number of events generated in bin

j , ∆̃i j :

s j =
∫

j F (Eν, j ) ·σ(Eν, j ) ·dEν, j∫
j F (Eν, j ) ·dEν, j

F̃ j = POT ·T
∫

j
F (Eν j ) ·dEν j

∆̃i j =
POT ·T

∫
j F (Eν, j ) ·σ(Eν, j ) ·D(Eν, j ,E r eco

ν,i ) ·ϵ(Eν, j ,E r eco
ν,i ) ·dEν, j

POT ·T
∫

j F (Eν, j ) ·σ(Eν, j ) ·dEν, j

s̃i j = ∆̃i j · F̃ j · s j (10.25)

where F represents the nominal (central value) muon neutrino flux. By using the nominal

flux F , we avoid having to consider the flux prediction uncertainties in the construction of

the response matrix.

The above description can be generalized to a procedure to extract multi-differential cross

sections, and in particular the triple-differential cross section in this analysis. In this case,
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following the format of Eqn. 10.23, the measurement can be expressed as:

M
(
E r eco
ν ,θr eco

µ ,P r eco
µ

)
=POT ·T ·

∫ ∫ ∫
F (Eν) · dσ

(
Eν,θµ,Pµ

)
dθµdPµ

·D ·ϵ ·dEν ·dθµ ·dPµ

+B
(
Er ec ,θr eco

µ ,P r eco
µ

)
(10.26)

where θµ and Pµ represent truth variables corresponding to the reconstructed muon scat-

tering angle θr eco
µ and muon momentum P r eco

µ , respectively.
dσ(Eν,θµ,Pµ)

dθµdPµ
represents the

differential cross section as a function of the truth variables. The detector response D and

selection efficiency ϵ are both functions of all six truth and reconstructed variables. From

this, a corollary to Eqn. 10.24 is formed for the 3D measurement bins by summing over

reconstructed bins {i , j ,k} and truth bins {l ,m,n}:

mi j k =
∑

lmn
s̃i j kl mn +bi j k (10.27)

In turn, the nominal-flux averaged differential cross section slmn , flux constant F̃lmn , selec-

tion mapping ∆̃i j kl mn , and selection count s̃i j kl mn can be computed:

slmn =
∫

lmn F
(
Eν,l

) · dσ(Eν,l ,θµ,m ,Pµ,n)
dθµ,m dPµ,n

·dEν,l ·dθµ,m ·dPµ,n∫
lmn F

(
Eν,l

) ·dEν,l ·dθµ,m ·dPµ,n

F̃lmn =
(
POT ·T ·

∫
l mn

F
(
Eν,l

) ·dEν,l ·dθµ,m ·dPµ,n

)

∆̃i j kl mn =
POT ·T ·∫l mn F

(
Eν,l

) · dσ(Eν,l ,θµ,m ,Pµ,n)
dθθ,m dPµ,n

·D ·ϵ ·dEν,l ·dθµ,m ·dPµ,n

POT ·T ·∫lmn F
(
Eν,l

) · dσ(Eν,l ,θµ,m ,Pµ,n)
dθµ,m dPµ,n

·dEν,l ·dθµ,m ·dPµ,n

si j kl mn = ∆̃i j kl mn · F̃l mn · sl mn (10.28)

By enumerating the reconstructed bins in {i , j ,k} (now using the index i ) as well as the truth

bins in {l ,m,n} (now using the index j ), the master equation relating measurement to truth
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bins can be constructed:

mi −bi =
∑

j
∆̃i j · F̃ j · s j =

∑
j

ri j · s j (10.29)

With this relation established, it is possible to unfold to the triple-differential result by first

computing the flux constant and estimating the mapping from truth to reconstructed bins in

simulation, and then performing the Wiener SVD unfolding as outlined earlier.
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11 Cross Section Measurements

11.1 Single-Differential Cross Section Measurements

The triple-differential measurement central to this dissertation builds on the work done to

extract single-differential measurements over neutrino energy, muon energy, and transfer

energy [167]. Those results are discusses here, before proceeding to the triple-differential

measurement. The single-differential analysis was performed on only 5.3×1020 POT of data

(instead of the full 6.4× 1020 POT available in runs 1-3) to comply with the MicroBooNE

blindness policy in place at the time. However, statistical fluctuations are still small because

of the relatively small number of bins in 1D compared to 3D. 6
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FIG. 3. a) The extracted νµCC inclusive scattering cross section per nucleon divided by the bin-center neutrino energy, as a
function of neutrino energy. b) The measured νµCC differential cross section per nucleon as a function of muon energy dσ/dEµ.
c) The measured νµCC differential cross section per nucleon as a function of energy transfer dσ/dν. Various model predictions
are compared to all three measurements (see text for details).

model used in the “MicroBooNE MC” [18], predictions
from GENIE v3.0.6 [19, 44], NuWro 19.02.01 [57], NEUT
5.4.0.1 [58], and GiBUU 2019.08 [59] after applying the
Wiener filter are quantitatively compared with the mea-
surement through calculating χ2/ndf with the uncer-
tainty covariance matrix obtained from the unfolding
procedure. Note that these comparisons only incorporate
the central predictions from various generators without
their theoretical uncertainties, which are particularly im-
portant in constructing predictions in analysis. The cen-
tral predictions of GENIE v3 and NuWro are disfavored
compared to the other three. Particularly, the “Micro-
BooNE MC” (tuned GENIE-v3 model [18]) has better
agreement than GENIE v3.0.6, given the tuned GENIE-
v3 model is constructed by fitting T2K data [60] in a
similar energy range.

Figure 3b) and c) show the flux-averaged differential
cross sections as a function of muon energy (dσ/dEµ) and
energy transfer to the argon nucleus (dσ/dν). The same
set of model predictions are compared to these measure-
ments. The model comparison of dσ/dEµ shows a shape
agreement with most models, although the normalization
predictions differ. The central predictions of GENIE v3
and NuWro are more disfavored. The model predictions
in dσ/dν show large variations, particularly in the low en-
ergy transfer (ν) region, where the shape difference con-
tributes considerably to the χ2/ndf given the correlations
in the uncertainty covariance matrix. The central predic-
tion from GiBUU has the best agreement with data in
the low ν region, but is systematically lower than data at
high ν region, which could be originated from an under-
estimation of the cross sections in the nucleon resonance
region beyond ∆. Considering all three cross-section re-
sults, the GiBUU prediction has the best agreement with
acceptable χ2/ndf values, while the performance of the
NEUT prediction is comparable. The central predictions
of the other three models show larger disagreement.

In summary, we present a measurement of cross section
as a function of the neutrino energy based on data from a
broad-band neutrino beam. We report the nominal-flux
weighted total inclusive νµCC cross sections σ (Eν), and
the nominal flux-averaged differential cross sections as
a function of muon energy dσ/dEµ and energy transfer
dσ/dν using the Wiener-SVD unfolding method [41]. A
new procedure based on the conditional covariance ma-
trix formalism [55] and the bootstrapping method [52]
is used to validate the model of missing energies, which
enables the first measurement of dσ/dν on argon and
significantly adds value to the measurement of the to-
tal cross section as function of neutrino energy σ (Eν).
These results provide a detailed way to compare data
and calculations beyond what is possible with existing
flux-averaged total cross section results. With additional
accumulated data statistics (up to 1.2×1021 POT from
BNB) in the MicroBooNE detector, additional neutrino
cross-section measurements are expected that will lead to
further model development and generator improvements
for neutrino scattering in argon.
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Figure 95: a) The extracted νµCC inclusive scattering cross section per nucleon divided by
the bin-center neutrino energy, as a function of neutrino energy. b) The measured νµCC
differential cross section per nucleon as a function of muon energy dσ/dEµ. c) The measured
νµCC differential cross section per nucleon as a function of energy transfer dσ/dν. Various
model predictions are compared to all three measurements (see text for details). Source [167]

In addition to the extracted cross section measurement and MicroBooNE model pre-

diction, comparisons are shown against the predictions of Genie v3.0.6 (untuned), NuWro

19.02.01, NEUT 5.4.01, and GiBUU 2019.08. In each case, the additional smearing matrix AC

is applied to the model prediction for an unbiased comparison, with χ2/nd f calculations

shown alongside each model prediction in Fig. 95. The covariance matrices corresponding

to each unfolded measurement are shown in Fig. 96. For each model comparison, the CV
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Figure 96: Total covariance matrices in different energy bins for (a) total cross section per
nucleon as a function of neutrino energy, (b) differential cross section per nucleon as a
function of muon energy, and (c) differential cross section per nucleon as a function of energy
transfer. Source: [167]

prediction without uncertainties is used, as it is difficult to properly incorporate the uncer-

tainties of each model. Model predictions for Genie v3 (untuned) and NuWro are dis-favored

across the three measurements, while GiBUU consistently gives the best prediction. The

differences in model prediction are most clear in Fig. 95c over ν, especially at low transfer

energy where GiBUU performs particularly well.

11.2 Triple-Differential Cross Section Measurement

The full triple-differential cross section is shown in Fig. 97. Each angular slice is presented in

a separate panel, arranged from backward to forward facing. Within each panel, the four Eν
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Table 5: Comparisons between various models and the unfolded triple-differential measure-
ment, considered over the entire 138 analysis bins and within each Eν slice, specified by the
range in GeV.

Model Name Total [0.2,0.705] [0.705,1.05] [1.05,1.57] [1.57,4.0]

χ2/ndf χ2/ndf χ2/ndf χ2/ndf χ2/ndf

GENIE v2.12.10 741.1/138 71.4/28 64.4/35 64.3/42 35.6/33

GENIE v3.0.6 (uBooNE tune) 326.1/138 85.0/28 77.8/35 44.6/42 31.9/33

GENIE v3.0.6 (untuned) 322.2/138 94.1/28 84.8/35 52.2/42 37.3/33

GiBUU 2021 269.9/138 33.8/28 54.8/35 52.6/42 31.0/33

NEUT 5.4.0.1 243.3/138 58.5/28 59.9/35 33.1/42 38.2/33

NuWro 19.02.01 212.1/138 54.8/28 67.3/35 40.9/42 29.6/33

slices are plotted on top of each other, given an arbitrary offset ∆ that varies between slices to

help visually separate each slice. Within each panel the measurement is shown over the Pµ

bin centers within that slice. The triple-differential result provides a highly detailed picture

of the physics involved in νµCC interactions, including the energy and angular dependence

of the peak in cross section as a function of muon momentum. Additionally, the unfolding

to Eν helps separate interaction processes: NuWro predicts a reduction in the quasi-elastic

fraction from ∼ 75% in the lowest energy bin to ∼ 55% in the highest energy bin.

Although the data is unfolded with the MicroBooNE model prediction, it is shown here

in comparison to the NuWro 19.02.01 prediction as it has the best agreement with the data.

The quality of fit for each model comparison is shown in Table 5, including comparisons

with GENIE v2.12.10, GENIE 3.0.6 G18_10a_02_11a [145, 54], NuWro 19.02.01 [161], NEUT

5.4.0.1 [160], and GiBUU 2021 [170]. The differences in physics modeling assumptions used

between the event generators are described in Ref. [171].

The triple-differential measurement provides data covering a large phase space, causing it

to be in tension with all model CV predictions considered. The best overall model agreement

is found with NuWro, followed by NEUT and GiBUU. The hierarchy of model agreement

largely matches what was found in the single-differential results, with the notable exception

that NuWro perform much better over this higher-dimensional phase space. To help visualize
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the data/MC comparisons, the muon momentum dimension is integrated over and each bin

is normalized by the average neutrino energy in the slice, producing the double-differential

result shown in Fig. 98. GiBUU provides the best description of the data below 1GeV, but is

outperformed at higher energies, particularly by NuWro. The high energy region, particularly

in combination with low Q2 and forward lepton angles, is notable for an increase in ∆-

resonance interactions combined with differences in the modeling of pion production [172]

that may play a role in the overall model performances.

In the future, this analysis can be enhanced through the inclusion of additional data, both

from the BNB used in this analysis already, as well as the NuMI beamline that MicroBooNE is

exposed to. Since the NuMI beam is off-axis and at a higher energy, the flux predictions be-

tween these two beamlines are only slightly correlated, meaning that a combined BNB+NuMI
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Figure 99: Covariance matrix showing total statistical plus systematic uncertainties over the
138 measurement bins, in units of 10−36 cm2/Ar.

178



11 CROSS SECTION MEASUREMENTS

measurement will not only reduce the statistical uncertainties but also the flux uncertainties

in the extracted measurement. In parallel with these advances, work is in-progress to produce

multi-differential cross section measurements over exclusive channels that comprise the

overall inclusive νµCC channel.

11.3 Conclusion

MicroBooNE has served as a pioneer in the field of LArTPC-based neutrino physics experi-

ments, fulfilling primary goals of investigating the MiniBooNE LEE, providing research and

development on large-scale LArTPC detectors, and producing cross section measurements.

Within MicroBooNE, Wire-Cell has developed a reconstruction chain that reconstructs a fully

3D charge distribution and produces produces highly accurate data products on particle

identities, kinematics, and overall organization within a neutrino interaction. Notable steps

within this reconstruction include signal processing with 2D deconvolution, tomographic

imaging for 3D charge reconstruction, global charge-light matching of TPC activity, graph-

based trajectory fitting and particle flow, and neutrino vertex identification incorporating

a deep neural network. Using this reconstruction, Wire-Cell developed a high-efficiency,

high-purity inclusive νµCC selection that achieves 92% purity while maintaining 68% effi-

ciency. This remarkable selection performance as well as reconstruction quality enables the

use of a new data-driven validation procedure that leverages correlated model predictions

across final state kinematics to increase sensitivity to mis-modeling, including over invisible

TPC activity. Finally, Wiener SVD unfolding was used to produce a nominal-flux averaged

differential inclusive νµ CC cross section d 2σ(Eν)
d cos(θµ)dPµ

. This measurement uses an exposure

of 6.4×1020 POT of data from the BNB, and contains a wealth of info capable of assisting

model development. In particular, the validated reconstruction of neutrino energy is espe-

cially useful for high-precision neutrino oscillation searches, such as at the upcoming DUNE

experiment.
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