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The field of accelerator neutrino experiments is entering an era of precision oscillation
measurements in which many of the remaining unknown neutrino measurements will be
determined. The upcoming DUNE and Hyper-K experiments aim to determine the neutrino
mass hierarchy and degree of Charge-Parity (CP) violation in the neutrino sector, providing po-
tential insight on the matter-antimatter imbalance observed in the universe. However, these
experiments require highly accurate measurements, and neutrino cross section modeling
uncertainties may limit their capabilities. Cross section measurements at current-generation
experiments can aid the development of neutrino interaction models to reduce these uncer-
tainties. This is especially true for measurements of neutrino energy, which drive neutrino
oscillations and are of key importance to oscillation experiments.

The MicroBooNE experiment uses a Liquid Argon Time Projection Chamber (LArTPC) to
produce neutrino-argon cross sections as one of its physics goals. The MicroBooNE detector’s
fully active volume, precision reconstruction, and calorimetry information are leveraged in
the Wire-Cell analysis to produce a muon neutrino selection that is 92% pure while main-
taining 68% efficiency. A reconstruction chain featuring a fully 3D charge reconstruction and
a graph-based particle trajectory fit are used to produce accurate measurements of lepton
kinematics as well as visible hadronic energy produced in a neutrino interaction. This thesis
presents the first neutrino-argon triple-differential cross section measurement, targeting in-
clusive charged-current final states. Wiener SVD unfolding is used to produce a measurement
over neutrino energy, muon momentum, and muon scattering angle. A series of constrained

goodness of fit tests are used to demonstrate the validity of MicroBooNE’s model in describing



the distribution of reconstructed kinematics seen in data to ensure the accuracy of unfolding.
The validated unfolding to neutrino energy represents a step forward in the field of neutrino

cross sections, and demonstrates the capabilities of the LArTPC detector.
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Forward

My dissertation focuses on the steps involved in producing the first neutrino-argon in-
clusive muon-neutrino charged-current triple-differential cross section measurement. This
measurement can help improve neutrino interaction modeling, assisting future neutrino
oscillation experiments such as DUNE. Sec.[1]provides a theoretical framework to neutrino
physics, and Sec. [2|discusses the importance and modeling of neutrino interactions. Sec.
gives an overview of the history of neutrino experiments, which gives context to the Mi-
croBooNE experiment, discussed in general detail in Sec. |4} This analysis focuses on the
Wire-Cell reconstruction and selection within MicroBooNE, which are extensively described
in Sec. 5] and Sec. 6} respectively. The measurement resolutions of various reconstructed
quantities are discussed in Sec.[7, and the estimation of various systematic uncertainties
on the MicroBooNE model prediction are covered in Sec. |8, The validation of this model is
introduced in Sec.[9} based on a new data-driven conditional constraint procedure. With
the model fully introduced and validated, the reconstructed event selection is unfolded,
following the Wiener SVD technique discussed in Sec.|10} to produce the triple-differential
cross section measurement presented in Sec.

My personal involvement includes contributions to the reconstruction, estimation of
uncertainties, and unfolding. I worked on improving the flash reconstruction algorithm
discussed in Sec. as well as on the light mismatch algorithm designed to help identify
and remove cosmic ray events, discussed in Sec. I helped improve the estimation of
systematic uncertainties through the development of the smoothing algorithm used to reduce
statistical fluctuations involved in bootstrapping, discussed in Sec. Finally, my largest
contributions are specific to the triple-differential analysis, including determining the choice
of binning in Sec. validating the model prediction in Sec. writing some of the
unfolding code aimed at multi-dimensional unfolding, especially Sec. , and producing

the triple-differential measurement in Sec.|11.2



1 THEORY

1 Theory

The standard model of particle physics is one of the must successful theories in physics for
predicting a wide range of experimental results. It describes the strong, weak, and electromag-
metic forces, as well as all 17 known fundamental particles, including the six quarks, three
leptons and their respective neutrinos, four force carriers, and the Higgs boson. Neutrinos
were first hypothesized almost 100 years ago at a relatively early time within standard model
particle physics, which was not fully developed until the discovery of quarks in the late 20th
century. However, today neutrinos remain some of the least understood particles, with some
of their properties not yet determined. Over the last century studying neutrinos has repeat-
edly revealed insight into new physics, and current and upcoming neutrino experiments
hope to provide further insight through measuring the remaining unknowns.

In 1930, Wolfgang Pauli proposed the existence of the neutrino as a way to preserve
conservation of energy and momentum in beta decay processes, where a neutron decays to a

proton and emits an electron as well as an anti-electron-neutrino:
n—p+e +v, (1.1)

Experiments showed a continuous distribution of ejected electron energies, suggesting that
the total energy released on decay was split among the electron and another particle, named
the neutron by Pauli (and later renamed the neutrino). Furthermore, although electrons carry
spin 1, beta decay creates no net change in the spin of the nucleon, so the production of a
neutrino with opposite spin to the electron is necessary to conserve angular momentum.
The neutrino’s existence was experimentally confirmed in 1956 by Cowan and Reines [1] by

observing the capture of reactor-produced anti-neutrinos on protons:

p+ve—n+e* (1.2)
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To account for the vanishingly small neutrino interaction probabilities, a new interaction
mechanism was required, dubbed the weak force. This force is mediated by charged massive
bosons W+ and W™ as well as a neutral massive boson Z°, and mediates interactions between
all of the quarks and leptons, not just neutrinos [2]. Only left-handed neutrinos have ever
been observed [3], a fact which initially motivated the massless description of the neutrino in
the standard model [4]. An intuitive interpretation is that if neutrinos travel below the speed
of light (and therefore have mass), it would be possible to change frame of reference to flip
their helicity; only a massless neutrino can exist with only a single handedness. However, the
standard model massless description of neutrinos and the conservation of lepton flavor is
only an accidental symmetry, not one imposed by the model, and so it is possible for new

physics to break the symmetry through a more detailed description of the physics.

1.1 Neutrino Mass

With the discovery of neutrino oscillations the existence of neutrino mass is established,
and the presumed framework used in the standard model must be expanded [5]. Neutrino
oscillations depend on differences in mass between neutrino mass eigenstates, so the mea-
surement of oscillations implies that at most one neutrino state can be mass-less, and in
all three may have mass. There are multiple mechanisms that could be used to explain the
existence of neutrino mass [6,7]. Some of them are less compelling, such as the prospect that
the familiar Higgs interaction gives the neutrino mass like it does to other standard model
particles, but for an unexplained reason with a much weaker coupling. Perhaps the most
plausible explanation is through the Seesaw Mechanism [8, 9} [10], which explains neutrino
mass without introducing any new fields. In this explanation, the Higgs boson couples only
to the right-handed neutrino of each flavor. Then, slight mixing of the mass and flavor eigen-
states allows for a massive but sterile (non-weakly-interacting) and thus unobserved neutrino,

as well as the lightweight left-handed neutrino that has been experimentally detected.
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The right- and left-handed wavefunctions W and ¥ are eigenstates of the chirality

matrix y° = iy%y!y?y3, where y° through 3 are the gamma matrices:

Y’Wrir=+¥Pr/L (1.3)

This enables the construction of chiral projection operators Pr and Pj, which project the

wavefunction into its right- and left-handed states:

I+y°
PriL= (1.4)
2
Prit¥Y =Yg/ (1.5)
V=PrV+P¥V=VYp+¥; (1.6)

Antiparticles are described by the conjugation operator C: ¥ — W¢ = CP' with the conjuga-
tion matrix C = iy?y°. This produces the expected result that right- and left-handed fermions

are antiparticles of each other:

Wz = (¥)sr (1.7)

By substituting the right- and left-handed fields into the Dirac Lagrangian, the relationship

between Dirac mass term and the right- and left-handed fields is found:
b :TRiy“ONWR +WLiYNa,uWL_mD(§R\PL +§L\IJR) (1.8)

Furthermore, the electroweak Lagrangian also allows for right and left Majorana mass terms
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mpg and my (not to be confused with Majorana and Dirac particle types):
1 —C —_— c 1 —C P c
fM:—EmR(\PR\PR-F\PR‘PR)—EmL(\PL\PL-l-\I’L\PL) (1.9)

The distinction between Majorana and Dirac mass terms in the Lagrangian is useful for
looking at how they interact with weak charge and leptonic (non) conservation. Assuming
that the neutrino is a Dirac particle, meaning that v and v are separate particles, the Dirac
Lagrangian term violates weak charge by converting v; with weak charge % to the sterile
vr with weak charge 0 (or vice versa). However, since this process does not, for example,
replace v with v, lepton number is conserved. This is contrasted with the Majorana terms,
which allow for the creation of neutrinos from the vacuum, violating weak charge and lepton
number. Things change slightly if the neutrino is a Majorana particle, where v and v are the
same particle and therefore must have weak charge of 0, nullifying the weak charge violation
present in the change of handedness. In either case, the potential Dirac and Majorana mass

terms can be grouped to form the matrix depiction:

1l — —¢ \PE 1 —¢ — \PL
Lmass = _E[TL;TR]M _E[TL’\PR]M (1.10)
W we
mp mp
M= (1.11)
mp Mg

So far neutrinos have been discussed in their flavor states Wi and W;. Switching to mass
states, the Seesaw Mechanism supposes that the Higgs boson only couples to one of the
neutrino mass eigenstates ¥, and ¥ g, generating eigenvalues of 0 and a GUT-scale [11] mass
term m,, respectively. Solving Eqn[1.11]for the mass eigenvalues 0 and m,, in terms of mg,
mp, and mp gives:

m% =mprmy, (1.12)
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m, = mpg+my (1.13)

Equation[1.12]is what gives rise to the name of the Seesaw Mechanism, as the larger mp, gets,
the smaller mp must be to counterbalance it. Furthermore, solving for the neutrino mass
eigenstates, we see that they are composed of only slightly mixed combinations of the flavor
states:

c mp c
‘I’aZ(‘I’L+‘I’L)—m—(‘I’R+‘I’R) (1.14)
R

c mp c
\I’ﬁZ(\PR+\I’R)+m—(\I’L+‘I’L) (1.15)
R

Given the incredibly small allowed values for m; and the imagined massive GUT-scale mp,
we necessarily find that mp << mg, giving rise to a small degree of mixing. Ultimately, the
Seesaw Mechanism proposes that this small mass eigenstate mixing gives rise to the small
left-handed neutrino mass that is observed.

Unfortunately, the Seesaw Mechanism can only be tested at much higher energies, placing
it outside the reach of current experimental capabilities. However, in the event that there
are Majorana neutrinos [12], their mass can be tested through neutrinoless double beta
decay [13]:

(Z,N)— (Z+2,N=-2)+2e" (1.16)

Under double beta decay, two neutrons decay to protons in a nucleus, emitting electrons as
well as anti-electron neutrinos. However, in the hypothetical case of Majorana type neutrinos,
they are their own anti-particles and are capable of annihilating each other, leaving no
neutrino emission. This process inherently violates lepton number, and even lepton minus
baryon number L-B. To conserve angular momentum, the neutrinos can only annihilate
if one is left-handed and the other right-handed, which has a probability of occurrence

proportional to m, /E. Therefore, experiments measuring this rate are sensitive to the overall
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neutrino mass. However, it is a second order effect due to the simultaneous decay of two
neutrons, making it a rare process to observe. Furthermore, the low energies involved make
neutrino detection (or rather, confidence of their absence) difficult. Still, experiments have

set a lower bound on the decay lifetime at around 1026

seconds, and experiments such as
CUORE [14] and KamLLAND-Zen [15] continue to search for the existence of the Majorana

neutrino through neutrinoless double beta decay.

1.2 Neutrino Mixing

Although the mechanism giving neutrinos mass is not yet determined, the oscillations gen-
erated by neutrino mass differences are well understood. There are three neutrino flavors
Va € {Ve, Vy, V1, corresponding to the three lepton flavors a € {e, y, 7}. Similar to the quark
sector, neutrino flavors are a mixture of their mass eignestates v; € {v1, vz, v3}. While quark
mixing is described through the CKM matrix [16}/17], neutrino mixing is described through
the PMNS matrix U, named after Bruno Pontecorvo for predicting neutrino oscillations [18]
and Ziro Maki, Masami Nakagawa, and Shoichi Sakata for constructing the mixing matrix for-
malism [19]. This construction allows any flavor state to be expressed as a linear combination

of mass eigenstates, and vice-versa:

Vo) =) Uaj|vj) (1.17)
i

vi)=2 Usilva) (1.18)

For three neutrino flavors, the PMNS matrix is a 3 x 3 unitary matrix described by nine
degrees of freedom. However, five degrees of freedom can be absorbed into the phases
of particle fields, leaving a degree of freedom for the overall phase. As a result there are a

total of four degrees of freedom [20], which can be described through three mixing angles,
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{012,013,023}, and a complex phase § cp that allows for potential Charge-Parity (CP) violation:

Un U Uz
U=| Uy Ux Us
Usi1 Usx Uss
1 0 0 C13 0 Slge_l(scp Ci2 S12 0
=1 0 co3 S3 0 1 0 —S12 ¢c12 0
0 —$823 (23 _813615(313 0 C13 0 0 1
—ibcp
C12C13 $12€13 S13¢€
- id id
= | —S12023 —C12523813€°°P  C12C23 — S12523813€ ¢ $23C13
S _ i5CP _ _ i5CP
12823 — C12C235813€ C12823 — S12€23S513€ C23C13

Here s;; and c;j represent sin6;; and cos0; ; respectively.

1.3 Neutrino Oscillations

(1.19)

Although neutrinos are always created and detected in flavor states, their time evolution is

governed by their energy, which depends on their mass eigenstates. As a result, neutrino

mass differences drive oscillations between flavor states as the phases evolve at different rates.

In all known cases neutrinos are ultra-relativistic, with their momentum p; much larger than

their mass m;. This allows for the energy E; of each mass eigenstate to be approximated as:

Ej

2 2 ? ?
e e pi+—x E+—
p] J Pj 2]9] 2F

(1.20)

where the neutrino energy E was substituted for the momentum p;. The relativistic sub-

stitution of ¢ = L can help replace the unobserved time ¢ in the neutrino’s frame with the

measurable distance travelled L. In the case of vacuum oscillations, the time evolution of the
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mass eignestates becomes:

where the last step ignores the overall common phase e’

|vj(t)> = o 1 |vj(0)> = e_i(E+2_g)L |Vj(0)> ~e ioE |Vj(0)>

m2

m2L

(1.21)

of the eigenstates. From this, it is

possible to work out the oscillation probability from an initial flavor state a to a final state f:

Pva—wﬁ (L) =

{5
= <Vﬁz

= <Vﬁ ;Z

:ZUJ aj®

[(vp|va L)

Uy vj(L)>

2

m2L 2

’215

v](0)>

mz.L 2
i
l_
UY]Ua]e 2E VY>
mz.L 2

Am2 L

* * S L
:ZXk:UﬁjUaJ’UakUﬁke T
]

:Z|Uaj|2|Uﬁj|2+2Re(Z Z.UE].U
J Jj k>j

=0qp+2Re

=8ap+2Y. Y. Re(Up;Uqy;UsiUpy) Re

Z Z Uﬁ] a]UakUﬁk

J k>j

J k>j

~2Y" ¥ Im(Up;Uy;UsiUgy ) Im

J k>j

=8ap—4Y. Y Re(U;

u,.u:u

J k>j

+2Y° Y Im(Uj Uy ;U Upy ) sin—2—

J k>j

Am?, L

Bj~aj = ak™ Bk

2
.AmjkL
—l72E
2
jr"
E —1

Am?, L Am?, L
+isin -1

k .. k
! + 7SI J

Am?, L
-1

(1.22)
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Note that Am? = m? — mi represents the difference in squared masses between eigenstates
that drives neutrino oscillations. Trivially, if all eigenstates had the same mass then the
transition probability would be § 44, allowing for no neutrino oscillations. In the derivation
above, the unitarity of U was used in multiple places. It was used to split the double sum over
j and k into a sum over the diagonal elements of U and a doubled sum of the upper diagonal
elements of U, where only the real component survives since U, = U . Additionally, it was

used to introduce 6 qp:

Z; Ug;UyUgiUgy = (Z UEjUaj) (; U;kUﬁk) =6pa0ap=0ap (1.23)
J J

The oscillation probability for anti-neutrinos, Py, _.5;, can be computed by replacing
U with U* in Eq. This also allows for CP violation to be computed as the difference

between the neutrino and anti-neutrino oscillation probabilities:

2
AmjkL

Pyyoovy = Proty =43 Y. Im(Up Uy UsiUpy ) sin (1.24)

J k>j

Referring back to the decomposition of U in Eq. into its four degrees of freedom, it can
be seen that § ¢cp is the only variable capable of producing imaginary terms in U, and thus
controls the degree of CP violation.

Before moving on, it is worth emphasizing some of the key features of neutrino oscil-
lations introduced in the preceding derivations. Under the three-flavor standard model
description, neutrino mixing is described through the PMNS matrix U by four parameters:
three mixing angles and a complex phase that describes the degree of charge-parity viola-
tion. Neutrino oscillations between flavors also depends on the difference in mass (squared)
between eigenstates, adding three additional parameters of interest (although it will later
be discussed how two masses are so similar as to reduce the description to two measurable

mass differences). The situation is further complicated by the dominant oscillation term’s
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dependence on the square of the mass difference, leaving it insensitive to the mass ordering.
The remaining sensitivity directly available in the oscillation probability only appears if U
has an imaginary component and correspondingly there is charge-parity violation in the
neutrino sector. Alternatively, matter effects can be used to generate a potential that shifts the
v, mass eigenstate value, revealing the hierarchy depending on whether the mass difference
shrinks or grows, especially when compared against v, measurements that would observe an
opposite shift [21].

For all these parameters of interest, there are only two variables that can be directly con-
trolled in experimental design. Neutrino energy can be controlled in accelerator experiments
through the beamline used, and otherwise varies significantly between sources of cosmic
neutrinos, solar neutrinos, atmospheric neutrinos, and neutrinos created in nuclear reactors.
The more easily controlled variable is the distance travelled between a neutrino source and a
detector, making detector placement a key design consideration in an experiment. However,
these two variables only appear together as the ratio L/E, reducing the number of control-
lable degrees of freedom to one. As a result, the PMNS matrix has only been determined as
well as it has through clever experiment designs that aim to isolate elements of the mixing
matrix or other parameters of interest, as future sections will describe in more detail. The
neutrino sector is not yet fully measured, however, as there remain unknowns such as the
mass hierarchy [21], the value of 6¢p [22], the octant of 6,3 [23], and the overall neutrino
masses [24]. Next generation experiments are currently being constructed to determine

answers for each of these unknowns [25].

1.4 Two-Flavor Oscillations

To help make sense of the oscillation probability formula, it can be useful to consider the

simplified case of two-flavor oscillations. This is equivalent to assuming that two of the

10
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mixing angles, say 013 and 0,3, are 0, simplifying the PMNS matrix to:

cosf sinf
U2><2 = (125)

—sinf@ cos@

where v3 has been dropped as it does not mix, and the single remaining mixing angle is simply

given as . The oscillation probabilities can then be computed to give the straightforward

expressions:
o ., AmMPL
Py, v, (L) =1-sin"20sin (1.26)
AE
—sin?o0si , AmAL
Py, —vs(L) =sin”20sin 1E (1.27)

where a and f are presumed to be different flavors and the single remaining mass difference
is given as Am?. This formula shows that there is a maximum degree of mixing established by
the mixing angle, which is periodically achieved as the neutrino oscillates over its length scale
Ly = :‘—52. This simplified two-flavor case may seem too basic to be of any real use in a three-

flavor world; however, the particular values of mixing and mass splitting parameters allow for

multiple situations to reduce to the two-neutrino case under reasonable approximations.

11
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2 Neutrino Interactions

2.1 Importance of Cross Section Measurements

Accurate knowledge of neutrino cross sections is important for any neutrino experiment, es-
pecially modern accelerator oscillation experiments. These aim to determine the remaining
unspecified neutrino parameters and explore new physics through precision neutrino ap-
pearance and disappearance searches. To achieve these goals, measurements must be highly
accurate with low overall uncertainties. A disappearance measurement can be expressed in
terms of the oscillation probability P,,_.,, the neutrino flux ®, the total cross section o, the
selection efficiency €, the detector response from true to reconstructed neutrino energy D,

and the background event rate B:
N(Ey) = B+fpva—»va (Ey) x ®(Ey) x 0(Ey) x €(Ey) x D(Ey, Eyeco) dEy 2.1)

Clearly there are multiple factors that threaten to undermine the sensitivity of a measurement;
experimentalists work hard to reduce sources of background while maintaining high (and
well understood) selection efficiency, and uncertainties on the modeling of the flux and
detector response are addressed through the use of a near detector.

By comparing the measurement at a near detector before significant neutrino oscillations
to that at a far detector including oscillation effects, many uncertainties can be significantly
reduced, including those on the flux modeling and detector response. This is because near
and far detectors are often designed to be as similar as possible, so that a ratio of event rate
measurements is insensitive to effects in common between the two detectors. As a result,
cross section modeling can become the largest remaining source of uncertainty. To help
address this situation, cross section measurements are produced at numerous experiments to
aid the development of neutrino interaction models towards more accurate predictions with

smaller uncertainties. This is the primary motivation of the triple-differential cross section

12
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measurement in this dissertation.

Among cross section measurements, neutrino-energy-dependent cross section measure-
ments are particularly useful in aiding oscillation searches. Neutrino energy is the most
physically relevant quantity in a neutrino interaction; it is responsible for determining the
overall interaction type. Identification of final state particles can help determine the inter-
action channel; however, Final State Interactions (FSIs) smear this mapping, reducing its
usefulness. Neutrino energy provides an additional degree of separation, from Quasi-Elastic
(QE) interactions at low energy to Deep Inelastic Scattering (DIS) at high energy. Furthermore,
neutrino oscillations inherently depend on neutrino energy, so for oscillation experiments
that observe a neutrino flux over a wide energy range it is important to both accurately re-
construct the neutrino energy and to understand the cross section and therefore interaction

probability at that specific energy.

2.2 Neutrino Interaction Channels

Neutrinos have no electromagnetic or strong charge, so they interact with matter exclusively
through the weak force carriers. These are the charged W and neutral Z bosons, giving rise
to the corresponding Charged Current[2.2] (CC) and Neutral Current[2.3| (NC) interactions,

respectively:

VlA—> I~ A*
ViA—ITA” (2.2)
viA—-viA
ViA—-vViA (2.3)
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Here [ € {e, u, T} is used to represent the lepton flavor and A represents the nuclear target, such
as an atom, nucleon, or quark. CC interactions produce final states that allow the neutrino
flavor [ to be easily identified, making them of particular interest to oscillation experiments.

Neutrino interactions can be further classified by the size of the nuclear target and the
degree of interaction produced. Below 50 MeV neutrinos coherently scatter off entire nuclei
in an elastic collision, producing a faint interaction signature of nuclear recoil that was only
recently detected in 2017 by COHERENT [26]. As neutrino energy increases, the interaction
becomes quasi-elastic, where a single nucleon (and the lepton) are ejected. While this
definition seems simple, in practice it can be difficult to correctly identify QE interactions
in cases where some final state particles are not able to be detected, such as the production
and subsequent capture of a pion inside the nucleus [17, 27]. This is especially an issue
with the larger nuclear targets used in many modern neutrino experiments, where there
are more complicated nuclear effects to consider. As a result, FSIs can play an important
role in interaction channel modeling and identification, and have been an increasingly large
focus of cross section measurements. In addition to neutrino cross section measurements,
high-statistics electron-nucleus scattering data has been a valuable resource in studying FSIs
occurring within the atomic nucleus, despite the differences between neutrino and electron
primary interactions [28].

QE interactions remain dominant up to ~ 1 GeV, at which point there begins to be enough
energy to excite the nucleon to resonant baryonic states. Most notably these include the
A resonance with a mass of 1.232 GeV [29] and the Roper Resonance N* with a mass of
1.44 GeV [30]. In both cases, the baryon is unstable and quickly decays, most commonly
emitting a charged or neutral pion, but sometimes emitting multiple pions, a kaon or other
meson, or a photon [31]. At these energies it is also possible for coherent inelastic neutrino-

nucleus scattering, producing a pion with a particularly forward-scattered distribution [32]:

viA— 1 An”
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le—>le7t0
VIA—> l+A7[_

viA—v,An° (2.4)

Together, these interactions create a ~ 1 GeV landscape dominated by pion (and lepton)
final states, with numerous other possible final states. This is all before considering final
state interactions, which again serve to complicate an already varied landscape. Neutral
pion production can be particularly relevant for measurements of other channels, as the 7°
produced does not interact electromagnetically and often cannot be detected until it decays,
typically into a pair of photons [33]. If this decay is not spotted and associated with the
neutrino interaction, the event becomes a background for QE interactions, and alternatively
if the pion decay is detected but not properly identified, it can appear as an electromagnetic
shower typical of an electron, such as in a v, appearance search. While baryonic resonance
and coherent pion production are usually not the dominant interaction channels observed
by an experiment, they still play an important role in the few GeV range.

Above ~ 3GeV a significant fraction of interactions involve deep inelastic scattering, and
above ~ 5GeV DIS interactions dominate. Deep inelastic scattering involves high momentum
transfer, often defined by requiring the four-momentum Q? = —g? > 1GeV, as well as high
energy, requiring an invariant mass W > 2 GeV. In DIS interactions the neutrino can resolve
individual quarks directly, with a resolution determined by the wavelength A = /i/1/Q2. The
high interaction energy allows for the nucleon to be broken apart, and as a result, final states
can involve a large number of hadronic particles. DIS interactions have been studied at
a number of experiments [34, 35} 136} 37, 38} [39], using various nuclear targets to produce
measurements on the cross section as a function of neutrino energy, as well as on the weak
mixing angle and structure functions that describe high energy neutrino-nucleus interactions.

To first order, the DIS cross section increases linearly with neutrino energy, as predicted by
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the quark parton model.
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Figure 1: Total muon and antineutrino per nucleon CC cross sections divided by neutrino
energy and plotted as a function of neutrino energy, taken from [31].

Clearly, the various neutrino interaction channels present a complicated picture for exper-
imentalists to grapple with. It can be difficult to accurately identify final state particles and

separate channels, especially when there can be overlapping visible interaction signatures
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and FSIs are considered. The inclusive channel, consisting of all the different interaction
channels as shown in Fig. (1} can help avoid these selection issues by making a selection
agnostic to the underlying interaction channel. It also presents the largest possible statis-
tics for a measurement, as no channels are excluded. For these reasons, it is typically the
channel of choice for performing an oscillation measurement, and so is of particular interest
for producing precision cross section measurements. However, there are challenges with
reconstructing the inclusive channel: a wider signal definition means more phase space for
backgrounds as well, the analysis needs to be able to reconstruct a wide range of topologies,
and the modeling of exclusive channels is still important to prevent large systematic errors

through mis-modeling.

2.3 Nuclear Effects

A crucial part of neutrino cross section modeling is bridging the gap between neutrino
interactions with free nucleons imagined in a vacuum, and the complex reality of the many-
body atomic nucleus. While the free-nucleon approximation may function well for simple
atomic targets like Hydrogen, it neglects many nuclear effects in the heavy atomic targets
more frequently seen in modern experiments. To understand where and how cross section
measurements can aid model development, it can help to see what problems these models
have to address. These can be split into two groups: the modeling of the initial state of the
nucleus and its nucleons, including their kinematic distributions and bound states, and the
modeling of the passage of final state particles through the nucleus following an interaction.

Modeling neutrino-nucleus interactions begins with a description of the nucleons’ initial
states, achieved succinctly through the use of a spectral function P(k, E), which gives the
probability that a nucleon struck in a neutrino-nucleus interaction will have initial momen-
tum k and removal energy E [40]. The Relativistic Fermi Gas (RFG) model produces a spectral

function through a simple description of nucleons as a degenerate gas of non-interacting
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particles up to the Fermi momentum kr [41]:

h2
P(k,E) = 6(E+ %kz) (2.5)

This description is expanded on in the Local Fermi Gas (LFG) model, which treats the Fermi

momentum as a function of radius through the nucleon density function p(r) [42]:
3 1/3
kr(r) = (Enzp(r)) (2.6)

Perhaps the simplest model of how a neutrino interacts with the nucleus is the Impulse
Approximation (IA), which assumes that the neutrino interacts with individual nucleons and
that final states produced in this interaction do not interact with the remaining nucleons
in the atom [43]. This ignores the nucleon-nucleon correlations in the initial state (as well
as FSIs after interaction), so as a result models attempt to describe these effects separately
and add them back in. Nucleon-nucleon correlations serve to form bound states within the
nucleus of an atom, through quarks and gluons at short distances, and through pion(s) at
longer distances [44], earning them the name Meson Exchange Current (MEC). These bound
states can affect the distribution of final state topologies, such as through the correlated
ejection of protons and neutrons [45]. One noteworthy effect is the two-nucleon correlation,
called the Two-Particle-Two-Hole (2p2h) interaction [46], as it is the lowest order bound state.
Long distance interactions are particularly important at low and medium energies (Q? <
1GeV), and are described using the Random Phase Approximation (RPA), which condenses
the large number of small interactions between distant nucleons into an overall effective
potential [47]. The nuclear initial state can be probed experimentally through the study of
Transverse Kinematic Imbalance (TKI), which is driven by the kinematics of the nuclear initial
state [48,49]. In total, there is significant focus on accurate modeling of the nuclear initial

state, which makes sense given the large impact it can have on final states and kinematic
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distributions produced.

In addition to nuclear initial state modeling, significant attention is given to an accurate
treatment of final state particles as they travel through the nucleus. A simple but useful
approach is through the hA model, which skips the many interactions between a hadron and
the nucleons and instead uses the total cross section for each nuclear process [50]. Although
this reductive approach has a limited capacity to describe the nuances in nature, it achieves
decent accuracy from a wealth of hadron-nucleus cross section data while allowing for fast
computation and simple re-weighting.

Going beyond the simple hA model, the Intranuclear Cascade (INC) model provides a
description that computes a large number of hadron-nucleon interactions [51} [52]. This
approach simulates interactions probabilistically over steps of length L based on the mean
freepath A = p%' computed from the nucleon density p and the hadron-nucleon cross section
o [53]:

P(L)=e L/* 2.7)

One such INC model is the hN implementation, used in event generators such as Genie
v2.6. Owing to its more detailed modeling, the hN implementation is able to more accurately
describe final state interactions than hA in Genie [50]. The modeling of FSIs is difficult to do
accurately, and event generator improvements are continuously made [54}55], aided by cross

section measurements.
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3 History of Neutrino Experiments

3.1 Discovery

There have been many neutrino experiments performed since the particle’s conception by
Wolfgang Pauli in 1930. They can largely be grouped into four sources of neutrino emissions:
solar, atmospheric, reactor, and accelerator, as well as four main methods of detection:
nuclear emulsion, Cherenkov radiation, scintillation light, and Liquid Argon Time Projection
Chambers (LAr'TPC).

Solar and atmospheric neutrino experiments have led the field to new physics through
the latter half of the 20th century, first with hints of neutrino oscillations from the Homestake
experiment [56], and then conclusive evidence of their existence with Super-Kamiokande [57,
58] and Sudbury Neutrino Observatory (SNO) [59]. Solar electron neutrinos are produced in
the sun as a byproduct of pp-chain fusion reactions, predominantly through the formation
of deuterons and sub-MeV neutrinos, with branches involving “Be and ®B contributing the

majority of higher energy neutrinos [60]:

p+p—iD+e’ +v, 3.1)
"‘Be+e” —Li+v (3.2)
4 3 e .

®B—S%Be+e +v, (3.3)

The presence of electrons in matter alters the Hamiltonian describing neutrino flavor time
evolution. Weak interactions between electrons and sufficiently energetic (>1MeV) electron
neutrinos, known as the MSW effect, or matter effect [61}62], create a potential experienced

by electron neutrinos. The mass eigenstate and thus the oscillation probabilities are changed
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as a result, as these depend on the mass difference (squared) between eigenstates, as shown
in Eq. As aresult, although the sun produces overwhelmingly electron neutrinos, the
flux leaving the sun at high energies such as through the B channel is significantly mixed
between the three flavors, with a P, survival probability of 34%. Low energy neutrinos such
as from the deuteron branch are not effected by the MSW effect, and reach the earth with a
P, survival probability of 60% due to vacuum oscillations between the sun and earth.

The first hint of neutrino oscillations was detected by the Homestake experiment in the
late 1960s. Located deep underground in the Homestake gold mine in Lead, South Dakota,
the experiment counted the rate of neutrino capture on 3’Ar through the measurement of
the resulting 3’Ar:

Ve+3'Cl— 3"Ar+ e~ (3.4)

It wasn’t until 30 years later with the measurements from Super-Kamiokande and SNO that
neutrino oscillations were conclusively proven. Kamiokande II and later Super-Kamiokande
are water Cherenkov detectors [63], which observe the Cherenkov radiation generated by
fast-moving electrically charged particles that exceed the speed of light in water. Kamiokande
IT was able to reconstruct the direction of incident neutrinos from the Cherenkov light
cone generated by high-energy electrons produced by electron neutrino charged current
interactions [64]:

Ve+ X — X' +e” (3.5)

This confirmed the sun as the source of the neutrinos observed in Homestake and Kamiokande
IIL.

Furthermore, Kamiokande II also measured a rate deficit of neutrino interactions when
compared to predicted values using the Standard Solar Model (SSM) [65], affirming the deficit
seen in Homestake. Super-Kamiokande went further, reconstructing atmospheric muon
neutrinos generated from the decay of pions created by cosmic rays. By reconstructing the

direction of the incoming muon neutrinos, Super-Kamiokande demonstrated the existence of
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neutrino oscillations by measuring a relative rate deficit in events entering the detector from
below, caused by oscillations into tau neutrinos over the longer distance travelled through
the earth. Furthermore, adding the tau-like-event measurement to the muon measurement
accounted for the muon deficit, demonstrating the muon-to-tau oscillation directly.

Finally, in 2001 SNO provided definitive evidence of electron neutrino oscillations caus-
ing the solar electron neutrino deficit. Similar to Super-Kamiokande, SNO is a Cherenkov
detector that measured the electron neutrino flux from the electrons produced in the CC
interaction observing the familiar deficit. Additionally, by measuring the neutral cur-
rent interaction rate, which was independent of neutrino flavor, the total neutrino flux was

measured and found to agree with prediction:

Vi+D—p+n+v; (3.6)

Therefore, the deficit of electron neutrinos but agreement in overall neutrino flux showed

that electron neutrinos must be oscillating to other flavors.

3.2 Oscillation Parameter Searches

While solar and atmospheric neutrino experiments are responsible for discovering the ex-
istence of neutrino oscillations, they are not well equipped to measure all of the oscillation
parameters. Probing a given parameter requires an experimental setup within a specific
L/E range, the appropriate source neutrino flavor, and meeting energy constraints to enable
the detection of the particular neutrino interaction of interest. These requirements come
together to motivate human-produced neutrino sources, where the length scale can be freely
set, and, in the case of accelerator experiments, the energy scale can even be chosen.
KamLAND is a reactor neutrino experiment that demonstrates the power in being able
to choose the neutrino oscillation baseline distance. The liquid scintillator [66] detector is

located in Japan near Kamiokande, allowing it to see v, from a total of 55 Japanese nuclear
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reactor cores, with a weighted average baseline of 180 km. Given the solar Am%2 estimate of
7.5x107°eV?, the v, — v, oscillation wavelength/E, is 33 km/MeV. KamLAND estimated
the incident neutrino energy from the positron produced, and observed two full oscillation
periods over the measured energy range, with best fits improving estimates of Am%2 and 012,
in particular resolving the degeneracy of 0, around 45° and confirming the Large Mixing
Angle (LMA) scenario [67].

Going beyond 0, and 0,3, a precision measurement of the mixing angle 6,3 used in
v, — V7 is beyond the scope of solar and atmospheric experiments. The best way to measure
013 without involving 0, or 8>3 (and their uncertainties) in the calculation is through v, — v,
or v, — Vv, disappearance. At an L/E of roughly 0.5 km/MeV, the disappearance probability
from v, — v, is negligible. However, the atmospheric Am3, estimate of 2.4 x 103 eV predicts

maximal v, — v; oscillations, measuring 6,3 via:

2
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where the approximation sin” —7

~ 0 was used to drop the first term, and Amf3 ~ Am_%3 was
used to simplify the second to fully eliminate 6,, dependence through sin? 61, + cos?0;, = 1.

Reactor neutrino experiments are ideal for this search; the v, produced allow for v, — v,
disappearance to be measured. The Daya Bay [68], Double CHOOZ [69], and RENO [70]
experiments all performed this measurement with scintillator detectors in the early 2010s,
generating similar results for a global fit of 6,3 = 8.93° fg:ig [71,[72]. Daya Bay led the series of
measurements, featuring three different detector and reactor locations for weighted baseline

lengths of 360m, 500m, and 1650m. By comparing the measurements of the near detectors

with those of the far detector, a clear v, deficit (before considering oscillations) at the far

23



3 HISTORY OF NEUTRINO EXPERIMENTS

detector was observed, leading to the 6;3 best fit measurement.

Thus far, solar, atmospheric, and reactor neutrino experiments have been explored, and
shown to allow for a wide range of available baselines to effectively measure the different
mixing and mass difference parameters. However, only the atmospheric neutrinos exceed a
few MeV in energy, and these still do not probe the highest energies. Exploring neutrino inter-
actions at high energies can be particularly important for probing the large-mass-splitting
regime for oscillations, as well as for direct detection of v; through the production of 7 parti-
cles, which require GeV energy scales due to its mass. Looking ahead, access to high energy
neutrinos can also be useful for experiments such as DONUT [73] and DUNE [74] that aim to
reconstruct v; interactions.

The motivation to choose the neutrino energy regime in an experiment is clear, and
particle accelerators provide the means to do so. In a particle accelerator, protons are
accelerated using electromagnetic fields to highly relativistic speeds and smashed into a
target. Typically these collisions create charged 7 and K mesons that are focused into a
tight beam via a magnetic horn before creating neutrinos as they decay at rest. A significant
amount of the incident proton’s momentum is transferred to the meson and then the neutrino,
causing it to decay within a cone of a few degrees in width along the beam direction set by
the incoming proton beam and meson focusing horn. Any other decay products are stopped
by matter along the beamline before reaching a neutrino detector, leaving a pure neutrino
beam incident on the neutrino detector.

The T2K experiment [75] uses the freedom allowed in experimental design of accelerator
experiments to simultaneously measure multiple neutrino parameters. A 99.5% pure v,
beam is produced in Tokai, Japan, and sent 295 km to the Super-Kamiokande detector
discussed previously. The neutrino beam reaches multiple GeV in energy, but is purposefully
directed so that the detector is 2.5° off-axis, changing the flux profile to sharply peak at 600

MeV. This achieves the familiar L/E of 0.5 km/MeV to allow for maximal v, — v; oscillation,
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Table 1: Best fit values with uncertainties for each neutrino mixing and mass splitting param-
eter. Source [78].

Parameter Best Fit Value +10
012 (degrees) 33.4810.71
013 (degrees) 8.5270-20
623 (degrees) 422701 or 49.4%5¢
dcp (degrees) 251i§5
Am2, x107° (eV) 7.5070:1
(normal) Am3, x1073 (eV) +2.45810- 0%
(inverted) Am3, x1073 (eV) —2.44825047

allowing T2K to produce high precision measurements of 6,3 and Am§3 [76]. Additionally,
the T2K beamline is so pure in v, that a v, appearance search is possible. This allows for a

measurement of 613 [77] via:

2
9 Am23L

1
Py, .y, = =sin*fy3sin (3.8)

2

Counter-intuitively, the v, — v, oscillation probability does not (to good approximation)
depend on 0, at short distances. This is because Am%2 is so small and thus the oscillations
require a much larger distance; meanwhile Amg3 and Am%3 are similarly large, so that the
oscillation can be thought of as primarily v, — v; — v, rather than the more straightforward
vy — Ve oscillation. T2K was able to measure 28 v, with an expected background of only 11
events, constituting a positive measurement of v, — v, oscillations at 7o and contributing to
the global 613 fit described earlier. Table shows the best fit values for each of the neutrino
mixing and mass splitting parameters.

Particle accelerator experiments have also been able to confirm the v;, — v; oscillations
first found in atmospheric experiments. The DONUT experiment [73] first detected the v,
using the Fermilab Tevatron to generate the high energy beam needed, and used a nuclear

emulsion detector to identify 7 particles indicative of v; CC interactions through the tau’s
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kinked track at the point of decay. Building on this, the OPERA experiment [79] at CERN used
a similar emulsion detector to identify v, interactions originating from a v, beam 732 km
away in Gran Sasso, providing direct evidence of v, — v; oscillations.

Because of their high energies and freedom to choose very short baselines, accelerator
experiments are able to pick L/E values that probe drastically different mass splittings than
the measured Am?, ~ 7.5 x 107°eV? and Am3, ~ 2.4 x 10~3eV?. LSDN was a scintillator
detector built in the 1990s before the three mass splittings were well measured, and used an
extremely short baseline of 30m to probe the Am? = 1eV? region. Surprisingly, it measured
a v, appearance, indicating v, — v, oscillations [80], a result which is in conflict with the
numerous experiments discussed above, as well as cosmological measurements that set a
hard limit of three weakly interacting neutrinos [81]. The three neutrinos discussed thus far,
Ve, Vyu, and vy, allow only two unique mass splittings between them, so a third unique mass
splitting at 1eV? would require a fourth neutrino. Cosmological constraints disallow this new
particle from interacting weakly, so the hypothetical particle is called the sterile neutrino. As
a sterile neutrino is not predicted by the standard model, it falls into the category of proposed
physics Beyond the Standard Model (BSM). Of course there are other potential explanations
for the v, excess observed by LSND, BSM and otherwise; further measurements are needed.

The MiniBooNE experiment was built to investigate the LSND anomalous measurement
using the Fermilab Booster Neutrino Beam (BNB) and a Cherenkov detector. Using a different
beamline, energy range, and detector type, MiniBooNE would represent a fully independent
measurement to corroborate or reject the LSND data. MiniBooNE did find an anomalous
excess in v, appearance, particularly at low energy below 600 MeV, now dubbed the Low
Energy Excess (LEE). Together, the MiniBooNE and LSND measurements represent a 6.1c
disagreement with the standard model [82]. Either there are significant errors in the modeling
used in these experiments, such as in the rate of background pion decays appearing as

electrons, or there is some new physics explanation such as a sterile neutrino. A sterile
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neutrino could explain the excess through the oscillation v, — v — v, adding to the small

rate of direct v, — v, oscillations predicted.

3.3 Overview of Detector Types

Investigating the Low Energy Excess of MiniBooNE is one of the primary goals the Micro-
BooNE experiment [83]. To explain how MicroBooNE can provide new information despite
using the same Fermilab BNB beamline as MiniBooNE and a very similar L/E, 470 m instead
of 500 m, the differences in detector types must be discussed. As mentioned earlier, most
experiments use either nuclear emulsion, Cherenkov radiation, scintillation light, or LArTPCs
to detect neutrino interactions. Nuclear emulsion uses a photographic plate coated in photo-
graphic emulsion, capable of detecting high energy ionizing particles with sub-micrometer
resolution [84]. By stacking plates, a full 3D image of particle trajectories can be created. This
high resolution imaging was particularly helpful for the DONUT and OPERA experiments in
identifying the complex event topologies of energetic tau neutrino interactions. However,
the emulsion approach has a few drawbacks. First, although the positional resolution is
spectacular, there is no direct calorimetric information available for use in determining the
energies involved. Additionally, the technology struggles to scale well; although a single plate
of emulsion may not be too expensive to purchase or later to analyze for data, the technology
struggles to maintain practicality for use in modern kiloton+ size detectors.

Not mentioned thus far are bubble chambers, which face similar advantages and draw-
backs to emulsion detectors. The detector volume is filled with superheated liquid which
vaporizes in the presence of highly energetic particles, creating a precise record of the particle
trajectory when photographed by cameras around the detector [85]. Similar to emulsion
detectors, they face difficulties in scaleability, both in analyzing the images produced, and in
maintaining the large volume of superheated liquid, often liquid hydrogen.

By comparison, Cherenkov and scintillation detectors are scaleable, making them the
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chosen detector type for many of the experiments discussed. As discussed earlier, Cherenkov
detectors utilize the reduced speed of light in a medium such as water to produce Cherenkov
radiation. This light travels outward in a cone coaxial with the direction of motion of the
radiating particle, and is detected by photo-multiplier tubes (PMTs). This allows the par-
ticle’s trajectory and point of origin to be roughly determined, but with far less accuracy
than emulsion detectors. As a result, it can be difficult to distinguish between different
particle signatures, such as electromagnetic showers originating from electrons or photons.
However, Cherenkov detectors can be built to be extremely large, such as in the case of
Super-Kamiokande, and are able to reconstruct the energy of the radiating particle involved.

Scintillation detectors produce light through a different mechanism than Cherenkov
detectors, but similarly detect it with PMTs. Scintillating material throughout the detector
can become energized by the passage of ionizing particles. The scintillating material will then
emit photons of its own after a short period of time, generating a trail of where the ionizing
particle traveled. Like Cherenkov detectors, scintillation detectors are capable of measuring
the energy of the ionizing particles involved, aiding in the physics analysis. It is even possible
to combine these detector technologies, such as in LSND, which measures the Cherenkov
and scintillation light produced. However, the spacial resolution of scintillation detectors is
still far inferior to that of emulsion detectors.

There is a clear trade-off between the precision of emulsion and bubble chambers, and
the scaleability and calorimetry of scintillators and Cherenkov detectors. As a relatively
new detector type to neutrino physics, the LArTPC offers many of the benefits of each of
these detectors all in one. High energy ionizing particles, such as those produced from
neutrino interactions, leave a trail of detached electrons as they travel through the liquid
argon detector [86]. An applied electric field across the detector draws the electrons towards
the cathode, where multiple (often three) stacked wire planes detect the presence of passing

electrons through current induced on the wires. The wires of each plane are arranged at
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an angle to the other planes, so that while a single plane only provides information along
one spatial direction, combined they can give an accurate 2D picture. The initial neutrino
interaction time is known through the use of PMTs which observe the prompt light flash
generated. The interaction time is combined with the time information of the induced wire-
plane currents to project the charge measurements to a 3D location based on the known drift
velocity.

The 3D images produced by LArTPCs are not quite as accurate as emulsion detectors, but
still offer millimeter level resolution, which makes is possible to clearly identify many particle
topologies and decays. To add to this, the number of electrons ionized is proportional to
the energy deposited, meaning that the LArTPC is a highly effective calorimeter. This can
be useful for big picture physics goals such as measuring the total neutrino energy, as well
as for smaller tasks such as identifying particles and their directionality by measuring the
rate of energy deposition along a particle track. LArTPCs are also practical for large-scale
experiments, as the argon required is not overly expensive, and the number of wires in a
plane (and associated electronics) scales with the detector length not the detector volume. As
arelatively new detector type, perhaps their largest potential drawback is the challenge posed
in fully reconstructing highly accurate 3D images from the raw current waveform recorded.
However, this is a task that has now been accomplished to a high degree of success, paving

the way for future analyses.
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4 The MicroBooNE Experiment

4.1 Primary Goals

The MicroBooNE experiment was designed with three primary goals: investigate the LSND
and MiniBooNE Low Energy Excess (LEE), provide research and development experience on
building large scale LArTPCs, and produce a wide range of neutrino-argon cross sections.
While the MiniBooNE LEE measurement achieved a high statistical significance, it struggled
to produce a pure event selection, as NC 7° events dominated the v, signal, shown in Fig.
Because of the high background, mis-modeling of the 7° background prediction beyond its
uncertainty could have a significant impact on the measured tension with the standard model.
The MicroBooNE experiment took data over 5 years, or runs, from 2015 to 2021, and addresses
this ambiguity by using a LArTPC detector. Unlike the MiniBooNE Cherenkov detector, it
is able to differentiate electron showers from the 7° — yy decay. MicroBooNE investigated
the LEE region under both CC v, and NC 1y hypotheses, disfavoring both explanations
as sole explanations for the MiniBooNE LEE [83,[87]. This leaves the interpretation of the
MiniBooNE LEE unclear, with candidate explanations including potential mis-modeling as
described earlier, potential BSM interpretations beyond the single sterile neutrino case, or a
combination of multiple factors.

MicroBooNE has also contributed to the field of neutrino experiments through the insight
gained in building and running the experiment. The field of accelerator neutrino physics has
embraced the LArTPC detector in recent years, with all three Short Baseline Neutrino (SNB)
program experiments and the upcoming DUNE experiments using LArTPC detectors. In this
context, the MicroBooNE experiment is an important pioneer of the technology. MicroBooNE
is the first large-scale LArTPC to use cold electronics to significantly reduce the noise intro-
duced in wire-plane readouts. Additionally, MicroBooNE dealt with multiple unexpected

challenges such as dead wires across the three wire planes. As a result of encountering these
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Figure 2: The MiniBooNE CCQE v, measurement over E?E using 12.84 x 10%° POT, as pub-
lished in

issues, future LArTPC design has been improved to greatly reduce their risk of occurrence, or
otherwise mitigate the challenges they present. On the software side, the development of
MicroBooNE analyses has resulted in numerous advances to the field that can be applied to
similar tasks in future LArTPC experiments.

To date, MicroBooNE has collected the largest data set of neutrino-argon interactions,
enabling a large suite of cross-section measurements. Key to these measurements is the
LArTPC detector technology, featuring precision spacial resolution and calorimetry to enable
strong particle identification capabilities. In turn, this enables the reconstruction and high-
efficiency event selection for many topologies. Furthermore, MicroBooNE can leverage
its long-term exposure to both the BNB and NuMI beamlines at Fermilab, granting high
statistics for both electron and muon neutrinos. As discussed earlier, these cross section

measurements help advance the field by guiding the path for model development. Moreover,
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since MicroBooNE analyses report cross sections on argon, the same detection medium used
in SBND, ICARUS, and DUNE, the cross section measurements at MicroBooNE are especially

valuable to the suite of upcoming US-based accelerator neutrino experiments.

4.2 The Booster Neutrino Beam

Fermilab Accelerator Complex

Main Injector
Recycler Ring

Low-Energy —
Neutrino
Experiments

High-Energy
Neutrino
Experiments

Fixed-Target
Experiments,
Test Beam
Facllity

Experiments

Figure 3: The Fermilab accelerator complex. MicroBooNE uses the Booster Neutrino Beam,
labeled here for Low-Energy Neutrino Experiments.

The MicroBooNE experiment is situated along the Booster Neutrino Beamline at
Fermilab. The Fermilab accelerator complex consists of the Ion Source, Linear Accelerator
(Linac), Booster ring, and in the case of the Neutrino Main Injector (NuMI) beamline, the
Main Injector and Recycler, as shown in Fig.|3| The neutrino beam is produced through the

acceleration of protons in several stages. First H™ ions are accelerated to 750keV at the Ion
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Source before reaching 400 MeV in the Linac. Before entering the Booster, the electrons are
stripped off with a carbon foil, leaving a proton beam. The Booster is a 474 m circumference
synchrotron capable of accelerating protons to 8 GeV. A kicker magnet creates 1.6 us spills of
~ 4 x10'? protons at a time to be sent to the Booster Neutrino Beamline. Two toroids measure
the beam flux with a 2% margin of error, and magnets focus the beam into a ~ 1 mm wide
column through a beryllium target.

The MicroBooNE flux prediction uses the flux prediction for MiniBooNE [89] updated to
the MicroBooNE detector location [90]. The p-Be interactions at the target produce mainly
n* and K, but also include p, n, and KB. The target is located inside a toroid called the horn,
which uses its magnetic field to focus particles of the preferred sign, and de-focus particles
of the opposite sign. When run in Forward Horn Current (FHC) mode, it focuses positively
charged particles which later decay to neutrinos in a 50 m long decay pipe filled with air, while
alternatively in Reverse Horn Current (RHC) mode it focuses negatively charged particles to

produce anti-neutrinos on decay:

TV 4.1)

K" —u"v, or n7mg

K™ —u v, or n my (4.2)

Notably, muon decay produces different neutrinos than the type selected by the FHC or RHC
mode, constituting a contamination to both oscillation measurements through intrinsic v,

in the beamline, and cross section measurements through an (anti-)neutrino background:

pt—e Vv,
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B —e vV (4.3)

At the end of the decay pipe, a concrete absorber stops non-neutrino particles so that a
pure neutrino beam reaches the MicroBooNE detector 470 m past the beryllium target. The
neutrino flux at MicroBooNE is estimated to consist of 93.6% v, 5.68% Vv, 0.52% v, and

0.05% Vv, shown per POT and as a function of neutrino energy in Fig.
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Figure 4: The absolute neutrino flux prediction through the MicroBooNE detector as calcu-
lated by the beam simulation. Shown is the flux for v, v, v¢, and v, averaged through the
TPC volume with dimensions 2.56 m (x) x 2.32m (y) x 10.36 m (z). Source: Booster Neutrino
Flux Prediction at MicroBooNE [82]

4,3 The MicroBooNE LArTPC

The MicroBooNE detectorisa2.56 m (x) x 2.32 m (y) LA'TPC with an 85 tonne fiducial volume,

encased in a cylindrical cryostat for a total mass of 170 tonnes of liquid argon. The cryostat
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maintains a sealed environment of liquid argon (86 —-89K) at 1.24 bar of pressure, and contains
the cold electronics, field cage, cathode, and anode plane assemblies. A voltage of —70kV is
applied to the cathode plane to generate a nearly-constant electric field of 273.9V/cm across
the 2.56m drift dimension (x axis). A series of three wire planes are located at the anode
to detect the drift of electrons dislodged by ionizing particles, and an array of 32 PMTs are
arranged behind the wire planes to detect prompt scintillation light. The detector is aligned
along the neutrino beam (z axis) to present the longest possible dimension to image the

trajectories of particles generated in neutrino interactions.

4.3.1 Liquid Argon Physics

The detector uses argon as the target mass for neutrino interactions for multiple reasons.
First, as a noble gas, or rather noble liquid, it is chemically inert. This allows free electrons
liberated by ionizing particles to drift through the argon medium without recombining with
an argon atom. In fact, even slight impurities in the argon can drastically reduce the free
electron lifetime. However, the MicroBooNE LAr purity achieved is quite high, allowing for
a mean electron lifetime of 18 ms under the 273.9V/cm electric field [91]. A long lifetime
means that more electrons will reach the wire planes for a stronger signal and more reliable
detection of energy deposited in the detector. Argon is used instead of other noble gases
because it is both heavy, providing more target nucleons to generate a larger v-Ar cross
section, and relatively cheap to produce, owing in part to the fact that it is the third most
abundant element in the atmosphere, comprising ~ 1%. Finally, argon acts as an excellent
scintillator [92], which makes the detection and identification of neutrino interactions much
easier through use of the light detection system.

In v-Ar interactions a significant amount of energy is transferred to the final state particles.
Energetic electrically charged particles (7%, u, p, e) ionize argon atoms as they travel through

the argon medium, producing positive argon ions and free electrons. This ionization deposits
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dE

energy into the LAr, and the energy deposition per unit distance 4 is well described by the
Bethe-Bloch equation [17]:
dE Z 1 [1. 2m.c?B>y*W, 5(By)
——)=Kz?=— |Z-In=—¢ max _pr - ——- 4.4
Y i Ph 2 == @4

In this equation, K is a coefficient derived from the electron mass and volume (~ 0.307
MeVcm?/mol), z represents the incident particle’s charge (+ 1), Z represents the atomic
number (18 for Ar), Arepresents the atomic mass (~ 40 g/mol for Ar), y represents the Lorentz
factor, c represents the speed of light, § represents the velocity divided by ¢, m, represents
the electron mass, W,,,, represents the maximum possible energy transfer to an electron
in a single collision, I represents the mean excitation energy, and 6 (fy) represents a density
effect correction to ionization energy loss. Fig.|5[shows the energy deposition rate over the
range of energies observed in MicroBooNE.

Of particular interest is the so-called “Minimum ionization" region, where the energy
deposition rate is largely flat as a function of energy, and low compared to the overall particle
energy (< 1%). This means that particles in this region, called Minimumly Ionizing Particles
(MIPs), can traverse a large distance while depositing a roughly constant amount of energy.
Once an ionizing particle loses enough energy, its energy deposition rate increases, causing
the particle to abruptly stop over a few centimeters as it deposits its remaining energy at a
high rate, known as the Bragg peak. The minimumly ionizing region and Bragg peak are useful
both for calibrating the detector response and identifying particle type and directionality. In
contrast to the ease of ionizing particle detection, neutrally charged particles leave no trail

through the detector, and can usually only be spotted upon decay (such as 7° — yy) if at all.

4.3.2 Recombination

Directly following the ionization of an electron, there is a relatively high chance of recapture

by a nearby Ar* ion, called recombination. By representing the fraction of electrons that
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Figure 5: Mass stopping power (d E/dx) for positive muons in copper as a function of fy =
p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in kinetic
energy). Solid curves indicate the total stopping power. Vertical bands indicate boundaries
between different approximations. Source: Passage of Particles Through Matter from the
Particle Data Group [17].

survive recapture through the recombination factor R, the deposited energy % can be related

to the ionized charge through:

2 Hion 22 @.5)
where W;,, = 23.6eV represents the energy required to ionize an argon atom. Under the
columnar model, recombination includes a significant bulk effect from the roughly cylindrical
distribution of Ar* ions left in the trail of an ionizing particle [93]. The box model assumes a
constant charge density from Ar* ions within a box region, and predicts the recombination

factor as:

Rpor = ——Ina + p2E) 4.6)
Box = BdErdx) 0 Pdx '
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where a = 1 is theoretically motivated and f is fit as a free parameter. However, given the
assumptions made in this model, it fails to accurately describe reality at low dE/dx, so a

modified box model is used where « is fit to 0.93 and f is fit to 0.3 cm/MeV.

4.3.3 Diffusion

LArTPCs detect ionized electrons in the detector volume after it has drifted to the anode plane.
Ideally, this drift occurs in a uniform manner, with a constant drift velocity v; = 1m/ms
perpendicular to the anode plane. Then, simply multiplying the drift time ¢ by the drift
velocity would determine the location along the x-axis where the charge originated. However,
in practice there are two significant real-world effects that must be considered for accurate
charge reconstruction. First is the effect of diffusion, where the charge spreads out in a
cloud over time from the pseudo-random walk of each particle. Because of the applied
electric field, however, there is a preferred direction for electrons to drift, and so diffusion is
parameterized by separate constants D; and D7 for the longitudinal and transverse motion
respectively. Through the electron mobility p, the diffusion parameters can be computed

from an extension of the Einstein-Smoluchowski relation [94]:

o kT
r=—
p, = kL +E6“) 4.7
L= OE )

where kT is the electron temperature and e is the electric charge. The diffusion parameters
control the rate at which an electron cloud grows, smearing the resolution from transverse

diffusion and widening the signal pulse from longitudinal diffusion:

o2(t) = o2(0) + (@) t (4.8)
Va
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The passage of an electron past each wire plane motivates the non-zero width at ¢ = 0 of

02(0) ~ 1.6 us.

4.3.4 The Space Charge Effect

While the discussion of ionization charge so far has focused on electrons, as they are the
particles detected at the anode, it is also important to consider the impact caused by Ar™
residing in the detector. Eventually Ar* ions will drift to the cathode and leave the fiducial
volume; however, because of their much larger mass, they drift much slower and remain in
the detector for an appreciable amount of time. Because the MicroBooNE detector is located
on the Earth’s surface and observes a significant flux of ionizing cosmic radiation, Ar* ions
are constantly being generated throughout the detector, not just from neutrino interactions.
The steady state background resulting from the roughly uniform production of Ar* ions
and constant drift velocity towards the cathode is a linearly increasing charge density as you
approach the cathode. This steady state is called space charge, and the impact that it has
on electron drift through distorting the electric field lines in the detector is called the Space
Charge Effect (SCE).

Since the positive space charge attracts negatively charged electrons, the SCE is seen
primarily as pulling tracks towards the center of the detector. This creates an effective
detector boundary, where charge ionized on the actual detector boundary will pass through
the wire planes and be reconstructed inward of this boundary. Since the space charge
distortions build over time (and therefore over drift distance), the effective detector boundary
is largely unchanged near the anode, and becomes increasingly distorted towards the cathode.
The effect was measured empirically by studying cosmic ray muons that cross the detector
boundary, ionizing charge up to the true detector edge. The observed cutoff of these tracks,
measured over a large sample, generates a reliable mapping from the effective to true detector

boundary [95], as seen in Fig. 6| This mapping is especially important for dedicated cosmic
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ray identification algorithms that leverage precision knowledge of the detector boundary.
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Figure 6: The effective detector boundary (black lines) at the four corners on the cathode
side of the detector. The color scale shows the density of cosmic-muon charge clusters in the
detector. Source:

4.3.5 Charge Measurement

MicroBooNE has three wire planes located at the anode that serve as its primary particle
detection instruments. The wire planes are flush with each other, with a 3mm spacing
between planes as well as a 3mm pitch between wires on each plane [96]. When viewed
along the drift dimension, the wires of different planes intersect at 60° angles, forming
equilateral triangles. The first two planes in the path of drift electrons, labeled “U" and “V"
respectively, each consist of 2400 wires at £60° angles with the vertical, while the final “W"
plane (sometimes called the “Y" plane) consists of 3456 wires oriented vertically.

The “U" and “V" planes are held at =110V and 0V respectively, and measure current
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induced by the passage of electrons past them, earning them the name of induction planes.
The “W" plane has a voltage of 230V, drawing electrons onto it and giving it the label of
collection plane. The signal measured on induction planes is bipolar as a result of electrons
passing by them, while the signal on the collection plane is uni-polar. Since bipolar signals
with a slight time offset interfere destructively, the collection plane is capable of producing
more reliable charge measurements. Additionally, the “U" plane is exposed to variations in
the voltage at the cathode while shielding the “V" and “W" planes behind it, making it the
least reliable of the three planes.

The MicroBooNE detector uses a cold electronics system to amplify the current signal
measured on the wires [96]. This is achieved using Application Specific Integrated Circuits
(ASICs), with a gain of 14 mV/{C. By operating within close proximity to the wire planes and
at liquid argon temperatures, the noise experienced in the electronics system is significantly
reduced. This is crucial for enabling a low charge detection threshold, and is a significant
advancement to the field of LArTPC design pioneered by MicroBooNE. After the signal is
amplified by the cold electronics, it is sent outside the cryostat and digitized using a Data
Acquisition system (DAQ). Current measurements are sampled at 2 MHz by the Analog-to-
Digital Converter (ADC), creating a time tick interval of 0.5 us.

Through de-convolution of the current measured on the wires of a plane, the time and
1D location of passage of electrons along the wire plane (perpendicular to the wire length) is
determined, as shown in Fig.[7| By combining this information across two or more planes,
the electron’s 2D location of passage on the wire plane can be determined. In the case of
MicroBooNE, the use of three wire planes gives a level of redundancy for a more accurate
position measurement. Full 3D positional information is later achieved by determining the
drift time from the time of passage and the time of interaction as measured through the light
system, and then multiplying by the drift velocity.

For MicroBooNE’s electric field of 273.9V/cm, the electron drift velocity is approximately
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Figure 7: Diagram showing how charge is measured using the wire planes in a TPC.

1 m/ms, with a total drift time from cathode to anode of 2.3 ms, called the drift window. The
full readout window is 4.8 ms long, comprised of three 1.6 ms windows corresponding to
the expected drift window time at a nominal voltage of 500V/cm (which MicroBooNE was
unable to fully achieve). The readout window begins one 1.6 ms window before the beam
spill and continues a further two nominal drift windows to help with cosmic ray detection.
Any charge measured within one drift window of a BNB beam spill could potentially be the
result of a neutrino interaction, allowing for a significant cosmic ray background as a result
of the inherently slow drift velocity of electrons. On average, there are 20-30 cosmic rays
in each drift window, with only one neutrino per ~ 600 beam spills. Reducing this source
of background is the primary goal of the PMT light system, which measures the prompt

scintillation light released by Ar following a neutrino interaction.
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4.3.6 Light Collection System

The passage of ionizing particles through argon can create two excited states, 12; and 32; 92].
These decay with half-lives of ¢ = 5ns and 73 = 2.1 us, emitting a photon at 128 nm that LAr is
optically transparent to. As a result, ionizing particles created in a neutrino interaction create
a signature of prompt Ar scintillation light with two decay widths that is easily detected.

An array of 32 PMTs is arranged behind the anode plane to capture this scintillation light,
with a digitized time resolution of 15.6ns. Each PMT first has a plate coated in tetraphenyl-
butadiene, which absorbs the 128 nm scintillation light and re-emits light at ~ 425nm, which
the PMT photocathode is sensitive to. Through the photoelectric effect, photons striking the
photocathode eject electrons [97]. These cascade toward the anode, increasing the strength
of the signal measured, given in units of Photo-Electrons (PEs). The precision timing of
the PMT system allows for timing of ionizing particles to be determined to a much higher
resolution than either the TPC drift window (2.3ms) or the BNB beam spill (1.6 us). After
matching a PMT light flash to a TPC charge cluster, its 3D position and time of origin can be
well determined for use in event selection.

The PMT array collects data over a 23.4 us window for each neutrino beam spill reported
by the Fermilab accelerator division. Combined with the 4.8 ms TPC readout window, this
selective data taking in sync with beam spills is called the hardware trigger. However, the
hardware trigger alone is not selective enough, as only 1 in 600 beam spills contain a neutrino
interaction. A software trigger is also applied, which rejects data taken from any readout
window that contains less than 9.5 PEs of energy, as measured by the PMT array. Together,
the hardware and software triggers greatly reduces cosmic ray background contamination in

event selections, and greatly reduce the amount of information storage required.
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5 Wire-Cell Event Reconstruction

The MicroBooNE collaboration has developed three separate analysis chains to reconstruct
and select neutrino events inside the detector. This analysis is based on the Wire-Cell recon-
struction, which takes a philosophy of preserving as much information as possible through
the reconstruction chain. Sec.|5.1{describes the process of computing charge measurements
from the current readout on wires through a 2D deconvolution algorithm that leverages the
correlated info across wires. Sec. describes the process of combining charge measure-
ments across wire planes to form a fully 3D representation of the measured charge, followed
by steps that cluster this charge into fully-connected interactions. The 3D charge clusters
are used in a global fit of charge clusters to light flashes, described in Sec. Then, Sec.
describes how these charge clusters are parsed through the use of a graph-based framework
that allows for accurate determination of particle trajectories and energy deposition rates.
Together, these algorithms serialize the information-dense raw data produced in the LArTPC
into a high-level description that contains a vast amount of the salient features of the data,
leading to the overall particle flow diagram and neutrino vertex identification in Sec.
This forms the foundation on which the selection algorithms in Sec. [6| rely to produce a
high-quality neutrino selection. The algorithms described in this chapter each represent ad-
vancements in the field of LArTPC reconstruction tools, and together comprise the Wire-Cell
reconstruction chain, which has pioneered a maximally-information-preserving technique

of event reconstruction.

5.1 Signal Processing

Signal Processing covers the steps involved in taking the raw current measurements on the
LArTPC wires and producing a measurement of the charge that passed by each wire. This
is roughly split into two parts: the modeling of the electric field response in the presence of

moving charge, described in Sec.|5.1.1} followed by the extraction of the charge distribution
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from the convolution of the current measurement with the detector response, described in
Sec. Wire-Cell builds upon existing techniques by developing a 2D deconvolution algo-
rithm that uses the combined current measurements across nearby wires to more accurately
determine the charge signal at each wire. This is a substantial advancement to the field, and
the technique has since been adopted by all MicroBooNE analyses. As the beginning of the
reconstruction chain, improved extraction of the charge distribution allows for more accurate

particle reconstruction at all stages downstream.

5.1.1 Field Response

To convert the measured current signals on each wire to accurate charge estimates, it is
important to precisely describe the field response generated on each wire by drifting electrons.
This relation can be found by considering the electric field along the length of a wire, as
produced by an electron and across the electron’s drift path. However, it is simpler to use
newton’s 3rd law to instead consider the electric field produced by a wire, E(F). This is
achieved by simulating the field response in the MicroBooNE detector with the Garfield [98]
software package. A 2D simulation was used, shown schematically in Fig.|8, in which a range
of 10 wires on either side of the wire of interest were used for each of the three wire planes. To
compute the electron drift path, the electron was simulated with a starting position 10cm
ahead of the “U" plane, across a range of transverse starting locations, each 0.3 mm apart.
The simulated drift path and electric potential at each location are shown in Fig[9]

Electron drift 7; in LArTPCs is slow enough to allow for a quasi-static approximation,
under which Ramo’s theorem [100] describes the current i(7) induced by an electron cloud of

charge g as a function of the drift velocity and the electric field of a wire at unit potential:

i(F)=—qE(F)- vy (5.1)

From combining Eqn. [5.1]with Fig.[9} a few key insights can be made. The drift paths and
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Figure 8: Illustration of the 2D Garfield simulation scheme (dimensions not to scale), where
black dots indicate individual wires. MicroBooNE’s anode plane-to-plane spacing is 3 mm,
with 3 mm wire pitch in each plane. The inset denotes the sub-pitch designation of electron
drift paths whereupon the field response is calculated. Source: [99]

potential maps suggest a significant difference in current induced between charge incident
on a wire, and charge originating at a location equidistant between two wires. This difference
is shown in Fig.[10l Moreover, there is significant current induced on the wires in the local area
beyond the closest wire. These effects are plane dependent, with the un-shielded “U" plane
experiencing the largest impact from distant charge, both in the transverse and longitudinal
directions.

These effects combine to create significant differences in wire response based on the
larger topology of the ionized charge. Shifting focus beyond a single point of drift charge, the
full 3D structure of a cluster of charge can impact how overall current signals are measured,
and how charge can be reconstructed. For simplicity (and largely adhering to the reality
of particle trajectories), a linear charge distribution is considered, which is defined by two
angles. 0, describes the direction within the xz plane, with 0° corresponding to the beam

direction z and 90° corresponding to the drift direction x, while 6 is the angle off of the wire
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Figure 9: A demonstration of electron drift paths in the applied electric field (panel a) and
weighting potentials (panels b, c, d) on individual wires of the 2D MicroBooNE TPC model, us-
ing the Garfield program. The x-Axis is in the drift field direction and the z-Axis is in the beam
direction. Values for the weighting potential are indicated in percentage on each equipoten-
tial line, ranging from 1% for the farthest to 60% for the closest illustrated. Source: [99]

direction y (not to be confused with the overall detector vertical dimension y).
The current induced from a 1 m MIP track is shown in Fig.[11|for various configurations of
0., and 0,,. There are three extreme cases to consider. First is the isochronous track, consid-

ered in Fig.[11p, where 6, = 0 and all ionized charge arrives at the wire planes simultaneously.
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Figure 10: Induced current from a center path (incident on sensing wire) and boundary path
(1.5mm transverse offset, equidistant between wires) of one drifting ionization electron for
the three wire planes. The Y-axis is the integrated charge over 0.1 ps intervals. Source: [99]

In this case, long-range electric field effects are important across all wires, especially those
in the induction plane. However, time-based cancellation effects on bipolar signals do not
play a role. The next case is the prolonged track, where 0, = 90°. In this situation, there is
maximal destructive interference in the induction plane wire signals resulting from charge at
different time offsets. As a result, it can be particularly difficult to accurately measure charge
on the induction planes.

Finally, there are aligned tracks, where a track is (nearly) parallel with the wires of a
particular plane, although of course this can never happen to multiple planes simultaneously.
In this case, the aligned plane is useless at determining the distribution of charge along the
particle trajectory, leaving the job to the other two planes. This can make successful trajectory

fitting in Sec. |5.4]difficult, and can be particularly problematic when the aligned wire plane is
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Figure 11: Simulated baseline-subtracted MicroBooNE TPC signals for a 1 meter long MIP
track (~ 4400 ionization electrons per mm). Detector physics effects and the nominal Micro-
BooNE electronics response [101] were included. Left: the track is traveling perpendicular
to each wire plane orientation (6, = 90°) with 0, varying in the xz plane with respect to
the z-axis. Right: the track is isochronous (6, = 0) with 6, varying with respect to the wire
orientation. Source: [99]

the collection plane and the induction planes’ signals suffer from destructive interference
or high noise (such as from the cathode), or when one or more of the required planes suffer

from dead wires in the region. These difficulties will be discussed in more detail in Sec.
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5.1.2 Charge Measurement

With the induced current across wires accurately modeled, it is time to compute the un-
derlying charge distribution for a given current measurement on each wire. The current
measurement M(t') can be seen as a convolution of the desired charge signal distribution
S(t) and the detector response R(t, t'), which maps the current measurement at some time t’

to an element of original charge signal at time t:

o0

M(t) = fR(t,t’)-S(t)dt
= fR(t'—t)-S(t)dt (5.2)

where the time invariance of the response function has been asserted in the second line.
Inverting this relation to solve for S(¢) involves the method of deconvolution, and has been
performed in 1D in previous LArTPC experiments [102]. This is achieved by taking the Fourier

transform to express the relation across the angular frequency w, and then solving for S(w):

_ M()

S(w) = R@)

(5.3)

The charge signal distribution over the time domain S(#) can be obtained by simply applying
the inverse Fourier transform to S(w).

This straightforward procedure encounters a couple of difficulties from real-world con-
siderations. First, the measured current contains noise from the electronics [103], and the
mathematical solution R(w) to the Fourier transform ignores practical limitations of detector
equipment, by which R(w) — 0 atlarge w. This necessitates the introduction of a filter func-

tion F(w) to modify the effective detector response description by attenuating high-frequency
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noise and respecting the limitations of a realistic detector:

_ M()
S(w) = g F©) (5.4)

The filter function used is derived from the Wiener filter [104], which suppresses regions

of high expected noise N?(w) relative to signal strength S?(w):
R?(w)S?(w)

Fy (w) = (5.5)
R?2(w)S?(w) + N?(w)

The Wiener filter has the advantage of maximizing the signal-to-noise ratio with minimum
mean-squared-error of the deconvolved distribution. However, the Wiener filter does not
conserve the overall charge signal measurement (i)i_r% Fy (w) < 1), and smears the distribution
non-locally over the time domain (and therefore the drift dimension). To prevent these issues,

a Wiener-inspired filter is used:

F(w) = (5.6)

where a and b are free parameters, and the function F(w) is fit to the Wiener filter Fy (w). By
setting F(w = 0) = 0, the filter removes any DC component of the current measurement, while
i)i_% Fy (w) =1 ensures that the overall charge normalization is not affected. The decaying
Gaussian tail suppresses non-local smearing effects on the distribution of charge.

The procedure as presented so far is mathematically valid for extracting the signal charge
from the current measurement on a wire-by-wire basis. However, it does not include the
current information from nearby wires, which has been shown to be significant. Under real-
world conditions, with noise and measurement uncertainty, as well as destructive interference
on induction planes, the additional information measured on nearby wires is particularly

helpful for an accurate charge measurement.
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The information from nearby wires can be incorporated by redefining the measured
current M;(t') on wire number i at time ¢’ as a sum of charge distributions S; ; j(1) associated
with their closest wire, over the 2k + 1 local wires j € {—k,..., k} (as well as the convolution

over time domain):
o0

M;(t") = f

—00

k
Y. Rj(f'—1)-Sivj(n)dt (5.7)
j=—k

This essentially represents the measured current as a 2D convolution, over both time and

wire number. As before, applying a Fourier transform solves the convolution in time:

k
M) = ) Rj()-Si+j) (5.8)
j=—k

What s left is a system of linear equations, and can be simplified by asserting that the response

function should be symmetric in wire number (R-;(w) = R;j(w)):

M (w) Ry(w) Ri(w) Rp2) Rpy-1(w) S1(w)
M (w) Ry (w) Ro(w) Rp-3(w) Rp—2(w) S2(w)
= : : .. : : (5.9)

M, 1 (w) Ry, 2(w) Ry 3(w) Ry(w) R (w) Sp-1(w)

My (w) Ry 1(w) Ry Ri(w) Ry (w) Sn(w)

where Rj(w) should be 0 for any j > k corresponding to the response function for charge
outside the local region of a wire.

Since the matrix R is symmetric and Toeplitz (meaning that each diagonal descending
from left to right has all elements equal), the matrix inversion can be computed using a
discrete Fourier transform [105]. Fig.[12|shows the resulting charge signal extracted before
and after both 1D and 2D deconvolution, highlighting the sensitivity to signal topology and
the robust performance of the 2D deconvolution.

In theory, the deconvolution in time could be performed over the entire readout window.
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Figure 12: A neutrino candidate from MicroBooNE data (event 41075, run 3493) measured on
the “U" plane. (a) Raw waveform after noise filtering in units of average baseline subtracted
ADC scaled by 250 per 3 us. (b) Charge spectrum in units of electrons per 3 us after signal
processing with 1D deconvolution. (c) Charge spectrum in units of electrons per 3 us after
signal processing with 2D deconvolution. Source: [99]

However, this would be a slow process, and more importantly leave the deconvolution
vulnerable to low-frequency noise. The wider a time window used, the longer the period of
noise allowed through a Fourier transform. In theory, a high-pass filter could be applied to
suppress this noise similar to how the Wiener filter suppresses high-frequency noise, however
this could destroy real charge information, as well as smear the calculated charge distribution.
Instead, a Region of Interest (ROI) is used, which is a time interval surrounding each period
of current measurement on a wire. The deconvolution is only performed within this time

window, avoiding sources of noise outside the ROI and corresponding to low-frequency noise.
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5.2 Tomographic Imaging

The goal of imaging is to tomographically reconstruct a fully 3D distribution of charge from
the charge measurements across each wire plane as a function of time. Moreover, this recon-
struction should be topology independent and preserve as much of the physical information
captured in the wire measurements, so as to allow for the widest range of accurate particle
reconstruction and event selection downstream of imaging. After a 3D distribution is con-
structed, it is useful to group charge into connected components called clusters, ultimately
so that a single interaction is fully grouped as one cluster. This allows downstream algorithms
to be written without having to significantly consider whether the scope of charge considered
is too wide or too narrow, allowing for efficient high-level feature extraction.

These goals are made difficult by some of the limitations in LArTPC capabilities, as well as
imperfections of the MicroBooNE detector. Typically, tomography is performed by combining
many lower dimensional projections to reproduce the original image, such as in medical
applications including MRIs and CT scans. However, in the case of LArTPCs, only three
projections corresponding to the three wire planes are available. This makes reconstructing
an image more difficult, and in general even with perfect information no unique solution
mapping from wires to 3D charge exists. It is also possible to reconstruct so-called ghosts,
where a coincidental intersection of wires with simultaneously measured charge suggests a
solution that is in fact non-physical. These issues are greatly exacerbated by the existence
of dead wires within MicroBooNE, which span ~ 10% of each wire plane, covering ~ 30% of
the wire plane surface area. In these regions, only two wire planes (or fewer!) are functional,
further reducing the information available to perform tomography with.

To maintain fidelity in the reconstruction despite these obstacles, the full range of detector
information is used, as well as a number of key insights connecting wire measurements and
characterizing the structure of the 3D imaging solution. The wire measurements provide

information on the time of arrival, 1D location along wire number for each plane, and
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magnitude of charge observed. Additionally, since induction planes are set at a potential so
as to not collect charge, we can apply charge conservation between wire plane measurements
to aid in the reconstruction. Furthermore, charge drifting towards the anode is always the
same polarity and never reverses direction, implying a condition of positivity in the solution.
Finally, the physics of ionizing particles motivates the use of a proximity constraint, by which
continuous charge distributions, such as particle tracks, are preferred.

The imaging detailed in this section is able to reconstruct a fully 3D charge distribution
with non-functional regions totalling only 3% of the wire plane area. This is achieved through
arobust reconstruction algorithm that is capable of reconstructing charge in regions with only
two functional wire planes, aided by more precise 3-plane measurements in the surrounding
areas. The 3D charge distribution reconstruction is particularly noteworthy, as it enables a
suite of high-level particle reconstruction algorithms, some of which are discussed in Sec.
The completion of 3D charge reconstruction represents turning a corner from unraveling the
convoluted measurements produced by TPC wires towards freely using detector information
as presented in its most physically fundamental form to identify particle types, energies, and

other kinematics.

5.2.1 Tiling

Before solving for a 3D charge distribution, wire info needs to be appropriately bundled to
reduce the computational time needed and complexity encountered by a solving algorithm.
Furthermore, as a result of smearing from diffusion, noise filtering, and residual long-range
charge-current induction, conservation of charge across planes is more accurate when ap-
plied over a larger area. Obtaining a consistent charge measurement across wire planes
is critical to solving the imaging equation [5.10]in Sec. therefore bundling together
wires corresponding to a region of charge is necessary [106]. Additionally, tiling serves as

a conservative estimate on the possible 3D locations of charge, limiting the scope of later
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charge solving and and deghosting steps to one of deciding where charge is not.

O e
TR

Figure 13: Cells constructed with the MicroBooNE detector geometry, colored differently
for visibility. Wires are colored in grey. Each cell is an equilateral triangle as a result of the
detector geometry of £60° angles between wires across planes. Source: [107]

First wire measurements over time are merged into 2 us time slices consisting of four
sampling points of TPC readout. This introduces negligible information loss because noise
filtering heavily suppresses signals above 0.25 MHz. Next fired wires can be bundled based on
their proximity. To do this, the concept of a “cell" is defined, as a primitive geometric object
that maps reconstructed charge from its nearest associated wires to a 2D position. For three
wires on different planes that nearly intersect, they will bound a smallest-size equilateral
triangle across the planes. The center of each of such triangle is used to seed a Voronoi
cell [108], which together divide the plane, as shown in Fig.

In the simplest case, three wires across planes that bound a cell and registered as “fired"
(indicating the presence of nearby charge) would map to the bounded cell being labeled as
“hit" [107]. Note that in general, many wires can fire and the association to hit cells is not
so simple, such as in Fig. Tiling is the process by which multiple adjacent hit cells are
grouped into a blob, defined by the consecutive fired wires on each plane that span the hit.
Fig.|15/shows a region of hit cells (with centers marked by blue dots) and corresponding fired
wires (red) that are tiled together to form a single blob, outlined in blue. The boundary of a
single cell is also shown, in black.

Note that this definition of a blob requires all three wire planes to be functioning in the
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Figure 14: Illustration of the hit ambiguity caused by the wire readout in a simplified two-
wire-plane example. This examples imagines sets of two and three wires that fire, creating six
potential intersections, but only three correspond to true charge hits. Source: [107]

region. This requirement is at odds with the reality of the MicroBooNE detector, which suffers
from ~ 10% dead wires on each wire plane. This means that ~ 30% of cells are bounded by at
least one dead wire, shown visually in Fig.|16 This represents a significant loss in selection
efficiency corresponding to events originating in a dead region. Even among surviving events,
the chance of losing information across part of an interaction threatens the overall ability to
correctly identify particles and estimate energies, harming both oscillation and cross section
measurements.

Motivated by these dire prospects, the requirements to label a cell as hit are relaxed. In
addition to cells bound by three fired wires, hit cells are also allowed to be bound by two
fired and one non-functional wire. This redefinition reduces the non-functional regions from
~ 30% of the wire-plane area to ~ 3%, at the cost of greatly increasing the number of false hits,

called ghosts. Although some ghosts are always possible, as demonstrated in Fig. |14} they are
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MicroBooNE

Vertical
direction |-~
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Figure 15: An example of the hit cells and blob constructed by fired wires. Each wire is
represented by a solid red line and the wire boundaries are represented by dashed black lines.
All hit cells have equilateral triangular shapes and are marked with blue dots at their centers.
An example cell is marked by the black triangle. A blob is formed by the contiguous hit cells
and marked by solid blue lines. Source: [106]

far more prevalent when ~ 10% of the wires are essentially treated as always fired. This issue

will be addressed in detail in Sec.[5.2.3

5.2.2 Charge Solving

The core goal of imaging in a LArTPC is solving the relation between the charge of fired wires
and the 3D distribution of charge across time and cells. After tiling, this becomes a relation
between merged wires and blobs, and can be expressed through a system of linear equations
called the imaging equation:

y=Ax (5.10)
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Figure 16: Visualization of non-functional detector regions in grey under a three-plane
requirement (totaling ~ 30% non-functional) in the top panel and a two-plane requirement
(totaling ~ 3% non-functional) in the bottom panel. Source: [106]

where y is a vector of charges across fired wires, x is a vector of charge across hit cells, and A is
a matrix with elements A;; = 1 if and only if the cell x; has been grouped with wire y; through
tiling, and 0 otherwise. This system of equations is inherently under-determined [107], as
there are ~ n? hit cells corresponding to the ~ n fired wires on each plane; even in Fig.
there are 15 hit cells and only 11 fired wires. This prevents the existence of a unique solution,
even before considering measurement uncertainty, noise filtering, and non-functional wires.

Instead of attempting to directly solve Eqn. it is important to leverage our physical
knowledge and intuition regarding the system. First, it is important to apply the positivity
constraint. Only electrons drift toward the anode, and they never reverse direction, meaning
that the charge solution can be described through a distribution of a single polarity (in this
case, positive is used). Additionally, LArTPC activity is sparse; there are far more un-fired

than fired wires at any time. When considering the distribution of charge across hit cells,
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the true solution is most likely to be the one with the most ghost hits and correspondingly
the fewest true hits with nonzero charge. This intuition can be applied mathematically by
shifting from exactly solving a system of linear equations to minimizing a test statistic T, that
measures the number of hits with nonzero charge, while obeying the relations in Eqn.
This is achieved through the mathematics of the £, norm, specifically the £y norm in this

case:

1/p
ép(x)=||x||p=(z|x|”) (5.11)

To = l1xllo (subject to y = Ax) (5.12)

While minimizing T is sufficient to find the best practical solution to the imaging equa-
tion, it is often not computationally feasible. It is essentially a combinatorics problem
of testing all possible configurations, with an NP-hard complexity. This is a problem en-
countered elsewhere in the field of tomography [109], where the technique of compressed
sensing [110,[111] allows for the approximation of the ¢y norm solution with a much faster
time complexity. This is achieved by replacing the ¢y norm with the ¢; norm, which well
approximates the £ solution and is convex in x with a global minimum, allowing for speedy
minimization via gradient descent.

This test statistic can be improved by applying the physical knowledge of proximity;
touching blobs over adjacent time slices are more likely physical, and so their ¢, penalty term
should be reduced. A series of weights w is applied to the cells in x, scaling them down by
a" where n is the number of blobs connected in time to the target blob and a is a scaling
factor. The test statistic is further modified by allowing some flexibility in the solution to
Eqn.[5.10to account for measurement uncertainty. The measurement and signal vectors y
and x are normalized with the covariance matrix V of charge measurement uncertainties

using Cholesky decomposition: V~! = QTQ. The new test statistic T; to be minimized is
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Figure 17: Comparison of the tiling results and the charge solving result from MicroBooNE
data (event 41075, run 3493). The solid black box represents the LArTPC active volume with
an x-position (converted from the readout time) relative to the neutrino interaction time.
Top: tiling result under the strict 3-plane requirement. Middle: tiling result under the relaxed
2-plane requirement. Bottom: solved charge distribution from the blobs generated under
the 2-plane requirement. The color scale represents the resulting charge values in the charge

solving. Source: [106]
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given by:

T1 = 11Qy — QAx|5 + Mlw- x| (5.13)

where A controls the strength of the ¢, norm.

Fig.[17|demonstrates the results of charge solving as discussed in this section. The set of
blobs under 3-plane and 2-plane requirements are contrasted with the solved distribution
of charge, which removes many of the ghosts introduced in the 2-plane case. However,
many ghosts still remain, motivating a dedicated effort to remove them through a repeated

deghosting process.

5.2.3 Deghosting

The reason that the imaging equation misses so many ghosts is because it is only attempting
to reduce positional redundancy, with just a slight modification in the form of the weights w
to connect the information across time slices. Therefore, the overall charge solution should
be made more global by looking for redundant blobs over projections involving the time
dimension (equivalently, the drift dimension). In this manner, deghosting and charge solving
can be seen as complementary steps, each aiming to remove redundant solutions (ghosts)
across different marginalizations of the full 3D charge distribution.

When viewed in 3D, adjacent blobs across time slices can be connected to form proto-
clusters. These form an intermediate step towards a complete description of the activity in an
interaction; however, gaps between proto-clusters within an interaction may exist because of
both real and artificial causes, such as 7° decay and poor reconstruction respectively. The
step of forming proto-clusters from blobs can be thought of as a form of tiling over the time
(drift) dimension. Some of these proto-clusters are ghosts, and are redundant in explaining
the charge measured across wires. To identify these ghosts, their structure and relation to
non-functional regions and real charge are examined.

First, as is typically the case, ghosts will often exist in detector regions with a non-
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functional wire plane. Ghosts must lie along at least two sets of fired wires, corresponding to
coincidental charge distributions at other locations. Track-like ghosts can hide in the non-
functional region of one wire plane, and in the projected shadow of real charge distributions
along the other wire planes. However, as the 2D anode-projected position of charge has
already been solved under the constraint of sparsity through the imaging equation, it is likely
that ghosts hide, and therefore are redundant, in all three 2D wire-versus-time projections.
This motivates the deghosting procedure, where each proto-cluster is examined for
redundancy by considering whether the charge distribution minus the candidate proto-
cluster, viewed under each 2D wire-versus-time projection, is capable of describing the set
of fired wires. Because the removal of ghost proto-clusters decreases the total charge of
the 3D distribution, the imaging equation must be re-solved to recover an accurate charge
distribution. The remaining blobs after deghosting are used as input for this round of charge
solving. This overall procedure is iterative, and empirically it was found that three rounds of

charge solving plus deghosting were useful, with further rounds providing minimal benefit.

5.2.4 Clustering

The proto-clusters established in the previous section help to group the activity of a particle
within an interaction, but they are disjointed and insufficient for future reconstruction goals.
It is necessary to group all of the activity of an event together, for organizational purposes
and algorithmic ones. In particular, charge-light matching in Sec.[5.3|requires a full count of
all the charge in an event to be able to accurately match this charge with the corresponding
light signal it produces. Although charge may reach the TPC at different times within the
drift window, the true interaction occurs at relativistic speed and so all parts of an interaction
begin emitting scintillation light to be recorded by the PMT system simultaneously. Therefore,
light activity is recorded as a single flash, and charge-light matching will be most successful if

the entire interaction can be grouped into a single charge cluster.
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Existing proto-clusters are incomplete for a number of reasons. There are gaps resulting
from non-functional regions (3% of the detector volume) as well as errors in signal processing,
particularly in the case of difficult topologies such as isochronous and prolonged tracks. A
cluster may also contain multiple separated components resulting from non-ionizing neutral
particles that are invisible to the LArTPC but may later decay to ionizing particles, such as
1’ —yyandy—ete .

It is also possible that an interaction may be over-clustered, where charge from sepa-
rate coincidental interactions overlap. The chance of this happening is largely driven by
the existence of cosmic rays, which populate every drift window, although usually without
overlapping. The source interactions for overlapping charge occur at different times, and
therefore produce separate light flashes, but it is possible for their ionized charge to reach the
wire planes simultaneously, hence the overlap. This can happen, for example, if one interac-
tion occurs early in a drift window near the cathode while a second interaction occurs later
in time but near the anode. It is important to de-cluster these interactions both to accurately
describe each interaction for purposes of particle identification and event selection, and to
allow for accurate charge-light matching. Finally, all of the sources of imperfection discussed
can hamper the effectiveness of charge solving and deghosting, producing some ghosts that
cannot be removed through the methods discussed earlier, so some residual ghosts remain
as isolated proto-clusters.

Recovering the original structure in the presence of gaps is based on two metrics: the
distance between the gaps and the directionality of both proto-clusters. The distance vector
between clusters is defined as the minimum distance between pairs of points across the
clusters, and is computed by constructing a k-dimensional graph connecting the 3D charge
points through nearest neighbors using the nanoflann package [112]. The direction of each
cluster is determined by taking the Hough transform [113] of the point cloud, which maps

the 3D position of each point to multiple locations on a 4D phase space characterizing the
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Figure 18: Demonstration of the effectiveness at bridging gaps in clusters. The solid black
box represents the LArTPC active volume with an x-position (converted from the readout
time) relative to the neutrino interaction time. Top: proto-clusters solely based on proximity.
Bottom: clusters after bridging gaps. The two circles indicate remaining clustering issues, e.g.
over-clustering of cosmic-ray muons and under-clustering of neutrino interactions. Cluster
membership is indicated by uniform color. Source: [106]

position and orientation of all possible lines. If the space of possible line orientations, SO(3),
is parameterized by n possible orientations, then each 3D space point will map to n locations

in 4D phase space, where two dimensions controlling the physical offset of the line are fixed
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by the 3D location of the point in the domain. This can be thought of conceptually as taking
the plane normal to the orientation being considered and projecting all 3D points onto
this plane and recording their 2D projection. The set of n orientations under consideration
are then iterated to complete the mapping. For a given orientation, points along nearby
parallel lines will map to nearby phase space locations. If a point cloud is track-like, only
the orientations that match the directionality of the point cloud will map all 3D points into
a dense region in phase space. The best orientation can be easily found by searching for
regions of highest density in the phase space. Clusters are merged based on the distance
between them as well as the difference in directionality between them. The performance of
bridging gaps in clustering is demonstrated in Fig.

After clusters are merged across gaps, over-clustering from coincidental overlaps is de-
tected and the clusters are separated. Candidates for over-clustering are found by inspecting
the Principle Component Analysis (PCA) [114] of the point cloud of charge. Track-like events
will only have a single large PCA eigenvalue, while overlapping tracks will have two non-trivial
PCA eigenvalues. Over-clustered events are detected by looking for a primary track that
extends along the length of the largest PCA axis. This is achieved by constructing the smallest
convex shape bounding the point cloud using the quickhull algorithm [115], and looking for
endpoints indicative of the primary track near the boundary of the convex region. These
endpoints must be located near the PCA primary axis, and the local point cloud must extend
along this axis. Once a primary track of an over-clustered event is selected, a Kalman fil-
ter [116] is used to crawl along the track to locate the other end. Then, Djikstra’s shortest path
algorithm [117] is run over the graph of charge points to assign a simple trajectory along the
track, and the local charge points along the trajectory are associated with it. These points are
considered one cluster, and are removed from the point cloud. This process can be iterated
to further separate clusters in the case of multiple overlaps. The performance of separating

over-clustered events is demonstrated in Fig.
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Figure 19: Demonstration of the effectiveness of the clustering algorithm to separate coinci-
dental overlaps in clusters. The solid black box represents the LArTPC active volume with an
x-position (converted from the readout time) relative to the neutrino interaction time. The
top and bottom panels show the clusters before and after applying this algorithm. Cluster
membership is indicated by uniform color. Source:

After clustering to bridge gaps and separate coincidental overlaps, there is room for

improvement with another round of deghosting. By connecting proto-clusters across gaps,
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ghosts that could not previously be found redundant within a single proto-cluster can now be
identified when the full cluster information is available. After coincidental overlap separation,
some ghost proto-clusters are now properly isolated and may be removed without also
removing sections of valid charge.

There is a final clustering algorithm dedicated to group isolated components in a neutrino
interaction, which can have more complicated topologies, such as 7° — yy decay, than
cosmic ray activity. This algorithm is only run on the 2.3 ms of drift window following the
beam spill, corresponding to candidate neutrino interactions. It follows a similar technique to
the gap-bridging algorithm, where the directionality of a (> 1 cm long) cluster is determined
through use of the Hough transform. The trajectory of the cluster is extended and examined
to see whether it intersects with the endpoint or extended trajectory of another cluster. These
cases indicate a common decay vertex, although not necessarily the neutrino vertex, and all
associated clusters are merged.

The clustering achieved in this section, building on the broader suite of imaging algo-
rithms before it, finishes the task of preparing a robust 3D description of the data for each
TPC interaction. The fully-3D charge point cloud solved for in Sec.[5.2.2|represents a novel
step forward in LArTPC physics and enables more powerful implementations of high-level
reconstruction algorithms by virtue of working with the more physical 3D charge distribution
instead of 2D projections. Deghosting in Sec.[5.2.3|fixes many of the problems introduced by
taking on the ambitious goal of 3D imaging under a 2-plane requirement, producing a solved
charge distribution with minimal errors. Finally, this distribution is assembled into com-
pleted clusters corresponding to entire interactions in Sec. so that the results produced

may be easily fed into upcoming algorithms.
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5.3 Charge-Light Matching

The completion of charge reconstruction through imaging marks the transition from process-
ing data into fundamental, information rich descriptions toward the creation of high-level
descriptions of the particles that produced these interactions. In-between these two halves
of the reconstruction chain sits flash-light matching. The clusters produced in Sec.[5.2.4]
enable the pairing of TPC charge activity with the corresponding light flash as measured by
the PMT array. This has the primary benefit of allowing the precise interaction time to be
linked with the charge cluster, as the PMT array is capable of measuring prompt scintillation
light at sub-us resolution. Precise interaction timing allows cosmic ray background events
to be rejected using the narrow beam window (1.6 us) instead of the lengthy drift window
(2.3ms). There are additional benefits derived from knowing the drift offset: cosmic ray data
can be studied to form the effective detector boundary described in Sec. and candidate

neutrino position will be used in Sec. [f|to remove cosmic rays.

5.3.1 Flash Reconstruction

The light collection system consists of 32 PMTs arranged across the anode to maximize
coverage of the TPC volume. They measure the light produced over a ~ 23.4 us window,
beginning 4 us before the beam spill and consisting of 1,500 samples taken at a rate of 64 MHz.
There is also a cosmic discriminator window that triggers on light activity throughout the
entire 6.8 ms PMT readout window, and stores data for 40 samples, corresponding to 0.6 us.
A Fast Fourier Transform (FFT) [118] algorithm is used to deconvolve the raw waveform to
unfold the electronics response. Flashes are identified based on the paired requirements
of a) at least three PMTs measuring = 1.5 PE and b) more than 6 PE measured in total, both
evaluated based on the total PE measured over a rolling 100ns (7 samples) window. Once a
flash is detected, the flash start time is set as the sampling bin with the largest total PE, and

any PE activity measured in the following 7.3 us is associated with the flash, to include the
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Figure 20: Deconvolved waveform of the 32 PMT array. The red bands represent flash
windows for two separate flashes, at times of 4.6 us and 5.3 us. The measured PE is represented
by the z-axis. Source: [106)

late scintillation light contribution. However, if another flash is detected before the end of the
first flash window; as is the case in Fig.[20] it is cut short and the remaining PE is associated
with the later flash. To trigger this, there must be a spike in the PE profile over time, and it
must either be more than 1.6 us after the original flash time or it must produce a significantly
different PE distribution across the PMTs as determined by a Kolmogorov-Smirnov (KS)

test.

5.3.2 Match Determination

In the entire PMT readout window there are typically 30 — 50 light flashes reconstructed, as
shown in Fig.[21| This is larger than the ~ 30 TPC charge clusters recorded because the PMT
array is capable of detecting light from activity outside the fiducial volume but still inside
the cryostat. As a result, some flashes have no corresponding charge cluster. However, there

are also charge clusters with no corresponding reconstructed flash, particularly in cases of
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low visible energy interactions and those occurring near the cathode (away from the PMTs).
Additionally, there are some inaccuracies in the clustering in Sec.|5.2.4} resulting in cases
where multiple clusters should be grouped together, and so correspond in reality to a single
flash. This motivates a charge-light matching algorithm that is capable of handling the variety

of possibilities instead of exclusively or exhaustively pairing flashes to clusters.
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Figure 21: Total reconstructed PE as a function of time across the entire 6.4 us PMT read-
out window. In general, there are 40-50 reconstructed PMT flashes in each BNB event.
Source: [106]

Matches are determined by comparing the measured flash on the PMT arrays against a
predicted light distribution based on the measured charge in a cluster. This predicted flash is
computed using a photon library [120] mapping charge across 3D voxel locations to predicted
light at the PMT array based on a large number of simulations. To accurately predict a flash
measurement, under each candidate charge-light pairing the charge cluster is moved along
the drift (x) direction to the location set by the flash time, adjusting the light prediction at the
location of the PMTs. Before proceeding to a global fit to match flashes to charge clusters, a

pre-selection is made to reduce the number of matches considered, and therefore reduce the
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complexity of the fit. The pre-selection restricts the set of clusters that can be matched to a
flash based on two requirements. First is a requirement of plausible causality: at the time
of the flash, the charge cluster must be fully contained within the TPC volume, accounting
for drift position. Second, the predicted and measured light distributions must be roughly
compatible, as determined by both a KS test and a comparison of overall PE.

Now that many of the potential matches are eliminated, the global fit is performed. The
match relations are formulated in a similar manner to the imaging equation, relating PMT-
measured light to charge-based predictions via y = Ax. Again, this is an under-determined
system with more unknowns than knowns, and the method of compressed sensing is used to
arrive at a probable solution through the use of an ¢; norm regularization term R;. There are
also regularization terms R, and R3 enforcing the constraint that each cluster have only one
match and that the number of unmatched flashes should be small, respectively. The total y?
test statistic is given as:

i

XZ:ZZ)(lz.j+R1+R2+R3
J

,  (M;jjA-b)-Xk aikpkij)z

Xij 5Mi2j

Ri=M) ) aix
i k

Ry = /12; (; Aif— 1)2

R3=23)_b; (5.14)
i

where the indices i, j, and k run over flashes, hit PMTs in a flash, and charge clusters,
respectively. M;; and § M;; represent the measured charge and its uncertainty on the j'th
PMT of the i'th flash, respectively. Py;; represents the predicted light from the k'th cluster
at the i'th flash time on the j'th PMT. a;, b; € [0, 1] represent the degree of certainty that

flash i matches with cluster kK and a dummy parameter that allows for a flash to find no
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match, respectively, and are solved for in the )(2 minimization. Finally, 1;, A,, and A3 are

regularization strengths.

Figure 22: A selection of 4 out of 31 matched pairs, corresponding to cosmic rays, from a
data event readout window. The y-z (left), y-x (center), and x-z (right) 2D projections of the
charge distribution in the detector are shown, with the matched drift window in red and the
neutrino drift window in black. In the y-z view, grey circles show the PMT locations on the
anode, with red circles representing the magnitude of measured PE. Offset below for visibility,
the predicted light of the matched cluster is shown. Source: [106]

After the fit is performed, a number of flashes will remain unmatched, with a;; = 0.
These are removed from the set of considered flashes, all b; values are fixed at 0, and a
second round of minimization is performed to solve for a;; alone. Afterwords, each cluster
is examined, and the strongest flash match as determined by a; is selected. Since each

flash is allowed to match to multiple clusters, the flashes and their corresponding matched
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clusters are examined. For each flash, the largest matched cluster is considered the principle
component, and subsequent cluster matches are considered, and kept if they improve the
match compatibility, as defined by the KS test and overall PE comparison described earlier.
The unmatched clusters are tested against unmatched flashes to look for any remaining

matches that have been missed.
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Figure 23: A matched muon neutrino interaction from a data event. The y-z (left), y-x (center),
and x-z (right) 2D projections of the charge distribution in the detector are shown, with the
matched drift window in red. In the y-z view, grey circles show the PMT locations on the
anode, with red circles representing the magnitude of measured PE. Offset below for visibility,
the predicted light of the matched cluster is shown. Source: [106]

Fig. [22| shows 4 out of 31 matched flash-cluster pairs, corresponding to cosmic rays,
from a data event readout window, including the comparison between measured PE in
red and predicted PE in green. Fig.|23|shows the match for a muon neutrino interaction.
Flash matching is the first step in a series of event selection algorithms, as will be discussed
in Sec. [6} and is also an important part of the reconstruction chain. Through matching,
the results of clustering are improved, and the drift distance is established. Matching is
computationally important as it represents a ~ 40x reduction in candidate neutrino events,

owing to the removal of non-beam-coincident cosmic rays, significantly reducing the amount
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of work generated in upcoming reconstruction algorithms. Finally, he use of a many-to-
many matching strategy achieves a significant performance improvement over one-to-one
solutions that aim to only match candidate neutrino flashes, leaving the majority of cosmic
rays unmatched. Not only does matching cosmic rays assist other areas of the analysis,
such as effective detector boundary mapping, but it also improves the neutrino flash match
accuracy. Through the use of a global fit, information from cosmic ray flashes is incorporated
to help reduce the chance of accidentally matching neutrino flashes to cosmic ray charge
clusters, preserving a higher selection efficiency. The performance of charge-light matching

in producing a high-quality neutrino selection is discussed in more detail in Sec.[6|

5.4 Trajectory Fitting

Trajectory fitting is a multi-purpose procedure. The primary and immediate goal is to aid the
identification of cosmic rays through a computation of the charge deposition rate dQ/dx of a
particle track. However, the benefits are far larger. Through dQ/d x, the directionality of many
particle tracks can be determined. Also, measurements of dQ/dx translate easily to energy
deposition dE/dx, which is useful for particle identification and energy estimation. More
generally, in computing the trajectories of each particle in an interaction a graph structure
of the entire interaction (or at least its connected components) is constructed, connecting
the flow between various particles. This makes the future steps easier, as half the work is
already done in determining which particles decayed to which. The larger construction of
particle flow as a top-level description of an entire neutrino interaction is a logical extension
of the groundwork built in trajectory fitting. The trajectory fitting algorithm discussed in
this section is focused on determining the trajectory of a single particle; in Sec.[5.5]it will be
expanded upon to accurately parse each individual track in a neutrino interaction.

The task of global trajectory fitting is largely enabled by a 3D reconstruction of the charge

distribution, as determining a seed trajectory would be far more challenging without the
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physically relevant 3D point cloud. However, there are still numerous challenges that remain,
and drive the overall shape of the procedure. There are inaccuracies in the 3D charge points,
especially resulting from smearing through the Wiener filter in signal processing as well as
the challenging reconstruction of difficult topologies (isochronous, prolonged, and aligned
tracks). As always, regions with non-functional wires reduce the reconstruction quality in
their vicinity. There is also an issue particular to trajectory fitting, the difficulty in fitting a
trajectory because of the non-linear nature of the fit. Simply feeding the global point cloud
distribution into a test statistic minimization calculation would be highly unstable and fail to
produce a reliable trajectory [95].

For these reasons, the process of determining a trajectory is split into multiple sections.
First, a seed trajectory is established through a graph-based treatment of the point cloud of
charge. The seed trajectory is intended to be reliably accurate in describing a particle through
the general path it takes, although the exact positioning of its points may be wrong. From
this, a precision trajectory in 3D is computed by projecting the 3D trajectory points into each
2D (wire number vs time) plane projection and simultaneously fitting to the pixels within
each projection, inspired by the Projection Matching Algorithm in ICARUS [121]. The use
of 2D projections in the fit avoids the issues with 3D points result from track topology and
signal processing and are limited to one plane projection. Meanwhile 3D trajectory points
still provide crucial information on the geometry of the interaction and on relating these 2D
projections. From trajectory fitting an ordered set of 3D points S{x;, y;, z;} with associated
2D projections Ulu;, ti}, Viv;, ti}, W{w;, t;} is created. Once trajectory points are established,
the measured charge is assigned along the track to fit a dQ/d x profile. By separating this step
from the prior trajectory fit, issues resulting from the non-linear nature of the overall fit are

minimized to allow for a stable procedure.
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5.4.1 Minimum Spanning Tree

The trajectory seed is established in a robust manner by first organizing the 3D charge point
cloud into a graph capable of accurately describing the relation of points along a particle
trajectory. In theory a simple graph based on nearest-neighbor connections could be formed
as was used in Sec. This would be insufficient for the level of precision desired here,
because such a graph could essentially be over-connected. Intuitively, the problem can be
seen when assigning a trajectory around a hard turn such as at a vertex. In a highly connected
graph, the shortest path from one end to another would cut corners, failing to well describe
particle trajectories. This is especially important under the very same example of particle
vertices, where vertex placement can play a critical role in accurate particle identification.
To prevent a shortest-path algorithm from deviating from real trajectories in such a
manner, the graph used to connect point cloud points is based on a Steiner tree [122]. A
Steiner tree takes as input an unordered graph of vertices and edges with non-negative
weights, where a subset of the vertices are labeled as Steiner terminals. The tree is then
constructed as a minimum spanning tree connecting these terminals, so that the sum of
the weights used in a minimum. It may include connections to other vertices, but has no
requirement to connect them at all, making it a sub-graph of the original. Steiner terminals
are selected as local maxima charge points (higher charge than any nearest neighbors) above
a threshold charge. By selecting high-charge points as Steiner terminals, the shortest path is
required to follow along these points. Naturally, high charge points tend to be concentrated
around the center of a trajectory, and so the shortest path over the Steiner tree much more
closely follows actual particle trajectories. Edges of the graph are computed by scaling the
Euclidean distance by a function based on their charges to preference connections between
high-charge points. Since forming the Steiner tree is NP-complete and computationally slow,
a Steiner tree greedy algorithm [123] is used to approximately solve it by connecting nearby

regions as determined through a Voronoi tiling. Results are shown in Fig. |24}, comparing the
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performance before and after weighting edges based on charge magnitude and uncertainty.

MicroBooNE MicroBooNE
- g
/""/ !
/ ~ v
r Fi
’._. 5 -

Figure 24: Performance of Steiner-tree-based shortest path algorithm before (a) and after (b)
including charge weights to otherwise Euclidean graph edges. The shortest path forms the
basis of the trajectory seed to be fit. Source: [95]

5.4.2 Trajectory Seed

The trajectory seed is computed by connecting the extreme points on either end of the
point cloud (as determined using PCA) through the shortest path along the Steiner tree.
The ordered set of graph points along this path form the basis of the trajectory seed. To
improve the upcoming trajectory fit, points are added or removed as needed along the path
to maintain a spacing of ~ 1cm between points. In preparation for the trajectory fit, the
seed points are associated with the nearby 2D (wire number vs time) pixels. This association
is formed for each trajectory seed point by considering the nearby 3D points, finding their
parent blobs, and projecting into the 2D views to locate close-by 2D pixels. By fixing the

trajectory-point to pixel associations, the computation of the fit can be controlled to avoid fit
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instability.

5.4.3 Trajectory Fit

To compute the trajectory fit, a test statistic T is constructed, comparing the fit quality of

each 3D point projected into each 2D view:

T(Stxj,yjzi = Y. Tk (5.15)

k=u,v,w

where k is an index over the U, V, and W wire planes and S{x;, y;, z;} is the set of trajectory

points to be fit. The test statistic for each plane is computed as:

2

=YY q"z H(ALYY; (5.16)
7104
(ALY?; = Au? - (u; = uj(yj, 2))% + Ax> - (£ = 1(x)))° (5.17)

where the construction of AL, and AL, follow the example shown for AL,, and each repre-
sent the distance between the projection of the j'th 3D trajectory point and the i'th pixel. g
and 6 q represent the measured charge and its uncertainty at the associated pixel on a wire
plane readout, enhancing the weight of high-charge points and suppressing the weight of
high-uncertainty points. Ax and Au represent the width of the time slice (2 us, corresponding
to 2.2mm of drift) and wire pitch (3mm) respectively. The indices i and j run over nearby 2D
pixels and 3D trajectory points respectively. The 2D coordinates (wire number, time slice) for
pixel i are given by u; and ¢;, respectively, and correspondingly u; and ¢; are the projected

coordinates from the j'th 3D trajectory point. The projection from 3D {x}, y;, z;} coordinates
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to {tj, uj, vj, wj} is computed as:

t ! + 1
= —- X
AXx 0
1
u=—-(-sin(@,) +cos@,)z) + ug
Au
1
v=—"—-(-sin@,) +cos@,)z) + vy
Av

w= L -(=sin(@y) + cos(@,)z) + wy (5.18)
Aw

where 6, 0,, and 6, are the wire orientations with respect to the vertical direction for each
wire plane, and {f, ug, vy, wo} are the coordinates of the origin. These equations can be

combined to form an overall matrix equation for the test statistic:

T= Y (Mg—PgS)? (5.19)

k=u,v,w

where M is the charge-weighted 2D pixel coordinates and Py is the charge-weighted pro-

jection matrix for each wire plane. Minimizing T leads to a matrix equation to solve for S:

(5.20)

( Y PkTPk)-S:( Y PlM

k=u,v,w k=u,v,w

The trajectory S is solved for numerically by using the Biconjugate Gradient Stabalized
method (BiCGSTAB) [124].
5.4.4 dQ/dxFit

Since the trajectory has already been determined, the hard work is done and dQ/dx can
easily be computed by minimizing a test statistic 7’ that compares the projected charge from

each trajectory point to the charge of associated 2D pixels:

T'(S{QhStxj, yjnziN = ), T+ Teg (5.21)
w

k=u,v,
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${Qj;} is an ordered set of charges for each corresponding trajectory point. The regularization
term promotes a smooth solution by computing a penalty based on the second derivative of
the dQ/dx distribution over trajectory points:

Qj

2
ZFij-S—j) (5.22)
J

T;eg = Z
i

where s; represents the length of the j'th segment, computed as the average distance to

each adjoining point. This makes ?—Jf an approximation of dQ/dx at j. F encodes the second

derivative information by taking the difference between adjacent % entries when the product
J

is summed: )
-1 1 0 0 0 O O

1 -21 0 0 0 O
F=q-| ¢ ¢ &t 1 1o (5.23)

0O 0 0 0 1 -2 1

0O 0 0 0 0 1 -1

where 7 provides an overall normalization strength, set to 0.3 or 0.9 when an adjacent non-
functional wire is on the induction or collection plane respectively. The use of regularization
is important to dampen the impact of poorly defined trajectory points in the vicinity of

non-functional wires. The test statistic over each plane is computed as:

l i

2
1
T]’C:Z&—qz-(qi—;Rijj) (5.24)

where Rfj computes the detector response from original ionization charge along the trajec-
tory Q; and the measured charge ¢; at a wire. Because of computation time costs, instead
of simulating the full chain of detector effects, including diffusion, TPC field response, elec-
tronics response, and signal processing, a much faster approach is used to approximate an

effective signal response. A Gaussian distribution is used, with width computed in quadrature
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from contributions of diffusion and the software filter:

0p;, =1\/2DL" tarife
0Dy =1/2D71 - tarife

of, = 1.57mm
o, =0.36 mm
op,=0.66mm

Ofp,=0.11mm (5.25)

where D; and Dt are computed in Eqn. and 4y, is the drift time.
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Figure 25: The best-fit dQ/dx (in black) along a simulated muon track trajectory is compared

with the true dQ/dx (in red) as a function of the residual range (distance along the track with
respect to the stopping location). Source: [95]

The fit dQ/dx as a function of residual range (distance along the track with respect to
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the stopping location) demonstrates the capability to detect particle directionality, as shown
on simulation in Fig.[25 From the Bethe-Bloch equation [} the signature Bragg peak can be
seen as the muon comes to rest. Determining particle directionality is an important result
in general, for determining vertices of origin and overall particle flow. It is also particularly
useful for identifying cosmic ray muons to efficiently remove them from a neutrino selection.
Cosmic rays typically enter from above and outside the detector, providing a signature that

can be identified from determining a particle’s trajectory.

5.5 Particle Identification and Vertexing

This section completes the Wire-Cell reconstruction chain by separating a neutrino inter-
action into a tree that tracks the flow of individual particles. Each particle has its trajectory
computed in a manner built upon the algorithm described in Sec. and vertices are created
to label the decay/origin location of particles. Finally, the neutrino vertex is located and
the overall neutrino energy is computed [125]. Note that these algorithms are only run on
candidate neutrino interactions that pass a number of event selection cuts based on the

flash-light matching and simple particle trajectory algorithms of Sec.[5.3|and Sec.

5.5.1 Track Segmentation

Track segmentation expands on the previously established single-trajectory fit algorithm,
which only follows the primary (longest) track in an interaction for the purposes of cosmic ray
muon identification. Taking the endpoints of this trajectory as an input, a Kalman filter [116]
is used to crawl along the trajectory and look for kinks, identified by sharp turns in the
trajectory. Wherever a kink is located, the track is split into two segments and a vertex
is created at the intersection. Each segment is re-fit using the trajectory fit algorithm to
determine a new trajectory and dQ/dx. Those fit trajectories are removed and the remaining

cluster is iterated over to look for additional segments to be fit. In this manner, all track
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segments in the interaction are identified and fit. At the end, and vertices in close proximity
to each other are merged. However, the determination of precise vertex location is left for the

next section. Segmentation and track fitting performance is demonstrated in Fig.
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Figure 26: Example of multi-track trajectory fitting. The 2D projections on the U, V, and W
planes are shown on the left, and a 3D view is shown in the top right. The fit dQ/dx of each
trajectory is shown in the bottom right. Source: [125]

5.5.2 Vertex Fitting

Vertex fitting is a fully 3D algorithm, relying on the trajectory points for each track segment
connected to a vertex. For each segment, iterated with the variable i, the trajectory points
near the vertex are considered, omitting those within 1.5cm as they may be associated with
the wrong track segment. PCA [114] is run over the selected trajectory points to establish
the eigenvectors {7;1, Uj2, U;3} and eigenvalues {A;1, 12, 1;3} that describe the variance in the

trajectory, with 7;; describing the overall track trajectory.
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The distance from the center of each set of trajectory points to the vertex is described by

7;. Then, the minimum distance from the vertex to the primary axis of a track (along 7;;) is
described by:

s7 = (Fi Ui2)* + (Fi - Di)° (5.26)

The vertex location is computed by minimizing a test statistic defined based on a weighted

computation of s?, as well as a sort of regularization term:

T= Z)"il ZA 2y 1/1 B+ ((x_ xorig)z +(y- yorig)2 +(z— Zorig)z) (5.27)
i2 i3

i

The regularization prevents instability in edge cases such as nearly-straight lines by penalizing
fit vertex locations {x, y, z} that stray from the original candidate location {X,rig, Yorig, Zorigh
controlled by a strength A. By weighting the test statistic by the inverse variance along the
corresponding direction, the fit preferences minimizing dimensions with a more precise
measurement and therefore less variance. Furthermore, by weighting the contribution of
each track segment by the variance along the trajectory, proximity to longer and more linear

tracks is emphasized in the fit.

5.5.3 Track-Shower Separation

Showers are identified using three techniques, spanning a range of energies and topologies. At
low energies, Multiple Coulomb Scattering (MCS) [17,[126] can be used identify electrons from
muons, and nearby isolated segments of charge can indicate Bremsstrahlung photons from
an electron. At higher energies, electrons produce complex showers that expand outward in
a cone, and so the cone width can be used to identify them.

MCS is a process driven by numerous Coulomb scattering interactions between an ioniz-
ing particle and the surrounding medium. Since electrons are far lighter than muons, they

will deflect more strongly. The numerous interactions with atomic electrons cause ionizing
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electrons to travel in wiggled tracks, as opposed to the mostly straight tracks of muons. These
cases are compared algorithmically by taking a track and constructing 10 cm segments from
it. Then, the path length (~ 10cm) is compared to the direct end-to-end length (< 10 cm) for
each segment. Muon tracks measure direct lengths close to 10 cm, while electron tracks will
be significantly shorter in direct length. For low energy electrons, individual Bremsstrahlung
photons can produce isolated segments of charge near the electron track, providing a second
method of identification. To confidently associate these segments with the candidate electron
track, the isolated segment must be aligned with the beginning of the track, requiring an
accurate vertex location.

High energy electrons produce showers involving an exponentially increasing number of
photons and secondary electrons and positrons resulting from pair production. This causes
the shower to grow wider perpendicular to the direction of its momentum, forming the shape
of a cone. By comparison, muon tracks do not grow in width at all, creating a clear difference
in signature. By measuring the shape and direction of the electromagnetic shower cone,
the vertex of an electron can also be identified if not already known, and by measuring the
perpendicular width of the cone high energy electromagnetic showers are separated from

muon tracks.

5.5.4 Traditional Neutrino Vertex Identification

The traditional approach to neutrino vertex identification is developed by considering
a number of observations about neutrino vertices. This leads to an overall score being
computed for each vertex, and the highest score being selected. This occurs for each TPC
charge cluster, and in the case that multiple clusters are matched to a single flash, one of
these candidate neutrino vertices is selected, following a similar set of considerations to the
individual score computations.

The most important consideration in determining the neutrino vertex is noticing that
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a neutrino vertex is uniquely the originating vertex of the interaction. That means that no
particles lead into it; all connected particles travel outward. By comparison, in the case
of particle tracks there is always one entering particle, with all remaining tracks traveling
outward. Furthermore, neutrino interactions statistically have more outgoing particles, owing
to the complex nuclear interactions described in Sec. 2] Because of its high initial momentum

along the beam direction, neutrino vertices are typically upstream of all other activity in the

interaction.
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Figure 27: Separation of muon (red band) and proton (black band) tracks through the
measurement of dQ/dx as a function of residual range. The yellow band indicates the
selection cut between the particles. Source: [125]

The determination of particle directionality is clearly a key component of neutrino vertex
identification. Shower directionality is computed following the method described previously
in Sec. 5.5.3} and track directionality is determined by identifying the Bragg peak in the

dQ/dx profile, as described in Sec.[5.4/and shown in Fig.[27] Limited particle identification
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can also be determined using the dQ/d x profile, such as separating protons from muons and
pions. Certain topologies can also be excluded such as a vertex with an entering shower and
exiting track, or a vertex along a muon track resulting from a 6 ray. Overall, this traditional
approach is 70% accurate at determining the vertex location within 1cm in the case of muon
neutrino interactions, and this result is improved upon through the inclusion of machine-

learning-based vertex finding.

5.5.5 Deep Neutral Network Vertexing

To improve the vertex identification performance, particularly on v,CC interactions, a Deep
Neural Network (DNN) is constructed. The goal of the network falls under the category of
region proposal [127], with the specific output chosen to be a prediction at each voxel of
the distance to the neutrino vertex, which greatly improves training compared to a simple
yes/no vertex location prediction. Following the work in other MicroBooNE analyses [128],
the SparseConvNet package [129] 130] is used because it is designed for sparse datasets
like a LArTPC readout, and in particular Sparse U-Net [131] is used to extract a feature
vector at each voxel. The reconstructed 3D points are voxelized using 0.5cm cubes. An
illustrative diagram of the Sparse U-Net structure is shown in Fig. 28, which shows a 2-level
implementation. Levels are added by iteratively inserting more “Concat-Join” blocks, and the
Wire-Cell implementation uses 5 levels.

The network takes in position and charge information tensors for the voxels and produces
a confidence value for each to form a Confidence Map [132], describing the distance from the
neutrino vertex. The truth labels C;;,,, are computed before voxelization, using the neutrino

position 7;,,, and a regularization parameter o = 1 cm:

- - 2
r—r
I truell ) (5.28)

Ctrue(TF) = exp (— 92

Fig.[29|shows charge information and C;,,, labels on a simulated neutrino interaction before
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Figure 28: Illustration of a 2-level implementation the structure of Sparse U-Net. Source: [125]
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Figure 29: Example of a simulated neutrino interaction with charge info (left) and truth
confidence value (right) shown. Source: [125]

The network was trained on 48k simulated v,CC events using the Adam optimizer [133]
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with the loss function £:

1 Nyoxel

£= Y Cprea— Crruell® (5.29)
Nvoxel

and an exponentially decaying learning rate to allow for fast early learning followed by precise
refinement. The network was validated using 4k simulated v,CC events and tested on 4k
simulated v.CC events and 4k simulated v,CC events. Although training focused on the
v.CC interaction as vertexing is more difficult on it, improvement was found for both v.CC
and v, CC vertexing.
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Figure 30: A simulated neutrino interaction demonstrating the performance of traditional,
DNN, and hybrid vertex selection. Each filled circle represents a voxelized 3D charge projected
on the Y-Z plane. Source: [125]

Existing reconstruction algorithms rely on the neutrino vertex being one of the candidate
vertices found in Sec. Therefore, a hybrid neutrino vertex selection algorithm is used
that incorporates the DNN vertex finding information into its decision. From the best DNN

neutrino vertex voxel, the 3D position is computed and the nearest vertex candidate is chosen
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as the DNN vertex. If it is within 2cm of the traditional vertex, the DNN vertex is used,
otherwise the traditional vertex is kept. A visual comparison of the traditional and DNN
vertex selections is shown in Fig.[30, The hybrid vertex selection leads to a 30% improvement
in vertex identification within 1 cm for v,CC interactions and a 10% improvement for v,CC

interactions, shown in Fig.

MicroBooNE simulation
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0.8 F_::Hf
: ‘_'_'_'_‘__,_,_r—
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.§ ‘ I jl:l
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0.2 — Traditional ...
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Figure 31: v,CC vertex identification efficiency as function of the maximum distance be-
tween the reconstructed and truth vertex position, using traditional, DNN, and hybrid vertex
selection. Source: [125]

5.5.6 Particle Flow Tree

The particle flow tree is a complete, hierarchical description of the visible activity in a neutrino
interaction. It identifies each particle, their dependencies (parent, children), and their energy.
The steps of segmenting, trajectory fitting, vertexing, and neutrino vertex identification have
already enabled a significant fraction of a particle flow tree to be constructed. What remains is
the complete the categorization and organization of disconnected electromagnetic showers.

The previous shower identification algorithm struggles to fully capture the numerous

disconnected segments in an electromagnetic shower. Since photons are invisible to the
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Figure 32: Illustration of electromagnetic shower grouping and the overall particle flow tree.
(a) shows each track segment in separate colors, and (b) shows the same after grouping the
electromagnetic shower and introducing the particle flow tree. In the particle flow, green
lines show connections between spatially separated particles, and red lines connect the start
and endpoints of showers. Source: [125]

LArTPC, showers appear as a large number of disconnected electron segments. To group
all these segments, a 15° wide cone is extended 80cm along the shower direction, with
any isolated segments in the cone being assigned to the shower. Then, remaining isolated
segments are examined individual, and potentially assigned to nearby showers based on
proximity. An example of grouping the segments of an electromagnetic shower is shown in
Fig.

With electromagnetic showers fully identified, it is possible to reconstruct the decay of
invisible 7° particles, which 99% of the time follows 7° — yy. Reconstruction of #° is useful
for validating the electromagnetic shower energy scale, identifying the interaction type for
NC and exclusive channel analyses, and to accurately reconstruct the neutrino energy. In the
case of NC interactions, the neutrino vertex may have no visible directly connected particles,
causing it to be misidentified, such as at the location of an electromagnetic shower. If there

are at least two reconstructed electromagnetic showers, PCA [114] is used to determine the
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Figure 33: Examples of reconstructed 7°. In (a) a 142MeV/c? n° is reconstructed without any
TPC activity at the reconstructed vertex, and in (b) a 122MeV/ c? 710 is reconstructed from
the primary neutrino vertex. Photons are labeled in each event, and distinct segments are
colored separately for identification. Source: [125]
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Figure 34: Reconstructed yy invariant mass on simulated v,,CC interactions. The tail at the
high reconstructed mass is the result of incorrect association of y candidates. Source: [125]
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primary axis of each. The closest approach of each pair of primary axes is located, consisting
of the closest point on each axis. If the distance between them is small enough, a candidate
n° is considered. The 7° is reconstructed from the candidate with the largest summed energy
of the photons, its vertex is set as the midpoint between the closest points on each axis, and
the direction of the two showers are adjusted to pass through the n° vertex. The particle
flow is also updated, so that in appropriate cases the neutrino vertex is accurately labeled.
Fig. [33|shows the reconstruction of two separate n°s, and Fig.|[34/shows the distribution of
reconstructed 7° masses in a simulated v,CCn° selection, demonstrating a 15% improved

resolution over previous MicroBooNE measurements [134].

5.5.7 Energy Reconstruction

Particle flow reconstructs the neutrino energy by summing the energies of all particles at-
tached to the neutrino vertex. Therefore, accurate neutrino energy reconstruction requires
accurate energy reconstruction of each particle type. In general, once a particle has been
identified using the methods in previous sections, its energy is reconstructed in one of three
ways: two for different cases of tracks and one for showers. In addition to the kinetic energy
calculated from the visible charge in the detector, particle masses are added to the energy
calculation in the case of muons and pions, and a nucleon binding energy of 8.6 MeV is added
for each proton that was knocked out of the argon nucleus.

The majority of tracks are reconstructed from their measured travel range, using the
NIST PSTAR database [135] to convert to total energy for a given travel range and particle
mass. At very short travel distances, below 4 cm, the uncertainty on track length makes this
an uncertain measurement, and so a second energy reconstruction method is used. This
second approach sums the dE/dx measurements along a track to estimate the total energy,
converting from dQ/dx to d E/ dx using the modified box recombination model discussed

in Sec. However, this method is still not perfect, and underestimates the track energy
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by ~ 10%. This second approach is also used in the case of very long tracks where 6 rays are
visible and bias the range-based estimate.

Electromagnetic showers have too complex a topology for either the range-based or
dE/dx-based approaches to work. Instead, they have their energy reconstructed by summing
all the measured charge in the shower and scaling it by a factor of 2.5 to account for the
recombination effect (~ 50% loss) as well as bias in the charge reconstruction. Then, the
scaled charge is converted to an energy measurement by multiplying by 23.6eV per ionization
electron. The performance of these energy reconstruction approaches will be studied in

more detail in Sec.[7
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6 Wire-Cell Event Selection

As a surface detector, MicroBooNE is bombarded by cosmic ray muons that present a signifi-
cant source of background. There are roughly 30 —40 cosmic rays per beam window, and only
1 neutrino per 600 beam spills, creating a default neutrino : background rate of 1 : 20,000.
These cosmic rays can appear similar to v,,CC interactions, and both consist primarily of a
muon track. This presents a threat to the neutrino purity of any selection, or through clumsily
removing cosmic rays, the neutrino selection efficiency. A reduced efficiency and purity
can harm an analysis, either through reduced statistics or through increased uncertainty
on the makeup of a selection. This is essentially the difficulty MiniBooNE faced with its 7°
background that motivated the MicroBooNE experiment in the first place. Therefore, the
Wire-Cell reconstruction was designed to leverage as much detector information as possible
to enable a high-purity, high-efficiency selection. First a series of traditional cosmic ray
tagging algorithms are employed, discussed in Sec. already achieving over 80% purity
and 80% efficiency in is referred to as the Generic Neutrino Detection (GND) [95}/136]. Then,
the selection is refined by using a Boosted Decision Tree (BDT) in Sec.|6.2| that leverages the
multitude of data products created in the reconstruction chain to reach 92% purity with 68%
efficiency in the v,CC selection [137]. This analysis uses data from runs 1-3, constituting

~ 6.4 x 1020 POT of neutrino flux. The 1D and 3D distributions of selected events are studied

in Sec.[6.3|and Sec. respectively.

6.1 Generic Neutrino Detection

To achieve a purity of 50%, over 99.99% of cosmic rays need to be successfully identified and
removed. The Wire-Cell selection relies on a number of algorithms developed throughout the
reconstruction chain to reach this goal. First are the hardware and software triggers common
to all MicroBooNE analyses that limit data taking to periods of beam spill and BNB-coincident

light activity, respectively, as discussed earlier in Sec. The neutrino : background rate of
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1:20,000 is measured starting after the hardware trigger, and the software trigger reduces
this by a factor of 100 to 1: 210. Then flash-light matching removes non-BNB-coincident
cosmic rays, reducing the window for cosmic coincidence from the 2.3 ms TPC drift time
to the 1.6 us beam spill duration, and reducing the cosmic ray background by a factor of 40.
These selection cuts have only leveraged beam timing, PMT light information, and rough
charge distribution (for the purposes of the predicted light pattern), without giving particular
consideration to the differences in topology between neutrino interactions and cosmic rays,
or to the detailed calorimetry information produced in LArTPCs. To further remove sources
of background, these details will be used in combination with the beam timing information.

A key feature of cosmic rays that distinguishes them from neutrino interactions is their
point of origin. Cosmic rays produce long tracks, typically originating outside the detector
and passing through it. Those that pass all the way through, beginning and ending outside the
fiducial volume, are called Through-Going Muons (TGMs), while those that begin outside the
detector but come to rest inside it are called Stopped Muons (STMs). An easy way to remove
these cosmic rays is to require that a candidate neutrino interaction be Fully Contained
(FC), by which its entire ionization activity must occur within the detector fiducial volume.
This contrasts with events that are Partially Contained (PC) and exist in part outside of the
fiducial volume. While a fully contained selection cut would remove over 95% of remaining
background events, it would also remove partially contained neutrino interactions. Especially
at high energies, neutrino interactions can produce long muon tracks that exit the detector,
and in total roughly 2/3 of all v,CC interactions are partially contained. This represents an
unacceptable loss in efficiency, and so more refined selection criteria must be selected.

The first cosmic removal algorithm is inspired by the observation that singular tracks
touching the detector boundary at multiple points represent TGMs and not neutrino interac-
tions. It works by looking at the extreme points on a cluster in {x, y, z}, as well as along the

primary axis as determined by using PCA [114]. If two or more extreme points are located
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at the effective detector boundary, following the mapping described in Sec. the event
is labeled a possible TGM. To protect against removing neutrino interactions with multiple
exiting tracks, a kink-finding algorithm is run from one endpoint to another to search for
kinks that indicate a more complicated topology than a simple cosmic ray muon. If kinks
are detected, the event is no longer considered a candidate TGM. Some TGMs may avoid
detection under this algorithm because of non-functional wires at the detector boundary,
preventing the reconstruction of charge in the area and the subsequent identification of a
boundary intersection. To prevent this, when an extreme point lies near the detector bound-
ary, test points are extended along the principle axis out to the detector boundary. If all test
points lie in regions of non-functional wires, the track is considered to extend to the boundary
in truth, and is labeled as a TGM. The removal of TGMs at this stage results in a factor of 6
reduction in the overall background.

To further separate PC cosmic rays from PC neutrino interactions, directionality informa-
tion from the trajectory fit algorithm in Sec.|5.4|is leveraged. Neutrino events in the signal
definition will always originate inside the fiducial volume and travel outward, while most
cosmic rays will originate outside the detector and travel inward. Stopped muons can be
removed from the candidate neutrino selection by identifying this directionality informa-
tion. First, an event is checked to see whether it contains exactly one boundary intersection,
following the extreme-points-based definition in the TGM tagger. The track is checked for
kinks indicative of interaction or decay vertices. If there is no vertex, or one vertex located
near the stopping point, the event is considered a candidate STM (as muons can decay to
Michel electrons [138]); otherwise it is considered a candidate neutrino interaction. For
candidate STMs, the trajectory is fit up to the Michel electron vertex if it exists, or endpoint
otherwise, to allow dQ/dx to be measured. The dQ/dx along the final 35cm of the candidate
muon track is compared using a KS test [119] against two hypotheses: a STM profile ending

in a Bragg peak and a MIP profile with a flat dQ/dx distribution. For both predictions, the
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PSTAR [135] database is used to generate the dE/dx profile, which is converted to dQ/dx
using the recombination model described in Sec. Based on the difference in KS test
scores, the event is either considered an STM and removed, or kept as a candidate neutrino
interaction. The removal of STMs at this stage results in a further factor of 3 reduction in the

overall background. Fig.|35|shows the detection of a cosmic ray using the STM tagger.
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Figure 35: An example of a stopped muon from MicroBooNE data. The boundary intersection
can be seen in the end and top views. Source: [95]

Remaining background events consist primarily of non-BNB-coincident cosmic rays that
were incorrectly matched to the neutrino flash. Many Light Mismatch (LMM) events are the
result of either small or cathode-side charge clusters that lead to a small measured flash that
is difficult to correctly match, or of inaccuracies in the light predictions generated by the
photon library. Although the true interaction time of the matched cosmic ray lies outside
the beam spill window, this incorrect match allows them to survive the flash-light matching
selection cut. Furthermore, an incorrect timing gives them a false x-axis position within
a drift window, hiding their detector boundary intersections and allowing them to avoid
detection through the STM and TGM taggers. These events are detected by reconsidering
candidate neutrino flash-charge match quality in conjunction with a search over the other
measured flashes.

First, the existing flash match KS test score is examined, and very low scores are im-

mediately tagged as LMM events. If the KS test score is moderate, the matched cluster is

99



6 WIRE-CELL EVENT SELECTION

MicroBooNE
. Side view ‘ < B
LI o o ® € End view /
Y 5 g . ° . o ° . . ) /
. . s / - .Obscr'vcd hgh? Effectiye detector boundary
. . flash information
Z, Beam direction .
Y \\
e N
Prediction light N

flash information

Figure 36: Example of a TGM crossing throughout he TPC at the effective detector boundary
as a result of space charge distortions. The red (green) circles represent the measured (pre-
dicted) light flash PE. Source: [95]

tested against other flashes, again using a KS test between predicted and measured light.
For any potential match, the new boundary intersections under the matched drift time are
considered. If there are one or two boundary intersections, the cluster is evaluated with the
corresponding STM or TGM tagger, respectively, and removed if found to be a cosmic ray.
Additionally, even in the absence of a flash match the cluster is translated along the drift axis
until it intersects the detector boundary. If multiple intersections occur simultaneously under
a strict tolerance (to prevent mislabeling), the requisite flash for this drift location is assumed
to be lost in the light detection or flash reconstruction steps, and the cluster is evaluated
under the TGM tagger and removed if found to be a cosmic ray. Fig.|36|demonstrates the
case of identifying a TGM at the effective detector boundary. Note that the effective detector
boundary varies with drift distance, so that intersections with the anode and cathode are
subdominant under a varied drift time.

To produce a selection of simulated events with a high degree of fidelity to the selection
performance on real data, a special data product called overlay events are created. First,
data is taken of background, largely cosmic rays, from a time window non-coincident with
the BNB spill time. The set of these background events is referred to as EXTBNB or EXT, for
external-to-the-BNB. An overlay event consists of a simulated neutrino interaction overlaid

onto the readout measurements of an EXT event. This way, real background measurements
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Table 2: Summary of the cumulative v,CC selection efficiency, cumulative (relative) back-
ground reduction, and overall background rate. Errors represent statistical uncertainties only.
Source [95].

Selection Cut v,CC Efficiency ~ Background Reduction v : Background
Hardware Trigger 100% 1(1) 1:20,000
Software Trigger (98.31+0.03)%  (0.998 +0.002) x 1072(0.01) 1:210

Charge-Light Matching | (92.1+0.01)% (2.62+0.04) x 1074(0.026) 1:6.4
TGM Rejection (88.8+0.01)% (4.4+0.2) x 107°(0.17) 1.1:1
STM Rejection (82.9+0.01)% (1.440.1) x 107°(0.32) 2.8:1
LMM Rejection (80.4+£0.01)% (6.9+0.6) x 1076(0.50) 52:1
£ G000 —

8 — YDATA/E(MCHEXT)=1.05+0.01(data err)+0.16(pred err)
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Figure 37: Distribution of selected events under generic neutrino detection over recon-
structed visible energy (sum of all reconstructed charge with 2.5 scaling factor applied). The
breakdown of predicted signal and backgrounds shown in each bin.

without model bias are used to generate a simulated event selection with reliable estimates
of efficiency and purity. The terms “overlay" and “simulation” are largely used interchange-
ably within the context of estimated selection efficiencies and purities. Table|2|shows the
performance of each selection cut leading up to the GND, and Fig.|37|shows the distribution

of events over reconstructed visible energy.

101



6 WIRE-CELL EVENT SELECTION

6.2 v,CC Selection

A boosted decision tree allows the many correlated variables reconstructed previously to
be used in combination to remove background events, even when few individually demon-
strate a high selective power. A human scan of the remaining backgrounds was performed
to detect their characteristics in common and salient kinematics for the purposes of back-
ground identification. These variables notably include neutrino vertex location, particle
energies, and particle trajectory directionality. For example, as discussed earlier the primary
muons produced in neutrino interactions rarely travel backwards or downwards. Typical
backgrounds, however, include light mismatched TGMs and STMs, as well as “dirt" events,
which refers to neutrino interactions outside the fiducial volume. The remaining dirt events
usually feature a charged hadron that enters the detector from upstream before undergoing a
hadronic interaction, which gets labeled as the neutrino vertex. In these cases the STM tagger
is not well suited to identify the background, but the combined observations of a backward
facing particle that is highly energetic can give a high likelihood of background identity. To
remove NC events from the selection, each event is required to reconstruct a muon track at
least 5cm long attached to the vertex.

A total of over 300 such variables are used in the BDT, which is trained using the BDT
package XGBoost [139]. XGBoost uses parallel tree boosting, and improves the generalizability
of the trained model, allowing such a large number of variables to be used without over-fitting.
The performance of the BDT is shown by comparing the v,,CC selection efficiency and purity
as a function of BDT score in Fig. A selection cut is made keeping events with a score

above 0.9, producing a v,,CC event selection with 92% purity and 68% efficiency.

6.3 Event Selection Over 1D Distributions

While the ultimate goal of this analysis is to produce a triple-differential cross section mea-

surement, single differential measurements can serve as useful stepping stones capable of

102



6 WIRE-CELL EVENT SELECTION

1.0 : : : . 1.0
MicroBooNE Simulation !

0.81 0.8
206 06
2 ! g
Q 1 o}
T4 | 04"

efficiency

0.21 purity 0.2

------ finalized v,CC BDT cut value

v,CC BDT cut value

Figure 38: Performance of BDT shown by comparing v,CC selection efficiency and purity as
a function of BDT score. The finalized event selection uses the cut at the highlighted BDT
score of 0.9. Source: [137]

providing insight in their own right. Here the distribution of events is studied over muon

energy E;;, muon scattering angle cos(6,,), visible hadronic energy E;°*?, and neutrino energy

E,. These variables are particularly interesting, as together they are capable of describing the

principle neutrino-argon interaction kinematics. Since this interaction is described by thee

ET@CO

degrees of freedom, the four reconstructed quantities are redundant, with {E,, cos(6y), E; 7

sufficing. However, as was discussed in Sec. the neutrino energy is the most physically
important variable, as it drives neutrino oscillations and can be used to separate interaction
channels. The neutrino energy can be expressed in terms of E,, and the energy transferred

to the argon system, denoted as v (context is needed to tell if one means transfer energy or

reco

had * 38

neutrino by v). The transfer energy is comprised of a visible portion, measured with E

missin
E g

naq - largely consisting of non-ionizing particles such as neu-

well as an invisible portion,

trons that cannot be detected in a LArTPC. Therefore, E }rlifd" is the best direct measurement of
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v, and together with E;, can be used to reconstruct E,. As a result, either {E,, cos(6,), E Z‘;C;

or {Ey, cos(0,), E/} can be seen as a suitable choice of variables to describe the kinematic

phase space.
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Figure 39: v,,CC selection efficiency in simulation as a function of (left) neutrino energy and
(right) muon scattering angle. Source: [137]
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Figure 40: Distribution of selected FC (left) and PC (right) v,CC events over reconstructed
muon angle. The predicted distribution of signal and background events are stacked in
each bin. Ratio plots are shown on the bottom, with statistical uncertainties on the data
measurement, and systematic uncertainties given with the blue (all uncertainties) and red
(no detector uncertainties) bands.

A selection cut is applied onto the v,CC selection described in the previous section,
requiring E, € [0.2,4.0] GeV. The reconstruction struggles to detect and reconstruct events
properly below 200 MeV, and there are few events produced by the BNB above 4 GeV, making

these suitable cutoffs to the selection with only 1% efficiency loss. Fig.|39|shows the v,CC
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Figure 41: Distribution of selected FC (left) and PC (right) v,CC events over reconstructed
neutrino energy. The predicted distribution of signal and background events are stacked
in each bin. Ratio plots are shown on the bottom, with statistical uncertainties on the data
measurement, and systematic uncertainties given with the blue (all uncertainties) and red
(no detector uncertainties) bands.
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Figure 42: Distribution of selected FC (left) and PC (right) v,CC events over reconstructed
muon energy. The predicted distribution of signal and background events are stacked in
each bin. Ratio plots are shown on the bottom, with statistical uncertainties on the data
measurement, and systematic uncertainties given with the blue (all uncertainties) and red
(no detector uncertainties) bands.

selection efficiency in simulation over E, and cos(6,), showing the improved selection effi-
ciency at high energy and forward angles. Fig.[40] Fig.[41] Fig.[42] and Fig.[43|show the signal
distribution and breakdown of background sources as a function of cos(8,), Ey, Ey, and Epqq,
respectively, separated by FC and PC channels.

Maintaining a high selection efficiency across the signal phase space is particularly im-

portant for two reasons. First, it reduces the change that the final event distribution is biased
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hadronic energy. The predicted distribution of signal and background events are stacked
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(no detector uncertainties) bands.
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Figure 44: Simulated true muon angle (left) selection efficiency and (right) binned event
distribution before/after selection.

with respect to the types of events it selects. This is checked in Fig.[44} Fig.[45} Fig.[46} and

Fig. in simulation over cos(0,), Ey, E,;, and v, respectively. The event distributions shown

on the right side of Fig.[45} Fig.[46} and Fig. [47|are grouped into the analysis binning used later

to produce unfolded cross section measurements. The choice of binning is motivated by the

statistics available, as well as the reconstructed variable resolutions, which will be discussed

more in Sec.[7l

Each interaction channel is shown, and there are no clear holes in efficiency that would
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distribution before/after selection.

indicate a strong bias in the selection. In particular, the similar performance between interac-

tion channels over muon scattering angle, which is heavily utilised in distinguishing neutrino
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interactions from cosmic rays, demonstrates the inclusive nature of the selection. The other
reason a selection should maintain a non-zero efficiency is so that the model prediction
can be fully validated. Producing a cross section measurement requires an accurate model
prediction to account for biases in the selection, such as efficiency loss. The details of model
validation are discussed in detail in Sec.[9} and rely heavily on the fact that the event selection

is able to test the model prediction over the analysis phase space.

6.4 Event Selection Over 3D Distribution

The triple-differential analysis uses a 3D measurement space with bins in the reconstructed
variables of {E,, P;;, cos(6,,)}, where the muon momentum P, is used in place of E;,. Both
variables represent the same detector information, but using P, allows for a more direct
comparison with the previous MicroBooNE double-differential v,,CC cross section measure-
ment [140] performed over {P, cos(0,)}. For the most accurate comparison, a final selection
cut requiring the muon momentum to be less than 2.5 GeV/c is added, removing only 1.5% of
events. The complete list of selection criteria is given below:

The analysis uses a reconstructed binning following a grid-based structure. Each variable
is cut into a number of slices, with a 3D bin defined by its slice along each axis. The neutrino
energy is reconstructed into four slices, given by the edges E, € {0.2,0.57,1.05,1.57,4.0} GeV.
The muon momentum is reconstructed in 15 slices, 0.1 GeV/c each, up to 1.5GeV/c, plus an
overflow slice up to 2.5GeV/c. The muon scattering angle is reconstructed into nine slices,
given by the edges cos(6,) € {-1,-0.5,0,0.27,0,45,0,62,0.76,0.86,0.94, 1}. Fully and partially
contained events are reconstructed separately, for a total of 4 x 9 x 16 x 2 = 1152 reconstructed
bins.

The distribution of reconstructed events and predicted signal and backgrounds is shown
in Figs. Each figure shows data from a particular E, slice, with each of the nine

sub-plots containing data from a particular 6, slice. The same distributions shown with a
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breakdown of the predicted signal interaction channel are presented in Figs. Below
each distribution is a ratio plot comparing the measured values to their predicted counterpart
in each bin, with statistical uncertainties on the data, and systematic uncertainties including
(excluding) detector systematics shown in the purple (red) bands. Some bins have low
statistics and therefore large statistical uncertainties, particularly at high neutrino energy.
These bins do not negatively impact the overall unfolded measurement uncertainty, since
the unfolding simultaneously maps from FC and PC measurements to fully inclusive analysis

bins, as will be discussed in more detail in Sec.
e Pass Wire-Cell Generic Neutrino Selection

Hardware Filter

Software Filter

Flash-Light Matching

Through-going Muon Rejection Rejection

Stopped Muon Rejection

Light Mismatch Rejection
* Pass Wire-Cell v,CC Selection

— v Vertex Inside Fiducial Volume
- Primary p Track > 5cm

- v, BDT Score Above 0.9
e £,€[0.2,4.0] GeV
o Pﬂ <2.5GeV/c

“Cosmic" refers to cosmic rays coincident with the beam spill window, “EXT" refers to

non-coincident cosmic rays, “dirt" refers to neutrino interactions outside the cryostat, “out
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Figure 48: Distribution of selected FC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice E, €
[0.2,0.705] GeV.
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Figure 52: Distribution of selected PC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice E, €
[0.2,0.705] GeV.
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Figure 53: Distribution of selected PC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice E, €
[0.705,1.05] GeV.
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Figure 54: Distribution of selected PC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice E, €

[1.05,1.57] GeV.
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Figure 55: Distribution of selected PC events and predicted signal and backgrounds
over muon momentum. Each angle slice is shown within the neutrino energy slice E, €

[1.57,4.0] GeV.
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Figure 56: Distribution of selected FC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
E, €10.2,0.705] GeV.
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Figure 57: Distribution of selected FC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
E, €]0.705,1.05] GeV.
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Figure 58: Distribution of selected FC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
E, €[1.05,1.57] GeV.

Figure 59: Distribution of selected FC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
E, €[1.57,4.0] GeV.
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Figure 60: Distribution of selected PC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
E, €10.2,0.705] GeV.
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Figure 61: Distribution of selected PC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice
E, €]0.705,1.05] GeV.
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Figure 62: Distribution of selected PC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice

E, €[1.05,1.57] GeV.
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Figure 63: Distribution of selected PC events and predicted breakdown of signal interaction
channel over muon momentum. Each angle slice is shown within the neutrino energy slice

E, €[1.57,4.0] GeV.
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FV" refers to neutrino interactions outside the fiducial volume, “NC 7° in FV" refers to neutral
current interactions with a 7° and a neutrino vertex inside the fiducial volume, “NC in FV"
refers to other neutral current interactions inside the fiducial volume, “v,CC in FV" refers
to electron neutrino interactions inside the fiducial volume, and “v,CC in FV" refers to the
signal channel.

Some features of the data are easily identified over the 3D distribution. There is a clear
shift in the distribution of muon momentum across energy ranges and angles, with higher
energies and more forward angles experiencing a higher peak momentum. Backgrounds are
more common in the set of partially contained events, as is expected, and are most prevalent
in backwards facing directions because of the low signal statistics in the region. For fully
contained events the largest source of background is neutral current interactions, while for
partially contained events it is cosmic rays. In the breakdown of signal interaction channels,
separation between QE, RES, and DIS is apparent over each of the three kinematic variables.
QE interactions are most common at low energies, but when the do occur at high E, they
are more forward facing and at higher P, than other interaction types, owing to the lower
magnitude of energy imparted into the hadronic system. By comparison, DIS events require
high energies and leave little energy for the muon exiting the interaction.

The unfolded analysis binning is largely (but not completely) grid-like, constructed by
taking a completely grid-based binning and merging certain bins with low statistics. In
this manner, the detector resolutions, discussed more in Sec.[7, are considered in the con-
struction of the grid slices, and the available statistics as distributed over the phase space
is considered through the merging of bins. There are a total of 138 analysis bins, con-
structed from the familiar slice definitions of E, € {0.2,0.57,1.05,1.57,4.0} GeV, cos(8,) €
{-1,-0.5,0,0.27,0.45,0.62,0.76,0.86,0.94, 1}, as well as nine muon momentum slices defined
by the edges P, € {0,0.18,0.3,0.45,0.61,0.77,0.97,1.28,1.66, 2.5} GeV/c.

The selection efficiency over the 3D distribution is shown in Fig.[64} showing that a non-
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Figure 64: Selection efficiency for simulated events over {P, cos(6,)} within each E, slice.
E, energy bins are {[0.2,0.705],[0.705,1.05],[1.05,1.57],[1.57,4.0]} GeV.

Truth Cos(8,) vs Pu Event Count in E,0 Bin Truth Cos(6,) vs Pu Event Count in E,1 Bin
25 25

P, (GeV)

-08 -06 -04 -02 0 02 04 06 08 -08 -06 -04 -02 0

1 6 08 1
Cos(6,) Cos(8,)

Truth Cos(8,) vs P“ Event Count in E,2 Bin Truth Cos(8,) vs P“ Event Count in E,3 Bin

08 -06 04 02 0 02 04 06 08 1 08 -06 04 02 0 02 04 06 08
Cos(6,) Cos(8,)

Figure 65: Distribution of simulated events over truth {P,, cos(6,)} for each of the four E,
slices, determined by the bin edges [0.2, 0.705, 1.05, 1.57, 4.0] GeV. The 138 analysis bins are
shown in red.

zero reconstruction efficiency is maintained over the complete phase space of reconstructed
events. Regions with very few simulated events are not drawn because of the inaccurate

efficiency estimation in these spaces. Since (almost) no interactions are expected to exist at
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those phase space regions, the efficiency there is not relevant. The distribution of simulated
events over the 3D distribution is shown in Fig.[65| The red lines indicate the analysis bins,

constructing by appropriately merging bins from the grid structure.
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7 Resolutions of Reconstructed Quantities

The Wire-Cell reconstruction of the highly detailed LArTPC detector measurements has
enabled the high-performance event selection of the previous selection, and also allows
for precision measurement of reconstructed variables used in cross section measurements.
However, difficulties with the MicroBooNE LArTPC such as non-functional wires, as well
as imperfections in the reconstruction, leave room for improvement on future LArTPC ex-
periments and analyses. The following sections detail both the success and limitations of
the Wire-Cell reconstruction, ultimately in terms of the resolution of kinematic variables
suitable for use in cross section measurements. Sec.|7.1|gives details on the foundation of
the Wire-Cell reconstruction, the capability to accurately reconstruct charge in 3D through
tomographic imaging. Sec.|7.2|quantifies the performance of the neutrino vertex identifi-
cation algorithms at the heart of the particle flow tree construction. Finally, Sec.|7.3|shows
the resolution of each of the kinematic variables used in producing unfolded cross section

measurements.

7.1 Performance of Charge Reconstruction

The success of charge reconstruction through 3D imaging|[5.2|has already been discussed.
However, the precise accuracy in charge reconstruction has not been thoroughly quantified.
Errors in charge reconstruction can contribute to difficulties in the later trajectory fitting and
pattern recognition tools, impacting the overall resolution of kinematic quantities such as
particle energies.

In this section, the charge reconstruction performance is evaluated through the metrics
of purity and completeness to give context to further statements on detector resolutions.
Charge reconstruction purity is defined as the number of reconstructed hits overlapping
with truth hits divided by the total number of reconstructed hits. Charge reconstruction

completeness is defined as the number of reconstructed hits overlapping with truth hits
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Figure 66: Event display of a 1e2p17° v,CC interaction simulated using overlay. Top: pro-
jected xy view of the TPC readout, with each cluster labeled by color. The black box represents
the drift window corresponding to the beam spill timing. Bottom: Reconstructed (red) and
truth (blue) charge distributions are shown. The reconstructed charge is artificially offset by
~ 1 cm for visual clarity. Source: [106]

divided by the total number of truth hits. These terms can be expressed through the set of

reconstructed hits, R and the set of true hits T':

. . IRN T
Charge Reconstruction Purity = R
. |IRN T
Charge Reconstruction Completeness = ] (7.1)
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Figure 67: Distribution of purity and completeness scores on overlay v,CC events after
imaging and charge-light matching. The black (red) box bounds a region of well reconstructed
events with > 80% purity and > 70% (> 80%) completeness, totaling 80.2% (73.0%) of events.
Source: [106]

Fig.|66/shows an overlay event display with a simulated neutrino interaction and multiple
cosmic rays, and compares the distribution of reconstructed charge to the truth distribution.
Fig. [67| shows the distribution of events over their purity and completeness scores. The
black (red) box highlights well reconstructed events with > 80% purity and > 70% (> 80%)
completeness, totaling 80.2% (73.0%) of events. It is worth noting that errors in purity can be
corrected in stages of reconstruction after imaging (when these metrics are computed) by
ignoring or rejecting areas of faulty charge reconstruction (such as a trajectory fit ignoring
ghosts in a region with non-functional wires). However, errors in completeness can not be so

easily recovered, as missing charge cannot be reconstructed by later steps.
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7.2 Vertex Identification Resolution
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Figure 68: Neutrino vertex reconstruction of GND-selected overlay events. The distribution of
events is shown as a function of the reconstructed vertex displacement magnitude. Statistical
uncertainties are shown. Source: [125]

Neutrino vertex reconstruction is highly influential in both event selection and overall
reconstruction performance. There are essentially two types of vertexing errors: categorical
errors where the incorrect particle interaction is labeled as the neutrino interaction vertex,
and precision errors where the interaction is identified correctly, but there are small positional
errors in the identified location of the vertex. Categorical errors are indicative of a poorly
reconstructed particle flow tree, while precision errors can lead to poor trajectory fitting,
dE/dx reconstruction, and particle identification.

The distribution of GND-selected overlay events as a function of the reconstructed vertex

displacement magnitude is shown in Fig.|68| To help separate categorical and precision error
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Figure 69: Neutrino vertex reconstruction of GND-selected overlay events. The reconstruc-
tion efficiency (percentage of events with a reconstructed v vertex displacement magnitude
< 1cm) is shown as a function of the true neutrino energy. Statistical uncertainties are shown.
Source: [125]

Efficiency

cases, an efficiency metric is defined, labeling vertices as successfully reconstructed if the
displacement magnitude is within 1 cm. The reconstruction efficiency is shown as a function
of neutrino energy in Fig. The decrease in efficiency below 500 MeV is likely a result of
the reduced effectiveness of heuristics such as “the neutrino interaction vertex is located
upstream of the TPC activity, resulting from the imparted momentum from the neutrino." As
discussed in Sec. these heuristics are incorporated into the particle flow tree construction,

but not strictly relied on.
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Figure 70: Difference between reconstructed and truth leading-muon-track scattering angle
for selected overlay v,CC events, as a function of truth muon energy. Gaussian distributions
are fit to each E, bin, with the fit parameter values overlaid. Since the polar angle cannot be
negative, it has a slight positive bias overall. Source:
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Figure 71: Difference between reconstructed and truth leading-muon-track azimuthal angle
for selected overlay v,CC events, as a function of truth muon energy. Gaussian distributions
are fit to each E,, bin, with the fit parameter values overlaid. Source: [125]
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Figure 72: Reconstructed vs truth neutrino energy for selected overlay v,CC events.

Source: [125]
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Figure 73: Difference between reconstructed and truth neutrino energy for selected overlay
v, CC events, as a function of truth neutrino energy. Gaussian distributions are fit to each E,
bin, with the fit parameter values overlaid. Source: [125]
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: Reconstructed vs truth muon momentum for selected overlay v,,CC events.
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Figure 75: Reconstructed vs truth visible hadronic energy for selected overlay v,CC events.

7.3 Resolutions of Kinematic Variables

For each kinematic variable, the resolution is computed by comparing the reconstructed

value to the

bins of the corresponding truth variable, and a Gaussian distribution is fit to determine the

reconstructe

truth value using overlay events. The distribution of events is examined over

d resolution [125},[137]. Fig. and Fig. show the measured angular resolution
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for the muon scattering angle 6, and the muon azimuthal angle ¢,,, respectively. At forward
scattering angles, the resolution is ~ 5°, performing worse at backward angles. Fig.|72|and
Fig.|73|show the measured neutrino energy resolution, which is seen to be ~ 20% across
the energy range. Fig.[74shows the measured muon momentum resolution, and Fig.
shows the measured visible hadronic energy resolution, both of which are approximately
10 — 15%. The sub-dominant off-diagonal band of reconstructed muon momentum is the
result of imperfect energy reconstruction using the summation of dE/dx method discussed
in Sec. In future analyses this method could be improved, and augmented with other

approaches such as multiple Coulomb scattering.
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8 Estimation of Systematic Uncertainties

The analysis incorporates statistical uncertainties from the number of events as well as
systematic uncertainties from a wide range of estimated parameters into the overall mea-
surement. This is done through the covariance matrix formalism [141], which describes
the correlated uncertainties between each of the reconstructed bins (and after unfolding,
between analysis bins). Because of the bilinearity of covariance, contributions from each
systematic effect can be computed separately and summed to form the overall covariance
matrix. Sec.|8.1|describes the estimation of statistical uncertainties on the sample of simu-
lated overlay events used. Sec. describes the estimation of uncertainties from the flux
prediction, POT measurement, neutrino interactions outside the cryostat, and number of
target nuclei in the fiducial volume. Sec.[8.3|describes the estimation of uncertainties from the
modeling of v-Ar interactions in the Genie event generator and hadronic interactions in the
argon medium using GEANT 4. Sec. [8.4|describes the estimation of systematic uncertainties
from the modeling of detector effects. Finally, the overall covariance matrix is discussed in

Sec.[8.51

8.1 Estimation of Monte-Carlo Statistical Uncertainties

It is tempting to use the frequentist approach to estimate the statistical uncertainties in the
Monte-Carlo (MC) overlay event sample. Under this method, a measurement of n events in a
particular bin would have an estimated uncertainty of /n. However, this approach struggles
in the particular case of bins without any measured events, assigning an uncertainty of 0.
Therefore, a Bayesian approach is used to predict MC statistical uncertainties included in
the overall covariance matrix. The actual implementation accounts for the non-uniform
weighting of simulated events, following the method described in reference [142], however
the details of the simpler uniform weights case is discussed below.

The number of events measured in a given bin is assumed to be Poisson distributed,
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described by a mean event rate . The goal, then, is to estimate p and its uncertainty given
ameasurement of N events over a particular time interval. To achieve this, an uninformed
prior is selected, describing the distribution of u through a step function with value 0 for

1 <0and 1 for u=0. This leads to a posterior distribution approximated as:
~ _ el
P(uIN) ~exp(N u+Nln(N)) 8.1)

Therefore, in the case of N = 0, the posterior distribution becomes P (u|0) = e™#, allowing
an RMS uncertainty of v/2 to be computed for a taken central value of u = N = 0. In general,

uncertainties for all measured values can be computed in this manner.

8.2 Estimation of Flux Uncertainties

The flux prediction uncertainties follow the flux prediction computed for MiniBooNE [89],
and primarily consider the production rate of hadrons through p — Be interactions in the
target, determined through GEANT4 simulation [143]. The production rate of pions is re-
weighted based on hadron production data measured in HARP [144]. There are also other
effects considered, such as the mis-modeling and mis-calibration of the horn current, as well
as the total, QE, and inelastic cross sections of pions and nucleons on the beryllium target and
aluminum horn. The flux covariance matrix is constructed by using a multisim technique,
where each parameter is varied simultaneously following a Gaussian distribution given by a
predicted central value and uncertainty. In total, N = 1000 universes are constructed this way,

and the covariance Cov;; between different bins x; and x; is computed using the formula:

N

1
Covij= Y (X — i) (X0 — 1)) (8.2)
n=1

where i describes the central value prediction for each bin. An additional 2% overall nor-

malization uncertainty is applied to account for the uncertainty in the number of protons on

131



8 ESTIMATION OF SYSTEMATIC UNCERTAINTIES

Table 3: Contribution of different sources to overall flux uncertainty, given as a percentage of
the central value prediction. Source [90].

Systematic | v, (%) vy (%) Ve (%) Ve (%)
POT 2.0 2.0 2.0 2.0
nt 11.7 1.0 10.7 0.03
- 0.0 11.6 0.0 3.0
K* 0.2 0.1 2.0 0.1
K- 0.0 0.4 0.0 3.0
K} 0.0 0.3 23 214
Other 3.9 6.6 3.2 5.3
Total 12.5 13.5 11.7 22.6

target. This includes both the uncertainty in the measured beam intensity as measured in the
toroids upstream of the target, as well the uncertainty in the number of protons that actually
interact with the target. The overall uncertainty contribution from each source (POT count,
hadronic production, other considerations) is shown in Table[3} and the total flux correlation
matrix is shown in Fig.

There is also a ~ 1% uncertainty added to the overall covariance matrix because of the
estimation of the number of target nuclei in the fiducial volume, resulting from the following
considerations. The fiducial volume has dimensions 2.50m x 2.26m x 10.31m, totaling
58.2511 m3, so a +1 cm uncertainty on each detector boundary contributes an overall volume
uncertainty of ~ 0.35%. There is also a ~ 0.9% variation in the density of argon between the
temperatures of 87K and 89K. Finally, the purity of argon remains above 99.6%, allowing for
an overall target nuclei estimation of 1.21 x 103! + 1%. Finally, in addition to the modeling of
signal neutrino interactions inside the fiducial volume, background neutrino interactions
outside the cryostat, called dirt interactions, must be considered. The most difficult part of
this estimation is the modeling of interactions with outside materials, therefore a conservative
50% bin-to-bin (uncorrelated) uncertainty is applied to the predicted rate of dirt events.

However, since dirt is a negligible contribution to the overall background, this has a minimal
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Figure 76: Correlation matrix of flux systematics across reconstructed neutrino energy, with
FC and PC selections separated.

impact.

8.3 Estimation of Cross Section Uncertainties

Within the MicroBooNE experiment, neutrino interactions are simulated using the Genie
event generator [145] for the central value MC prediction. Previous Genie models have been
validated against bubble chamber data in the past, as well as MiniBooNE CCOx data more
recently. However, MicroBooNE is the first experiment to adopt Genie v3 for its central value
MC prediction, and initially found a data/MC discrepancy in the CCOx channel. As a result,
MicroBooNE decided to re-tune the CCQE and CCMEC predictions to better describe the data

seen in MicroBooNE [146]. To avoid bias from tuning on MicroBooNE data, T2K CCOx data
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was used [147] to create a “MicroBooNE Tune" version of Genie 3.0.6 G18_10a_02_11a [148].
This version features an initial state described by the Local Fermi Gas model, and final state
interactions described through an effective hA2018 intra-nuclear cascade model. For more

details on the nuclear effects considered in a neutrino event generator, see the discussion in

Sec.2.3
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Figure 77: Correlation matrix of Genie systematics across reconstructed neutrino energy,
with FC and PC selections separated.

Although cross section uncertainties are naturally suppressed in the production of cross
section measurements, as the unfolded signal distribution does not include cross section
uncertainties, it is still very important to accurately model the data within listed uncertainties,
so as to not introduce significant bias in the unfolded result. The sufficiency of the Genie
model and its uncertainties to describe the distribution in data seen in MicroBooNE will be

discussed more in Sec.[9} but for now the estimation of Genie uncertainties will be briefly
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discussed. Within Genie, there are a large number of parameters available for re-weighting
that are used in the simulation of neutrino interactions, with a full description available in the
Genie users manual [149]. To estimate the overall uncertainty contribution from the choice
of each parameter value, they are varied simultaneously in a multisim approach, as described
in Sec. A total of 600 universes are generated and the resulting correlation matrix across

neutrino energy is shown in Fig.
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Figure 78: Correlation matrix of GEANT4 systematics across reconstructed neutrino energy,
with FC and PC selections separated.

The interaction between hadronic final states and external argon nuclei throughout
the detector volume is modeled using GEANT4 [143]. In addition to ionizing electrons,
interactions with atomic nuclei can occur that can change an ionizing particle’s direction,

or form new particles. The chance of interaction is described by the hadron-nucleus cross
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section, and for a given particle energy and travel distance, survival and (complementary)
re-interaction probabilities are computed. These are used to assign weights to interacting and
non-interacting hadrons on a per-event basis. A conservative 30% uncertainty is assigned
to the interaction cross section, contributing an overall 0.612% uncertainty on the neutrino
interaction cross section as determined through multisim using 10 universes. The correlation

matrix across neutrino energy is shown in Fig.

8.4 Estimation of Detector Systematic Uncertainties

The detector response simulates many non-idealizations of the MicroBooNE detector that
can impact the overall reconstruction and selection of events. The different effects considered
can be grouped into three categories: light yield and propagation throughout the detector,
recombination and space charge effects on the drift of ionization charge, and variations in
the reconstructed TPC waveform. For each effect, a 10 uncertainty is defined so that the
impact on the overall event selection can be determined through a unisim procedure [150].
Light yield considers the reduction in PEs observed at the PMT array resulting from at-
tenuation through the detector as well as degradation of the PMT array. Over the course of
runs 1-3 of data taking used in this analysis there was a ~ 25% reduction in the measured PE
resulting from PMT degradation, therefore this difference is taken as the 10 uncertainty value
on the simulated light yield. The 10 uncertainty on the recombination effect is estimated by
taking a different set of parameters on the modified box recombination model and computing
the difference in predicted recombination. The space charge effect is mapped by studying
throughgoing muon tracks, assumed to be largely straight, and noticing the common devia-
tions in path at each voxelized detector location. The 1o uncertainty on this map is taken as
the residual deflection from straight-line tracks after applying the space charge map to tracks
produced by a laser shined through the detector volume. The TPC waveform 1o uncertainty

is computed as the ratio of measured to simulated values of reconstructed charge and signal

136



8 ESTIMATION OF SYSTEMATIC UNCERTAINTIES

width after deconvolution and digitization. By using the digitized values, the estimation
is computationally efficient and also captures the entire range of non-idealizations in the
simulated TPC waveform that are not directly simulated [151].

A sample of overlay events is produced using parameter central-values, and additional
samples are created after varying each parameter by the previously described 1o values one
at a time (unisim). Because of random processes in the event processing and reconstruction
software, there may be uncorrelated uncertainties for each simulated event, in addition to
the correlated uncertainties between bins. It is important to understand the divide between
correlated and uncorrelated uncertainties both for an accurate treatment of the detector
uncertainties, and particularly in the case of the conditional constraint procedure used for
model validation in Sec.[9] This procedure will be discussed in more detail in the following
section, but essentially it relies on a Bayesian procedure to update the model prediction over a
particular distribution of interest by using the data measurement over another distribution of
amore trusted reconstructed variable. Correlations between predictions allows the constraint
procedure to limit the posterior prediction over the distribution of interest, but it is important
to correctly identify the uncorrelated part of the uncertainty so that the updated prediction is
correctly computed. Over a sufficiently large sample, these variations may be fully captured;
however, computational constraints and the use of overlay events limits the available sample
size. Since each simulated neutrino interaction is paired with an EXTBNB readout of cosmic
ray activity, the maximum number of overlay events is determined by the amount of EXTBNB

data available.

8.4.1 Bootstrapping

To compensate for the limited sample size available, a bootstrapping procedure is used to
re-sample the reconstruction and selection of events many times. This allows for the correct

determination of correlated variations between bins, as well as uncorrelated variations
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resulting from random processes in the reconstruction, as opposed to statistical fluctuations.
The set of all overlay events is sampled once using the central values for each detector
response parameter, and again with the 1o deviation for each detector response parameter
(applied one at a time), in what is described as one universe of simulation. The difference
in selected event distribution between the CV and 1o sample for each parameter is taken
as a difference vector Vp ; j representing the 1o uncertainty in event selection distribution
associated with the uncertainty in the i’th detector response parameter for the j’th universe.
This process is repeated N; = 1000 times to capture the range of possible variations in Vp ;
resulting from the random processes in the event processing and reconstruction. The average
1o deviation Vg,‘;m"”“l is computed by averaging the difference vectors across all simulated
universes:
 pominal _ 1 O

Vp,i N ]; Vp,ij (8.3)

Additionally, the uncertainty on Vg}‘l’.mi nal js computed as the covariance matrix M ; from
the difference vectors for each universe, VD, ij» following the familiar covariance matrix
construction described in Eq. Since Vg,‘;m" nal describes the uncertainty on the overall
event selection from the i’th detector response parameter, Mg ; describes an uncertainty on
an uncertainty.

The overall covariance matrix is constructed from the both ng‘;mi nal and My ; in a way
that fully captures the detector response uncertainty. Again N, = 1000 universes are used,
although these are separate from the universes discussed earlier. For each universe, an
overall difference vector Vg’ii"al is constructed from ng‘l’.mi nal a5 well as a deviation 6 Vp ;
representing the uncertainty in 173‘;’”" nal The deviations are constructed from the n eigen-
vectors {é) ..., €,,;} and eigenvalues {1, ;,...,A,,;} as well as n Gaussian distributed scalars
i € N(0,1) following:

n
6Vpi= Y reiVAkibri (8.4)
k=1
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There is also an overall Gaussian distributed scalar ry ; € N(0, 1) that scales the entire differ-

ence vector to construct a sampled event distribution for the universe:
plinal _ p, ; (Vmominal y 57, , 8.5
pi ~'0i\YD,i D,i (8.5)

After repeating the process of generating random numbers r¢ ; € N(0,1)Vk € [0, nn] for each
of the N, universes, the overall covariance matrix Mp ; for the i’th detector variation can be
constructed from the Vg)il.nal of each universe following Eqn.|8.2|for constructing a covariance
matrix. Finally, the complete detector covariance matrix Mp is simply the sum of covariance

matrices for each detector response effect considered.

8.4.2 Gaussian Processes Regression Smoothing

The procedure above is sufficient for analyses with a small number of bins, where the number
of events per bin under the bootstrapping procedure is not too small. However, in the case of a
triple-differential analysis there are enough bins, covering rare regions of the kinematic phase
space, that statistical fluctuations become extreme in the computation of My ;. This leads
to over-estimation of the uncertainty on \73";’”" nal and ultimately on the total covariance
matrix Mp. Therefore, to reduce the over-estimation of statistical fluctuations, a smoothing
technique is applied within the bootstrapping procedure to the computation of Vg,‘l?m"”“l
and Mp ; before Mp ; is computed. Smoothing describes a class of algorithms that assert
an intuition of smoothness on a function, de-preferencing extreme variations in the con-
struction of a function to describe the data. In particular, Gaussian Processes Regression
(GPR) [152,153}154] smoothing is employed in this analysis, which has been used in physics
broadly [155], as well as in high energy physics in particular [156] [157] [158]. GPR assumes
measurement bins to be jointly Gaussian distributed with a particular covariance, and uses
Bayesian statistics to form a prediction based on the measured data. The GPR posterior

distribution takes the form of non-parametric curves that are able to describe the observed
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data. The mean posterior prediction from GPR smoothing is used as the as the smoothed
central value prediction, Vg";mi”“l , with a smoothing error estimate given by the covariance
of the posterior, My ;. In this manner, GPR smoothing is able to take as input the simulated
estimates for the nominal difference vector Vg)‘;mi”“l and its uncertainty Mg ; and reduce
the statistical fluctuations to form a posterior prediction that better describes the overall
detector covariance from the stated detector response parameter uncertainties. Smoothing
is performed on each detector response parameter separately; going forward the index over

parameters will be ignored.

Qo
-
o

Bin Index

(@)
-
o

Bin Index

Figure 79: Correlation matrix of detector response uncertainties across reconstructed bins
after removing bins with zero predicted and measured value. Bins are arranged in the top-
down hierarchy of FC/PC, E, slice, cos(0,) slice, and finally P, slice.

GPR begins with an uninformed prior p(X;) = N(lig, Zx,aa) = N ©0,,= K,aa) Over the set
of prediction points x,, where [i, represents the mean prediction at each point and Z 44

is a covariance matrix describing the correlations between prediction points based on a

kernel function K(x;, x;). Note that since the prediction points are located in the 3D phase
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space {Ey, cos(0,), P,}, each prediction point is itself a vector. The kernel function asserts
the intuition of smoothness by correlating nearby points highly, chosen to be a Radial Basis

Function (RBF) in this analysis:
Skaaij = K(E;, %)) = e G=H)372 8.6)

where s; = LL, for characteristic length scales L; along each of the three kinematic dimensions.
Length scales are chosen based on measured detector resolutions to be 0.1 in cos(6,,), 20%
in E,, and 20% in P,, where fractional length scales are achieved by taking the log of the
energy and momentum coordinates for use within GPR smoothing. This prior is then updated
through the use of the measurement y(x) = Vg"mi nal gver measurement points ¥, although
in this analysis the prediction points and measurement points are the same, so X, = X;. The
measurement has uncertainty given by the covariance matrix X, = Mg, which is added to the

kernel function to form the total covariance matrix over the measurement points Z7 pp:
Zrpp=Zy+2Zg (8.7)
Given the prior prediction and the measurement, a posterior prediction can be constructed:

PEalP) = N(@aly, E1,0a1y)
ﬂaly = ﬁa + ZK,ab (ZT,bb)_1 (J_} - ,ab)

o -1
zT,aaly = zK,aa - ZK,ab (ZT,bb) zK,ba (8.8)

The posterior prediction CV fl4, and covariance 2T aal y are used in place of the originally
simulated values Vgo’”i”“’ and Mpg. Because of GPR smoothing, statistical fluctuations
are controlled and become less impactful in Mp, reducing the overall detector response

covariance from ~100% to ~50%. The detector response correlation matrix (after removing
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bins with zero data and prediction) is shown in Fig.

Low Stats Low Stats w/ Smoothing High Stats
25 . 25 25 =
e n 2 2
1.5 M 1.5 . 15 —
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05 B 05 - - 05 40 Al
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Figure 80: Diagonal covariance matrix elements for each uncertainty, stacked, over the 1D P,
distribution, with FC and PC sections separated. Detector response uncertainties are shown
in magenta, labeled as “Det." Left: low (~ 10%) stats data set used. Middle: low stats data set
with GPR smoothing. Right: High stats data set used.

A test was performed over the 1D P, distribution to see whether GPR smoothing would re-
duce the detector response uncertainties beyond the point enabled by using a high-statistics
data set. The test was performed by comparing the detector response uncertainties from
a small data set containing only ~ 10% of events before and after GPR smoothing with the
uncertainties under the full data set. By using a small data set, the conditions found in the
triple-differential analysis were roughly reproduced, and statistical fluctuations caused a
massive over-estimation of detector response uncertainties. After applying GPR smoothing
to Vg"mi nal and Mp, the estimated uncertainties shrunk considerably, but notably not below
the values achieved through the high-stats data set, shown in Fig.|80| This outcome agreed
with the premise that GPR smoothing reduces statistical fluctuations without suppressing

physical uncertainties computed through the bootstrapping procedure.

8.5 Total Covariance Matrix

The overall correlation matrix over the reconstructed bins is shown in Fig.[81] The breakdown
of uncertainties (diagonal elements only) between the various statistical and systematic
components is shown in Fig.[82] The largest systematic is the detector response uncertainty,
comprising an average of ~ 50% of the data values. This is followed by cross section and flux

uncertainties, at ~ 20% and ~ 5 — 15% over the energy range, respectively. Stats and MC stats
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Bin Index
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Figure 81: Correlation matrix of overall uncertainties across reconstructed bins after removing
bins with zero predicted and measured value. Bins are arranged in the top-down hierarchy of
FC/PC, E, slice, cos(6,,) slice, and finally P, slice.
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Figure 82: Breakdown of uncertainties (diagonal elements only) by source after removing

bins with zero predicted and measured value. Bins are arranged in the top-down hierarchy of
FC/PC, E, slice, cos(6,,) slice, and finally P, slice.
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each contribute ~ 20 uncertainties, and GEANT4, dirt, and number of target nuclei all have

minor contributions.
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9 Model Validation

Neutrino experiments rely on model predictions to convert event counts over reconstructed
variables into measurements on physically relevant quantities. Event selections fail to de-
tect some signal events, described by the selection efficiency, and incorrectly label some
background activity as signal, described by the selection purity. Furthermore, even within
correctly selected events, there can be biases that alter the distribution of reconstructed
events, such as an under-estimation of neutrino energy after failing to reconstruct all the
interaction activity. Reconstruction biases can lead to bin migration, such as to lower energy
bins in the previous example, as well as bin smearing resulting from poor variable resolution,
and even more complicated effects. If not properly corrected for, measured quantities will
not produce an accurate statement on physical quantities of interest, such as oscillation
parameters or cross sections.

There are two general ways to account for the range of biases introduced in producing an
event selection: forward folding and unfolding. Forward folding leaves the measurement in
terms of reconstructed variables and smears the model prediction over a truth distribution
by the estimated detector response, allowing a direct comparison with the measured data.
Note that here “detector response" includes all aspects of the experiment that separate a
measured event count from the underlying physical parameter of interest, including the flux
and cross section, unlike the more narrow “detector response" considered in Sec. The
detector response mapping includes the effects discussed earlier, such as selection efficiency,

bin migration, and bin resolution, and can be described by the matrix equation:

M=R-S+B 9.1)

where M is the measured distribution over reconstructed bins, S is the predicted truth distri-

bution, R is the response matrix that maps from truth to reconstructed variables, and B is the
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predicted distribution of selected background events. Forward folding can be advantageous
when an analysis requires a coarse binning of reconstructed variables, either as a result of
low available statistics or poor measurement resolution, as it is easy to map fine-grain model
predictions into any reconstructed binning. Forward folding can also yield more powerful
model tests [159], however it has the downside of not producing a measurement over the
physically relevant truth variables.

In contrast with forward folding, unfolding accounts for selection biases by creating an
inverse mapping of the detector response, and computing the measured distribution in terms
of truth variables after undoing the detector response effects. This provides a result that
is more physically intuitive and relevant, and can be directly compared with other model
predictions or experimental measurements on the same physics. The details of unfolding
are more complicated than simply computing an inverse matrix to R, and will be discussed
in more detail in Sec. However, no matter what unfolding procedure is used, the same
relation between reconstructed measurement M and truth distribution S given in Eqn.[9.1]is
present, and must be accounted for through the estimation of the detector response R. In both
forward folding and unfolding, this detector response is estimated through simulation, where
the underlying truth values generated in the simulation are compared with the reconstructed
event distribution. Therefore, no matter what type of analysis is being performed, it is
important that the model prediction is accurate.

In many cases, the model prediction can be directly tested. For example, model predic-
tions on muon kinematics can be directly compared to the observed distributions of muon
kinematics seen in data. Furthermore, muons are both easily reconstructed as a result of
their simple topology, and well understood from previous experiments and theory[5| These
advantages give confidence in the validation of the modeling of reconstructed muon kine-
matics. By comparison, quantities such as neutrino energy cannot be tested so directly and

thoroughly, and therefore their modeling must be considered very carefully in any analysis
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that relies heavily on it. The neutrino energy cannot be observed directly like the muon
energy, so it must be reconstructed from the final state particles following an interaction.
However, in many detectors, some of these particles escape detection, such as neutrons in
LArTPC detectors. To err on the side of caution, cross section analyses can avoid producing
measurements over neutrino energy, and instead focus on fully observable quantities such
as muon kinematics. However, oscillation analyses are afforded no such luxury as neutrino
oscillations depend explicitly on neutrino energy, motivating the measurement of neutrino
energy in cross section analyses (which serve to improve modeling in oscillation and other
other physics search analyses) whenever its modeling can be trusted. Finally, even cross
section analyses over observable variables rely on modeling to account for the biases of
selection efficiency and purity, meaning that accurate modeling remains a key consideration
of every analysis.

The goal of model validation is to ensure that the model and its uncertainties are capable
of describing the distribution in data. As has been discussed in Sec. |8, model predictions
cover an immense number of parameters, and even then they vastly over-simplify reality. As
such, the data in its totality can be thought of as a massively higher-dimensional distribution.
In practice, the data and MC prediction are always seen through reconstructed distributions
over a few dimensions at most. This represents a marginalization of the higher dimen-
sional distribution, where all non-present dimensions have been integrated over, hiding an
data/MC differences. As mentioned earlier, the existence of of invisible detector activity
further complicates attempts to validate model predictions in data.

Faced with these complications, many analyses use supplemental model predictions
to test the coverage of the analysis model prediction. By using different model predictions,
such as Neut [160], NuWro [161], and GiBUU [162], the complex phase space of possible
model predictions can be explored in a physically motivated manner (to the extent that

each model prediction is a reasonable description of the data). While the data distribution
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over the full higher-dimensional space cannot be directly tested, nor can invisible activity
in the detector, comparing model predictions can give a sense of the expected range of
variations possible in data. A common stance is to require the analysis model prediction
(including uncertainties) to cover the variation seen in other model predictions. Minerva
considers the unfolded measurement when separately unfolded using their latest analysis
model MnvTune-v3 (based on a modified version of Genie v2.8.4) and the earlier MnvTune-
v1.2, and takes the difference between unfolded measurements as an additional uncertainty
on the measurement [163}/164]. T2K unfolds a large number of fake data set generated from
different models, and requires that the unfolded fake data “measurements" agree with the
analysis prediction within half of the listed uncertainty. Both of these approaches ensure
that any data mis-modelings of the analysis model that are within the scope of the other
models considered would not bias the unfolded measurement beyond the listed uncertainties.
However, these methods leave open the question of whether the set of physicist-produced
models has sufficient variability to cover nature. Furthermore, in theory if a particular model
does not describe data well, an analysis model shouldn’t need to have enough uncertainty to

cover it.

9.1 The Wire-Cell Model Validation Procedure

Wire-Cell adds the to the field of model validation techniques by introducing a procedure
for data-driven validation [137] that allows for increased sensitivity to mis-modeling errors.
This is made possible through the wealth of information available in the LArTPC detector
and preserved through the Wire-Cell reconstruction, resulting in the non-zero efficiency
throughout the kinematic phase space[64|that allows for a complete data/MC comparison.
By directly evaluating model performance on data, this approach avoids having to determine
whether comparisons to alternate models provide sufficient and reasonable coverage. It is

possible that reality differs from the range of available model predictions, or that an alternate
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model CV prediction does not well describe reality, in which case any tension between the
analysis model and it should not give concern. Instead of relying on the accuracy of alternate
models, the Wire-Cell validation procedure is able to leverage simultaneous measurements
over different kinematic distributions to produce a stringent test of the capability to describe
the distribution seen in data.

The key insight leveraged is that model predictions over different reconstructed vari-
ables are correlated, allowing measurements over well-reconstructed variables such as muon
kinematics to narrow the model prediction over other distributions through the conditional
constraint procedure. This creates a more stringent model test that is more sensitive to
mis-modeling than the unfolded measurement, warning against unfolding in cases where
there is significant model error. Furthermore, the correlated predictions across reconstructed
variables can be simultaneously leveraged to construct a test that is sensitive to the mod-
eling of invisible detector activity, which will be discussed in further detail in the following
paragraphs. It is important to note that the conditional constraint procedure is only used to
produce updated model predictions for validation purposes; unfolded measurements are
performed with the default MicroBooNE model without applying any constraint.

The conditional constraint formalism uses a Bayesian approach to update the model pre-
diction based on the data measurement over a separate distribution, in a format very similar
to the GPR smoothing procedure used in Sec. It starts by viewing the model prediction
as a joint distribution over multiple variables of interest {a, b, ...}, which is easily achieved
since the analysis arranges uncertainties using the covariance matrix formalism [141]:

Ha 2aa Zab
p(a,b) =N , 9.2)

Up| |Zba Zob

The prior is taken to be the default model prediction, and a posterior distribution on a is
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computed following Bayes theorem for a given measurement y;,:

plalyp) = N(ﬂalybriaalyb)
faly, = Ha+ Zab Epp) ™" (Vb — 1p)

icmlyb =20a—Zab (be)_l Zpa 9.3)

From the posterior prediction, the updated model prediction on a can be tested through
a Pearson 7(2 Goodness of Fit (GoF) test between measurement M = y, and prediction
P = p(alyp):
2 _ T, ~-1
¥'=(M-P)" xC " x(M-P) (9.4)

where C represents the full covariance matrix. Note that while the Pearson construction is
more accurate for the GoF validation tests, the Combined Neyman-Pearson construction
gives smaller bias and is used in the unfolded measurement [165, [166]. Under the null
hypothesis, the model prediction is accurate, and the distribution in data should represent
a reasonable draw from the posterior. However, if the model prediction is insufficient to
describe the distribution in data, then a y?/ndf > 1 and p-value< 0.05 will be observed,
rejecting the null hypothesis. Note that in the case of y?/ndf << 1, strictly speaking the
data does not appear to be reasonable draw from the model; however, this is indicative of
an over-estimation of uncertainties in the model, which suggests a conservative unfolded
measurement but not significant bias from the model.

By applying the measurement on y;, as a constraint, the updated prediction on a is re-
stricted, based on the correlated predictions over a and b, as shown in Fig.|83| Conceptually,
this can be thought of as restricting the model parameters to ranges that are consistent with
¥p. For example, an overall rate abundance observed in y;, may restrict the flux normalization
parameter to only allow higher values. In this way, the uncertainties in common between a

and b are significantly, reduced through the application of the constraint. While a straightfor-
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Before Constraint After Constraint

y, Measurement

Figure 83: Illustration of conditional constraint procedure being used to update the model
prediction over a given the measurement of y;. The marginalised prior (posterior) prediction
over a is shown in red (blue).

ward model comparison may fail to detect model deficiencies, owing to the combination of
uncertainties across model components over the marginalized reco-space distribution, the
conditional constraint procedure allows uncertainties of interest to be somewhat isolated.
The resulting GoF test produces a focused evaluation of whether the remaining uncertainties
can adequately cover the distribution seen in data over the target variable(s).

To help demonstrate the capabilities of the constrained GoF test, a series of fake data
sets are used. In particular, the Genie v2.12.10 CV prediction is used to generate a set of
fake data that is statistically independent from the MicroBooNE model prediction using a
tuned version of Genie 3.0.6 (see Sec.[8.3). Since the Genie v2.12.10 CV prediction is known
to disagree with the MicroBooNE model (and also with data), we expect to find tension in
the GoF tests. Another fake data set is constructed from the MicroBooNE model prediction
with artificially lowered proton energy, mimicking the possibility that the division of transfer
energy v between visible hadronic and missing energy is mis-modeled. In both cases, the
goal of the GoF test is to identify the known mis-modeling, even when the bias introduced is

not so severe as to exceed the listed uncertainties in the measurement. This is made possible
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through the reduced uncertainties and focused model prediction in the constrained GOF test,
allowing it to be more sensitive to mis-modeling than the unfolded data/MC y? comparison.

The performance of these fake data studies is discussed in more detail in Sec.

9.2 Validation of the Modeling of Kinematic Event Distributions
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Figure 84: Left: Comparison between measured and predicted distributions of selected
events over cos(f,). FC events are shown in the first 20 bins on the left and PC events are
shown in the next 20 bins on the right. Right: Comparison between measured and predicted
distributions of selected events over E,,. FC events are shown from 0.1 GeV to 2.5GeV in the
first 15 bins (including overflow) on the left and PC events are shown in the next 15 bins on
the right. The data/MC ratios are shown below the overall event distribution.

In this section, each kinematic variable used is evaluated under a standard GoF test,
without applying the conditional constraint procedure. Later sections will investigate key
distributions featuring difficult modelings in more detail by employing the conditional con-
straint. In each GoF test, a y>/nd f < 1 and corresponding p-value< 0.05. indicate that the
model is capable of describing the distribution seen in data. Fig.|84|shows the GoF tests over
cos(0,) and E,, and Fig.85/shows the GoF tests over E, and E ZZC; Since 1D distributions
probe a smaller section of phase space, the 2D distribution of {P,, cos(0,)} is studied in

Fig.[86] to test the multi-variable phase space used in the triple-differential measurement. 3D
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Figure 85: Left: Comparison between measured and predicted distributions of selected events
over E,. FC events are shown from 0GeV to 4 GeV in the first 26 bins (including overflow) on
the left and PC events are shown in the next 26 bins on the right. Right: Comparison between
measured and predicted distributions of selected events over Ej ;. FC events are shown
from 0GeV to 2.5GeV in the first 16 bins (including overflow) on the left and PC events are
shown in the next 16 bins on the right. The data/MC ratios are shown below the overall event
distribution.
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Figure 86: Comparison between measured and predicted distributions of selected FC (left)
and PC (right) events over P, within each cos(6,) slice. The particularly large uncertainty in
a few bins is because of very low statistics.
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distributions are not used as they are over-constrained through the conditional constraint
procedure given that the underlying kinematics are largely defined by three degrees of free-
dom. In the upcoming sections, 2D distributions under constraint will be studied, providing

more sensitive tests of the model than a simple 3D distribution could.

9.3 Validation of the Modeling of Partially Contained Event Reconstruc-

tion
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Figure 87: Left: Comparison between measured and predicted distributions of selected PC
events over cos(6,,) before (red) and after (blue) applying the measured FC distribution as a
constraint. Right: Comparison between measured and predicted distributions of selected
PC events over E, before (red) and after (blue) applying the measured FC distribution as a
constraint. The data/MC ratios are shown below the overall event distribution.

PC events include activity outside the FV, making them a situation where invisible energy
must be accounted for through modeling. This is particularly the case for muons, whose long
tracks can extend a significant distance outside the detector volume. As mentioned earlier,
1D and 2D marginalizations of higher-dimensional distributions can hide mis-modeling
through the collapse of various systematic uncertainties, many not related to the modeling of

particle energies in PC events. Therefore, the (well understood) FC event distribution is used
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Figure 88: Left: Comparison between measured and predicted distributions of selected
PC events over E, before (red) and after (blue) applying the measured FC distribution as a
constraint. Right: Comparison between measured and predicted distributions of selected
PC events over Ej,,4 before (red) and after (blue) applying the measured FC distribution as a
constraint. The data/MC ratios are shown below the overall event distribution.

as a constraint on the model prediction of the PC event distribution to validate the mapping
between truth and reconstructed PC event kinematics.

Fig. shows the GoF tests over cos(6,) and E, for PC events, with the respective FC
event distributions used as a constraint. Fig.|88 shows the GoF tests over E, and E,°"? for PC
events, with the respective FC event distributions used as a constraint. The red bands show
the uncertainties before constraint, and the blue bands show the updated model prediction
and uncertainties after constraint. Fig.[89|shows the Gof test over the 2D distribution of
{Py, cos(0,)} for PC events, with the FC event distribution used as a constraint. In each case,
the model uncertainty is significantly reduced by the constraint, but the model prediction CV
is also updated to a more accurate distribution, allowing the constrained model prediction
to still cover the distribution in data. If there was significant mis-modeling in the PC events
not seen in FC events, then applying the FC selection as a constraint would not improve the
model prediction CV, causing the constrained GoF test y?/nd f to increase significantly. This

was not seen in the data, and instead each GoF test shows good data/MC agreement even
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Figure 89: Comparison between measured and predicted distributions of selected PC events
over P, within each cos(0,) slice before (red) and after (blue) applying the measurement of
the distribution of FC events over {P, cos(6,,)}. The particularly large uncertainty in a few
bins is because of very low statistics.

after applying the constraint.

9.4 Validation of the Modeling of Transfer Energy

The modeling of the energy transferred to the argon system, v, is critically important to
neutrino experiments. As has been discussed already in Sec.[2.1]and Sec.[9} accurate neutrino

energy reconstruction is important for both oscillation analyses and cross section analyses,
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and the transfer energy represents one of two components in the neutrino energy: E, = E, +v.
Furthermore, v includes energy carried away in non-ionizing particles such as neutrons and
low-energy photons, making it a primary source of invisible activity in LArTPC detectors.
This is described by separating the transfer energy into visible and missing components: v =
E'S + EZZ;Sing , where the reconstructed quantity E}“? serves as an estimate of £/’ , up to
inaccuracies in the reconstruction and event selection. Therefore, the mapping from E;°*’ to
v and ultimately to E, relies on accurate modeling, and in particular cross section modeling.
Reliable model validation is necessary for unfolding to E,, or else mis-modelings in the the
prediction of v may introduce significant bias into the unfolded measurement.

While E;:Z;Sing cannot be directly measured, the GoF test on the distribution of E}’l%’
using the measurement of E,; as a constraint is sensitive to the modeling of EZZ;Sing , because
of the correlated predictions of muon kinematics and hadronic energy. There are two intuitive
arguments to help see this fact. First is the argument of conservation of energy: E, = E,, +

v=E, +EVis L 08

wad T Enaa - The constrained GoF test directly leverages measurements of E,

(through P,) and E Z;Sd (through E;*°?). Furthermore, the accurate measurement of the
distribution over Ej, creates a constraint on the flux modeling parameters, and therefore on
the E, prediction. This leaves EZZ;smg =E,-E,-E Z;Sd as the only unknown to be solved for,
making the constrained GoF test sensitive to it through the simultaneous measurements of
3 3 3 reco
the distributions over P, and E;°".
Another way to view the sensitivity to the modeling of missing energy is to consider
the underlying interaction channels that comprise the model prediction, and how they are
o . L reco
updated through the application of the constraint. Model predictions over Py, E;°", ...
are comprised of predictions on the QE, RES, MEC, and DIS interactions, each withe their
own distribution over each kinematic variable. By using the measured muon kinematic

distribution as a constraint, the model predictions on the interaction channels are updated

akin to a constrained re-weighting. Then, the updated QE, RES, MEC, and DIS predictions
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Figure 90: Comparison between measured and predicted distributions of selected events
over E;°"? before (red) and after (blue) applying the measured E,, distribution as a constraint.
FC events are shown from 0GeV to 2.5GeV in the first 16 bins (including overflow) on the
left and PC events are shown in the next 16 bins on the right. The data/MC ratios are shown

below the overall event distribution.

missing
had

reco

had , then

create new predictions over E7°°? and E}:";;Si”g . If there is mis-modeling in E
there should also be mis-modeling in E;°°? that the GoF test is sensitive to because of the
underlying physics in common. As a result, the constrained GoF test is capable of validating
the modeling of correlations between muon kinematics and hadronic energy, and is sensitive
to the modeling of missing energy.

Fig. 90| shows the GoF test over E,°"?, using the measurement of the distribution over
E, as a constraint. Fig.91|shows the GoF test over {E;*"?, cos(0,,)}, using the measurement
of the distribution over {P,, cos(6,)} as a constraint. In each case, the constrained )(2 re-

mains roughly constant despite the significant reduction in uncertainties, demonstrating

the accurate modeling of correlations between the constraint and target distributions. The
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Figure 91: Comparison between measured and predicted distributions of selected FC (left)

and PC (right) events over E;°"? within each cos(8),) slice. The model prediction before (after)

applying the measurement of the distribution over {P, cos(6,,)} is shown in red (blue).

successful constrained GoF tests over E Prlec"

; ; ; reco
.4 8ive confidence in the mapping from E,;’ 7 to

v, and therefore the modeling of E, within uncertainties. Any bias from mis-modeling of
v introduced through unfolding should be within the listed uncertainties of the unfolded

measurement.

9.5 Examining the Goodness of Fit Test with Fake Data

The modeling of v discussed in Sec. takes the focus of these fake data studies, as it is
the largest source of invisible activity, and most prone to mis-modeling. Fake data allows
the reasoning presented in the previous sections to be tested by creating conditions where
we may expect model failure and observing how the GoF tests perform. Specifically, the
constrained GoF tests should be more stringent than the overall unfolded measurement,
meaning that it should be possible to demonstrate a GoF test that detects mis-modeling even
when the bias introduced in the unfolded measurement is within uncertainty. This level of

forewarning gives significant confidence to the unfolding and overall measurement, seeing as
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the GoF tests serve as the canary in the coal mine - detecting problems before the disastrously

harm the overall measurement.
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Figure 92: Comparison between measured and predicted distributions of selected events

over E;°* before (red) and after (blue) applying the measured {E;, cos(0,,)} distribution as a

constraint. FC events are shown from 0GeV to 2.5GeV in the first 16 bins (including overflow)
on the left and PC events are shown in the next 16 bins on the right. The data/MC ratios are
shown below the overall event distribution. Source: [167]

The first fake data set, consisting of 7.2 x 102°POT, is generated using Genie v2.12.10,
which is known to disagree with the MicroBooNE model based on Genie v3.0.6 [167]. Note
that as an entirely separate set of MC events, this fake data set is fully statistically independent
from the MicroBooNE model. Fig.[92]shows the comparison between measured and predicted
co

distributions of events over E,; "’ both before and after applying the measurement of the

distribution of events over {E;;, cos(6,,)} as a constraint. The unconstrained model prediction
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is unable to detect mis-modeling, owing to the fact that it is a 1D marginalization of higher-
dimensional distribution. However, after applying the constraint, the tension between fake
data and MicroBooNE model prediction grows significantly, rising to y?/nd f = 16.9/32 with
a corresponding p-value of 1.338 x 10711, This demonstrates the increased sensitivity of the
constrained GoF test, which only becomes apparent in situations with significant tension

between measurement and prediction.
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Figure 93: Extracted total cross section as a function of E,, using Genie v2.12.10 as fake data.
Left: Unfolded with the full covariance matrix. Right: Unfolded with only cross section, stat,
and MC stat uncertainties for a more accurate comparison, given that the fake data only
deviates in the cross section modeling. Three model predictions, including GENIE v2, GENIE
v3 default tune, and Genie v3 MicroBooNE-tune, are shown. Source: [167]

The results of the GoF test would warn against unfolding in the case of real data; however,
we can proceed with unfolding to judge the level of bias introduced by the mis-modeling
that was detected. Fig.|93|shows the unfolded total cross section measurement as a function
of neutrino energy, considered separately when unfolded using the full covariance matrix
and a modified version with only cross section and statistical uncertainties. Since the model
differences between the fake data and the MicroBooNE model are limited to the cross section
prediction (and not, say, flux), the limited covariance matrix gives a more accurate compari-
son. In both cases the bias introduced is not nearly as large as the disagreement detected in

the GoF test, with y?/nd fs of 5.7/10 and 11/10 for the full and limited covariance matrices,
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Table 4: y? and p-value of constrained E o7 GoF test using proton-energy-scaled fake data.

Only stats, MC stats, and cross section uncertainties were used. Source: [167]

E}*°® Scaling Factor ¥?(ndf =32) p-value
0.95 5.34 1.0
0.9 21.05 0.93
0.85 47.01 0.04
0.8 80.6 0.00

and p-values of 0.84 and 0.36 respectively. This fake data study exemplifies the capability
of the constrained GoF test to detect mis-modeling with more sensitivity than the unfolded

measurement.
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Figure 94: Extracted total cross section as a function of E,, using the MicroBooNE MC with
85% proton energy scaling as fake data. The measurement was unfolded with only cross
section, stat, and MC stat uncertainties for a more accurate comparison, given that the fake
data only deviates in the cross section modeling. Three model predictions, including GENIE
v2, GENIE v3 default tune, and Genie v3 MicroBooNE-tune, are shown. Source: [167]

An additional fake data set is constructed to specifically test the hypothesis of mis-
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modeling the division of transfer energy between visible and missing components. This
data set is generated by taking the MicroBooNE model MC and scaling down the recon-
structed proton energy in each interaction, simulating a case where the lost energy was
transferred away in neutrons. Proton energies were scaled down by 5%, 10%, 15%, and 20%,
and GoF tests performed in each case, using only statistical and cross section uncertainties.
The results of each GoF test is shown in Table[4] At 15% proton energy loss the GoF test is able
to detect the mis-modeling with y?/nd f = 47.01/32 and a p-value of 0.04. In this scenario
the cross section measurement was extracted, shown in Fig.|94] A y2/nd f = 4.1/10 with the
MicroBooNE model prediction indicates a low amount of bias introduced, demonstrating
that the model validation procedure is able to detect mis-modeling in the transfer energy
before it significantly biases the extracted measurement.

Since this data set is generated from the MicroBooNE MC events, they are not statistically
independent. In theory, the extracted cross section should be unfolded without statistical
uncertainties. However, this presents a practical in-feasibility, as the statistical uncertainties
give the covariance matrix diagonal terms that allow a pseudo-inverse to be computed. Still,
the MC data set is large, at roughly 10 times the size of the real data, so statistical fluctuations
are small. Given these circumstances, the cross section is extracted using statistical and cross
section uncertainties only, which is a reasonable approximation of cross section statistics
only. Furthermore, the GoF test is constructed from statistical and cross section uncertainties,
so if all statistical uncertainties were removed for a fully faithful treatment, both the extracted
cross section bias and the model validation tension would grow, preserving the status-quo

where the model validation is a more stringent test of mis-modeling.
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10 UNFOLDING PROCEDURE

10 Unfolding Procedure

As discussed in Sec.[9} unfolding is the process of solving for an underlying signal distribution
s given a measurement m, background prediction b, and detector response r that smears the
signal distribution, presented in Eqn. For convenience, here the background-subtracted

measurement m’' = m — b will be used to construct the master equation for unfolding:

m=r-s (10.1)

10.1 Unfolding without Regularization

The naive approach to unfolding is to simply solve for S by computing the pseudo-inverse
of R and applying it to each side. Accounting for the uncertainty on M’ in the form of the
covariance matrix Cov, this is performed by minimizing the test statistic )(% describing the

difference between background-subtracted measurement and smeared response:
xa=(m'—r-s)TCov ' (m' ~r1-5) (10.2)

Through Cholesky decomposition [168], the covariance matrix can be decomposed into

triangular matrices and used to pre-scale the measurement and response matrix:

Cov'=0QT-Q
M/ — Q m/
R=Q-r (10.3)

This leads to the simplified form of the test statistic:

Xa=(M-R-s)"(M'—R-5)
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2
= (M;—ZR,-,-SJ-) (10.4)

i J

with solution § given by:

s=(R"R)'RT-M' (10.5)

This solution can be simplified by considering the Singular Value Decomposition (SVD) of R:
R=U-D-VT (10.6)

which expresses R in terms of orthogonal matrices U and V that satisfy UUT = UTU = I
and VVT = VTV = I, as well as the diagonal matrix D composed of the singular values d;

arranged in descending order. The simplified solution for § becomes:

s=v.pL.ut.-M

=v-D'.-My, (10.7)

where M}, = UT M’ represents the background-subtracted measurement in the singular-value
basis.

This naive solution is prone to instability resulting from measurement noise. This can
be shown by expressing M’ as a combination of the true underlying signal s;,,, and the

measurement noise N:

MI:R'S[rue+N
M{] =Ry Strue+ Ny

§=V-D ' (Ry - Strue + Ny) (10.8)

where Ry = UTR and Ny = UT N are the transformed response matrix and noise in the
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singular-value basis, respectively. Notably, the noise terms are uncorrelated and all Gaussian
distributed following N (0, I) (in the pre-scaled coordinate system), so after re-ordering by the
orthogonal matrix U’ the noise terms are left unchanged. The least impactful eigenvectors in
the SVD basis have correspondingly small singular values d;, which causes the corresponding
elements 1/d; in D! to be very large. Normally, the corresponding smeared signal elements
will be very small to counteract the influence of large elements of D~!, however, the presence

of noise allows for large fluctuations in the extracted signal.

10.2 Wiener SVD Unfolding

Typically this instability can be addressed through the use of regularization, which suppresses
fluctuations through the inclusion of a penalty term A in the y? that constrains the extracted
signal distribution:

Y=xi+A (10.9)

Often the smoothness of the signal distribution is asserted by constructing the penalty term
from a derivative (1st, 2nd, 3rd, ...) of §. The inclusion of a regularization term in the test
statistic smears the extracted signal distribution, described through the additional smearing

matrix A:

A=V-F.-vT (10.10)

=V-F-D7'- My, (10.11)

for some matrix F in the SVD basis.
The goal of regularization is to suppress the eigenvectors in SVD that contain high noise
relative to the signal while leaving signal-dominant modes undisturbed. The Wiener Fil-

ter [169,/104], used earlier in Sec. is designed to do just this, by suppressing eigenvectors
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based on their signal-to-noise ratio. By substituting the expectation value of the unknown
true signal distribution s;,,, with the expectation value of the extracted signal distribution s

and using Eqn. [10.6} the terms of the Wiener filter can be computed for each SVD bin i:

2
2 _ T 2_ 12 T =
]
N2=1 (10.12)
The Wiener filter is constructed as:
2 2 dz VT <. 2
Ry-s= 4 XjViis

Wik =

L . (10.13)
. 2 T.<
R -+ N di'(zjvij'sj) +1

This matrix takes the place of F in determining the regularization and subsequent additional
smearing A.

To better apply the intuitive goal of smoothness, the Wiener filter can be modified to
regularize the curvature of the spectrum rather than simply the strength. This is achieved by
introducing the matrix C, commonly taken to be C; or Cy, which take the first and second

derivative respectively, into the definitions of Ry and s:
Ry-s=Ry-C-(C-3) (10.14)

In this triple-differential analysis, C3 representing the third derivative is chosen as it intro-
duces the least bias into the extracted distribution. This is because most slices of the data
form the shape of a downward parabola, representing a significant second derivative. Ap-
plying a penalty term based on the first or second derivative would then attempt to flatten
the distribution in a consistently biased manner. However, the general first-order shape of

the data presents no significant third derivative, reducing the shape bias introduced As will
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be discussed in more detail shortly, it is worth noting that no matter what regularization
is chosen within the Wiener SVD method, so long as the additional smearing matrix Ac is
computed the bias introduced is known, and can be applied to any model comparison to
account for its effect, akin to forward folding.

By redefining the response matrix, the SVD decomposition basis is changed, adjusting

the computation of the extracted signal, additional smearing matrix, and Wiener filter:

R-C'=U¢-Dc- V7 (10.15)
§=Ac-RTR'R-My (10.16)
Ac=CtVe-w-VZ.C (10.17)

_\\2
dz,- (2 V- (21Cju-51)
Wik = 5 (10.18)
déi'(zj VCTij'(Zlel'El)) +1

In this manner, the Wiener filter can be customized to be applied to whatever derivative
of the extracted signal distribution is wanted. Regularizing the derivative of the signal dis-
tribution proves to be an overall better way to control instability in unfolding [169]. The
Wiener filter has the advantage of maximizing the overall signal-to-noise ratio in the effective
frequency domain (SVD basis). This allows it to effectively control fit instability fluctuations
without over-suppressing the desired signal, all without requiring the regularization strength
to be tuned. Furthermore, the additional smearing introduced through the Wiener filter
regularization is captured in the matrix A¢, which is computed and published alongside the
extracted cross section measurement. In this way, any model can be directly compared to the
measurement by simply applying the additional smearing matrix.

Since unfolding is a linear transformation from the measurement m over reconstructed
variables to the signal distribution § over truth variables, it is possible to easily compute the

covariance matrix in the unfolded domain. This is done by recognizing that Eqn.|10.16|is
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essentially a relation between these two quantities:

§=Rypr-m (10.19)

1

Rior=Ac-(R'R) -RT-Q (10.20)

This allows the unfolded covariance matrix to be easily deduced as:

Cov; = Rm-Cov-RtTot (10.21)

10.3 Regularization in Multiple Dimensions

The procedure outlined above relies on taking derivatives of the signal distribution $. In a
single dimension this is a simple procedure, and can simply be computed from the differences
of adjacent bins. However, across a multi-dimensional distribution, taking a derivative
requires defining a path. So as to not preference any particular dimension in the choice of
path, a more complicated combined derivative is computed from a combination of simple
derivatives. For each dimension, the derivative along a single variable is computed separately,
computed using the third derivative matrices C3g,, Csg,, and C3 p,. Then a combined

derivative matrix is computed by adding each C3 matrix in quadrature:

2 _ T T T
C33p=CsE,"C3p, +C30,C39, +C3p,-C3p,

Cs3p=1/C2

3,3D (10.22)

The square root of C§y3 p can be computed by diagonalizing it into VDVT, which is guaranteed
to be possible since since Cég p is symmetric and positive definite, Then the square root of
each diagonal element of D is taken, before recombining. The resultant matrix can be thought
of as computing a mixed derivative that treats all three physical dimensions equally. This

approach has been found to introduce less bias and reduce the instability fluctuations of the
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unfolding when compared to simpler solutions such as simply using D P, OI Deos(g,) as the
derivative matrix of choice. Additionally, it provides a general procedure that can be applied
to Wiener SVD unfolding in any multi-dimensional analysis, regardless of the number or
content of variables.

It is worth noting that the distortion introduced in unfolding resulting from regularization
as well as the Wiener filter are captured in the additional smearing matrix. This is applied
to model predictions, so overall there is no change to the goodness of fit y? for any model
comparison. Still, smearing distortions can impact how we interpret the data, and should
be reduced where possible. The Wiener filter inherently reduces the overall cross section
measurement based on the signal to noise ratio, creating a smeared result with an overall
normalization bias. A triple-differential cross section measurement contains a large number
of bins, and so the Wiener filter can have a significant suppression effect on the unfolded
cross section. To address this issue, the total 1-bin cross section prediction is compared
before and after applying the additional smearing matrix, and a 21% deficit is observed. This
1.21 ratio is then applied to the data and MC as an overall rate re-normalization, effectively
generating a re-normalized additional smearing matrix, leaving all model comparison y?

computations unchanged.

10.4 Estimation of the Detector Response Matrix

So far the discussion has assumed that the detector response R mapping the underlying signal
s to the measurement m is known. To compute this, it is helpful to rewrite the measurement

in terms of the various detector effects involved in producing it [167]:
m(E,*“°) = POT - Tf F(E,)-0(E,)-D(E,,E,*°) -€(E,, E,*°) - dE, + b(E}*“°) (10.23)

where POT represents the number of protons on target, T represents the number of target

nuclei, and E, and E;°“° represent the true and reconstructed neutrino energy, respectively.
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F(E,) represents the neutrino flux as a function of neutrino energy, and D(E,, E}°“°) repre-
sents the detector response matrix, which describes the smearing from true to reconstructed
neutrino energy. €(E,, E}°°°) represents the selection efficiency, and b(E]°“°) represents the
estimated number of background events. By grouping the various terms, Eqn. can be
simplified by expressing it in terms of the background events b; and selected events §;; in

each reconstructed bin i and truth bin j:
J

By grouping the terms in Eqn. {10.23| as well as employing some cancellation, §;; can be
expressed in terms of the nominal-flux averaged total cross section s; in each true neutrino
energy bin, a flux constant F ; that can be computed from the predicted flux, and the ratio of

events selected in bin i that originate in bin j to the total number of events generated in bin

I Ajj:

_ f]ﬁ(Ev,]) : U(Ev,j) : dEv,j
J;F(Ey,)-dE,

Sj

F]‘ =POT- Tfl?(Evj) 'dEvj
i
POT-T [;F(Ey,j)-0(Ey, j)- D(Ey,j, E[%°) -€(Ey,j, EL°f) - dEy,

v,l v,1

POT-T [;F(Ey,j)-0(Ey, j)-dEy,

Aij =
Sii=Ai-Fiesj (10.25)

where F represents the nominal (central value) muon neutrino flux. By using the nominal
flux F, we avoid having to consider the flux prediction uncertainties in the construction of
the response matrix.

The above description can be generalized to a procedure to extract multi-differential cross

sections, and in particular the triple-differential cross section in this analysis. In this case,
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following the format of Eqn.[10.23} the measurement can be expressed as:

do (Ey,04, Py)
M(EceCO,HLeCO,P;eCO) =POT- TfffF(Ev) . W 'D'€'dEv'd9,,t-de

+B (Em, grec, p;“") (10.26)

where 0, and P, represent truth variables corresponding to the reconstructed muon scat-
tering angle 67¢°° and muon momentum P, respectively. 2ZEIwPu) o iosents the
g angle v, p o resp Y- —dv,ap, p
differential cross section as a function of the truth variables. The detector response D and
selection efficiency € are both functions of all six truth and reconstructed variables. From

this, a corollary to Eqn. [10.24|is formed for the 3D measurement bins by summing over

reconstructed bins {i, j, k} and truth bins {I, m, n}:

Mijk= Y Sijkimn+ bijk (10.27)

Imn

In turn, the nominal-flux averaged differential cross section s;,,,, flux constant Fj,,,, selec-

tion mapping A; jkimn, and selection count §; jx;,, can be computed:

— dU(Ev,lvgp,m»Pp,n)
Jimn ¥ (Bv1) =g apy ABvi- AOpm- APy

SimnF (Ev,1)-dEy,1-d6pm-dPy p

Simn =

Flmn: (POT'T'f I_J(Ev,l)-dEv,l-dHMm-dPu,n
Imn

do(Ey 1,0,m,Pun
POT T [, F(Ey)- (deg’,m—;%” .D-e-dEy,-df,m-dPyn

Aijklmn =
- d Ev, ,0 ,mvP N
POT-T- f;,,n F (Ev,1)- —"(dell”m;%ﬂ ) dE,; d0, - dP,,

Sijklmn = Aijklmn'ﬁlmn *Simn (10.28)

By enumerating the reconstructed bins in {i, j, k} (now using the index i) as well as the truth

bins in {/, m, n} (now using the index j), the master equation relating measurement to truth

172



10 UNFOLDING PROCEDURE

bins can be constructed:
mi_bi:ZAij'Fj'Sj:Zrij'sj (10.29)
J J

With this relation established, it is possible to unfold to the triple-differential result by first
computing the flux constant and estimating the mapping from truth to reconstructed bins in

simulation, and then performing the Wiener SVD unfolding as outlined earlier.
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11 Cross Section Measurements

11.1 Single-Differential Cross Section Measurements

The triple-differential measurement central to this dissertation builds on the work done to
extract single-differential measurements over neutrino energy, muon energy, and transfer
energy [167]. Those results are discusses here, before proceeding to the triple-differential
measurement. The single-differential analysis was performed on only 5.3 x 102 POT of data
(instead of the full 6.4 x 102° POT available in runs 1-3) to comply with the MicroBooNE
blindness policy in place at the time. However, statistical fluctuations are still small because

of the relatively small number of bins in 1D compared to 3D.

MicroBooNE 5.3 x 10°POT 1 4MicroBooNE 5.3 x 10*POT MicroBooNE 5.3 x 10"°POT
s f __GENIEV30006 _ NuW019.021 s I __ GENIEV30006 NuWr019.02.1 s G GENIEV30006  NuWr019.02.1
X Xndf=18.8/10 XIndf=1255/10 g Lof + XeIndi=32.4/11 X2Indf=25.1/11 < .50 + XIndf=30918 " xndf=218/8
=] 3 LT >
£ F NEUT 5401 GiBUU 2019.08 £ [ + ,,,,, NEUT 5401 GiBUU 2019.08 £ NEUT 5401 GiBUU 2019.08
> 15 X?/ndf=8.6/10 XIndf=6.5/10 > F + X?ndf=18.0/11 Xendf=167/11 > Hli oo X2ndf=18.4/8 XeIndi=17.0/8
o h o 1 | O
& L MicroBooNE MC & [ { MicroBooNE MC N L * MicroBooNE MC
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S 0.51 AL
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Figure 95: a) The extracted v,CC inclusive scattering cross section per nucleon divided by
the bin-center neutrino energy, as a function of neutrino energy. b) The measured v,CC
differential cross section per nucleon as a function of muon energy do/dE,,. c) The measured
v, CC differential cross section per nucleon as a function of energy transfer do/dv. Various
model predictions are compared to all three measurements (see text for details). Source [167]

In addition to the extracted cross section measurement and MicroBooNE model pre-
diction, comparisons are shown against the predictions of Genie v3.0.6 (untuned), NuWro
19.02.01, NEUT 5.4.01, and GiBUU 2019.08. In each case, the additional smearing matrix Ac
is applied to the model prediction for an unbiased comparison, with y?/nd f calculations
shown alongside each model prediction in Fig.|95| The covariance matrices corresponding

to each unfolded measurement are shown in Fig. For each model comparison, the CV
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Figure 96: Total covariance matrices in different energy bins for (a) total cross section per
nucleon as a function of neutrino energy, (b) differential cross section per nucleon as a
function of muon energy, and (c) differential cross section per nucleon as a function of energy
transfer. Source: [167]

prediction without uncertainties is used, as it is difficult to properly incorporate the uncer-
tainties of each model. Model predictions for Genie v3 (untuned) and NuWro are dis-favored
across the three measurements, while GiBUU consistently gives the best prediction. The
differences in model prediction are most clear in Fig. over v, especially at low transfer

energy where GiBUU performs particularly well.

11.2 Triple-Differential Cross Section Measurement

The full triple-differential cross section is shown in Fig.[97| Each angular slice is presented in

a separate panel, arranged from backward to forward facing. Within each panel, the four E,
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Table 5: Comparisons between various models and the unfolded triple-differential measure-
ment, considered over the entire 138 analysis bins and within each E, slice, specified by the
range in GeV.

Model Name Total [0.2,0.705] [0.705,1.05] [1.05,1.57] [1.57,4.0]

x?/ndf x?/ndf x?/ndf x?/ndf x?/ndf

GENIE v2.12.10 741.1/138 71.4/28 64.4/35 64.3/42 35.6/33
GENIE v3.0.6 (uBooNE tune) | 326.1/138 85.0/28 77.8/35 44.6/42 31.9/33
GENIE v3.0.6 (untuned) 322.2/138 94.1/28 84.8/35 52.2/42 37.3/33
GiBUU 2021 269.9/138 33.8/28 54.8/35 52.6/42 31.0/33

NEUT 5.4.0.1 243.3/138 58.5/28 59.9/35 33.1/42 38.2/33
NuWro 19.02.01 212.1/138 54.8/28 67.3/35 40.9/42 29.6/33

slices are plotted on top of each other, given an arbitrary offset A that varies between slices to
help visually separate each slice. Within each panel the measurement is shown over the P,
bin centers within that slice. The triple-differential result provides a highly detailed picture
of the physics involved in v,,CC interactions, including the energy and angular dependence
of the peak in cross section as a function of muon momentum. Additionally, the unfolding
to E, helps separate interaction processes: NuWro predicts a reduction in the quasi-elastic
fraction from ~ 75% in the lowest energy bin to ~ 55% in the highest energy bin.

Although the data is unfolded with the MicroBooNE model prediction, it is shown here
in comparison to the NuWro 19.02.01 prediction as it has the best agreement with the data.
The quality of fit for each model comparison is shown in Table |5} including comparisons
with GENIE v2.12.10, GENIE 3.0.6 G18_10a_02_11a [145}54], NuWro 19.02.01 [161], NEUT
5.4.0.1 [160], and GiBUU 2021 [170]. The differences in physics modeling assumptions used
between the event generators are described in Ref. [171].

The triple-differential measurement provides data covering a large phase space, causing it
to be in tension with all model CV predictions considered. The best overall model agreement
is found with NuWro, followed by NEUT and GiBUU. The hierarchy of model agreement
largely matches what was found in the single-differential results, with the notable exception

that NuWro perform much better over this higher-dimensional phase space. To help visualize
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Figure 97: Unfolded differential cross section measurement and NuWro prediction, chosen
for having the lowest y?, are shown over P, within each angle slice. Measurements from each
E, slice are overlaid and offset to visually separate them. The magnitude of the offset A, given
in the same units of 10736cm?/GeV/Ar, is listed in the bottom right of each plot.

the data/MC comparisons, the muon momentum dimension is integrated over and each bin
is normalized by the average neutrino energy in the slice, producing the double-differential
result shown in Fig. GiBUU provides the best description of the data below 1 GeV, but is
outperformed at higher energies, particularly by NuWro. The high energy region, particularly
in combination with low Q? and forward lepton angles, is notable for an increase in A-
resonance interactions combined with differences in the modeling of pion production [172]
that may play a role in the overall model performances.

In the future, this analysis can be enhanced through the inclusion of additional data, both
from the BNB used in this analysis already, as well as the NuMI beamline that MicroBooNE is
exposed to. Since the NuMI beam is off-axis and at a higher energy, the flux predictions be-

tween these two beamlines are only slightly correlated, meaning that a combined BNB+NuMI
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Figure 98: Unfolded differential cross section over cos(0,) after integrating over P, and
normalizing by the average (E,) in each E, bin.
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Figure 99: Covariance matrix showing total statistical plus systematic uncertainties over the
138 measurement bins, in units of 10738 cm?2/Ar.
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measurement will not only reduce the statistical uncertainties but also the flux uncertainties
in the extracted measurement. In parallel with these advances, work is in-progress to produce
multi-differential cross section measurements over exclusive channels that comprise the

overall inclusive v,,CC channel.

11.3 Conclusion

MicroBooNE has served as a pioneer in the field of LArTPC-based neutrino physics experi-
ments, fulfilling primary goals of investigating the MiniBooNE LEE, providing research and
development on large-scale LArTPC detectors, and producing cross section measurements.
Within MicroBooNE, Wire-Cell has developed a reconstruction chain that reconstructs a fully
3D charge distribution and produces produces highly accurate data products on particle
identities, kinematics, and overall organization within a neutrino interaction. Notable steps
within this reconstruction include signal processing with 2D deconvolution, tomographic
imaging for 3D charge reconstruction, global charge-light matching of TPC activity, graph-
based trajectory fitting and particle flow, and neutrino vertex identification incorporating
a deep neural network. Using this reconstruction, Wire-Cell developed a high-efficiency,
high-purity inclusive v,CC selection that achieves 92% purity while maintaining 68% effi-
ciency. This remarkable selection performance as well as reconstruction quality enables the
use of a new data-driven validation procedure that leverages correlated model predictions
across final state kinematics to increase sensitivity to mis-modeling, including over invisible
TPC activity. Finally, Wiener SVD unfolding was used to produce a nominal-flux averaged

2
differential inclusive v, CC cross section 7 %o (Ey)

m. This measurement uses an exposure

of 6.4 x 10%° POT of data from the BNB, and contains a wealth of info capable of assisting
model development. In particular, the validated reconstruction of neutrino energy is espe-
cially useful for high-precision neutrino oscillation searches, such as at the upcoming DUNE

experiment.
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