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Abstract: Based on the thermal phase structure of pure SU(2) quantum Yang–Mills theory, we

describe the electron at rest as an extended particle, a droplet of radius r0 ∼ a0, where a0 is the Bohr

radius. This droplet is of vanishing pressure and traps a monopole within its bulk at a temperature of

Tc = 7.95 keV. The monopole is in the Bogomolny–Prasad–Sommerfield (BPS) limit. It is interpreted in

an electric–magnetically dual way. Utilizing a spherical mirror-charge construction, we approximate

the droplet’s charge at a value of the electromagnetic fine-structure constant α of α−1 ∼ 134 for

soft external probes. It is shown that the droplet does not exhibit an electric dipole or quadrupole

moment due to averages of its far-field electric potential over monopole positions. We also calculate

the mixing angle θW ∼ 30◦, which belongs to deconfining phases of two SU(2) gauge theories of very

distinct Yang–Mills scales (Λe = 3.6 keV and ΛCMB ∼ 10−4 eV). Here, the condition that the droplet’s

bulk thermodynamics is stable determines the value of θW . The core radius of the monopole, whose

inverse equals the droplet’s mass in natural units, is about 1% of r0.

Keywords: SU(2) Yang–Mills thermodynamics; BPS monopole; fine-structure constant; electroweak

mixing angle

1. Introduction

The electroweak interactions between leptons in the Standard Model of Particle Physics
(SM) are mediated by quantised gauge fields, associated with the group U(1)Y×SU(2)W.
In the SM, asymptotic lepton states are associated with point particles whose localisation
characteristics relate to quantum states of relativistic matter waves, described by solutions
to the Dirac equation, and which depend on the presence or absence of external potentials.
Electroweak interactions are assumed to be governed by small gauge couplings: g′ < 1
for U(1)Y and g < 1 for SU(2)W. The SM is extremely successful and efficient in deliver-
ing a quantitative description of scattering cross-sections, decay rates, branching ratios,
production and oscillation rates, as well as bound-state properties. Renormalisability of
the electroweak sector of the SM [1–3] assures that corrections to an asymptotic state are
calculable to any desired order in the couplings g′ and g without having to introduce
parameters in addition to those of the defining Lagrangian. By resummation of renor-
malised Feynman diagrams, these parameters evolve with the resolution scale externally
applied to a physical process. Generally speaking, a parameter value obtained at a given
four-momentum transfer P can be converted to that at a different four-momentum transfer
P′ by a rescaling that depends on logarithms of the ratio P/P′.

While the electroweak sector of the SM reliably predicts the running of its parameters
and the amplitudes of associated processes, it is unable to compute absolute parameter val-
ues at any given resolution. Most prominently, the electromagnetic fine-structure constant
α [4], which at low four-momentum transfer assumes the experimental value [5],
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αexp =
q2

4πϵ0h̄c
=

1

137.035999206
, (1)

is not subject to calculation within the SM. That is, given ϵ0 (permittivity of the vacuum),
h̄ (reduced quantum of action), and c (speed of light in vacuum), the electric charge of
the electron q is a free parameter whose value needs to be measured. In what follows, we
assume that the constants of nature ϵ0, c, and h̄ are independently measured and thus are
not considered free parameters of the SM. They can be argued to emerge from pure SU(2)
Yang–Mills theory; see [6]. These constants and Boltzmann’s constant kB are all set equal to
unity in the present report (natural units).

In the electroweak sector of the SM [7–9], the electric charge q, due to mixing between
the Cartan algebras of SU(2)W and U(1)Y, is obtained from the (perturbative) coupling g of
SU(2)W or from the (perturbative) coupling g′ of U(1)Y as

q = g sin θW or q = g′ cos θW . (2)

Here, 28.7◦ ≤ θW ≤ 29.3◦ [10,11] denotes the weak mixing (or Weinberg) angle, measured
at variable four-momentum transfer. In addition to condition (2), one imposes for the
electric charge operator Q and the hypercharge matrix Y of each left-handed lepton family
that Y = Q − 1

2 σ3, where σ3 = diag(1,−1) denotes the third Pauli matrix; see [12] for a
comprehensive review. Like q, θW is a free parameter of the SM whose value has to be
inferred experimentally at a given resolution. One can pick resolution to be vanishing,
and we argue in the present work that, under clearly stated assumptions, that in this limit,
the values of the dimensionless electroweak parameters α and θW can be approximated
thermodynamically. Such an approach is based on ideas by Louis de Broglie providing the
foundations for wave mechanics [13,14]. Namely, the electron as a propagating matter wave
emerges by applying a Lorentz boost to a spatially extended and internally oscillating sys-
tem (a standing wave). De Broglie also noticed that the transformations of wave frequency
and the frequency of internal oscillation are distinct in the same way as the transformations
of particle energy and internal heat are. This, however, reveals the existence of a close
link between relativistic thermodynamics and the physical insights that are at the heart of
wave mechanics.

The present work takes up these profound ideas by de Broglie, supplemented by con-
crete notions of what the source of oscillation, the oscillating medium, and the boundary
of this medium are in the framework of pure SU(2) Yang–Mills thermodynamics in four
spacetime dimensions. As we shall argue, this enables derivations of the values of the elec-
troweak parameters α and θW . To put this into perspective, we would also like to mention
other approaches. The experimental value of α in Equation (1) is either represented by
numerology or linked to physics beyond that of the SM. Pure numerology without a defined
physical basis can generate an impressive proximity to the value in Equation (1), mostly
invoking combinations of primes, and prominent transcendental numbers in elementary
functions or continued fractions. These results are reviewed in [15]. Other approaches,
including Dirac’s large number hypothesis as well as Weyl’s hypothesis, both invoking
the classical radius of the electron, Casimir’s mousetrap model, Kaluza–Klein theories,
open-string scattering, invariants under certain ad hoc symmetries and others are reviewed
in [16]. Regarding the electroweak mixing angle θW , the assumption that quarks have
integer electric charges as in the Han–Nambu scheme solves the orthogonality condition
between the Z-boson field and the photon-field γ by a value sin2 θW = 1/4 or θW = 30◦,
which is close to experiment [17]. For discussions on how the Weinberg angle relates to
consistency conditions in breaking the symmetry groups of grand unified theories (GUT)
in four or higher dimensions; see [18] and references therein.

The strength of the SM is that parameters such as α and θW can be evolved accurately
to describe particle transitions that are characterised by large four-momentum transfers. To
such processes, thermodynamics is not applicable. This is already suggested by the fact that
in the center-of-mass (COM) frame of two colliding electrons, the square of COM energy



Symmetry 2024, 16, 1587 3 of 28

is given as s = 4 m2
e (1 − v2)−1 and that the temperature T0 in each particle’s restframe

is, by invariance of local entropy under Lorentz boosts [14], decreased as T =
√

1 − v2T0.
Here, ±v are the respective particle speeds. Letting v ↗ 1, we notice that, as s → ∞, the
temperature of each droplet vanishes, T ↘ 0. This associates a strongly boosted electron
with the confining phase of SU(2) Yang–Mills thermodynamics by depriving it of its 3D
structure. Alternatively, an observer in the center-of-mass frame, instead of seeing colliding,
spherical droplets, sees 2D ’pancakes’ due to a strong Lorentz contraction along the boosted
coordinate. Therefore, the deconfining phase, whose restframe thermodynamics mainly
constitutes the droplet and defines its Lorentz invariant properties mass me and electric
charge q, is invisible in the center-of-mass frame at large s; see Sections 4 and 5.

The process of pair creation of an electron and a positron, both separated well at
late times, by a pair of initially well-separated photons is another example of large four-
momentum transfer during the transition. Here, a highly nonthermal, intermediate state of
even locally inhomogeneous energy density is generated. This intermediate state emerges
from local energy deposition into the ground state of the confining phase of an SU(2)
Yang–Mills theory. The round-point center vortex loops composing this ground state are
stretched and twisted by such an energy composition [6]. Subsequently, this intermediate
state equilibrates into a final state, the electron and positron. In the restframe of the ensuing
electron, a thermal droplet at rest is well separated spatially from the boosted thermal
droplet—the positron. In Quantum Electrodynamics (QED) and to the lowest order in α,
the nonthermal, intermediate of a pair creation process, where both particles are not fully
developed and close by, is described by the electron propagator connecting the two vertices
of the associated Feynman diagram. This propagator mediates off-shell propagation of
positive and negative energy states forward and backward through limited time intervals,
and it is well known how efficient and precise the associated QED cross-sections are in
describing the experimental data on pair creation [19]. Therefore, QED (and more generally
the SM) is a powerful tool to quantitatively assess collisional transitions of asymptotic
particle states whose intrinsic thermodynamics is of no use to describe such processes. Yet,
as we will argue in the present work, defining particle properties can be obtained from a
thermodynamical approach operating in their restframes.

A situation that QED and the SM are unlikely to describe well, however, is the physics
of a dense and thermal state of electrons and positrons in terms of particle and energy
transport, charge and spin fluctuations as well as correlation functions of particle number
densities and particle speeds. Here, dense refers to densities of the order of 1/(droplet
volume), namely ∼1.8 × 1028 m−3, and thermal corresponds to temperatures comparable
to the stabilisation temperature of the associated Yang–Mills theories, namely T0 ∼ 9.4 keV,
or an energy density ∼5 × 1014 J m−3. An important signature to search for in this regard
is the creation of electron–positron pairs by macroscopic droplet evaporation in terms of
their gamma-ray annihilation lines originating outside the droplet. The formation of such
extended droplets is facilitated by localised deposition of ultra-high energy density through
compact, ultra-high-contrast, femtosecond lasers focused to relativistic intensities onto
targets composed of aligned nanowire arrays [? ]. This experiment achieves a local energy
density of 8 × 1016 J/m3 across a spot size of ∼ 5µm which would guarantee the creation
of macroscopic droplet dimensions.

In this paper, we consider the simultaneous presence of all phases (deconfining/
preconfining/confining) of 4D SU(2) Yang–Mills thermodynamics within a ball-like spatial
region of radius r0, a droplet. In particular, we demonstrate how the mixing within the
deconfining phase of two SU(2) Yang–Mills theories of vastly disparate scales, SU(2)CMB and
SU(2)e, appears to yield a realistic value for the electroweak mixing angle due to vanishing
bulk pressure and at vanishing external energy momentum transfer. The Yang–Mills scales
(or critical temperatures) of SU(2)CMB and SU(2)e are derived from experiment. Namely, the
Yang–Mills scale of SU(2)CMB is suggested to be ΛCMB ∼ 10−4 eV from the excess of CMB
line temperatures for frequencies ν < 3 GHz [21] or from a potential detection of screening
effects in a laboratory blackbody experiment at low temperatures. Here, screening effects
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generate a gap for propagating blackbody radiation at low frequencies (< 17 GHz) shortly
above the deconfining/preconfining phase transition of SU(2)CMB [22,23]. This gap is filled
by evanescent modes with a spectrum differing distinctly from Rayleigh–Jeans; rather than
decaying ∝ ν2 with decreasing frequency ν, the evanescent mode spectrum grows because
modes with decreasing ν possess a decreasing spatial decay length, therefore less energy,
and thus are more easily excited.

The Yang–Mills scale of SU(2)e is deduced in the present work from the mass of
the electron as Λe ∼ 3.60 keV; see also [24,25] for mildly deviating earlier estimates that
neglected gauge-theory mixing. The mixing between the deconfining, preconfining, and
confining phases of SU(2)e and the deconfining phase of SU(2)CMB creates a thick boundary
shell to the droplet, whereas the bulk region is described by the deconfining phases of
SU(2)e and SU(2)CMB trapping an SU(2)e monopole. This requires an electric–magnetic dual
interpretation of U(1) charges in SU(2) Yang–Mills theory; see [6,26]. The thick boundary
shell thus is a region of high electric conductivity due to condensed monopoles in the
preconfining phase of SU(2)e. It is an essential assumption of the present paper that in the
limit of a static equilibrium, the thick boundary shell is sharply delineated from the bulk at
r̄ < r0. That is, for each volume element within the thick boundary shell, contracting forces,
stemming from the mixing of deconfining and preconfining phases of SU(2)e, are assumed
to cancel by the expanding force due to the plasma of the deconfining phase of SU(2)CMB.
To avoid making this assumption, a treatment of the thick boundary shell in terms of
imperfect fluid hydrodynamics would require a derivation of an effective, self-consistent,
and r-dependent equation of state by a spatio-temporal coarse-graining of the phase and
gauge-theory mixture. On this basis, the solution to the hydrostatic fluid equations of the
thick boundary shell could be obtained. This is technically hard and beyond the scope of
the present paper, however. In any case, the pressure vanishes on the confining-phase side
of the Hagedorn transition in SU(2)e, that is, outside the droplet for r > r0 [6].

We also assume (i) effective hydrostatic equilibrium of the thick boundary shell. After
spatio-temporally averaging, the bulk pressure Pbs vanishes, Pbs ≡ 0.

(ii) Phase segregation and therefore a maximum radius for radial averages over
monopole positions is given by the mean radius r̄ of the initial, non-phase segregated
thin-boundary shell droplet.

(iii) The energy density within the thick boundary shell is comparable to the bulk
energy density.

Notice that in the absence of an external force, bulk homogeneity T(r) = T0 = const
and therefore vanishing bulk pressure, Pbulk ≡ 0, are due to hydrostatic and thermodynamic
equilibrium and the continuity condition of vanishing pressure at bulk-boundary-shell
separation r = r̄, Pbulk(r=r̄)=Pbs(r = r̄) = 0. Namely, dPbulk/dr = dPbulk/dTdT/dr ≡ 0
⇒ dT/dr ≡ 0 ⇒ T(r) = T0 = const, which, together with Pbulk(r = r̄) = Pbs(r = r̄) = 0,
yields Pbulk ≡ 0.

On one hand, the quantum mass of the droplet is m0 = ω0, monopole breathing
associating with the (circular) frequency ω0 [13,24,25]. On the other hand, the spatial
extent of the electron refers to a dynamical equilibrium, which is very close to the static
equilibrium assumed in (i). This can be pictured as follows. The thick boundary shell could
effectively produce negative pressure by an imbalance of the partial pressures stemming
from phase mixing in SU(2)e (negative) and gauge theory mixing with SU(2)CMB (positive).
The bulk surface would then have to impose a positive counter pressure (homogeneous
in the bulk due to the quantum correlation length | ϕ |−1 being much larger than the
droplet’s extent), that is, T > T0. Alternatively, the thick boundary shell could exhibit an
imbalance of partial pressures to effectively produce positive pressure, to which the bulk
surface would react by pull (negative pressure). This describes the droplet’s breathing
around a stable equilibrium where bulk and boundary-shell pressures independently
vanish. In the absence of external forces, breathing amplitudes for the deviations of droplet
radii and pressures away from this equilibrium are small. Notice in this context that it is
the monopole with a mass fraction of less than 10 % [24] that drives breathing and, due
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the defined phase structure of SU(2)e, the boundary shell cannot compress/expand itself
indefinitely. Therefore, assuming an overall vanishing of pressures is justified for an initial
estimate of monopole charge distribution, bulk gauge-theory mixing, and droplet mass.
Regarding assumption (ii), we argue in Section 4.3.1 that shortly after pair creation in each
droplet, Yang–Mills phases are not segregated, and therefore, the only radial scale r̄ to
determine segregation is the radial mean subject to a homogeneous probability density
over the droplet volume. Assumption (iii) allows for a quick estimate of droplet mass (see
Equation (50)), since for the boundary shell, it is a priori not clear what the effective mixing
angle between SU(2)CMB and SU(2)e and what the effective phase mixing within SU(2)e are.
Note that the fraction of boundary-shell volume to droplet volume is ∼27/64∼0.42, and
therefore, deviations of the true energy density within the boundary shell from the assumed
bulk energy density should not influence the droplet mass estimate on the right-hand side
of Equation (50) strongly.

It is the equivalent descriptions of the system in terms of effective (and only implicit
quantum) bulk thermodynamics on one hand and explicit quantum physics on the other
hand that allow us to address essentials of the droplet physics; see Equation (50). The
purpose of the present paper is to demonstrate what assumptions (i), (ii), and (iii) actually
imply for the values of the dimensionless parameters in electroweak theory.

This paper is organised as follows. For the benefit of readability and better access to
our derivations, we review in Section 2 the thermal phase structure of a (3+1)-dimensional
Minkowskian and effectively quantum SU(2) Yang–Mills theory as it emerges from a 4-
dimensional, fundamental, and classical SU(2) Yang–Mills theory defined on the Euclidean
cylinder R3 × S1. In particular, we discuss the nature of the transitions from deconfining
via preconfining to the confining phase and how the respective (thermal) ground states
emerge by dense packings of fundamental topological defects whose central regions are
not resolved in the respective effective theories. Section 3 is devoted to a brief review of
previous work on finite-volume SU(2) Yang–Mills thermodynamics inside the droplet that
represents the spatial region of self-intersection of a center-vortex loop, immersed into
the confining phase. Such a droplet traps a perturbed Bogmolnyi–Prasad–Sommerfield
(BPS) monopole, causing monopole and plasma vibrations. A stepwise approach towards
a droplet model capable of approximating the experimental value of the electromagnetic
fine-structure constant α is developed in Section 4. This model, which is short of mixing two
SU(2) gauge theories within the droplet’s bulk, invokes all three phases of SU(2) Yang–Mills
thermodynamics. It also uses a spherical mirror-charge construction to yield the effective
droplet charge as seen by an external electromagnetic probe of long wavelength. Moreover,
the model introduces the mean of the radial position of the monopole over the entire droplet
volume to segregate a thick boundary shell from deconfining-phase bulk thermodynamics.
Finally, the droplet charge is expressed as a bulk-volume average. In Section 5, the mixing
of two SU(2) Yang–Mills theories is considered to describe the thermodynamically stable
bulk of a droplet. Here, the conditions of monopole-charge universality and zero bulk
pressure determine both the bulk temperature in units of one theory’s critical temperature
for the deconfining–preconfining phase transition as well as the mixing angle. The latter
turns out to be close to experimental values of the weak mixing angle θW, the Weinberg
angle. When accounting for gauge-theory mixing, the model developed in Section 4 yields
a value of α not far from the experimental low-energy value. Section 5 computes the ratio
between reduced Compton radius rc, which is roughly equal to the core radius of the
monopole, and droplet radius r0 from a quantum-thermodynamical electron-mass formula.
As it turns out, r0 is smaller but comparable to the Bohr radius a0. In Section 6, we present a
brief summary and an outlook on how the present framework can be applied to understand
the emergence and weak decay of the other two charged lepton species of the SM.

2. Three Phases of SU(2) Yang–Mills Thermodynamics

SU(2) Yang–Mills thermodynamics occurs in three distinct phases, as shown in Figure 1.
Here, we briefly review associated concepts and results, closely following [6]. The infinite-
volume limit is assumed throughout.
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Figure 1. Phase diagram of SU(2)CMB with Tc = 2.725 K in the infinite-volume limit. There are three

distinct phases: (I) deconfining phase, (II) preconfining, and (III) confining phase. In phase III, a very

light lepton family emerges whose charged members can be called gammaron and antigammaron

and which possess a mass of 1.5× 10−2 eV. The ground state of SU(2)CMB partly transitions into such

charged leptons at the Hagedorn temperature Tc′ ∼ 2.27 K.

2.1. Deconfining Phase (I)

The deconfining phase takes place for T ≥ Tc. Its thermal ground state can be derived
from a spatially coarse-grained two-point field-strength correlator, evaluated on a trivial-
holonomy caloron or anticaloron [27] whose respective contributions are superimposed.
The reason for the use of a trivial-holonomy rather than a nontrivial-holonomy caloron
or anticaloron is its stability under one-loop quantum fluctuations [28]. (Anti)calorons
are (anti)selfdual solutions to the fundamental Yang–Mills equations on the Euclidean
cylinder R3 × S1, parameterised by 0 ≤ r < ∞, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ τ ≤ β ≡ 1

T (T
denoting temperature). Therefore, these gauge-field configurations are void of pressure
and energy-density, that is, they do not propagate. The spatial coarse-graining is performed
over the central spatial dependence of the field-strength correlation. This amounts to an
integral over the 3D spatial ball, referred to as ’center’ in the following, at any given value
of τ. In the singular gauge that the (anti)caloron is constructed in, this ball centrally locates
the topological charge. Specifically, this means that integrating the Chern–Simons current
over a 3-sphere of radius ρ ≫ ϵ > 0, centered at the position of the maximum of the
action density at r = 0, τ0, yields a result which does not depend on ϵ. Here, ρ denotes
the (anti)caloron radius. Throughout the paper, the symbol ρ is used to denote various
quantities in different contexts: caloron radius, plasma energy density, and probability
density for the location of a monopole within the droplet’s bulk. What is meant when will
be clear from the context. The average over (anti)caloron radii ρ yields a normalisation
which cubically rises with the upper cutoff. This integral produces a rapidly saturating,
harmonic τ-dependence.

Dense spatial packing of centers (spatial homogeneity at the resolution set by a
(anti)caloron center’s radius) gives rise to an inert, temporally winding, and adjoint scalar
field ϕ of modulus |ϕ| =

√
Λ3/2πT which breaks the fundamental gauge symmetry SU(2)

down to U(1). Here, Λ denotes the Yang–Mills scale of the deconfining phase. Dense
packing implies the overlap of (anti)caloron peripheries (the complements of their centers)
with centers and with one another. After spatial coarse-graining, the collective presence
of all other (anti)caloron peripheries at the position of a given (anti)caloron center accu-
rately is captured by a pure-gauge solution a

gs
µ to the effective Yang–Mills equation. Out

of vanishing pressure and energy density in a situation, where only the dense packing
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of centers is considered, the inclusion of peripheral overlap produces finite ground-state
energy density ρgs and pressure Pgs. One has

ρgs = −Pgs = 4πΛ3T . (3)

This vacuum equation of state is an important aspect of the ‘thermal ground state’. Mi-
croscopically, (anti)caloron overlap transiently changes the (anti)caloron’s holonomy from
trivial to mildly nontrivial, which introduces the negative ground-state pressure described
by Equation (3) [28].

By virtue of the adjoint Higgs mechanism invoked by field ϕ, two out of three compo-
nents (dimension of SU(2) algebra su(2) equals three) of the effectively propagating gauge
field aµ are massive, where mass m depends on T (quasiparticle mass). This can be seen

after de-winding the field ϕ and nullifying the effective ground-state gauge field a
gs
µ by

a singular but admissible gauge transformation. Under such a gauge transformation, the
Polyakov loop, evaluated on a

gs
µ , changes its value from the center element −12 to the center

element 12. This confirms that the theory is in a deconfining phase, that is, the electric center
symmetry Z2 is broken dynamically.

Effective, propagating excitations can be grouped into purely quantum thermal for
all frequencies (massive modes) and classical, off-shell or quantum thermal, depending
on frequency (massless mode). The one-loop approximation to thermodynamical bulk
quantities like pressure P or energy density ρ, subjecting noninteracting excitations to the
presence of the thermal ground state, is 99 % accurate. Small corrections to this estimate
can be computed in terms of higher loops. They collectively describe the effects of rare
dissociations by large holonomy shifts in (anti)calorons. The dissociation products are
screened monopole–antimonopole pairs.

Demanding that one-loop fluctuations and the thermal ground-state estimate are
thermodynamically consistent (implicit T-dependences cancel in Legendre transformations:
dP
dm = 0, P the one-loop pressure, m the quasiparticle mass), one derives the following
first-order ordinary differential equation [6]:

∂aλ = −24λ4a

(2π)6

D(2a)

1 + 24λ3a2

(2π)6 D(2a)
, (4)

where
a ≡ m

2T
= 2πeλ−3/2 (5)

and

D(y) ≡
∫ ∞

0
dx

x2

√

x2 + y2

1

exp
(

√

x2 + y2
)

− 1
. (6)

Here, e denotes the effective gauge coupling in the deconfining phase, and dimensionless
temperature is defined as λ ≡ 2πT

Λ
. The evolution described by Equation (4) possesses two

fixed points: a = 0 and a = ∞. The latter associates with a critical temperature λc of value
λc = 13.87; the former describes the behaviour at asymptotically high temperatures. For
a ≪ 1, the downward-in-temperature evolution described by Equation (4) is solved by

a(λ) = 4
√

2π2λ−3/2

(

1 − λ

λi

[

1 − aiλ
3
i

32π4

])1/2

, (7)

subject to the initial condition a(λi) = ai ≪ 1 and λi ≫ 1. The attractor a(λ) = 4
√

2π2λ−3/2

implies, by virtue of Equation (5), that the effective gauge coupling e is a constant almost
everywhere:

e ≡
√

8π . (8)
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Equation (7) indicates that the condition a ≪ 1, under which it was derived, is violated at
small temperatures. Since the exact solution continues to grow with decreasing λ (negative
definiteness of right-hand side of Equation (4)), the right-hand side of Equation (4) will
be suppressed exponentially. This implies a behaviour a(λ) ∝ − log(λ − λc) for λ ↘
λc and therefore a logarithmic singularity at λc also for e(λ); see Figure 2. Physically,
such a singularity implies masslessness for isolated screened monopoles, liberated by
the dissociation of large-holonomy (anti)calorons and collectively associable to effective
radiative corrections [29]. Therefore, as λ ↘ λc, the holonomy of a typical (anti)caloron
moves from small to large [30].

Figure 2. The effective gauge coupling of the deconfining phase in SU(2) Yang–Mills thermodynamics

as a function of dimensionless temperature λ = 2πT
Λ

≥ 13.87 = λc where Λ denotes the Yang–Mills

scale, and Tc is the critical temperature for the deconfining–preconfining phase transition. Temperature

λ0 = 18.31 refers to the point of vanishing pressure.

2.2. Preconfining Phase (II)

The preconfining phase extends from λc = 13.87 (onset of monopole condensation,
second-order phase transition, pressures on both sides of the phase boundary match,
thermal energy density of monopole–antimonopole condensed system with one massive
photonic vector excitation is higher on the preconfining than on the deconfining side of the
phase boundary with one massless photonic vector excitation, coexistence of deconfining
and preconfining phases, phase tunneling) via λ = λ∗ = 12.15 (preconfining-phase energy
density matches supercooled thermal energy density of deconfining ground state with one
massless photonic excitation, phase tunneling suppressed) to λc′ = 11.57 (massive photon
decouples, entropy vanishes, onset of Hagedorn transition, discontinuous phase changes
of order parameter [31] associate with tunneling towards (magnetic) Z2 degenerate ground
state, associated center-flux creation). Microscopically, the thermal ground state of the
preconfining phase is constituted from massless magnetic monopoles and antimonopoles.
In physics models, these are dually interpreted and therefore represent electric monopoles
and antimonopoles [26].



Symmetry 2024, 16, 1587 9 of 28

Dense packing of monopole and antimonopole cores is described by an effective, inert,
complex scalar field φ which breaks the remaining gauge symmetry U(1) dynamically.
The overlap of all peripheries at the position of a given monopole or antimonopole core

is described by an effective pure-gauge configuration a
D,gs
µ . In the preconfining phase,

the Polyakov loop, evaluated on the effective ground-state gauge field a
D,gs
µ , is unity in

both winding and unitary gauge. This is indicative of the fact that the preconfining phase
already confines infinitely heavy, fundamental test charges, although massive, propagating
gauge modes can still be excited.

The pressure throughout the deconfining phase is negative. If it were not for phase
mixing, the ground state of the preconfining phase would be a superconductor. But even
in the presence of phase mixing, electric conductance is expected to be very high for
λc′ ≤ λ ≤ λc compared to the deconfining and confining phases. At λc, the effective U(1)
gauge coupling g vanishes with mean-field exponent 1

2 ; at λc′ , g diverges logarithmically [6].

2.3. Confining Phase (III)

At λc′ , massive Abrikosov–Nielsen–Oleson vortex loops without self-intersections,
which, due to their finite, resolvable core-sizes, are instable defects for λ′

c < λ ≤ λc, become
massless and metastable. These massless solitons, so-called thin center-vortex loops, break
the magnetic center symmetry Z2 dynamically [31] upon their condensation. Condensation
is enabled by shrinkage to round, massless points [32]. The ensuing new Z2 degenerate
ground state, which confines fundamental test charges and does not support thermal gauge-
mode excitation anymore, can be shown to possess no energy density and to exert no
pressure [6].

The liberation of thin center-vortex loops at λc′ from the ground state of the preconfin-
ing phase initiates the Hagedorn transition. Effectively, this process is described in terms
of phase changes by ±π of a complex scalar field Φ. Such phase changes accompany
tunneling events through tangentially convex regions of a potential uniquely determined
by Z2 symmetry. Collisions of center-vortex loops lead to twistings and the formations
of stable regions of self-intersections which, in their restframes, are characterised by the
droplets of radius r0 that we have alluded to in Section 1; see also Section 3. The density of
states Ω(E) of solitons, which are subject to an arbitrary number of self-intersections, rises
more than exponentially in energy E. Therefore, no partition function exists for λ ∼ λc′

(confining phase), and thermodynamics is not a valid description anymore. (This can
already be inferred from the fact that for λ ↘ λc′ the entropy density vanishes, which
violates Nernst’s theorem.)

2.4. Summary of Phase Structure of SU(2) Yang–Mills Thermodynamics

To summarise, SU(2) Yang–Mills thermodynamics comes in three phases; see Figure 1.
The deconfining phase (phase I) breaks SU(2) to U(1) in terms of a thermal ground state
estimate, which is composed of trivial-holonomy anticalorons and calorons of topological
charge k = ∓1. For λ ≫ λc, rare dissociations of (anti)calorons, induced by large holonomy
shifts, create isolated monopoles and antimonopoles which, however, are spatially not
resolved in the effective theory. For λ ∼ 2 . . . 3 λc, the distance between monopoles and anti-
monopoles is comparable to the spatial resolution set by |ϕ|−1, and therefore, they become
explicit and isolated degrees of freedom. In the effective theory, the collective imprint of
these monopoles and antimonopoles onto thermodynamical quantities (a ∼1% effect com-
pared to the free quasiparticle approximation [6]) or dispersion laws for propagating gauge
modes can be studied in terms of (resummed) radiative corrections. There is a temperature,
λ0 ∼ 1.32 λc, where a finite-size system can be stabilised due to vanishing pressure.

At λc, monopoles and antimonopoles become massless, pointlike defects that are
densely packed; they represent a would-be superconductive condensate. However, phase
mixing reduces conductivity to finite values. Pressure is negative throughout the preconfin-
ing phase.
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At λc′ = 0.83 λc, the monopole–antimonopole condensate of the preconfining phase
undergoes a violent decay into center-vortex loops of any self-intersection number n ≥ 0.
This initiates the (nonthermal) Hagdorn transition. The new ground state is composed of
massless, shrunk-to-points center-vortex loops, possesses no energy density and exerts
no pressure. Each self-intersection point of a center-vortex loop represents the droplet of
radius r0 (scaled by the ratio of the respective Yang–Mills scales) that is addressed in the
next section. At a finite resolution, provided by nonthermal, external electromagnetic fields,
only center-vortex loops with n = 0, 1 can be regarded stable solitons.

3. Self-intersecting Center-Vortex Loop with n = 1 and Magnetic Moment of
Quantum Soliton

A thin center vortex can be understood as a chain of unresolved monopoles and
antimonopoles whose flux is confined to a thin tube [33]. The stable, massive soliton,
represented by a center-vortex loop with n = 1, then originates from a localised investment
of energy (pair creation) into round-point center-vortex loops with n = 0. These round points
constitute the ground state of the confining phase. Such an investment of energy implies
stretching/twisting/pinching and the eventual release of a monopole or an antimonopole
from the tube. As a consequence, points of vortex self-intersection are defined. Since a
monopole or antimonopole cannot exist as isolated defects in the confining vacuum, each
point of self-intersection needs to evolve into an extended ball-like spatial region (a droplet).
The deconfining, pressureless bulk of such a droplet facilitates a finite-mass and finite-extent
monopole or antimonmopole at the temperature T = T0 = 1.32 Tc. The droplet comprises a
boundary shell, which exhibits a temperature gradient, where positive pressure generated
by turbulences (Hagedorn transition) is superimposed by the negative pressures contributed
by preconfining and deconfining phases. On temporal and spatial average, zero pressure
of the boundary shell is assumed in the remainder of this paper to continue the vanishing
pressure of the confining phase outside the droplet. The center flux external to the droplet
forms a flux configuration which is of figure-eight topology.

Let us now discuss why such a topology relates to the spin- 1
2 nature of the electron and

how an according magnetic moment µ⃗ emerges. Dually interpreted, a quantum of magnetic
center flux represents a quantum of electric center flux, in turn, inducing a quantum of
magnetic moment. Figure 3 depicts the center-vortex loop with n = 1. Since the electric
center flux is two-fold degenerate (it can flow along or counter to a fixed tangential vector
to the vortex loop), the projection of µ⃗ onto a quantisation axis is also twofold degenerate,
and one has in the isolated case

µ⃗ = −g µB S⃗ , (9)

where g = 2, µB ≡ − q
2me

is the Bohr magneton, me and q are the electron’s mass and

charge, respectively, and S⃗ is the spin vector. The two possible projections of S⃗ are ± 1
2 .

Notice that the quantisation axis is parallel to the normal n̂ of the plane that the figure-eight
configuration is considered to be immersed in, for certain characteristics of curve-shrinking
planar figure-eight configurations; see [34].

Picturing the droplet charge, modulo quantum jitter [35,36], to move along a circle of
radius comparable to a0 (Bohr radius) (see Section 5.4), the Bohr magneton describes its
effective revolution in time ∆t as triggered by the revolution within the same span of time
of one of the unresolved monopoles or antimonopoles along the thin vortex loop. Namely,
in associating with L⃗ = −gS⃗ the orbital angular momentum of the droplet subject to
|⃗L| = a0 · me · 2πa0/(∆t), the magnetic moment µ⃗ of Equation (9) can simply be interpreted
as µ⃗ = ±I πa2

0 n̂, which is the magnetic moment induced by a circular current loop of
radius a0 carrying the current I = q

∆t . Since a center-vortex loop in reality is not isolated
(it is immersed into the CMB, and it connects to a fluctuating thick boundary shell), one
expects a slight deviation from the value g = 2, which to a high precision is computable in
Quantum Electrodynamics [37]. A derivation of µB from jittery revolutions of the droplet is
beyond the scope of the present paper, however.
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Ignoring for the moment the complications of electroweak decays, mixing effects, and
the tendency of vortex loops to shrink under a lowering of external resolution [34], we
propose the three lepton families to match with doublets of center-vortex loops (n = 0, 1).
Each doublet would then emerge within one of three SU(2) Yang–Mills theories, whose
scales relate to charged lepton masses; see Section 5.4 for a derivation of droplet size and Tc

from the mass of any given charged lepton. For the first lepton family, where the soliton
with n = 1 (electron) is stable, the implications of such an assignment are pursued in the
remainder of this paper.

Figure 3. The electron as a soliton in SU(2) Yang–Mills theory. For simplicity, mixing effects with

another SU(2) Yang–Mills theory are ignored in this figure. The bulk of the droplet, containing

an isolated BPS monopole, is in the deconfining phase (I) at vanishing pressure (temperature T0),

the thick boundary shell (II) radially interpolates between a thermal 2nd-order like (inner part of

shell, onset of superconductivity/preconfining phase) and a nonthermal Hagedorn phase transition

(outer part of shell, full superconductivity). On average, this boundary shell should be of vanishing

pressure due to the mixing of all three phases and possesses a high electric conductance. The

confining phase (III) prevails outside of the droplet. Isolated gauge modes may propagate as waves

in this phase if their frequency is lower than a limit set by the Yang–Mills scale. The monopole

within the bulk of the droplet breathes at a frequency me (rest mass of electron [24]) and generates

a time-dependent vibration of spatially constant amplitude throughout the droplet. Connected

to the thick boundary shell are center-vortex lines, which induce the magnetic moment of the

soliton. Topologically, these form a figure eight with the vortex-line self-intersection—producing an

isolated monopole or antimonopole—being responsible for the origination of the droplet; see text.

4. Value of Electromagnetic Fine-Structure Constant: Effective Droplet Charge in
Pure SU(2)e

4.1. Trapping a Single Monopole or Antimonopole Inside the Droplet’s Bulk

Let us first discuss the simplified situation in which the physics of a droplet is governed
by a single gauge theory: SU(2)e. We aim to derive the dual charge of such a system. (The
magnetic charge of the monopole is physically interpreted as an electric charge; see [6,26]).
A monopole or an antimonopole is immersed into the droplet’s bulk of deconfining phase
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at temperature T0. From now on, we consider the situation of a trapped monopole only,
since that of a trapped antimonopole is simply described by sign inversions of all charges
considered. As discussed previously, T0 = 1.32 Tc,e is the temperature where the pressure of
the droplet vanishes [25]. Due to the high conductance of the boundary shell (r̄ ≤ r ≤ r0)
and for r̄ ∼ r0, a spherical mirror-charge construction [38] can be used to approximate the
droplet charge for probes of long wavelengths. This construction is depicted in Figure 4.
Here, s or s′ denote the respective distances between observer and monopole or observer
and mirror charge. Monopole and mirror charge are both positioned on a radial ray pointing
away from the droplet center. As seen from the droplet center, angle θ subtends the direction
of the observer and the direction of this ray. The distance between observer and droplet
center is denoted by o. In thin-shell approximation, we set r̄ = r0.

Figure 4. Construction of the effective droplet charge by superposition of the Coulomb potentials

of the monopole charge qe with a mirror charge q′e outside the droplet due to superconductivity of

a thin boundary shell. In reality, a finite radial range r0 − d ≤ r ≤ r0 associates with the Hagedorn

transition. The reason why r̄ = 3
4 r0 (dotted line) delineates region II from region I (compare with

Figure 3) is discussed in Section 4.3.1.

Since a mirror charge construction for boundary conditions on a spherical surface
operates with Coulomb potentials for the inducing and the mirror charge [38], it is essential
to ensure that a Yukawa factor exp(−s/ls) for the potential associated with the monopole’s
charge inside the ball can be treated as unity. Here, ls denotes the charge screening length
that arises from other screened and stable dipoles in the infinite-volume plasma [6]. Let us
thus check the self-consistency of only one explicit monopole or antimonopole inhabitating
the droplet of radius r0. This requires an estimate of ls/r0 ≫ 1. In [25], it was found, for a
pure SU(2)e theory describing the droplet, that
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r0 =
4.043

πT0
= 0.44 Λ−1

e . (10)

In Section 5.4, we derive a deviating estimate of r0, which includes the mixing of SU(2)CMB

and SU(2)e. The screening length ls = 71.43 / T was extracted from a two-loop radiative
correction to the pressure at large temperatures, T ≫ T0; see [39]. For an estimate, we may
continue this asymptotic result to T0 to obtain

ls
r0

∼ 55.5 ≫ 1 . (11)

Therefore, for 0 ≤ s ≤ 2 r0, a Yukawa factor exp(−s/ls) to the Coulomb potential, which
could arise from other explicit monopoles and antimonopoles within the droplet, can be set
equal to unity. Thus, the assumption of a single monopole being trapped in the bulk of the
droplet indeed is self-consistent.

4.2. Thin-Shell Approximation

In deriving the effective charge of the droplet at bulk temperature T = T0 and in the
long-wavelength limit, we first analyse the limits of vanishing shell thickness r0 = r̄ and
superconductivity of the boundary shell; see Figure 3. Moreover, we neglect the effects
of monopole breathing [40,41] and implied position changes in this section. Under these
simplifying assumptions, the static potential outside the droplet reads [38]

V(o, r, θ) = 1
4π

(

qe
s + q′e

s′

)

= qe
4π

(

r−r0
r

1
o +

(r2−br0) cos θ
r

1
o2

+ (r3−b2r0)(1−3 cos2 θ)
2r

1
o3

+ O
(

1
o4

))

, (o > r0) ,

(12)

where s ≡
√

o2 + r2 − 2or cos θ, s′ ≡
√

o2 + b2 − 2ob cos θ, b ≡ r2
0
r , and q′e ≡ −qe

r0
r . From

Equation (12) and for o ≫ r0, we read off the effective charge ge of the droplet from the
coefficient of 1

o as

ge =
r − r0

r
qe . (13)

4.3. Averaging the Droplet’s Effective Charge over Monopole Locations

4.3.1. Droplet Creation and Thermalisation

When a droplet of radius r0, containing a trapped monopole, forms in an SU(2)e gauge
theory, it is a priori not thermalised, and the monopole’s location within the droplet, which
is a mixed state of all three phases, is equally likely everywhere in the ball apart from a
thin boundary shell. A uniform a priori distribution of monopole location in Cartesian
coordinates is then cast into a nonflat probability density ρ(r, θ) in spherical coordinates for
0 ≤ r < r0 and for a polar angle 0 ≤ θ < π; see Section 4.3.2. The thin boundary shell of
the droplet (the radial location r ∼ r0 where the Hagedorn transition to the confining phase
takes place) is characterised by decoupled dual Abelian gauge modes and off-Cartan modes
which, due to their large masses, cannot be redistributed into the interior of the droplet.
Only after bulk thermalisation is attained for a central radial region does an extended
boundary region materialise—a thick boundary shell (r̄ = ξr0 < r < r0 with 0 < ξ < 1)
exhibiting a temperature gradient and defining the transition from the deconfining via the
preconfining to the confining phase via phase mixing. As the trapped monopole enters
this region, it rapidly changes its identity. (The monopole is exposed to the caloron’s 4D
winding number which is localised spatially deeply within its center [6]. This 4D Euclidean
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winding is associated with the quantum of action h̄ [6] and therefore exerts undeterministic
kicks and position changes onto the monopole at the breathing frequency of the monopole.)

Let us discuss this situation and its consequences in more detail. If, after bulk thermal-
isation, the monopole is kicked towards the thick boundary shell, then it undergoes mass
and charge reduction until it becomes a part of the (spatially inhomogeneous) monopole–
antimonopole condensate contributing to the phase mixture there [6]. Yet, to explicitly
conserve charge (or 3D winding number) and droplet mass, another monopole, formerly
part of the condensate, needs to act in place of the original monopole in the bulk of the
droplet (deconfining phase). Ignoring correlations between monopoles and antimonopoles
inside and close to the condensate within the boundary shell, one may approximate a given
monopole’s probability density of location by the a priori distribution ρ(r, θ). However, the
monopole’s charge qe (and its mass) is a function of r, which is flat and finite in the droplet’s
bulk (deconfining phase) but rapidly approaches zero as the radial location approaches
r̄ = ξr0. Since no length scale other than r0 characterises the a priori distribution ρ(r, θ)
in the limit of vanishing probe four-momentum transfer, we are led to associate ξ with
the mean radial position of the monopole (fluctuations of this mean can be neglected at
vanishing four-momentum transfer; see Section 4.3.2) according to ρ,

⟨r⟩ρ

r0
≡ ξ =

3

4
. (14)

Physically, the droplet’s bulk is subject to a mixing of two thermal gauge theories, SU(2)e

and SU(2)CMB; see Section 5.2. This, however, does not invalidate the above argument,
since the (nonthermal) probe field always resides in SU(2)e [6] and therefore is sensitive
only to the physics acted out by (thermal) SU(2)e gauge fields inside the droplet.

4.3.2. Naive Thin-Shell Approximation and Value of Fine-Structure Constant α

The droplet’s effective charge, when probed with an energy-momentum transfer, small
compared to the Yang–Mills scale Λe, due to the frequent changes of monopole location
inside the droplet’s bulk (kicks issued by a combination of Planck’s quantum of action h̄ and
the lowest breathing frequency of the monopole [24,25,40,41]) compared to the frequency
of an external probe field, will represent itself as an angular and radial average subject to
the following a priori probability density ρ prior to thermalisation (uniform distribution in
Cartesian coordinates over ball volume):

ρ(r, θ) =
3r2

4πr3
0

sin θ , (0 ≤ r < r0, 0 ≤ θ < π) . (15)

Performing the θ-average of V(o, r, θ) in Equation (12) w.r.t. the distribution ρ(r, θ) in
Equation (15), we conclude that there is no dipole (and no quadrupole) contribution to the
electric charge distribution of the droplet—in agreement with experimental bounds on a
potential, feeble CP violation by an electric dipole moment [? ].

In particular, the droplet’s charge is obtained by an average of the static system’s
charge in Equation (13) w.r.t. the probability density ρ(r, θ) in Equation (15). It is given as

⟨ge⟩ρ = 3
∫ r0

0
dr

r(r − r0)

r3
0

qe = −1

2
qe . (16)

Let us discuss why this result is statistically stable. The monopole changes its position
within the droplet at a rate comparable to its breathing frequency ω0 = me [13], where me

denotes the electron mass [24,25,40,41]. If the droplet is probed by an external electromag-
netic wave of frequency ωp ≪ ω0, then the distribution ρ(r, θ) of Equation (15) is sampled
independently N = ω0

ωp
≫ 1 many times during each probe oscillation. Therefore, the value

of ge, averaged over one probe oscillation, has mean
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ḡe ≡ 1

N

N

∑
i=1

⟨ge,i⟩ρ = ⟨ge⟩ρ = −1

2
qe , (17)

and standard deviation σge /
√

N, where σge =
√

3
2 qe is the standard deviation of ge with

respect to ρ(r, θ). In the limit of vanishing four-momentum transfer (N → ∞), the droplet’s
effective charge hence does not fluctuate and is given by Equation (16). Such an argument
in favour of the non-fluctuativity of the effective charge can be extended to ensure the
nonfluctuativity of any observable function f (r) of the random variable r. For example,
one may consider the mean radial position, f (r) = r (see also Equation (14)), for which
one has

r̄ ≡ 1

N

N

∑
i=1

⟨ri⟩ρ = ⟨r⟩ρ =
3

4
r0 (18)

with a standard deviation σr/
√

N, where σr =
√

3/80 r0.
Since the external gauge field probing the droplet’s charge resides in the Cartan algebra

of SU(2)e [6] and ignoring the effects due to a finite boundary-shell thickness, this would
yield a value of the inverse electromagnetic fine-structure constant α−1 of

α−1 =
4π

ḡ2
e
= 4

e2(λ0)

4π
= 53.464 , (19)

where e(λ0) = 12.96; see [24,25]. Obviously, this is too low compared to the value α−1 ∼ 137
associated with Equation (1). Therefore, in Section 4.3.3, we consider a model implementing
the effects of a thick boundary shell.

4.3.3. Modelling a Thick Boundary Shell After Thermalisation

According to the discussion of Sections 4.3.1 and 4.3.2 about droplet generation, the
only length scale available to radially separate bulk thermodynamics (deconfining phase)
from the thick boundary shell, where the transitions from deconfining via preconfining
to confining phase take place and where an isolated monopole cannot exist, is r̄ = ξr0

with ξ = 3
4 ; see Equations (14) and (18). This corrects the thin-shell approximation for the

droplet charge qe to

ḡe = ⟨ge⟩ρ = 3
∫ 3

4 r0

0
dr

r(r − r0)

r3
0

qe = −27

64
qe . (20)

The inverse electromagnetic fine-structure constant α−1 would then be computed as

α−1 =
4π

ḡ2
e
=

(

64

27

)2 e2(λ0)

4π
= 75.099 . (21)

Although this value is higher than that of Equation (19), it is still quite far off the exper-
imental value associated with Equation (1). One may think that this discrepancy arises
because thin-shell perfect-conductor boundary conditions were used to model a thick
boundary shell of finite conductance. Certainly, there is a (not easy to compute) correction
to Equation (21) to compensate for this simplification. However, a far more important
conceptual ingredient is missing in Equation (19): mixing effects due to the two gauge
theories SU(2)e and SU(2)CMB providing a stable mix of deconfining-phase plasmas in
the bulk of the droplet to yield an environment that allows the existence of an isolated
monopole for each theory. It is the SU(2)e component of this mixture whose monopole
together with its mirror charge determine the charge distribution of an electron, as seen by
a directed, external SU(2)e probe field. Analysing this is the subject of the next section.
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5. SU(2) Gauge Group Mixing and Bulk Thermodynamics Inside the Droplet

5.1. Thermal SU(2) Gauge-Theory Mixing and Comparison with Electroweak Theory

Outside the droplet (confining phase of SU(2)e, deconfining phase of SU(2)CMB due
to the presence of the Cosmic Microwave Background), the directedly propagating (non-
thermal) gauge field is the effective Cartan gauge field a3

µ,e [6,43]. The Standard Model of
Particle Physics (SM) describes this nonthermal electromagnetic mode by a global mixture
of the gauge mode Bµ of U(1)Y and the Cartan gauge mode W0

µ of SU(2)W. However, due
to the finite extent of the deconfining SU(2)e plasma in the present approach, mixing of
SU(2)CMB and SU(2)e occurs only inside the droplet due to outside temperatures being
much smaller than the critical temperature Tc,e of the deconfining–preconfining phase
transition of SU(2)e. De-mixing of the two theories outside the droplet takes place because
each is in a different phase. Here, we consider a mixing between the full gauge groups
SU(2)e and SU(2)CMB inside the droplet. That is, inside the droplet, due to thermalisation
in one and the same deconfining phase, the fields fCMB and fe are actively rotated as

(

fCMB

fe

)

−→
(

cos θW − sin θW

sin θW cos θW

)(

fCMB

fe

)

, (22)

where θW denotes the mixing (or Weinberg) angle, and field f stands for either the funda-
mental field strength tensor Fµν or the effective gauge field aµ in unitary-Coulomb gauge [6].
An effective, propagating external field a3

¯,e thus couples to the droplet charge as

q = ḡe(λ0) cos θW(λ0) = − 27
64 qe(λ0) cos θW(λ0)

= − 27
64

4π
e(λ0)

cos θW(λ0) ,
(23)

compared with Equations (20) and (22). Note that we continue to define the dimensionless
temperature λ as λ ≡ 2πT

Λe
where Λe denotes the Yang–Mills scale of SU(2)e, amounting to

a few keV [25]. The precise value under gauge-theory mixing is computed in Section 5.4.
Also, we now denote by λ0 the temperature where the pressure of the mixing plasmas of
SU(2)CMB and SU(2)e vanishes. Likewise, an effective, external field a3

¯,CMB would couple to
a reduced monopole charge as

qCMB(λ0) sin θW(λ0) =
4π

e(κ−1λ0)
sin θW(λ0) . (24)

Here, we introduce
κ ≡ ΛCMB/Λe ≪ 1 , (25)

based on ΛCMB ∼ 10−4 eV. (Since SU(2)CMB is in the deconfining phase inside and outside
the droplet, there is no mirror-charge factor. Also, due to the small value of the Yang–Mills
scale ΛCMB, the directed propagation of a3

µ,CMB is constrained to long wavelengths [6,43].)

Note that e(κ−1λ0) =
√

8π to a very good approximation. In the droplet’s bulk, however,
(thermal) gauge fields a3

¯,e and a3
µ,CMB couple with reduced strength as

qe(λ0) cos θW(λ0) =
4π

e(λ0)
cos θW(λ0) (26)

and as in Equation (24) to their respective monopoles. As in the SM [7,9,44], the universality
of the two reduced couplings in Equations (26) and (24) (mixed gauge field couples to each
charge with the same strength) thus requires

qCMB(λ0) sin θW(λ0) = qe(λ0) cos θW(λ0) . (27)

Equation (27) is the definition exploited in Section 5.2 to thermodynamically determine the
value of θW. Equation (27) also implies the following correspondences between the Cartan
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algebra in SU(2)CMB×SU(2)e and the Cartan algebra (unitary gauge) in the gauge group of
the Standard Model SU(2)W×U(1)Y at λ0:

Cartan(su(2)e) = u(1)Y ,
Cartan(su(2)CMB) = Cartan(su(2)W) .

(28)

Considering that SU(2)CMB is deeply, in its deconfining phase, close to the droplet surface
at λc′ , keeping the quasiparticle masses of its off-Cartan fluctuations at values well below
10−4 eV (see also the discussion in Section 6), we are led to make the following assignment
between off-Cartan members of the algebras of SU(2)CMB×SU(2)e and SU(2)W×U(1)Y at
λc′ , however:

off-Cartan(su(2)e) = off-Cartan(su(2)W) . (29)

That is, in the SU(2)CMB×SU(2)e model, θW may change as a process relegates its focus from
the deconfining bulk (definition of droplet’s charge in interaction with long-wavelength
external probes) to the boundary shell (electroweak conversions from heavier to lighter
charged leptons).

In the SM’s (extremely successful) nonthermal, weak-coupling approach and com-
plete (rather than stepwise) SU(2) gauge-symmetry breaking, invoked by a fundamentally
charged Higgs-field of (unitary-gauge) neutral vacuum expectation vH = 246 GeV, the
Weinberg angle θW can also be defined via

cos θW =
mW±

mZ0

, (30)

where mW± and mZ0
denote the masses of the vector bosons mediating the weak force. In

the SU(2)CMB×SU(2)e model proposed here, the large hierarchy of measured vector-boson
mass of 80.4 GeV (W±) and 90.2 GeV (Z0) characterises the decoupling of effective gauge
fields in SU(2)e at the deconfining–preconfining (W±) and preconfining–confining (Z0)
phase boundaries as a consequence of divergent effective coupling constants. Collectively,
this physics takes place within the thick boundary shell. The effective Higgs mechanisms at
play are an adjoint one in the former and an Abelian one in the latter situation. Therefore,
although the effective nonthermal Cartan mode of SU(2)e, a3

µ,e, is modelled by the gauge

group U(1)Y in the Standard Model, the effective off-Cartan modes of SU(2)e, a1,2
µ,e, close to

the Hagedorn transition, play the role of the massive vector bosons W±
µ of SU(2)W in the

Standard Model. Also, the effective dual, massive U(1) mode of the preconfining phase
in SU(2)e plays the role of the massive vector boson Z0 in the Standard Model. Due to
phase mixture in SU(2)e, setting in slightly below Tc,e, the masses mW± and mZ0

cannot
be defined thermodynamically in the SU(2)CMB×SU(2)e model. Because of this and since,
thermodynamically, all massive gauge bosons are solely generated in SU(2)e, a definition
of θW via Equation (30) would be meaningless, and we have to resort to Equation (27)
for a useful thermodynamical definition of θW. In the absence of CP-violating terms in
the fundamental Yang–Mills action, like in the SM, there is no theoretical basis in the
SU(2)CMB×SU(2)e model for why only left-handed charged currents couple to the weak,
massive gauge fields. Also, lepton universality, which comprises instable mu- and tau-
leptons and their neutrinos, is a concept that is difficult to describe thermodynamically by
an extension of our present model to SU(2)CMB×SU(2)e×SU(2)¯×SU(2)ø. However, certain
considerations are made in Section 6. Finally, it is not clear how a neutral scalar excitation
of mass 126 GeV—the Higgs boson—collectively emerges in the SU(2)CMB×SU(2)e model
as an excitation of the phase- and gauge-group mixed plasma of the thick boundary shell.
The Standard Model is highly efficient and successful in addressing all these features. For
the time being, we therefore must confine our discussion of electroweak physics to the
electromagnetic coupling of electrons to thermal photons or propagating electromagnetic
waves. Still, such limited understanding of the underpinning of electroweak physics in the
SU(2)CMB×SU(2)e model produces values of α and θW which are close to their SM values,
as we shall see in Sections 5.3 and 5.2, respectively.
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5.2. Mixing Angle θW

During the creation of an electron–positron pair, we must assume that the fundamental
gauge fields that initiate the formation of the two droplets are purely Aµ,e, since the initial
two-photon state is nonthermal (θW = 0) [6]. Once the droplet volumes define themselves
and after internal thermal equilibrium is attained, there is a fixed mixing angle θW. An
intriguing feature of the Standard Model is that the value of θW can be computed at a
certain four-momentum transfer from the value of θW measured at another four-momentum
transfer. The intriguing feature of SU(2) Yang–Mills thermodynamics is that the value of
θW at zero four-momentum transfer appears to be computable independently of what is
assumed so far in deriving the value of α. Let us demonstrate this.

Due to mixing of SU(2)CMB and SU(2)e, the deconfining-phase bulk pressure of the
droplet Pbulk at temperature T ≥ Tc,e (Tc,e the critical temperature for the deconfining–
preconfining phase transition in SU(2)e) and to one-loop accuracy is given as

Pbulk(T) =
(

1 − sin2 θW(T)
)

Pe(T) + sin2 θW(T)PCMB(T)

= Pe(T) + sin2 θW(T)(PCMB(T)− Pe(T))

= Pe(T) + sin2 θW(T)
(

PCMB,gs(T)− Pe,gs(T)
)

+ sin2 θW(T)
(

PCMB,3 pols(T)− Pe,3 pols(T)
)

,

(31)

where Pe, PCMB denote the total pressures in deconfining SU(2)e and SU(2)CMB, respectively.
(Components of the perfect-fluid thermal energy-momentum tensor θµν such as the pres-
sure P or the energy density ρ are bilinear functionals of the fundamental field-strength
tensor Fµν. Therefore, mixing coefficients sin θW or cos θW appear in squared form.) They
are defined in detail in Equations (38)–(40) below. The indices ‘gs’ and ‘3 pols’ refer to the
contributions to these pressures arising from the respective ground states and the two effec-
tive gauge-mode excitations with three polarisations (due to the adjoint Higgs mechanisms
invoked by the thermal ground states). The contributions of the effective gauge-mode
excitations with two polarisations (massless modes) cancel exactly between SU(2)e and
SU(2)CMB in the term on the right-hand side of Equation (31), which is proportional to
sin2 θW(T). Note that the pressure of a monopole intrinsically is nil.

From now on, T0 and T0,e are agreed to denote the zeros of Pbulk and Pe, respectively.
Therefore, Equation (31) implies that

T0 =
λ0

2π
Λe ≤ T0,e =

λ0,e

2π
Λe (π > θW ≥ 0) . (32)

The inequality (32) holds since the differences PCMB,gs − Pe,gs and PCMB,3 pols − Pe,3 pols are
both positive due to Equation (25) as well as Equations (38)–(40). We identify:

PCMB,3 pols(T) = −12
κ4(Λeλ)4

(2π)6 P̃(2a(κ−1λ)) ,

PCMB,gs(T) = −2κ3Λ4
eλ ,

Pe,3 pols(T) = −12
(Λeλ)4

(2π)6 P̃(2a(λ)) ,

Pe,gs(T) = −2Λ4
eλ .

(33)

This means that Pe(T0) must be negative, which, in turn, implies that T0 ≤ T0,e. According
to [24], one has

T0,e = 1.32 Tc,e or λ0,e = 1.32 λc,e = 18.31 . (34)
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Because of Equations (32), (25) and (34), we may, to a very good approximation, use the
asymptotic value

qCMB =
4π

e(κ−1λ0)
≈

√
2 (35)

in Equation (27). Thus, we have

tan θW(λ0) =
e(κ−1λ0)

e(λ0)
≈

√
8π

e(λ0)
. (36)

Substituting Equation (36) in Equation (31), we finally arrive at

0 = Pbulk(T0)

=
(

1 − sin2 θW(λ0)
)

Pe(T0) + sin2 θW(λ0)PCMB(T0)

=
(

1 − e2(κ−1λ0)
e2(λ0)+e2(κ−1λ0)

)

Pe(T0)

+ e2(κ−1λ0)
e2(λ0)+e2(κ−1λ0)

PCMB(T0)

≈
(

1 − 8π2

e2(λ0)+8π2

)

Pe(T0) +
8π2

e2(λ0)+8π2 PCMB(T0) .

(37)

Explicitly, the pressures Pe(T0) and PCMB(T0) are given as [6]

Pe(T0) = −Λ4
e P̄(λ0, a(λ0)) ,

PCMB(T0) = −κ4Λ4
e P̄(κ−1λ0, a(κ−1λ0)) ,

(38)

where

P̄(λ, a(λ)) ≡ 2λ4

(2π)6

[

2P̃(0) + 6P̃(2a)
]

+ 2λ , (39)

and

P̃(y) ≡
∫ ∞

0
dx x2 log

[

1 − exp

(

−
√

x2 + y2

)]

. (40)

The advantage of writing PCMB(T0) as in Equation (38) is that the precise value of κ ≪ 1 is
not required to be known in order to extract λ0 and e(λ0) from the condition in Equation (37).
This is due to the rapid vanishing of the quantity a(λ) as λ → ∞; see Equation (5). Solving
Equation (37) for λ0 numerically, we have

λ0 = 16.3 = 1.18 λc,e , e(λ0) = 14.88 . (41)

Indeed, due to mixing, the zero λ0 of the bulk pressure turns out to be smaller than λ0,e;
compare Equations (34) and (41).

Finally, solving Equation (36) for θW(λ0) subject to Equation (41), we obtain

θW(λ0) ≡ θW(Q = 0) = arctan

√
8π

e(λ0)
= 30.84◦ , (42)

where, with a slight abuse of notation, the argument Q = 0 indicates that the system is
probed at vanishing four-momentum transfer (resolution referring to the maximum of the
moduli of the Mandelstam variables s, t, u that contribute to the probing process). This
is close to the experimentally obtained value of the Weinberg angle. In [10], the value of
θW was extracted from the parity-violating asymmetry in fixed target electron–electron
scattering at a resolution of Q = 0.1612 GeV as
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θW(Q = 0.1612 GeV) = 29.23◦ · · · 29.40◦ . (43)

The latest particle data group quotation of θW, measured at Q equal to the mass mZ of the
Z-boson, is [11]

θW(Q = mZ = 90.2 GeV) = 28.73◦ · · · 28.75◦ . (44)

Note the tendency of a mild increase in θW from Equation (44) to Equation (43) for vastly
decreasing values of resolution (logarithmic running). The thermodynamically determined
value of θW in Equation (42) is our prediction for θW(Q = 0).

The Weinberg angle at Q = 0 appears to be determined quite accurately from bulk
thermodynamics without having to make explicit assumptions on the finite-volume physics
of the droplet’s thick boundary shell, where SU(2)e and SU(2)CMB and all phases of the
former theory mix. Implicitly, we assume, however, that the pressure of this shell as exerted
onto the bulk is zero. Note that for an infinite-volume system, where stability constraints
are irrelevant, we have θW(λ) = 45◦ for the mixing of the theories SU(2)e and SU(2)CMB in
the conformal limit λ ≫ λ0.

5.3. Value of α

Considering gauge-theory mixing inside the deconfining-phase bulk of the droplet
and assuming the external, effective gauge field, which probes the droplet charge, to reside
in SU(2)e, we may use Equation (23) to obtain

α =
q2

4π
=

(

− 27
64 qe(λ0) cos θW

)2

4π
. (45)

Appealing to the value of θW in Equation (42) and to the value of e(λ0) in Equation (41)
yields

α−1 = 134.3 . (46)

This deviates by only 2 % from the experimental value of Equation (1).
However, in contrast to the determination of the Weinberg angle θW, which is a

quantity that depends only on the stability of bulk thermodynamics in a finite volume
(Pbulk = 0) and on the universality of monopole charges, the determination of the fine-
structure constant α hinges in addition on phase mixing within SU(2)e and mixing of the
gauge groups SU(2)e and SU(2)CMB inside the thick boundary shell. For this boundary
shell, defined by a vanishing monopole charge in SU(2)e within the radial extent r̄ ≤ r ≤ r0

(r̄ = ξr0 the mean radius w.r.t. the a priori distribution of monopole location), we also had
to assume vanishing pressure. To understand the physics of the thick boundary shell better
is the subject of future work. An according improvement of the mirror-charge construction
used so far to define the droplet’s charge but also the effect of droplet revolution on the
probability density ρ in Equation (15) could decrease the difference between the value of α
in Equation (46) and its experimental value in Equation (1).

5.4. Impact of Mixing on Mass Formula and Length-Scale Hierarchy in Powers of α

A modelling of the mixing effects within the thick boundary shell is beyond the scope
of the present article. Therefore, in what follows, we content ourselves with estimating
Tc,e and the droplet radius r0 under gauge-theory mixing, and we assume that the energy
densities are the same within the droplet’s thick boundary shell and the droplet’s bulk. Let
us determine the shift in Yang–Mills scale Λe when changing the model of the free electron
based on pure SU(2)e to a model that invokes mixing of SU(2)e and SU(2)CMB. For a pure
SU(2)e model, see Figure 5, the electron’s rest-mass me, which coincides with the lowest
circular breathing frequency ω0 = e(λ0,e) H∞(T0) of the monopole [24,40,41], is given as
(re-writing Equation (5) of [45])
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Figure 5. Phase diagram of SU(2)e with Tc,e = 0.923 × 108 K (7.95 keV) in the infinite-volume limit.

There are three distinct phases: (I) the deconfining phase, (II) the preconfining phase, and (III) the

confining phase.

me = e(λ0,e) H∞(T0) = mm(T0) +
4π
3 r3

0ρ(T0)

= H∞(T0)

(

4π
e(λ0,e)

+ 64π
3λ4

0,e

χ3ρ̄(λ0,e)

)

,

(47)

where the dimensionless plasma energy density ρ(T0)/Λ4
e ≡ ρ̄(λ, a(λ)) is defined as

ρ̄(λ, a(λ)) ≡ 2λ4

(2π)6
[2ρ̃(0) + 6ρ̃(2a)] + 2λ , (48)

mm(T0) denotes the mass of a BPS monopole originating from the dissociation of a
(anti)caloron of maximally nontrivial holonomy, and χ ≡ r0H∞(T0) ≡ πr0T0. The reason
why the BPS limit is considered here is that a nontrivial-holonomy caloron sets the value of
the asymptotic, adjoint Higgs field of its constituent monopole and antimonopole solely in
terms of its holononmy and not dynamically by minimisation of potential energy density;
see [46,47]. In Equation (48), we have introduced

ρ̃(y) ≡
∫ ∞

0
dx x2

√

x2 + y2

exp
(

√

x2 + y2
)

− 1
, (49)

and in Equation (47), the quantity H∞(T0) = πT0 refers to the modulus of the (anti)caloron
gauge-field component A4(r → ∞) = a4; see [24]. In the case of gauge-theory mixing of
SU(2)CMB with SU(2)e, we generalise Equation (47) to

me

H∞(T0)
= e(λ0) cos θW + e(κ−1λ0) sin θW

= cos θW
4π

e(λ0)
+ sin θW

4π

e(κ−1λ0)
+

64π

3λ4
0

χ3

×
[

cos2 θWρ̄(λ0, a(λ0)) + κ4 sin2 θWρ̄

(

λ0

κ
, a

(

λ0

κ

))]

. (50)

Solving the second half of Equation (50) for χ after appealing to Equations (41) and (42),
we obtain

r0 = 5.09 H−1
∞ (T0) . (51)
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From Equations (51) and (41), we deduce

r0

|ϕ|−1(T0)
= 0.155 , (52)

indicating that the droplet is contained deeply within the central region of a typical caloron
or anticaloron, which contributes to the emergence of the deconfining thermal ground
state of SU(2)e. Yet, we have r0/β0 = 1.62 such that the radial integral in the definition
of ϕ’s phase reasonably well represents a sinusoidal τ-dependence; see [6], p. 127. As a
consequence of Equations (41), (51), we have

r0 = 0.622 Λ−1
e . (53)

With this corrected value of droplet radius r0 due to gauge-theory mixing (compare
with Equation (10) for the case of pure SU(2)e), the ratio of screening length ls to r0 of
Equation (11) is reduced compared to the case of pure SU(2)e as

ls
r0

∼ 44.1 . (54)

Still, this is sufficiently larger than unity to justify the mirror-charge construction of Section 4.2.
Recall that such a construction requires the Coulomb nature of the static U(1) potential of the
monopole away from its core region.

The first part of Equation (50) yields

me

H∞(T0)
= 17.33 . (55)

Together with Equation (51), this implies a ratio of reduced Compton length rc to r0 as

rc

r0
=

1

17.33 × 5.09
=

1

88.3
. (56)

That is, due to mixing, the core-size of the trapped monopole, which, according to the
first part of Equation (47), is close to rc [40], becomes even more pointlike compared to the
droplet’s extent than for the case of a pure SU(2)e model where rc/r0 = 1/52.40. Equation (55)
also implies that

me

Λe
= 141.82 (57)

or Λe = 3.60 keV or Tc,e = 7.95 keV.
According to Equation (56), the ratio of droplet radius r0 to Bohr radius a0 is

r0

a0
=

r0

rc

rc

a0
= 88.3

rc

a0
= 88.3 α = 0.64 . (58)

Such a large ratio of order unity is in line with Louis de Broglie’s proposal [13] that the free
electron at rest represents the oscillation of a thermal plasma of finite extent and spatially
constant amplitude driven by a vibrating monopole. Namely, within the deconfining
bulk of the droplet at rest, the superposition of spherical wavelets of constant frequency
and wavelength but highly random phase and variable origin plausibly yield a plasma
oscillation of nearly constant spatial amplitude—the basic insight of de Broglie’s deduction
of the electron’s matter wavelength paving the way for wave mechanics [48]. Note that
also outside the droplet, the spatially decaying Coulomb field a3

4 keeps oscillating at the
droplet’s frequency ω0 = me. This also is true of the energy density or the pressure of the
plasma component due to SU(2)CMB at temperatures that locally are higher than the CMB
baseline temperature within a certain, local environment of the droplet.
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6. Discussion and Summary

In this work we have proposed the electron to be a figure-eight-shaped soliton formed
by a thin center-vortex loop in SU(2) Yang–Mills theory, where the region of self-intersection
is an extended droplet. This soliton is stable and immersed into the confining ground state of
an SU(2) Yang–Mills theory of scale 3.60 keV. Moreover, the soliton is subject to the confining
ground states of other Yang–Mills theories with higher scales and the Cosmic Microwave
Background (CMB). In the present work, we associate the CMB with the deconfining phase
of an SU(2) Yang–Mills theory of scale ∼ 10−4 eV (SU(2)CMB) [6,49].

Based on the definition of the Bohr magneton, we also link the electron’s magnetic
moment to revolutions of the droplet’s effective charge. These revolutions are induced by
the unresolved monopoles and antimonopoles moving along and constituting the center-
vortex loop. The contribution of the thin vortex lines to the total mass of this soliton is
negligible; see [6]. However, vortex lines may play a role in producing nonlocal interactions
that magnetically correlate electrons in a 2D plane [32].

Within the bulk region of the droplet, an electric monopole is trapped which internally
vibrates due to kicks issued by the quantum physics of the thermal ground state [6]. This
ground state locally superimposes a caloron and an anticaloron center and overlapping
(anti)caloron peripheries. Under the self-consistent assumption that the droplet’s bulk
can be represented by infinite-volume thermodynamics, we have derived the following
statements:

(i) Bulk stability, that is, the vanishing of the thermodynamical pressure deep inside
the droplet, implies a mixing angle between the Yang–Mills theories SU(2)e and SU(2)CMB

at one and the same temperature T0, which practically coincides with the value of the weak
mixing (or Weinberg) angle of the Standard Model of Particle Physics.

(ii) The value of the electromagnetic fine-structure constant α at vanishing energy-
momentum transfer is reasonably well approximated by a mirror charge construction,
suggested by the high electric conductivity of the droplet’s thick boundary shell. In addition,
the derivation of the value of α relies on (a) a thermodynamical SU(2)e and SU(2)CMB gauge-
theory mixing plus monopole charge universality, (b) stability of the thick boundary shell by
its assumed, vanishing mean pressure, and (c) the statistical average of the droplet’s charge
over the bulk volume w.r.t. a spatially homogeneous distribution, cut off at the mean radius
(condition that the thick boundary shell is excluded as a region for positioning the isolated
monopole of the SU(2)e component of the bulk plasma).

(iii) The droplet’s mass formula, in generalisation of [25] now considering SU(2)e

and SU(2)CMB gauge-theory mixing, predicts a droplet size r0, which is comparable with
the Bohr radius a0. For the core size of the monopole rc (the reduced Compton wave
length [13,40,41]), we therefore obtain rc ∼ α r0 ∼ α a0 = α−1 re, where re denotes the
classical electron radius. As a consequence, the monopole core indeed is an (unresolved)
point particle on the scales of the droplet’s extent and on the radius |ϕ|−1 of a (anti)caloron
which constitutes the thermal ground state.

(iv) The Yang–Mills scale Λe of SU(2)e and the critical temperature Tc,e are derived
from this mass formula, applying it to the mass of the electron me = 511 keV. One has
Λe = 3.60 keV or Tc,e = 7.95 keV. This implies a critical temperature Tc′ ,e of the Hagedorn

transition as Tc′ ,e = 11.57
13.87 7.95 keV= 6.63 keV. When the spatio-temporal design of fusion

plasmas is optimised to accomplish steady-state operation, involving comparable electron
temperatures (and high electron densities), these results should be taken into account in
devising magnetic and inertial plasma confinement strategies.

(v) There is an environment to the stationary droplet of an extent yet to be speci-
fied which is characterised by a plasma of deconfining SU(2)CMB phase, slightly hotter
than the CMB. This deconfining plasma vibrates at a frequency ∼ me. The monopole of
SU(2)CMB may alternate its location from the droplet’s bulk region into this environment
and vice versa.

Let us now briefly discuss possible links of these results to phenomena discussed in
the literature. In our present approach, we would interpret the particle at rest as the droplet
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whose vibrating (standing) external Coulomb potential is transformed into a propagating
wave upon boost [14], giving rise to observable (self-)interference effects to statistically
determine the droplet’s position [50]. As mentioned in the introduction, we do expect a
considerable impact of the thermodynamical approach to the electron proposed here in
better understanding collective plasma phenomena at electron temperatures starting at
around T ∼ Tc = 6.6 keV in experiments with magnetic plasma confinement which were
not predicted by conventional magneto-hydrodynamics. These could include the formation
of an edge transport barrier associated with a pressure pedestal, edge-localised modes,
magnetic instabilities, and ion-orbit losses in the high-confinement mode [51,52]. Note that
the electron plasma density ne in conventional tokamaks and stellerators is ne ∼ 1020 m−3,
while a macroscopically stabilised plasma droplet at T = T0 = 9.38 keV with an energy
density of ρ(T0) = 1.77 × 104 keV4 represents a number density of percolated electrons
of ne ∼ 1.79 × 1028 m−3. Therefore, eight orders of magnitude in electron density are
missing in order to achieve a macroscopically stabilised plasma state. Still, the above-
mentioned effects at much lower electron densities may point to the here-proposed model
of the electron.

An important question, which arises due to a modelling of the electroweak parameters
θW and α that is apparently particular to the electron as a thermal and stable quantum
particle, concerns these parameters’ experimentally enshrined universality across the elec-
troweak interactions of all leptons. As for the unstable, charged leptons µ and τ, the reason
why their charge is identical to that of the electron would be as follows. As soon as a τ
or a µ lepton is created at rest, the according droplets in SU(2)CMB×SU(2)e×SU(2)µ (see
Figure 6a) and in SU(2)CMB×SU(2)e×SU(2)µ×SU(2)τ , respectively, disperse the energies
invested in surplus to their quantum mass, defined by a generalisation of Equation (50),
into their surroundings and can only trap an SU(2)µ or an SU(2)τ monopole, respectively
(see Figure 6b), for the muon droplet. The other monopoles are free to leave or re-enter this
droplet. In the case of SU(2)CMB, this ab initio dispersion of energy does not define new
phase boundaries, since the CMB represents the deconfining phase (likely very close to the
deconfining–preconfining transition [6]). In the case of SU(2)µ or SU(2)e, new droplets are
formed that embed the initial droplet (see Figure 6c for the case of SU(2)e). This process
of (cascading) droplet formation invokes formerly single, round-point center-vortex loops
from confining-phase ground states to define the respective droplets as their stabilised
regions of self-intersection; single center-vortex loops thus turn into figure-eight-shaped
center-vortex loops. In the Standard Model of Particle Physics, this subprocess refers to the
absorption of an antineutrino; compare Figure 6b and Figure 6f. After quantum equilibra-
tion, the initial droplets’ bulks exhibit defined mixing angles for four or three deconfining
SU(2) Yang–Mills theories by two or three charge-universality conditions (in general, in
the droplet representing the Nth lepton family, there are N charge-universality conditions
fixing the N independent components of a unit vector in an (N + 1)-dimensional Euclidean
space or N mixing angles), respectively, and a defined temperature by the condition of van-
ishing bulk pressure. Since the according leptons are unstable, no (temporally) coherently
propagating waves in the Cartan algebas of SU(2)τ and SU(2)µ exist that could externally
probe these charges and the magnetic moments that relate to the center-vortex loops ex-
tending from µ- and τ-droplets. Therefore, even though the electron droplet contains µ-
and τ-droplets and their respective trapped monopoles, only the trapped monopole and
the magnetic moment provided by the center-vortex loop in SU(2)e are seen externally. For
the charge of µ and τ leptons, we are thus back at the derivation of the charge of an electron
(or fine-structure constant α); see Section 5.3. Their decays can be figured as processes,
where embedded droplets of much smaller radii r0,µ ∼ m0,e

m0,µ
r0,e and r0,τ ∼ m0,e

m0,τ
r0,e (m0,i, r0,i

the rest mass, droplet radius of charged lepton i with i = e, µ, τ), subject to gauge theory
mixing in SU(2)CMB×SU(2)e× SU(2)µ and SU(2)CMB×SU(2)e×SU(2)µ×SU(2)τ , respectively,
by eventual contact with the thick boundary shell of an embedding droplet (for the τ
lepton droplet, these embedding droplets are the droplets of SU(2)µ and SU(2)e; for the µ
lepton droplet, this is the droplet of SU(2)e) dissolve to feed their high energy densities and
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massive, trapped monopoles, locally into those of the nonthermally distorted respective
boundary shells. This local investment of energy into the boundary shell can be thought
of as a transient excitation of a W±-boson in the Standard Model of Particle Physics. As
a result, an energetic neutrino is emitted: a figure-eight-shaped center-vortex loop loses
its droplet together with the trapped monopole when interacting with the thick boundary
shell to transform into a single center-vortex (see Figure 6d for µ-decay and Figure 6f for
the according subprocess in the Standard Model of Particle Physics).

Figure 6. Creation and decay of a muon: (a) A not yet quantum equilibrated muon droplet, defined

as the self-intersection region of a center-vortex loop, is created within the confining phase of SU(2)µ.

This droplet contains three types of monopoles: qµ, qe, qg. (b) Energy in surplus to the muon quantum

mass is dissipated into the surroundings. The monopoles qe, qg are not trapped by the thick boundary

shell of the muon droplet (turquoise) and are free to leave or re-enter. A single center-vortex loop of

SU(2)e is fused with qe to form a figure-eight-shaped object subject to a new electron droplet. The

monopole qg (dark blue) in SU(2)CMB outside the electron droplet, at the CMB’s present temperature,

would be reduced to a massless and zero-charge point particle [49]. (c) The size of the electron droplet

(blue) is comparable with the Bohr radius a0 and contains the muon droplet. (d) The muon droplet is

dissolved by the thick boundary shell of the electron droplet, rendering qµ an irrelevant, massless,

and zero-charge point particle which casts a figure-eight-shaped center-vortex loop into a single one:

the muon neutrino νµ. The localised energy injected to the boundary shell thus is a transient process

which can be interpreted as a W− boson in the Standard Model of Particle Physics. (e) The final states

of muon decay are the electron and νµ. (f) Feynman diagram of muon decay in the Standard Model

of Particle Physics (the Feynman diagram was taken from [53]).

To relate hadrons to pure Yang–Mills thermodynamics is much harder than for leptons.
Hadrons are complex quantum systems of confined (anti)quarks that are effectively and
efficiently described by Quantum Chromodynamics [54,55]. To address the emergence of
(anti)quarks as electrically fractionally charged particles within pure Yang–Mills theories
of one and the same electric–magnetic parity is impossible. Rather, a derivation of quark
properties probably would require an interplay and mixing of electric–magnetic dual SU(3)
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Yang–Mills models to allow a version of the fractional Quantum Hall effect [56–58] to
take place.

In closing, we would like to state clearly that there cannot be any doubt that the
Standard Model of Particle Physics represents a milestone development in accurately
and efficiently describing the interactions of leptons and hadrons. Essentially, this theory
rests on well organised weak-coupling expansions that implement the gauge principle
in a perturbatively consistent way [59,60] and that are applicable to any so far probed
energy-momentum transfer. A thermodynamical approach to the interactions of leptons
and hadrons in terms of pure Yang–Mills theory is inferior to the Standard Model. What
the Standard Model is incapable of delivering though is a ground-state structure doing
justice to cosmological observations [61,62], to provide a useful framework for thermal
and nonthermal phase transitions [63], a postdiction of the absolute values of (some of)
its dimensionless parameters, and a deeper grasp of the nature of particle–matter–wave
duality concerning charged leptons. As the present work intended to demonstrate, a
computation of two of the Standard Model’s dimensionless parameter values appears to
be feasible. The here-proposed venue is still far from addressing other in-built features of
the Standard Model such as parity violation of the weak interactions, a derivation of the
electron’s magnetic moment including the anomalous quantum behaviour, a quantitative
grasp of the entries of the CKM matrix, or the fractional electric charges of quarks. We hope
to gain more insight into these problems in the future.
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