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Quantum-Neural Network Model for Platform Independent
Ddos Attack Classification in Cyber Security

Muhammed Yusuf Küçükkara,* Furkan Atban, and Cüneyt Bayılmış

Quantum Machine Learning (QML) leverages the transformative power of
quantum computing to explore a broad range of applications, including
optimization, data analysis, and complex problem-solving. Central to this
study is the using of an innovative intrusion detection system leveraging QML
models, with a preference for Quantum Neural Network (QNN) architectures
for classification tasks. The inherent advantages of QNNs, notably their
parallel processing capabilities facilitated by quantum computers and the
exploitation of quantum superposition and parallelism, are elucidated. These
attributes empower QNNs to execute certain classification tasks expediently
and with heightened efficiency. Empirical validation is conducted through the
deployment and testing of a QNN-based intrusion detection system,
employing a subset of the CIC-DDoS 2019 dataset. Notably, despite
employing a reduced feature set, the QNN-based system exhibits remarkable
classification accuracy, achieving a commendable rate of 92.63%. Moreover,
the study advocates for the utilization of quantum computing libraries such as
Qiskit, facilitating QNN training on local machines or quantum simulators.
The findings underscore the efficacy of a QNN-based intrusion detection
system in attaining superior classification accuracy when confronted with
large-scale training datasets. However, it is imperative to acknowledge the
constraints imposed by the limited number of qubits available on local
machines and simulators.

1. Introduction

Cloud computing systems provide data storage, processing, and
application services via internet-based mechanisms. This consti-
tutes fundamental infrastructure components of contemporary
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information technology environments, fa-
cilitating user accessibility. The growing uti-
lization of these systems is accompanied
by the emergence of novel security chal-
lenges. Specifically, threats such as insuffi-
cient data encryption, phishing, data leak-
age, and malware infiltration, prominently
feature among the array of potential se-
curity risks confronting cloud computing
systems. In this context, safeguarding the
integrity of cloud systems has assumed
paramount importance for both individual
stakeholders and corporations. Recent tech-
nological advancements have become intri-
cately intertwined with the mitigation of cy-
ber security challenges. Consequently ele-
vating the significance of computer-aided
classificationmethods in contemporary dis-
course.
Deep learning as a machine learning

methodology is widely preferred in the field
of cyber security due to the robust classi-
fication accuracy demonstrated by custom-
designed and pre-trained networks.[1,2] Tra-
ditional machine learning methodologies
used for security breach detection often face
significant barriers when for with the vol-
ume and complexity inherent in big data
environments.[3,4]

Traditional approaches, typically based on predefined rules
or patterns, struggle to effectively process and analyze the vast
amounts of information generated in such large datasets. The
application of large-scale data input-based ML classification
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methodologies significantly undermines the efficacy of Intrusion
Detection Systems (IDS) across both their training and testing
phases. The notable decline in performance results from the in-
tricate processing of extensive datasets. The computational load
imposed by ML algorithms hampers the IDS’s accuracy in iden-
tifying and classifying potential security threats.
Within the domain of machine learning, there has been a

burgeoning interest in leveraging quantum-based frameworks
to enhance both speed and classification accuracy. These frame-
works are designed to overcome the limitations of conventional
computer architectures. They leverage parallel processing capa-
bilities and the principles of quantum superposition to achieve
faster and more efficient classification outcomes. QML stands as
a paradigm shift in quantum computing going forward, bringing
together traditional machine learning methodologies and quan-
tum processing in a unified framework. In this framework, This
convergence has the potential to facilitate the execution of com-
putationally complex problems on quantum devices.
This study delves deeply into the effectiveness of a QNN ap-

proach customized for high-performance intrusion classifica-
tion. It is strategically crafted to overcome the inherent limita-
tions of handling big data and the computational constraints of
conventional hardware architectures. The consequences of cyber-
attacks can be financially and operationally burdensome. Achiev-
ing precise and rapid classification accuracy stands as a crit-
ical parameter in mitigating these consequences. In response
to these challenges, research endeavors centered on quantum-
based methodologies have assumed significance. By integrat-
ing the architectural principles of traditional neural networks
with quantum computing principles, the QNN approach accel-
erates the processing and analysis of large datasets and improves
their performance.[5] In this context, the advantages of QNNs
over traditional methods are their parallel processing capabili-
ties and fast and efficient classification results obtained by quan-
tum superposition principles. QNN can identify patterns in large
datasets faster and more accurately by utilizing elements such
as the quantum data density matrix and quantum entanglement
principles. This significantly increases the effectiveness of cyber
attack detection systems. Many traditional machine learning and
neural network approaches have shown commendable perfor-
mance in cyber attack detection and classification tasks. Their
ability to adapt to evolving attack typologies under varying op-
erational conditions necessitates meticulous examination. QNN
promise to improve the effectiveness and reliability of IDS by pro-
viding faster and more accurate classification capabilities in this
dynamic threat environment. However, to the best of our knowl-
edge, the exploration of QNNs remains relatively scarce in exist-
ing literature. Wei et al. developed a hybrid model for Distributed
Denial of Service (DDoS) attack detection that combines an Au-
toencoder with a Multilayer Perceptron to identify key features
and achieved an F1 score of over 98%.[6] Xu et al. improved intru-
sion detection accuracy to 99.7%using SMOTE andmutual infor-
mation for dataset refinement.[7] Akgun et al. evaluated various
deep learning models for DDoS detection and found that convo-
lutional neural network (CNN) is highly effective with 99.99%
binary accuracy.[1] Aldhyani et al. achieved 100% accuracy by
combining Long-Short Term Memory (LSTM) and CNN-LSTM
architectures.[8] Alkhudaydi et al. achieved 98.50% accuracy by
integrating CatBoost and XGBoost classifiers with SMOTE.[9]

Kasongo et al. achieved 87.07% training accuracy on UNSW-
NB15 using RNNs with XGBoost feature selection.[10] Nabi et al.
showed that the RandomProjection approach improved the accu-
racy of NSL-KDD dataset to 82%.[11] Hossain et al. presented an
ensemble learning method using Random Forest and achieved
over 99% accuracy.[12] Aldhyani et al. presented a Rock Hyrax
Swarm Optimization model for Android malware detection and
achieved 99.05% accuracy.[13] Diaba et al. achieved 97.8% ac-
curacy in binary classification using a meta-heuristic algorithm
with RBM.[14] Alsarhan et al. optimized support vector machine
(SVM) usingGenetic Algorithm and achieved higher accuracy.[15]

Salvakkam et al. proposed an ensemble model for cloud comput-
ing intrusion detection with a recall rate of 92.14%.[16]

Studies[17–21] on the combination of IoT technology and cy-
bersecurity, including general strategies have become an impor-
tant research topic with the increasing potential of AI-based ap-
proaches.
Several methodological approaches to intrusion detection can

be found in the literature, including hybrid methodologies,[6,8]

optimization via metaheuristics,[13–15] data preprocessing
techniques,[7,11] the classification aptitude of neural networks
consequent to feature selection,[10] and the utilization of ensem-
ble learning frameworks.[12,22,23] However, these methods face
limitations in terms of speed and efficiency, especially for large
datasets and complex data structures.
Quantum computing holds immense promise in offering so-

lutions that transcend the limitations encountered by conven-
tional methodologies in addressing these challenges.
Said et al. used a Quantum-SVM model for DDoS attack de-

tection and achieved over 99% accuracy.[24] Kalinin et al. investi-
gated QML methods for high performance intrusion detection
and found that ML-based intrusion detection is effective with
98% accuracy.[25] Shara emphasized the importance of QML in
cybersecurity.[26]

An overview of the literature shows that QML approaches
have only been used to a limited extent in cybersecurity. How-
ever, QML methods have shown applications in different fields
such as medicine, finance, and chemistry. Apart from the se-
curity domain, it is clear that QML applications have been suc-
cessful in healthcare, such as drug discovery, disease prediction
and healthcare system improvements,[27–30] as well as in financial
forecasting[31-33] and chemistry.[34] This literature review demon-
strates the potential of QML approaches for new and different
applications in various disciplines. A general evaluation of the
literature is shown in Table 1.
Quantum computing and the use of emergingmid-scale quan-

tum technology offer the potential to improve the performance
of classical machine learning algorithms. QML algorithms cur-
rently have low fault tolerance. However, it appears that research
on quantum hardware could lead to the development of a new
generation of error-tolerant devices. Therefore, discoveries in this
area are of great importance.

1.1. Motivation and Contribution

Themainmotivation underpinning themethodology expounded
in this study is the amalgamation of quantum machine learning
with the pronounced performance benefits afforded by quantum
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Table 1. An overview of the literature.

References Application Models Technique Dataset Performance

Wei et al.
2021[6]

DDos Attack
Classification

Autoenconder-Multi Layer
Perceptron

Two deep learning - based
hybrid approach

CIC-DDos 2019 F1 Score = +98%

Xu et al. 2023[7] Intrusion and
Anomaly
Detection

Automated Machine learning
(KNN, SVM, NN, Tree,
Ensemble Model)”

For quality of dataset -
Synthetic Minority
Oversampling Technique
For classification - ML

KDDcup99 Accuracy = 97%

Akgun et al.
2022[1]

DDos Attack
Detection

Deep Neural Network (DNN),
CNN, LSTM and Custom
CNN

Design of custom CNN CIC-DDos2019 Accuracy= 99.9%

Aldhyani et al.
2023[8]

DDos Attack
Detection

CNN-LSTM Combined with long
short-term memory
(CNN–LSTM)

CIC-DDos 2019 Precision= 100%

Kasongo et al.
2023[10]

Intrusion Detection Different Recurrent Neural
Network

XGBoost-based feature
selection algorithm and
Simple Recurrent Neural
Network (RNN)

NSL-KDD and
UNSW-NB15

Accuracy = 87.07%

Nabi et al.
2024[11]

Intrusion Detection Decision Tree J48 Tree - Random Projection NSL- KDD Accuracy = 79.01%

Hossain et al.
2023

Intrusion Detection Random Forest, Gradient
Boosting, Adaboost,
Gradient XGBoost, Bagging,
and Simple Stacking)”

Ensemble-based ML technique SIMARGL21 Accuracy = +99%

Albakri et al.
2023[13]

Malware Detection
and Classification

Rock Hyrax Swarm
Optimization with deep
learning-based Android
malware detection

RHSO based feature subset
selection (RHSO-FS)
technique

Andro-AutoPsy Accuracy = 99.05%

Diaba et al.
2023[14]

Intrusion Detection RF-RBM Meta Heuristic Algorithm Power System
Attack Detection
Dataset

Accuracy = 97.8%
for binary
classification

Alsarhan et al.
2023[15]

Intrusion Detection SVM Optimizing SVM using Meta
Heuristic Algorithms

NSL - KDD Accuracy = 99%

Said et al.
2023[23]

Intrusion Detection SVM Qantum - SVM CIC-DDos 2019 Accuracy= +99%

Kalinin et al.
2023[24]

Intrusion Detection SVM-CNN QSVM-Quantum-CNN Created DataSet Accuracy=98%

Our System Intrusion Detection Neural Networks QNN CIC-DDos 2019 Accuracy = 92.63%

parallelization. This approach delineates a crucial realm of in-
quiry aimed at enhancing the capacity of machine learning algo-
rithms to discern intricate distributions within high-dimensional
datasets. In our study, we hypothesize that the intelligent integra-
tion of quantum computing into the field of link prediction has
the potential to improve prediction accuracy less data and fea-
tures, taking advantage of the performance improvements iden-
tified in previous scientific research. We believe that this integra-
tion can yield promising results.
The primary contributions of our study are delineated as fol-

lows:

a) We leverage quantum advancements to project feature sets
into quantum space, capitalizing on the advantages afforded
by quantum parallelization.

b) We elucidate the efficacy ofQNNs employing various learning
approaches in the realm of intrusion detection, thereby illu-
minating their potential applicability across diverse domains.

c) We execute these operations on a feature subset within
the dataset, enabling the evaluation of accuracy, speed, and
balance utilizing a qubit-centric methodology. Compared to
other studies, we report high performance with a much
smaller number of features.

d) Our model facilitates a comparative analysis between predic-
tions generated on a local computer and those produced by
different simulators. The findings also showed the potential
for future training on a real quantum computer.

e) Our study’s findings unveil a precise decision mechanism,
mitigating the pronounced error tendencies inherent in tra-
ditional machine learning methods through the integration
of Quantum Computing. These results are poised to consti-
tute a significant contribution to the existing literature in the
field.

The rest of the paper is as follows: Section 2 presents in detail
the materials and methods used in the study. Section 3 presents
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Figure 1. The flowchart of the QNN classification approach.

the experimental setup and comprehensive analysis results for
the developed system. The obtained experimental results are eval-
uated in various test environments. Finally, Section 4 summa-
rizes the conclusions of the study and points out potential future
research areas.

2. Experimental Section

In this study, the complete spectrum of quantum advancements
in neural networks was leveraged. Through the utilization of dy-
namic network properties, this data was encoded onto a quantum
circuit designed for a neural network-based predictive model.
This method utilizes quantum computing not only for feature
projection but also for conducting training and optimization
tasks within the quantum domain, facilitated by quantum cir-
cuits. The general flowchart of the study is given in Figure 1.

2.1. Dataset Information

DDos attacks represented a formidable challenge within cyber
security, aiming to incapacitate targeted network infrastructures
through inundating traffic.[35] Despite the development of nu-
merous statistical methodologies to identify such incursions, the
creation of an efficient detection framework that was both com-
putationally economical and capable of real-time operation con-
tinues to be a significant area of academic interest.
The CIC-DDos 2019 dataset had been developed to closely

mimic the characteristics of actual network traffic data (PCAPs),
encompassing both benign and prevalent DDos attack vectors.
The granularity of the network traffic analysis was achieved
through the utilization of the CICFlowMeter-V3 tool, with the
resultant data being organized into a CSV format.[36] This for-
mat included labelled flows with associated timestamps, source,

and destination IP addresses, source and destination ports, uti-
lized protocols, and identified attack classifications. During the
dataset’s preparation phase, considerable emphasis was placed
on the simulation of realistic background traffic. To this end,
the B-Profile methodology, as introduced by Sharafaldin et al.,
was employed to facilitate the accurate behavioural modelling
of human interactions, thereby ensuring the generation of au-
thentic, non-malicious background traffic within the testing
environment.[37] In this study, 16000 samples were randomly se-
lected and 7 features from the dataset.
Using balanced data allowed the model to learn both classes

with equal weight, increasing the model’s generalization abil-
ity and allowing it to detect both attacks and harmless situa-
tions with high accuracy. When unbalanced data was used, the
model may overfit the dominant class, which might reduce the
detection accuracy of the other class. The research by Wei et al.
emphasizes the importance of using balanced training data and
specifically states that achieving a 50% balance between differ-
ent classes leads to higher accuracy measures.[38] This finding
clearly demonstrated the importance of balanced data in improv-
ing classifier performance. Furthermore, the study by Kawakubo
et al. emphasized the need to correct for bias due to class bal-
ance changes by weighted training based on the class proportion
of the test data. This approach ensured that the classifier was ro-
bust to changes in class distributions between training and test
datasets, further reinforcing the importance of balanced data in
classifier training.[39] Real-world datasets were often imbalanced,
but for intrusion detection systems, which were critical in the cy-
bersecurity domain, it was known that models trained with im-
balanced data may perform poorly. Therefore, it was a common
approach to deal with data imbalance in order to improve the re-
liability and generalization ability of the model. In this study, the
model was trained using balanced datasets. The balanced dataset
allowed the model to learn both attack and harmless examples,
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achieving high accuracy in both classes. This increases the gen-
eralization ability of the model and avoided the class bias that
imbalanced datasets can introduce.[40] Increased generalizability
increases the model’s capacity to adapt to different data distribu-
tions in real-world scenarios. In this study, the data balance was
manually adjusted, giving full control over which samples to in-
clude or exclude. This was particularly important for data quality
and representativeness.

2.2. Feature Selection

One of the primary challenges encountered when employing
quantum-based algorithms in the work was the limitation of
available hardware. Both the local computing resources and sim-
ulators, such as IBM’s statevector simulator, were restricted to a
finite number of qubits. Given that each feature in the dataset re-
quired a separate qubit, it became imperative to reduce the num-
ber of features. This constraint necessitated the implementation
of feature selection techniques to ensure the feasibility of the
quantum computations while maintaining the integrity and per-
formance of the model. Feature selection, a pre-processing step,
aims to eliminate non-essential features from high-dimensional
datasets. Filter-based feature selection methods, such as the
KBest method, aim to reduce computational cost by selecting
a specific number of top features. However, these methods do
not directly optimize model performance. Instead, they provide
a subset of features based on their overall information value.
This means that although KBest had low computational cost, it
might have limitations in improving the overall performance of
the model. Studies in the literature had shown that feature selec-
tion methods based on filtering methods (such as K-best) were
indirectly effective in improving the overall performance of the
model, despite the low computational cost in applications.[41–43]

Furthermore, reducing the number of features with the K-best
method also optimized memory usage. This was an important
advantage, especially when working with large data sets, and con-
tributed to a more efficient use of computational resources. The
KBest method analyzed 80 features in this study, selecting the
seven most informative based on their dependency on the tar-
get variable through a scoring function. The KBest method cal-
culated an fscore for each feature to identify those with the high-
est values and performance while reducing computational com-
plexity and the risk of overfitting.[44] However, there was also a
computational cost of evaluating each feature independently, es-
pecially in large data sets or when there were a large number of
features. The total computational cost of the KBest algorithmwas
expressed asO(m ⋅ n +m logm). Here,m represents the number
of features and n represents the number of data points. The first
term covered the independent evaluation of each feature, while
the second term accounted for the sorting of these features.

2.3. Quantum Computing

The conceptual foundation of quantum computing was pio-
neered by Richard Feynman and YuriManin, grounding the com-
puting paradigm in quantum mechanics principles.[45,46] This
model of computing exhibits the capacity to solve specific prob-
lems with efficiency that classical computers find challenging.[47]

Unlike classical computing, which relied on binary bits, quan-
tum computing uses qubits, capable of representing both 0
and 1 simultaneously through superposition and entanglement,
enhancing computational power.[48] This advancement enabled
tackling problems beyond the scope of classical computing’s.[49]

Quantum gates, similar to classical logic gates but operating on
qubits, were fundamental in crafting quantum algorithms and
circuits, utilizing superposition, and entanglement to perform
multidimensional operations.[50] This positions quantum com-
puting as superior in fields like cryptography, optimization, and
simulations.[51,52]

2.3.1. Entanglement and Superposition

Entanglement and superposition, cornerstone principles of
quantum mechanics, collectively enable advancements in quan-
tum computing and technologies. Entanglement facilitated an in-
stantaneous connection between particles, regardless of distance,
serving as a foundation for enhanced quantum communication,
computation, and precision measurements, significantly boost-
ing the functionality and security of quantum technologies. It
aids in creating scalable quantum processors, neural networks,
and sophisticated encryption methods, which were essential for
surpassing classical systems in computational and communi-
cation tasks.[53,54] Concurrently, the superposition principle al-
lowed quantum systems to coexist in multiple states until ob-
served, a pivotal concept that underpins quantum mechanics
and catalyzes a plethora of quantum effects. This principle ex-
tended from particles to macroscopic entities, enabling quan-
tum information processing systems to operate in superposi-
tions of causal structures, crucial for the complex calculations
performed by quantum computers.[55–57] Collectively, these prin-
ciples underscore the distinctive features of quantum coherence,
which differentiate quantumphysics from classical physics. They
form the foundation for the development of quantum-enhanced
technologies, including encryption and metrology, representing
a substantial advancement in quantum computing and its vari-
ous applications.[58–60]

2.4. Quantum Machine Learning

QML offered a transformative approach that harnesses the com-
putational power of quantum mechanics to address the lim-
itations of classical machine learning algorithms. By leverag-
ing principles such as superposition and entanglement, QML
provided enhanced capabilities for processing and analyzing
complex datasets, making it particularly advantageous for tasks
requiring high-dimensional data handling and intricate pat-
tern recognition.
In QML, classical data was encoded into quantum states using

quantum circuits. This encoding process utilized quantum gates,
such as Hadamard gates for creating superposition and CNOT
gates for generating entanglement, to map classical data into
the quantum domain. The representation of datasets as quan-
tum state vectors enabled QML algorithms to exploit the inher-
ent parallelism of quantum computing, leading to more efficient
data processing and higher accuracy in specific problem domains
compared to classical methods.
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A critical component of QML was the use of quantum circuits
to perform learning tasks. These circuits incorporate special-
ized quantum algorithms designed to solve complex optimiza-
tion and nonlinear operations that were challenging for classical
algorithms. By employing quantum circuits, QML could execute
these tasks with greater computational efficiency, opening new
possibilities for tackling problems in various fields such as cryp-
tography, optimization, and simulations.
In this study, QNNs was employed, a specific type of QML

model, for training and classification tasks. QNNs integrated the
quantum properties of traditional neural networks, leveraging
quantum circuits to enhance the learning process. The architec-
ture of QNNs included components such as feature maps and
ansatz circuits, which were critical for encoding input data and
optimizing the quantum state. This approach allowed QNNs to
better capture the complexity within the data, providing more ac-
curate and efficient solutions.
In QML approaches, classical data must first be projected into

a complex quantum vector space using a featuremap circuit. This
vector space is expressed as follows:

𝜐𝜙(x) =
∏
d

⋃
𝜙

(x)H
⊗n

(1)

here, n represents the number of qubits utilized in the quantum
circuit, indicating the dimensionality of the quantum system un-
der consideration. The depth of the circuit, denoted as d, encom-
passes the number of sequential applications of essential quan-
tum gates, notably including the Hadamard gate (H) and the en-
tangling block 𝜐𝜙(x). Here

⋃
means that a union operation is

performed on the phi sets. This represents the combination of
different features defined by phi (𝜙). TheHadamard gate induces
superposition by transforming basis states into a balanced mix-
ture of 0 and 1 states, while the entangling block facilitates the
entanglement of qubits, crucial for generating non-trivial quan-
tum states and enabling complex quantum computations.
Furthermore, Pauli matrices are used to describe fundamental

quantum gates and operations:

U𝜙(x) = exp

(
i

∑
x⊆{1,…,n}

𝜙S(x)
∏
k∈S

Pi

)
(2)

here, Pi ∈ I, X, Y, Z are the Pauli matrices, and U𝜙(x) is the data
mapping function. 𝜙S is a function that determines how data
is mapped into quantum space. This function defines how the
data is transformed over quantum bits. The connection between

qubits or data points is defined by S =
(
n
k

)
combinations, k =

0, 1,… , n. These matrices are used as gates that represent opera-
tions performed on a qubit, providing amathematical expression
of the operations performed in quantum circuits.
In this study, the QNN model was trained using a quantum

simulator, which facilitated the emulation of quantum circuits
on classical hardware. This simulator-based approach allowed for
the assessment and refinement of the QNN model before de-
ploying it on actual quantum hardware. By conducting exten-
sive training and optimization on the simulator, the potential
of QNNs was demonstrated to achieve high classification accu-

racy with fewer features, highlighting the efficiency of quantum-
enhanced learning methods.
In summary, QML represented a significant advancement in

machine learning, offering unique advantages through the use of
quantum computing principles. The integration of QNNs in this
study showcased the potential of QML to revolutionize data pro-
cessing and analysis, particularly in domains requiring complex
pattern recognition and high-dimensional data handling.

2.5. Quantum Circuit

QuantumCircuit architecture and deploymentwere crucial in de-
termining efficacy in QuantumMachine Learning. This research
employed the QNNCircuit class from the Qiskit Machine Learn-
ing library.[61] The QNNCircuit class offered an integrated frame-
work that combined feature maps and ansatz circuits, facilitat-
ing the streamlined integration of these critical components. The
adoption of QNNCircuit not only elucidates the quantum me-
chanical foundations of the proposed model but also ensured an
efficacious realization of outcomes on quantum computational
platforms. The QNNCircuit created in the study is shown in
Figure 2.
Figure 2 illustrates a quantum circuit comprising two primary

blocks: ZZFeatureMap and RealAmplitudes. The ZZFeatureMap
block was responsible for encoding classical data into quantum
states by applying a series of quantum gates to the qubits, thus
mapping the input data into a higher-dimensional quantum fea-
ture space. This process leverages entangling gates and single-
qubit rotations to capture the correlations within the input data.
Conversely, the RealAmplitudes block implemented a parame-
terized quantum circuit with real-valued parameters to optimize
the quantum state. This block utilized a sequence of parame-
terized single-qubit rotations and entangling gates designed to
effectively explore the quantum state space, thereby enhancing
classification or regression tasks in quantum machine learning.

2.6. Quantum Neural Network

Building on the foundation laid by the QNNCircuit class, this
study further explores the application of QNNs on quantum
computing platforms, utilizing the Estimator and EstimatorQNN
classes from the Qiskit Machine Learning library.[61] The Estima-
tor class was a foundational tool for computing the expected val-
ues of observables within quantum circuits. Concurrently, Esti-
matorQNN, a neural network paradigm, leverages this founda-
tion to deduce the expected values of a quantum circuit, which
was parameterized by specified inputs and/or weights. The quan-
tum circuit employed herein was a composite structure, incorpo-
rating a feature map for input data and an ansatz for the weights,
designated as a circuit parameter within EstimatorQNN. This
configuration facilitated the computation of the circuit’s expec-
tation values, which were pivotal for the model’s training. Such
methodology marks a significant advancement in quantum ma-
chine learning, aiming to enhance model precision while har-
nessing the quantum computational advantage. The QNN block
diagram is shown in Figure 3.
Figure 3 illustrates the architecture of a QNN comprising

three primary stages: Data Loading, Data Processing, and Mea-

Adv. Quantum Technol. 2024, 7, 2400084 2400084 (6 of 14) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 2. QNNCirciut architecture.

surement. In the Data Loading stage, classical data inputs were
encoded into quantum states using a feature map, preparing
the qubits (from q0 to q6) for subsequent processing. This en-
coding process leveraged quantum gates to transform classical
data into a higher-dimensional quantum feature space. The en-
coded data was then passed to the Data Processing stage, repre-
sented by the ‘Ansatz’ block, which applied a series of param-
eterized quantum gates to the qubits. This stage is critical for
exploring the quantum state space and optimizing the circuit
for specific machine-learning tasks. Finally, the Measurement
stage involved measuring the quantum states to extract mean-
ingful classical information, which was then utilized for classifi-
cation or regression tasks. This diagram effectively delineated the
flow of data from classical input through quantum processing to
measurement, providing a comprehensive overview of the QNN
structure.

2.6.1. Classifier

TheQNNClassifier exemplified the integration of quantum com-
puting with machine learning, designed to undertake classifica-
tion tasks through neural networks. It could support both bi-
nary and multidimensional outputs and allowed for the depic-

tion of results as either direct class identifications or classifica-
tions over probability distributions. For multidimensional out-
puts, the framework permits the interpretation of each output
vector either as a unified sample or as separate predictions utiliz-
ing one-hot encoding. This classifier enhanced the utility of quan-
tum machine learning by incorporating adjustable loss function
selections and a customizable optimization process.

2.7. Quantum Simulators

Quantum simulators, integral to quantum computing, facilitate
the emulation of complex quantum systems unmanageable
by classical means. IBM’s contributions, notably the simula-
tor_statevector, offer platforms for simulating quantum circuits
under ideal and noisy conditions, aiding algorithm testing and
hardware benchmarking.[62,63] Leveraging Qiskit, IBM’s open-
source quantum computing library, these simulators enabled
diverse applications from quantum chemistry to cryptographic
algorithm adaptation.[64] Their use in Hamiltonian simula-
tions exemplifies their broad utility across scientific fields.
IBM’s quantum simulators were pivotal in advancing quantum
computing, fostering algorithm development, and enhancing
understanding in various domains.[63]

Figure 3. Quantum neural network block diagram.
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2.8. Proposed Approach

In the proposed approach (1), data processing was initially per-
formed. In this process, out of 80 features in the analyzed dataset,
two of them were separated as label classes. In this study, only
one of these label classes was used. This label indicated whether
the feature is benign or attack. Out of the remaining 78 fea-
tures, 66 features were obtained by eliminating 12 features with
zero, repeated or null values. Among these features, seven fea-
tures selected by the KBest feature selection method are as fol-
lows: “Fwd Packet Length Min, Fwd Packet Length Mean, Flow
Bytes/s, Packet Length Min, Packet Length Max, Avg Packet Size,
Avg Fwd Segment Size”. After determining these features, the
data preprocessing phase begins. The CIC-DDos-2019 dataset
contains 431,370 data points, 5,449 of which were removed from
the dataset due to zero, null or duplicate values. Of the remaining
425,921 data points, 1,000, 2,000, 4,000, 8,000, 16,000 sub-dataset
were created to represent a homogeneous distribution (half la-
beled as attack, half as harmless). The features within the cho-
sen datasets were normalized employing the Min–Max normal-
ization technique.
The seven features selected in the proposed approach were en-

coded into qubits, the primary processing units of quantum com-
puters. Each feature was encoded on a qubit. This coding pro-
cess involved converting classical data into quantum states. Each
qubit expressed quantum superpositions and entanglements that
represent the relevant property. Seven features were thus con-
verted into seven qubits, providing parallel processing and data
analysis capacity using the quantummechanical properties of the
features. In this study, one of the biggest difficulties encountered
in the use of quantum-based algorithms was hardware limita-
tions. Both the local computer and simulators such as IBM stat-
evector require the use of a certain number of qubits. In order to
overcome these limitations, the number of features was reduced
by using the KBest method for feature selection, taking into ac-
count the requirement of one qubit for each feature. Although the
KBest method was a good feature selection method, it was stated
that themain determining factor in classification success was the
machine learning or quantum machine learning algorithms se-
lected. For example, Wei et al. obtained high accuracy rates by
using machine learning algorithms after feature selection with
KBest method.[6] Similarly, Sharma et al. improved the classifica-
tion accuracy by using variousmachine learning algorithms after
feature selection with KBest method.[65] These studies show that
the KBest method provides an effective feature selection, but the
final success depends on the algorithms chosen. These findings
emphasised that quantummachine learning algorithms were su-
perior to the KBest method in classification success. Following
the encoding of seven features into the qubit system, a quan-
tum circuit was architectured to facilitate processing this encoded
data. The circuit’s design incorporated critical elements such as
the ZZFeatureMap and Real Amplitudes. The ZZFeatureMap
component is instrumental in entangling the encoded features
into pairs among qubits, thereby delineating the intricate rela-
tionships between these features within a quantum mechanical
framework. This entanglement process was pivotal formodelling
the nonlinear interactions among features, enabling an extensive
exploration of the feature space through quantum superposition.
Conversely, the Real Amplitudes component was tasked with op-

timizing the circuit’s state by adjusting the qubits’ amplitudes
or the real-valued components of the quantum state. This opti-
mization was essential for enhancing the accuracy of operations
executed on the qubits, which correspond to the set of features,
thereby augmenting the quantum circuit’s operational precision.
After the assembly of the quantum circuit, the next stage in the

investigation involved incorporating the QNN model. The QNN
architecture synergizes the foundational aspects of classical ar-
tificial neural networks with quantum computing’s capabilities,
offering substantial enhancements in data processing and learn-
ing efficacy. Preliminary evaluations of theQNNmodel were con-
ducted locally, where no estimators were deployed to assess the
model’s performance. These initial tests aimed to ascertain the
model’s essential operational integrity and seamless integration
with the quantum circuit, confirming that the model’s function-
ality aligns with quantummechanical principles and the feasibil-
ity of applying the theoretical framework in practice. Conversely,
in the simulator-based experiments, an estimator was utilized
for a more granular analysis of the model’s performance. The
QNN’s output was scrutinized through the estimator, facilitating
the computation of classification accuracy, error rates, and other
pivotal metrics.
The optimization of the QNN model, incorporating seven

qubits, was conducted on subsets of data comprising 1000, 2000,
4000, 8000, and 16000 instances. For the optimization endeav-
our, the COBYLA (Constrained Optimization BY Linear Approx-
imations) optimizer was selected for a series of 100 iterations.
COBYLA was a method for constrained optimization utilizing
linear approximations, mainly applied within quantum comput-
ing to refinemodel parameters toward optimal values within pre-
defined constraints. This phase of the study aimed to assess the
model’s efficacy across datasets of varyingmagnitudes. The appli-
cation of the COBYLA optimizer aligned with the objective to en-
hance the classification accuracy of the QNN model, facilitating
an efficient exploration within the high-dimensional parameter
space. These experimental procedures, conducted on datasets of
diverse sizes, comprehensively analyzed the model’s adaptability
to varying data volumes and the optimization process’s influence
on the model’s overall performance.

3. Experimental Results

3.1. Experimental Setup

In conducting our study, we utilized two computational libraries:
the Qiskit library, which allowed us to implement QNNs, and the
IBM runtime library, which granted us access to IBM simula-
tors. Using the Qiskit framework, we built and trained our QNN
model with an API key acquired from the IBM Quantum plat-
form. Throughout the training process, we concentrated on the
simulator_statevector device. We also conducted model training
on a local computational setup.
The model under consideration was executed on a local com-

puting device and on the state_vector simulator provided by IBM
Quantum simulators. The latter is a significant instrument for
emulating quantum computing operations on classical comput-
ing systems. By representing the intricate states of quantum cir-
cuits via mathematical vectors, the simulator enables the theoret-
ical evaluation of algorithms’ accuracy and performance without
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Table 2. Hardware specifications of the local computer.

Specifications

CPU AMD Ryzen 9 7900 12-Core

GPU NVDIA GeForce GTX 3090

RAM 32 GB

Operating System Ubuntu 20.04.6 LTS

necessitating access to a physical quantum computing apparatus.
This simulation tool, developed by IBM and accessible through
the Qiskit framework, plays a crucial role in advancing and val-
idating quantum algorithms. The hardware specifications of the
local computer used in the study are shown in Table 2.

3.2. Performance Metrics

The study utilizes accuracy as its performance metric. This met-
ric is derived by computing the proportion of correctly classified
samples to the total number of samples. It offers valuable in-
sights into the model’s ability to effectively distinguish between
regular network traffic and DDos attacks.

a) True Positives (TP): The number of samples that the model
correctly predicts as positive,

b) True Negatives (TN): The number of samples that the model
correctly predicts as negative,

c) False Positives (FP): The number of samples for which the
model incorrectly predicts as positive,

d) False Negatives (FN): The number of samples that the model
incorrectly predicts as negative,

e) Total number of samples: Total number of samples (sum of
TP, TN, FP and FN).

Accuracy = TP + TN
TP + TN + FP + FN

(3)

Precision = TP
TP + FP

(4)

Recall = TP
TP + FN

(5)

F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

3.3. Performance Evaluations

In this section, we evaluate the performance of the QNN architec-
ture on the local computer and quantum simulator for different
data sizes. In Scenario 1, we present the training results on the
local computer. In Scenario 2, we analyze the results obtained on
the quantum simulator.
Scenario 1: Quantum Computing on Local Computer for QNN

Architecture: In this subsection, the QNN architecture is used
for classification training in a local computer environment. QNN
is an innovative approach to describe complex data patterns by
exploiting quantum computing power.

For the training process, the homogeneous data set is divided
into different subsets: 1,000, 2,000, 4,000, 8,000 and the largest
subset of 16,000. These subsets were used to sample and then
train the QNN sequentially.
Looking at the technical details of the QNN architecture, each

quantum element (qubit) is used as a data processing unit. These
qubits are encoded to represent the input data and then manip-
ulated with quantum gates and measurements to perform data
processing and classification.
During the training process, the parameters of the QNN were

tuned using an optimization method such as COBYLA (Con-
strained Optimization BY Linear Approximations). This opti-
mization method was used to search for the best values of the
parameters to improve the accuracy of the QNN.
The training was performed for 100 iterations. In particular,

the training session using the largest data subset of 16,000 data
points achieved an accuracy of 80.69%. This shows that the QNN
can work effectively on large datasets using a local computer.
Regarding the increase in the amount of data, the training

results show that the accuracy rate generally increases as the
amount of data increases. It is also observed that this increase
decreases after a certain point. The QNN has the capacity to
learnmore complex relationshipswhen fedwithmore data.How-
ever, this increase in complexity can lead to overfitting of the
model. Therefore, the trainings were finalized for 16,000 data.
This point plays an important role in finding the balance between
the amount of data and the complexity of the QNN. The confu-
sionmatrices of theQNN training results (different data sizes) on
the local computer and quantum simulator are shown Figure 4
and 5.
Scenario 2: Quantum Computing on Quantum Simulator Results

for QNN Architecture: This subsection describes the methodol-
ogy for training classification using a QNN in a simulator envi-
ronment.Ideal simulations of quantum circuits were performed
using the Qiskit library and IBM’s classical simulators. The re-
sults obtained in this scenario obtained are entirely based on
classical simulations. Experiments on real quantum computers
have not been performed. For the analysis, the datasets defined
in Scenario 1 served as the basis, and the training of the QNN
progressed sequentially through the identified data subsets. In
the training process, an optimization technique such as COBYLA
was chosen. The training of the model was subjected to an ex-
tensive series of 100 iterations. During the training of the QNN,
a high success rate of 92.63% was achieved, especially on the
16,000 dimensional sub-dataset. This result shows that QNN can
work effectively in the simulator environment and can be used
to identify complex data patterns. This success of the simula-
tor reveals the computational power of future noise-free quan-
tum computers.
Regarding the increase in the number of data, the training re-

sults show that the use of larger data sets generally improves
model performance. However, it is also observed that this in-
crease is not linear and decreases after a certain point. At this
point, factors such as the computational power of the simula-
tor and the complexity of the QNN need to be taken into ac-
count. The state_vector simulator offers a number of advantages
for QNN training. First, it is more accessible compared to real
quantum computers. Furthermore, the simulator is a useful tool
for evaluating QNN design and performance, allowing for de-
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Figure 4. Confusion matrices from QNN performance on local computer.
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Figure 5. Confusion matrices for QNN performance on quantum simulator.
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Table 3. Confusion matrices fromQNN performance on the IBM Statevec-
tor quantum simulator.

Data
Size

Accuracy Precision Recall F1-Score

Local Simulator Local Simulator Local Simulator Local Simulator

16000 80,69% 92,63% 78,73% 91,38% 79,69% 92,85% 79,21% 92,11%

8000 79,63% 87,54% 81,78% 87,80% 79,28% 88,56% 80,50% 88,18%

4000 75,50% 84,75% 76,29% 86,09% 77,50% 84,29% 76,89% 85,18%

2000 73,67% 85,83% 71,04% 87,07% 74,56% 86,25% 72,76% 86,66%

1000 70,33% 82,33% 71,43% 80,27% 69,08% 83,10% 70,33% 81,66%

sign improvement before conducting real experiments on quan-
tum computer.
These numerical results reveal the effectiveness of QNN on

quantum simulators and the impact of increasing the amount of
data on QNN performance. All experimental results performed
on the local computer and simulation are compared with differ-
ent performance metrics in Table 3. Using classical numerical
simulations of quantum circuits, significant differences in accu-
racy have been observed between simulations performed on a lo-
cal classical computer and on an IBM classical computer. These
differences are based on several factors such as numerical pre-
cision and performance optimisations. IBM’s classical comput-
ers achieve higher accuracy rates in simulations by using higher
precision arithmetic andmore stable numerical techniques com-
pared to local classical computers. Furthermore, IBM’s classical
computers are optimized for large-scale quantum simulations
and use advanced techniques such as parallel processing and
memory management. Detailed analysis of the results obtained
reveals that the higher accuracy observed on the IBM platform
is due to superior numerical stability and performance optimi-
sations. In local simulations, relatively lower accuracy rates were
obtained due to the absence of these advanced features. These
findings suggest that IBM’s classical computers provide higher
accuracy and stability in quantum circuit simulations. The com-
parison of our study with other studies in the literature using the
same data set is shown in Table 4.
According to the results of the analysis, the comparison of dif-

ferent intrusion detection methods is summarized in the table.
Among thesemethods, QNN architecture, which is a new and in-
novative approach than traditional machine learning algorithms,
stands out. First of all, one of the reasonswhy theQNN stands out
is that it provides a high accuracy rate despite the higher num-
ber of data used compared to other methods. This shows that

QNN utilizes data more efficiently. Although only seven features
were used, an accuracy of 92.63%was achieved.While traditional
methods such as DNN, CNN, SVM used in other studies usu-
ally requiremore features, QNN achieved good performancewith
fewer features. This shows that QNN can work more effectively
with less information from the dataset and creates a cleaner and
more authentic model by avoiding unnecessary features.

4. Conclusion and Discussion

This study highlights the potential of quantum computing inma-
chine learning (ML) models to combat cyber attacks. A novel in-
trusion detection system for DDos attacks based on quantum
ML models is presented. In this system, QNN architecture is
preferred for the classification task. An important advantage of
QNNs is the parallel processing capabilities provided by quan-
tum computers and their capacity to handle specific computa-
tional problems more effectively. Another important advantage
of QNNs is that, unlike traditional neural networks, they can
utilize quantum superposition and quantum parallelism. These
properties allow the network to work on multiple possible out-
comes simultaneously, which allows certain classification tasks
to be performed more quickly and efficiently. However, factors
that determine the success of QNNs include the correct param-
eter settings and the design of appropriate quantum circuits. A
properly designed QNN can solve certain classification problems
more effectively than traditional methods. In this context, pre-
processing steps such as removing duplicate records, improving
performance, and applying minimum-maximum normalization
operations are also important to obtain a clean and non-repetitive
data set.
In this study, unlike other studies in the literature, a subset

of the CIC-DDos 2019 dataset with much fewer features was ob-
tained. The analysis of platforms and frameworks for the imple-
mentation of quantum computing shows that the most promis-
ing option is quantum computing libraries such as Qiskit. Tools
like Qiskit can be used for training QNNs that can be run on
local computers or quantum simulators. The benchmarks prove
the effectiveness of the QNNmodel in terms of accuracy and con-
sumption of computational resources. The results of the study in-
dicate that a QNN-based intrusion detection system can provide
protection with higher classification accuracy when a large-scale
training data set is used. However, in such studies, the limited
number of qubits in local computers and simulators should be
taken into account. In our study, the training results on quantum
simulators gave better accuracy than the results obtained from
training on a local computer. In our study, the number of qubits

Table 4. Comparison of our study with other studies in the literature using the same data set.

References Application Models Technique Dataset Features
Number

Data
Size

Performance

Wei et al. 2021[6] DDos Attack
Classification

Autoenconder-Multi
Layer Perceptron

Two deep learning - based
hybrid approach

CIC-DDos 2019 83 N/A F1 Score = +98%

Akgun et al.
2022[1]

DDos Attack
Detection

DNN, CNN, LSTM
and Custom CNN

Design of custom CNN CIC-DDos 2019 40 16500 Accuracy= 99.9%

Said et al. 2023[23] Intrusion Detection SVM Qantum - SVM CIC-DDos 2019 38 2950 Accuracy= +99%

Our System Intrusion Detection Neural Networks QNN CIC-DDos 2019 7 16000 Accuracy = 92.63%
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on the local computer and on the simulator is limited. It is not
possible to increase this number too much in our current sys-
tems. However, training with real IBM quantum computers has
some differences and limitations. For training using IBM quan-
tum computers, there is usually limited access and users can per-
form a limited number of operations in a given time frame. The
results of the study show that high accuracy and low fault toler-
ance can be achieved with a much lower number of features and
more data. These analyses show that the same experiments on
a real quantum computer have great potential in terms of speed
and time.
This study demonstrates the potential of the QNN architec-

ture in cybersecurity while taking into account the limitations
of quantum computers, such as limited access and computa-
tional cost. In the future, the focus will be on optimizing quan-
tum algorithms and parallelization schemes for fast training of
QML models. Also, Fault-tolerant quantum devices can provide
high accuracy and performance beyond current classical simula-
tions, which can further strengthen the applications of QNN in
cyber security.
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