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Abstract
On the basis of a non-local Lagrangian forMaxwell equations in a dispersivemedium, the energy-
momentum tensor of the field is derived.We obtain the Field equations through variationalmethods
and an extension ofNoether theorem for a non-local Lagrangian is obtained aswell. The
electromagnetic energy-momentum tensor obtained in the general context is then specialized to the
case of afieldwith slowly varying amplitude on a rapidly oscillating carrier.

1. Introduction

The electromagnetic field produced by a distribution of free charge and current in amaterialmedium is ruled by
Maxwell equations

 =  ´ + ¶ =B E B0, 0 1t· ( )

and

p r p =  ´ - ¶ =D H D j4 , 4 2t· ( )

whereE andH respectively are the electric andmagnetic fields,D is the electric displacement,B ismagnetic
induction and ρ and j are the free charge and current densities (unrationalizedGaussian units with c= 1 have
been assumed).E andB are the physicalmagnitudes as theymanifest in the Lorentz force on a test charge. The
above system (1- 2) does not determineE andB if only the distributions of charge and current are known,
because the number of unknowns largely exceeds the number of equations. This hindrance is circumvented by
specifying the nature of thematerialmedium, i. e. giving the constitutive equations, a set of phenomenological
relations connectingD andHwith the physical variablesE andB.

For isotropic non-dispersive linearmedia the constitutive equations are D= εE and H= μ−1 B , where ε
andμ respectively are the dielectric andmagnetic constants. This is the casemost considered in textbooks [1]
and also in the seminal paper [2]whereMinkowski set up the relativistic electrodynamics inmaterialmedia and,
particularly, derived his (non-simetric) energy-momentum tensor for the electromagnetic field. Vacuum is a
particular case with ε= ε0 and μ= μ0 .

However, in naturalmedia ε andμ are not constant and generally depend on frequency andwavelength.We
then speak of dispersivemedia. For a planemonochromatic wave,E(q,ω) e i(q·x−ω t) and B(q,ω) e i(q·x−ω t) , the
response of themedium is a displacementD(q,ω) e i(q·x−ω t) and amagnetic fieldH(q,ω) e i(q·x−ω t) , with

w e w w w m w w= = -D q q E q H q q B q, , , , , , , 31( ) ( ) ( ) ( ) ( ) ( ) ( )

By Fourier transformwe express a general electromagnetic field,E(x, t) andB(x, t) as a superposition of plane
monochromatic waves, each of themproducing an electric displacement andmagnetic field like (3). By the
convolution theorem [3], the superposition of all of them results in

p e p m= =
~- - -D E H B2 , 2 42 2 1* *( ) ˜ ( ) ( )
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where ẽ and m
~-1 are connectedwith the Fourier transforms of ε andμ−1, that is

ò òe p e e p e= =- - -y k k e k y y e2 d , 2 d 5ik y ik y2 4 2 4b
b

b
b˜ ( ) ( ) ( ) ( ) ( ) ˜ ( ) ( )

where k b= (q,ω) .
Complementedwith these constitutive relations, the system (1- 2) allows to determine the electromagnetic

fields,E andB—hence the Lorentz force on any test charge— provided that we know: (a) the distribution of free
charge and current, (b) the nature of themedium specified by the dielectric andmagnetic function, ε(q,ω) andμ
(q,ω), and (c) the suitable boundary conditions for such a partial differential system.

Without leaving themathematical framework described so farwe canmodify the variables of our problem
and their interpretation by replacingD andH by some new variables that describe the collective behavior of the
elementary charges in thematerialmedium, namely the polarization andmagnetization densities [4]

p p= + = -D E P H B M4 , 4 6( )

Using this, the inhomogeneous pair ofMaxwell equations (2) becomes

p r r p = +  ´ - ¶ = +E B E j j4 , 4 7b t b· ( ) ( ) ( )

where

r = - =  ´ + ¶P j M Pand 8b b t· ( )

respectively, the density of bound charge and bound current (in contrast with the free charge distributions ρ
and j).

For an isotropic dispersivemedium the definitions (6) and the equations (4) imply that

c c= =P E M B, 9e m* *˜ ˜ ( )

where

c
p

e d d c
p

d d m m= - = - -
~- -t tx x

1

4
and

1

4e m
1

0
1˜ [˜ ( ) ( )] ˜ [ ( ) ( ) ]

are the electric andmagnetic susceptibilities of themedium.
Some authors, e. g. [5], split the electromagnetic fields as

= + = +E E E B B B, ,0 ind 0 ind

where the free fieldsE0 andB0 are those produced in vacuumby the distribution of free charges and currents,
whereas the induced fieldsEind andBind are produced by bound charges and currents. Thismakes sense from a
mathematical viewpoint because theMaxwell equations (1)–(2) and the constitutive relations (4) are linear.
Indeed, we canfirst obtain the free fieldsE0 andB0 as the solution ofMaxwell equations in vacuum for the free
charges, namely equations (1) and (7)with ρb= 0 and jb= 0, with no incoming fields at past infinity as initial
data. Then the induced fields are the solution ofMaxwell equations for the induced charges and currents (8),
with

c c= + = +P E E M B B, ,e m0 ind 0 ind* *˜ ( ) ˜ ( )

and the same initial data at past infinity.
The interpretation that follows is: free charges and currents produce the electromagnetic field,E0 andB0,

which polarizes themedium. This polarization implies a distribution of bound charges and currents which in
turn produce the induced electromagnetic field,Eind andBind. The induced field is however physically
indistinguishable from the primary one and only the totalfield,E andB, manifests trough the total Lorentz force
on a test charge.

Although it is not practical as far as the resolution ofMaxwell equations is concerned, this second viewwill
be helpful and illuminating to understand the exchange of energy andmomentumbetween the electromagnetic
field and the electric charges, either free or bound.

Poynting theorem [6] is about the energy exchange between the free charges and the electromagnetic field
and it holds for non-dispersivemedia only. Its derivation follows from the scalar product ofE and the second
equation (2). Then, a vector identity is invokedwith the need of assuming that the dielectric andmagnetic
functions are constant. The quantity = +

p
 E D B H1

8
[ · · ] and the Poynting vector S are respectively taken

as the energy density of the electromagnetic field and the current density of energy. Themain idea at the back of
the theorem is that the changes in thefield energy and the kinetic energy of free electric charges in a region in
space are due to the energy flowing through its boundary. To obtain the linearmomentumbalance, one can do
similarly [6] although the procedure ismuchmore elaborated.

However the spacetime formalism introduced byMinkowski [2, 7] is largely simpler. It treats the energy and
momentum exchanges on the same foot and proceeds similarly as in the proof of Poynting theorem, combining
some differential tensor identity andMaxwell equations.
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As previouslymentioned, Poynting theoremdoes not hold for dispersivemedia. In our view this is due to the
fact that the energy-momentumbalance should also include the energy andmomentum stored in the ‘bound
charges’whichwill depend, in the end, on the polarization andmagnetization densities,P andM, andmaybe on
their derivatives aswell.

The plan of the paper is as follows. In section 2we outline the electrodynamics ofMinkowski [2] formedia
with constant dielectric andmagnetic functions. Furthermore, we use an action principle and a Lagrangian for
the electromagnetic field in themedium that, applyingNoether theorem, yields a canonical conserved energy-
momentum tensor. Finally, wefind the associated Belinfante-Rosenfeld tensor—see for instance [8] and the
outline in the Appendix. The latter coincides with the non-symmetric energy-momentum tensor proposed by
Minkowski bymerely elaborating from thefield equations.

In section 3we generalizeMinkowski electrodynamics to dispersivemedia. This leads to a non-local
Lagrangian density, i. e. it contains a convolution product whose value at the point x depends on the values of the
field at any point in spacetime.We then derive the field equations and applyNoether theorem to obtain a
conserved energy-momentum tensor. Aswe are aware that non-local Lagrangians are seldom found in
textbooks, we devote the appendix to outline the derivation of the field equations and the generalisation of
Noether theorem for such Lagrangians.

2.Outline ofMinkowski electrodynamics (non-dispersivemedia)

This is a version ofMinkowski’s proposal in a notation closer to that used in present time textbooks [9]. In the
spacetime formalism the coordinates in an inertial reference system are denoted as

= = = =x x x y x z x t, , , ; 101 2 3 4 ( )

the electromagnetic field is represented by Faraday tensor

= - = = = =F F F B F B F B F E, , , , 11ab ba i i12 3 23 1 31 2 4 ( )

with a, b= 1K4 and similarly the electric displacementD and themagnetic fieldH are represented by the
displacement tensor

= - = = = = -H H H H H H H H H D, , , , 12ab ba i
i

12
3

23
1

31
2

4 ( )

Adopting the notation

¶ =
¶
¶

 = ¶ ¶ ¶ ¶ =
¶
¶x t

, , , , ,a a 1 2 3 4( )

Maxwell equations (1)–(2) can be respectively written as

¶ + ¶ + ¶ = ¶ =F F F H J0 and 13a bc b ca c ab b
ab a ( )

where

r= = = =J j J j J j J, , ,x y z
1 2 3 4

is a 4-vectormade of the free charge and current densities.
This arrangement is specially suited to deal with coordinate transformations connecting two inertial

systems. Indeed, given two systems of coordinates (x1, x2, x3, x4) and ¢ ¢ ¢ ¢x x x x, , ,1 2 3 4( ) connected by a
Poincaré transformation ¢ = L +x x sa

b
a b b (where L b

a is a Lorentzmatrix and s b four constants), thenwe
have that

¢ = L L ¢ = L L ¢ = LF F H H J J, and 14ab a
c

b
d

cd
ab

c
a

d
b cd a

b
a b ( )

A relevant role is reserved to theMinkowski’s covariant tensor

h = -diag 1 1 1 1 ,ab ( )

and the contravariant tensor η ab= diag(1 1 1 − 1) , such that h h d=ac
cb b

a (the Einstein convention of
summation over repeated indices is adopted).

The same tensor symbolmay occur sometimeswith the indices in the lower position (covariant) or in the
upper position (contravariant). The relation between them is, e. g.

h h h= =F F F Forb
a ac

cb
ab ac bd

cd

ThefirstMaxwell equation (13)means that the Faraday tensor can be derived from a 4-potencial [9]

= ¶ - ¶A F A Ait exists such that 15a ab a b b a ( )

As pointed out before, the system (13)must be complementedwith a set of constitutive relations that, for a
non-dispersive homogeneous and isotropicmedium, are

3
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e m= = -D E H B, 1

However, as the Poincaré transformation (14) entangles the electric andmagnetic parts, this simple form cannot
be valid in all inertial frames but only in the proper inertial frame, i. e. that respect towhich themedium is at rest.

Electric andmagneticfields. An inertial reference system is characteritzed by its proper velocity with respect
to the laboratory frame; this is a 4-vector ua= (γ v, γ), where g = - -v1 2 1 2( ) and v is the standard
3-velocity. It is a timelike unit vector, that is

h= = -u u u u 1a
a

a b
ab

.
Given any skewsymmetric tensor as Fab, they exist Eb and Bd such that

e= + = = =F u E F F u B u E u B2 , , 0 16ab a b ab ab abcd
c d a

a d
dˆ ˆ ( )[ ]

where the square bracketmeans antisymmetrization and εabcd is the totally skewsymmetric Levi-Civita symbol
in 4 dimensions:

e =
- abcd

abcd

1 if is an even permutation of 1234

1 if is an odd permutation of 1234

0 if there is some repeated index
abcd

⎧

⎨
⎩

It can be easily checked that

e= =E F u B u Fand
1

2
17a ab

b d cdab
c ab ( )

wherewe have used that ua is a unit vector and that

åe e d s d d d s= - =
s

s s s Ssign , runs over the permutation groupabcd
mned mne

abc
m n e 3

a b c( )

The particular case ua= (0, 0, 0, 1) corresponds to the laboratory frame and the relations (11) and (16) yield
Ea= (E1,E2,E3, 0) andB

a= (B1,B2,B3, 0). This is whywe respectively call Ea and Bd the electric field and the
magnetic induction in the reference frame characterized by ua.

We can proceed similarly with the skewsymmetric displacement tensorHab and have

e= + = = =H u D H H u H u D u H2 , , 0 18ab a b ab ab abcd
c d a

a d
dˆ ˆ ( )[ ]

e= =D H u H u Hand
1

2
19a ab

b d cdab
c ab ( )

where Da andHd respectively stand for the electric displacement and themagnetic field in the reference frame
characterized by the 4-velocity ua .

As the constitutive relations only hold in the proper reference frame, we have that

e
m

= =D E H Band
1a a

d d

provided that ua is the 4-velocity of themedium.Now, using (17) and (19), this amounts to

e e
m
e= =H u F u u H u Fand

1ab
b

ab
b cdab

c ab
cdab

c ab

whence, after a little algebra, it follows that for an isotropicmedium

m h h e h= = +-H M F M u uwith 2 20ab abcd
cd

abcd a c d b a b c d1 ˆ ˆ ˆ ( )[ ] [ ][ ]

where h h= + u uab ab a bˆ is the projector onto the hyperplane orthogonal to ub. The coefficientsMabcd present
the obvious symmetries

= - = - =M M M M 21abcd bacd abdc cdab ( )

2.1.Minkowski energy-momentum tensor
By a simple algebraicmanipulation ofMaxwell equations (13)—which is quite similar to the proof of Poynting
theorem—Minkowski obtained a local conservation law, namely

4
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¶ = - + ¶ = - + ¶ + ¶

=- + ¶ = - + ¶

F H F J F H F J H F F

F J H F F J H F

1

2
1

2

1

4
22

b
ac

c
b ac

c b c
a bc ac

c
bc

b c
a

c b
a

ac
c

bc a
bc

ac
c

a bc
bc

( ) ( )

( ) ( )

wherewe have used the identity

¶ = ¶ = ¶ = ¶H F M F F M F F H F
1

2

1

2
bc a

bc
bcmn

mn
a

bc
a bcmn

mn bc
a bc

bc( ) ( )

and the fact thatMbcmn is constant and presents the symmetries (21).
Therefore the tensor

hQ = -F H H F
1

4
23ab ac

c
b ab mn

mn ( )

fulfills the equation

¶ Q = -F J 24b
ab ac

c ( )

If there are no free charges, this relation becomes a local conservation law for the tensorΘab, which is called
Minkowski energy-momentum tensor. It is generally non-symmetric, except if εμ= 1 , inwhich case the tensor
coefficientMabcd in (20) does not depend on ua . This non-symmetry is at the origin of the so called Abraham-
Minkowski controversy [10]

Contrarily, if there are free charges, the Lorentz force on the charges contained in the elementary volume
d4x is the result of the energy-momentum currentflowing into it through its boundary

= -¶ QF J .ac
c b

ab

2.2.Derivation ofMinkowski energy-momentum tensor fromNoether theorem
Thefinding of theMinkowski energy-momentum tensor for non-dispersivemedia involves a bit of good luck in
getting the initial guess right.We shall nowpresent an alternative derivationwhich is based in a Lagrangian
formulation ofMinkowski electrodynamics [11, 12] andNoether theorem [13]. Themethodology is rather
routine and involves very little creativity, whichmakes it appropriate for a further extension to the general case of
dispersivemedia, as the onewe shall endeavour in section 3.

The configuration space variables are the 4-potencial componentsAb and the Lagrangian density in the
absence of free charges is

= = - M F F F A A
1

4
, 25abcd

ab cd ab b a a b; ; ( )

where the semi-colon is the covariant derivative but, for the case of interest, it represents the partial derivative
and Mabcd is constant for non-dispersivemedia and is given by (20).

We shall need

¶
¶

= = -
¶
¶

=
 

A
M F H

A
, 0

a b

abmn
nm

ab

a;

and thefield equations - ¶ =¶
¶

¶
¶

  0
A b Aa a b;( ) are

¶ =H 0 26b
ab ( )

As the Lagrangian (25) is invariant under spacetime translations, byNoether theorem—see the appendix for
an outline— it has associated four conserved currents which conform the canonical energy-momentum tensor
that, according to equation (A.22), is

d= - ¶ = H A H F
1

4
, 0 27c

a ab
b c

mn
mn c

a
a c

a
; ( )

Besides of being non-symmetric (when both indices are raised), it is gauge dependent due to the occurrence of
Ab;c in the first term.

The angularmomentum current thatNoether theorem associates to infinitesimal Lorentz transformations
—see equations (A.20) and (A.22) in the Appendix— is

= + = -   x A H2 where 2 28ca
b

c a
b

ca
b

ca
b

c a
b ( )[ ] [ ]

is the spin current. However, as  is not Lorentz invariant—because it contains the 4-vector ua through the
dielectric tensor Mabcd

—, the angularmomentum current is not locally conserved, ¶ ¹ 0b ca
b .

Then applying the symmetrization technique [9, 14] outlined in the appendix—equations (A.24) and (A.25)
—we obtain the so called Belinfante-Rosenfeld energy-momentum tensor

5
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Q = + ¶ = + -     , where
1

2
, 29ca ca

b
bac cab cab cba abc( ) ( )

that is = H Acab ca b and

hQ = -H F H F
1

4
, 30ca ab

b
c ca mn

mn ( )

which recovers theMinkowski energy-momentum tensor (23) [11, 12]. The fact that Wbac=−Wabc implies
that the local conservation ∂aΘ

ba= 0 is a straight consequence of ¶ = 0a
ba .

Of course it is not symmetric, and it does not have to. Recall that the Belinfante tensor Θca is symmetric if
the angularmomentum current  ca

b is conserved [9], whichwould follow fromNoether theorem and the
Lorentz invariance of the Lagrangian. Now the Lagrangian (25) is not Lorentz invariant, as commented above,
because the dielectric tensor Mabcd privileges the time vector ua , which breaks boost invariance. As amatter of
fact the Lagrangian (25) is invariant under the Lorentz subgroup that preserves, ua , and it can be easily checked
that the part ofΘca that is orthogonal toub is indeed symmetric.

3.Minkowski electrodynamics for dispersivemedia

Whendealingwith homogeneous isotropic dispersivemedia, the simple constitutive relations for constant ε and
μmust be replacedwith the convolutions (4) or, in tensor spacetime form, the relations (20) are superseeded by

p h h e h= = +-H M F M m x x u uwith 2 2 31ab abcd
cd

abcd a c d b a b c d2*˜ ˜ ( ) [ ˜ ( ) ˆ ˆ ˜ ( ) ˆ ] ( )[ ] [ ][ ]

where m̃ and ẽ are the Fourier transforms ofμ−1 and ε .
Deriving the conservation equations for some energy-momentum current of the field in theMinkowski way,

as in section 2.1, involves a trial and error gamewith an uncertain outcome. Alternatively we shall go for an
extension of themethod applied in section 2.2, namely (a) proposing a Lagrangian density fromwhich thefield
equations are derived, then (b) obtaining the canonical energy-momentum and angularmomentum currents by
application ofNoether theorem and finally (c) applying the symetrization technique [8, 9, 14] to derive a
Belinfante-Rosenfeld energy-momentum tensor.

The constitutive relations (31) are non-local and so are thefield equations, therefore we postulate the non-
local action integral

ò ò= -S x y M x y F x F yd d
1

4
32abcd

ab cd
4 4 ˜ ( ) ( ) ( ) ( )

whereFab=Ab;a−Aa;b , M xabcd˜ ( ) is skewsymmetric inbothpairs of indices = - = -M x M x M xabcd bacd abdc˜ ( ) ˜ ( ) ˜ ( )
and

- =M x M x 33abcd cdab˜ ( ) ˜ ( ) ( )

which, particularized to the specific form (31), amounts to require that m̃ and ẽ are even functions,

e e- = - =m x m x x xand , 34˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ( )
(Notice that if M xabcd˜ ( ) contained an ‘antisymmetric’ component, namely = - -N x N xabcd cdab˜ ( ) ˜ ( ), it would
not contribute to the action integral (32).)The action (32) also includes the non-dispersive case, i. e.

d- = -M x y M x yabcd abcd 4˜ ( ) ( ), whereMabcd is a constant tensor.

The Lagrangian density is ò= - F x y M y F x ydab
abed

ed
1

4
4( ) ˜ ( ) ( ), or

= = F H H M F
1

4
, with , 35ab

ab ab abed
ed*( ˜ ) ( )

which is obviously non-local because  x( ) depends on thefield derivativesAb;a(x) and, due to the convolution, it
also depends on the valuesAe;d(y) at any other point.

As the derivation of Euler equations from anon-local Lagrangian is not a subject that one commonly founds
in standard textbooks, we present thewhole procedure in the Appendix.We also proof there a generalisation of
Noether theorem that we shall use to obtain the energy-momentum tensor as the current associated to the
invariance of the Lagrangian (35) under spacetime translations. The developments in the appendix are
fundamental to understand the guesswork inwhat follows, but the reader can skip them.

In order to not distracting the reader from themain thread of the paper, we start from theMaxwell
equations (A.13) for the dispersivemedium

¶ =H 0 36a
ab ( )

and guess the two energy-momentum tensors (this is not a blind guess but oriented by the full work in the
Appendix)—see equations (A.19) and (A.28)—

6
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the canonic energy-momentum current

ò òh x x l x x= - + - - 


H A F X M A X
1

2

1

2
d d 37ab ab bc

c
a b

fe d
dnfe

n
a;

0

1

;
;

4
( ) ˜ ( ) ( ) ( )

and the Belinfante-Rosenfeld tensor

ò ò

h

x
x

l x x

x d lx x

Q = - + + +

-
¶
¶

- +

- - + - - -

H F F H F M F M A y M F

yM F X A X F X

F X A X F X y A X F X A X

1

2

1

4

1

2

1

2
1

2
d d

38

ba ca
c
b ab

ed
ed

fe
fed b

d
a fed b a

d
b fedn

dn
a

ndfe
d

a
fe n

b
n
b

fe n
b

n
b

fe
c

c
b

fe n
c

c

; ;

4

0

1
;

; ;
;

;

* * *⎡
⎣

⎤
⎦

˜ ˜ ( ˜ )

˜ ( ) { ( )[ ( ) ( )]

( ) ( ) [ ( ) ( )] [ ( ) ( )] } ( )

[ ] ( )

( ) )

) ) )

whereX= x+ λξ .
Since both expressions depend linearly on the electromagnetic potential, they are gauge dependent. The

potentialAb can be eliminated bymeans of the inverse of the definition Fed= Ad;e− Ae;d ; indeed, by the
Poincaré lemma [15]wehave that

ò t t t= + ¶A x x F x f xd 39b
c

cb b
0

1
( ) ( ) ( ) ( )

where f (x) is an arbitrary function that is relatedwith gauge transformations. Thus, due to the linear
dependence, both energy-momentum tensors split in one part that only depends on Fcd and is gauge
independent, and another one that depends linearly on ∂ef, i. e. a gauge dependent contribution. It can be easily
proved that the gauge parts are conserved, hencewe can take the gauge independent parts as the definitions of
the energy-momentum tensors.

Let us now checkwhether these tensors are locally conserved. To beginwithwe have that, by its construction,

¶ Q = ¶  .b
ab

b
ab

As for the conservation of the canonic tensor, from (37)wehave that

ò òx x l x l x lx¶ = - - ¶ + - +


F H M F x A x
1

4

1

2
d d 1 ,b

ab
cd

cd a
d

dnfe b
b fe n

a;
;

0

1
;

4
˜ ( ) [ ( [ ] ) ( )]

wherewe have used the field equations (36).
Including now the identity

x l x lx
l

l x lx¶ + - + =
¶
¶

+ - +F x A x F x A x1 1 ,b
b fe n

a
fe n

a; ;[ ( [ ] ) ( )] [ ( [ ] ) ( )]

we can perform the integral and arrive at

ò

ò

x x x x

x x x

¶ =- - + - -

=- - + +






F H M F x A x F x A x

F H M F x A x H A

1

4

1

2
d

1

4

1

2
d

1

2

b
ab

cd
cd a

d
dnfe

fe n
a

fe n
a

cd
cd a

d
dnfe

fe n
a

d
dn

n
a

;
;

; ;

;
;

;
;

;

4

4

˜ ( )[ ( ) ( ) ( ) ( )]

˜ ( ) ( ) ( )

The last term vanishes due to thefield equations and, integrating by parts and using the fact that Mdnfe˜ is
skewsymmetric in the first pair of indices, we have that

ò x x x¶ = - + - -


F H F M F x
1

4

1

4
d ,b

ab
cd

cd a
fe

dnfe
dn

a; ;
4

˜ ( ) ( )

that is

x x x¶ = - = - -- - F M F M M M
1

2
where

1

2
40b

ab
fe

fedn
dn
a cdef cdef efcd;*˜ ˜ ( ) [ ˜ ( ) ˜ ( )] ( )

In case that the field equations (36) can be derived from a Lagrangian, then the symmetry relation (33) implies

that -M
fedn˜ vanishes and both energy-momentum tensors, (37) and (38), are locally conserved.

3.1. Real dispersivemedia: absorption and causality
Recall that the symmetry (33) implies that the dielectric andmagnetic functions are even functions. Hence their
Fourier transforms ε andμ are real valued and so is the refractive index n aswell. However causality implies that
the real and imaginary parts of the functions ε andμmust fulfill either theKramers-Krönig relations [16] (in the
optical approximation, i. e. ε andμ only depend on the angular frequencyω) or the Leontovich relations [17, 18]
in the general case. As a consequence, were ε andμ real valuated, they should be constant and themediumwould
be non-dispersive.
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For a real dispersivemedium ε andμ are not constant, therefore the symmetry relation (33) is not fulfilled
and the right hand side of (40) does not vanish.However, including (31), we have

p h h e h= +-
-

- -M m u u2 2 ,
fedn f d n e f e d n2˜ ( ) [ ˜ ˆ ˆ ˜ ˆ ][ ] [ ][ ]

with =-
- -

m y
m y m y

2
˜ ( ) ˜ ( ) ˜ ( )

and similarly for e- y˜ ( ), andusing (16) to separate the electric andmagnetic parts,
we canwrite (40) as

p e¶ = --
- - E E B m B2b

ab
d

d a
d

d a2 ; ;* *( ) [ (˜ ) ( ˜ )]
Now, as the Fourier transforms of -m x˜ ( ) and e- x˜ ( ) are connected to  m km ( ) and e km ( ), i.e. the absorptive
parts of themagnetic and dielectric functions, we have that the failure of local conservation of energy-
momentum in a realmedium is due to absorption.

3.2. Planewave solutions
These are particular solutions of theMaxwell equations in the form

= + =F f e f f, with 0cd cd
ik x

cd dc
b

b

that, substituted in the field equation (36), yields

=M k f k 0 41abcd
cd b( ) ( )

whereMabcd(k) is the Fourier transformof M kabcd˜ ( ). Now as Fcd can be derived from an electromagnetic
potentialAb, itmust fulfill thefirst pair ofMaxwell equationswhich for planewaves reads
kbfcd+ kcfdb+ kdfbc= 0 andwhose general solution is

= -f f k f k 42cd c d d c ( )

where fc is thewave polarization vector and is determined apart from the addition of amultiple of kc .
Substituting this into equation (41), we arrive at

=M k k k f 0 43abcd
b d c( ) ( )

which is a linear homogeneous system and admits non-trivial solutions for the polarization vector if, and only if,

=M k k kdet 0.abcd
b d[ ( ) ]

We shall assume that the dielectric tensor M abcd˜ has the form (31), hence its Fourier transform is

h h e h= +M k m k k u u2 44abcd a c d b a b c d( ) ( ) ˆ ˆ ( ) ˆ ( )[ ] [ ][ ]

If themedium is spatially isotropic, the functions ε(k) and m(k)= μ−1(k) depend on thewave vector k b through
the scalarsω=− k bub and q

2≔ k bkb+ ω2 , wherewe have taken

w= + = =k u q uq q q q, with 1, 0a a a a
a

a
aˆ ˆ ˆ ˆ

As the polarization is determined up to the addition of amultiple of k c, we can choose it so that

y= + = =^ ^ ^f f f u fq qwith 0.c c c c c c cˆ ˆ

Substituting this in equation (43), we arrive at

w y- = =^q n f 0, 0,
a

2 2 2( )

where w em=n q,( ) is the refractive index.
Hence there are non-trivial solutions if, and only if,

w- = = =q n f k f u0 and 0 45b
b

b
b2 2 2 ( )

Maxwell equations thus imply that:

(a) thewaves are polarized transversely to the plane spanned by k b and ub and

(b) the phase velocity satisfies the dispersion relation q= ω n(q,ω) .

3.3. The general solution offield equations
As it is well known [19, 20], the initial data problem for a non-local PDS like theMaxwell equations (36) is not as
simple as theCauchy problem for a partial differential systemoffirst order, as the field equations for non-
dispersivemedia.We shall now see that the nature of the initial data problem for (36) depends onwhether the
number of real roots of the dispersion relations (45) isfinite or not.

AsMaxwell equations (13) and (36) are linear and they involve a convolution, the Fourier transform is a good
tool to solve them.Wewrite
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òp= -F x k f k e2 d 46cd cd
ik x2 a

a( ) ( ) ( ) ( )

that, substituted inMaxwell equations, yields

= - =f f k f k M k k k fand 0 47cd c d d c
abcd

b d c( ) ( )

which, as discussed abovemeans that fc vanishes unless the dispersion relation (45) is fulfilled, i. e.

d w w d w w= - + ++ -f k f k q n q f k q n q, ,cd cd cd
( ) ( ) [ ( )] ( ) [ ( )]

or

å åd w w d w w= - + -
a

a
a

b

b
bf k f fq q q q , 48cd cd cd

( ) ( ) [ ( )] ( ) [ ( )] ( )

whereωα (resp.ωβ) are the positive (resp. negative) real roots of the dispersion relation (45).
The arbitrary coefficients af q

cd
( ) and bf q

cd
( ) depend on the initial data. Indeed, the n-th time derivative of

(46) at x a= (0, x) yields

ò å åp w w¶ = - + -
a

a
a

b

b
b

-F e f i f ix q q q0, 2 d ,t
n

cd
i

cd
n

cd
nq x2 ⎡

⎣
⎢

⎤

⎦
⎥( ) ( ) ( )( ) ( )( )·

where (48) has been used to perform the integration onω, whence it follows that

òå åw w
p

+ = ¶
a

a
a

b

b
b

-f f
i

e Fq q x x
2

d 0, 49
cd

n
cd

n
n

i
t
n

cd
q x( ) ( ) ( ) ( )·

Sincewe have asmany unknowns af
cd
and bf

cd
as the number of real roots of the dispersion relation (45), this is the

number of initial (t= 0) time derivatives of Fcd(t, x) that are needed at least to determine a solution. If the
number of real roots isN<∞ , then the giving of Ad(x, 0) and its time derivatives up to the orderN− 1
determines the solution of the system; otherwise the problemof initial data requires further study.

3.4. The energy-momentum tensor for awave packet
Aiming to compare the energy-momentum tensor obtained herewith other proposals advanced in the
literature, e. g. [21, 22] and [23], we shall particularize the expression (38) of the Belinfante tensor to thewave
packet

j w= = + = +F x F x e F x k x k uqe cos , 50cd cd
ik x

cd a
a

cd
a a aa

a( ) ( ( ) ) ∣ ( )∣ ( ) ( )

where F xcd ( ) is a ‘slowly’ varying complex amplitude (if comparedwith the rapidly oscillating carrier eik xc
c ),

F xcd∣ ( )∣ is themodulus of each component andjcd is the phase. Furthermore, we shall restrict to the optical
approximation, that is ε andμ only depend on the frequence ω=− uak

a , therefore we shall take

p d t t h h e t h= = +-M y m m m u uy2 , with 2 , 51abcd abcd abcd a c d b a b c d1 2 3˜ ( ) ( ) ( ) ˜ ( ) ˜ ˜ ( ) ˆ ˆ ˜ ( ) ˆ ( )[ ] [ ][ ]

τ=− y aua and ya= y a− τua is the spatial part of y a .
Using this, the displacement tensor (31) yields

t= »H x H x e H x m F xe with 52ca ca ik x ca caed
ed

b
b( ) ( ( ) ) ( ) ˜ ( ) ( ) ( )

where ≈ means that the ‘slow variation’ approximation has been included to evaluate the convolution, that is

òp t t t t- »wt- +m F x u e m F x e2 d .caed
ed

b b ik x i caed
ed

ik x1 2 b
b

b
b( ) ˜ ( ) ( ) ˜ ( ) ( )

Using (52), theMaxwell equations become

» + + =D H D F D F D F0 and 0c
ca

b cd c db d bc

where Db= ∂b+ ikb . For slowly varying amplitudes they reduce to theMaxwell equations for a planewave and
we canwrite (see section 3.2)

w
» - - »F E k E k m k E k

1
and 0 53cd c d d c

caed
c e d( ) ( )

where =E F uc cd
d is the electric field andmcaed(ω) is the Fourier transformof tmcaed˜ ( ). Similarly as in

section 3.2, the second equation implies that

w e w m w= =E k q0 and 54c
c 2 2 ( ) ( ) ( )
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Moreover, from (50) and (53) it follows that the electromagnetic potential is

w
a= » - +A x A x e A

i
E ke with , 55b b

ik x
c c c

c
c( ) ( ( ) ) ( )

where a x( ) is an arbitrary gauge function.
If we now substitute thewave packet (50) in the Belinfante tensor expression (38), wefind that:

• The evaluation of the convolution products in thefirst line yields

w w» » M F m F e M A m D A ee , eedh b
h
a edh b

h
a ik x edh b a

h
edh b a

h
ik x;c

c
c

c
* *˜ ( ( ) ) ˜ ( ( ) )[ ] [ ] ( ) ( )

w» - ¢y M F i D F mand eb edhf
hf

a a
hf

edhf;*( ˜ ) ( ( ))

where a ‘prime’means derivative with respect toω. Thus every term in thefirst line of (38) has the form

F Y = F Y = F Y + F Y  e e ee e
1

2
e 56ik x ik x ik x2c

c
c

c
c

c *( ) ( ) ( ) ( )

and consists of a slowly varying part plus a rapidly oscillating one. Taking the average over a period of the
carrier we obtain

áF Yñ = F Y1

2
e .*( )

This is the physicallymeaningful quantity as far as the carrier period lastsmuch less than a physical
measurement.

• To evaluate the integral in the second and third lines in (38)we realize that each term contains a group of the
kind of (56) and a Fourier integral of tmhfed˜ ( ).We shall use the slow variation approximation and take the
mean over a carrier period.

A tedious calculation leads to

háQ ñ» - - +

+ - - ¢

 H F H F H F F m F

i m k F A F A u k F m F

1

4
e 2

1

2
1

2

ba ca
c

b c a
c

b cd
cd

ab
ed

edh b
h

a

edh a b
ed h ed h

a b
ed

edhf
hf

* * * *

* * *

⎡
⎣

( )

[ ] [ ]

( )

which, using the relations (53- 55), can be simplified to

háQ ñ » - - ¢ H F H F u k F m F
1

2
e

1

4

1

4
57ba ca

c
b cd

cd
ab a b

ed
edhf

hf* * *⎡
⎣

⎤
⎦

( )

From the latter we easily obtain that the energy density in themedium rest frame ( d=ua a
4 ) is

e we w= áQ ñ » + ¢ + - ¢  m mE E B B
1

4
e ,44 * *[( ) · ( ) · ]

where = E EE E a
a* *· , or

ew
w

m
m

mw
w

» +  E E H H
1

4
e

d

d

d

d
58*

*
*⎡

⎣⎢
⎤
⎦⎥

( ) · ( ) · ( )

which reproduces previous results in the literature—see [21, 22] and [23].
Themomentumdensity in themedium rest frame is Gi= 〈Θi4〉 and, in an obvious vector notation, we

obtain from (57) that

e e» ´ + ¢ - ¢ mG E B E E B B q
1

2
e

1

2
* * *⎡

⎣
⎤
⎦

( · · )

Now, from theMaxwell equations (53) it follows that

w
em´ = =E B

E E
q B B E Eand*
*

* *
· · ·

which substituted above yields

wm
emw
w

» ´G E B
1

4
e

1 d

d
59

2

*⎡
⎣⎢

⎤
⎦⎥

( ) ( )
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The Poynting vector is

= áQ ñ » ´S E H
1

2
ei i4 * *[ ]

and theMaxwell stress tensor is

d= -áQ ñ » + - +T E D H B D E H B
1

2
e

1

2
ij ij i j i j ij* * * *⎡

⎣
⎤
⎦

( · · )

4. Conclusion

Wehave tackled the derivation of an energy-momentum tensor for electromagnetic field in a linear, isotropic,
homogeneous dispersivemedium.Our set up is based on a quadratic Lagrangian for the electromagnetic field.
Due to dispersivity this Lagrangianmust be non-local, i. e. it depends on the field at several different points. In
the non-dispersive limit, the Lagrangian becomes local andfirst order, andMinkowski theory [2] is recovered.

Homogeneity implies that the Lagrangian is invariant by spacetime translations. Hence the conservation of
some energy-momentum currentmust follow from an eventual Noether theorem for non-local Lagrangians. As
we are aware that this subject is not currently found in textbooks, we have devoted the appendix to outline the
derivation of both the field Euler–Lagrange equations andNoether theorem for a non-local Lagrangian.

As a result we have obtained an explicit expression for the canonical energy-momentum tensor  b
a which

depends quadratically and non-locally on the Faraday tensor and its first order derivatives. In the non-dispersive
limit this tensor does not coincide with theMinkowski energy-momentum tensor; the difference is the
4-divergence of an antisymmetric tensor of order three.We have derived this correction by applying the
Belinfante-Rosenfeld technique[9] and obtained an energy-momentum tensor Qb

a which in the non-
dispersive limit does reduce toMinkowski tensor. In general the tensor Θba is not symmetric, asMinkowski
tensor is not either. This is due to the fact that the angularmomentum current is not conserved because the
Lagrangian is not Lorentz invariant, as expected because the rest reference systemof themedium is a
privileged one.

Itmust be said that our Lagrangianmodel has the disadvantage that its scope is restricted to non-absorptive
media. Indeed, the action (32) implies the symmetry conditions (33) and (34), whence it follows that ε(ω, k) is
real for realω and k, and itmust be recalled that the absorptive behavior of amedium is connectedwith the
imaginary part of its dielectric function ε.Moreover, if this imaginary part vanishes, it follows fromKramers-
Krönig relations that ε andμmust be constant. Therefore, if the Lagrangianmodel does not violate causality,
then itmust be non-dispersive, i.e. local.

If we give up the Lagrangianmodel and base the description of the causal non-dispersivemediumon
Maxwell equations, we can stiil propose (37) and (38) as two possible definitions for energy-momentum
currents, respectively the canonical and the Belinfante-Rosenfeld tensors. Evaluating then their 4-divergences
provided that thefield equations (36) hold, we thanfind that they are not locally conserved and this is due to the
absorptive components of the dielectric andmagnetic functions, i. e. em( ) and mm( ).

We have then specialized our Belinfante-Rosenfeld energy-momentum tensor to the electromagnetic field of
slowly varying amplitude over a rapidly oscillating carrier wave, for amedium in the optical approximation—
that is ε andμ only depend on the frequencyω. Taking the average over one period of the carrier and using the
slowmotion approximationwe have evaluated the energy andmomentumdensities, the Poynting vector and
theMaxwell stress tensor in the rest reference frame. Energy density is the only of these quantities that are given
in some textbooks adn our result agrees with them [21–23].
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Appendix: Non-local Lagrangianfield theories

Consider the action integral

ò f= a


S x x, d A.1
4

([ ] ) ( )

where the Lagrangian density  depends on all the valuesfα(y) of thefield variables at points y other than x. This
is whywe refer to it as non-local and the Lagrangian density (35) is an example.

The variation of the action is

ò òd
d f
df

df=
a

a
a

 
S x y

x

y
yd d

,
4 4

([ ] )
( )

( )

The requirement that this variation vanishes for any δfα(y)with compact support leads to the Euler–Lagrange
equation

ò
d f
df

P º L = L =a a a

a

a




y x x y x y

x

y
d , 0, where ,

,
A.2

4
( ) ( ) ( ) ([ ] )

( )
( )

Noether theorem
Consider the infinitesimal transformation

d f f df¢ = + ¢ = +a a ax x x x x x, . A.3a a a ( ) ( ) ( ) ( )

Let  be a spacetime volume and ¢ its transformed according to (A.3) and define

ò òf fD º ¢ ¢ ¢ -a a
¢

  
 

S x x x x, d , d A.4( ) ([ ] ) ([ ] ) ( )

Replacingwith x the dummy variable ¢x in thefirst termon the right hand sidewe have that

ò òf fD = ¢ -a a
¢

  
 

S x x x x, d , d A.5( ) ([ ] ) ([ ] ) ( )

As depicted infigure 1, the volumes  and ¢ differ very little: they share a large commonpart 0 and differ
in an infinitesimal part near the boundary ¶0

The volume element near the boundary can bewritten as d4x= dΣa δx
a, where dΣa is the hypersurface

element on the boundary. Hence equation (A.5) becomes

ò òf f dD = ¢ - + Sa a

¶
   

 
S x x x x, , d d , A.6a

a
4( ) [ ([ ] ) ([ ] )] ( )

where the variation of the Lagrangian density is

òf f df¢ - = La a
a

a 


x x y x y y, , d , ,
4

([ ] ) ([ ] ) ( ) ( )

with Λα(x, y) defined in (A.2).

Figure 1.The variation of the spacetime domain  .
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Using this, introducing the variable ξ= y− x and applyingGauss theorem, equation (A.6) becomes

ò òd x x df xD = ¶ + L + +a
a 

 
S x x x x xd d ,b

b
4

⎡
⎣

⎤
⎦

( ) ( ) ( ) ( )

and, including (A.2), we arrive at

ò ò

ò

df d

x x df x x df

D - P = ¶

+ L + + - L -

a
a

a
a

a
a

 
 



S x x x x x

x x x x x x

d d

d , , A.7

b
b

4 }
( ) ( ) ( ) { ( )

[ ( ) ( ) ( ) ( )] ( )

Nowweuse the identity

ò

ò

x df x x df

l
l

l x lx df lx

l x l x lx df lx

L + + - L - =

= L + - + +

= ¶ L + - + +

a
a

a
a

a
a

a
a

x x x x x x

x x x

x x x

, ,

d
d

d
1 ,

d 1 ,b
b

0

1

0

1

( ) ( ) ( ) ( )

{ ( [ ] ) ( )}

{ ( [ ] ) ( )]}

which, combinedwith (A.7), leads to

ò dfD + ¶ - P =a
a


S x J x xd 0, A.8b

b( ) [ ( ) ( )] ( )

where

ò òd x x l l x lx df lx= - - L + - + +a
a


J x x x xd d 1 , A.9b b b

0

1

4
( [ ] ) ( ) ( )

Then the local conservation of the current (A.9) [Noether theorem]

¶ =J 0 A.10b
b ( )

follows from the identity (A.8), provided that the Lagrangian is invariant under the transformation (A.3) andfα

is a solution of the Euler equations (A.2).

Maxwellfield in dispersivemedia
Let us apply the above results to the Lagrangian (35)

= = A x H x H M A
1

2
, where 2 . A.11b a

ab ab abcd
d c; ;*( ) ( ) ˜ ( )

(thefield that we had generically written asfα has been replaced byAb).

The field equations.. The functional derivative (A.2) is

dL = - + -x y x y H x A x M x y,
1

2
, A.12b

a
ab

e a c
aecb

; ; ;( ) ( ) ( ) ( ) ˜ ( ) ( )

where

d
d

d d
d
d

= - = -
A x

A y
x y

H x

A y
M x yand 2e a

b
e
b

a

ae

b
c

aecb;
; ;

( )
( )

( ) ( )
( )

˜ ( )

have been included. As a consequence, the Euler equation (A.2) is

P º -¶ =y H y 0 A.13b
a

ab( ) ( ) ( )

Poincaré transformations. Noether theorem.. Using (A.12) and the symmetry condition (33), the integrand of
(A.9) becomes

l x lx d lx

d x l x l x x d lx

L + - + + =

- + - + + - +

x x A x

H x F x M A x

1 ,

1

2
1 1

f
f

a
af

ae c
cfae

f; ;

( [ ] ) ( )

{ ( ) ( [ ] ) ( [ ] ) ˜ ( )} ( )

and therefore

ò òd d x x l l x x d lx= - - + + - +


J x H x A x F x M A x
1

2

1

2
d d 1 A.14b b bf

f
b

ae c
cfae

f
0

1

;4
( ) ( ) ( [ ] ) ˜ ( ) ( ) ( )
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Infinitesimal Poincaré transformations act on coordinates as

d d e w w w¢ = + = + + =x x x x x, , 0, A.15a a a a a
b

a b
ab ba ( )

where ε a and w b
a are constants and w h w=ab ac b

c . On its turn thefieldAa transforms as a covariant vector,

w¢ ¢ = -A x A x A x , A.16a a a
b

b( ) ( ) ( ) ( )

and therefore

d w d¢ - = - -A x A x A x A x A x x . A.17a a a a
b

b a c
c

;( ) ≔ ( ) ( ) ( ) ( ) ( )

where (A.3) and (A.6) have been included.
Then, using (A.15) and (A.17), we easily obtain that the current (A.14) can bewritten as

e w= + J
1

2
, A.18b a

a
b ac

ac
b ( )

where

ò òd x x l l x x lx= - + - + - + 


H A F x M A x
1

2

1

2
d d 1 , A.19a

b
a
b bc

c a
b

ce d
dfce

f a;
0

1

; ;
4

( [ ] ) ˜ ( ) ( ) ( )

= +  x2 A.20ac
b

c a
b

ac
b ( )[ ]

and

ò òx x l l x x

h lx lx lx

= + + -

´ + + +




H A F x M

A x A x

d d 1

A.21

ac
b

c
b

a
b

fe d
dnfe

n a c a n c

0

1

;

;

4
( [ ] ) ˜ ( )

{ ( ) ( )} ( )

[ ]

[ ] [ ]

In the non-dispersive case x d xµMdnfe˜ ( ) ( ) and equations (A.19) and (A.21) become

d= - + =  H A H Aand 2 A.22a
b

a
b bc

c a ac
b

c
b

a; ( )[ ]

A3: The Belinfante-Rosenfeld tensor. Provided that the Lagrangian is Poincaré invariant, the current (A.18) is
conserved and, as the infinitesimal parameters ε a andω ac are independent of each other, both components are
separately conserved,

¶ = ¶ = 0 and 0b a
b

b ac
b

which, including (A.20), amount to

¶ = = - ¶  0 and
1

2
A.23b a

b
ac b ac

b ( )[ ]

As a consequence, if the Lagrangian is Poincaré invariant and the spin current vanishes, ac is symmetric,
otherwise it need not be.

In the case of our Lagrangian (A.11), the energy-momentum tensor  ab (A.19) is not symmetric; however
there is a technique—see e.g. [9] and [14] to quote a few—that allows to construct the Belinfante-Rosenfeld
energy-momentum tensorΘcawhich—provided that  is Poincaré invariant— is symmetric and in some sense
‘equivalent’ to  ca because

(a) the total energy-momentum contained in a hyperplane t= constant is the same for both tensors

ò òQ = t tx x x xd , d ,b b
4 4( ) ( )

(b) the 4-divergences are equal too, ¶ Q = ¶ = 0a b
a

a b
a and the current Qc

a is also conserved,

(c) and the new orbital angular momentum current Qx2 a c
b

[ ] and the new spin current S =ca
b

- Q x2ca
b

a c
b

[ ] are separately conserved.

This is achieved by defining

Q = + ¶ = -   , where A.24ca ca
b

bac bac abc ( )
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and

= + -   
1

2
, A.25bac bac bca acb( ) ( )

To avoid ambiguity one usually refers to  ca as the canonical energy-momentum tensor and toΘca as the
Belinfante-Rosenfeld tensor.

In our present case, substituting (A.21) in (A.25) leads to

ò òx l l x x l x x lx

d h x d h x d h x lx

= + + - +

+ + - +




H A F x M A x

A x

1

2

1

2
d d 1 2

A.26

bac ba c
fe d

dnfe c b
n
a

n
b a m c

n
b c m a

n
a c m b

m

0

1

; ;4
( [ ] ) ˜ ( ){ ( )

( ) ( )} ( )

[ ]

[ ] [ ] [ ]

When calculating ¶ b bac the combination ξ b∂bwill occur in several instances like

x lx x
l

lx x¶ Y + =
¶
¶

Y +x x, , ,b
b ( ) ( )

whereΨ(x+ λξ, ξ) is a product of Ffe(x+ λξ− ξ) times eitherAm(x+ λξ) or its derivative. This permits to
perform some integrals onλ like

ò

ò ò

l x lx x x x

l l x lx x x l lx x

¶ Y + = Y + - Y -

¶ Y + = Y + - Y +

x x x x x

x x x x

d , , ,

d , , d ,

b
b

b
b

0

1

0

1

0

1

( ) ( ) ( )

( ) ( ) ( )

Hence, from (A.26) and after a little algebra, it follows that

ò

ò ò

x x x x d x

x l x d h x h x x

x x lx x x

¶ = + + + +

+ ´ + ¶ -

- - - ¶ -






H A F M A x A x

M F X A X

F X A X F X A X

1

2

1

2
d

1

2
d d

, A.27

b
bac ba

b
c

fe d
dnfe c

n
a

n
c a

d
dnfe

n
b a m c c m a

b fe m

c
fe n

a c a
b fe n

b

; ;
;

0

1

;

; ;

4

4

˜ ( )[ ( ) ( )]

˜ ( ) { ( ) [ ( ) ( )]

( ) ( ) [ ( ) ( )]} ( )

[ ]

[ ] ]

with X= x+ λξ , which substituted in (A.24) leads to

ò ò

h

x x
x

l x x

x d lx x

Q = - + + +

-
¶
¶

- +

- - + - + -

H F F H F M F M A y M F

M F X A X F X

F X A X F X y A X F X A X

1

2

1

4

1

2

1

2
1

2
d d

A.28

ba ca
c
b ab

ed
ed

fe
fed b

d
a fed b a

d
b fedn

dn
a

ndfe
d

a
fe n

b
n
b

fe n
b

n
b

fe
c

c
b

fe n
c

c

; ;

4

0

1
;

; ;
;

;

* * *⎡
⎣

⎤
⎦

˜ ˜ ( ˜ )

˜ ( ) { ( )[ ( ) ( )]

( ) ( ) [ ( ) ( )] [ ( ) ( )] } ( )

[ ] ( )

( ) )

) ) )

whereX= x+ λξ . For non-dispersivemedia Mndfe˜ is constant and both tensors,  ba andΘba, reduce to the
already known (27) and (30), respectively.
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