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Abstract: We found statistical evidence for a mismatch between the (global) spatial curva-
ture parameter K in the geodesic equation for incoming photons and the corresponding
parameter in the Friedmann equation that determines the time evolution of the background
spacetime and its perturbations. The mismatch, hereafter referred to as ‘curvature slip’, was
especially evident when the SH0ES prior of the current expansion rate was assumed. This
result is based on joint analyses of cosmic microwave background (CMB) observations with
the PLANCK satellite (P18), the first year results of the Dark Energy Survey (DES), baryonic
oscillation (BAO) data, and at a lower level of significance, the Pantheon SNIa (SN) catalog
as well. For example, the betting odds against the null hypothesis were greater than 107:1,
1400:1 and 1000:1 when P18+SH0ES, P18+DES+SH0ES and P18+BAO+SH0ES were con-
sidered, respectively. Datasets involving SNIa weakened this curvature slip considerably.
Notably, even when the SH0ES prior was not imposed, the betting odds for the rejection
of the null hypothesis were 70:1 and 160:1 in cases where P18+DES and P18+BAO were
considered. When the SH0ES prior was imposed, the global fit of the modified model (that
allows for a nonvanishing ‘curvature slip’) strongly outperformed that of ΛCDM, being
manifested by significant deviance information criterion (DIC) gains ranging between 7 and
23, depending on the dataset combination considered. Even in comparison with KΛCDM,
the proposed model resulted in significant, albeit smaller, DIC gains when SN data were
excluded. Our finding could possibly be interpreted as an inherent inconsistency between
the (idealized) maximally symmetric nature of the FRW metric and the dynamical evolution
of the GR-based homogeneous and isotropic ΛCDM models. As such, this implies that
there is apparent tension between the metric curvature and the curvature-like term in the
time evolution of the redshift.

Keywords: cosmology; spatial curvature; curvature slip; anomaly

1. Introduction

On the largest observable scales, the Universe appears to be extremely isotropic around
us. Augmented by the Cosmological Principle, this (‘local’) isotropy is endowed to every
observer at rest in the cosmic microwave background (CMB) frame. The corresponding
spacetime is uniquely described by the Friedmann–Robertson–Walker (FRW) metric. Space
in the latter has either closed, flat or open geometry. If, in addition, it is assumed that
gravitation is governed by general relativity (GR), then this background spacetime is
shaped by its homogeneous and isotropic matter content. Incoming photons propagating
in curved space trace its global geometry, and observational determination of various
(angular diameter, luminosity distance, etc.) distance-redshift relations enable inference of
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the matter content of the Universe. The CMB anisotropy and polarization depend on both
the matter content and geometry.

The currently favored cosmological model, ΛCDM, is spatially flat, and its energy
content consists of ∼69% dark energy (DE), 31% non-relativistic (NR) matter—[5% baryons
and 26% cold dark matter (CDM)]—as well as a residual amount ≲ 0.1% CMB radiation
and relativistic (and possibly also NR) neutrinos. The consensus ‘vanilla’ ΛCDM model,
characterized by only six parameters, emerged from joint analyses of various cosmological
datasets that include mainly CMB anisotropy and polarization, galaxy clustering and
galaxy shear maps, type Ia supernovae luminosity distance measurements and baryonic
oscillations (BAOs). However, these models are not fully consistent with each other.
Perhaps the most glaring example is the disparity between the Planck satellite CMB data,
which favor a spatially closed cosmological model at ∼3σ statistical significance on the one
hand, and BAO data, which strongly favor flat space on the other hand (e.g., [1–4]). Their
combination considerably weakens the case for a closed Universe (e.g., [5]), resulting in the
best fit ‘model of choice’: the flat ΛCDM model.

A spatially non-flat Universe would seem to be unnatural [6] (i.e., fine-tuned) in either
case of a curvature radius much larger or much smaller than the present horizon size of the
observable Universe. For example, if the initial conditions of the Universe are set to the
Grand Unified Theories (GUT) scale, then the curvature radius must have been fine-tuned
at a precision level of one part in a trillion so as to be either a quadrillion times larger or
smaller than the horizon size of the observable Universe at the present time. This is the
consensus understanding of the ‘flatness problem’ [6], although there are counterarguments
that lend some support to the claim that this is not really problematic for the original Hot
Big Bang model [7–12]. This, as well as the ‘horizon problem’, have provided the main
motivation for the inflationary scenario. Observationally, whether space is flat or closed
is still an unsettled issue (e.g., [1,13–33]), but the far-reaching implications of a closed
Universe cannot be overstated (e.g., [3]).

From the cosmic inflation perspective (e.g., [34]), a spatially flat Universe is strongly
favored (although open- (e.g., [35–38]) and closed-inflation (e.g., [39]) models were pro-
posed). If so, then the PLANCK dataset stands out and is especially at odds with the BAO
dataset in favoring a non-flat Universe. The challenge is that only a probe of an extremely
large scales can result in a credible inference of (or bounds on) the curvature radius. Per-
haps the most precise and well-understood cosmological probe is measurements of CMB
anisotropy and polarization, and thus only satellite-based measurements are capable of
meaningfully constraining the curvature radius. At present, the Planck database is most
optimally suited for this. While joint analyses of the current CMB+BAO datasets tilt the
balance toward a spatially flat space, it is arguably problematic to put too much weight on
this conclusion, mainly because the current CMB+BAO datasets are internally inconsistent
(e.g., [1]). Clearly, global geometry is a critical property of the Universe; whereas values of
the other basic parameters of the cosmological standard model (SM) affect the (temporal)
evolution of physical processes, only the curvature and DE parameters determine its global
geometry and future evolution.

In this paper, we explore certain hitherto unexplored extensions to the time redshift
t(z), the relation of the standard FRW-based treatment, and the r(t) relation that, in general,
departs from the geodesic equation. Basically, we allow for t(z) to differ from the relation
obtained from the Friedmann equation (i.e., it does not depend solely on the matter content
of the Universe). In other words, we employ t(z) relations in our analysis that, under
the assumption of isotropy and homogeneity, represent a clear violation of local energy-
momentum conservation (i.e., we basically abandon the GR-based framework). Energy-
momentum non-conservation is a generic feature of various theories of gravitation [40],
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the most common (and well known) of which are scalar-tensor theories. Other examples
are Rastall gravity [41], unimodular gravity [42,43], and other theories [44–47]. Another
possibility is that the degree of large-scale isotropy of the Universe is inconsistent [48] with
the underlying assumption characterizing the FRW spacetime. Perhaps unexpectedly, our
analysis results point toward phenomenological parameters in the r(z) relation that depart
by up to ∼4σ from their canonical values, depending on the dataset combination used and
the assumed priors. This result adds to other anomalies or tensions that have been long
recognized to afflict the cosmological SM (e.g., the ‘lensing anomaly’), the σ8/S8 tension of
the CMB with large scale clustering probes, and the ‘Hubble tension’ (e.g., [2,31]).

We employ the deviance information criterion (DIC) in assessing the relative like-
lihood of each proposed model in comparison with both the standard flat ΛCDM and
its ‘curved’ extension KΛCDM models. We find that depending on the specific dataset
combinations, the proposed models can be mildly or even strongly favored over ΛCDM,
thereby substantiating our finding that the t(z) relation does not depend solely on the
matter content from a global parameter analysis perspective.

This paper is organized as follows. In Section 2, we summarize a few basic results of
the SM for reference in future sections and for setting the notation. In Section 3, we describe
our proposed modifications, model comparison analysis and results. Our conclusions are
discussed in Section 4, and our work is summarized in Section 5. Throughout, we adopt
units such that the speed of light, where c ≡ 1.

2. The Benchmark Standard Model

On the largest observable scales, the Universe has been found to be highly isotropic to
within one part in 105. The implication of this observation is greatly widened by adoption
of the Cosmological Principle, essentially stating that the Universe appears isotropic (and
therefore uniform) to every ‘fundamental’ observer. The FRW metric of such a (maximally
symmetric) space is expressed in terms of the line element

ds2 = −dt2 + a2
[ dr2

1 − Kr2 + r2(dθ2 + sin2 θdϕ2)
]

, (1)

where a = a(t) is the scale factor, K is the spatial curvature parameter, and (with no loss of
generality) the origin of spatial coordinates is set to be at the observer. Incoming radial null
geodesics in this spacetime integrate to

r(η) =















sin[
√

K(η0−η)]√
K

; K > 0

η0 − η ; K = 0
sinh[

√
−K(η0−η)]√
−K

; K < 0,

(2)

where η ≡
∫

dt
a(t)

is the conformal time and η0 is its present value.
In the GR-based SM, use of the FRW metric in the field equations for the adiabatically

evolving Universe can be summarized in a single Friedmann equation:

H2 +
K

a2 =
8πGρ(a)

3
, (3)

where H ≡ ȧ/a, ȧ ≡ da
dt , G is the Universal gravitational constant, and ρ is the total energy

density. Assuming that the various contributions to the cosmic energy budget do not
mutually interact, then the continuity equation applied to the ith species is

ρ̇i + 3(1 + wi)Hρi = 0, (4)
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where wi is the equation of state (EOS) parameter of the ith species, which integrates into

ρi(a) = ρi,0 exp
[

−
∫

3(1 + wi(a))
da

a

]

. (5)

In addition, if it is assumed that wi(a) = wi is fixed (an assumption that breaks down in the
case of neutrinos when they turn NR once the Universe cools down below a temperature
equivalent to their rest masses), an assumption that is not made in actual computations,
then ρia = ρi,0a−3(1+wi), and the total energy density is

ρ(a) = ∑
i

ρi,0a−3(1+wi). (6)

Substituting Equation (6) into Equation (3) and integration yield the basic expression
for t(a) or, equivalently, η(z), where a ≡ (1 + z)−1. Use of the latter expressions in
Equation (2) results in the following r(z) relation:

H0r(z) =















sin(
√−ΩkD)√−Ωk

; Ωk < 0, K > 0

D ; Ωk = 0, K = 0
sinh(

√
ΩkD)√

Ωk
; Ωk > 0, K < 0,

(7)

where Ωk ≡ −K/H2
0 and

D(z; {Ωi,0}) ≡ H0(η0 − η) =
∫ z

0

dz′

E(z′)
,

E2(z′) ≡ ∑
i

Ωi,0(1 + z′)3(1+wi). (8)

Here, {Ωi,0} collectively denotes the various Ωi,0, which are the respective values of
the energy densities at present, expressed in critical density units, and ρc ≡ 3H2

0 /(8πG),
including Ωk with an effective EOS wk,e f f = −1/3. Specifically, in a Universe containing
only photons, dust, DE, and curvature, we have

E(z) ≡
√

Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ. (9)

It should be noted that Ωk controls both the dynamics of cosmic evolution (via the
Friedmann equation, shown in Equation (3), or equivalently Equation (9)) and the kinematics

(or perhaps more precisely referred to as the ‘optics’) of incoming photons (via the geodesic
equation, shown in Equation (2)). It is also important to keep in mind that whereas the
optics only depends on the form of the metric, essentially reflecting the spatial symmetry,
the dynamics depends on the underlying theory of gravitation (which relates the geometry
to the underlying energy-momentum content) as well.

3. Modified Curvature SM

In the present work, we explore the implications of phenomenologically modifying
the time-redshift t(z) and distance-time r(t) relations on cosmological scales (on which the
assumption of homogeneity and isotropy is still assumed). The SM t(z) relation follows
from the Friedmann equation (i.e., local energy-momentum conservation). In addition,
the r(t) relation describes the trajectories of incoming radiation along null geodesics. The
latter describes the kinematics of test particles under the premise of energy-momentum
conservation. Combining r(t) and t(z) yields the observable r(z) relation.
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Here, we replace Equation (7) with

H0r(z) =















sin(
√−ωkD)√−ωk

; ωk < 0

D ; ωk = 0
sinh(

√
ωkD)√

ωk
; ωk > 0

(10)

where we introduce a new parameter ωk while leaving D (Equation (8)) unchanged. In
general, we do not require ωk to be equal to Ωk in Equations (9) and (10) and define
κ ≡ ωk − Ωk as a derived parameter in our modified models. Clearly, nested within
these models are KΛCDM, if indeed ωk = Ωk, and flat ΛCDM in the particular case
where ωk = Ωk = 0. In a similar vein to the addition of the cosmological constant to
the SM as discussed above, we introduce the free dimensionless parameter κ coupled
to a specific redshift dependence (as shown in Equations (9) and (10)) but with neither
energetic interpretation nor any perturbation imprints (i.e., it does not cluster), much like
DE (assuming it is a cosmological constant). Obviously, the likelihood of κ ̸= 0 will be
determined by contrasting the modified model with the various datasets.

Whereas, by their very nature, cosmological observables typically probe Equation (10),
the Sandage–Loeb effect (also known as the redshift drift effect [49–51]) is sensitive to dz

dt and
is therefore directly dependent on the Friedmann equation (Equation (9)). While Equation
(10) depends on both Ωk and ωk (as well as Ωm), Equation (9) depends solely on Ωk. Future
measurements of the redshift drift, when combined with precision measurements of r(z),
could in principle allow for a clean separation of Ωk and ωk. However, undertaking such
an endeavor would be challenging, given that the redshift drift signal is extremely weak
over typical observational timescales.

Because no perturbations are considered in the value of Ωk, in our analysis, κ is a
truly anomalous parameter essentially devoid of physical meaning. In this specific sense, it
plays a role similar to other phenomenological parameters that have been considered in
various generalizations of the SM, such as the lensing anomaly parameter AL (e.g., [52]),
the dipole and integrated Sachs–Wolfe (ISW) anomaly parameters (e.g., [53,54]), and the
CMB temperature mismatch parameter when local priors on H0 are assumed [55–57]. The
parameter κ should be consistent with zero if GR and the underlying assumption of the
Cosmological Principle are not just qualitatively but also quantitatively valid. In principle,
since Ωk appears in Equation (9) as a contribution of an effective fluid with equations
of state, where w = −1/3, it could be viewed as the combined effect of curvature and a
‘K-matter contribution’ (save for the fact that it is unperturbed in our analysis) (e.g., [58]).
However, as we will see below, it turns out that our analysis of the (present) observational
datasets yields κ > 0, further reducing the likelihood for it to be a new exotic matter
contribution candidate. In general terms, the ‘null hypothesis’ is rejected to the extent that
κ statistically departs from zero.

One possible explanation for the nonvanishing phenomenological parameter κ could
be that the FRW spacetime metric is an over-idealization of spacetime that fails on suffi-
ciently small scales. This could possibly indicate that when averaging over sufficiently
small scales, second-order perturbations do not vanish and can back-react on a smoothed
out background. In particular, it can manifest in the form of effective spatial curvature or K-
matter, DE, and also stress-like contributions in the volume-averaged Friedmann equation.
This does not readily and unequivocally reflect on the effective spacetime metric. These
effects could not only tilt the balance between the various terms in the volume-averaged
Friedmann equation but also affect the growth of the structure, thereby biasing the inferred
cosmological parameters, with the curvature parameter included (e.g., [59–76]).
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3.1. Models and Datasets

We carried out an extensive statistical analysis in order to determine the most probable
ranges of the extended parameter set of the proposed modifications to the SM. To the
‘vanilla’ fundamental model parameters θMC, Ωbh2, Ωch2, τ, As, and ns, we add both Ωk

and ωk. The parameter κ is a derived parameter. Additional relevant derived parameters
that will be of interest to us here are H0, S8, and σ8, especially in light of the well-known
tensions involving these parameters when inferred from various dataset combinations. The
models considered in this work are summarized in Table 1.

Table 1. Models explored in this work.

Model 1 (ΛCDM) Ωk = 0 = ωk

Model 2 (KΛCDM) Ωk ≡ ωk

Model 3 Ωk ̸= 0, ωk ̸= 0

Model 4 Ωk ̸= 0

Model 5 ωk ̸= 0

The datasets employed in this analysis constitute the standard commonly adopted set
(in model testing), which is included (along with the corresponding likelihood functions)
as part of the CosmoMC 2021 package. These include the CMB Planck 2018 data [77],
DES 1 yr [78], BAO (data compilation from BOSS DR12 [79], MGS [80], and 6DF [81]),
and Pantheon data (catalog of 1048 SNIa in the redshift range of z ≲ 2 [82]). The entire
Planck dataset was included, with a multipole range of 2 < l < 2500 covered by the
plikHM_TTTEEE, lowl, and lowE likelihood functions.

As in our previous (somewhat) related work [57], we considered the P18, P18+DES,
P18+BAO, P18+SN, and P18+BAO+SN dataset combinations, each of which we performed
the analysis with and without the SH0ES prior on H0 for. Sampling from posterior dis-
tributions was performed using the fast-slow dragging algorithm with a Gelman–Rubin
convergence criterion R − 1 < 0.02 (where R is the scale reduction factor). Testing the
curved space model (with the new parameters included) using only the Planck dataset
(without the SH0ES prior) did not satisfy this convergence criterion. Therefore, the results
for this case were not considered in this work.

3.2. Results

For each of the five models described above, we computed the DIC for each dataset
combination. The DIC is defined as [83]

DIC ≡ 2χ̄2(θ)− χ2(θ̄), (11)

where θ is the vector of free model parameters and bars denote averages over the posterior
distribution P(θ). According to the ‘Jeffreys scale’ convention, a model characterized by
∆DIC that is lower with respect to a reference model by <1, 1.0–2.5, 2.5–5.0, and >5 would
be considered inconclusively, weakly-to-moderately, moderately-to-strongly, or decisively
favored [83] over the reference model, respectively.

Our quantitative DIC results are summarized in Tables 2 and 3. Specifically, when
considering dataset combinations with the SH0ES prior, the fits for Model 3 yielded DIC
values lower by 7–23 in comparison with those for Model 1. When the SH0ES prior was
excluded, Model 3 was significantly favored for the dataset combinations P18+DES and
P18+SN, with DIC gains of eight and seven, respectively, but did not outperform the
Model 1 fits with the dataset combinations P18+BAO, and P18+SN+BAO. Even when
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compared with Model 2, the Model 3 fits were better when the SH0ES prior was included.
When the SH0ES prior was excluded, Model 1 and Model 2 yielded quite similar DIC
values (except in the case of P18 data alone, when Model 2 was strongly favored over
Model 1, as is shown in Table 2). Therefore, Model 3 improved over Model 2 to about the
same extent that it improved over Model 1. Model 3 was found to be favored over Model 4

and Model 5 for its fits for all dataset combinations with the SH0ES prior.

Table 2. DIC values for the various models and dataset combinations. The references, Model 1 and
Model 2, are the flat ΛCDM and KΛCDM models, respectively.

Datasets Model 1 Model 2 Model 3 Model 4 Model 5

P18 2799.4 2791.0 – 2800.1 2791.3

−8.3 – 0.7 −8.1

P18+DES 3339.8 3338.4 3331.6 3338.4 3339.2

−1.3 −8.1 −1.3 −0.6

P18+BAO 2805.9 2806.5 2805.9 2806.8 2806.4

0.6 0 0.9 0.5

P18+SN 3834.8 3835.0 3827.7 3835.9 3835.7

0.2 −7.0 1.1 0.9

P18+SN+BAO 3840.8 3841.3 3841.7 3841.3 3841.4

0.5 0.9 0.5 0.6

Table 3. Same as Table 2, but with the SH0ES prior included.

Datasets Model 1 Model 2 Model 3 Model 4 Model 5

P18+SH0ES 2819.3 2809.3 2795.7 2804.8 2807.8

−10.0 −23.6 −14.5 −11.6

P18+DES+SH0ES 3354.6 3342.0 3331.9 3338.4 3340.1

−12.6 −22.7 −16.2 −14.5

P18+BAO+SH0ES 2824.8 2821.5 2812.2 2818.4 2820.9

−3.3 −12.6 −6.4 −3.9

P18+SN+SH0ES 3853.8 3844.9 3843.1 3845.0 3844.2

−8.9 −10.7 −8.8 −9.6

P18+SN+BAO+SH0ES 3859.4 3856.8 3852.4 3854.3 3856.0

−2.6 −7.0 −5.2 −3.4

Whereas the ultimate model comparison test must consider the overall model fitness
to data, as quantified by the corresponding DIC values in Tables 2 and 3, it is sometimes
useful to compare the results for ‘anomaly’ parameters, which should be identically zero
in the reference model (flat ΛCDM). Significant evidence in the data for the addition
of an ‘anomaly’ parameter is indicative of underperformance of the reference model in
comparison with the new modified models. The significance of statistical evidence for such
an anomaly parameter is usually reported in terms of percentiles or equivalently in terms
of ‘betting odds’ against a finite value for the parameter. We chose the latter option, and
the results are listed in Tables 4 and 5. For example, in Table 5, we report the corresponding
results for the two fundamental parameters Ωk and ωk, as well as for the derived parameter
κ. It is clear from the table that κ was, in general, a better diagnostic of the departures
from the reference model than either Ωk or ωk. It is also evident from Table 5 that whereas
KΛCDM outperformed flat ΛCDM in virtually all dataset combinations considered in the
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present work when the SH0ES prior was imposed (open geometry), as well as in the case of
P18 and P18+DES even with the SH0ES prior excluded (closed geometry), Model 5 and
Model 4 did so even more significantly. We stress again that focusing on a single parameter
might be misleading, given that the ultimate test is the ‘volume’ of the likelihood function
in parameter space, where the smaller the volume, the better the fit to the data. Indeed,
this was gauged by the DIC values reported in Tables 2 and 3. The general conclusions
and trends deduced from Tables 4 and 5 bode well given the results that are shown in
Tables 2 and 3.

Table 4. Betting odds against Ωk ̸= 0, ωk ̸= 0, and κ ̸= 0 in Model 3 for various dataset combinations.
Whereas either Ωk ̸= 0 or ωk ̸= 0 ruled out flat ΛCDM, κ ̸= 0 ruled out both flat ΛCDM and KΛCDM.

Dataset Ωk ωk κ

P18+SH0ES 1:500 1:20 1:10,000,000

P18+DES+SH0ES 1:300 1:5 1:1400

P18+BAO+SH0ES 1:1250 1:25 1:1000

P18+SN+SH0ES 1:7 fair 1:14

P18+BAO+SN+SH0ES 1:20 fair 1:25

P18 – – –

P18+DES 1:50 1:7 1:70

P18+BAO 1:4 fair 1:5

P18+SN 1:200 1:200 1:160

P18+BAO+SN fair fair fair

Table 5. Betting odds against either Ωk ̸= 0 (Model 4) or ωk ̸= 0 (Model 5) in the data. For reference,
betting odds against Ωk ̸= 0 in KΛCDM (Model 2) are shown.

Dataset Model 2 Model 4 Model 5

P18+SH0ES 1:300 1:100,000 1:100,000

P18+DES+SH0ES 1:2500 1:100,000 1:1250

P18+BAO+SH0ES 1:14 1:100 1:20

P18+SN+SH0ES 1:300 1:500 1:500

P18+BAO+SN+SH0ES 1:16 1:50 1:20

P18 1:500 1:4 1:1100

P18+DES 1:4 1:12 1:5

P18+BAO fair fair fair

P18+SN fair fair fair

P18+BAO+SN fair fair fair

Triangle plots for the selected cosmological parameters inferred from fitting Model 3 to
various dataset combinations are shown in Figure 1. There is a clear correlation between κ

and Ωbh2, ΩΛ, and σ8 and anticorrelation with Ωch2, Ωk, and ωk. For H0, Ωm, and S8, both
correlations and anticorrelations can be seen, depending on the data combination used. If
S8 rather than σ8 better captured the impact of growth of the structure on the cosmological
observables considered in this work, especially the DES dataset, then it is evident from
Figure 1 that once κ was allowed to freely vary, the data favored lower S8 and higher H0 val-
ues, which were even well beyond those obtained with KΛCDM and surely those obtained
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with flat ΛCDM. Specifically, these parameters inferred from fitting Model 3 to P18+DES
resulted in S8 = 0.773 ± 0.017 and H0 = 76.5 ± 3.0 km/sec/Mpc at a 68% confidence level.
For reference, when the same dataset was fitted with KΛCDM (flat ΛCDM), we obtained
S8 = 0.795 ± 0.016 (0.8018 ± 0.0066) and H0 = 70.1 ± 1.7 (68.16 ± 0.48) km/s/Mpc.
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Figure 1. Confidence contours and posterior parameter distributions in Model 3: Ωk ̸= 0 and ωk ̸= 0.

4. Discussion

The standard GR-based flat ΛCDM model has been remarkably successful in describ-
ing a broad spectrum of cosmological phenomena probed with a wide variety of CMB
projects, optical and IR telescopes, and extensive galaxy surveys, aiming for spectral and
spatial mapping of the CMB and tracing the large-scale structure and evolution of the
Universe. The KΛCDM model was a better fit for all dataset combinations than ΛCDM
when the SH0ES prior was assumed, whereas the two models performed equally well
when the SH0ES prior was not adopted. However, when the models were contrasted only
with the P18 dataset without the SH0ES prior, there was a strong preference for KΛCDM.
When the SH0ES prior was not included, the dataset combinations P18+BAO, P18+SN,
and P18+SN+BAO showed no preference for KΛCDM over the simpler flat ΛCDM model.
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Consequently, if the SH0ES prior was ignored in the analysis, then the concordance model
converged on flat ΛCDM by default.

The unique spacetime metric that describes a maximally symmetric spatial hypersur-
face is the FRW metric, possibly having a non-vanishing (constant) spatial curvature. The
curvature parameter appeared in both the Friedmann equation and geodesic equations, a
single parameter that appeared in both the t(z) and r(t) relations and thus also in the r(z)

relation. In this work, we explored the consequences of adding an additional degree of
freedom by allowing two independent curvature parameters in the t(z) and r(t) relations,
as described in Section 3. We defined a derived ‘anomaly’ (the ‘curvature slip’) parameter
κ ≡ ωk − Ωk that quantified the degree of mismatch between these two parameters, which
we inferred by determining the statistical significance of its departure from its canonical
value of zero. The reference model, Model 1, was ΛCDM, and Model 2 was KΛCDM. Our
modified models were Model 3, in which both Ωk and ωk are free parameters. In Model 4,
only Ωk is a free parameter, whereas in Model 5, only ωk is allowed to vary.

When the SH0ES prior was imposed, KΛCDM was clearly a better fit to the data than
ΛCDM, as is evident from Table 3. Model 3 performed much better with a DIC gain of
≳ 20 when neither BAO nor SN data were included. When these datasets were included,
the gain reduced to ∼7–12, which was still better than KΛCDM. Remarkably, with just the
P18+SH0ES data, Model 3 resulted in κ ̸= 0 having extremely high statistical significance,
with betting odds worse than 1 : 107 against κ ̸= 0 (Table 4). A similar conclusion applies
to P18+DES+SH0ES and P18+BAO+SH0ES but with lower statistical significance. Model 4

and Model 5 were also found to be statistically acceptable, though at a lower level of
significance, as is apparent from the results listed in Tables 4 and 5.

For dataset combinations with no SH0ES prior, we found that none of Models 3–5
provided a better fit for the data than Model 2. With these dataset combinations, Model 3

did not provide a better fit over either Model 4 or Model 5, except for the cases of P18+DES
and P18+SN, for which there was strong evidence (supported by a DIC gain ≳ 7) in favor
of this model over both KΛCDM and ΛCDM. We conclude that a model that allows for
simultaneous variation of both Ωk and ωk is, in general, not warranted by data combinations
that include BAO.

Even though the above analysis was based on the addition of a phenomenologically
motivated parameter, it is nonetheless of interest to consider its possibly physical interpre-
tations. As discussed above, the proposed models were better fits for the current datasets
than KΛCDM and particularly ΛCDM when the SH0ES prior was imposed. Since H0 and
Ωk were correlated in KΛCDM, imposing the SH0ES prior drove Ωk to positive values (i.e.,
toward a preference for a hyperbolic topology). The H0 − Ωk correlation was intuitively
clear; in a spatially closed Universe (i.e., Ωk < 0), incoming light rays are bent inward, the
crossover time of a photon is longer, and consequently, H0 is smaller. Therefore, a higher
value of H0 resulted in a higher value for Ωk. A sufficiently high value of H0 necessarily
led to Ωk > 0 (i.e., an open universe). Now, when both ωk and Ωk are allowed to simulta-
neously vary, even a flat geometry ωk ≈ 0 (which favors a higher H0 than in closed space
due to the above-mentioned correlation) is possible, but it would still have an extremely
negative Ωk value that allows for a longer fly time for incoming photons. (In the extreme
case where Ωk is sufficiently negative (i.e., the Universe is strongly closed), the fly time
could be infinite.) In the process, we can allow for a large H0 value to still be consistent
with an extremely negative Ωk value without affecting the angular diameter distance and
without having to compensate (by lowering the value of H0) for the closed geometry simply
because even though Ωk can be significantly negative, ωk can still satisfy |ωk| ≪ 1.

Whereas the curvature slip considered in the present work was examined within the
ΛCDM framework, the concept is clearly applicable to broader classes of cosmological
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models. For instance, the Dark Energy Spectroscopic Instrument (DESI) collaboration has
recently reported strong evidence for evolving dark energy within a spatially flat universe.
Specifically, the equation of state (EOS) of the DE component w(a) = w0 + wa(1 − a), where
w0 and wa are free model parameters, evolves with the scale factor in such a way that it
behaves as a ‘phantom’ DE in the past [84]. Notably, this behavior has not been hitherto ob-
served in other datasets. While the DESI collaboration has already considered models with
nonzero spatial curvature, incorporating curvature slip could potentially further extend
the space of viable models. Given that nonzero curvature slip is independently favored
by several datasets, as illustrated in the present work, it would be natural to introduce
this additional degree of freedom when analyzing the DESI data as well, potentially even
providing an alternative explanation for what the DESI currently interprets as evidence for
exotic dark energy evolution.

5. Summary

With the ever-increasing precision of cosmological observations, the challenge for
ΛCDM is correspondingly higher. As the number and statistical significance of SM anoma-
lies increase, so does the interest in alternative models. The SM is based on our best-tested
theory of gravitation, GR, which withstood the test of time. However, GR is well tested
only within our solar system, whereas on galactic and supergalactic scales, it has faired
poorly, as manifested by the need to invoke the existence of CDM and DE. Whereas on the
largest cosmological scales, these two mass-energy forms were described by only two new
parameters and therefore added only slight complexity to the model, this is far from being
the case on galactic scales, where CDM profiles have to be fit separately for each and every
galaxy or cluster of galaxies. As argued here—and, to the best of our knowledge, nowhere
else in the context of the present work—what is known as ‘dark energy’ (assuming its
simplest form: a cosmological constant) could by itself represent a gravitational anomaly
on the largest cosmological scales, rather than a genuine form of energy.

The P18 data strongly favor a spatially closed space but only with a relatively low
value of H0, which is at odds with local measurements of H0. Other datasets (e.g., P18+DES)
even favored an open Universe; only P18+SN supported the closed Universe model but
at an extremely weak ∼ 1σ confidence level. The BAO dataset has played a (somewhat
surprisingly) significant role in the acceptance of flat ΛCDM as the SM. It would be
remarkable if indeed the Universe, with its (post-inflation) continuous growth of structure,
has no appreciable departure from global spatial flatness. Yet, this is what the current
varied datasets, interpreted within the framework of the GR-based SM, seem to suggest.
In the present work, we relaxed the ‘stiffness’ of KΛCDM to test for the possibility that a
less ‘rigid’ model better fit the data. In the process, we found that especially when local
measurements of H0 were adopted as a prior (in the statistical analysis), this generalized
model better fit the data than KΛCDM and notably better than ΛCDM. This new anomaly,
the ‘curvature slip’ (gauged by the departure of a newly introduced κ parameter from its
vanishing canonical value), is yet another in a growing list of SM anomalies that enhance the
need for either new physics or more nuanced analyses within the realm of standard physics.
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